1. Introduction

In this chapter we discuss derived categories of modules on schemes. Most of the material discussed here can be found in [TT90], [BN93], [BV03], and [LN07]. Of course there are many other references.

2. Conventions

If A is an abelian category and M is an object of A then we also denote M the object of $K(A)$ and/or $D(A)$ corresponding to the complex which has M in degree 0 and is zero in all other degrees.

If we have a ring A, then $K(A)$ denotes the homotopy category of complexes of A-modules and $D(A)$ the associated derived category. Similarly, if we have a ringed space (X, \mathcal{O}_X) the symbol $K(\mathcal{O}_X)$ denotes the homotopy category of complexes of \mathcal{O}_X-modules and $D(\mathcal{O}_X)$ the associated derived category.

3. Derived category of quasi-coherent modules

In this section we discuss the relationship between quasi-coherent modules and all modules on a scheme X. A reference is [TT90, Appendix B]. By the discussion in Schemes, Section 24 the embedding $\text{QCoh}(\mathcal{O}_X) \subset \text{Mod}(\mathcal{O}_X)$ exhibits $\text{QCoh}(\mathcal{O}_X)$ as a weak Serre subcategory of the category of \mathcal{O}_X-modules. Denote

$$D_{\text{QCoh}}(\mathcal{O}_X) \subset D(\mathcal{O}_X)$$

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see Derived Categories, Section 17. Thus we obtain a canonical functor

$$D(\text{QCoh}(\mathcal{O}_X)) \rightarrow D_{\text{QCoh}}(\mathcal{O}_X)$$

see Derived Categories, Equation (17.1.1).

Lemma 3.1. Let X be a scheme. Then $D_{\text{QCoh}}(\mathcal{O}_X)$ has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category $D(\mathcal{O}_X)$ has direct sums and they are computed by taking termwise direct sums of any representatives. Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck abelian category). The lemma follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see Schemes, Section 24.

We will need some information on derived limits. We warn the reader that in the lemma below the derived limit will typically not be an object of D_{QCoh}.

Lemma 3.2. Let X be a scheme. Let (K_n) be an inverse system of $D_{\text{QCoh}}(\mathcal{O}_X)$ with derived limit $K = R\text{lim} K_n$ in $D(\mathcal{O}_X)$. Assume $H^q(K_{n+1}) \rightarrow H^q(K_n)$ is surjective for all $q \in \mathbb{Z}$ and $n \geq 1$. Then

1. $H^q(K) = \lim H^q(K_n)$,
2. $R\text{lim} H^q(K_n) = \lim H^q(K_n)$, and
3. for every affine open $U \subset X$ we have $H^p(U, \lim H^q(K_n)) = 0$ for $p > 0$.
Proof. Let \mathcal{B} be the set of affine opens of X. Since $H^q(K_n)$ is quasi-coherent we have $H^p(U, H^q(K_n)) = 0$ for $U \in \mathcal{B}$ by Cohomology of Schemes, Lemma 2.2. Moreover, the maps $H^0(U, H^q(K_{n+1})) \to H^0(U, H^q(K_n))$ are surjective for $U \in \mathcal{B}$ by Schemes, Lemma 7.5. Part (1) follows from Cohomology, Lemma 34.11 whose conditions we have just verified. Parts (2) and (3) follow from Cohomology, Lemma 34.3.

The following lemma will help us to “compute” a right derived functor on an object of $D_{QCoh}(\mathcal{O}_X)$.

Lemma 3.3. Let X be a scheme. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. Then the canonical map $E \to R\lim \tau_{\geq -n}E$ is an isomorphism.1

Proof. Denote $H^i = H^i(E)$ the ith cohomology sheaf of E. Let \mathcal{B} be the set of affine open subsets of X. Then $H^p(U, H^i) = 0$ for all $p > 0$, all $i \in \mathbb{Z}$, and all $U \in \mathcal{B}$, see Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology, Lemma 34.9.

Lemma 3.4. Let X be a scheme. Let $F : \text{Mod}(\mathcal{O}_X) \to \text{Ab}$ be an additive functor and $N \geq 0$ an integer. Assume that

1. F commutes with countable direct products,
2. $R^pF(F) = 0$ for all $p \geq N$ and F quasi-coherent.

Then for $E \in D_{QCoh}(\mathcal{O}_X)$ the maps $R^pF(E) \to R^pF(\tau_{\geq p-N+1}E)$ are isomorphisms.

Proof. By shifting the complex we see it suffices to prove the assertion for $p = 0$. Write $E_n = \tau_{\geq -n}E$. We have $E = R\lim E_n$, see Lemma 3.3. Thus $RF(E) = R\lim RF(E_n)$ in $D(\text{Ab})$ by Injectives, Lemma 13.6. Thus we have a short exact sequence

$$0 \to R^1\lim R^{-1}F(E_n) \to R^0F(E) \to \lim R^0F(E_n) \to 0$$

see More on Algebra, Remark 80.9. To finish the proof we will show that the term on the left is zero and that the term on the right equals $R^0F(E_{N-1})$.

We have a distinguished triangle

$$H^{-n}(E)[n] \to E_n \to E_{n-1} \to H^{-n}(E)[n+1]$$

(Derived Categories, Remark 12.4) in $D(\mathcal{O}_X)$. Since $H^{-n}(E)$ is quasi-coherent we have

$$R^pF(H^{-n}(E)[n]) = R^{p+n}F(H^{-n}(E)) = 0$$

for $p + n \geq N$ and

$$R^pF(H^{-n}(E)[n+1]) = R^{p+n+1}F(H^{-n}(E)) = 0$$

for $p + n + 1 \geq N$. We conclude that

$$R^pF(E_n) \to R^pF(E_{n-1})$$

is an isomorphism for all $n \gg p$ and an isomorphism for $n \geq N$ for $p = 0$. Thus the systems $R^pF(E_n)$ all satisfy the ML condition and $R^1\lim$ gives zero (see discussion in More on Algebra, Section 80). Moreover, the system $R^pF(\tau_{\geq -n}E)$ is constant starting with $n = N - 1$ as desired.

The following lemma is the key ingredient to many of the results in this chapter.

1In particular, E has a K-injective representative as in Cohomology, Lemma 35.1.
Lemma 3.5. Let $X = \text{Spec}(A)$ be an affine scheme. All the functors in the diagram

\[
\begin{array}{ccc}
D(QCoh(O_X)) & \xrightarrow{3.0.1} & D_{QCoh}(O_X) \\
\downarrow & & \downarrow \\
D(A) & \xleftarrow{\sim} & D(QCoh(O_X))
\end{array}
\]

are equivalences of triangulated categories. Moreover, for E in $D_{QCoh}(O_X)$ we have $H^0(X, E) = H^0(X, H^0(E))$.

Proof. The functor $R\Gamma(X, -)$ gives a functor $D(O_X) \to D(A)$ and hence by restriction a functor

\[R\Gamma(X, -) : D_{QCoh}(O_X) \to D(A).\]

We will show this functor is quasi-inverse to (3.0.1) via the equivalence between quasi-coherent modules on X and the category of A-modules.

Elucidation. Denote (Y, O_Y) the one point space with sheaf of rings given by A. Denote $\pi : (X, O_X) \to (Y, O_Y)$ the obvious morphism of ringed spaces. Then $R\Gamma(X, -)$ can be identified with $R\pi_*$ and the functor (3.0.1) via the equivalence $\text{Mod}(O_Y) = \text{Mod}_A = QCoh(O_X)$ can be identified with $L\pi^* = \pi^* = \sim$ (see Modules, Lemma 10.5 and Schemes, Lemmas 7.1 and 7.5). Thus the functors

\[D(A) \xrightarrow{\sim} D_{QCoh}(O_X)\]

are adjoint (by Cohomology, Lemma 28.1). In particular we obtain canonical adjunction mappings

\[a : R\Gamma(X, E) \to E\]

for E in $D(O_X)$ and

\[b : M^\bullet \to R\Gamma(X, \sim M^\bullet)\]

for M^\bullet a complex of A-modules.

Let E be an object of $D_{QCoh}(O_X)$. We may apply Lemma 3.4 to the functor $F(-) = \Gamma(X, -)$ with $N = 1$ by Cohomology of Schemes, Lemma 2.2. Hence

\[R^0\Gamma(X, E) = R^0\Gamma(X, \tau_{\geq 0} E) = \Gamma(X, H^0(E))\]

(the last equality by definition of the canonical truncation). Using this we will show that the adjunction mappings a and b induce isomorphisms $H^0(a)$ and $H^0(b)$. Thus a and b are quasi-isomorphisms (as the statement is invariant under shifts) and the lemma is proved.

In both cases we use that \sim is an exact functor (Schemes, Lemma 5.4). Namely, this implies that

\[H^0 \left(R\Gamma(X, E) \right) = R^0\Gamma(X, E) = \Gamma(X, H^0(E))\]

which is equal to $H^0(E)$ because $H^0(E)$ is quasi-coherent. Thus $H^0(a)$ is an isomorphism. For the other direction we have

\[H^0(\sim M^\bullet) = R^0\Gamma(X, \sim M^\bullet) = \Gamma(X, H^0(\sim M^\bullet)) = \Gamma(X, H^0(M^\bullet)) = H^0(M^\bullet)\]

which proves that $H^0(b)$ is an isomorphism. \qed
Lemma 3.6. Let $X = \text{Spec}(A)$ be an affine scheme. If K^\bullet is a K-flat complex of A-modules, then \tilde{K}^\bullet is a K-flat complex of \mathcal{O}_X-modules.

Proof. By More on Algebra, Lemma 57.5 we see that $K^\bullet \otimes_A A_p$ is a K-flat complex of A_p-modules for every $p \in \text{Spec}(A)$. Hence we conclude from Cohomology, Lemma 26.4 (and Schemes, Lemma 5.4) that \tilde{K}^\bullet is K-flat. \hfill \square

Lemma 3.7. If $f : X \to Y$ is a morphism of affine schemes given by the ring map $A \to B$, then the diagram

\[
\begin{array}{ccc}
D(B) & \longrightarrow & D_{QCoh}(\mathcal{O}_X) \\
\downarrow & & \downarrow Rf_* \\
D(A) & \longrightarrow & D_{QCoh}(\mathcal{O}_Y)
\end{array}
\]

commutes.

Proof. Follows from Lemma 3.5 using that $R\Gamma(Y, Rf_* K) = R\Gamma(X, K)$ by Cohomology, Lemma 32.5. \hfill \square

Lemma 3.8. Let $f : Y \to X$ be a morphism of schemes.

1. The functor Lf^* sends $D_{QCoh}(\mathcal{O}_X)$ into $D_{QCoh}(\mathcal{O}_Y)$.
2. If X and Y are affine and f is given by the ring map $A \to B$, then the diagram

\[
\begin{array}{ccc}
D(B) & \longrightarrow & D_{QCoh}(\mathcal{O}_Y) \\
\downarrow \varphi_A^* B & & \downarrow Lf^* \\
D(A) & \longrightarrow & D_{QCoh}(\mathcal{O}_X)
\end{array}
\]

commutes.

Proof. We first prove the diagram

\[
\begin{array}{ccc}
D(B) & \longrightarrow & D(\mathcal{O}_Y) \\
\downarrow \varphi_A^* B & & \downarrow Lf^* \\
D(A) & \longrightarrow & D(\mathcal{O}_X)
\end{array}
\]

commutes. This is clear from Lemma 3.6 and the constructions of the functors in question. To see (1) let E be an object of $D_{QCoh}(\mathcal{O}_X)$. To see that $Lf^* E$ has quasi-coherent cohomology sheaves we may work locally on X. Note that Lf^* is compatible with restricting to open subschemes. Hence we can assume that f is a morphism of affine schemes as in (2). Then we can apply Lemma 3.5 to see that E comes from a complex of A-modules. By the commutativity of the first diagram of the proof the same holds for $Lf^* E$ and we conclude (1) is true. \hfill \square

Lemma 3.9. Let X be a scheme.

1. For objects K, L of $D_{QCoh}(\mathcal{O}_X)$ the derived tensor product $K \otimes^L_{\mathcal{O}_X} L$ is in $D_{QCoh}(\mathcal{O}_X)$.
2. If $X = \text{Spec}(A)$ is affine then

\[
\overline{M}^\bullet \otimes^L_{\mathcal{O}_X} \overline{K}^\bullet = M^\bullet \otimes^L_A K^\bullet
\]

for any pair of complexes of A-modules K^\bullet, M^\bullet.

Proof. The equality of (2) follows immediately from Lemma 3.6 and the construction of the derived tensor product. To see (1) let K, L be objects of $D_{QCoh}(\mathcal{O}_X)$. To check that $K \otimes^L L$ is in $D_{QCoh}(\mathcal{O}_X)$ we may work locally on X, hence we may assume $X = \text{Spec}(A)$ is affine. By Lemma 3.5 we may represent K and L by complexes of A-modules. Then part (2) implies the result. \hfill \Box

4. Total direct image

Lemma 4.1. Let $f : X \to S$ be a morphism of schemes. Assume that f is quasi-separated and quasi-compact.

(1) The functor Rf_* sends $D_{QCoh}(\mathcal{O}_X)$ into $D_{QCoh}(\mathcal{O}_S)$.
(2) If S is quasi-compact, there exists an integer $N = N(X,S,f)$ such that for any object E of $D_{QCoh}(\mathcal{O}_X)$ with $H^m(E) = 0$ for $m > 0$ we have $H^m(Rf_*E) = 0$ for $m \geq N$.
(3) In fact, if S is quasi-compact we can find $N = N(X,S,f)$ such that for every morphism of schemes $S' \to S$ the same conclusion holds for the functor $R(f')_*$. Where $f' : X' \to S'$ is the base change of f.

Proof. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. To prove (1) we have to show that Rf_*E has quasi-coherent cohomology sheaves. The question is local on S, hence we may assume S is quasi-compact. Pick $N = N(X,S,f)$ as in Cohomology of Schemes, Lemma 4.5. Thus $R^p f_*\mathcal{F} = 0$ for all quasi-coherent \mathcal{O}_X-modules \mathcal{F} and all $p \geq N$ and the same remains true after base change.

First, assume E is bounded below. We will show (1) and (2) and (3) hold for such E with our choice of N. In this case we can for example use the spectral sequence

$$R^p f_* H^q(E) \Rightarrow R^{p+q} f_* E$$

(Derived Categories, Lemma 21.3), the quasi-coherence of $R^p f_* H^q(E)$, and the vanishing of $R^p f_* H^q(E)$ for $p \geq N$ to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say $H^m(E) = 0$ for $m > 0$. Let $U \subset S$ be affine open. By Cohomology of Schemes, Lemma 4.6 and our choice of N we have $H^p(f^{-1}(U),\mathcal{F}) = 0$ for $p \geq N$ and any quasi-coherent \mathcal{O}_X-module \mathcal{F}. Hence we may apply Lemma 3.4 to the functor $\Gamma(f^{-1}(U), -)$ to see that

$$R\Gamma(U, Rf_* E) = R\Gamma(f^{-1}(U), E)$$

has vanishing cohomology in degrees $\geq N$. Since this holds for all $U \subset S$ affine open we conclude that $H^m(Rf_* E) = 0$ for $m \geq N$.

Next, we prove (1) in the general case. Recall that there is a distinguished triangle

$$\tau_{\leq -n-1} E \to E \to \tau_{\geq -n} E \to (\tau_{\leq -n-1} E)[1]$$

in $D(\mathcal{O}_X)$, see Derived Categories, Remark 12.4. By (2) we see that $Rf_* \tau_{\leq -n-1} E$ has vanishing cohomology sheaves in degrees $\geq -n + N$. Thus, given an integer q we see that $R^q f_* E$ is equal to $R^q f_* \tau_{\geq -n} E$ for some n and the result above applies. \hfill \Box

Lemma 4.2. Let $f : X \to S$ be a quasi-separated and quasi-compact morphism of schemes. Then $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_S)$ commutes with direct sums.
Proof. Let E_i be a family of objects of $D_{QCoh}(\mathcal{O}_X)$ and set $E = \bigoplus E_i$. We want to show that the map
$$
\bigoplus Rf_*E_i \to Rf_*E
$$
is an isomorphism. We will show it induces an isomorphism on cohomology sheaves in degree 0 which will imply the lemma. Choose an integer N as in Lemma 4.1

Then $R^q f_*E = R^q f_*\tau_{\geq -N} E$ and $R^q f_*E_i = R^q f_*\tau_{\geq -N} E_i$ by the lemma cited. Observe that $\tau_{\geq -N} E = \bigoplus \tau_{\geq -N} E_i$. Thus we may assume all of the E_i have vanishing cohomology sheaves in degrees $<-N$. Next we use the spectral sequences

$$
R^p f_* H^q (E) \Rightarrow R^{p+q} f_* E \quad \text{and} \quad R^p f_* H^q (E_i) \Rightarrow R^{p+q} f_* E_i
$$

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-coherent sheaves. This case is handled by Cohomology of Schemes, Lemma 6.1. \hfill \Box

5. Affine morphisms

0AVV In this section we collect some information about pushforward along an affine morphism of schemes.

0818 Lemma 5.1. Let $f : X \to S$ be an affine morphism of schemes. Then $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_S)$ reflects isomorphisms.

Proof. The statement means that a morphism $\alpha : E \to F$ of $D_{QCoh}(\mathcal{O}_X)$ is an isomorphism if $Rf_*\alpha$ is an isomorphism. We may check this on cohomology sheaves. In particular, the question is local on S. Hence we may assume S and therefore X is affine. In this case the statement is clear from the description of the derived categories $D_{QCoh}(\mathcal{O}_X)$ and $D_{QCoh}(\mathcal{O}_S)$ given in Lemma 3.5. Some details omitted. \hfill \Box

0819 Lemma 5.2. Let $f : X \to S$ be an affine morphism of schemes. For E in $D_{QCoh}(\mathcal{O}_S)$ we have $Rf_*Lf^*E = E \otimes_{\mathcal{O}_S} f_*\mathcal{O}_X$.

Proof. Since f is affine the map $f_\mathcal{O}_X \to Rf_*\mathcal{O}_X$ is an isomorphism (Cohomology of Schemes, Lemma 2.3). There is a canonical map $E \otimes^L f_*\mathcal{O}_X = E \otimes^L Rf_*\mathcal{O}_X \to Rf_*Lf^*E$ adjoined to the map

$$
Lf^*_*(E \otimes^L Rf_*\mathcal{O}_X) = Lf^* E \otimes^L Lf^* Rf_*\mathcal{O}_X \to Lf^* E \otimes^L \mathcal{O}_X = Lf^* E
$$

coming from $1 : Lf^* E \to Lf^* E$ and the canonical map $Lf^* Rf_*\mathcal{O}_X \to \mathcal{O}_X$. To check the map so constructed is an isomorphism we may work locally on S. Hence we may assume S and therefore X is affine. In this case the statement is clear from the description of the derived categories $D_{QCoh}(\mathcal{O}_X)$ and $D_{QCoh}(\mathcal{O}_S)$ and the functor Lf^* given in Lemmas 3.5 and 3.8. Some details omitted. \hfill \Box

Let Y be a scheme. Let \mathcal{A} be a sheaf of \mathcal{O}_Y-algebras. We will denote $D_{QCoh}(\mathcal{A})$ the inverse image of $D_{QCoh}(\mathcal{O}_X)$ under the restriction functor $D(\mathcal{A}) \to D(\mathcal{O}_X)$. In other words, $K \in D(\mathcal{A})$ is in $D_{QCoh}(\mathcal{A})$ if and only if its cohomology sheaves are quasi-coherent as \mathcal{O}_X-modules. If \mathcal{A} is quasi-coherent itself this is the same as asking the cohomology sheaves to be quasi-coherent as \mathcal{A}-modules, see Morphisms, Lemma 11.6.

0AVW Lemma 5.3. Let $f : X \to Y$ be an affine morphism of schemes. Then f_* induces an equivalence

$$
\Phi : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(f_*\mathcal{O}_X)
$$
whose composition with $D_{QCoh}(f_*O_X) \to D_{QCoh}(O_Y)$ is $Rf_* : D_{QCoh}(O_X) \to D_{QCoh}(O_Y)$.

Proof. Recall that Rf_* is computed on an object $K \in D_{QCoh}(O_X)$ by choosing a K-injective complex T^\bullet of O_X-modules representing K and taking f_*T^\bullet. Thus we let $\Phi(K)$ be the complex f_*T^\bullet viewed as a complex of f_*O_X-modules. Denote $g : (X,O_X) \to (Y,f_*O_X)$ the obvious morphism of ringed spaces. Then g is a flat morphism of ringed spaces (see below for a description of the stalks) and Φ is the restriction of Rg_* to $D_{QCoh}(O_X)$. We claim that Lg^* is a quasi-inverse. First, observe that Lg^* sends $D_{QCoh}(f_*O_X)$ into $D_{QCoh}(O_X)$ because g^* transforms quasi-coherent modules into quasi-coherent modules (Modules, Lemma 10.4). To finish the proof it suffices to show that the adjunction mappings

$$Lg^*\Phi(K) = Lg^*Rg_*K \to K$$

and

$$M \to Rg_*Lg^*M = \Phi(Lg^*M)$$

are isomorphisms for $K \in D_{QCoh}(O_X)$ and $M \in D_{QCoh}(f_*O_X)$. This is a local question, hence we may assume Y and therefore X are affine.

Assume $Y = \text{Spec}(B)$ and $X = \text{Spec}(A)$. Let $p = x \in \text{Spec}(A) = X$ be a point mapping to $q = y \in \text{Spec}(B) = Y$. Then $(f_*O_X)_y = A_q$ and $O_{X,x} = A_p$ hence g is flat. Hence g^* is exact and $H^i(Lg^*M) = g^*H^i(M)$ for any $M \in D(f_*O_X)$. For $K \in D_{QCoh}(O_X)$ we see that

$$H^i(\Phi(K)) = H^i(Rf_*K) = f_*H^i(K)$$

by the vanishing of higher direct images (Cohomology of Schemes, Lemma 2.3) and Lemma 3.4. Thus it suffices to show that

$$g^*g_*F \to F$$

and

$$G \to g_*g^*F$$

are isomorphisms where F is a quasi-coherent O_X-module and G is a quasi-coherent f_*O_X-module. This follows from Morphisms, Lemma 11.6. \qed

6. The coherator

Let X be a scheme. The **coherator** is a functor

$$Q_X : \text{Mod}(O_X) \to \text{QCoh}(O_X)$$

which is right adjoint to the inclusion functor $\text{QCoh}(O_X) \to \text{Mod}(O_X)$. It exists for any scheme X and moreover the adjunction mapping $Q_X(F) \to F$ is an isomorphism for every quasi-coherent module F, see Properties, Proposition 23.4. Since Q_X is left exact (as a right adjoint) we can consider its right derived extension

$$RQ_X : D(O_X) \to D(\text{QCoh}(O_X)).$$

Since Q_X is right adjoint to the inclusion functor $\text{QCoh}(O_X) \to \text{Mod}(O_X)$ we see that RQ_X is right adjoint to the canonical functor $D(\text{QCoh}(O_X)) \to D(O_X)$ by Derived Categories, Lemma 30.3.

In this section we will study the functor RQ_X. In Section 20 we will study the (closely related) right adjoint to the inclusion functor $D_{QCoh}(O_X) \to D(O_X)$ (when it exists).
Lemma 6.1. Let $f : X \to Y$ be an affine morphism of schemes. Then f_* defines a derived functor $f_* : D(QCoh(O_X)) \to D(QCoh(O_Y))$. This functor has the property that

\[
D(QCoh(O_X)) \xrightarrow{f_*} D_QCoh(O_X) \xrightarrow{Rf_*} D(QCoh(O_Y))
\]

commutes.

Proof. The functor $f_* : QCoh(O_X) \to QCoh(O_Y)$ is exact, see Cohomology of Schemes, Lemma 22.23. Hence f_* defines a derived functor $f_* : D(QCoh(O_X)) \to D(QCoh(O_Y))$ by simply applying f_* to any representative complex, see Derived Categories, Lemma 16.9. For any complex of O_X-modules F^\bullet there is a canonical map $f_! F^\bullet \to Rf_* F^\bullet$. To finish the proof we show this is a quasi-isomorphism when F^\bullet is a complex with each F^n quasi-coherent. As the statement is invariant under shifts it suffices to show that $H^n(f_!(F^\bullet)) \to R^n f_* F^\bullet$ is an isomorphism. The statement is local on Y hence we may assume Y affine. By Lemma 16.11 we have $R^n f_* F^\bullet = R^n f_* \tau_{\geq -n} F^\bullet$ for all sufficiently large n. Thus we may assume F^\bullet bounded below. As each F^n is f_*-acyclic by Cohomology of Schemes, Lemma 22.3 we see that $f_! F^\bullet \to Rf_* F^\bullet$ is a quasi-isomorphism by Leray’s acyclicity lemma (Derived Categories, Lemma 16.1).

Lemma 6.2. Let $f : X \to Y$ be a morphism of schemes. Assume f is quasi-compact, quasi-separated, and flat. Then, denoting

$\Phi : D(QCoh(O_X)) \to D(QCoh(O_Y))$

the right derived functor of $f_* : QCoh(O_X) \to QCoh(O_Y)$ we have $RQ_Y \circ Rf_* = \Phi \circ RQ_X$.

Proof. We will prove this by showing that $RQ_Y \circ Rf_*$ and $\Phi \circ RQ_X$ are right adjoint to the same functor $D(QCoh(O_Y)) \to D(O_X)$.

Since f is quasi-compact and quasi-separated, we see that f_* preserves quasi-coherence, see Schemes, Lemma 24.1. Recall that $QCoh(O_X)$ is a Grothendieck abelian category (Properties, Proposition 23.4). Hence any K in $D(QCoh(O_X))$ can be represented by a K-injective complex I^\bullet of $QCoh(O_X)$, see Injectives, Theorem 12.6. Then we can define $\Phi(K) = f_! I^\bullet$.

Since f is flat, the functor f^* is exact. Hence f^* defines $f^* : D(O_Y) \to D(O_X)$ and also $f^* : D(QCoh(O_Y)) \to D(QCoh(O_X))$. The functor $f^* = Lf^* : D(O_Y) \to D(O_X)$ is left adjoint to $Rf_* : D(O_X) \to D(O_Y)$, see Cohomology, Lemma 28.1. Similarly, the functor $f^* : D(QCoh(O_Y)) \to D(QCoh(O_X))$ is left adjoint to $\Phi : D(QCoh(O_X)) \to D(QCoh(O_Y))$ by Derived Categories, Lemma 30.3.

Let A be an object of $D(QCoh(O_Y))$ and E an object of $D(O_X)$. Then

\[
\text{Hom}_{D(QCoh(O_Y))}(A, RQ_Y(Rf_* E)) = \text{Hom}_{D(O_Y)}(A, Rf_* E)
\]

\[
= \text{Hom}_{D(O_X)}(f^* A, E)
\]

\[
= \text{Hom}_{D(QCoh(O_X))}(f^* A, RQ_X(E))
\]

\[
= \text{Hom}_{D(QCoh(O_Y))}(A, \Phi(RQ_X(E)))
\]

This implies what we want.
Lemma 6.3. Let $X = \text{Spec}(A)$ be an affine scheme. Then

1. $Q_X : \text{Mod}(\mathcal{O}_X) \to \text{Qcoh}(\mathcal{O}_X)$ is the functor which sends \mathcal{F} to the quasi-coherent \mathcal{O}_X-module associated to the A-module $\Gamma(X, \mathcal{F})$,
2. $RQ_X : D(\mathcal{O}_X) \to D(\text{Qcoh}(\mathcal{O}_X))$ is the functor which sends E to the complex of quasi-coherent \mathcal{O}_X-modules associated to the object $R\Gamma(X, E)$ of $D(A)$,
3. restricted to $D_{\text{Qcoh}}(\mathcal{O}_X)$ the functor RQ_X defines a quasi-inverse to (3.0.1).

Proof. The functor Q_X is the functor $F \mapsto \hat{\Gamma}(X, F)$ by Schemes, Lemma 7.1. This immediately implies (1) and (2). The third assertion follows from (the proof of) Lemma 3.5. □

Definition 6.4. Let X be a scheme. Let E be an object of $D(\mathcal{O}_X)$. Let $T \subset X$ be a closed subset. We say E is supported on T if the cohomology sheaves $H^i(E)$ are supported on T.

With this definition in hand, we are ready to prove a criterion for when the functor $D(\text{Qcoh}(\mathcal{O}_X)) \to D_{\text{Qcoh}}(\mathcal{O}_X)$ is an equivalence.

Lemma 6.5. Let X be a quasi-compact and quasi-separated scheme. Suppose that for every affine open $U \subset X$ the right derived functor

$\Phi : D(\text{Qcoh}(\mathcal{O}_U)) \to D(\text{Qcoh}(\mathcal{O}_X))$

of the left exact functor $j_* : \text{Qcoh}(\mathcal{O}_U) \to \text{Qcoh}(\mathcal{O}_X)$ fits into a commutative diagram

$$
\begin{array}{ccc}
D(\text{Qcoh}(\mathcal{O}_U)) & \xrightarrow{i_U} & D_{\text{Qcoh}}(\mathcal{O}_U) \\
\Phi \downarrow & & \downarrow Rj_* \\
D(\text{Qcoh}(\mathcal{O}_X)) & \xrightarrow{i_X} & D_{\text{Qcoh}}(\mathcal{O}_X)
\end{array}
$$

Then the functor (3.0.1)

$D(\text{Qcoh}(\mathcal{O}_X)) \to D_{\text{Qcoh}}(\mathcal{O}_X)$

is an equivalence with quasi-inverse given by RQ_X.

Proof. Let E be an object of $D_{\text{Qcoh}}(\mathcal{O}_X)$ and let A be an object of $D(\text{Qcoh}(\mathcal{O}_X))$. We have to show that the adjunction maps $RQ_X(i_X(A)) \to A$ and $E \to i_X(RQ_X(E))$ are isomorphisms. Consider the hypothesis H_n: the adjunction maps above are isomorphisms whenever E and $i_X(A)$ are supported on a closed subset of X which is contained in the union of n affine opens of X. We will prove H_n by induction on n.

Base case: $n = 0$. In this case $E = 0$, hence the map $E \to i_X(RQ_X(E))$ is an isomorphism. Similarly $i_X(A) = 0$. Thus the cohomology sheaves of $i_X(A)$ are zero. Since the inclusion functor $\text{Qcoh}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X)$ is fully faithful and exact, we conclude that the cohomology objects of A are zero, i.e., $A = 0$ and $RQ_X(i_X(A)) \to A$ is an isomorphism as well.
Induction step. Suppose that \(E \) and \(i_X(A) \) are supported on a closed subset \(T \) of \(X \) contained in \(U_1 \cup \ldots \cup U_n \) with \(U_i \subset X \) affine open. Set \(U = U_n \). Consider the distinguished triangles

\[
A \to \Phi(A|_U) \to A' \to A[1] \quad \text{and} \quad E \to Rj_*(E|_U) \to E' \to E[1]
\]

where \(\Phi \) is as in the statement of the lemma. Note that \(E \to Rj_*(E|_U) \) is a quasi-isomorphism over \(U = U_n \). Since \(i_X \circ \Phi = Rj_\circ i_U \) by assumption and since \(i_X(A)|_U = i_U(A|_U) \) we see that \(i_X(A) \to i_X(\Phi(A|_U)) \) is a quasi-isomorphism over \(U \). Hence \(i_X(A') \) and \(E' \) are supported on the closed subset \(T \setminus U \) of \(X \) which is contained in \(U_1 \cup \ldots \cup U_{n-1} \). By induction hypothesis the statement is true for \(A' \) and \(E' \). By Derived Categories, Lemma \[6.3\] it suffices to prove the maps

\[
RQ_X(i_X(\Phi(A|_U))) \to \Phi(A|_U) \quad \text{and} \quad Rj_*(E|_U) \to i_X(RQ_X(Rj_*(E|_U)))
\]

are isomorphisms. By assumption and by Lemma \[6.2\] (the inclusion morphism \(j : U \to X \) is flat, quasi-compact, and quasi-separated) we have

\[
RQ_X(i_X(\Phi(A|_U))) = RQ_X(Rj_*(i_U(A|_U))) = \Phi(RQ_U(i_U(A|_U)))
\]

and

\[
i_X(RQ_X(Rj_*(E|_U))) = i_X(\Phi(RQ_U(E|_U))) = Rj_*(i_U(RQ_U(E|_U)))
\]

Finally, the maps

\[
RQ_U(i_U(A|_U)) \to A|_U \quad \text{and} \quad E|_U \to i_U(RQ_U(E|_U))
\]

are isomorphisms by Lemma \[6.3\] The result follows. □

Proposition 6.6. Let \(X \) be a quasi-compact scheme with affine diagonal. Then the functor \(D(QCoh(O_X)) \to D(QCoh(O_X)) \) is an equivalence with quasi-inverse given by \(RQ_X \).

Proof. Let \(U \subset X \) be an affine open. Then the morphism \(U \to X \) is affine by Morphisms, Lemma \[11.11\] Thus the assumption of Lemma \[6.5\] holds by Lemma \[6.1\] and we win. □

Lemma 6.7. Let \(f : X \to Y \) be a morphism of schemes. Assume \(X \) and \(Y \) are quasi-compact and have affine diagonal. Then, denoting

\[
\Phi : D(QCoh(O_X)) \to D(QCoh(O_Y))
\]

the right derived functor of \(f_* : QCoh(O_X) \to QCoh(O_Y) \) the diagram

\[
\begin{array}{ccc}
D(QCoh(O_X)) & \longrightarrow & D(QCoh(O_X)) \\
\Phi \downarrow & & \downarrow Rf_* \\
D(QCoh(O_Y)) & \longrightarrow & D(QCoh(O_Y))
\end{array}
\]

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of categories by Proposition \[6.6\] Hence we can identify these categories (and similarly for other quasi-compact schemes with affine diagonal). The statement of the lemma is that the canonical map \(\Phi(K) \to Rf_*(K) \) is an isomorphism for all \(K \) in \(D(QCoh(O_X)) \). Note that if \(K_1 \to K_2 \to K_3 \to K_1[1] \) is a distinguished triangle...
in $D(QCoh(O_X))$ and the statement is true for two-out-of-three, then it is true for the third.

Let $U \subset X$ be an affine open. Since the diagonal of X is affine, the inclusion morphism $j : U \to X$ is affine (Morphisms, Lemma \ref{morphisms-lemma-characterize-affine}). Similarly, the composition $g = f \circ j : U \to Y$ is affine. Let \mathcal{I}^\bullet be a K-injective complex in $QCoh(O_U)$. Since $j_* : QCoh(O_U) \to QCoh(O_X)$ has an exact left adjoint $j^* : QCoh(O_X) \to QCoh(O_U)$ we see that $j_*\mathcal{I}^\bullet$ is a K-injective complex in $QCoh(O_X)$, see Derived Categories, Lemma \ref{derived-lemma-compose}. It follows that

$$\Phi(j_*\mathcal{I}^\bullet) = f_*j_*\mathcal{I}^\bullet = g_*\mathcal{I}^\bullet$$

By Lemma \ref{derived-lemma-compose} we see that $j_*\mathcal{I}^\bullet$ represents $Rj_*\mathcal{I}^\bullet$ and $g_*\mathcal{I}^\bullet$ represents $Rh_*\mathcal{I}^\bullet$. On the other hand, we have $Rf_* \circ Rj_* = Rh_*$. Hence $f_*j_*\mathcal{I}^\bullet$ represents $Rf_*(j_*\mathcal{I}^\bullet)$. We conclude that the lemma is true for any complex of the form $j_*\mathcal{G}^\bullet$ with \mathcal{G}^\bullet a complex of quasi-coherent modules on U. (Note that if $\mathcal{G}^\bullet \to \mathcal{I}^\bullet$ is a quasi-isomorphism, then $j_*\mathcal{G}^\bullet \to j_*\mathcal{I}^\bullet$ is a quasi-isomorphism as well since j_* is an exact functor on quasi-coherent modules.)

Let \mathcal{F}^\bullet be a complex of quasi-coherent O_X-modules. Let $T \subset X$ be a closed subset such that the support of \mathcal{F}^p is contained in T for all p. We will use induction on the minimal number n of affine opens U_1, \ldots, U_n such that $T \subset U_1 \cup \ldots \cup U_n$. The base case $n = 0$ is trivial. If $n \geq 1$, then set $U = U_1$ and denote $j : U \to X$ the open immersion as above. We consider the map of complexes $c : \mathcal{F}^\bullet \to j_*j^*\mathcal{F}^\bullet$. We obtain two short exact sequences of complexes:

$$0 \to \text{Ker}(c) \to \mathcal{F}^\bullet \to \text{Im}(c) \to 0$$

and

$$0 \to \text{Im}(c) \to j_*j^*\mathcal{F}^\bullet \to \text{Coker}(c) \to 0$$

The complexes $\text{Ker}(c)$ and $\text{Coker}(c)$ are supported on $T \setminus U \subset U_2 \cup \ldots \cup U_n$ and the result holds for them by induction. The result holds for $j_*j^*\mathcal{F}^\bullet$ by the discussion in the preceding paragraph. We conclude by looking at the distinguished triangles associated to the short exact sequences and using the initial remark of the proof. □

\begin{rem}[Remark \ref{derived-lemma-compose}] Let X be a quasi-compact scheme with affine diagonal. Even though we know that $D(QCoh(O_X)) = D_{QCoh}(O_X)$ by Proposition \ref{derived-lemma-compose} strange things can happen and it is easy to make mistakes with this material. One pitfall is to carelessly assume that this equality means derived functors are the same. For example, suppose we have a quasi-compact open $U \subset X$. Then we can consider the higher right derived functors

$$R^i(QCoh)\Gamma(U, -) : QCoh(O_X) \to \text{Ab}$$

of the left exact functor $\Gamma(U, -)$. Since this is a universal δ-functor, and since the functors $H^i(U, -)$ (defined for all abelian sheaves on X) restricted to $QCoh(O_X)$ form a δ-functor, we obtain canonical tranformations

$$t^i : R^i(QCoh)\Gamma(U, -) \to H^i(U, -).$$

These transformations aren’t in general isomorphisms even if $X = \text{Spec}(A)$ is affine! Namely, we have $R^i(QCoh)\Gamma(U, I) = 0$ if I an injective A-module by construction of right derived functors and the equivalence of $QCoh(O_X)$ and Mod_A. But Examples, Lemma \ref{derived-lemma-sheaf} shows there exists A, I, and U such that $H^1(U, I) \neq 0$.

7. The coherator for Noetherian schemes

Lemma 7.1. Let X be a Noetherian scheme. Let J be an injective object of $\text{QCoh}(\mathcal{O}_X)$. Then J is a flasque sheaf of \mathcal{O}_X-modules.

Proof. Let $U \subset X$ be an open subset and let $s \in J(U)$ be a section. Let $I \subset X$ be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on $X \setminus U$ (see Schemes, Definition 12.5). By Cohomology of Schemes, Lemma 10.4 the section s corresponds to a map $\sigma : I^n \rightarrow J$ for some n. As J is an injective object of $\text{QCoh}(\mathcal{O}_X)$ we can extend σ to a map $\tilde{s} : \mathcal{O}_X \rightarrow J$. Then \tilde{s} corresponds to a global section of J restricting to s. □

Lemma 7.2. Let $f : X \rightarrow Y$ be a morphism of Noetherian schemes. Then f_* on quasi-coherent sheaves has a right derived extension $\Phi : D(\text{QCoh}(\mathcal{O}_X)) \rightarrow D(\text{QCoh}(\mathcal{O}_Y))$ such that the diagram

$$
\begin{array}{ccc}
D(\text{QCoh}(\mathcal{O}_X)) & \rightarrow & D_{\text{QCoh}}(\mathcal{O}_X) \\
\Phi \downarrow & & \downarrow Rf_* \\
D(\text{QCoh}(\mathcal{O}_Y)) & \rightarrow & D_{\text{QCoh}}(\mathcal{O}_Y)
\end{array}
$$

commutes.

Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and quasi-separated (see Properties, Lemma 5.4 and Schemes, Remark 21.18). Thus f_* preserve quasi-coherence, see Schemes, Lemma 24.1. Next, let K be an object of $D(\text{QCoh}(\mathcal{O}_X))$. Since $\text{QCoh}(\mathcal{O}_X)$ is a Grothendieck abelian category (Properties, Proposition 23.4), we can represent K by a K-injective complex I^\bullet such that each I^n is an injective object of $\text{QCoh}(\mathcal{O}_X)$, see Injectives, Theorem 12.6. Thus we see that the functor Φ is defined by setting

$$
\Phi(K) = f_*I^\bullet
$$

where the right hand side is viewed as an object of $D(\text{QCoh}(\mathcal{O}_Y))$. To finish the proof of the lemma it suffices to show that the canonical map

$$
f_*I^\bullet \rightarrow Rf_*I^\bullet
$$

is an isomorphism in $D(\mathcal{O}_Y)$. To see this it suffices to prove the map induces an isomorphism on cohomology sheaves. Pick any $m \in \mathbb{Z}$. Let $N = N(X,Y,f)$ be as in Lemma 4.1. Consider the short exact sequence

$$
0 \rightarrow \sigma_{\leq m-N-1}I^\bullet \rightarrow I^\bullet \rightarrow \sigma_{\leq m-N-2}I^\bullet \rightarrow 0
$$

of complexes of quasi-coherent sheaves on X. By Lemma 4.1 we see that the cohomology sheaves of $Rf_*\sigma_{\leq m-N-2}I^\bullet$ are zero in degrees $\geq m-1$. Thus we see that $R^mf_*I^\bullet$ is isomorphic to $R^mf_*\sigma_{\leq m-N-1}I^\bullet$. In other words, we may assume that I^\bullet is a bounded below complex of injective objects of $\text{QCoh}(\mathcal{O}_X)$. This follows from Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) via Cohomology, Lemma 12.5 and Lemma 7.1. □

Proposition 7.3. Let X be a Noetherian scheme. Then the functor (3.0.1)

$$
D(\text{QCoh}(\mathcal{O}_X)) \rightarrow D_{\text{QCoh}}(\mathcal{O}_X)
$$

is an equivalence with quasi-inverse given by RQ_X.
8. Koszul complexes

Let A be a ring and let f_1, \ldots, f_r be a sequence of elements of A. We have defined the Koszul complex $K_*(f_1, \ldots, f_r)$ in More on Algebra, Definition 28.2. It is a chain complex sitting in degrees $r, \ldots, 0$. We turn this into a cochain complex $K^*(f_1, \ldots, f_r)$ by setting $K^{-n}(f_1, \ldots, f_r) = K_n(f_1, \ldots, f_r)$ and using the same differentials. In the rest of this section all the complexes will be cochain complexes.

We define a complex $I^*(f_1, \ldots, f_r)$ such that we have a distinguished triangle

$$I^*(f_1, \ldots, f_r) \to A \to K^*(f_1, \ldots, f_r) \to I^*(f_1, \ldots, f_r)[1]$$

in $K(A)$. In other words, we set

$$I^i(f_1, \ldots, f_r) = \begin{cases} K^{i-1}(f_1, \ldots, f_r) & \text{if } i \leq 0 \\ 0 & \text{else} \end{cases}$$

and we use the negative of the differential on $K^*(f_1, \ldots, f_r)$. The maps in the distinguished triangle are the obvious ones. Note that $I^0(f_1, \ldots, f_r) = A^{\oplus r} \to A$ is given by multiplication by f_i on the ith factor. Hence $I^*(f_1, \ldots, f_r) \to A$ factors as

$$I^*(f_1, \ldots, f_r) \to I \to A$$

where $I = (f_1, \ldots, f_r)$. In fact, there is a short exact sequence

$$0 \to H^{-1}(K^*(f_1, \ldots, f_r)) \to H^0(I^*(f_1, \ldots, f_r)) \to I \to 0$$

and for every $i < 0$ we have $H^i(I^*(f_1, \ldots, f_r)) = H^{i-1}(K^*(f_1, \ldots, f_r))$. Observe that given a second sequence g_1, \ldots, g_r of elements of A there are canonical maps

$$I^*(f_1g_1, \ldots, f_rg_r) \to I^*(f_1, \ldots, f_r) \quad \text{and} \quad K^*(f_1g_1, \ldots, f_rg_r) \to K^*(f_1, \ldots, f_r)$$

compatible with the maps described above. The first of these maps is given by multiplication by g_i on the ith summand of $I^0(f_1g_1, \ldots, f_rg_r) = A^{\oplus r}$. In particular, given f_1, \ldots, f_r we obtain an inverse system of complexes

$$(8.0.1) \quad I^*(f_1, \ldots, f_r) \leftarrow I^*(f_1^2, \ldots, f_r^2) \leftarrow I^*(f_1^3, \ldots, f_r^3) \leftarrow \ldots$$

which will play an important role in that which is to follow. To easily formulate the following lemmas we fix some notation.

Situation 8.1. Here A is a ring and f_1, \ldots, f_r is a sequence of elements of A. We set $X = \text{Spec}(A)$ and $U = D(f_1) \cup \ldots \cup D(f_r) \subset X$. We denote $\mathcal{U} : U = \bigcup_{i=1, \ldots, r} D(f_i)$ the given open covering of U.

Our first lemma is that the complexes above can be used to compute the cohomology of quasi-coherent sheaves on U. Suppose given a complex I^* of A-modules and an A-module M. Then we define $\text{Hom}_A(I^*, M)$ to be the complex with nth term $\text{Hom}_A(I^{-n}, M)$ and differentials given as the contragredients of the differentials on I^*.

Lemma 8.2. In Situation 8.1 Let M be an A-module and denote \mathcal{F} the associated \mathcal{O}_X-module. Then there is a canonical isomorphism of complexes

$$\text{colim}_n \text{Hom}_A(I^*(f_1^n, \ldots, f_r^n), M) \xrightarrow{\sim} \hat{\mathcal{C}}_{alt}(\mathcal{U}, \mathcal{F})$$

functorial in M.

Proof. This follows from Lemma 6.5 and Lemma 7.2. \qed
Proof. Recall that the alternating Čech complex is the subcomplex of the usual Čech complex given by alternating cochains, see Cohomology, Section \[23\]. As usual we view a \(p\)-cochain in \(\check{C}^{\bullet}(U, \mathcal{F})\) as an alternating function \(s\) on \(\{1, \ldots, r\}^{p+1}\) whose value \(s_{i_0 \ldots i_p}\) at \((i_0, \ldots, i_p)\) lies in \(M_{f_{i_0} \ldots f_{i_p}} = \mathcal{F}(U_{i_0 \ldots i_p})\). On the other hand, a \(p\)-cochain \(t\) in \(\text{Hom}_A(I^p(f_1^c, \ldots, f_r^c), M)\) is given by a map \(t : \wedge^{p+1}(A^\otimes r) \rightarrow M\). Write \([i] \in A^\otimes r\) for the \(i\)th basis element and write

\[
[i_0, \ldots, i_p] = [i_0] \wedge \ldots \wedge [i_p] \in \wedge^{p+1}(A^\otimes r)
\]

Then we send \(t\) as above to \(s\) with

\[
s_{i_0 \ldots i_p} = t([i_0, \ldots, i_p])
\]

It is clear that \(s\) so defined is an alternating cochain. The construction of this map is compatible with the transition maps of the system as the transition map

\[
\check{I}^\bullet(f_1, \ldots, f_r) \leftarrow I^\bullet(f_1^{r+1}, \ldots, f_r^{r+1}),
\]

of the \([8.0.1]\) sends \([i_0, \ldots, i_p]\) to \(f_{i_0} \ldots f_{i_p}[i_0, \ldots, i_p]\). It is clear from the description of the localizations \(M_{f_{i_0} \ldots f_{i_p}}\) in Algebra, Lemma \([9.9]\) that these maps define an isomorphism of cochain modules in degree \(p\) in the limit. To finish the proof we have to show that the map is compatible with differentials. To see this recall that

\[
d(s)_{i_0 \ldots i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j s_{i_0 \ldots \hat{i}_j \ldots i_{p+1}}
\]

On the other hand, we have

\[
\frac{d(t)([i_0, \ldots, i_{p+1}])}{f_{i_0}^c \ldots f_{i_{p+1}}^c} = \sum_j (-1)^j f_{i_j}^c \frac{t([i_0, \ldots, \hat{i}_j, \ldots, i_{p+1}])}{f_{i_0}^c \ldots f_{i_{p+1}}^c}
\]

The two formulas agree by inspection. \(\square\)

Suppose given a finite complex \(I^\bullet\) of \(A\)-modules and a complex of \(A\)-modules \(M^\bullet\). We obtain a double complex \(H^{\bullet, \bullet} = \text{Hom}_A(I^\bullet, M^\bullet)\) where \(H^{p,q} = \text{Hom}_A(I^p, M^q)\). The first differential comes from the differential on \(\text{Hom}_A(I^\bullet, M^\bullet)\) and the second from the differential on \(M^\bullet\). Associated to this double complex is the total complex with degree \(n\) term given by

\[
\bigoplus_{p+q=n} \text{Hom}_A(I^p, M^q)
\]

and differential as in Homology, Definition \([18.3]\). As our complex \(I^\bullet\) has only finitely many nonzero terms, the direct sum displayed above is finite. The conventions for taking the total complex associated to a Čech complex of a complex are as in Cohomology, Section \([25]\).

Lemma 8.3. In Situation \([8.1]\) Let \(M^\bullet\) be a complex of \(A\)-modules and denote \(\mathcal{F}^\bullet\) the associated complex of \(\mathcal{O}_X\)-modules. Then there is a canonical isomorphism of complexes

\[
\text{colim}_e \text{Tot}(\text{Hom}_A(I^\bullet(f_1^c, \ldots, f_r^c), M^\bullet)) \rightarrow \text{Tot}(\check{C}^{\bullet}_{\text{aff}}(U, \mathcal{F}^\bullet))
\]
functorial in M^\bullet.

Proof. Immediate from Lemma 3.2 and our conventions for taking associated total complexes. \hfill \Box

Lemma 8.4. In Situation 8.1 Let \mathcal{F}^\bullet be a complex of quasi-coherent \mathcal{O}_X-modules. Then there is a canonical isomorphism

$$\text{Tot}(\mathcal{C}_\text{alt}^\bullet(U, \mathcal{F}^\bullet)) \to R\Gamma(U, \mathcal{F}^\bullet)$$

in $D(A)$ functorial in \mathcal{F}^\bullet.

Proof. Let \mathcal{E} be the set of affine opens of U. Since the higher cohomology groups of a quasi-coherent module on an affine scheme are zero (Cohomology of Schemes, Lemma 2.2) this is a special case of Cohomology, Lemma 36.2. \hfill \Box

In Situation 8.1 denote I_ϵ the object of $D(\mathcal{O}_X)$ corresponding to the complex of A-modules $I^\epsilon(f_1^\epsilon, \ldots, f_r^\epsilon)$ via the equivalence of Lemma 3.5. The maps (8.0.1) give a system

$$I_1 \leftarrow I_2 \leftarrow I_3 \leftarrow \ldots$$

Moreover, there is a compatible system of maps $I_\epsilon \to \mathcal{O}_X$ which become isomorphisms when restricted to U. Thus we see that for every object E of $D(\mathcal{O}_X)$ there is a canonical map

$$\text{colim}_\epsilon \text{Hom}_{D(\mathcal{O}_X)}(I_\epsilon, E) \to H^0(U, E)$$

constructed by sending a map $I_\epsilon \to E$ to its restriction to U and using that $\text{Hom}_{D(\mathcal{O}_U)}(\mathcal{O}_U, E|_U) = H^0(U, E)$.

Proposition 8.5. In Situation 8.1 For every object E of $D_{\text{QCoh}}(\mathcal{O}_X)$ the map (8.4.1) is an isomorphism.

Proof. By Lemma 3.3 we may assume that E is given by a complex of quasi-coherent sheaves \mathcal{F}^\bullet. Let $M^\bullet = \Gamma(X, \mathcal{F}^\bullet)$ be the corresponding complex of A-modules. By Lemmas 8.3 and 8.4 we have quasi-isomorphisms

$$\text{colim}_\epsilon \text{Tot}(\text{Hom}_A(I^\epsilon(f_1^\epsilon, \ldots, f_r^\epsilon), M^\bullet)) \to \text{Tot}(\mathcal{C}_\text{alt}^\bullet(U, \mathcal{F}^\bullet)) \to R\Gamma(U, \mathcal{F}^\bullet)$$

Taking H^0 on both sides we obtain

$$\text{colim}_\epsilon \text{Hom}_{D(A)}(I^\epsilon(f_1^\epsilon, \ldots, f_r^\epsilon), M^\bullet) = H^0(U, E)$$

Since $\text{Hom}_{D(A)}(I^\epsilon(f_1^\epsilon, \ldots, f_r^\epsilon), M^\bullet) = \text{Hom}_{D(\mathcal{O}_X)}(I_\epsilon, E)$ by Lemma 3.5 the lemma follows. \hfill \Box

In Situation 8.1 denote K_ϵ the object of $D(\mathcal{O}_X)$ corresponding to the complex of A-modules $K^\epsilon(f_1^\epsilon, \ldots, f_r^\epsilon)$ via the equivalence of Lemma 3.5. Thus we have distinguished triangles

$$I_\epsilon \to \mathcal{O}_X \to K_\epsilon \to I_\epsilon[1]$$

and a system

$$K_1 \leftarrow K_2 \leftarrow K_3 \leftarrow \ldots$$

compatible with the system (I_ϵ). Moreover, there is a compatible system of maps $K_\epsilon \to H^0(K_\epsilon) = \mathcal{O}_X/(f_1^\epsilon, \ldots, f_r^\epsilon)$

Lemma 8.6. In Situation 8.1 Let E be an object of $D_{\text{QCoh}}(\mathcal{O}_X)$. Assume that $H^i(E)|_U = 0$ for $i = -r+1, \ldots, 0$. Then given $s \in H^0(X, E)$ there exists an $e \geq 0$ and a morphism $K_e \to E$ such that s is in the image of $H^0(X, K_e) \to H^0(X, E)$.
Proof. Since \(U \) is covered by \(r \) affine opens we have \(H^j(U, F) = 0 \) for \(j \geq r \) and any quasi-coherent module (Cohomology of Schemes, Lemma 4.2). By Lemma 3.4 we see that \(H^0(U, E) \) is equal to \(H^0(U, \tau_{\geq -r+1} E) \). There is a spectral sequence

\[
H^j(U, H^i(\tau_{\geq -r+1} E)) \Rightarrow H^{i+j}(U, \tau_{\geq -N} E)
\]

see Derived Categories, Lemma 21.3. Hence \(H^0(U, E) = 0 \) by our assumed vanishing of cohomology sheaves of \(E \). We conclude that \(s_{|U} = 0 \). Think of \(s \) as a morphism \(\mathcal{O}_X \to E \) in \(D(\mathcal{O}_X) \). By Proposition 8.5 the composition \(I_e \to \mathcal{O}_X \to E \) is zero for some \(e \). By the distinguished triangle \(I_e \to \mathcal{O}_X \to K_e \to I_e[1] \) we obtain a morphism \(K_e \to E \) such that \(s \) is the composition \(\mathcal{O}_X \to K_e \to E \). □

9. Pseudo-coherent and perfect complexes

08E4 In this section we make the connection between the general notions defined in Cohomology, Sections 12, 43, 44 and 45 and the corresponding notions for complexes of modules in More on Algebra, Sections 62, 63 and 70.

08E5 Lemma 9.1. Let \(X \) be a scheme. If \(E \) is an \(n \)-pseudo-coherent object of \(D(\mathcal{O}_X) \), then \(H^i(E) \) is a quasi-coherent \(\mathcal{O}_X \)-module for \(i > n \) and \(H^n(E) \) is a quotient of a quasi-coherent \(\mathcal{O}_X \)-module. If \(E \) is pseudo-coherent, then \(E \) is an object of \(D_{QCoh}(\mathcal{O}_X) \).

Proof. Locally on \(X \) there exists a strictly perfect complex \(\mathcal{E}^\bullet \) such that \(H^i(E) \) is isomorphic to \(H^i(\mathcal{E}^\bullet) \) for \(i > n \) and \(H^n(E) \) is a quotient of \(H^n(\mathcal{E}^\bullet) \). The sheaves \(\mathcal{E}^i \) are direct summands of finite free modules, hence quasi-coherent. The lemma follows. □

08E7 Lemma 9.2. Let \(X = \text{Spec}(A) \) be an affine scheme. Let \(M^\bullet \) be a complex of \(A \)-modules and let \(E \) be the corresponding object of \(D(\mathcal{O}_X) \). Then \(E \) is an \(m \)-pseudo-coherent (resp. pseudo-coherent) as an object of \(D(\mathcal{O}_X) \) if and only if \(M^\bullet \) is \(m \)-pseudo-coherent (resp. pseudo-coherent) as a complex of \(A \)-modules.

Proof. It is immediate from the definitions that if \(M^\bullet \) is \(m \)-pseudo-coherent, so is \(E \). To prove the converse, assume \(E \) is \(m \)-pseudo-coherent. As \(X = \text{Spec}(A) \) is quasi-compact with a basis for the topology given by standard opens, we can find a standard open covering \(X = D(f_1) \cup \ldots \cup D(f_n) \) and strictly perfect complexes \(\mathcal{E}^\bullet_i \) on \(D(f_i) \) and maps \(\alpha_i : \mathcal{E}^\bullet_i \to E|_{U_i} \) inducing isomorphisms on \(H^j \) for \(j > m \) and surjections on \(H^m \). By Cohomology, Lemma 12.5 after refining the open covering we may assume \(\alpha_i \) is given by a map of complexes \(\mathcal{E}^\bullet_i \to M^\bullet|_{U_i} \) for each \(i \). By Modules, Lemma 14.6 the terms \(\mathcal{E}^n_i \) are finite locally free modules. Hence after refining the open covering we may assume each \(\mathcal{E}^n_i \) is a finite free \(\mathcal{O}_{U_i} \)-module. From the definition it follows that \(M^\bullet_i \) is an \(m \)-pseudo-coherent complex of \(A_{f_i} \)-modules. We conclude by applying More on Algebra, Lemma 62.15.

The case “pseudo-coherent” follows from the fact that \(E \) is pseudo-coherent if and only if \(E \) is \(m \)-pseudo-coherent for all \(m \) (by definition) and the same is true for \(M^\bullet \) by More on Algebra, Lemma 62.5.

08E8 Lemma 9.3. Let \(X \) be a Noetherian scheme. Let \(E \) be an object of \(D_{QCoh}(\mathcal{O}_X) \). For \(m \in \mathbb{Z} \) the following are equivalent:

1. \(H^i(E) \) is coherent for \(i \geq m \) and zero for \(i \gg 0 \), and
2. \(E \) is \(m \)-pseudo-coherent.
In particular, \(E \) is pseudo-coherent if and only if \(E \) is an object of \(D_{\text{coh}}^{-}(\mathcal{O}_X) \).

Proof. As \(X \) is quasi-compact we see that in both (1) and (2) the object \(E \) is bounded above. Thus the question is local on \(X \) and we may assume \(X \) is affine. Say \(X = \text{Spec}(A) \) for some Noetherian ring \(A \). In this case \(E \) corresponds to a complex of \(A \)-modules \(M^{\bullet} \) by Lemma \(3.5 \). By Lemma \(9.2 \) we see that \(E \) is \(m \)-pseudo-coherent if and only if \(M^{\bullet} \) is \(m \)-pseudo-coherent. On the other hand, \(H^i(E) \) is coherent if and only if \(H^i(M^{\bullet}) \) is a finite \(A \)-module (Properties, Lemma \(16.1 \)). Thus the result follows from More on Algebra, Lemma \(62.18 \). \(\square \)

Lemma 9.4. Let \(X = \text{Spec}(A) \) be an affine scheme. Let \(M^{\bullet} \) be a complex of \(A \)-modules and let \(E \) be the corresponding object of \(D(\mathcal{O}_X) \). Then

1. \(E \) has tor amplitude in \([a,b]\) if and only if \(M^{\bullet} \) has tor amplitude in \([a,b]\).
2. \(E \) has finite tor dimension if and only if \(M^{\bullet} \) has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the equivalence \(D(A) = D_{\text{coh}}^{-}(X) \) of Lemma \(3.5 \) without further mention. Assume \(M^{\bullet} \) has tor amplitude in \([a,b]\). Then \(K^{\bullet} \) is isomorphic in \(D(A) \) to a complex \(K^{\bullet} \) of flat \(A \)-modules with \(K^i = 0 \) for \(i \not\in [a,b] \), see More on Algebra, Lemma \(63.3 \). Then \(E \) is isomorphic to \(K^{\bullet} \). Since each \(K^i \) is a flat \(\mathcal{O}_X \)-module, we see that \(E \) has tor amplitude in \([a,b]\) by Cohomology, Lemma \(44.3 \).

Assume that \(E \) has tor amplitude in \([a,b]\). Then \(E \) is bounded whence \(M^{\bullet} \) is in \(K^{-}(A) \). Thus we may replace \(M^{\bullet} \) by a bounded above complex of \(A \)-modules. We may even choose a projective resolution and assume that \(M^{\bullet} \) is a bounded above complex of free \(A \)-modules. Then for any \(A \)-module \(N \) we have

\[
E \otimes_{\mathcal{O}_X} L \overset{\sim}{=} M^{\bullet} \otimes_{\mathcal{O}_X} L \overset{\sim}{=} M^{\bullet} \otimes_A N
\]

in \(D(\mathcal{O}_X) \). Thus the vanishing of cohomology sheaves of the left hand side implies \(M^{\bullet} \) has tor amplitude in \([a,b]\). \(\square \)

Lemma 9.5. Let \(f : X \to S \) be a morphism of affine schemes corresponding to the ring map \(R \to A \). Let \(M^{\bullet} \) be a complex of \(A \)-modules and let \(E \) be the corresponding object of \(D(\mathcal{O}_X) \). Then

1. \(E \) as an object of \(D(f^{-1}\mathcal{O}_S) \) has tor amplitude in \([a,b]\) if and only if \(M^{\bullet} \) has tor amplitude in \([a,b]\) as an object of \(D(R) \).
2. \(E \) locally has finite tor dimension as an object of \(D(f^{-1}\mathcal{O}_S) \) if and only if \(M^{\bullet} \) has finite tor dimension as an object of \(D(R) \).

Proof. Consider a prime \(q \subset A \) lying over \(p \subset R \). Let \(x \in X \) and \(s = f(x) \in S \) be the corresponding points. Then \((f^{-1}\mathcal{O}_S)_x = \mathcal{O}_{S,s} = R_p \) and \(E_x = M^{\bullet}_q \). Keeping this in mind we can see the equivalence as follows.

If \(M^{\bullet} \) has tor amplitude in \([a,b]\) as a complex of \(R \)-modules, then the same is true for the localization of \(M^{\bullet} \) at any prime of \(A \). Then we conclude by Cohomology, Lemma \(44.5 \) that \(E \) has tor amplitude in \([a,b]\) as a complex of sheaves of \(f^{-1}\mathcal{O}_S \)-modules. Conversely, assume that \(E \) has tor amplitude in \([a,b]\) as an object of \(D(f^{-1}\mathcal{O}_S) \). We conclude (using the last cited lemma) that \(M^{\bullet}_q \) has tor amplitude in \([a,b]\) as a complex of \(R_p \)-modules for every prime \(q \subset A \) lying over \(p \subset R \). By More on Algebra, Lemma \(63.15 \) we find that \(M^{\bullet} \) has tor amplitude in \([a,b]\) as a complex of \(R \)-modules. This finishes the proof of (1).
Since X is quasi-compact, if E locally has finite tor dimension as a complex of $f^{-1}\mathcal{O}_S$-modules, then actually E has tor amplitude in $[a, b]$ for some a, b as a complex of $f^{-1}\mathcal{O}_S$-modules. Thus (2) follows from (1). □

08EA Lemma 9.6. Let X be a quasi-separated scheme. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. Let $a \leq b$. The following are equivalent

1. E has tor amplitude in $[a, b]$, and
2. for all \mathcal{F} in $QCoh(\mathcal{O}_X)$ we have $H^i(E \otimes^{L}_{\mathcal{O}_X} \mathcal{F}) = 0$ for $i \notin [a, b]$.

Proof. It is clear that (1) implies (2). Assume (2). Let $U \subset X$ be an affine open. As X is quasi-separated the morphism $j : U \to X$ is quasi-compact and separated, hence j_* transforms quasi-coherent modules into quasi-coherent modules (Schemes, Lemma [24.1]). Thus the functor $QCoh(\mathcal{O}_X) \to QCoh(\mathcal{O}_U)$ is essentially surjective. It follows that condition (2) implies the vanishing of $H^i(E|_U \otimes^{L}_U \mathcal{G})$ for $i \notin [a, b]$ for all quasi-coherent \mathcal{O}_U-modules \mathcal{G}. Write $U = \text{Spec}(A)$ and let M^\bullet be the complex of A-modules corresponding to $E|_U$ by Lemma [3.5]. We have just shown that $M^\bullet \otimes^L_A \mathcal{N}$ has vanishing cohomology groups outside the range $[a, b]$, in other words M^\bullet has tor amplitude in $[a, b]$. By Lemma 9.4 we conclude that $E|_U$ has tor amplitude in $[a, b]$. This proves the lemma. □

08EB Lemma 9.7. Let $X = \text{Spec}(A)$ be an affine scheme. Let M^\bullet be a complex of A-modules and let E be the corresponding object of $D(\mathcal{O}_X)$. Then E is a perfect object of $D(\mathcal{O}_X)$ if and only if M^\bullet is perfect as an object of $D(A)$.

Proof. This is a logical consequence of Lemmas 9.2 and 9.4, Cohomology, Lemma 45.5 and More on Algebra, Lemma 70.2. □

As a consequence of our description of pseudo-coherent complexes on schemes we can prove certain internal homs are quasi-coherent.

0A6H Lemma 9.8. Let X be a scheme.

1. If L is in $D^+_{QCoh}(\mathcal{O}_X)$ and K in $D(\mathcal{O}_X)$ is pseudo-coherent, then $R\mathcal{H}om(K, L)$ is in $D_{QCoh}(\mathcal{O}_X)$ and locally bounded below.
2. If L is in $D_{QCoh}(\mathcal{O}_X)$ and K in $D(\mathcal{O}_X)$ is perfect, then $R\mathcal{H}om(K, L)$ is in $D_{QCoh}(\mathcal{O}_X)$.
3. If $X = \text{Spec}(A)$ is affine and $K, L \in D(A)$ then
$$R\mathcal{H}om(\overline{K, L}) = \widehat{R\mathcal{H}om_A(K, L)}$$

in the following two cases
(a) K is pseudo-coherent and L is bounded below,
(b) K is perfect and L arbitrary.
4. If $X = \text{Spec}(A)$ and K, L are in $D(A)$, then the nth cohomology sheaf of $R\mathcal{H}om(K, L)$ is the sheaf associated to the presheaf
$$X \ni D(f) \mapsto \text{Ext}^n_A(K \otimes_A A_f, L \otimes_A A_f)$$

for $f \in A$.

Proof. The construction of the internal hom in the derived category of \mathcal{O}_X commutes with localization (see Cohomology, Section 38). Hence to prove (1) and (2) we may replace X by an affine open. By Lemmas 3.5, 9.2, and 9.7 in order to prove (1) and (2) it suffices to prove (3).
Part (3) follows from the computation of the internal hom of Cohomology, Lemma 42.10 by representing K by a bounded above (resp. finite) complex of finite projective A-modules and L by a bounded below (resp. arbitrary) complex of A-modules.

To prove (4) recall that on any ringed space the nth cohomology sheaf of $R\mathcal{H}om(A, B)$ is the sheaf associated to the presheaf

$$U \mapsto \mathcal{H}om_D(U)(A, B) = \text{Ext}^n_{D(O_U)}(A, B)$$

See Cohomology, Section 38. On the other hand, the restriction of \tilde{K} to a principal open $D(f)$ is the image of $K \otimes_A A_f$ and similarly for L. Hence (4) follows from the equivalence of categories of Lemma 3.5. □

Lemma 9.9. Let X be a scheme. Let K, L, M be objects of $D_{QCoh}(\mathcal{O}_X)$. The map

$$K \otimes^L_{\mathcal{O}_X} R\mathcal{H}om(M, L) \longrightarrow R\mathcal{H}om(M, K \otimes^L_{\mathcal{O}_X} L)$$

of Cohomology, Lemma 38.6 is an isomorphism in the following cases

1. M perfect, or
2. K is perfect, or
3. M is pseudo-coherent, $L \in D^+(\mathcal{O}_X)$, and K has finite tor dimension.

Proof. Lemma 9.8 reduces cases (1) and (3) to the affine case which is treated in More on Algebra, Lemma 91.3 (You also have to use Lemmas 9.2, 9.7, and 9.4 to do the translation into algebra.) If K is perfect but no other assumptions are made, then we do not know that either side of the arrow is in $D_{QCoh}(\mathcal{O}_X)$ but the result is still true because we can work locally and reduce to the case that K is a finite complex of finite free modules in which case it is clear. □

10. Derived category of coherent modules

Let X be a locally Noetherian scheme. In this case the category $\text{Coh}(\mathcal{O}_X) \subset \text{Mod}(\mathcal{O}_X)$ of coherent \mathcal{O}_X-modules is a weak Serre subcategory, see Homology, Section 10 and Cohomology of Schemes, Lemma 9.2. Denote

$$D_{Coh}(\mathcal{O}_X) \subset D(\mathcal{O}_X)$$

the subcategory of complexes whose cohomology sheaves are coherent, see Derived Categories, Section 17. Thus we obtain a canonical functor

$$D(\text{Coh}(\mathcal{O}_X)) \longrightarrow D_{Coh}(\mathcal{O}_X)$$

see Derived Categories, Equation (17.1.1).

Lemma 10.1. Let X be a Noetherian scheme. Then the functor

$$D^-(\text{Coh}(\mathcal{O}_X)) \longrightarrow D^-_{Coh}(\mathcal{O}_X)(\text{QCoh}(\mathcal{O}_X))$$

is an equivalence.

Proof. Observe that $\text{Coh}(\mathcal{O}_X) \subset \text{QCoh}(\mathcal{O}_X)$ is a Serre subcategory, see Homology, Definition 10.1 and Lemma 10.2 and Cohomology of Schemes, Lemmas 9.2 and 9.3. On the other hand, if $\mathcal{G} \rightarrow \mathcal{F}$ is a surjection from a quasi-coherent \mathcal{O}_X-module to a coherent \mathcal{O}_X-module, then there exists a coherent submodule $\mathcal{G}' \subset \mathcal{G}$ which surjects onto \mathcal{F}. Namely, we can write \mathcal{G} as the filtered union of its coherent submodules by Properties, Lemma 22.3 and then one of these will do the job. Thus the lemma follows from Derived Categories, Lemma 17.4. □
Proposition 10.2. Let X be a Noetherian scheme. Then the functors

$$D^{-}(\text{Coh}(\mathcal{O}_X)) \to D_{\text{Coh}}^{-}(\mathcal{O}_X) \quad \text{and} \quad D^b(\text{Coh}(\mathcal{O}_X)) \to D_{\text{Coh}}^b(\mathcal{O}_X)$$

are equivalences.

Proof. Consider the commutative diagram

$$
\begin{array}{ccc}
D^{-}(\text{Coh}(\mathcal{O}_X)) & \to & D_{\text{Coh}}^{-}(\mathcal{O}_X) \\
\downarrow & & \downarrow \\
D^{-}(\text{QCoh}(\mathcal{O}_X)) & \to & D_{\text{QCoh}}^{-}(\mathcal{O}_X)
\end{array}
$$

By Lemma [10.1] the left vertical arrow is fully faithful. By Proposition [7.3] the bottom arrow is an equivalence. By construction the right vertical arrow is fully faithful. We conclude that the top horizontal arrow is fully faithful. If K is an object of $D_{\text{Coh}}^{-}(\mathcal{O}_X)$ then the object K' of $D^{-}(\text{QCoh}(\mathcal{O}_X))$ which corresponds to it by Proposition [7.3] will have coherent cohomology sheaves. Hence K' is in the essential image of the left vertical arrow by Lemma [10.1] and we find that the top horizontal arrow is essentially surjective. This finishes the proof for the bounded above case. The bounded case follows immediately from the bounded above case. □

Lemma 10.3. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let E be an object of $D^b_{\text{Coh}}(\mathcal{O}_X)$ such that the support of $H^i(E)$ is proper over S for all i. Then Rf_*E is an object of $D^b_{\text{Coh}}(\mathcal{O}_S)$.

Proof. Consider the spectral sequence

$$R^p f_* H^q(E) \Rightarrow R^{p+q} f_* E$$

see Derived Categories, Lemma [21.3] By assumption and Cohomology of Schemes, Lemma [26.10] the sheaves $R^p f_* H^q(E)$ are coherent. Hence $R^{p+q} f_* E$ is coherent, i.e., $E \in D_{\text{Coh}}^b(\mathcal{O}_S)$. Boundedness from below is trivial. Boundedness from above follows from Cohomology of Schemes, Lemma [4.5] or from Lemma [4.1]. □

Lemma 10.4. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let E be an object of $D^b_{\text{Coh}}(\mathcal{O}_X)$ such that the support of $H^i(E)$ is proper over S for all i. Then Rf_*E is an object of $D^b_{\text{Coh}}(\mathcal{O}_S)$.

Proof. The proof is the same as the proof of Lemma [10.3] You can also deduce it from Lemma [10.3] by considering what the exact functor Rf_* does to the distinguished triangles $\tau_{\leq a} E \to E \to \tau_{>a+1} E \to \tau_{\leq a} E[1]$. □

Lemma 10.5. Let X be a locally Noetherian scheme. If L is in $D^+_{\text{Coh}}(\mathcal{O}_X)$ and K in $D^+_{\text{Coh}}(\mathcal{O}_X)$, then $R\text{Hom}(K, L)$ is in $D^+_{\text{Coh}}(\mathcal{O}_X)$.

Proof. It suffices to prove this when X is the spectrum of a Noetherian ring A. By Lemma [9.8] we see that K is pseudo-coherent. Then we can use Lemma [9.8] to translate the problem into the following algebra problem: for $L \in D^+_{\text{Coh}}(A)$ and K
in $\mathcal{D}^+_{\text{Coh}}(A)$, then $R\mathcal{H}om_A(K, L)$ is in $\mathcal{D}^+_{\text{Coh}}(A)$. Since L is bounded below and K is bounded below there is a convergent spectral sequence

$$\text{Ext}^p_A(K, H^q(L)) \Rightarrow \text{Ext}^{p+q}_A(K, L)$$

and there are convergent spectral sequences

$$\text{Ext}^i_A(H^{-j}(K), H^q(L)) \Rightarrow \text{Ext}^{i+j}_A(K, H^q(L))$$

This finishes the proof as the modules $\text{Ext}^n_A(M, N)$ are finite for finite A-modules M, N by Algebra, Lemma 70.9. □

Lemma 10.6. Let X be a Noetherian scheme. Let E in $\mathcal{D}(\mathcal{O}_X)$ be perfect. Then

- (1) E is in $\mathcal{D}^+_\text{Coh}(\mathcal{O}_X)$,
- (2) if L is in $\mathcal{D}_\text{Coh}(\mathcal{O}_X)$ then $E \otimes_{\mathcal{O}_X} L$ and $R\mathcal{H}om_{\mathcal{O}_X}(E, L)$ are in $\mathcal{D}_\text{Coh}(\mathcal{O}_X)$,
- (3) if L is in $\mathcal{D}^b_\text{Coh}(\mathcal{O}_X)$ then $E \otimes_{\mathcal{O}_X} L$ and $R\mathcal{H}om_{\mathcal{O}_X}(E, L)$ are in $\mathcal{D}^b_\text{Coh}(\mathcal{O}_X)$,
- (4) if L is in $\mathcal{D}^+_\text{Coh}(\mathcal{O}_X)$ then $E \otimes_{\mathcal{O}_X} L$ and $R\mathcal{H}om_{\mathcal{O}_X}(E, L)$ are in $\mathcal{D}^+\text{Coh}(\mathcal{O}_X)$,
- (5) if L is in $\mathcal{D}_\text{Coh}(\mathcal{O}_X)$ then $E \otimes_{\mathcal{O}_X} L$ and $R\mathcal{H}om_{\mathcal{O}_X}(E, L)$ are in $\mathcal{D}_\text{Coh}(\mathcal{O}_X)$.

Proof. Since X is quasi-compact, each of these statements can be checked over the members of any open covering of X. Thus we may assume E is represented by a bounded complex \mathcal{E}^\bullet of finite free modules, see Cohomology, Lemma 45.3. In this case each of the statements is clear as both $R\mathcal{H}om_{\mathcal{O}_X}(E, L)$ and $E \otimes_{\mathcal{O}_X} L$ can be computed on the level of complexes using \mathcal{E}^\bullet, see Cohomology, Lemmas 42.9 and 26.8. Some details omitted. □

Lemma 10.7. Let A be a Noetherian ring. Let X be a proper scheme over A. For L in $\mathcal{D}^+_{\text{Coh}}(\mathcal{O}_X)$ and K in $\mathcal{D}^-_{\text{Coh}}(\mathcal{O}_X)$, the A-modules $\text{Ext}^n_{\mathcal{O}_X}(K, L)$ are finite.

Proof. Recall that

$$\text{Ext}^n_{\mathcal{O}_X}(K, L) = H^n(X, R\mathcal{H}om_{\mathcal{O}_X}(K, L)) = H^n(\text{Spec}(A), Rf_*R\mathcal{H}om_{\mathcal{O}_X}(K, L))$$

see Cohomology, Lemma 38.1 and Cohomology, Section 13. Thus the result follows from Lemmas 10.5 and 10.4. □

Lemma 10.8. Let X be a Noetherian regular scheme of finite dimension. Then every object of $\mathcal{D}^b_{\text{Coh}}(\mathcal{O}_X)$ is perfect and conversely every perfect object of $\mathcal{D}(\mathcal{O}_X)$ is in $\mathcal{D}^b_{\text{Coh}}(\mathcal{O}_X)$.

Proof. Combine More on Algebra, Lemma 70.13 with Lemma 9.7. □

11. Descent finiteness properties of complexes

This section is the analogue of Descent, Section 7 for objects of the derived category of a scheme. The easiest such result is probably the following.

Lemma 11.1. Let $f : X \to Y$ be a surjective flat morphism of schemes (or more generally locally ringed spaces). Let E in $\mathcal{D}(\mathcal{O}_Y)$. Let $a, b \in \mathbb{Z}$. Then E has tor-amplitude in $[a, b]$ if and only if Lf^*E has tor-amplitude in $[a, b]$.

Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 44.4. We may check tor-amplitude in $[a, b]$ on stalks, see Cohomology, Lemma 44.5. A flat local ring homomorphism is faithfully flat by Algebra, Lemma 38.17. Thus the result follows from More on Algebra, Lemma 63.17. □
Lemma 11.2. Let \(\{ f_i : X_i \to X \} \) be an fpqc covering of schemes. Let \(E \in D_{QCoA}(\mathcal{O}_X) \). Let \(m \in \mathbb{Z} \). Then \(E \) is \(m \)-pseudo-coherent if and only if each \(Lf_i^* E \) is \(m \)-pseudo-coherent.

Proof. Pullback always preserves \(m \)-pseudo-coherence, see Cohomology, Lemma 43.3. Conversely, assume that \(Lf_i^* E \) is \(m \)-pseudo-coherent for all \(i \). Let \(U \subset X \) be an affine open. It suffices to prove that \(E|_U \) is \(m \)-pseudo-coherent. Since \(\{ f_i : X_i \to X \} \) is an fpqc covering, we can find finitely many affine open \(V_j \subset X_{a(j)} \) such that \(f_{a(j)}(V_j) \subset U \) and \(U = \bigcup f_{a(j)}(V_j) \). Set \(V = \coprod V_i \). Thus we may replace \(X \) by \(U \) and \(\{ f_i : X_i \to X \} \) by \(\{ V \to U \} \) and assume that \(X \) is affine and our covering is given by a single surjective flat morphism \(\{ f : Y \to X \} \) of affine schemes. In this case the result follows from More on Algebra, Lemma 62.16 via Lemmas 3.5 and 9.2. \(\square \)

Lemma 11.3. Let \(\{ f_i : X_i \to X \} \) be an fppf covering of schemes. Let \(E \in D(\mathcal{O}_X) \). Let \(m \in \mathbb{Z} \). Then \(E \) is \(m \)-pseudo-coherent if and only if each \(Lf_i^* E \) is \(m \)-pseudo-coherent.

Proof. Pullback always preserves \(m \)-pseudo-coherence, see Cohomology, Lemma 43.3. Conversely, assume that \(Lf_i^* E \) is \(m \)-pseudo-coherent for all \(i \). Let \(U \subset X \) be an affine open. It suffices to prove that \(E|_U \) is \(m \)-pseudo-coherent. Since \(\{ f_i : X_i \to X \} \) is an fppf covering, we can find finitely many affine open \(V_j \subset X_{a(j)} \) such that \(f_{a(j)}(V_j) \subset U \) and \(U = \bigcup f_{a(j)}(V_j) \). Set \(V = \coprod V_i \). Thus we may replace \(X \) by \(U \) and \(\{ f_i : X_i \to X \} \) by \(\{ V \to U \} \) and assume that \(X \) is affine and our covering is given by a single surjective flat morphism \(\{ f : Y \to X \} \) of finite presentation.

Since \(f \) is flat the derived functor \(Lf^* \) is just given by \(f^* \) and \(f^* \) is exact. Hence \(H^i(Lf^* E) = f^* H^i(E) \). Since \(Lf_i^* E \) is \(m \)-pseudo-coherent, we see that \(Lf_i^* E \in D^{-}(\mathcal{O}_Y) \). Since \(f \) is surjective and flat, we see that \(E \in D^{-}(\mathcal{O}_X) \). Let \(i \in \mathbb{Z} \) be the largest integer such that \(H^i(E) \) is nonzero. If \(i < m \), then we are done. Otherwise, \(f^* H^i(E) \) is a finite type \(\mathcal{O}_Y \)-module by Cohomology, Lemma 43.9. Then by Descent, Lemma 7.2 the \(\mathcal{O}_X \)-module \(H^i(E) \) is of finite type. Thus, after replacing \(X \) by the members of a finite affine open covering, we may assume there exists a map

\[
\alpha : \mathcal{O}_X^\oplus n[-i] \to E
\]

such that \(H^i(\alpha) \) is a surjection. Let \(C \) be the cone of \(\alpha \) in \(D(\mathcal{O}_X) \). Pulling back to \(Y \) and using Cohomology, Lemma 43.4 we find that \(Lf^* C \) is \(m \)-pseudo-coherent. Moreover \(H^j(C) = 0 \) for \(j \geq i \). Thus by induction on \(i \) we see that \(C \) is \(m \)-pseudo-coherent. Using Cohomology, Lemma 43.4 again we conclude. \(\square \)

Lemma 11.4. Let \(\{ f_i : X_i \to X \} \) be an fpqc covering of schemes. Let \(E \in D(\mathcal{O}_X) \). Then \(E \) is perfect if and only if each \(Lf_i^* E \) is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 45.6. Conversely, assume that \(Lf_i^* E \) is perfect for all \(i \). Then the cohomology sheaves of each \(Lf_i^* E \) are quasi-coherent, see Lemma 9.1 and Cohomology, Lemma 45.5. Since the morphisms \(f_i \) is flat we see that \(H^p(Lf_i^* E) = f_i^* H^p(E) \). Thus the cohomology sheaves of \(E \) are quasi-coherent by Descent, Proposition 5.2. Having said this the lemma follows formally from Cohomology, Lemma 45.5 and Lemmas 11.1 and 11.2. \(\square \)
Let \(i : Z \to X \) be a morphism of ringed spaces such that \(i \) is a closed immersion of underlying topological spaces and such that \(i_* \mathcal{O}_Z \) is pseudo-coherent as an \(\mathcal{O}_X \)-module. Let \(E \in D(\mathcal{O}_Z) \). Then \(E \) is \(m \)-pseudo-coherent if and only if \(R^i_* E \) is \(m \)-pseudo-coherent.

Proof. Throughout this proof we will use that \(i_* \) is an exact functor, and hence that \(R^i_* = i_* \), see Modules, Lemma 6.1

Assume \(E \) is \(m \)-pseudo-coherent. Let \(x \in X \). We will find a neighbourhood of \(x \) such that \(i_* E \) is \(m \)-pseudo-coherent on it. If \(x \notin Z \) then this is clear. Thus we may assume \(x \in Z \). We will use that \(U \cap Z \) for \(x \in U \subset X \) open form a fundamental system of neighbourhoods of \(x \) in \(Z \). After shrinking \(X \) we may assume \(E \) is bounded above. We will argue by induction on the largest integer \(p \) such that \(H^p(E) \) is nonzero. If \(p < m \), then there is nothing to prove. If \(p \geq m \), then \(H^p(E) \) is an \(\mathcal{O}_Z \)-module of finite type, see Cohomology, Lemma 43.9. Thus we may choose, after shrinking \(X \), a map \(\mathcal{O}^n_Z[-p] \to E \) which induces a surjection \(\mathcal{O}^n_Z \to H^p(E) \). Choose a distinguished triangle

\[
\mathcal{O}^n_Z[-p] \to E \to C \to \mathcal{O}^n_Z[-p+1]
\]

We see that \(H^j(C) = 0 \) for \(j \geq p \) and that \(C \) is \(m \)-pseudo-coherent by Cohomology, Lemma 43.4. By induction we see that \(i_* C \) is \(m \)-pseudo-coherent on \(X \). Since \(i_* \mathcal{O}_Z \) is \(m \)-pseudo-coherent on \(X \) as well, we conclude from the distinguished triangle

\[
i_* \mathcal{O}^n_Z[-p] \to i_* E \to i_* C \to i_* \mathcal{O}^n_Z[-p+1]
\]

and Cohomology, Lemma 43.4 that \(i_* E \) is \(m \)-pseudo-coherent.

Assume that \(i_* E \) is \(m \)-pseudo-coherent. Let \(z \in Z \). We will find a neighbourhood of \(z \) such that \(E \) is \(m \)-pseudo-coherent on it. We will use that \(U \cap Z \) for \(z \in U \subset X \) open form a fundamental system of neighbourhoods of \(z \) in \(Z \). After shrinking \(X \) we may assume \(i_* E \) and hence \(E \) is bounded above. We will argue by induction on the largest integer \(p \) such that \(H^p(E) \) is nonzero. If \(p < m \), then there is nothing to prove. If \(p \geq m \), then \(H^p(i_* E) = i_* H^p(E) \) is an \(\mathcal{O}_X \)-module of finite type, see Cohomology, Lemma 43.9. Choose a complex \(\mathcal{E}^\bullet \) of \(\mathcal{O}_Z \)-modules representing \(E \). We may choose, after shrinking \(X \), a map \(\alpha : \mathcal{O}^n_Z[-p] \to i_* \mathcal{E}^\bullet \) which induces a surjection \(\mathcal{O}^n_Z \to i_* H^p(\mathcal{E}^\bullet) \). By adjunction we find a map \(\alpha : \mathcal{O}^n_Z[-p] \to \mathcal{E}^\bullet \) which induces a surjection \(\mathcal{O}^n_Z \to H^p(\mathcal{E}^\bullet) \). Choose a distinguished triangle

\[
\mathcal{O}^n_Z[-p] \to E \to C \to \mathcal{O}^n_Z[-p+1]
\]

We see that \(H^j(C) = 0 \) for \(j \geq p \). From the distinguished triangle

\[
i_* \mathcal{O}^n_Z[-p] \to i_* E \to i_* C \to i_* \mathcal{O}^n_Z[-p+1]
\]

the fact that \(i_* \mathcal{O}_Z \) is pseudo-coherent and Cohomology, Lemma 43.4 we conclude that \(i_* C \) is \(m \)-pseudo-coherent. By induction we conclude that \(C \) is \(m \)-pseudo-coherent. By Cohomology, Lemma 43.4 again we conclude that \(E \) is \(m \)-pseudo-coherent. \(\square \)

Let \(f : X \to Y \) be a finite morphism of schemes such that \(f_* \mathcal{O}_X \) is pseudo-coherent as an \(\mathcal{O}_Y \)-module.\(^2\) Let \(E \in D_{QCoh}(\mathcal{O}_X) \). Then \(E \) is \(m \)-pseudo-coherent if and only if \(Rf_* E \) is \(m \)-pseudo-coherent.

\(^2\)This means that \(f \) is pseudo-coherent, see More on Morphisms, Lemma 52.8
Proof. This is a translation of More on Algebra, Lemma 62.12 into the language of schemes. To do the translation, use Lemmas 3.5 and 9.2.

12. Lifting complexes

Let $U \subset X$ be an open subspace of a ringed space and denote $j : U \to X$ the inclusion morphism. The functor $D(O_X) \to D(O_U)$ is essentially surjective as Rj_* is a right inverse to restriction. In this section we extend this to complexes with quasi-coherent cohomology sheaves, etc.

Lemma 12.1. Let X be a scheme and let $j : U \to X$ be a quasi-compact open immersion. The functors

$$D_{Qcoh}(O_X) \to D_{Qcoh}(O_U) \quad \text{and} \quad D_{Qcoh}^+(O_X) \to D_{Qcoh}^+(O_U)$$

are essentially surjective. If X is quasi-compact, then the functors

$$D_{Qcoh}^-(O_X) \to D_{Qcoh}^-(O_U) \quad \text{and} \quad D_{Qcoh}^b(O_X) \to D_{Qcoh}^b(O_U)$$

are essentially surjective.

Proof. The argument preceding the lemma applies for the first case because Rj_* maps $D_{Qcoh}(O_U)$ into $D_{Qcoh}(O_X)$ by Lemma 4.1. It is clear that Rj_* maps $D_{Qcoh}^+(O_U)$ into $D_{Qcoh}^+(O_X)$ which implies the statement on bounded below complexes. Finally, Lemma 4.1 guarantees that Rj_* maps $D_{Qcoh}^-(O_U)$ into $D_{Qcoh}^-(O_X)$ if X is quasi-compact. Combining these two we obtain the last statement.

Lemma 12.2. Let X be an affine scheme and let $U \subset X$ be a quasi-compact open subscheme. For any pseudo-coherent object E of $D(O_U)$ there exists a bounded above complex of finite free O_X-modules whose restriction to U is isomorphic to E.

Proof. By Lemma 9.1 we see that E is an object of $D_{Qcoh}(O_U)$. By Lemma 12.1 we may assume $E = E'/U$ for some object E' of $D_{Qcoh}(O_X)$. Write $X = \text{Spec}(A)$. By Lemma 12.1 we can find a complex M^\bullet of A-modules whose associated complex of O_X-modules is a representative of E'.

Choose $f_1, \ldots, f_r \in A$ such that $U = D(f_1) \cup \ldots \cup D(f_r)$. By Lemma 9.2 the complexes M^\bullet_i are pseudo-coherent complexes of A_{f_i}-modules. Let n be an integer. Assume we have a map of complexes $\alpha : F^\bullet \to M^\bullet$ where F^\bullet is bounded above, $F^i = 0$ for $i < n$, each F^i is a finite free R-module, such that

$$H^i(\alpha_{f_i}) : H^i(F^i_{f_i}) \to H^i(M^i_{f_i})$$

is an isomorphism for $i > n$ and surjective for $i = n$. Picture

$$\begin{array}{ccc}
F^n & \to & F^{n+1} \\
\downarrow\alpha & & \downarrow\alpha \\
M^{n-1} & \to & M^n & \to & M^{n+1} & \to & \ldots
\end{array}$$

Since each $M^i_{f_i}$ has vanishing cohomology in large degrees we can find such a map for $n \gg 0$. By induction on n we are going to extend this to a map of complexes $F^\bullet \to M^\bullet$ such that $H^i(\alpha_{f_i})$ is an isomorphism for all i. The lemma will follow by taking F^\bullet.

The induction step will be to extend the diagram above by adding F^{n-1}. Let C^\bullet be the cone on α (Derived Categories, Definition 9.1). The long exact sequence of
Let n bound X. A cohomology shows that $H^i(C_{j_i}^\bullet) = 0$ for $i \geq n$. By More on Algebra, Lemma 62.2 we see that $C_{j_i}^\bullet$ is $(n-1)$-pseudo-coherent. By More on Algebra, Lemma 62.3 we see that $H^{-1}(C_{j_i}^\bullet)$ is a finite A_{j_i}-module. Choose a finite free A-module F^{n-1} and an A-module $\beta : F^{n-1} \to C^{-1}$ such that the composition $F^{n-1} \to C^{-1} \to C^n$ is zero and such that $F^{n-1}_{j_i}$ surjects onto $H^{n-1}(C_{j_i}^\bullet)$. (Some details omitted; hint: clear denominators.) Since $C^{-1} = M^{-1} \oplus F^n$ we can write $\beta = (\alpha^{-1}, -d^{n-1})$. The vanishing of the composition $F^{-1} \to C^{-1} \to C^n$ implies these maps fit into a morphism of complexes

\[
\begin{array}{ccccccccc}
F^{n-1} & \xrightarrow{d^{n-1}} & F^n & \xrightarrow{\alpha} & F^{n+1} & \xrightarrow{\alpha} & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \\
\cdots & \xrightarrow{M^{n-1}} & M^n & \xrightarrow{M^{n+1}} & \cdots
\end{array}
\]

Moreover, these maps define a morphism of distinguished triangles

\[
(F^n \to \cdots) \xrightarrow{(F^n \to \cdots)} (F^{n-1} \to \cdots) \xrightarrow{F^{n-1}} (F^n \to \cdots)[1]
\]

\[
(F^n \to \cdots) \xrightarrow{M^\bullet} M^\bullet \xrightarrow{C^\bullet} (F^n \to \cdots)[1]
\]

Hence our choice of β implies that the map of complexes $(F^{-1} \to \cdots) \to M^\bullet$ induces an isomorphism on cohomology localized at f_j in degrees $\geq n$ and a surjection in degree -1. This finishes the proof of the lemma.

\[08EF\] Lemma 12.3. Let X be a quasi-compact and quasi-separated scheme. Let $E \in \mathbb{D}_{QCoh}^b(\mathcal{O}_X)$. There exists an integer $n_0 > 0$ such that $\text{Ext}^n_D(\mathcal{E}, E) = 0$ for every finite locally free \mathcal{O}_X-module \mathcal{E} and every $n \geq n_0$.

Proof. Recall that $\text{Ext}^n_D(\mathcal{E}, E) = \text{Hom}_D(\mathcal{O}_X)(\mathcal{E}, E[n])$. We have Mayer-Vietoris for morphisms in the derived category, see Cohomology, Lemma 33.3. Thus if $X = U \cup V$ and the result of the lemma holds for $E|_U$, $E|_V$, and $E|_{U \cup V}$ for some bound n_0, then the result holds for E with bound $n_0 + 1$. Thus it suffices to prove the lemma when X is affine, see Cohomology of Schemes, Lemma 4.1. Assume $X = \text{Spec}(A)$ is affine. Choose a complex of A-modules M^\bullet whose associated complex of quasi-coherent modules represents E, see Lemma 3.5. Write $\mathcal{E} = \mathcal{P}$ for some A-module \mathcal{P}. Since \mathcal{E} is finite locally free, we see that \mathcal{P} is a finite projective A-module. We have

\[
\text{Hom}_D(\mathcal{O}_X)(\mathcal{E}, E[n]) = \text{Hom}_D(A)(\mathcal{P}, M^\bullet[n])
\]

\[
= \text{Hom}_A(\mathcal{P}, H^n(M^\bullet))
\]

The first equality by Lemma 3.5, the second equality by Derived Categories, Lemma 19.8 and the final equality because $\text{Hom}_A(P, -)$ is an exact functor. As E and hence M^\bullet is bounded we get zero for all sufficiently large n.

\[08EG\] Lemma 12.4. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. For every perfect object E of $D(\mathcal{O}_U)$ there exists an integer r and a finite locally free sheaf \mathcal{F} on U such that $\mathcal{F}[-r] \oplus E$ is the restriction of a perfect object of $D(\mathcal{O}_X)$.
Proof. Say $X = \text{Spec}(A)$. Recall that a perfect complex is pseudo-coherent, see Cohomology, Lemma 45.5. By Lemma 12.2 we can find a bounded above complex \mathcal{F}^\bullet of finite free A-modules such that E is isomorphic to $\mathcal{F}^\bullet|_U$ in $D(\mathcal{O}_U)$. By Cohomology, Lemma 45.5 and since U is quasi-compact, we see that E has finite tor dimension, say E has tor amplitude in $[a, b]$. Pick $r < a$ and set

$$\mathcal{F} = \text{Ker}(\mathcal{F}^r \to \mathcal{F}^{r+1}) = \text{Im}(\mathcal{F}^{r-1} \to \mathcal{F}^r).$$

Since E has tor amplitude in $[a, b]$ we see that $\mathcal{F}|_U$ is flat (Cohomology, Lemma 44.2). Hence $\mathcal{F}|_U$ is flat and of finite presentation, thus finite locally free (Properties, Lemma 20.2). It follows that

$$(\mathcal{F} \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \ldots)|_U$$

is a strictly perfect complex on U representing E. We obtain a distinguished triangle

$$\mathcal{F}|_U[-r - 1] \to E \to (\mathcal{F} \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \ldots)|_U \to \mathcal{F}|_U[-r]$$

Note that $(\mathcal{F} \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \ldots)$ is a perfect complex on X. To finish the proof it suffices to pick r such that the map $\mathcal{F}|_U[-r - 1] \to E$ is zero in $D(\mathcal{O}_U)$, see Derived Categories, Lemma 14.11. By Lemma 12.3 this holds if $r \ll 0$. □

Lemma 12.5. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. Let E, E' be objects of $D_{QCoh}(\mathcal{O}_X)$ with E perfect. For every map $\alpha : E|_U \to E'|_U$ there exist maps

$$E \xrightarrow{\alpha} E_1 \xrightarrow{\beta} E'$$

of perfect complexes on X such that $\beta : E_1 \to E$ restricts to an isomorphism on U and such that $\alpha = \gamma|_U \circ \beta|_U^{-1}$. Moreover we can assume $E_1 = E \otimes^L \mathcal{O}_X I$ for some perfect complex I on X.

Proof. Write $X = \text{Spec}(A)$. Write $U = D(f_1) \cup \ldots \cup D(f_r)$. Choose finite complex of finite projective A-modules M^\bullet representing E (Lemma 9.7). Choose a complex of A-modules $(M')^\bullet$ representing E' (Lemma 3.5). In this case the complex $H^\bullet = \text{Hom}_A(M^\bullet, (M')^\bullet)$ is a complex of A-modules whose associated complex of quasi-coherent \mathcal{O}_X-modules represents $R\text{Hom}(E, E')$, see Cohomology, Lemma 42.9. Then α determines an element s of $H^0(U, R\text{Hom}(E, E'))$, see Cohomology, Lemma 38.1. There exists an e and a map

$$\xi : I^\bullet(f_1, \ldots, f_r) \to \text{Hom}_A(M^\bullet, (M')^\bullet)$$

corresponding to s, see Proposition 8.5. Letting E_1 be the object corresponding to complex of quasi-coherent \mathcal{O}_X-modules associated to

$$\text{Tot}(I^\bullet(f_1, \ldots, f_r) \otimes_A M^\bullet)$$

we obtain $E_1 \to E$ using the canonical map $I^\bullet(f_1, \ldots, f_r) \to A$ and $E_1 \to E'$ using ξ and Cohomology, Lemma 38.1. □

Lemma 12.6. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. For every perfect object F of $D(\mathcal{O}_U)$ the object $F \oplus F[1]$ is the restriction of a perfect object of $D(\mathcal{O}_X)$.

Proof. By Lemma 12.4 we can find a perfect object E of $D(\mathcal{O}_X)$ such that $E|_U = \mathcal{F}[r] \oplus F$ for some finite locally free \mathcal{O}_U-module \mathcal{F}. By Lemma 12.5 we can find a
morphism of perfect complexes $\alpha : E_1 \to E$ such that $(E_1)|_U \cong E|_U$ and such that $\alpha|_U$ is the map
\[
\begin{pmatrix}
\text{id}_E[r] & 0 \\
0 & 0
\end{pmatrix} : F[r] \oplus F \to F[r] \oplus F
\]
Then the cone on α is a solution. \qed

Lemma 12.7. Let X be a quasi-compact and quasi-separated scheme. Let $f \in \Gamma(X, \mathcal{O}_X)$. For any morphism $\alpha : E \to E'$ in $D_{\text{QCoh}}(\mathcal{O}_X)$ such that

1. E is perfect, and
2. E' is supported on $T = V(f)$

there exists an $n \geq 0$ such that $f^n\alpha = 0$.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Cohomology, Lemma [33.3]. Thus if $X = U \cup V$ and the result of the lemma holds for $f|_U$, $f|_V$, and $f|_{U \cap V}$, then the result holds for f. Thus it suffices to prove the lemma when X is affine, see Cohomology of Schemes, Lemma [4.1].

Let $X = \text{Spec}(A)$. Then $f \in A$. We will use the equivalence $D(A) = D_{\text{QCoh}}(X)$ of Lemma [3.5] without further mention. Represent E by a finite complex of finite projective A-modules P^\bullet. This is possible by Lemma [9.7]. Let t be the largest integer such that P^t is nonzero. The distinguished triangle
\[
P^t[-t] \to P^\bullet \to \sigma_{\leq t-1} P^\bullet \to P^t[-t + 1]
\]
shows that by induction on the length of the complex P^\bullet we can reduce to the case where P^\bullet has a single nonzero term. This and the shift functor reduces us to the case where P^\bullet consists of a single finite projective A-module P in degree 0. Represent E' by a complex M^\bullet of A-modules. Then α corresponds to a map $P \to H^0(M^\bullet)$. Since the module $H^0(M^\bullet)$ is supported on $V(f)$ by assumption (2) we see that every element of $H^0(M^\bullet)$ is annihilated by a power of f. Since P is a finite A-module the map $f^n\alpha : P \to H^0(M^\bullet)$ is zero for some n as desired. \qed

Lemma 12.8. Let X be an affine scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. Let $U \subset X$ be a quasi-compact open. For every perfect object F of $D(\mathcal{O}_U)$ supported on $T \cap U$ the object $F \oplus F[1]$ is the restriction of a perfect object E of $D(\mathcal{O}_X)$ supported in T.

Proof. Say $T = V(g_1, \ldots, g_s)$. After replacing g_j by a power we may assume multiplication by g_j is zero on F, see Lemma [12.7]. Choose E as in Lemma [12.6]. Note that $g_j : E \to E$ restricts to zero on U. Choose a distinguished triangle
\[
E \xrightarrow{\alpha} E \to C_1 \to E[1]
\]
By Derived Categories, Lemma [4.1] the object C_1 restricts to $F \oplus F[1] \oplus F[1] \oplus F[2]$ on U. Moreover, $g_1 : C_1 \to C_1$ has square zero by Derived Categories, Lemma [4.5]. Namely, the diagram
\[
\begin{array}{ccc}
E & \xrightarrow{g_1} & C_1 \\
\downarrow & & \downarrow \\
E & \to & E[1]
\end{array}
\]
is commutative since the compositions $E \xrightarrow{\partial_1} E \to C_1$ and $C_1 \to E[1] \xrightarrow{\partial_1} E[1]$ are zero. Continuing, setting C_{i+1} equal to the cone of the map $g_i : C_i \to C_i$ we obtain a perfect complex C_s on X supported on T whose restriction to U gives

$$F \oplus F[1] \oplus F[2] \oplus \ldots \oplus F[s]$$

Choose morphisms of perfect complexes $\beta : C' \to C_s$ and $\gamma : C' \to C_s$ as in Lemma 12.5 such that $\beta|_U$ is an isomorphism and such that $\gamma|_U \circ \beta|_U^{-1}$ is the morphism

$$F \oplus F[1] \oplus F[2] \oplus \ldots \oplus F[s] \to F \oplus F[1] \oplus F[2] \oplus \ldots \oplus F[s]$$

which is the identity on all summands except for F where it is zero. By Lemma 12.8 we also have $C' = C_s \otimes B I$ for some perfect complex I on X. Hence the nullity of $g_i^* \text{id}_{C_i}$ implies the same thing for C'. Thus C' is supported on T as well. Then $\text{Cone}(\gamma)$ is a solution. \hfill \square

A special case of the following lemma can be found in [Nee96].

Lemma 12.9. Let X be a quasi-compact and quasi-separated scheme. Let $U \subset X$ be a quasi-compact open. Let $T \subset X$ be a closed subset with $X \setminus T$ retro-compact in X. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. Let $\alpha : P \to E|_U$ be a map where P is a perfect object of $D(\mathcal{O}_U)$ supported on $T \cap U$. Then there exists a map $\beta : R \to E$ where R is a perfect object of $D(\mathcal{O}_X)$ supported on T such that P is a direct summand of $R|_U$ in $D(\mathcal{O}_U)$ compatible α and $\beta|_U$.

Proof. Since X is quasi-compact there exists an integer m such that $X = U \cup V_1 \cup \ldots \cup V_m$ for some affine opens V_j of X. Arguing by induction on m we see that we may assume $m = 1$. In other words, we may assume that $X = U \cup V$ with V affine. By Lemma 12.8 we can choose a perfect object Q in $D(\mathcal{O}_V)$ supported on $T \cap V$ and an isomorphism $Q|_{U \cap V} \rightarrow (P \oplus P[1])|_{U \cap V}$. By Lemma 12.5 we can replace Q by $Q \otimes B I$ (still supported on $T \cap V$) and assume that the map $Q|_{U \cap V} \rightarrow (P \oplus P[1])|_{U \cap V} \rightarrow P|_{U \cap V} \rightarrow E|_{U \cap V}$ lifts to $Q \to E|_V$. By Cohomology, Lemma 41.1 we find an morphism $a : R \to E$ of $D(\mathcal{O}_X)$ such that $a|_V$ is isomorphic to $P \oplus P[1] \to E|_V$ and $a|_V$ isomorphic to $Q \to E|_V$. Thus R is perfect and supported on T as desired. \hfill \square

Remark 12.10. The proof of Lemma 12.9 shows that $$R|_U = P \oplus P[1] \oplus \ldots \oplus P[m]$$

for some $m \geq 0$ and $n_i \geq 0$. Thus the highest degree cohomology sheaf of $R|_U$ equals that of P. By repeating the construction for the map $P[1] \oplus \ldots \oplus P[m] \to R|_U$, taking cones, and using induction we can achieve equality of cohomology sheaves of $R|_U$ and P above any given degree.

13. Approximation by perfect complexes

In this section we discuss the observation, due to Neeman and Lipman, that a pseudo-coherent complex can be “approximated” by perfect complexes.

Definition 13.1. Let X be a scheme. Consider triples (T, E, m) where

1. $T \subset X$ is a closed subset,
2. E is an object of $D_{QCoh}(\mathcal{O}_X)$, and
3. $m \in \mathbb{Z}$.

...
We say approximation holds for the triple \((T, E, m)\) if there exists a perfect object \(P\) of \(D(O_X)\) supported on \(T\) and a map \(\alpha : P \to E\) which induces isomorphisms \(H^i(P) \to H^i(E)\) for \(i > m\) and a surjection \(H^m(P) \to H^m(E)\).

Approximation cannot hold for every triple. Namely, it is clear that if approximation holds for the triple \((T, E, m)\), then

1. \(E\) is \(m\)-pseudo-coherent, see Cohomology, Definition \[33.1\]
2. the cohomology sheaves \(H^i(E)\) are supported on \(T\) for \(i \geq m\).

Moreover, the “support” of a perfect complex is a closed subscheme whose complement is retrocompact in \(X\) (details omitted). Hence we cannot expect approximation to hold without this assumption on \(T\). This partly explains the conditions in the following definition.

Definition 13.2. Let \(X\) be a scheme. We say approximation by perfect complexes holds on \(X\) if for any closed subset \(T \subset X\) with \(X \setminus T\) retro-compact in \(X\) there exists an integer \(r\) such that for every triple \((T, E, m)\) as in Definition \[13.1\] with

1. \(E\) is \((m-r)\)-pseudo-coherent, and
2. \(H^i(E)\) is supported on \(T\) for \(i \geq m-r\)

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact and quasi-separated schemes. It seems that the second condition is necessary for our method of proof. It is possible that the first condition may be weakened to “\(E\) is \(m\)-pseudo-coherent” by carefully analyzing the arguments below.

Lemma 13.3. Let \(X\) be a scheme. Let \(U \subset X\) be an open subscheme. Let \((T, E, m)\) be a triple as in Definition \[13.1\]. If

1. \(T \subset U\),
2. approximation holds for \((T, E|_U, m)\), and
3. the sheaves \(H^i(E)\) for \(i \geq m\) are supported on \(T\),

then approximation holds for \((T, E, m)\).

Proof. Let \(j : U \to X\) be the inclusion morphism. If \(P \to E|_U\) is an approximation of the triple \((T, E|_U, m)\) over \(U\), then \(j_! P = Rj_* P \to j_!(E|_U) \to E\) is an approximation of \((T, E, m)\) over \(X\). See Cohomology, Lemmas \[33.6\] and \[45.10\].

Lemma 13.4. Let \(X\) be an affine scheme. Then approximation holds for every triple \((T, E, m)\) as in Definition \[13.1\] such that there exists an integer \(r \geq 0\) with

1. \(E\) is \(m\)-pseudo-coherent,
2. \(H^i(E)\) is supported on \(T\) for \(i \geq m-r+1\),
3. \(X \setminus T\) is the union of \(r\) affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Say \(X = \text{Spec}(A)\). Write \(T = V(f_1, \ldots, f_r)\). (The case \(r = 0\), i.e., \(T = X\) follows immediately from Lemma \[9.2\] and the definitions.) Let \((T, E, m)\) be a triple as in the lemma. Let \(t\) be the largest integer such that \(H^t(E)\) is nonzero. We will proceed by induction on \(t\). The base case is \(t < m\); in this case the result is trivial. Now suppose that \(t \geq m\). By Cohomology, Lemma \[43.9\] the sheaf \(H^t(E)\) is of finite type. Since it is quasi-coherent it is generated by finitely many sections (Properties, Lemma \[16.1\]). For every \(s \in \Gamma(X, H^t(E)) = H^t(X, E)\) (see proof of Lemma \[3.5\]) we can find an \(e > 0\) and a morphism \(K_{\text{c}}[-t] \to E\) such that \(s\) is...
in the image of $H^0(K_x) = H^4(K_x[-t]) \to H^4(E)$, see Lemma 8.6. Taking a finite direct sum of these maps we obtain a map $P \to E$ where P is a perfect complex supported on T, where $H^i(P) = 0$ for $i > t$, and where $H^4(P) \to E$ is surjective. Choose a distinguished triangle

$$P \to E \to E' \to P[1]$$

Then E' is m-pseudo-coherent (Cohomology, Lemma 43.4), $H^i(E') = 0$ for $i \geq t$, and $H^4(E')$ is supported on T for $i \geq m - r + 1$. By induction we find an approximation $P' \to E'$ of (T, E', m). Fit the composition $P' \to E' \to P[1]$ into a distinguished triangle $P \to P'' \to P' \to P[1]$ and extend the morphisms $P'' \to E'$ and $P[1] \to P[1]$ into a morphism of distinguished triangles

$$
\begin{array}{ccc}
P & \to & P'' \\
\downarrow & & \downarrow \\
P & \to & E \\
\downarrow & & \downarrow \\
P & \to & E' \\
\downarrow & & \downarrow \\
P & \to & P[1]
\end{array}
$$

using TR3. Then P'' is a perfect complex (Cohomology, Lemma 45.7) supported on T. An easy diagram chase shows that $P'' \to E$ is the desired approximation. □

Lemma 13.5. Let X be a scheme. Let $X = U \cup V$ be an open covering with U quasi-compact, V affine, and $U \cap V$ quasi-compact. If approximation by perfect complexes holds on U, then approximation holds on X.

Proof. Let $T \subset X$ be a closed subset with $X \setminus T$ retro-compact in X. Let r_U be the integer of Definition 13.2 adapted to the pair $(U, T \cap U)$. Set $T' = T \setminus U$. Note that $T' \subset V$ and that $V \setminus T' = (X \setminus T) \cap U \cap V$ is quasi-compact by our assumption on T. Let r' be the number of affines needed to cover $V \setminus T'$. We claim that $r = \max(r_U, r')$ works for the pair (X, T).

To see this choose a triple (T, E, m) such that E is $(m - r)$-pseudo-coherent and $H^i(E)$ is supported on T for $i \geq m - r$. Let t be the largest integer such that $H^i(E)|_U$ is nonzero. (Such an integer exists as U is quasi-compact and $E|_U$ is $(m - r)$-pseudo-coherent.) We will prove that E can be approximated by induction on t.

Base case: $t \leq m - r'$. This means that $H^i(E)$ is supported on T' for $i \geq m - r'$. Hence Lemma 13.4 guarantees the existence of an approximation $P \to E|_{T'}$ of $(T', E|_{T'}, m)$ on V. Applying Lemma 13.3 we see that (T', E, m) can be approximated. Such an approximation is also an approximation of (T, E, m).

Induction step. Choose an approximation $P \to E|_U$ of $(T \cap U, E|_U, m)$. This in particular gives a surjection $H^i(P) \to H^i(E|_U)$. By Lemma 12.8 we can choose a perfect object Q in $D(O_V)$ supported on $T \cap V$ and an isomorphism $Q|_{U \cap V} \to (P \oplus P[1]|_{U \cap V})$. By Lemma 12.5 we can replace Q by $Q \otimes^{L} I$ and assume that the map

$$Q|_{U \cap V} \to (P \oplus P[1]|_{U \cap V})|_{U \cap V} \to P|_{U \cap V} \to E|_{U \cap V}$$

lifts to $Q \to E|_V$. By Cohomology, Lemma 41.1 we find an morphism $a : R \to E$ of $D(O_X)$ such that $a|_U$ is isomorphic to $P \oplus P[1]|_U \to E|_U$ and $a|_V$ isomorphic to $Q \to E|_V$. Thus R is perfect and supported on T and the map $H^i(R) \to H^i(E)$ is surjective on restriction to U. Choose a distinguished triangle

$$R \to E \to E' \to R[1]$$
Then E' is $(m - r)$-pseudo-coherent (Cohomology, Lemma 43.4), $H^i(E')|_U = 0$ for $i > t$, and $H^i(E')$ is supported on T for $i \geq m - r$. By induction we find an approximation $R' \to E'$ of (T, T', m). Fit the composition $R' \to E' \to R[1]$ into a distinguished triangle $R \to R'' \to R' \to R'[1]$ and extend the morphisms $R' \to E'$ and $R[1] \to R[1]$ into a morphism of distinguished triangles

$$
\begin{array}{cccc}
R & \to & R'' & \to R' & \to R[1] \\
\downarrow & & \downarrow & & \downarrow \\
R & \to & E' & \to E'' & \to R'[1]
\end{array}
$$

using TR3. Then R'' is a perfect complex (Cohomology, Lemma 45.7) supported on T. An easy diagram chase shows that $R'' \to E$ is the desired approximation. □

Theorem 13.6. Let X be a quasi-compact and quasi-separated scheme. Then approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma 4.1 and Lemmas 13.5 and 13.4. □

14. Generating derived categories

In this section we prove that the derived category $D_{QCoh}(\mathcal{O}_X)$ of a quasi-compact and quasi-separated scheme can be generated by a single perfect object. We urge the reader to read the proof of this result in the wonderful paper by Bondal and van den Bergh, see [BV03].

Lemma 14.1. Let X be a quasi-compact and quasi-separated scheme. Let U be a quasi-compact open subscheme. Let P be a perfect object of $D(\mathcal{O}_U)$. Then P is a direct summand of the restriction of a perfect object of $D(\mathcal{O}_X)$.

Proof. Special case of Lemma 12.9. □

Lemma 14.2. In Situation 8.1 denote $j : U \to X$ the open immersion and let K be the perfect object of $D(\mathcal{O}_X)$ corresponding to the Koszul complex on f_1, \ldots, f_r over A. For $E \in D_{QCoh}(\mathcal{O}_X)$ the following are equivalent

1. $E = Rj_*(E|_U)$, and
2. $\text{Hom}_{D(\mathcal{O}_X)}(K[n], E) = 0$ for all $n \in \mathbb{Z}$.

Proof. Choose a distinguished triangle $E \to Rj_*(E|_U) \to N \to E[1]$. Observe that

$$\text{Hom}_{D(\mathcal{O}_X)}(K[n], Rj_*(E|_U)) = \text{Hom}_{D(\mathcal{O}_U)}(K[n], E) = 0$$

for all n as $K|_U = 0$. Thus it suffices to prove the result for N. In other words, we may assume that E restricts to zero on U. Observe that there are distinguished triangles

$$
K^\bullet(f_1^{e_1}, \ldots, f_i^{e_i}, \ldots, f_r^{e_r}) \to K^\bullet(f_1^{e_1}, \ldots, f_i^{e_i + e''}, \ldots, f_r^{e_r}) \to K^\bullet(f_1^{e_1}, \ldots, f_i^{e''}, \ldots, f_r^{e_r}) \to \ldots
$$

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence if $\text{Hom}_{D(\mathcal{O}_X)}(K[n], E) = 0$ for all $n \in \mathbb{Z}$ then the same thing is true for the K replaced by K_α as in Lemma 8.6. Thus our lemma follows immediately from that one and the fact that E is determined by the complex of A-modules $R\Gamma(X, E)$, see Lemma 3.5. □
Theorem 14.3. Let X be a quasi-compact and quasi-separated scheme. The category $D_{QCoh}(\mathcal{O}_X)$ can be generated by a single perfect object. More precisely, there exists a perfect object P of $D(\mathcal{O}_X)$ such that for $E \in D_{QCoh}(\mathcal{O}_X)$ the following are equivalent

1. $E = 0$, and
2. $\text{Hom}_{D(\mathcal{O}_X)}(P[n], E) = 0$ for all $n \in \mathbb{Z}$.

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1.

If X is affine, then \mathcal{O}_X is a perfect generator. This follows from Lemma 3.5.

Assume that $X = U \cup V$ is an open covering with U quasi-compact such that the theorem holds for U and V is an affine open. Let P be a perfect object of $D(\mathcal{O}_U)$ which is a generator for $D_{QCoh}(\mathcal{O}_U)$. Using Lemma 14.1 we may choose a perfect object Q of $D(\mathcal{O}_X)$ whose restriction to U is a direct sum one of whose summands is P. Say $V = \text{Spec}(A)$. Let $Z = X \setminus U$. This is a closed subset of V with $V \setminus Z$ quasi-compact. Choose $f_1, \ldots, f_r \in A$ such that $Z = V(f_1, \ldots, f_r)$. Let $K \in D(\mathcal{O}_V)$ be the perfect object corresponding to the Koszul complex on f_1, \ldots, f_r over A. Note that since K is supported on $Z \subset V$ closed, the pushforward $K' = R(V \to X)_*K$ is a perfect object of $D(\mathcal{O}_X)$ whose restriction to V is K (see Cohomology, Lemma 45.10). We claim that $Q \oplus K'$ is a generator for $D_{QCoh}(\mathcal{O}_X)$.

Let E be an object of $D_{QCoh}(\mathcal{O}_X)$ such that there are no nontrivial maps from any shift of $Q \oplus K'$ into E. By Cohomology, Lemma 33.6 we have $K' = R(V \to X)_*K$ and hence

$$\text{Hom}_{D(\mathcal{O}_X)}(K'[n], E) = \text{Hom}_{D(\mathcal{O}_V)}(K[n], E|_V)$$

Thus by Lemma 14.2 the vanishing of these groups implies that $E|_V$ is isomorphic to $R(U \cap V \to V)_*E|_{U \cap V}$. This implies that $E = R(U \to X)_n E|_U$ (small detail omitted). If this is the case then

$$\text{Hom}_{D(\mathcal{O}_X)}(Q[n], E) = \text{Hom}_{D(\mathcal{O}_V)}(Q[n], E|_U)$$

which contains $\text{Hom}_{D(\mathcal{O}_V)}(P[n], E|_U)$ as a direct summand. Thus by our choice of P the vanishing of these groups implies that $E|_U$ is zero. Hence E is zero. □

The following result is an strengthening of Theorem 14.3 proved using exactly the same methods. Let $T \subset X$ be a closed subset of a scheme X. Let’s denote $D_T(\mathcal{O}_X)$ the strictly full, saturated, triangulated subcategory consisting of complexes whose cohomology sheaves are supported on T.

Lemma 14.4. Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. With notation as above, the category $D_{QCoh,T}(\mathcal{O}_X)$ is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1.

Assume $X = \text{Spec}(A)$ is affine. In this case there exist $f_1, \ldots, f_r \in A$ such that $T = V(f_1, \ldots, f_r)$. Let K be the Koszul complex on f_1, \ldots, f_r as in Lemma 14.2. Then K is a perfect object with cohomology supported on T and hence a perfect object of $D_{QCoh,T}(\mathcal{O}_X)$. On the other hand, if $E \in D_{QCoh,T}(\mathcal{O}_X)$ and $\text{Hom}(K, E[n]) = 0$ for all n, then Lemma 14.2 tells us that $E = Rf_* (E|_{X \setminus T}) = 0$. Hence K generates
In this section we prove that the derived category of projective space over a ring is
\(D_{\text{QCoh}}(\mathcal{O}_X) \), (by our definition of generators of triangulated categories in Derived Categories, Definition 36.3).

Assume that \(X = U \cup V \) is an open covering with \(V \) affine and \(U \) quasi-compact such that the lemma holds for \(U \). Let \(P \) be a perfect object of \(D(\mathcal{O}_U) \) supported on \(T \cap U \) which is a generator for \(D_{\text{QCoh}, T \cap U}(\mathcal{O}_U) \). Using Lemma 12.9 we may choose a perfect object \(Q \) of \(D(\mathcal{O}_X) \) supported on \(T \) whose restriction to \(U \) is a direct sum one of whose summands is \(P \). Write \(V = \text{Spec}(B) \). Let \(Z = X \setminus U \). Then \(Z \) is a closed subset of \(V \) such that \(V \setminus Z \) is quasi-compact. As \(X \) is quasi-separated, it follows that \(Z \cap T \) is a closed subset of \(V \) such that \(W = V \setminus (Z \cap T) \) is quasi-compact. Thus we can choose \(g_1, \ldots, g_r \in B \) such that \(Z \cap T = V(g_1, \ldots, g_r) \).

Let \(K \in D(\mathcal{O}_V) \) be the perfect object corresponding to the Koszul complex on \(g_1, \ldots, g_r \) over \(B \). Note that since \(K \) is supported on \((Z \cap T) \subseteq V \), the pushforward \(K' = R(V \to X)_* K \) is a perfect object of \(D(\mathcal{O}_X) \) whose restriction to \(V \) is \(K \) (see Cohomology, Lemma 45.10). We claim that \(Q \oplus K' \) is a generator for \(D_{\text{QCoh}, T}(\mathcal{O}_X) \).

Let \(E \) be an object of \(D_{\text{QCoh}, T}(\mathcal{O}_X) \) such that there are no nontrivial maps from any shift of \(Q \oplus K' \) into \(E \). By Cohomology, Lemma 33.6 we have \(K' = R(V \to X)_* K \) and hence
\[
\text{Hom}_{D(\mathcal{O}_X)}(K'[n], E) = \text{Hom}_{D(\mathcal{O}_V)}(K[n], E|_V)
\]
Thus by Lemma 14.2 we have \(E|_V = Rj_* E|_W \) where \(j : W \to V \) is the inclusion.

Picture

\[
\begin{array}{ccc}
W & j & V \\
\downarrow & j' & \downarrow Z \cap T \\
U \cap V & j'' & Z
\end{array}
\]

Since \(E \) is supported on \(T \) we see that \(E|_W \) is supported on \(T \cap W = T \cap U \cap V \) which is closed in \(W \). We conclude that
\[
E|_V = Rj_* (E|_W) = Rj_* (Rj'_*(E|_{U \cap V})) = Rj''_*(E|_{U \cap V})
\]
where the second equality is part (1) of Cohomology, Lemma 33.6. This implies that \(E = R(U \to X)_* E|_U \) (small detail omitted). If this is the case then
\[
\text{Hom}_{D(\mathcal{O}_X)}(Q[n], E) = \text{Hom}_{D(\mathcal{O}_U)}(Q|_U[n], E|_U)
\]
which contains \(\text{Hom}_{D(\mathcal{O}_U)}(P[n], E|_U) \) as a direct summand. Thus by our choice of \(P \) the vanishing of these groups implies that \(E|_U \) is zero. Whence \(E \) is zero.

15. An example generator

0BQQ In this section we prove that the derived category of projective space over a ring is generated by a vector bundle, in fact a direct sum of shifts of the structure sheaf.

The following lemma says that \(\bigoplus_{n \geq 0} \mathcal{L}^\otimes n \) is a generator if \(\mathcal{L} \) is ample.

0BQR **Lemma 15.1.** Let \(X \) be a scheme and \(\mathcal{L} \) an ample invertible \(\mathcal{O}_X \)-module. If \(K \) is a nonzero object of \(D_{\text{QCoh}}(\mathcal{O}_X) \), then for some \(n \geq 0 \) and \(p \in \mathbb{Z} \) the cohomology group \(H^p(X, K \otimes \mathcal{L}^\otimes n) \) is nonzero.

Proof. Recall that as \(X \) has an ample invertible sheaf, it is quasi-compact and separated (Properties, Definition 26.1 and Lemma 26.7). Thus we may apply Proposition 6.6 and represent \(K \) by a complex \(\mathcal{F}^* \) of quasi-coherent modules. Pick any
Let p such that $\mathcal{H}^p = \text{Ker}(\mathcal{F}^p \to \mathcal{F}^{p+1})/\text{Im}(\mathcal{F}^{p-1} \to \mathcal{F}^p)$ is nonzero. Choose a point $x \in X$ such that the stalk \mathcal{H}^p_x is nonzero. Choose an $n \geq 0$ and $s \in \Gamma(X, \mathcal{L}^{\otimes m})$ such that X_s is an affine open neighbourhood of x. Choose $\tau \in H^p(X_s)$ which maps to a nonzero element of the stalk \mathcal{H}^p_x. This is possible as \mathcal{H}^p is quasi-coherent and X_s is affine. Since taking sections over X_s is an exact functor on quasi-coherent modules, we can find a section $\tau' \in \mathcal{F}^p(X_s)$ mapping to zero in $\mathcal{F}^{p+1}(X_s)$ and mapping to τ in $\mathcal{H}^p(X_s)$. By Properties, Lemma 17.2 there exists an m such that $\tau' \otimes s^{\otimes m}$ is the image of a section $\tau'' \in \Gamma(X, \mathcal{F}^p \otimes \mathcal{L}^{\otimes mn})$. Applying the same lemma once more, we find $l \geq 0$ such that $\tau'' \otimes s^{\otimes l}$ maps to zero in $\mathcal{F}^{p+1} \otimes \mathcal{L}^{\otimes (m+l)n}$. Then τ'' gives a nonzero class in $H^p(X, K \otimes_{\mathcal{O}_X} \mathcal{L}^{(m+l)n})$ as desired. \hfill \Box

0BQS Lemma 15.2. Let A be a ring. Let $X = \mathbb{P}^n_A$. For every $a \in \mathbb{Z}$ there exists an exact complex

$$0 \to \mathcal{O}_X(a) \to \ldots \to \mathcal{O}_X(a + i)^{\oplus (n+1)} \to \ldots \to \mathcal{O}_X(a + n + 1) \to 0$$

of vector bundles on X.

Proof. Recall that \mathbb{P}^n_A is $\text{Proj}(A[X_0, \ldots, X_n])$, see Constructions, Definition 13.2. Consider the Koszul complex

$$K_* = K_*(A[X_0, \ldots, X_n], X_0, \ldots, X_n)$$

over $S = A[X_0, \ldots, X_n]$ on X_0, \ldots, X_n. Since X_0, \ldots, X_n is clearly a regular sequence in the polynomial ring S, we see that (More on Algebra, Lemma 29.2) the Koszul complex K_* is exact, except in degree 0 where the cohomology is $S/(X_0, \ldots, X_n)$. Note that K_* becomes a complex of graded modules if we put the generators of K_i in degree $+i$. In other words an exact complex

$$0 \to S(-n-1) \to \ldots \to S(-n-1+i)^{\oplus (n+1)} \to \ldots \to S \to S/(X_0, \ldots, X_n) \to 0$$

Applying the exact functor τ-functor of Constructions, Lemma 8.4 and using that the last term is in the kernel of this functor, we obtain the exact complex

$$0 \to \mathcal{O}_X(-n-1) \to \ldots \to \mathcal{O}_X(-n-1+i)^{\oplus (n+1)} \to \ldots \to \mathcal{O}_X \to 0$$

Twisting by the invertible sheaves $\mathcal{O}_X(a+n)$ we get the exact complexes of the lemma. \hfill \Box

0A9V Lemma 15.3. Let A be a ring. Let $X = \mathbb{P}^n_A$. Then

$$E = \mathcal{O}_X \oplus \mathcal{O}_X(-1) \oplus \ldots \oplus \mathcal{O}_X(-n)$$

is a generator (Derived Categories, Definition 36.3) of $\mathcal{D}_{\mathcal{QCoh}}(X)$.

Proof. Let $K \in \mathcal{D}_{\mathcal{QCoh}}(\mathcal{O}_X)$. Assume $\text{Hom}(E, K[p]) = 0$ for all $p \in \mathbb{Z}$. We have to show that $K = 0$. By Derived Categories, Lemma 36.4 we see that $\text{Hom}(E', K[p])$ is zero for all $E' \in \langle E \rangle$ and $p \in \mathbb{Z}$. By Lemma 15.2 applied with $a = -n-1$ we see that $\mathcal{O}_X(-n-1) \in \langle E \rangle$ because it is quasi-isomorphic to a finite complex whose terms are finite direct sums of summands of E. Repeating the argument with $a = -n-2$ we see that $\mathcal{O}_X(-n-2) \in \langle E \rangle$. Arguing by induction we find that $\mathcal{O}_X(-m) \in \langle E \rangle$ for all $m \geq 0$. Since

$$\text{Hom}(\mathcal{O}_X(-m), K[p]) = H^p(X, K \otimes_{\mathcal{O}_X} \mathcal{O}_X(m)) = H^p(X, K \otimes_{\mathcal{O}_X} \mathcal{O}_X(1)^{\otimes m})$$

we conclude that $K = 0$ by Lemma 15.1 (This also uses that $\mathcal{O}_X(1)$ is an ample invertible sheaf on X which follows from Properties, Lemma 26.12) \hfill \Box
Remark 15.4. Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated schemes. Let $E \in D_{QCoh}(\mathcal{O}_Y)$ be a generator (see Theorem 14.3). Then the following are equivalent

1. for $K \in D_{QCoh}(\mathcal{O}_X)$ we have $Rf_* K = 0$ if and only if $K = 0$,
2. $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_Y)$ reflects isomorphisms, and
3. $Lf^* E$ is a generator for $D_{QCoh}(\mathcal{O}_X)$.

The equivalence between (1) and (2) is a formal consequence of the fact that Rf^* is the left adjoint to Rf_*. These conditions hold if f is affine (Lemma 5.1) or if f is an open immersion, or if f is a composition of such. We conclude that

1. if X is a quasi-affine scheme then \mathcal{O}_X is a generator for $D_{QCoh}(\mathcal{O}_X)$,
2. if $X \subset \mathbb{P}^n_A$ is a quasi-compact locally closed subscheme, then $\mathcal{O}_X(-1) \oplus \cdots \oplus \mathcal{O}_X(-n)$ is a generator for $D_{QCoh}(\mathcal{O}_X)$ by Lemma 15.3.

16. Compact and perfect objects

Let X be a Noetherian scheme of finite dimension. By Cohomology, Proposition 20.7 and Cohomology on Sites, Lemma 50.3 the sheaves of modules $j_! \mathcal{O}_U$ are compact objects of $D(\mathcal{O}_X)$ for all opens $U \subset X$. These sheaves are typically not quasi-coherent, hence these do not give perfect objects of the derived category $D(\mathcal{O}_X)$. However, if we restrict ourselves to complexes with quasi-coherent cohomology sheaves, then this does not happen. Here is the precise statement.

Proposition 16.1. Let X be a quasi-compact and quasi-separated scheme. An object of $D_{QCoh}(\mathcal{O}_X)$ is compact if and only if it is perfect.

Proof. If K is a perfect object of $D(\mathcal{O}_X)$ with dual K^\vee (Cohomology, Lemma 46.4) we have

$$\text{Hom}_{D(\mathcal{O}_X)}(K, M) = H^0(X, K^\vee \otimes^L_{\mathcal{O}_X} M)$$

functorially in M. Since $K^\vee \otimes^L_{\mathcal{O}_X} -$ commutes with direct sums and since $H^0(X, -)$ commutes with direct sums on $D_{QCoh}(\mathcal{O}_X)$ by Lemma 4.2 we conclude that K is compact in $D_{QCoh}(\mathcal{O}_X)$.

Conversely, let K be a compact object of $D_{QCoh}(\mathcal{O}_X)$. To show that K is perfect, it suffices to show that $K|_U$ is perfect for every affine open $U \subset X$, see Cohomology, Lemma 45.2. Observe that $j : U \to X$ is a quasi-compact and separated morphism. Hence $Rj_* : D_{QCoh}(\mathcal{O}_U) \to D_{QCoh}(\mathcal{O}_X)$ commutes with direct sums, see Lemma 4.2. Thus the adjointness of restriction to U and Rj_* implies that $K|_U$ is a compact object of $D_{QCoh}(\mathcal{O}_U)$. Hence we reduce to the case that X is affine.

Assume $X = \text{Spec}(A)$ is affine. By Lemma 3.3 the problem is translated into the same problem for $D(A)$. For $D(A)$ the result is More on Algebra, Proposition 73.3.

The following result is a strengthening of Proposition 16.1. Let $T \subset X$ be a closed subset of a scheme X. As before $D_T(\mathcal{O}_X)$ denotes the strictly full, saturated, triangulated subcategory consisting of complexes whose cohomology sheaves are supported on T. Since taking direct sums commutes with taking cohomology sheaves, it follows that $D_T(\mathcal{O}_X)$ has direct sums and that they are equal to direct sums in $D(\mathcal{O}_X)$.

\[\square\]
Lemma 16.2. Let X be a quasi-compact and quasi-separated scheme. Let $T ⊂ X$ be a closed subset such that $X \setminus T$ is quasi-compact. An object of $D_{QCoh,T}(\mathcal{O}_X)$ is compact if and only if it is perfect as an object of $D(\mathcal{O}_X)$.

Proof. We observe that $D_{QCoh,T}(\mathcal{O}_X)$ is a triangulated category with direct sums by the remark preceding the lemma. By Proposition 16.1 the perfect objects define compact objects of $D(\mathcal{O}_X)$ hence a fortiori of any subcategory preserved under taking direct sums. For the converse we will use there exists a generator $E ∈ D_{QCoh,T}(\mathcal{O}_X)$ which is a perfect complex of \mathcal{O}_X-modules, see Lemma 14.4. Hence by the above, E is compact. Then it follows from Derived Categories, Proposition 37.6 that E is a classical generator of the full subcategory of compact objects of $D_{QCoh,T}(\mathcal{O}_X)$. Thus any compact object can be constructed out of E by a finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these operations preserves the property of being perfect and the result follows.

The following lemma is an application of the ideas that go into the proof of the preceding lemma.

Lemma 16.3. Let X be a quasi-compact and quasi-separated scheme. Let $T ⊂ X$ be a closed subset such that $U = X \setminus T$ is quasi-compact. Let $α : P → E$ be a morphism of $D_{QCoh}(\mathcal{O}_X)$ with either

1. P is perfect and E supported on T, or
2. P pseudo-coherent, E supported on T, and E bounded below.

Then there exists a perfect complex of \mathcal{O}_X-modules I and a map $I → \mathcal{O}_X[0]$ such that $I ⊗^L P → E$ is zero and such that $I|_U → \mathcal{O}_U[0]$ is an isomorphism.

Proof. Set $D = D_{QCoh,T}(\mathcal{O}_X)$. In both cases the complex $K = R\text{Hom}(P, E)$ is an object of D. See Lemma 9.8 for quasi-coherence. It is clear that K is supported on T as formation of $R\text{Hom}$ commutes with restriction to opens. The map $α$ defines an element of $H^0(K) = \text{Hom}_{D(\mathcal{O}_X)}(\mathcal{O}_X[0], K)$. Then it suffices to prove the result for the map $α : \mathcal{O}_X[0] → K$.

Let $E ∈ D$ be a perfect generator, see Lemma 14.4. Write

$$K = \text{hocolim} K_n$$

as in Derived Categories, Lemma 37.3 using the generator E. Since the functor $D → D(\mathcal{O}_X)$ commutes with direct sums, we see that $K = \text{hocolim} K_n$ holds in $D(\mathcal{O}_X)$. Since \mathcal{O}_X is a compact object of $D(\mathcal{O}_X)$ we find an n and a morphism $α_n : \mathcal{O}_X → K_n$ which gives rise to $α$, see Derived Categories, Lemma 33.9. By Derived Categories, Lemma 37.4 applied to the morphism $\mathcal{O}_X[0] → K_n$ in the ambient category $D(\mathcal{O}_X)$ we see that $α_n$ factors as $\mathcal{O}_X[0] → Q → K_n$ where Q is an object of $\langle E \rangle$. We conclude that Q is a perfect complex supported on T.

Choose a distinguished triangle

$$I → \mathcal{O}_X[0] → Q → I[1]$$

By construction I is perfect, the map $I → \mathcal{O}_X[0]$ restricts to an isomorphism over U, and the composition $I → K$ is zero as $α$ factors through Q. This proves the lemma. □
17. Derived categories as module categories

09M2 In this section we draw some conclusions of what has gone before. Before we do so we need a couple more lemmas.

09M3 Lemma 17.1. Let X be a scheme. Let K^\bullet be a complex of \mathcal{O}_X-modules whose cohomology sheaves are quasi-coherent. Let $(E, d) = \text{Hom}_{\text{Comp}^0(\mathcal{O}_X)}(K^\bullet, K^\bullet)$ be the endomorphism differential graded algebra. Then the functor

$$- \otimes^L_E K^\bullet : D(E, d) \to D(\mathcal{O}_X)$$

of Differential Graded Algebra, Lemma \[35.3](http://example.com) has image contained in $D_{\text{QCoh}}(\mathcal{O}_X)$.

Proof. Let P be a differential graded E-module with property (P) and let F^\bullet be a filtration on P as in Differential Graded Algebra, Section \[20](http://example.com) Then we have

$$P \otimes_E K^\bullet = \text{hocolim} F_i P \otimes_E K^\bullet$$

Each of the $F_i P$ has a finite filtration whose graded pieces are direct sums of $E[k]$. The result follows easily. □

The following lemma can be strengthened (there is a uniformity in the vanishing over all L with nonzero cohomology sheaves only in a fixed range).

09M4 Lemma 17.2. Let X be a quasi-compact and quasi-separated scheme. Let K be a perfect object of $D(\mathcal{O}_X)$. Then

1. there exist integers $a \leq b$ such that $\text{Hom}_{D(\mathcal{O}_X)}(K, L) = 0$ for $L \in D_{\text{QCoh}}(\mathcal{O}_X)$ with $H^i(L) = 0$ for $i \in [a, b]$, and

2. if L is bounded, then $\text{Ext}^n_{D(\mathcal{O}_X)}(K, L)$ is zero for all but finitely many n.

Proof. Part (2) follows from (1) as $\text{Ext}^n_{D(\mathcal{O}_X)}(K, L) = \text{Hom}_{D(\mathcal{O}_X)}(K, L[n])$. We prove (1). Since K is perfect we have

$$\text{Hom}_{D(\mathcal{O}_X)}(K, L) = H^0(X, K^\vee \otimes^L_{\mathcal{O}_X} L)$$

where K^\vee is the “dual” perfect complex to K, see Cohomology, Lemma \[46.4](http://example.com). Note that $K^\vee \otimes^L_{\mathcal{O}_X} L$ is in $D_{\text{QCoh}}(X)$ by Lemmas \[9.9](http://example.com) and \[9.1](http://example.com) (to see that a perfect complex has quasi-coherent cohomology sheaves). Say K^\vee has tor amplitude in $[a, b]$. Then the spectral sequence

$$E_2^{p,q} = H^p(K^\vee \otimes^L_{\mathcal{O}_X} H^q(L)) \Rightarrow H^{p+q}(K^\vee \otimes^L_{\mathcal{O}_X} L)$$

shows that $H^j(K^\vee \otimes^L_{\mathcal{O}_X} L)$ is zero if $H^q(L) = 0$ for $q \in [j - b, j - a]$. Let N be the integer d of Cohomology of Schemes, Lemma \[4.4](http://example.com) Then $H^0(X, K^\vee \otimes^L_{\mathcal{O}_X} L)$ vanishes if the cohomology sheaves

$$H^{-N}(K^\vee \otimes^L_{\mathcal{O}_X} L), H^{-N+1}(K^\vee \otimes^L_{\mathcal{O}_X} L), \ldots, H^0(K^\vee \otimes^L_{\mathcal{O}_X} L)$$

are zero. Namely, by the lemma cited and Lemma \[3.4](http://example.com) we have

$$H^0(X, K^\vee \otimes^L_{\mathcal{O}_X} L) = H^0(X, \tau_{\geq -N}(K^\vee \otimes^L_{\mathcal{O}_X} L))$$

and by the vanishing of cohomology sheaves, this is equal to $H^0(X, \tau_{\geq 1}(K^\vee \otimes^L_{\mathcal{O}_X} L))$ which is zero by Derived Categories, Lemma \[16.1](http://example.com). It follows that $\text{Hom}_{D(\mathcal{O}_X)}(K, L)$ is zero if $H^i(L) = 0$ for $i \in [-b - N, -a]$. □

The following result is taken from \[BV03](http://example.com).
Theorem 17.3. Let X be a quasi-compact and quasi-separated scheme. Then there exist a differential graded algebra (E, d) with only a finite number of nonzero cohomology groups $H^i(E)$ such that $D_{QCoh}(\mathcal{O}_X)$ is equivalent to $D(E, d)$.

Proof. Let K^\bullet be a K-injective complex of \mathcal{O}-modules which is perfect and generates $D_{QCoh}(\mathcal{O}_X)$. Such a thing exists by Theorem 14.3 and the existence of K-injective resolutions. We will show the theorem holds with

$$(E, d) = \text{Hom}_{\text{Comp}^{\text{dg}}(\mathcal{O}_X)}(K^\bullet, K^\bullet)$$

where $\text{Comp}^{\text{dg}}(\mathcal{O}_X)$ is the differential graded category of complexes of \mathcal{O}-modules. Please see Differential Graded Algebra, Section 35. Since K^\bullet is K-injective we have

$$H^n(E) = \text{Ext}^n_{D(\mathcal{O}_X)}(K^\bullet, K^\bullet)$$

for all $n \in \mathbb{Z}$. Only a finite number of these Exts are nonzero by Lemma 17.2. Consider the functor

$$- \otimes^L_E K^\bullet : D(E, d) \to D(\mathcal{O}_X)$$

of Differential Graded Algebra, Lemma 35.3. Since K^\bullet is perfect, it defines a compact object of $D(\mathcal{O}_X)$, see Proposition 16.1. Combined with (17.3.1) the functor above is fully faithful as follows from Differential Graded Algebra, Lemmas 35.6. It has a right adjoint

$$R\text{Hom}(K^\bullet, -) : D(\mathcal{O}_X) \to D(E, d)$$

by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor by generalities on adjoint functors. On the other hand, it follows from Lemma 17.1 that we obtain

$$- \otimes^L_E K^\bullet : D(E, d) \to D_{QCoh}(\mathcal{O}_X)$$

and by our choice of K^\bullet as a generator of $D_{QCoh}(\mathcal{O}_X)$ the kernel of the adjoint restricted to $D_{QCoh}(\mathcal{O}_X)$ is zero. A formal argument shows that we obtain the desired equivalence, see Derived Categories, Lemma 7.2.

Remark 17.4 (Variant with support). Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. The analogue of Theorem 17.3 holds for $D_{QCoh, T}(\mathcal{O}_X)$. This follows from the exact same argument as in the proof of the theorem, using Lemmas 14.4 and 16.2 and a variant of Lemma 17.1 with supports. If we ever need this, we will precisely state the result here and give a detailed proof.

Remark 17.5 (Uniqueness of dga). Let X be a quasi-compact and quasi-separated scheme over a ring R. By the construction of the proof of Theorem 17.3 there exists a differential graded algebra (A, d) over R such that $D_{QCoh}(X)$ is R-linearly equivalent to $D(A, d)$ as a triangulated category. One may ask: how unique is (A, d)? The answer is (only) slightly better than just saying that (A, d) is well defined up to derived equivalence. Namely, suppose that (B, d) is a second such pair. Then we have

$$(A, d) = \text{Hom}_{\text{Comp}^{\text{dg}}(\mathcal{O}_X)}(K^\bullet, K^\bullet)$$

and

$$(B, d) = \text{Hom}_{\text{Comp}^{\text{dg}}(\mathcal{O}_X)}(L^\bullet, L^\bullet)$$

for some K-injective complexes K^\bullet and L^\bullet of \mathcal{O}_X-modules corresponding to perfect generators of $D_{QCoh}(\mathcal{O}_X)$. Set

$$\Omega = \text{Hom}_{\text{Comp}^{\text{dg}}(\mathcal{O}_X)}(K^\bullet, L^\bullet) \quad \Omega' = \text{Hom}_{\text{Comp}^{\text{dg}}(\mathcal{O}_X)}(L^\bullet, K^\bullet)$$
Then Ω is a differential graded $B^{\text{opp}} \otimes_R \text{A}$-module and Ω' is a differential graded $A^{\text{opp}} \otimes_R \text{B}$-module. Moreover, the equivalence

$$D(A, d) \to D_{\text{QCoh}}(\mathcal{O}_X) \to D(B, d)$$

is given by the functor $- \otimes^L \Omega'$ and similarly for the quasi-inverse. Thus we are in the situation of Differential Graded Algebra, Remark 37.10. If we ever need this remark we will provide a precise statement with a detailed proof here.

18. Characterizing pseudo-coherent complexes, I

Lemma 18.1. Let X be a quasi-compact and quasi-separated scheme. Let $K \in D(\mathcal{O}_X)$. The following are equivalent

1. K is pseudo-coherent, and
2. $K = \text{hocolim} K_n$ where K_n is perfect and $\tau_{\geq -n} K_n \to \tau_{\geq -n} K$ is an isomorphism for all n.

Proof. The implication (2) \Rightarrow (1) is true on any ringed space. Namely, assume (2) holds. Recall that a perfect object of the derived category is pseudo-coherent, see Cohomology, Lemma 45.5. Then it follows from the definitions that $\tau_{\geq -n} K_n$ is $(-n+1)$-pseudo-coherent and hence $\tau_{> -n} K$ is $(-n+1)$-pseudo-coherent, hence K is $(-n+1)$-pseudo-coherent. This is true for all n, hence K is pseudo-coherent, see Cohomology, Definition 45.1.

Assume (1). We start by choosing an approximation $K_1 \to K$ of $(X, K, -2)$ by a perfect complex K_1, see Definitions 13.1 and 13.2 and Theorem 13.6. Suppose by induction we have

$$K_1 \to K_2 \to \ldots \to K_{n-1} \to K_n \to K$$

with K_i perfect such that such that $\tau_{> -i} K_i \to \tau_{> -i} K$ is an isomorphism for all $1 \leq i \leq n$. Then we pick $a \leq b$ as in Lemma 17.2 for the perfect object K_n. Choose an approximation $K_{n+1} \to K$ of $(X, K, \min(a-1, -n-1))$. Choose a distinguished triangle

$$K_{n+1} \to K \to C \to K_{n+1}[1]$$

Then we see that $C \in D_{\text{QCoh}}(\mathcal{O}_X)$ has $H^i(C) = 0$ for $i \geq a$. Thus by our choice of a, b we see that $\text{Hom}_{D(\mathcal{O}_X)}(K_n, C) = 0$. Hence the composition $K_n \to K \to C$ is zero. Hence by Derived Categories, Lemma 4.2 we can factor $K_n \to K$ through K_{n+1} proving the induction step.

We still have to prove that $K = \text{hocolim} K_n$. This follows by an application of Derived Categories, Lemma 33.8 to the functors $H^i(-) : D(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X)$ and our choice of K_n. □

Lemma 18.2. Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. Let $K \in D(\mathcal{O}_X)$ supported on T. The following are equivalent

1. K is pseudo-coherent, and
2. $K = \text{hocolim} K_n$ where K_n is perfect, supported on T, and $\tau_{\geq -n} K_n \to \tau_{\geq -n} K$ is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 18.1 except that in the choice of the approximations we use the triples (T, K, m). □
19. An example equivalence

In Section 15 we proved that the derived category of projective space \(\mathbb{P}^n_A \) over a
ring \(A \) is generated by a vector bundle, in fact a direct sum of shifts of the structure
sheaf. In this section we prove this determines an equivalence of \(\mathcal{D}_{QCoh}(\mathcal{O}_{\mathbb{P}^n_A}) \) with
the derived category of an \(A \)-algebra.

Before we can state the result we need some notation. Let \(A \) be a ring. Let
\(X = \mathbb{P}^n_A = \text{Proj}(S) \) where \(S = A[X_0, \ldots, X_n] \). By Lemma 15.3 we know that

(19.0.1) \[P = \mathcal{O}_X \oplus \mathcal{O}_X(-1) \oplus \cdots \oplus \mathcal{O}_X(-n) \]

is a perfect generator of \(\mathcal{D}_{QCoh}(\mathcal{O}_X) \). Consider the (noncommutative)
\(A \)-algebra

(19.0.2) \[R = \text{Hom}_{\mathcal{O}_X}(P, P) = \begin{pmatrix} S_0 & S_1 & S_2 & \cdots & \cdots \\ 0 & S_0 & S_1 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & S_0 \end{pmatrix} \]

with obvious multiplication and addition. If we view \(P \) as a complex of \(\mathcal{O}_X \)-modules
in the usual way (i.e., with \(P \) in degree 0 and zero in every other degree), then we
have

\[R = \text{Hom}_{\text{Comp}^dg(\mathcal{O}_X)}(P, P) \]

where on the right hand side we view \(R \) as a differential graded algebra over \(A \) with
zero differential (i.e., with \(R \) in degree 0 and zero in every other degree). According
to the discussion in Differential Graded Algebra, Section 35 we obtain a derived
functor

\[- \otimes^L_R P : \mathcal{D}(R) \to \mathcal{D}(\mathcal{O}_X), \]

see especially Differential Graded Algebra, Lemma 35.3. By Lemma 17.1 we see
that the essential image of this functor is contained in \(\mathcal{D}_{QCoh}(\mathcal{O}_X) \).

Lemma 19.1. Let \(A \) be a ring. Let \(X = \mathbb{P}^n_A = \text{Proj}(S) \) where \(S = A[X_0, \ldots, X_n] \).\(^{[Be1]8} \)

With \(P \) as in (19.0.1) and \(R \) as in (19.0.2) the functor

\[- \otimes^L_R P : \mathcal{D}(R) \to \mathcal{D}_{QCoh}(\mathcal{O}_X) \]

is an \(A \)-linear equivalence of triangulated categories sending \(R \) to \(P \).

In words: the derived category of quasi-coherent modules on projective space is
equivalent to the derived category of modules over a (noncommutative) algebra.
This property of projective space appears to be quite unusual among all projective
schemes over \(A \).

Proof. To prove that our functor is fully faithful it suffices to prove that \(\text{Ext}^i_X(P, P) \)
is zero for \(i \neq 0 \) and equal to \(R \) for \(i = 0 \), see Differential Graded Algebra, Lemma 35.6. As in the proof of Lemma 17.2 we see that

\[\text{Ext}^i_X(P, P) = H^i(X, P^n \otimes P) = \bigoplus_{0 \leq a, b \leq n} H^i(X, \mathcal{O}_X(a-b)) \]

By the computation of cohomology of projective space (Cohomology of Schemes,\(^{[Hat]1}8 \)) we find that these Ext-groups are zero unless \(i = 0 \). For \(i = 0 \) we recover
\(R \) because this is how we defined \(R \) in (19.0.2). By Differential Graded Algebra,\(^{[Hat]1}8 \) Lemma 35.5 our functor has a right adjoint, namely \(R \text{Hom}(P, -) : \mathcal{D}_{QCoh}(\mathcal{O}_X) \to \mathcal{D}(R) \). Since \(P \) is a generator for \(\mathcal{D}_{QCoh}(\mathcal{O}_X) \) by Lemma 15.3 we see that the
kernel of $R\text{Hom}(P, -)$ is zero. Hence our functor is an equivalence of triangulated categories by Derived Categories, Lemma 7.2. \hfill \square

20. The coherator revisited

In Section 6 we constructed and studied the right adjoint RQ_X to the canonical functor $D(QCoh(O_X)) \to D(O_X)$. It was constructed as the right derived extension of the coherator $Q_X : \text{Mod}(O_X) \to QCoh(O_X)$. In this section, we study when the inclusion functor

$$D_{QCoh}(O_X) \to D(O_X)$$

has a right adjoint. If this right adjoint exists, we will denote it

$$DQ_X : D(O_X) \to D_{QCoh}(O_X)$$

It turns out that quasi-compact and quasi-separated schemes have such a right adjoint.

Lemma 20.1. Let X be a quasi-compact and quasi-separated scheme. The inclusion functor $D_{QCoh}(O_X) \to D(O_X)$ has a right adjoint DQ_X.

First proof. We will use the induction principle as in Cohomology of Schemes, Lemma 4.1 to prove this. If $D(QCoh(O_X)) \to D_{QCoh}(O_X)$ is an equivalence, then the lemma is true because the functor RQ_X of Section 6 is a right adjoint to the functor $D(QCoh(O_X)) \to D(O_X)$. In particular, our lemma is true for affine schemes, see Lemma 6.3. Thus we see that it suffices to show: if $X = U \cup V$ is a union of two quasi-compact opens and the lemma holds for U, V, and $U \cap V$, then the lemma holds for X.

The adjoint exists if and only if for every object K of $D(O_X)$ we can find a distinguished triangle

$$E' \to E \to K \to E'[1]$$

in $D(O_X)$ such that E' is in $D_{QCoh}(O_X)$ and such that $\text{Hom}(M, K) = 0$ for all M in $D_{QCoh}(O_X)$. See Derived Categories, Lemma 39.5. Consider the distinguished triangle

$$E \to Rj_{U*}E|_U \oplus Rj_{V*}E|_V \to Rj_{U \cap V*}E|_{U \cap V} \to E[1]$$

in $D(O_X)$ of Cohomology, Lemma 33.2. By Derived Categories, Lemma 39.4 it suffices to construct the desired distinguished triangles for $Rj_{U*}E|_U$, $Rj_{V*}E|_V$, and $Rj_{U \cap V*}E|_{U \cap V}$. This reduces us to the statement discussed in the next paragraph.

Let $j : U \to X$ be an open immersion corresponding with U a quasi-compact open for which the lemma is true. Let L be an object of $D(O_U)$. Then there exists a distinguished triangle

$$E' \to Rj_*L \to K \to E'[1]$$

in $D(O_X)$ such that E' is in $D_{QCoh}(O_X)$ and such that $\text{Hom}(M, K) = 0$ for all M in $D_{QCoh}(O_X)$. To see this we choose a distinguished triangle

$$L' \to L \to Q \to L'[1]$$

This is probably nonstandard notation. However, we have already used Q_X for the coherator and RQ_X for its derived extension.
in $D(\mathcal{O}_U)$ such that L' is in $D_{QCoh}(\mathcal{O}_U)$ and such that $\text{Hom}(N, Q) = 0$ for all N in $D_{QCoh}(\mathcal{O}_U)$. This is possible because the statement in Derived Categories, Lemma 39.5 is an if and only if. We obtain a distinguished triangle

$$Rj_*L' \to Rj_*L \to Rj_*Q \to Rj_*L'[1]$$

in $D(\mathcal{O}_X)$. Observe that Rj_*L' is in $D_{QCoh}(\mathcal{O}_X)$ by Lemma 4.1. On the other hand, if M in $D_{QCoh}(\mathcal{O}_X)$, then

$$\text{Hom}(M, Rj_*Q) = \text{Hom}(Lj^*M, Q) = 0$$

because Lj^*M is in $D_{QCoh}(\mathcal{O}_U)$ by Lemma 3.8. This finishes the proof. □

Second proof. The adjoint exists by Derived Categories, Proposition 38.2. The hypotheses are satisfied: First, note that $D_{QCoh}(\mathcal{O}_X)$ has direct sums and direct sums commute with the inclusion functor (Lemma 3.1). On the other hand, $D_{QCoh}(\mathcal{O}_X)$ is compactly generated because it has a perfect generator Theorem 14.3 and because perfect objects are compact by Proposition 16.1.

Lemma 20.2. Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes. If the right adjoints DQ_X and DQ_Y of the inclusion functors $D_{QCoh} \to D$ exist for X and Y, then

$$Rf_* \circ DQ_X = DQ_Y \circ Rf_*$$

Proof. The statement makes sense because Rf_* sends $D_{QCoh}(\mathcal{O}_X)$ into $D_{QCoh}(\mathcal{O}_Y)$ by Lemma 4.1. The statement is true because Lf^* similarly maps $D_{QCoh}(\mathcal{O}_Y)$ into $D_{QCoh}(\mathcal{O}_X)$ (Lemma 3.8) and hence both $Rf_* \circ DQ_X$ and $DQ_Y \circ Rf_*$ are right adjoint to $Lf^* : D_{QCoh}(\mathcal{O}_Y) \to D(\mathcal{O}_X)$.

Remark 20.3. Let X be a quasi-compact and quasi-separated scheme. Let $X = U \cup V$ with U and V quasi-compact open. By Lemma 20.1 the functors DQ_X, DQ_U, DQ_V, $DQ_{U \cap V}$ exist. Moreover, there is a canonical distinguished triangle

$$DQ_X(K) \to Rj_{U,*}DQ_U(K|_U) \oplus Rj_{V,*}DQ_V(K|_V) \to Rj_{U \cap V,*}DQ_{U \cap V}(K|_{U \cap V}) \to$$

for any $K \in D(\mathcal{O}_X)$. This follows by applying the exact functor DQ_X to the distinguished triangle of Cohomology, Lemma 33.2 and using Lemma 20.2 three times.

Lemma 20.4. Let X be a quasi-compact and quasi-separated scheme. The functor DQ_X of Lemma 20.1 has the following boundedness property: there exists an integer $N = N(X)$ such that, if K in $D(\mathcal{O}_X)$ with $H^i(U, K) = 0$ for U affine open in X and $i \notin [a, b]$, then the cohomology sheaves $H^i(DQ_X(K))$ are zero for $i \notin [a, b + N]$.

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1.

If X is affine, then the lemma is true with $N = 0$ because then $RQ_X = DQ_X$ is given by taking the complex of quasi-coherent sheaves associated to $R\Gamma(X, K)$. See Lemmas 3.5 and 6.3.

Assume U, V are quasi-compact open in X and the lemma holds for U, V, and $U \cap V$. Say with integers $N(U)$, $N(V)$, and $N(U \cap V)$. Now suppose K is in $D(\mathcal{O}_X)$ with $H^i(W, K) = 0$ for all affine open $W \subset X$ and all $i \notin [a, b]$. Then $K|_U$, $K|_V$, $K|_{U \cap V}$ have the same property. Hence we see that $RQ_U(K|_U)$ and $RQ_V(K|_V)$ and $RQ_{U \cap V}(K|_{U \cap V})$ have vanishing cohomology sheaves outside the interval $[a, b +$
max\(N(U), N(V), N(U \cap V)\). Since the functors \(R_{jU*}, R_{jV*}, R_{jU \cap V*}\) have finite cohomological dimension on \(D_{QCoh}\) by Lemma \[4.1\] we see that there exists an \(N\) such that \(R_{jU*}DQ(V|V), R_{jV*}DQ_V(K|V), \) and \(R_{jU \cap V*}DQ_{U \cap V}(K|U \cap V)\) have vanishing cohomology sheaves outside the interval \([a, b + N]\). Then finally we conclude by the distinguished triangle of Remark \[20.3\].

Example 20.5. Let \(X\) be a quasi-compact and quasi-separated scheme. Let \((\mathcal{F}_n)\) be an inverse system of quasi-coherent sheaves. Since \(DQ_X\) is a right adjoint it commutes with products and therefore with derived limits. Hence we see that

\[
DQ_X(R \lim \mathcal{F}_n) = (R \lim \ DQ_{O_X})(\mathcal{F}_n)
\]

where the first \(R\) lim is taken in \(D(O_X)\). In fact, let’s write \(K = R \lim \mathcal{F}_n\) for this. For any affine open \(U \subset X\) we have

\[
H^i(U, K) = H^i(R \Gamma(U, R \lim \mathcal{F}_n)) = H^i(R \lim R \Gamma(U, \mathcal{F}_n)) = H^i(R \lim \Gamma(U, \mathcal{F}_n))
\]

since cohomology commutes with derived limits and since the quasi-coherent sheaves \(\mathcal{F}_n\) have no higher cohomology on affines. By the computation of \(R\) lim in the category of abelian groups, we see that \(H^i(U, K) = 0\) unless \(i \in [0, 1]\). Then finally we conclude that the \(R\) lim in \(D_{QCoh}(O_X)\), which is \(DQ_X(K)\) by the above, is in \(D^b_{QCoh}(O_X)\) by Lemma \[20.4\].

21. Cohomology and base change, IV

This section continues the discussion of Cohomology of Schemes, Section \[22\]. First, we have a very general version of the projection formula for quasi-compact and quasi-separated morphisms of schemes and complexes with quasi-coherent cohomology sheaves.

Lemma 21.1. Let \(f : X \rightarrow Y\) be a quasi-compact and quasi-separated morphism of schemes. For \(E\) in \(D_{QCoh}(O_X)\) and \(K\) in \(D_{QCoh}(O_Y)\) the map

\[
Rf_*(E) \otimes O_Y K \rightarrow Rf_*(E \otimes_{O_X} Lf^* K)
\]

defined in Cohomology, Equation \[49.2.1\] is an isomorphism.

Proof. To check the map is an isomorphism we may work locally on \(Y\). Hence we reduce to the case that \(Y\) is affine.

Suppose that \(K = \bigoplus K_i\) is a direct sum of some complexes \(K_i \in D_{QCoh}(O_Y)\). If the statement holds for each \(K_i\), then it holds for \(K\). Namely, the functors \(Lf^*\) and \(\otimes^L\) preserve direct sums by construction and \(Rf_*\) commutes with direct sums (for complexes with quasi-coherent cohomology sheaves) by Lemma \[4.2\]. Moreover, suppose that \(K \rightarrow L \rightarrow M \rightarrow K[1]\) is a distinguished triangle in \(D_{QCoh}(Y)\). Then if the statement of the lemma holds for two of \(K, L, M\), then it holds for the third (as the functors involved are exact functors of triangulated categories).

Assume \(Y\) affine, say \(Y = \text{Spec}(A)\). The functor \(\sim : D(A) \rightarrow D_{QCoh}(O_Y)\) is an equivalence (Lemma \[3.5\]). Let \(T\) be the property for \(K \in D(A)\) that the statement of the lemma holds for \(K\). The discussion above and More on Algebra, Remark \[37.13\] shows that it suffices to prove \(T\) holds for \(A[k]\). This finishes the proof, as the statement of the lemma is clear for shifts of the structure sheaf.
08IA **Definition 21.2.** Let S be a scheme. Let X, Y be schemes over S. We say X and Y are **Tor independent over S** if for every $x \in X$ and $y \in Y$ mapping to the same point $s \in S$ the rings $\mathcal{O}_{X,x}$ and $\mathcal{O}_{Y,y}$ are Tor independent over $\mathcal{O}_{S,s}$ (see More on Algebra, Definition 59.1).

0FXV **Lemma 21.3.** Let $f : X \to S$ and $g : Y \to S$ be morphisms of schemes. The following are equivalent

1. X and Y are tor independent over S, and
2. for every affine opens $U \subset X$, $V \subset Y$, $W \subset S$ with $f(U) \subset W$ and $g(V) \subset W$ the rings $\mathcal{O}_X(U)$ and $\mathcal{O}_Y(V)$ are tor independent over $\mathcal{O}_S(W)$.
3. there exists an affine open covering $S = \bigcup W_i$ and for each i affine open coverings $f^{-1}(W_i) = \bigcup U_{ij}$ and $g^{-1}(W_i) = \bigcup V_{ik}$ such that the rings $\mathcal{O}_X(U_{ij})$ and $\mathcal{O}_Y(V_{ik})$ are tor independent over $\mathcal{O}_S(W_i)$ for all i, j, k.

0FXW **Lemma 21.4.** Let $X \to S$ and $Y \to S$ be morphisms of schemes. Let $S' \to S$ be a morphism of schemes and denote $X' = X \times_S S'$ and $Y' = Y \times_S S'$. If X and Y are tor independent over S and $S' \to S$ is flat, then X' and Y' are tor independent over S'.

08IB **Lemma 21.5.** Let $g : S' \to S$ be a morphism of schemes. Let $f : X \to S$ be quasi-compact and quasi-separated. Consider the base change diagram:

$$
\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow f' & & \downarrow f \\
S' & \longrightarrow & S \\
\end{array}
$$

If X and S' are Tor independent over S, then for all $E \in D_{QCoh}(\mathcal{O}_X)$ we have $Rf'_*L(g')^*E = Lg^*Rf_*E$.

Proof. For any object E of $D(\mathcal{O}_X)$ we can use Cohomology, Remark 28.3 to get a canonical base change map $Lg^*Rf_*E \to Rf'_*L(g')^*E$. To check this is an isomorphism we may work locally on S'. Hence we may assume $g : S' \to S$ is a morphism of affine schemes. In particular, g is affine and it suffices to show that

$$
Rg_*Lg^*Rf_*E \to Rg_*Rf'_*L(g')^*E = Rf_*(Rg'_*L(g')^*E)
$$

is an isomorphism, see Lemma 5.1 (and use Lemmas 3.8, 3.9 and 4.1 to see that the objects $Rf'_*L(g')^*E$ and Lg^*Rf_*E have quasi-coherent cohomology sheaves). Note that g' is affine as well (Morphisms, Lemma 11.8). By Lemma 5.2 the map becomes a map

$$
Rf_*E \otimes^L_{\mathcal{O}_S} g_*\mathcal{O}_{S'} \longrightarrow Rf_*(E \otimes^L_{\mathcal{O}_X} g'_*\mathcal{O}_{X'})
$$

Observe that $g'_*\mathcal{O}_{X'} = f^*g_*\mathcal{O}_S$. Thus by Lemma 21.1 it suffices to prove that $Lf^*g_*\mathcal{O}_{S'} = f^*g_*\mathcal{O}_S$ which follows from our assumption that X and S' are Tor independent over S. Namely, to check it we may work locally on X, hence we may also assume X is affine. Say $X = \text{Spec}(A)$, $S = \text{Spec}(R)$ and $S' = \text{Spec}(R')$. Our assumption implies that A and R' are Tor independent over R (More on Algebra, Lemma 59.6) i.e., $\text{Tor}_i^R(A, R') = 0$ for $i > 0$. In other words $A \otimes^L_R R' = A \otimes_R R'$ which exactly means that $Lf^*g_*\mathcal{O}_{S'} = f^*g_*\mathcal{O}_S$ (use Lemma 3.8).
The following lemma will be used in the chapter on dualizing complexes.

Lemma 21.6. Consider a cartesian square

\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{g} & S
\end{array}
\]

of quasi-compact and quasi-separated schemes. Assume \(g\) and \(f\) Tor independent and \(S = \text{Spec}(R), S' = \text{Spec}(R')\) affine. For \(M, K \in D(O_X)\) the canonical map

\[R \text{Hom}_X(M, K) \otimes^L_R R' \to R \text{Hom}_{X'}(L(g')^* M, L(g')^* K)\]

in \(D(R')\) is an isomorphism in the following two cases

1. \(M \in D(O_X)\) is perfect and \(K \in D_{QCoh}(X)\), or
2. \(M \in D(O_X)\) is pseudo-coherent, \(K \in D_{QCoh}^+(X)\), and \(R'\) has finite Tor dimension over \(R\).

Proof. There is a canonical map \(R \text{Hom}_X(M, K) \to R \text{Hom}_{X'}(L(g')^* M, L(g')^* K)\) in \(D(\Gamma(X, O_X))\) of global hom complexes, see Cohomology, Section 40. Restricting scalars we can view this as a map in \(D(R)\). Then we can use the adjointness of restriction and \(- \otimes^L_R R'\) to get the displayed map of the lemma. Having defined the map it suffices to prove it is an isomorphism in the derived category of abelian groups.

The right hand side is equal to

\[R \text{Hom}_X(M, R(g')_* L(g')^* K) = R \text{Hom}_X(M, K \otimes^L_O g'_* O_X)
\]

by Lemma 5.2. In both cases the complex \(R \text{Hom}(M, K)\) is an object of \(D_{QCoh}(O_X)\) by Lemma 9.8. There is a natural map

\[R \text{Hom}(M, K) \otimes^L_O g'_* O_{X'} \to R \text{Hom}(M, K \otimes^L_O g'_* O_{X'})
\]

which is an isomorphism in both cases by Lemma 9.9. To see that this lemma applies in case (2) we note that \(g'_* O_{X'} = Rg'_* O_X = Lf^* g_* O_X\) the second equality by Lemma 21.5. Using Lemma 9.4 and Cohomology, Lemma 44.4 we conclude that \(g'_* O_{X'}\) has finite Tor dimension. Hence, in both cases by replacing \(K\) by \(R \text{Hom}(M, K)\) we reduce to proving

\[R \Gamma(X, K) \otimes^L_A A' \to R \Gamma(X, K \otimes^L_O g'_* O_{X'})
\]

is an isomorphism. Note that the left hand side is equal to \(R \Gamma(X', L(g')^* K)\) by Lemma 5.2. Hence the result follows from Lemma 21.5.

Remark 21.7. With notation as in Lemma 21.6. The diagram

\[
\begin{array}{ccc}
R \text{Hom}_X(M, Rg'_* L) \otimes^L_R R' & \xrightarrow{\mu} & R \text{Hom}_{X'}(L(g')^* M, L(g')^* Rg'_* L) \\
\downarrow a & & \downarrow \alpha \\
R \text{Hom}_X(M, Rg'_* L) & \xrightarrow{\mu} & R \text{Hom}_{X'}(L(g')^* M, L)
\end{array}
\]

is commutative where the top horizontal arrow is the map from the lemma, \(\mu\) is the multiplication map, and \(a\) comes from the adjunction map \(L(g')^* Rg'_* L \to L\). The multiplication map is the adjunction map \(K' \otimes^L_R R' \to K'\) for any \(K' \in D(R')\).
Lemma 21.8. Consider a cartesian square of schemes

\[
\begin{array}{ccc}
X' & \longrightarrow & X \\
g' \downarrow & & \downarrow f \\
S' & \longrightarrow & S
\end{array}
\]

Assume \(g \) and \(f \) Tor independent.

1. If \(E \in D(\mathcal{O}_X) \) has tor amplitude in \([a, b]\) as a complex of \(f^{-1}\mathcal{O}_S \)-modules, then \(L(g')^*E \) has tor amplitude in \([a, b]\) as a complex of \(f^{-1}\mathcal{O}_{S'} \)-modules.

2. If \(\mathcal{G} \) is an \(\mathcal{O}_X \)-module flat over \(S \), then \(L(g')^*\mathcal{G} = (g')^*\mathcal{G} \).

Proof. We can compute tor dimension at stalks, see Cohomology, Lemma 44.5. If \(x' \in X' \) with image \(x \in X \), then

\[(L(g')^*E)_{x'} = E_x \otimes_{\mathcal{O}_X} \mathcal{O}_{X',x'}\]

Let \(s' \in S' \) and \(s \in S \) be the image of \(x' \) and \(x \). Since \(X \) and \(S' \) are tor independent over \(S \), we can apply More on Algebra, Lemma 59.2 to see that the right hand side of the displayed formula is equal to \(E_x \otimes_{\mathcal{O}_{S',s'}} \mathcal{O}_{X',s'} \) in \(D(\mathcal{O}_{S',s'}) \). Thus (1) follows from More on Algebra, Lemma 63.13. To see (2) observe that flatness of \(\mathcal{G} \) is equivalent to the condition that \(\mathcal{G}[0] \) has tor amplitude in \([0, 0]\). Applying (1) we conclude. \(\square \)

Lemma 21.9. Consider a cartesian diagram of schemes

\[
\begin{array}{ccc}
Z' & \longrightarrow & X' \\
g \downarrow & & \downarrow f \\
Z & \longrightarrow & X
\end{array}
\]

where \(i \) is a closed immersion. If \(Z \) and \(X' \) are tor independent over \(X \), then \(R'i_* \circ Lg^* = Lf^* \circ Ri_* \) as functors \(D(\mathcal{O}_Z) \rightarrow D(\mathcal{O}_{X'}) \).

Proof. Note that the lemma is supposed to hold for all \(K \in D(\mathcal{O}_Z) \). Observe that \(i_* \) and \(i'_* \) are exact functors and hence \(Ri_* \) and \(Ri'_* \) are computed by applying \(i_* \) and \(i'_* \) to any representatives. Thus the base change map

\[Lf^*(Ri_*(K)) \rightarrow Ri'_*(Lg^*(K))\]

on stalks at a point \(z' \in Z' \) with image \(z \in Z \) is given by

\[K_z \otimes_{\mathcal{O}_X} \mathcal{O}_{X',z'} \rightarrow K_z \otimes_{\mathcal{O}_Z} \mathcal{O}_{Z',z'}\]

This map is an isomorphism by More on Algebra, Lemma 59.2 and the assumed tor independence. \(\square \)

22. Künneth formula
For the case where the base is a field, please see Varieties, Section 29. Consider a cartesian diagram of schemes

\[
\begin{array}{ccc}
X 	imes_S Y & \xrightarrow{f} & Y \\
\downarrow{p} & & \downarrow{q} \\
X & \xrightarrow{a} & S \\
\end{array}
\]

Let \(K \in D(\mathcal{O}_X) \) and \(M \in D(\mathcal{O}_Y) \). There is a canonical map

\[
0 \text{FLP} \quad (22.0.1) \quad Ra_*K \otimes^L_{\mathcal{O}_S} Rb_*M \rightarrow Rf_*(Lp^*K \otimes^L_{\mathcal{O}_{X \times_S Y}} Lq^*M)
\]

Namely, we can use the maps \(Ra_*K \rightarrow Ra_*Rp_*Lp^*K = Rf_*Lp^*K \) and \(Rb_*M \rightarrow Rb_*Rq_*Lq^*M = Rf_*Lq^*M \) and then we can use the relative cup product (Cohomology, Remark [28.7]).

\[
0 \text{FLQ} \quad \textbf{Lemma 22.1.} \quad \text{In the situation above, if } a \text{ and } b \text{ are quasi-compact and quasi-separated and } X \text{ and } Y \text{ are tor-independent over } S, \text{ then } (22.0.1) \text{ is an isomorphism for } K \in D_{\text{QCoh}}(\mathcal{O}_X) \text{ and } M \in D_{\text{QCoh}}(\mathcal{O}_Y).
\]

\[
\text{Proof.} \quad \text{This follows from the following sequence of isomorphisms}
\]

\[
Rf_*(Lp^*K \otimes^L_{\mathcal{O}_{X \times_S Y}} Lq^*M) = Ra_*Rp_*((Lp^*K \otimes^L_{\mathcal{O}_{X \times_S Y}} Lq^*M)) = Ra_*(K \otimes^L_{\mathcal{O}_X} Rp_*Lq^*M) = Ra_*(K \otimes^L_{\mathcal{O}_X} La^*Rb_*M) = Ra_*K \otimes^L_{\mathcal{O}_S} Rb_*M
\]

The first equality holds because \(f = a \circ p \). The second equality by Lemma 21.1. The third equality by Lemma 21.5. The fourth equality by Lemma 21.1. We omit the verification that the composition of these isomorphisms is the same as the map (22.0.1). \(\square \)

\[
0 \text{FLS} \quad \textbf{Remark 22.2.} \quad \text{With } X, Y, S, a, b, p, q, f \text{ as in the introduction to this section, suppose we have an } \mathcal{O}_X \text{-module } \mathcal{F} \text{ and an } \mathcal{O}_Y \text{-module } \mathcal{G}. \text{ Then we have}
\]

\[
p^{-1} \mathcal{F} \otimes_{f^{-1}\mathcal{O}_S} q^{-1} \mathcal{G} = p^{-1}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X) \otimes_{f^{-1}\mathcal{O}_S} q^{-1}(\mathcal{O}_Y \otimes_{\mathcal{O}_Y} \mathcal{G}) = p^{-1} \mathcal{F} \otimes_{p^{-1}\mathcal{O}_X} p^{-1} \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_S} q^{-1} \mathcal{O}_Y \otimes_{q^{-1}\mathcal{O}_Y} q^{-1} \mathcal{G} = p^{-1} \mathcal{F} \otimes_{q^{-1}\mathcal{O}_X} \mathcal{O}_{X \times_S Y} \otimes_{q^{-1}\mathcal{O}_Y} q^{-1} \mathcal{G} = p^{-1} \mathcal{F} \otimes_{q^{-1}\mathcal{O}_X} \mathcal{O}_{X \times_S Y} \otimes_{q^{-1}\mathcal{O}_Y} q^{-1} \mathcal{G} = p^{-1} \mathcal{G} \otimes_{q^{-1}\mathcal{O}_X} \mathcal{O}_{X \times_S Y} \otimes_{q^{-1}\mathcal{O}_Y} q^{-1} \mathcal{G} = p^* \mathcal{F} \otimes_{\mathcal{O}_{X \times S Y}} q^* \mathcal{G}
\]

This is occasionally useful.

\[
0 \text{FML} \quad \textbf{Lemma 22.3.} \quad \text{Let } a : X \rightarrow S \text{ be a quasi-compact and quasi-separated morphism of schemes. Let } \mathcal{F}^\bullet \text{ be a locally bounded complex of } a^{-1}\mathcal{O}_S \text{-modules. Assume for all } n \in \mathbb{Z} \text{ the sheaf } \mathcal{F}^n \text{ is a flat } a^{-1}\mathcal{O}_S \text{-module and } \mathcal{F}^n \text{ has the structure of a quasi-coherent } \mathcal{O}_X \text{-module compatible with the given } a^{-1}\mathcal{O}_S \text{-module structure (but the differentials in the complex } \mathcal{F}^\bullet \text{ need not be } \mathcal{O}_X \text{-linear). Then the following hold}
\]
(1) $R_a \mathcal{F}^\bullet$ is locally bounded,
(2) $R_a \mathcal{F}^\bullet$ is in $D_{Qcoh}(\mathcal{O}_S)$,
(3) $R_a \mathcal{F}^\bullet$ locally has finite tor dimension,
(4) $\mathcal{G} \otimes^{L}_{\mathcal{O}_S} R_a \mathcal{F}^\bullet = R_a(\mathcal{G} \otimes^{L}_{\mathcal{O}_S} F^\bullet)$ for $\mathcal{G} \in Qcoh(\mathcal{O}_S)$, and
(5) $K \otimes^{L}_{\mathcal{O}_S} R_a \mathcal{F}^\bullet = R_a(\mathcal{G} \otimes^{L}_{\mathcal{O}_S} F^\bullet)$ for $K \in D_{Qcoh}(\mathcal{O}_S)$.

Proof. Parts (1), (2), (3) are local on S hence we may and do assume S is affine. Since a is quasi-compact we conclude that X is quasi-compact. Since \mathcal{F}^\bullet is locally bounded, we conclude that \mathcal{F}^\bullet is bounded.

For (1) and (2) we can use the first spectral sequence $R^p a_* \mathcal{F}^q \Rightarrow R^{p+q} a_* \mathcal{F}^\bullet$ of Derived Categories, Lemma 21.3 Combining Cohomology of Schemes, Lemma 4.5 and Homology, Lemma 24.11 we conclude.

Let us prove (3) by the induction principle of Cohomology of Schemes, Lemma 4.1 Namely, for a quasi-compact open of U of X consider the condition that $R(a|_U)_\ast(\mathcal{F}^\bullet|_U)$ has finite tor dimension. If U, V are quasi-compact open in X, then we have a relative Mayer-Vietoris distinguished triangle

$$R(a|_{U \cup V})_\ast(\mathcal{F}^\bullet|_{U \cup V}) \Rightarrow R(a|_U)_\ast(\mathcal{F}^\bullet|_U) \oplus R(a|_V)_\ast(\mathcal{F}^\bullet|_V) \rightarrow R(a|_{U \cap V})_\ast(\mathcal{F}^\bullet|_{U \cap V}) \rightarrow$$

by Cohomology, Lemma 33.5. By the behaviour of tor amplitude in distinguished triangles (see Cohomology, Lemma 44.6) we see that if we know the result for U, V, $U \cap V$, then the result holds for $U \cup V$. This reduces us to the case where X is affine. In this case we have

$$R_a \mathcal{F}^\bullet = a_* \mathcal{F}^\bullet$$

by Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) and the vanishing of higher direct images of quasi-coherent modules under an affine morphism (Cohomology of Schemes, Lemma 2.3). Since \mathcal{F}^n is S-flat by assumption and X affine, the modules $a_n \mathcal{F}^n$ are flat for all n. Hence $a_* \mathcal{F}^\bullet$ is a bounded complex of flat \mathcal{O}_S-modules and hence has finite tor dimension.

Proof of part (5). Denote $a^\prime : (X, a^{-1} \mathcal{O}_S) \rightarrow (S, \mathcal{O}_S)$ the obvious flat morphism of ringed spaces. Part (5) says that

$$K \otimes^{L}_{\mathcal{O}_S} R_{a^\prime} \mathcal{F}^\bullet = R_{a^\prime}(L(a^\prime)^\ast K \otimes^{L}_{a^{-1} \mathcal{O}_S} \mathcal{F}^\bullet)$$

Thus Cohomology, Equation 49.2.1 gives a functorial map from the left to the right and we want to show this map is an isomorphism. This question is local on S hence we may and do assume S is affine. The rest of the proof is exactly the same as the proof of Lemma 21.1 except that we have to show that the functor $K \mapsto R_{a^\prime}(L(a^\prime)^\ast K \otimes^{L}_{a^{-1} \mathcal{O}_S} \mathcal{F}^\bullet)$ commutes with direct sums. This is where we will use \mathcal{F}^n has the structure of a quasi-coherent \mathcal{O}_X-module. Namely, observe that $K \mapsto L(a^\prime)^\ast K \otimes^{L}_{a^{-1} \mathcal{O}_S} \mathcal{F}^\bullet$ commutes with arbitrary direct sums. Next, if \mathcal{F}^\bullet consists of a single quasi-coherent \mathcal{O}_X-module $\mathcal{F}^\bullet = \mathcal{F}^n[-n]$ then we have $L(a^\prime)^\ast G \otimes^{L}_{a^{-1} \mathcal{O}_S} \mathcal{F}^\bullet = L a^\prime \ast K \otimes^{L}_{\mathcal{O}_X} \mathcal{F}^n[-n]$, see Cohomology, Lemma 27.4 Hence in this case the commutation with direct sums follows from Lemma 4.2. Now, in general, since S is affine (hence X quasi-compact) and \mathcal{F}^\bullet is locally bounded, we see that

$$\mathcal{F}^\bullet = (\mathcal{F}^a \rightarrow \ldots \rightarrow \mathcal{F}^b)$$

is bounded. Arguing by induction on $b-a$ and considering the distinguished triangle

$$\mathcal{F}^b[-b] \rightarrow (\mathcal{F}^a \rightarrow \ldots \rightarrow \mathcal{F}^b) \rightarrow (\mathcal{F}^a \rightarrow \ldots \rightarrow \mathcal{F}^{b-1}) \rightarrow \mathcal{F}^b[-b+1]$$
the proof of this part is finished. Some details omitted.

Proof of part (4). Let $a' : (X, a^{-1}\mathcal{O}_S) \to (S, \mathcal{O}_S)$ be as above. Since \mathcal{F}^\bullet is a locally bounded complex of flat $a^{-1}\mathcal{O}_S$-modules we see the complex $a^{-1}\mathcal{G} \otimes_{a^{-1}\mathcal{O}_S} \mathcal{F}^\bullet$ represents $L(a')^* \mathcal{G} \otimes_{\mathcal{O}_S} \mathcal{F}^\bullet$ in $D(a^{-1}\mathcal{O}_S)$. Hence (4) follows from (5).

\[\square\]

Lemma 22.4. Let $f : X \to Y$ be a morphism of schemes with $Y = \text{Spec}(A)$ affine. Let $\mathcal{U} : X = \bigcup_{i \in I} U_i$ be a finite affine open covering such that all the finite intersections $U_{i_0, \ldots, i_p} = U_{i_0} \cap \ldots \cap U_{i_p}$ are affine. Let \mathcal{F}^\bullet be a bounded complex of $f^{-1}\mathcal{O}_Y$-modules. Assume for all $n \in \mathbb{Z}$ the sheaf \mathcal{F}^n is a flat $f^{-1}\mathcal{O}_Y$-module and \mathcal{F}^n has the structure of a quasi-coherent \mathcal{O}_X-module compatible with the given $p^{-1}\mathcal{O}_Y$-module structure (but the differentials in the complex \mathcal{F}^\bullet need not be \mathcal{O}_X-linear). Then the complex $\text{Tot}(\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}^\bullet))$ is K-flat as a complex of A-modules.

Proof. We may write $\mathcal{F}^\bullet = (\mathcal{F}^a \to \cdots \to \mathcal{F}^b)$ Arguing by induction on $b - a$ and considering the distinguished triangle $\mathcal{F}^b[-b] \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^b) \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^{b-1}) \to \mathcal{F}^b[-b + 1]$ and using More on Algebra, Lemma 57.4 we reduce to the case where \mathcal{F}^\bullet consists of a single quasi-coherent \mathcal{O}_X-module \mathcal{F} placed in degree 0. In this case the Čech complex for \mathcal{F} and \mathcal{U} is homotopy equivalent to the alternating Čech complex, see Cohomology, Lemma 23.6. Since U_{i_0, \ldots, i_p} is always affine, we see that $\mathcal{F}(U_{i_0, \ldots, i_p})$ is A-flat. Hence $\check{\mathcal{C}}^\bullet_{alt}(\mathcal{U}, \mathcal{F})$ is a bounded complex of flat A-modules and hence K-flat by More on Algebra, Lemma 57.9.

Let X, Y, S, a, b, p, q, f be as in the introduction to this section. Assume $S = \text{Spec}(A)$ affine. On X let \mathcal{F}^\bullet be a complex of $a^{-1}\mathcal{O}_S$-modules. On Y let \mathcal{G}^\bullet be a complex of $b^{-1}\mathcal{O}_S$-modules. Then there exists a “cup product” map

\[R \Gamma(X, \mathcal{F}^\bullet) \otimes^L_{\mathcal{A}} R \Gamma(Y, \mathcal{G}^\bullet) \to R \Gamma(X \times_S Y, \text{Tot}(p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet))\]

in $D(A)$. This is constructed using the pullback maps $R \Gamma(X, \mathcal{F}^\bullet) \to R \Gamma(X \times_S Y, p^{-1}\mathcal{F}^\bullet)$ and $R \Gamma(Y, \mathcal{G}^\bullet) \to R \Gamma(X \times_S Y, q^{-1}\mathcal{G}^\bullet)$ and the cup product constructed in Cohomology, Section 31.

\[\square\]

Lemma 22.5. The cup product \[(22.4.1)\] is an isomorphism if \mathcal{F}^\bullet, resp. \mathcal{G}^\bullet consist of a single S-flat quasi-coherent \mathcal{O}_X, resp. \mathcal{O}_Y-module sitting in degree zero and X and Y are quasi-compact with affine diagonal.

This lemma is true without the assumption on the affineness of the diagonals of X and Y replaced by X and Y are quasi-separated. To see this one replaces open coverings in the proof below by hypercoverings.

Proof. Assume $\mathcal{F}^\bullet = \mathcal{F}$ and $\mathcal{G}^\bullet = \mathcal{G}$ are both reduced to a single quasi-coherent module placed in degree 0 and both \mathcal{F} and \mathcal{G} are flat over S. Choose affine open coverings $\mathcal{U} : X = \bigcup_{i \in I} U_i$ and $\mathcal{V} : Y = \bigcup_{j \in J} V_j$. This determines an affine open covering $\mathcal{W} : X \times_S Y = \bigcup_{(i, j) \in I \times J} U_i \times_S V_j$. Note that \mathcal{W} is a refinement of $\text{pr}_1^{-1}\mathcal{U}$ and of $\text{pr}_2^{-1}\mathcal{V}$. Thus by the discussion in Cohomology, Section 25 we obtain maps $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \to \check{\mathcal{C}}^\bullet(\mathcal{W}, p^* \mathcal{F})$ and $\check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{G}) \to \check{\mathcal{C}}^\bullet(\mathcal{W}, q^* \mathcal{G})$.
well defined up to homotopy and compatible with pullback maps on cohomology. In Cohomology, Equation (25.3.2) we have constructed a map of complexes
\[
\text{Tot}(\check{\mathcal{C}}^\bullet(\mathcal{W}, p^*\mathcal{F}) \otimes_A \check{\mathcal{C}}^\bullet(\mathcal{W}, q^*\mathcal{G})) \to \check{\mathcal{C}}^\bullet(\mathcal{W}, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G})
\]
which is compatible with the cup product on cohomology by Cohomology, Lemma 31.3. Combining the above we obtain a map of complexes
\[
\mathbf{0FLU} \quad (22.5.1) \quad \text{Tot}(\check{\mathcal{C}}^\bullet(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^\bullet(V, \mathcal{G})) \to \text{Tot}(\check{\mathcal{C}}^\bullet(\mathcal{W}, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G}))
\]
We claim this is the map in the statement of the lemma, i.e., the source and target of this arrow are the same as the source and target of (22.4.1). Namely, by Cohomology of Schemes, Lemma 2.2 and Cohomology, Lemma 25.2 the canonical maps
\[
\check{\mathcal{C}}^\bullet(U, \mathcal{F}) \to \Gamma(X, \mathcal{F}), \quad \check{\mathcal{C}}^\bullet(V, \mathcal{G}) \to \Gamma(Y, \mathcal{G})
\]
and
\[
\check{\mathcal{C}}^\bullet(\mathcal{W}, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G}) \to \Gamma(X \times_S Y, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G})
\]
are isomorphisms. On the other hand, the complex \(\check{\mathcal{C}}^\bullet(U, \mathcal{F})\) is homotopy equivalent to the alternating Čech complex \(\check{C}_\text{alt}^\bullet(U, \mathcal{F})\) by Cohomology, Lemma 23.6. As the modules \(F^n(U_{i_0 \ldots i_s})\) are A-flat, we see that the complex \(\check{C}_\text{alt}^\bullet(U, \mathcal{F})\) is K-flat (More on Algebra, Lemma 57.9). Hence \(\check{C}^\bullet(U, \mathcal{F})\) is a K-flat complex of \(A\)-modules too and we conclude that \(\text{Tot}(\check{C}^\bullet(U, \mathcal{F}) \otimes_A \check{C}^\bullet(V, \mathcal{G}))\) represents the derived tensor product \(\Gamma(X, \mathcal{F}) \otimes^L_A \Gamma(Y, \mathcal{G})\) as claimed. Finally, we have \(p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G} = p^{-1}\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}\) by Remark 22.2.

We still have to show that (22.5.1) is a quasi-isomorphism. We will do this using dimension shifting. Set \(d(\mathcal{F}) = \max\{d \mid H^d(X, \mathcal{F}) \neq 0\}\). Assume \(d(\mathcal{F}) > 0\). Set \(U = \coprod_{i \in I} U_i\). This is an affine scheme as \(I\) is finite. Denote \(j : U \to X\) the morphism which is the inclusion \(U_i \to X\) on each \(U_i\). Since the diagonal of \(X\) is affine, the morphism \(j\) is affine, see Morphisms, Lemma 11.11. It follows that \(\mathcal{F}' = j_*j^*\mathcal{F}\) is \(S\)-flat, see Morphisms, Lemma 24.4. It also follows that \(d(\mathcal{F}') = 0\) by combining Cohomology of Schemes, Lemmas 2.4 and 2.2. For all \(x \in X\) we have \(\mathcal{F}_x \to \mathcal{F}'_x\) is the inclusion of a direct summand: if \(x \in U_i\), then \(\mathcal{F}' \to (U_i \to X)_*\mathcal{F}|_{U_i}\) gives a splitting. We conclude that \(\mathcal{F} \to \mathcal{F}'\) is injective and \(\mathcal{F}' = \mathcal{F}'/\mathcal{F}'\) is \(S\)-flat as well. Also \(d(\mathcal{F}') < d(\mathcal{F})\). In this way we reduce to the case \(d(\mathcal{F}) = 0\).

Arguing in the same fashion for \(\mathcal{G}\) we find that we may assume that both \(\mathcal{F}\) and \(\mathcal{G}\) have nonzero cohomology only in degree 0. Observe that this means that \(\Gamma(X, \mathcal{F})\) is quasi-isomorphic to the finite complex \(\check{C}_\text{alt}^\bullet(U, \mathcal{F})\) of flat \(A\)-modules sitting in degrees 0, \ldots, \(|I|\). It follows that \(\Gamma(X, \mathcal{F})\) is a flat \(A\)-module. Let \(V \subset Y\) be an affine open. Consider the affine open covering \(U_V : X \times_S V = \bigcup_{i \in I} U_i \times_S V\). It is immediate that
\[
\check{\mathcal{C}}^\bullet(U, \mathcal{F}) \otimes_A \mathcal{G}(V) = \check{\mathcal{C}}^\bullet(U_V, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times Y}} q^*\mathcal{G})
\]
(equality of complexes). By the flatness of \(\mathcal{G}(V)\) over \(A\) we see that \(\Gamma(X, \mathcal{F}) \otimes_A \mathcal{G}(V) \to \check{\mathcal{C}}^\bullet(U, \mathcal{F}) \otimes_A \mathcal{G}(V)\) is a quasi-isomorphism. Since the sheafification of \(V \mapsto \check{\mathcal{C}}^\bullet(U_V, p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times Y}} q^*\mathcal{G})\) represents \(Rq_* (p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times Y}} q^*\mathcal{G})\) by Cohomology of Schemes, Lemma 7.1, we conclude that
\[
Rq_* (p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times Y}} q^*\mathcal{G}) \cong \Gamma(X, \mathcal{F}) \otimes_A \mathcal{G}
\]
The cup product (22.4.1) is an isomorphism in $D(A)$ if the following assumptions hold

1. X and Y are quasi-compact with affine diagonal,
2. \mathcal{F}^\bullet is bounded,
3. \mathcal{G}^\bullet is bounded below,
4. \mathcal{F}^n is a flat \mathcal{O}_S-module and \mathcal{F}^n has the structure of a quasi-coherent \mathcal{O}_X-module compatible with the given \mathcal{O}_S-module structure (but the differentials in the complex \mathcal{F}^\bullet need not be \mathcal{O}_X-linear),
5. \mathcal{G}^m is a flat \mathcal{O}_S-module and \mathcal{G}^m has the structure of a quasi-coherent \mathcal{O}_Y-module compatible with the given \mathcal{O}_S-module structure (but the differentials in the complex \mathcal{G}^\bullet need not be \mathcal{O}_Y-linear).

Proof. Suppose that we have maps of complexes of $p^{-1}\mathcal{O}_S$-modules

$$\mathcal{F}_1^\bullet \to \mathcal{F}_2^\bullet \to \mathcal{F}_3^\bullet \to \mathcal{F}_1^\bullet[1]$$

Then by the functoriality of the cup product we obtain a commutative diagram

$$
\begin{array}{cccc}
\Gamma(X, \mathcal{F}_1^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_2^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_3^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_1^\bullet[1]) \otimes \mathcal{G}^\bullet \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\Gamma(X, \mathcal{F}_1^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_2^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_3^\bullet) \otimes \mathcal{G}^\bullet & \to & \Gamma(X, \mathcal{F}_1^\bullet[1]) \otimes \mathcal{G}^\bullet \\
\end{array}
$$

If the original maps form a distinguished triangle in the homotopy category of complexes of $p^{-1}\mathcal{O}_S$-modules, then the columns of this diagram form distinguished triangles in $D(A)$.

Suppose that $\mathcal{F}^n = 0$ for $n < i$. Then we may consider the termwise split short exact sequence of complexes

$$0 \to \sigma_{\geq i+1}\mathcal{F}^\bullet \to \mathcal{F}^\bullet \to \mathcal{F}^i[-i] \to 0$$

where the truncation is as in Homology, Section 15. This produces the distinguished triangle

$$\sigma_{\geq i+1}\mathcal{F}^\bullet \to \mathcal{F}^\bullet \to \mathcal{F}^i[-i] \to (\sigma_{\geq i+1}\mathcal{F}^\bullet)[1]$$

where the final arrow is given by the boundary map $\mathcal{F}^i \to \mathcal{F}^{i+1}$. It follows from the discussion above that it suffices to prove the lemma for $\mathcal{F}^i[-i]$ and $\sigma_{\geq i+1}\mathcal{F}^\bullet$. Since $\sigma_{\geq i+1}\mathcal{F}^\bullet$ has fewer nonzero terms, by induction, if we can prove the lemma if \mathcal{F}^\bullet is nonzero only in single degree, then the lemma follows. Thus we may assume \mathcal{F}^\bullet is nonzero only in one degree.
Assume \mathcal{F}^\bullet is the complex which has an S-flat quasi-coherent \mathcal{O}_X-module \mathcal{F} sitting in degree 0 and is zero in other degrees. Observe that $R\Gamma(X, \mathcal{F})$ has finite tor dimension by Lemma 22.3 for example. Say it has tor amplitude in $[i, j]$. Pick $N \gg 0$ and consider the distinguished triangle

$$
\sigma_{\geq N+1}\mathcal{G}^\bullet \to \mathcal{G}^\bullet \to \sigma_{\leq N}\mathcal{G}^\bullet \to (\sigma_{\geq N+1}\mathcal{G}^\bullet)[1]
$$

in the homotopy category of complexes of $b^{-1}\mathcal{O}_S$-modules on Y. Now observe that both $R\Gamma(X, \mathcal{F}) \otimes_A^{L} R\Gamma(Y, \sigma_{\geq N+1}\mathcal{G}^\bullet)$ and $R\Gamma(X \times_S Y, \mathcal{F} \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\sigma_{\geq N+1}\mathcal{G}^\bullet))$ have vanishing cohomology in degrees $\leq N+i$. Thus, using the arguments given above, if we want to prove our statement in a given degree, then we may assume G^\bullet is bounded. Repeating the arguments above one more time we may also assume G^\bullet is nonzero only in one degree. This case is handled by Lemma 22.5. □

23. Künneth formula for Ext

Consider a cartesian diagram of schemes

\[\begin{array}{ccc}
X \times_S Y & \xrightarrow{p} & Y \\
\downarrow p & & \downarrow q \\
X & \xrightarrow{a} & Y \\
\downarrow f & & \downarrow b \\
S & \xrightarrow{b} & S
\end{array} \]

For $K \in D(\mathcal{O}_X)$ and $M \in D(\mathcal{O}_Y)$ in this section let us define

$$K \boxtimes M = Lp^*K \otimes^{L}_{\mathcal{O}_{X \times_S Y}} Lq^*M$$

We claim there is a canonical map

$$Ra_*R\text{Hom}(K, K') \otimes^{L}_{\mathcal{O}_S} Rb_*R\text{Hom}(M, M') \longrightarrow Rf_*(R\text{Hom}(K \boxtimes M, K' \boxtimes M'))$$

for $K, K' \in D(\mathcal{O}_X)$ and $M, M' \in D(\mathcal{O}_Y)$. Namely, we can take the map adjoint to the map

$$Lf^*\left(Ra_*R\text{Hom}(K, K') \otimes^{L}_{\mathcal{O}_S} Rb_*R\text{Hom}(M, M') \right) =
Lp^*La_*Ra_*R\text{Hom}(K, K') \otimes^{L}_{\mathcal{O}_{X \times_S Y}} Lq^*Lb^*Rb_*R\text{Hom}(M, M') \to
Lp^*R\text{Hom}(Lp^*K, Lp^*K') \otimes^{L}_{\mathcal{O}_{X \times_S Y}} R\text{Hom}(Lq^*M, Lq^*M') \to
R\text{Hom}(K \boxtimes M, K' \boxtimes M')$$

Here the first equality is compatibility of pullbacks with tensor products, Cohomology, Lemma 27.3. The second equality is $f = a \circ p = b \circ q$ and composition of pullbacks, Cohomology, Lemma 27.2. The first arrow is given by the adjunction maps $La^*Ra_* \to \text{id}$ and $Lb^*Rb_* \to \text{id}$ because pushforward and pullback are adjoint, Cohomology, Lemma 28.1. The second arrow is given by Cohomology, Remark 38.12. The third and final arrow is Cohomology, Remark 38.10. A simple special case of this is the following result.
0FXZ **Lemma 23.1.** In the situation above, assume \(a \) and \(b \) are quasi-compact and quasi-separated and \(X \) and \(Y \) are tor independent over \(S \). If \(K \) is perfect, \(K' \in D_{QCoh}(\mathcal{O}_X) \), \(M \) is perfect, and \(M' \in D_{QCoh}(\mathcal{O}_Y) \), then \((23.0.1)\) is an isomorphism.

Proof. In this case we have \(R\hom(K, K') = K' \otimes^L K^\vee \), \(R\hom(M, M') = M' \otimes^L M^\vee \), and

\[
R\hom(K \boxtimes M, K' \boxtimes M') = (K' \otimes^L K^\vee) \boxtimes (M' \otimes^L M^\vee)
\]

See Cohomology, Lemma \([46.4\)] and we also use that being perfect is preserved by pullback and by tensor products. Hence this case follows from Lemma \([22.1]\). (We omit the verification that with these identifications we obtain the same map.) \(\square\)

24. Cohomology and base change, V

0DJ6 In Section \([21\)] we saw a base change theorem holds when the morphisms are tor independent. Even in the affine case there cannot be a base change theorem without such a condition, see More on Algebra, Section \([59\)] In this section we analyze when one can get a base change result “one complex at a time”.

To make this work, suppose we have a commutative diagram

\[
\begin{array}{ccc}
X' & \rightarrow & X \\
g' \downarrow & & \downarrow f \\
S' & \rightarrow & S
\end{array}
\]

de a cartesian diagram of schemes (usually we will assume it is cartesian). Let \(K \in D_{QCoh}(\mathcal{O}_X) \) and let \(L(g')^* K \to K' \) be a map in \(D_{QCoh}(\mathcal{O}_{X'}) \). For a point \(x' \in X' \) set \(x = g'(x') \in X \), \(s' = f'(x') \in S' \) and \(s = f(x) = g(s') \). Then we can consider the maps

\[
K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{s',s'} \to K_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{X',x'} \to K'_{x'}
\]

where the first arrow is More on Algebra, Equation \([59.0.1\)] and the second comes from \((L(g')^* K)_{x'} = K_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{X',x'} \) and the given map \(L(g')^* K \to K' \). For each \(i \in \mathbb{Z} \) we obtain a \(\mathcal{O}_{X,x} \otimes \mathcal{O}_{S,s} \) \(\mathcal{O}_{S',s'} \)-module structure on \(H^i(K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{S',s'}) \). Putting everything together we obtain canonical maps

\[
H^i(K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{S',s'}) \otimes_{(\mathcal{O}_{X,x} \otimes \mathcal{O}_{S,s} \otimes \mathcal{O}_{S',s'})} \mathcal{O}_{X',x'} \to H^i(K'_{x'})
\]

0DJ7 \((24.0.1)\)

of \(\mathcal{O}_{X',x'} \)-modules.

0DJ8 **Lemma 24.1.** Let

\[
\begin{array}{ccc}
X' & \rightarrow & X \\
g' \downarrow & & \downarrow f \\
S' & \rightarrow & S
\end{array}
\]

be a cartesian diagram of schemes. Let \(K \in D_{QCoh}(\mathcal{O}_X) \) and let \(L(g')^* K \to K' \) be a map in \(D_{QCoh}(\mathcal{O}_{X'}) \). The following are equivalent

1. for any \(x' \in X' \) and \(i \in \mathbb{Z} \) the map \((24.0.1)\) is an isomorphism,
2. for \(U \subset X \), \(V' \subset S' \) affine open both mapping into the affine open \(V \subset S \) with \(U' = V' \times_Y U \) the composition

\[
R\Gamma(U, K) \otimes_{\mathcal{O}_{S(U)}} \mathcal{O}_{S'(V')} \to R\Gamma(U, K) \otimes_{\mathcal{O}_{X(U)}} \mathcal{O}_{X'(U')} \to R\Gamma(U', K')
\]

is an isomorphism in \(D(\mathcal{O}_{S'}(V')) \), and
(3) there is a set I of quadruples U_i, V'_i, V_i, U'_i, $i \in I$ as in (2) with $X' = \bigcup U'_i$.

Proof. The second arrow in (2) comes from the equality

$$R\Gamma(U, K) \otimes^L_{\mathcal{O}_X(U)} \mathcal{O}_{X'}(U') = R\Gamma(U', L(g')^*K)$$

of Lemma 3.8 and the given arrow $L(g')^*K \to K'$. The first arrow of (2) is More on Algebra, Equation (59.0.1). It is clear that (2) implies (3). Observe that (1) is equivalent to the condition that $R\Gamma(X, K) \otimes^L_{\mathcal{O}_X(S)} \mathcal{O}_{S'}(S') \to R\Gamma(X, K) \otimes^L_{\mathcal{O}_X(X)} \mathcal{O}_{X'}(X') \to R\Gamma(X', K')$

is an isomorphism in $D(\mathcal{O}_S(S'))$. Say $S = \text{Spec}(R)$, $X = \text{Spec}(A)$, $S' = \text{Spec}(R')$, $X' = \text{Spec}(A')$, K corresponds to the complex M^\bullet of A-modules, and K' corresponds to the complex N^\bullet of A'-modules. Note that $A' = A \otimes_R R'$. The condition above is that the composition

$$M^\bullet \otimes^L_R R' \to M^\bullet \otimes^L_A A' \to N^\bullet$$

is an isomorphism in $D(R')$. Equivalently, it is that for all $i \in \mathbb{Z}$ the map

$$H^i(M^\bullet \otimes^L_R R') \to H^i(M^\bullet \otimes^L_A A') \to H^i(N^\bullet)$$

is an isomorphism. Observe that this is a map of $A \otimes_R R'$-modules, i.e., of A'-modules. On the other hand, (1) is the requirement that for compatible primes $q' \subset A'$, $q \subset A$, $p' \subset R'$, $p \subset R$ the composition

$$H^i(M^\bullet \otimes^L_{R_p} R'_{p'}) \otimes (A_q \otimes_{R_p} R'_{p'}) A'_{q'} \to H^i(M^\bullet \otimes^L_A A') \to H^i(N^\bullet)$$

is an isomorphism. Since

$$H^i(M^\bullet \otimes^L_{R_p} R'_{p'}) \otimes (A_q \otimes_{R_p} R'_{p'}) A'_{q'} = H^i(M^\bullet \otimes^L_R R') \otimes_{A'} A'_{q'}$$

is the localization at q', we see that these two conditions are equivalent by Algebra, Lemma [22.1] \hfill \Box

Lemma 24.2. Let

$$\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow{f'} & & \downarrow{f} \\
S' & \xrightarrow{g} & S
\end{array}$$

be a cartesian diagram of schemes. Let $K \in D_{QCoh}(\mathcal{O}_X)$ and let $L(g')^*K \to K'$ be a map in $D_{QCoh}(\mathcal{O}_{X'})$. If

1. the equivalent conditions of Lemma 24.1 hold, and
2. f is quasi-compact and quasi-separated,

then the composition $Lg^*Rf_*K \to Rf'_*L(g')^*K \to Rf'_*K'$ is an isomorphism.

Proof. We could prove this using the same method as in the proof of Lemma 21.5 but instead we will prove it using the induction principle and relative Mayer-Vietoris.

To check the map is an isomorphism we may work locally on S'. Hence we may assume $g : S' \to S$ is a morphism of affine schemes. In particular X is a quasi-compact and quasi-separated scheme. We will use the induction principle of Cohomology of
Schemes, Lemma \[4.1\] to prove that for any quasi-compact open $U \subset X$ the similarly constructed map $Lg^* R(U \to S)_*, K|_U \to R(U' \to S'), K'|_{U'}$ is an isomorphism. Here $U' = (g')^{-1}(U)$.

If $U \subset X$ is an affine open, then we find that the result is true by assumption, see Lemma \[24.1\] part (2) and the translation into algebra afforded to us by Lemmas \[3.5\] and \[3.8\].

The induction step. Suppose that $X = U \cup V$ is an open covering with U, V, $U \cap V$ quasi-compact such that the result holds for U, V, and $U \cap V$. Denote $a = f|_U$, $b = f|_V$ and $c = f|_{U \cap V}$. Let $a' : U' \to S'$, $b' : V' \to S'$ and $c' : U' \cap V' \to S'$ be the base changes of a, b, and c. Using the distinguished triangles from relative Mayer-Vietoris (Cohomology, Lemma \[33.5\]) we obtain a commutative diagram

\[
\begin{align*}
Lg^* Rf_* K & \to Rf'_* K' \\
Lg^* Ra_* K|_U & \to Lg^* Rb_* K|_V \\
Lg^* Rc_* K|_U \cap V & \to Lg^* Rf_* K[1]
\end{align*}
\]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived Categories, Lemma \[1.3\]) and the proof of the lemma is finished. \qed

\textbf{Lemma 24.3.} Let

\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
f' \downarrow & & \downarrow f \\
S' & \xrightarrow{g} & S
\end{array}
\]

be a cartesian diagram of schemes. Let $K \in D_{QCoh}(\mathcal{O}_X)$ and let $L(g')^* K \to K'$ be a map in $D_{QCoh}(\mathcal{O}_{X'})$. If the equivalent conditions of Lemma \[24.1\] hold, then

1. for $E \in D_{QCoh}(\mathcal{O}_X)$ the equivalent conditions of Lemma \[24.1\] hold for $L(g')^*(E \boxtimes K) \to L(g')^* E \boxtimes K'$,
2. if E in $D(\mathcal{O}_X)$ is perfect the equivalent conditions of Lemma \[24.1\] hold for $L(g')^* R\mathcal{H}om(E, K) \to R\mathcal{H}om(L(g')^* E, K')$, and
3. if K is bounded below and E in $D(\mathcal{O}_X)$ pseudo-coherent the equivalent conditions of Lemma \[24.1\] hold for $L(g')^* R\mathcal{H}om(E, K) \to R\mathcal{H}om(L(g')^* E, K')$.

\textbf{Proof.} The statement makes sense as the complexes involved have quasi-coherent cohomology sheaves by Lemmas \[3.8\] \[3.9\] and \[9.8\] and Cohomology, Lemmas \[43.3\] and \[45.6\]. Having said this, we can check the maps \[24.0.1\] are isomorphisms in case (1) by computing the source and target of \[24.0.1\] using the transitive property of tensor product, see More on Algebra, Lemma \[57.17\]. The map in (2) and (3) is the composition

\[
L(g')^* R\mathcal{H}om(E, K) \to R\mathcal{H}om(L(g')^* E, L(g')^* K) \to R\mathcal{H}om(L(g')^* E, K')
\]
where the first arrow is Cohomology, Remark 38.12 and the second arrow comes from the given map $L(g')^*K \to K'$. To prove the maps (24.0.1) are isomorphisms one represents E_x by a bounded complex of finite projective $\mathcal{O}_{X,x}$-modules in case (2) or by a bounded above complex of finite free modules in case (3) and computes the source and target of the arrow. Some details omitted. □

Lemma 24.4. Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let $E \in D_{QCoh}(\mathcal{O}_X)$. Let \mathcal{G}^\bullet be a bounded above complex of quasi-coherent \mathcal{O}_X-modules flat over S. Then formation of

$$Rf_*(E \otimes^\mathbb{L}_{\mathcal{O}_X} \mathcal{G}^\bullet)$$

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let $g : S' \to S$ be a morphism of schemes and consider the base change diagram

$$\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow{g'} & & \downarrow{f} \\
S' & \longrightarrow & S
\end{array}$$

in other words $X' = S' \times_S X$. The lemma asserts that

$$Lg^*Rf_*(E \otimes^\mathbb{L}_{\mathcal{O}_X} \mathcal{G}^\bullet) \longrightarrow Rf'_*(L(g')^*E \otimes^\mathbb{L}_{\mathcal{O}_{X'}} (g')^*\mathcal{G}^\bullet)$$

is an isomorphism. Observe that on the right hand side we do not use the derived pullback on \mathcal{G}^\bullet. To prove this, we apply Lemmas 24.2 and 24.3 to see that it suffices to prove the canonical map

$$L(g')^*\mathcal{G}^\bullet \to (g')^*\mathcal{G}^\bullet$$

satisfies the equivalent conditions of Lemma 24.1. This follows by checking the condition on stalks, where it immediately follows from the fact that $\mathcal{G}^\bullet \otimes_{\mathcal{O}_{S,x}} \mathcal{O}_{S',x'}$ computes the derived tensor product by our assumptions on the complex \mathcal{G}^\bullet. □

Lemma 24.5. Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let E be an object of $D(\mathcal{O}_X)$. Let \mathcal{G}^\bullet be a complex of quasi-coherent \mathcal{O}_X-modules. If

1. E is perfect, \mathcal{G}^\bullet is a bounded above, and \mathcal{G}^n is flat over S, or
2. E is pseudo-coherent, \mathcal{G}^\bullet is bounded, and \mathcal{G}^n is flat over S,

then formation of

$$Rf_*R\mathcal{H}om(E, \mathcal{G}^\bullet)$$

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let $g : S' \to S$ be a morphism of schemes and consider the base change diagram

$$\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow{g'} & & \downarrow{f} \\
S' & \longrightarrow & S
\end{array}$$

in other words $X' = S' \times_S X$. The lemma asserts that

$$Lg^*Rf_*R\mathcal{H}om(E, \mathcal{G}^\bullet) \longrightarrow R(f')_*R\mathcal{H}om(L(g')^*E, (g')^*\mathcal{G}^\bullet)$$
is an isomorphism. Observe that on the right hand side we do not use the derived pullback on G^\bullet. To prove this, we apply Lemmas 24.2 and 24.3 to see that it suffices to prove the canonical map

$$L(g')^*G^\bullet \to (g')^*G^\bullet$$

satisfies the equivalent conditions of Lemma 24.1. This was shown in the proof of Lemma 24.3.

25. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes. Later versions of this result will reduce to this by Noetherian approximation, see Section 28.

Lemma 25.1. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E \in D(\mathcal{O}_X)$ such that

1. $E \in D^b_{Coh}(\mathcal{O}_X)$,
2. the support of $H^i(E)$ is proper over S for all i, and
3. E has finite tor dimension as an object of $D(f^{-1}\mathcal{O}_S)$.

Then Rf_*E is a perfect object of $D(\mathcal{O}_S)$.

Proof. By Lemma 10.3 we see that Rf_*E is an object of $D^b_{Coh}(\mathcal{O}_S)$. Hence Rf_*E is pseudo-coherent (Lemma 9.3). Hence it suffices to show that Rf_*E has finite tor dimension, see Cohomology, Lemma 45.5. By Lemma 9.6 it suffices to check that $Rf_*(E) \otimes^{L}_{\mathcal{O}_S} F$ has universally bounded cohomology for all quasi-coherent sheaves F on S. Bounded from above is clear as $Rf_*(E)$ is bounded from above. Let $T \subset X$ be the union of the supports of $H^i(E)$ for all i. Then T is proper over S by assumptions (1) and (2), see Cohomology of Schemes, Lemma 26.6. In particular there exists a quasi-compact open $X' \subset X$ containing T. Setting $f' = f|_{X'}$ we have $Rf_*(E) = Rf'_*(E|_{X'})$ because E restricts to zero on $X \setminus T$. Thus we may replace X by X' and assume f is quasi-compact. Moreover, f is quasi-separated by Morphisms, Lemma 14.7. Now

$$Rf_*(E) \otimes^{L}_{\mathcal{O}_S} F = Rf_*(E \otimes^{L}_{\mathcal{O}_X} Lf^*F) = Rf_* \left(E \otimes^{L}_{\mathcal{O}_X} f^{-1}F \right)$$

by Lemma 21.1 and Cohomology, Lemma 27.4. By assumption (3) the complex $E \otimes^{L}_{\mathcal{O}_X} f^{-1}F$ has cohomology sheaves in a given finite range, say $[a, b]$. Then Rf_* of it has cohomology in the range $[a, \infty)$ and we win.\qed

Lemma 25.2. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E \in D(\mathcal{O}_X)$ be perfect. Let G^\bullet be a bounded complex of coherent \mathcal{O}_X-modules flat over S with support proper over S. Then $K = Rf_*(E \otimes^{L}_{\mathcal{O}_X} G^\bullet)$ is a perfect object of $D(\mathcal{O}_S)$.

Proof. The object K is perfect by Lemma 25.1. We check the lemma applies: Locally E is isomorphic to a finite complex of finite free \mathcal{O}_X-modules. Hence locally $E \otimes^{L}_{\mathcal{O}_X} G^\bullet$ is isomorphic to a finite complex whose terms are of the form

$$\bigoplus_{i=a, \ldots, b} (G^i)^{\oplus r_i}$$

for some integers a, b, r_a, \ldots, r_b. This immediately implies the cohomology sheaves $H^i(E \otimes^{L}_{\mathcal{O}_X} G)$ are coherent. The hypothesis on the tor dimension also follows as G^i is flat over $f^{-1}\mathcal{O}_S$.\qed
Lemma 25.3. Let \(S \) be a Noetherian scheme. Let \(f : X \to S \) be a morphism of schemes which is locally of finite type. Let \(E \in D(O_X) \) be perfect. Let \(\mathcal{G}^\bullet \) be a bounded complex of coherent \(O_X \)-modules flat over \(S \) with support proper over \(S \). Then \(K = Rf_*R\text{Hom}(E, \mathcal{G}^\bullet) \) is a perfect object of \(D(O_S) \).

Proof. Since \(E \) is a perfect complex there exists a dual perfect complex \(E^\vee \), see Cohomology, Lemma 46.4. Observe that \(R\text{Hom}(E, \mathcal{G}^\bullet) = E^\vee \otimes_{O_X} \mathcal{G}^\bullet \). Thus the perfectness of \(K \) follows from Lemma 25.2. \(\square \)

We will generalize the following lemma to flat and proper morphisms over general bases in Lemma 28.4 and to perfect proper morphisms in More on Morphisms, Lemma 53.12.

Lemma 25.4. Let \(S \) be a Noetherian scheme. Let \(f : X \to S \) be a flat proper morphism of schemes. Let \(E \in D(O_X) \) be perfect. Then \(Rf_*E \) is a perfect object of \(D(O_S) \).

Proof. We claim that Lemma 25.1 applies. Conditions (1) and (2) are immediate. Condition (3) is local on \(X \). Thus we may assume \(X \) and \(S \) affine and \(E \) represented by a strictly perfect complex of \(O_X \)-modules. Since \(O_X \) is flat as a sheaf of \(f^{-1}O_S \)-modules we find that condition (3) is satisfied. \(\square \)

26. A projection formula for Ext

Lemma 26.1. Assumptions and notation as in Lemma 25.2. Then there are functorial isomorphisms

\[
H^i(S, K \otimes_{O_S} F) \to H^i(X, E \otimes_{O_X} (\mathcal{G}^\bullet \otimes_{O_X} f^*F))
\]

for \(F \) quasi-coherent on \(S \) compatible with boundary maps (see proof).

Proof. We have

\[
\mathcal{G}^\bullet \otimes_{O_X} Lf^*F = \mathcal{G}^\bullet \otimes_{f^{-1}O_S} f^{-1}F = \mathcal{G}^\bullet \otimes_{f^{-1}O_S} f^{-1}F = \mathcal{G}^\bullet \otimes_{O_X} f^*F
\]

the first equality by Cohomology, Lemma 27.4, the second as \(\mathcal{G}^n \) is a flat \(f^{-1}O_S \)-module, and the third by definition of pullbacks. Hence we obtain

\[
H^i(X, E \otimes_{O_X} (\mathcal{G}^\bullet \otimes_{O_X} f^*F)) = H^i(X, E \otimes_{O_X} \mathcal{G}^\bullet \otimes_{O_X} Lf^*F)
\]

\[
= H^i(S, Rf_*E \otimes_{O_X} \mathcal{G}^\bullet \otimes_{O_X} Lf^*F)
\]

\[
= H^i(S, Rf_*E \otimes_{O_X} \mathcal{G}^\bullet \otimes_{O_S} F)
\]

\[
= H^i(S, K \otimes_{O_S} F)
\]

The first equality by the above, the second by Leray (Cohomology, Lemma 13.1), and the third equality by Lemma 21.1. The statement on boundary maps means the
Assumptions and notation as in Lemma 25.3. Then there are functorial isomorphisms

\[H^i(S, K \otimes_{\mathcal{O}_S} \mathcal{F}_3) \xrightarrow{\delta} H^i(X, E \otimes_{\mathcal{O}_X} (\mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_3)) \]

where the boundary maps come from the distinguished triangle

\[K \otimes_{\mathcal{O}_S} \mathcal{F}_1 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_2 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_3 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_1[1] \]

and the distinguished triangle in \(D(\mathcal{O}_X) \) associated to the short exact sequence

\[0 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_1 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_2 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_3 \to 0 \]

of complexes of \(\mathcal{O}_X \)-modules. This sequence is exact because \(\mathcal{G}^n \) is flat over \(S \). We omit the verification of the commutativity of the displayed diagram.

Lemma 26.2. Assumptions and notation as in Lemma 25.3. Then there are functorial isomorphisms

\[H^i(S, K \otimes_{\mathcal{O}_S} \mathcal{F}) \to \text{Ext}^i_{\mathcal{O}_X}(E, \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}) \]

for \(\mathcal{F} \) quasi-coherent on \(S \) compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 25.3 let \(E^\vee \) be the dual perfect complex and recall that \(K = Rf_*(E^\vee \otimes_{\mathcal{O}_X} \mathcal{G}^\bullet) \). Since we also have

\[\text{Ext}^i_{\mathcal{O}_X}(E, \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}) = H^i(X, E^\vee \otimes_{\mathcal{O}_X} (\mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F})) \]

by construction of \(E^\vee \), the existence of the isomorphisms follows from Lemma 26.1 applied to \(E^\vee \) and \(\mathcal{G}^\bullet \). The statement on boundary maps means the following: Given a short exact sequence \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) then the isomorphisms fit into commutative diagrams

\[H^i(S, K \otimes_{\mathcal{O}_S} \mathcal{F}_3) \xrightarrow{\delta} \text{Ext}^i_{\mathcal{O}_X}(E, \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_3) \]

where the boundary maps come from the distinguished triangle

\[K \otimes_{\mathcal{O}_S} \mathcal{F}_1 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_2 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_3 \to K \otimes_{\mathcal{O}_S} \mathcal{F}_1[1] \]

and the distinguished triangle in \(D(\mathcal{O}_X) \) associated to the short exact sequence

\[0 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_1 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_2 \to \mathcal{G}^\bullet \otimes_{\mathcal{O}_X} f^* \mathcal{F}_3 \to 0 \]

of complexes. This sequence is exact because \(\mathcal{G} \) is flat over \(S \). We omit the verification of the commutativity of the displayed diagram.

Lemma 26.3. Let \(f : X \to S \) be a morphism of schemes, \(E \in D(\mathcal{O}_X) \) and \(\mathcal{G}^\bullet \) a complex of \(\mathcal{O}_X \)-modules. Assume

1. \(S \) is Noetherian,
2. \(f \) is locally of finite type,
3. \(E \in D_{\text{coh}}(\mathcal{O}_X) \),
(4) G^\bullet is a bounded complex of coherent \mathcal{O}_X-modules flat over S with support proper over S.

Then the following two statements are true:

(A) for every $m \in \mathbb{Z}$ there exists a perfect object K of $D(\mathcal{O}_S)$ and functorial maps

$$\alpha'_x : \mathcal{E}^i_{\mathcal{O}_X}(E, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F}) \to H^i(S, K \otimes \mathcal{L}_{\mathcal{O}_S} \mathcal{F})$$

for \mathcal{F} quasi-coherent on S compatible with boundary maps (see proof) such that α'_x is an isomorphism for $i \leq m$.

(B) there exists a pseudo-coherent $L \in D(\mathcal{O}_S)$ and functorial isomorphisms

$$\mathcal{E}^i_{\mathcal{O}_S}(L, \mathcal{F}) \to \mathcal{E}^i_{\mathcal{O}_X}(E, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F})$$

for \mathcal{F} quasi-coherent on S compatible with boundary maps.

Proof. Proof of (A). Suppose G^i is nonzero only for $i \in [a, b]$. We may replace X by a quasi-compact open neighbourhood of the union of the supports of G^i. Hence we may assume X is Noetherian. In this case X and f are quasi-compact and quasi-separated. Choose an approximation $P \to E$ by a perfect complex P of $(X, E, -m - 1 + a)$ (possible by Theorem 13.6). Then the induced map

$$\mathcal{E}^i_{\mathcal{O}_X}(E, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F}) \to \mathcal{E}^i_{\mathcal{O}_X}(P, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F})$$

is an isomorphism for $i \leq m$. Namely, the kernel, resp. cokernel of this map is a quotient, resp. submodule of

$$\mathcal{E}^i_{\mathcal{O}_X}(C, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F})$$

resp.

$$\mathcal{E}^{i+1}_{\mathcal{O}_X}(C, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F})$$

where C is the cone of $P \to E$. Since C has vanishing cohomology sheaves in degrees $\geq -m - 1 + a$ these Ext-groups are zero for $i \leq m + 1$ by Derived Categories, Lemma 27.3. This reduces us to the case that E is a perfect complex which is Lemma 26.2. The statement on boundaries is explained in the proof of Lemma 26.2.

Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that E is pseudo-coherent by Lemma 9.3. By Lemma 18.1 we can write $E = \hocolim E_n$ with E_n perfect and $E_n \to E$ inducing an isomorphism on truncations $\tau_{\geq -n}$. Let E'_n be the dual perfect complex (Cohomology, Lemma 46.4). We obtain an inverse system \ldots $\to E'_3 \to E'_2 \to E'_1$ of perfect objects. This in turn gives rise to an inverse system

$$\ldots \to K_3 \to K_2 \to K_1 \quad \text{with} \quad K_n = Rf_*(E'_n \otimes \mathcal{L}_{\mathcal{O}_X} G^\bullet)$$

perfect on S, see Lemma 25.2. By Lemma 26.2 and its proof and by the arguments in the previous paragraph (with $P = E_n$) for any quasi-coherent \mathcal{F} on S we have functorial canonical maps

$$\mathcal{E}^i_{\mathcal{O}_X}(E, G^\bullet \otimes \mathcal{O}_X f^* \mathcal{F}) \to \mathcal{E}^i_{\mathcal{O}_S}(L_n, \mathcal{F})$$

which are isomorphisms for $i \leq n + a$. Let $L_n = K'_n$ be the dual perfect complex. Then we see that $L_1 \to L_2 \to L_3 \to \ldots$ is a system of perfect objects in $D(\mathcal{O}_S)$ such that for any quasi-coherent \mathcal{F} on S the maps

$$\mathcal{E}^i_{\mathcal{O}_S}(L_n, \mathcal{F}) \to \mathcal{E}^i_{\mathcal{O}_S}(L_n, \mathcal{F})$$
are isomorphisms for \(i \leq n + a - 1 \). This implies that \(L_n \to L_{n+1} \) induces an isomorphism on truncations \(\tau_{\geq-n-a+2} \) (hint: take cone of \(L_n \to L_{n+1} \) and look at its last nonvanishing cohomology sheaf). Thus \(L = \hocolim L_n \) is pseudo-coherent, see Lemma \([18.1]\). The mapping property of homotopy colimits gives that
\[
\text{Ext}^i_{\mathcal{O}_S}(L, \mathcal{F}) = \text{Ext}^i_{\mathcal{O}_S}(L_n, \mathcal{F}) \quad \text{for} \quad i \leq n + a - 3 \quad \text{which finishes the proof.} \quad \square
\]

Remark 26.4. The pseudo-coherent complex \(L \) of part (B) of Lemma \([26.3]\) is canonically associated to the situation. For example, formation of \(L \) as in (B) is compatible with base change. In other words, given a cartesian diagram
\[
\begin{array}{ccc}
X' & \longrightarrow & X \\
f' \downarrow & & \downarrow f \\
S' & \longrightarrow & S
\end{array}
\]
of schemes we have canonical functorial isomorphisms
\[
\text{Ext}^i_{\mathcal{O}_{S'}}(Lg^*L, \mathcal{F'}) \longrightarrow \text{Ext}^i_{\mathcal{O}_X}(L(g')^*E, (g')^*\mathcal{G}^* \otimes \mathcal{O}_{S'}, (f')^*\mathcal{F}')
\]
for \(\mathcal{F}' \) quasi-coherent on \(S' \). Observe that we do **not** use derived pullback on \(\mathcal{G}^* \) on the right hand side. If we ever need this, we will formulate a precise result here and give a detailed proof.

27. Limits and derived categories

Situation 27.1. Let \(S = \lim_{i \in I} S_i \) be a limit of a directed system of schemes with affine transition morphisms \(f_{ij} : S_i \to S_j \). We assume that \(S_i \) is quasi-compact and quasi-separated for all \(i \in I \). We denote \(f_i : S \to S_i \) the projection. We also fix an element \(0 \in I \).

Lemma 27.2. In Situation \([27.1]\) Let \(E_0 \) and \(K_0 \) be objects of \(D(\mathcal{O}_{S_0}) \). Set \(E_i = Lf_{0,i}^*E_0 \) and \(K_i = Lf_{0,i}^*K_0 \) for \(i \geq 0 \) and set \(E = Lf_0^*E_0 \) and \(K = Lf_0^*K_0 \). Then the map
\[
\colim_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{S_i})}(E_i, K_i) \longrightarrow \text{Hom}_{D(\mathcal{O}_S)}(E, K)
\]
is an isomorphism if either
1. \(E_0 \) is perfect and \(K_0 \in D_{QCoh}(\mathcal{O}_{S_0}) \), or
2. \(E_0 \) is pseudo-coherent and \(K_0 \in D_{QCoh}(\mathcal{O}_{S_0}) \) has finite tor dimension.

Proof. For every open \(U_0 \subset S_0 \) consider the condition \(P \) that the canonical map
\[
\colim_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{U_i})}(E_i|_{U_i}, K_i|_{U_i}) \longrightarrow \text{Hom}_{D(\mathcal{O}_U)}(E|_U, K|_U)
\]
is an isomorphism, where \(U = f_0^{-1}(U_0) \) and \(U_i = f_i^{-1}(U_0) \). We will prove \(P \) holds for all quasi-compact opens \(U_0 \) by the induction principle of Cohomology of Schemes, Lemma \([4.1]\). Condition (2) of this lemma follows immediately from Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma \([33.3]\). Thus it suffices to prove the lemma when \(S_0 \) is affine.

Assume \(S_0 \) is affine. Say \(S_0 = \text{Spec}(A_0) \), \(S_i = \text{Spec}(A_i) \), and \(S = \text{Spec}(A) \). We will use Lemma \([3.5]\) without further mention.
In case (1) the object E_0^\bullet corresponds to a finite complex of finite projective A_0-modules, see Lemma 9.7. We may represent the object K_0 by a K-flat complex K_0^\bullet of A_0-modules. In this situation we are trying to prove

$$\text{colim}_{i \geq 0} \text{Hom}_{D(A)}(E_0^\bullet \otimes A_i, K_0^\bullet \otimes A_i) \to \text{Hom}_{D(A)}(E_0^\bullet \otimes A_0, K_0^\bullet \otimes A_0)$$

Because E_0^\bullet is a bounded above complex of projective modules we can rewrite this as

$$\text{colim}_{i \geq 0} \text{Hom}_{K(A_0)}(E_0^\bullet, K_0^\bullet \otimes A_i) \to \text{Hom}_{K(A_0)}(E_0^\bullet, K_0^\bullet \otimes A_0)$$

Since there are only a finite number of nonzero modules E_0^\bullet and since these are all finitely presented modules, this map is an isomorphism. In case (2) the object E_0 corresponds to a bounded above complex E_0^\bullet of finite free A_0-modules, see Lemma 9.2. We may represent K_0 by a finite complex K_0^\bullet of flat A_0-modules, see Lemma 9.4 and More on Algebra, Lemma 63.3. In particular K_0^\bullet is K-flat and we can argue as before to arrive at the map

$$\text{colim}_{i \geq 0} \text{Hom}_{K(A_0)}(E_0^\bullet, K_0^\bullet \otimes A_i) \to \text{Hom}_{K(A_0)}(E_0^\bullet, K_0^\bullet \otimes A_0)$$

It is clear that this map is an isomorphism (only a finite number of terms are involved since K_0^\bullet is bounded). \(\square\)

Lemma 27.3. In Situation 27.1 the category of perfect objects of $D(\mathcal{O}_S)$ is the colimit of the categories of perfect objects of $D(\mathcal{O}_{S_i})$.

Proof. For every open $U_0 \subset S_0$ consider the condition P that the functor

$$\text{colim}_{i \geq 0} D_{perf}(\mathcal{O}_{U_i}) \to D_{perf}(\mathcal{O}_U)$$

is an equivalence where $perf$ indicates the full subcategory of perfect objects and where $U = f_0^{-1}(U_0)$ and $U_i = f_i^{-1}(U_0)$. We will prove P holds for all quasi-compact opens U_0 by the induction principle of Cohomology of Schemes, Lemma 4.1. First, we observe that we already know the functor is fully faithful by Lemma 27.2. Thus it suffices to prove essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have $S_0 = U_0 \cup V_0$ and that P holds for U_0, V_0, and $U_0 \cap V_0$. Let E be a perfect object of $D(\mathcal{O}_S)$. We can find $i \geq 0$ and $E_{U,i}$ perfect on U_i and $E_{V,i}$ perfect on V_i whose pullback to U and V are isomorphic to $E|_U$ and $E|_V$. Denote

$$a : E_{U,i} \to (Rf_{i*}E)|_{U_i} \quad \text{and} \quad b : E_{V,i} \to (Rf_{i*}E)|_{V_i}$$

the maps adjoint to the isomorphisms $Lf_i^*E_{U,i} \to E|_U$ and $Lf_i^*E_{V,i} \to E|_V$. By fully faithfulness, after increasing i, we can find an isomorphism $c : E_{U,i}|_{U \cap V_i} \to E_{V,i}|_{U \cap V_i}$ which pulls back to the identifications

$$Lf_i^*E_{U,i}|_{U \cap V} \to E|_{U \cap V} \to Lf_i^*E_{V,i}|_{U \cap V}.$$

Apply Cohomology, Lemma 41.1 to get an object E_i on S_i and a map $d : E_i \to Rf_{i*}E$ which restricts to the maps a and b over U_i and V_i. Then it is clear that E_i is perfect and that d is adjoint to an isomorphism $Lf_i^*E_i \to E$.

Finally, we check condition (1) of the induction principle, in other words, we check the lemma holds when S_0 is affine. Say $S_0 = \text{Spec}(A_0)$, $S_i = \text{Spec}(A_i)$, and $S = \text{Spec}(A)$. Using Lemmas 33.3 and 9.7 we see that we have to show that

$$D_{perf}(A) = \text{colim} D_{perf}(A_i)$$
This is clear from the fact that perfect complexes over rings are given by finite complexes of finite projective (hence finitely presented) modules. See More on Algebra, Lemma 70.16 for details. □

28. Cohomology and base change, VI

0A1G A final section on cohomology and base change continuing the discussion of Sections 21, 24, and 25. An easy to grok special case is given in Remark 28.2.

Lemma 28.1. Let \(f : X \to S \) be a morphism of finite presentation. Let \(E \in D(O_X) \) be a perfect object. Let \(G^\bullet \) be a bounded complex of finitely presented \(O_X \)-modules, flat over \(S \), with support proper over \(S \). Then

\[
K = Rf_*(E \otimes_{O_X} G^\bullet)
\]

is a perfect object of \(D(O_S) \) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 24.4. Thus it suffices to show that \(K \) is a perfect object. If \(S \) is Noetherian, then this follows from Lemma 25.2. We will reduce to this case by Noetherian approximation. We encourage the reader to skip the rest of this proof.

The question is local on \(S \), hence we may assume \(S \) is affine. Say \(S = \text{Spec}(R) \). We write \(R = \lim R_i \) as a filtered colimit of Noetherian rings \(R_i \). By Limits, Lemma 10.1 there exists an \(i \) and a scheme \(X_i \) of finite presentation over \(R_i \) whose base change to \(R \) is \(X \). By Limits, Lemma 10.2 we may assume after increasing \(i \), that there exists a bounded complex of finitely presented \(O_{X_i} \)-modules \(G_i^\bullet \) whose pullback to \(X \) is \(G^\bullet \). After increasing \(i \) we may assume \(G_i^n \) is flat over \(R_i \), see Limits, Lemma 10.4. After increasing \(i \) we may assume the support of \(G_i^n \) is proper over \(R_i \), see Limits, Lemma 13.5 and Cohomology of Schemes, Lemma 26.7. Finally, by Lemma 27.3 we may, after increasing \(i \), assume there exists a perfect object \(E_i \) of \(D(O_{X_i}) \) whose pullback to \(X \) is \(E \). Applying Lemma 25.2 to \(X_i \to \text{Spec}(R_i) \), \(E_i \), \(G_i^\bullet \) and using the base change property already shown we obtain the result. □

Remark 28.2. Let \(R \) be a ring. Let \(X \) be a scheme of finite presentation over \(R \). Let \(E \) be a finitely presented \(O_X \)-module flat over \(R \) with support proper over \(R \). By Lemma 28.1 there exists a finite complex of finite projective \(R \)-modules \(M^\bullet \) such that we have

\[
R\Gamma(X_{R'}, G_{R'}) = M^\bullet \otimes_R R'
\]

functorially in the \(R \)-algebra \(R' \).

Lemma 28.3. Let \(f : X \to S \) be a morphism of finite presentation. Let \(E \in D(O_X) \) be a perfect object. Let \(G^\bullet \) be a bounded above complex of finitely presented \(O_X \)-modules, flat over \(S \), with support proper over \(S \). Then

\[
K = Rf_*(E \otimes_{O_X} G^\bullet)
\]

is a pseudo-coherent object of \(D(O_S) \) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 24.4. Thus it suffices to show that \(K \) is a pseudo-coherent object. This will follow from Lemma 28.1 by approximation by perfect complexes. We encourage the reader to skip the rest of the proof.

The question is local on \(S \), hence we may assume \(S \) is affine. Then \(X \) is quasi-compact and quasi-separated. Moreover, there exists an integer \(N \) such that total
direct image \(Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_S) \) has cohomological dimension \(N \) as explained in Lemma 4.1. Choose an integer \(b \) such that \(G^i = 0 \) for \(i > b \). It suffices to show that \(K \) is \(m \)-pseudo-coherent for every \(m \). Choose an approximation \(P \to E \) by a perfect complex \(P \) of \((X,E,m-N-1-b)\). This is possible by Theorem 13.6. Choose a distinguished triangle

\[
P \to E \to C \to P[1]
\]
in \(D_{QCoh}(\mathcal{O}_X) \). The cohomology sheaves of \(C \) are zero in degrees \(m-N-1-b \). Hence the cohomology sheaves of \(C \otimes^L \mathcal{G}_* \) are zero in degrees \(m-N-1 \). Thus the cohomology sheaves of \(Rf_*(C \otimes^L \mathcal{G}_*) \) are zero in degrees \(m-1 \). Hence

\[
Rf_*(P \otimes^L \mathcal{G}_*) \to Rf_*(E \otimes^L \mathcal{G}_*)
\]
is an isomorphism on cohomology sheaves in degrees \(\geq m \). Next, suppose that \(H^i(P) = 0 \) for \(i > a \). Then \(P \otimes^L \sigma_{\geq m-a} \mathcal{G}_* \to P \otimes^L \mathcal{G}_* \) is an isomorphism on cohomology sheaves in degrees \(\geq m-N-1 \). Thus again we find that

\[
Rf_*(P \otimes^L \sigma_{\geq m-a} \mathcal{G}_*) \to Rf_*(P \otimes^L \mathcal{G}_*)
\]
is an isomorphism on cohomology sheaves in degrees \(\geq m \). By Lemma 28.1, the source is a perfect complex. We conclude that \(K \) is \(m \)-pseudo-coherent as desired.

0B91 **Lemma 28.4.** Let \(S \) be a scheme. Let \(f : X \to S \) be a proper morphism of finite presentation.

1. Let \(E \in D(\mathcal{O}_X) \) be perfect and \(f \) flat. Then \(Rf_* E \) is a perfect object of \(D(\mathcal{O}_S) \) and its formation commutes with arbitrary base change.

2. Let \(\mathcal{G} \) be an \(\mathcal{O}_X \)-module of finite presentation, flat over \(S \). Then \(Rf_* \mathcal{G} \) is a perfect object of \(D(\mathcal{O}_S) \) and its formation commutes with arbitrary base change.

Proof. Special cases of Lemma 28.1 applied with (1) \(\mathcal{G}_* \) equal to \(\mathcal{O}_X \) in degree 0 and (2) \(E = \mathcal{O}_X \) and \(\mathcal{G}_* \) consisting of \(\mathcal{G} \) sitting in degree 0.

0CSD **Lemma 28.5.** Let \(S \) be a scheme. Let \(f : X \to S \) be a flat proper morphism of finite presentation. Let \(E \in D(\mathcal{O}_X) \) be pseudo-coherent. Then \(Rf_* E \) is a pseudo-coherent object of \(D(\mathcal{O}_S) \) and its formation commutes with arbitrary base change.

More generally, if \(f : X \to S \) is proper and \(E \) on \(X \) is pseudo-coherent relative to \(S \) (More on Morphisms, Definition 51.2), then \(Rf_* E \) is pseudo-coherent (but formation does not commute with base change in this generality). See [Kle72].

Proof. Special case of Lemma 28.3 applied with \(\mathcal{G}_* \) equal to \(\mathcal{O}_X \) in degree 0.

0D2Q **Lemma 28.6.** Let \(R \) be a ring. Let \(X \) be a scheme and let \(f : X \to \text{Spec}(R) \) be proper, flat, and of finite presentation. Let \((M_n)\) be an inverse system of \(R \)-modules with surjective transition maps. Then the canonical map

\[
\mathcal{O}_X \otimes_R (\lim M_n) \to \lim \mathcal{O}_X \otimes_R M_n
\]
induces an isomorphism from the source to \(D\mathcal{O}_X \) applied to the target.

Proof. The statement means that for any object \(E \) of \(D_{QCoh}(\mathcal{O}_X) \) the induced map

\[
\text{Hom}(E, \mathcal{O}_X \otimes_R (\lim M_n)) \to \text{Hom}(E, \lim \mathcal{O}_X \otimes_R M_n)
\]
is an isomorphism. Since $D_{QCoh}(\mathcal{O}_X)$ has a perfect generator (Theorem 14.3), it suffices to check this for perfect E. By Lemma 3.2 we have $\lim_{R} \mathcal{O}_X \otimes_R M_n = R \lim_{R} \mathcal{O}_X \otimes_R M_n$. The exact functor $R\text{Hom}_X(E, -) : D_{QCoh}(\mathcal{O}_X) \rightarrow D(R)$ of Cohomology, Section 40 commutes with products and hence with derived limits, whence

$$R\text{Hom}_X(E, \lim_{R} \mathcal{O}_X \otimes_R M_n) = R \lim_{R} R\text{Hom}_X(E, \mathcal{O}_X \otimes_R M_n)$$

Let E^\vee be the dual perfect complex, see Cohomology, Lemma 46.4. We have

$$R\text{Hom}_X(E, \mathcal{O}_X \otimes_R M_n) = R\Gamma(X, E^\vee \otimes_{\mathcal{O}_X} Lf^* M_n) = R\Gamma(X, E^\vee) \otimes_R M_n$$

by Lemma 21.1. From Lemma 28.4 we see $R\Gamma(X, E^\vee)$ is a perfect complex of R-modules. In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 94.6 we obtain

$$\lim_{R} R\Gamma(X, E^\vee) \otimes_R M_n = R\Gamma(X, E^\vee) \otimes_R \lim_{R} M_n$$

as desired. \qed

Lemma 28.7. Let $f : X \rightarrow S$ be a morphism of finite presentation. Let $E \in D(\mathcal{O}_X)$ be a perfect object. Let G^\bullet be a bounded complex of finitely presented \mathcal{O}_X-modules, flat over S, with support proper over S. Then

$$K = Rf_*R\text{Hom}(E, G^\bullet)$$

is a perfect object of $D(\mathcal{O}_S)$ and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 24.5. Thus it suffices to show that K is a perfect object. If S is Noetherian, then this follows from Lemma 25.3. We will reduce to this case by Noetherian approximation. We encourage the reader to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say $S = \text{Spec}(R)$. We write $R = \text{colim}_i R_i$ as a filtered colimit of Noetherian rings R_i. By Limits, Lemma 10.1 there exists an i and a scheme X_i of finite presentation over R_i whose base change to R is X. By Limits, Lemma 10.2 we may assume after increasing i, that there exists a bounded complex of finitely presented \mathcal{O}_{X_i}-modules G^\bullet_i whose pullback to X is G^\bullet. After increasing i we may assume G^\bullet_i is flat over R_i, see Limits, Lemma 10.4. After increasing i we may assume the support of G^\bullet_i is proper over R_i, see Limits, Lemma 13.5 and Cohomology of Schemes, Lemma 26.7. Finally, by Lemma 27.3 we may, after increasing i, assume there exists a perfect object E_i of $D(\mathcal{O}_{X_i})$ whose pullback to X is E. Applying Lemma 25.3 to $X_i \rightarrow \text{Spec}(R_i)$, E_i, G^\bullet_i and using the base change property already shown we obtain the result. \qed

29. Perfect complexes

Lemma 29.1. Let X be a scheme. Let $E \in D(\mathcal{O}_X)$ be pseudo-coherent (for example perfect). For any $i \in \mathbb{Z}$ consider the function

$$\beta_i : X \rightarrow \{0, 1, 2, \ldots\}, \quad x \mapsto \dim_{\kappa(x)} H^i(E \otimes_{\mathcal{O}_X} \kappa(x))$$

Then we have

1. formation of β_i commutes with arbitrary base change,
(2) the functions β_i are upper semi-continuous, and
(3) the level sets of β_i are locally constructible in X.

Proof. Consider a morphism of schemes $f : Y \to X$ and a point $y \in Y$. Let x be the image of y and consider the commutative diagram

$$
\begin{array}{ccc}
y & \xrightarrow{g} & Y \\
\downarrow & & \downarrow \\
x & \xrightarrow{i} & X
\end{array}
$$

Then we see that $Lg^* \circ Li^* = Lj^* \circ Lf^*$. This implies that the function β'_i associated to the perfect complex Lf^*K is the pullback of the function β_i, in a formula: $\beta'_i = \beta_i \circ f$. This is the meaning of (1).

Fix i and let $x \in X$. It is enough to prove (2) and (3) holds in an open neighbourhood of x, hence we may assume X affine. Then we can represent E by a bounded above complex F^\bullet of finite free modules (Lemma 12.2). Then $P = \sigma_{\geq i-1} F^\bullet$ is a perfect object and $P \to E$ induces an isomorphism

$$H^i(P \otimes_{\mathcal{O}_X} \kappa(x')) \to H^i(E \otimes_{\mathcal{O}_X} \kappa(x'))$$

for all $x' \in X$. Thus we may assume E is perfect. In this case by More on Algebra, Lemma 71.6 there exists an affine open neighbourhood U of x and $a \leq b$ such that $K|_U$ is represented by a complex

$$0 \to \mathcal{O}_U^{\oplus \beta_a(x)} \to \mathcal{O}_U^{\oplus \beta_{a+1}(x)} \to \ldots \to \mathcal{O}_U^{\oplus \beta_{b-1}(x)} \to \mathcal{O}_U^{\oplus \beta_b(x)} \to 0 \to \ldots$$

(This also uses earlier results to turn the problem into algebra, for example Lemmas 3.5 and 9.7). It follows immediately that $\beta_i(x') \leq \beta_i(x)$ for all $x' \in U$. This proves that β_i is upper semi-continuous.

To prove (3) we may assume that X is affine and K is given by a complex of finite free \mathcal{O}_X-modules (for example by arguing as in the previous paragraph, or by using Cohomology, Lemma 45.3). Thus we have to show that given a complex $\mathcal{O}_X^{\oplus a} \to \mathcal{O}_X^{\oplus b} \to \mathcal{O}_X^{\oplus c}$ the function associated to a point $x \in X$ the dimension of the cohomology of $\kappa_x^{\oplus a} \to \kappa_x^{\oplus b} \to \kappa_x^{\oplus c}$ in the middle has constructible level sets. Let $A \in \text{Mat}(a \times b, \Gamma(X, \mathcal{O}_X))$ be the matrix of the first arrow. The rank of the image of A in $\text{Mat}(a \times b, \kappa(x))$ is equal to r if all $(r+1) \times (r+1)$-minors of A vanish at x and there is some $r \times r$-minor of A which does not vanish at x. Thus the set of points where the rank is r is a constructible locally closed set. Arguing similarly for the second arrow and putting everything together we obtain the desired result.

Lemma 29.2. Let X be a scheme. Let $E \in D(\mathcal{O}_X)$ be perfect. The function

$$\chi_E : X \to \mathbb{Z}, \quad x \mapsto \sum (-1)^i \dim_{\kappa(x)} H^i(E \otimes_{\mathcal{O}_X} \kappa(x))$$

is locally constant on X.

Proof. By Cohomology, Lemma 45.3 we see that we can, locally on X, represent E by a finite complex E^\bullet of finite free \mathcal{O}_X-modules. On such an open the function χ_E is constant with value $\sum (-1)^i \text{rank}(E^i)$.

Lemma 29.3. Let X be a scheme. Let $E \in D(\mathcal{O}_X)$ be perfect. Given $i, r \in \mathbb{Z}$, there exists an open subscheme $U \subset X$ characterized by the following
(1) $E|_U \cong H^i(E|_U)[-i]$ and $H^i(E|_U)$ is a locally free \mathcal{O}_U-module of rank r,

(2) a morphism $f : Y \to X$ factors through U if and only if $L(f^*E)$ is isomorphic to a locally free module of rank r placed in degree i.

Proof. Let $\beta : X \to \{0, 1, 2, \ldots\}$ for $j \in \mathbb{Z}$ be the functions of Lemma 29.1 Then the set

$$W = \{x \in X \mid \beta_j(x) \leq 0 \text{ for all } j \neq i\}$$

is open in X and its formation commutes with pullback to any Y over X. This follows from the lemma using that apriori in a neighbourhood of any point only a finite number of the β_j are nonzero. Thus we may replace X by W and assume that $\beta_j(x) = 0$ for all $x \in X$ and all $j \neq i$. In this case $H^i(E)$ is a finite locally free module and $E \cong H^i(E)[-i]$, see for example More on Algebra, Lemma 71.6. Thus X is the disjoint union of the open subschemes where the rank of $H^i(E)$ is fixed and we win. \hfill \Box

0BDL Lemma 29.4. Let X be a scheme. Let $E \in D(\mathcal{O}_X)$ be perfect of tor-amplitude in $[a, b]$ for some $a, b \in \mathbb{Z}$. Let $r \geq 0$. Then there exists a locally closed subscheme $j : Z \to X$ characterized by the following

1. $H^a(L^jE)$ is a locally free \mathcal{O}_Z-module of rank r, and

2. a morphism $f : Y \to X$ factors through Z if and only if for all morphisms $g : Y' \to Y$, the $\mathcal{O}_{Y'}$-module $H^a(L(f \circ g)^*E)$ is locally free of rank r.

Moreover, $j : Z \to X$ is of finite presentation and we have

3. if $f : Y \to X$ factors as $Y \xrightarrow{\beta} Z \to X$, then $H^a(L^jE) = g^*H^a(L^jE)$,

4. if $\beta_a(x) = x$ for all $x \in X$, then j is a closed immersion and given $f : Y \to X$ the following are equivalent

 (a) $f : Y \to X$ factors through Z,

 (b) $H^0(L^jE)$ is a locally free \mathcal{O}_Y-module of rank r,

 and if $r = 1$ these are also equivalent to

 (c) $\mathcal{O}_Y \to \text{Hom}_{\mathcal{O}_Y}(H^0(L^jE), H^0(L^jE))$ is injective.

Proof. First, let $U \subset X$ be the locally constructible open subscheme where the function β_a of Lemma 29.1 has values $\leq r$. Let $f : Y \to X$ be as in (2). Then for any $y \in Y$ we have $\beta_a(L^jE) = \beta_a(L^jE)$ hence y maps into U by Lemma 29.1. Hence f as in (2) factors through U. Thus we may replace X by U and assume that $\beta_a(x) \in \{0, 1, \ldots, r\}$ for all $x \in X$. We will show that in this case there is a closed subscheme $Z \subset X$ cut out by a finite type quasi-coherent ideal characterized by the equivalence of (4) (a), (b) and (4)(c) if $r = 1$ and that (3) holds. This will finish the proof because it will a fortiori show that morphisms as in (2) factor through Z.

If $x \in X$ and $\beta_a(x) < r$, then there is an open neighbourhood of x where $\beta_a < r$ (Lemma 29.1). In this way we see that set theoretically at least Z is a closed subset.

To get a scheme theoretic structure, consider a point $x \in X$ with $\beta_a(x) = r$. Set $\beta = \beta_{a+1}(x)$. By More on Algebra, Lemma 71.6 there exists an affine open neighbourhood U of x such that $K|_U$ is represented by a complex

$$\ldots \to 0 \to \mathcal{O}_U^{[r]}(f_{ij}) \to \mathcal{O}_U^{[\beta]} \to \ldots \to \mathcal{O}_U^{[\beta_a]}(x) \to \mathcal{O}_U^{[\beta_{a+1}]}(x) \to 0 \to \ldots$$

(This also uses earlier results to turn the problem into algebra, for example Lemmas 3.5 and 9.7.) Now, if $g : Y \to U$ is any morphism of schemes such that $g^2(f_{ij})$ is nonzero for some pair i, j, then $H^0(Lg^*E)$ is not a locally free \mathcal{O}_Y-module of rank r.

See More on Algebra, Lemma 15.7. Trivially $H^0(Lg^*E)$ is a locally free O_Y-module if $g^i(f_{ij}) = 0$ for all i, j. Thus we see that over U the closed subscheme cut out by all f_{ij} satisfies (3) and we have the equivalence of (4)(a) and (b). The characterization of Z shows that the locally constructed patches glue (details omitted). Finally, if $r = 1$ then (4)(c) is equivalent to (4)(b) because in this case locally $H^0(Lg^*E) \subset O_Y$ is the annihilator of the ideal generated by the elements $g^i(f_{ij})$. □

30. Applications

0BDM Mostly applications of cohomology and base change. In the future we may generalize these results to the situation discussed in Lemma 28.1.

0BDN Lemma 30.1. Let $f : X \to S$ be a flat, proper morphism of finite presentation. Let F be an O_X-module of finite presentation, flat over S. For fixed $i \in \mathbb{Z}$ consider the function

$$\beta_i : S \to \{0, 1, 2, \ldots\}, \quad s \mapsto -\dim_{\kappa(s)} H^i(X_s, F_s)$$

Then we have

1. formation of β_i commutes with arbitrary base change,
2. the functions β_i are upper semi-continuous, and
3. the level sets of β_i are locally constructible in S.

Proof. By cohomology and base change (more precisely by Lemma 28.4) the object $K = Rf_*F$ is a perfect object of the derived category of S whose formation commutes with arbitrary base change. In particular we have

$$H^i(X_s, F_s) = H^i(K \otimes_{O_S} \kappa(s))$$

Thus the lemma follows from Lemma 29.1. □

0B9T Lemma 30.2. Let $f : X \to S$ be a flat, proper morphism of finite presentation. Let F be an O_X-module of finite presentation, flat over S. The function

$$s \mapsto \chi(X_s, F_s)$$

is locally constant on S. Formation of this function commutes with base change.

Proof. By cohomology and base change (more precisely by Lemma 28.4) the object $K = Rf_*F$ is a perfect object of the derived category of S whose formation commutes with arbitrary base change. Thus we have to show the map

$$s \mapsto \sum (-1)^i \dim_{\kappa(s)} H^i(K \otimes_{O_S} \kappa(s))$$

is locally constant on S. This is Lemma 29.2. □

0B9S Lemma 30.3. Let $f : X \to S$ be a flat, proper morphism of finite presentation. Let F be an O_X-module of finite presentation, flat over S. Fix $i, r \in \mathbb{Z}$. Then there exists an open subscheme $U \subset S$ with the following property: A morphism $T \to S$ factors through U if and only if $Rf_{T,*}F_T$ is isomorphic to a finite locally free module of rank r placed in degree i.

Proof. By cohomology and base change (more precisely by Lemma 28.4) the object $K = Rf_*F$ is a perfect object of the derived category of S whose formation commutes with arbitrary base change. Thus this lemma follows immediately from Lemma 29.3. □
Lemma 30.4. Let $f : X \to S$ be a morphism of finite presentation. Let F be an \mathcal{O}_X-module of finite presentation, flat over S with support proper over S. If $R^i f_* F = 0$ for $i > 0$, then $f_* F$ is locally free and its formation commutes with arbitrary base change (see proof for explanation).

Proof. By Lemma 28.1 the object $E = Rf_* F$ of $D(\mathcal{O}_S)$ is perfect and its formation commutes with arbitrary base change, in the sense that $Rf'_*(g')^* F = Lg^* E$ for any cartesian diagram

$\xymatrix{ X' \ar[r]^-{g'} \ar[d]_f & X \ar[d]^f \\
S' \ar[r]^-{g} & S}$

of schemes. Since there is never any cohomology in degrees < 0, we see that E (locally) has tor-amplitude in $[0, b]$ for some b. If $H^i(E) = R^i f_* F = 0$ for $i > 0$, then E has tor amplitude in $[0, 0]$. Whence $E = H^0(E)[0]$. We conclude $H^0(E) = f_* F$ is finite locally free by More on Algebra, Lemma 70.2 (and the characterization of finite projective modules in Algebra, Lemma 7.2). Commutation with base change means that $g^* f_* F = f'_*(g')^* F$ for a diagram as above and it follows from the already established commutation of base change for E. \hfill \Box

Lemma 30.5. Let $f : X \to S$ be a morphism of schemes. Assume

1. f is proper, flat, and of finite presentation, and
2. for all $s \in S$ we have $\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$.

Then we have

(a) $f_* \mathcal{O}_X = \mathcal{O}_S$ and this holds after any base change,
(b) locally on S we have $Rf_* \mathcal{O}_X = \mathcal{O}_S \oplus P$ in $D(\mathcal{O}_S)$ where P is perfect of tor amplitude in $[1, \infty)$.

Proof. By cohomology and base change (Lemma 28.4) the complex $E = Rf_* \mathcal{O}_X$ is perfect and its formation commutes with arbitrary base change. In particular, for $s \in S$ we see that $H^0(E \otimes^L \kappa(s)) = H^0(X_s, \mathcal{O}_{X_s}) = \kappa(s)$. Thus $\beta_0(s) \leq 1$ for all $s \in S$ with notation as in Lemma 29.1. Apply Lemma 29.4 with $a = 0$ and $r = 1$. We obtain a universal closed subscheme $j : Z \to S$ with $H^0(Lj^* E)$ invertible characterized by the equivalence of (4)(a), (b), and (c) of the lemma. Since formation of E commutes with base change, we have $Lf^* E = Rpr_{1*} \mathcal{O}_{X \times_S X}$

The morphism $pr_1 : X \times_S X$ has a section namely the diagonal morphism Δ for X over S. We obtain maps

$\mathcal{O}_X \to Rpr_{1*} \mathcal{O}_{X \times_S X} \to \mathcal{O}_X$

in $D(\mathcal{O}_X)$ whose composition is the identity. Thus $Rpr_{1*} \mathcal{O}_{X \times_S X} = \mathcal{O}_X \oplus E'$ in $D(\mathcal{O}_X)$. Thus \mathcal{O}_X is a direct summand of $H^0(Lf^* E)$ and we conclude that $X \to S$ factors through Z by the equivalence of (4)(c) and (4)(a) of the lemma cited above. Since $\{ X \to S \}$ is an fpf covering, we have $Z = S$. Thus $f_* \mathcal{O}_X$ is an invertible \mathcal{O}_S-module. We conclude $\mathcal{O}_S \to f_* \mathcal{O}_X$ is an isomorphism because a ring map $A \to B$ such that B is invertible as an A-module is an isomorphism. Since the assumptions are preserved under base change, we see that (a) is true.
Proof of (b). Above we have seen that for every \(s \in S \) the map \(\mathcal{O}_S \to H^0(E \otimes^L \kappa(s)) \) is surjective. Thus we may apply More on Algebra, Lemma 72.2 to see that in an open neighbourhood of \(s \) we have a decomposition \(Rf_* \mathcal{O}_X = \mathcal{O}_S \oplus P \) as stated in the lemma.

\[\square \]

Lemma 30.6. Let \(f : X \to S \) be a morphism of schemes. Assume

1. \(f \) is proper, flat, and of finite presentation, and
2. the geometric fibres of \(f \) are reduced and connected.

Then \(f_* \mathcal{O}_X = \mathcal{O}_S \) and this holds after any base change.

Proof. By Lemma 30.5 it suffices to show that \(\kappa(s) = H^0(X_s, \mathcal{O}_{X_s}) \) for all \(s \in S \). This follows from Varieties, Lemma 9.3 and the fact that \(X_s \) is geometrically connected and geometrically reduced. \(\square \)

31. Other applications

0CRN In this section we state and prove some results that can be deduced from the theory worked out above.

0EX6 **Lemma 31.1.** Let \(R \) be a coherent ring. Let \(X \) be a scheme of finite presentation over \(R \). Let \(\mathcal{G} \) be an \(\mathcal{O}_X \)-module of finite presentation, flat over \(R \), with support proper over \(R \). Then \(H^i(X, \mathcal{G}) \) is a coherent \(R \)-module.

Proof. Combine Lemma 28.1 with More on Algebra, Lemmas 62.19 and 70.2 \(\square \)

0CRP **Lemma 31.2.** Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(K \) be an object of \(D_{QCoh}(\mathcal{O}_X) \) such that the cohomology sheaves \(H^i(K) \) have countable sets of sections over affine opens. Then for any quasi-compact open \(U \subset X \) and any perfect object \(E \) in \(D(\mathcal{O}_X) \) the sets

\[H^i(U, K \otimes^L E), \quad Ext^i(E|_U, K|_U) \]

are countable.

Proof. Using Cohomology, Lemma 46.4 we see that it suffices to prove the result for the groups \(H^i(U, K \otimes^L E) \). We will use the induction principle to prove the lemma, see Cohomology of Schemes, Lemma 4.1

First we show that it holds when \(U = \text{Spec}(A) \) is affine. Namely, we can represent \(K \) by a complex of \(A \)-modules \(K^\bullet \) and \(E \) by a finite complex of finite projective \(A \)-modules \(P^\bullet \). See Lemmas 3.3 and 9.7 and our definition of perfect complexes of \(A \)-modules (More on Algebra, Definition 70.1). Then \((E \otimes^L K)|_U \) is represented by the total complex associated to the double complex \(P^\bullet \otimes_A K^\bullet \) (Lemma 3.9). Using induction on the length of the complex \(P^\bullet \) (or using a suitable spectral sequence) we see that it suffices to show that \(H^i(P^n \otimes_A K^\bullet) \) is countable for each \(n \). Since \(P^n \) is a direct summand of \(A^{\geq n} \) for some \(n \) this follows from the assumption that the cohomology group \(H^i(K^\bullet) \) is countable.

To finish the proof it suffices to show: if \(U = V \cup W \) and the result holds for \(V \), \(W \), and \(V \cap W \), then the result holds for \(U \). This is an immediate consequence of the Mayer-Vietoris sequence, see Cohomology, Lemma 33.4 \(\square \)

0CRQ **Lemma 31.3.** Let \(X \) be a quasi-compact and quasi-separated scheme such that the sets of sections of \(\mathcal{O}_X \) over affine opens are countable. Let \(K \) be an object of \(D_{QCoh}(\mathcal{O}_X) \). The following are equivalent
Let F be a functor from the category of affine schemes to the category of rings, and let \mathcal{O}_X be the structure sheaf of X. By Theorem 17.3 and its proof there is an equivalence of triangulated categories F and its quasi-inverse commute with homotopy colimits. Therefore, it suffices to write F and G as a homotopy colimit of compact objects of $D(A,d)$ with derived colimits because direct sums in $D(A,d)$ are countable for each i. This follows from Lemma 31.2.

Proof. If (1) is true, then (2) is true because homotopy colimits commute with taking cohomology sheaves (by Derived Categories, Lemma 33.8) and because a perfect complex is locally isomorphic to a finite complex of finite free \mathcal{O}_X-modules and therefore satisfies (2) by assumption on X.

Assume (2). Choose a K-injective complex \mathcal{K}^\bullet representing K. Choose a perfect generator E of $D_{QCoh}(\mathcal{O}_X)$ and represent it by a K-injective complex \mathcal{I}^\bullet. According to Theorem 17.3 and its proof there is an equivalence of triangulated categories $F : D_{QCoh}(\mathcal{O}_X) \to D(A,d)$ where (A,d) is the differential graded algebra

$$F(E) = \text{Hom}_{\mathcal{K}^\bullet}(\mathcal{I}^\bullet, \mathcal{K}^\bullet)$$

which maps K to the differential graded module

$$M = \text{Hom}_{\mathcal{K}^\bullet}(\mathcal{I}^\bullet, \mathcal{K}^\bullet)$$

Note that $H^i(A) = \text{Ext}^i(E,E)$ and $H^i(M) = \text{Ext}^i(E,K)$. Moreover, since F is an equivalence it and its quasi-inverse commute with homotopy colimits. Therefore, it suffices to write M as a homotopy colimit of compact objects of $D(A,d)$.

Lemmas 38.3 it suffices show that $\text{Ext}^i(E,E)$ and $\text{Ext}^i(E,K)$ are countable for each i. This follows from Lemma 31.2.

Let A be a ring. Let X be a scheme of finite presentation over A. Let $f : U \to X$ be a flat morphism of finite presentation. Then

(1) there exists an inverse system of perfect objects L_n of $D(\mathcal{O}_X)$ such that

$$R\Gamma(U, Lf^* K) = \text{hocolim} \ R\text{Hom}_X(L_n, K)$$

in $D(A)$ functorially in K in $D_{QCoh}(\mathcal{O}_X)$, and

(2) there exists a system of perfect objects E_n of $D(\mathcal{O}_X)$ such that

$$R\Gamma(U, Lf^* K) = \text{hocolim} \ R\Gamma(X, E_n \otimes^L K)$$

in $D(A)$ functorially in K in $D_{QCoh}(\mathcal{O}_X)$.

Proof. By Lemma 21.1 we have

$$R\Gamma(U, Lf^* K) = R\Gamma(X, Rf_* \mathcal{O}_U \otimes^L K)$$

functorially in K. Observe that $R\Gamma(X, -)$ commutes with homotopy colimits because it commutes with direct sums by Lemma 4.2. Similarly, $- \otimes^L K$ commutes with derived colimits because $- \otimes^L K$ commutes with direct sums (because direct sums in $D(\mathcal{O}_X)$ are given by direct sums of representing complexes). Hence to prove (2) it suffices to write $Rf_* \mathcal{O}_U = \text{hocolim} \ E_n$ for a system of perfect objects E_n of $D(\mathcal{O}_X)$. Once this is done we obtain (1) by setting $L_n = E'_n$, see Cohomology, Lemma 46.4.

Write $A = \text{colim} A_i$ with A_i of finite type over \mathcal{O}_X. By Limits, Lemma 10.1 we can find an i and morphisms $U_i \to X_i \to \text{Spec}(A_i)$ of finite presentation whose base change to $\text{Spec}(A)$ recovers $U \to X \to \text{Spec}(A)$. After increasing i we may assume that $f_i : U_i \to X_i$ is flat, see Limits, Lemma 8.7. By Lemma 21.5 the derived pullback of $Rf_* \mathcal{O}_U$, by $g : X \to X_i$ is equal to $Rf_* \mathcal{O}_U$. Since Lg^* commutes with
derived colimits, it suffices to prove what we want for \(f_i \). Hence we may assume
that \(U \) and \(X \) are of finite type over \(Z \).

Assume \(f : U \to X \) is a morphism of schemes of finite type over \(Z \). To finish the
proof we will show that \(Rf_*\mathcal{O}_U \) is a homotopy colimit of perfect complexes. To see
this we apply Lemma \(\text{[31.3]} \). Thus it suffices to show that \(R^if_*\mathcal{O}_U \) has countable
sets of sections over affine opens. This follows from Lemma \(\text{[31.2]} \) applied to the
structure sheaf.

32. Characterizing pseudo-coherent complexes, II

0CSE This section is a continuation of Section \(\text{[18]} \). In this section we discuss characteri-
izations of pseudo-coherent complexes in terms of cohomology. More results of this
nature can be found in More on Morphisms, Section \(\text{[61]} \).

0CSF \textbf{Lemma 32.1.} Let \(A \) be a ring. Let \(R \) be a (possibly noncommutative) \(A \)-algebra
which is finite free as an \(A \)-module. Then any object \(M \) of \(D(R) \) which is pseudo-
coherent in \(D(A) \) can be represented by a bounded above complex of finite free (right) \(R \)-modules.

\textbf{Proof.} Choose a complex \(M^\bullet \) of right \(R \)-modules representing \(M \). Since \(M \) is
pseudo-coherent we have \(H^i(M) = 0 \) for large enough \(i \). Let \(m \) be the smallest
index such that \(H^m(M) \) is nonzero. Then \(H^m(M) \) is a finite \(A \)-module by More on
Algebra, Lemma \(\text{[62.3]} \). Thus we can choose a finite free \(R \)-module \(F^m \) and a map
\(F^m \to M^m \) such that \(F^m \to M^m \to M^{m+1} \) is zero and such that \(F^m \to H^m(M) \)
is surjective. Picture:

\[
\begin{array}{ccc}
F^m & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
M^{m-1} & \longrightarrow & M^m \\
\downarrow & & \downarrow \\
M^{m-1} & \longrightarrow & M^m & \longrightarrow & M^{m+1} & \longrightarrow & \ldots
\end{array}
\]

By descending induction on \(n \leq m \) we are going to construct finite free \(R \)-modules
\(F^i \) for \(i \geq n \), differentials \(d^i : F^i \to F^{i+1} \) for \(i \geq n \), maps \(\alpha : F^i \to K^i \)
compatible with differentials, such that (1) \(H^i(\alpha) \) is an isomorphism for \(i > n \) and surjective
for \(i = n \), and (2) \(F^i = 0 \) for \(i > m \). Picture

\[
\begin{array}{ccc}
F^n & \longrightarrow & F^{n+1} & \longrightarrow & \ldots & \longrightarrow & F^i & \longrightarrow & 0 & \longrightarrow & \ldots \\
\downarrow & & \downarrow & & \longrightarrow & & \downarrow & & \longrightarrow \\
M^{n-1} & \longrightarrow & M^n & \longrightarrow & M^{n+1} & \longrightarrow & \ldots & \longrightarrow & M^{i-1} & \longrightarrow & M^i & \longrightarrow & M^{i+1} & \longrightarrow & \ldots
\end{array}
\]

The base case is \(n = m \) which we’ve done above. Induction step. Let \(C^\bullet \) be
the cone on \(\alpha \) (Derived Categories, Definition \(\text{[9.1]} \)). The long exact sequence of
cohomology shows that \(H^i(C^\bullet) = 0 \) for \(i > n \). Observe that \(F^\bullet \) is pseudo-coherent
as a complex of \(A \)-modules because \(R \) is finite free as an \(A \)-module. Hence by More
on Algebra, Lemma \(\text{[62.2]} \) we see that \(C^\bullet \) is \((n-1)\)-pseudo-coherent as a complex
of \(A \)-modules. By More on Algebra, Lemma \(\text{[62.3]} \) we see that \(H^{n-1}(C^\bullet) \) is a finite
\(A \)-module. Choose a finite free \(R \)-module \(F^{n-1} \) and a map \(\beta : F^{n-1} \to C^{n-1} \) such
that the composition \(F^{n-1} \to C^{n-1} \to C^n \) is zero and such that \(F^{n-1} \) surjects
onto \(H^{n-1}(C^\bullet) \). Since \(C^{n-1} = M^{n-1} \oplus F^n \) we can write \(\beta = (\alpha^{n-1}, -d^{n-1}) \). The
vanishing of the composition $F^{n-1} \to C^{n-1} \to C^n$ implies these maps fit into a morphism of complexes

$$\begin{array}{cccccccc}
F^{n-1} & \xrightarrow{d^{n-1}} & F^n & \xrightarrow{\alpha} & F^{n+1} & \xrightarrow{\alpha} & \ldots \\
\downarrow^{\alpha^{n-1}} & & \downarrow & & \downarrow & & \\
\ldots & \xrightarrow{} & M^{n-1} & \xrightarrow{} & M^n & \xrightarrow{} & M^{n+1} & \xrightarrow{} & \ldots \\
\end{array}$$

Moreover, these maps define a morphism of distinguished triangles

$$\begin{array}{cccccccc}
(F^n \to \ldots) & \xrightarrow{} & (F^{n-1} \to \ldots) & \xrightarrow{} & F^{n-1} & \xrightarrow{} & (F^n \to \ldots)[1] \\
\downarrow & & \downarrow & & \downarrow & & \\
(F^n \to \ldots) & \xrightarrow{} & M^\bullet & \xrightarrow{} & C^\bullet & \xrightarrow{} & (F^n \to \ldots)[1] \\
\downarrow & & \downarrow & & \downarrow & & \\
\end{array}$$

Hence our choice of β implies that the map of complexes $(F^{n-1} \to \ldots) \to M^\bullet$ induces an isomorphism on cohomology in degrees $\geq n$ and a surjection in degree $n - 1$. This finishes the proof of the lemma. \square

Lemma 32.2. Let A be a ring. Let $n \geq 0$. Let $K \in D_{QCoh}(\mathcal{O}_{P^n_A})$. The following are equivalent

1. K is pseudo-coherent,
2. $R\Gamma(P^n_A, E \otimes^L K)$ is a pseudo-coherent object of $D(A)$ for each pseudo-coherent object E of $D(\mathcal{O}_{P^n_A})$,
3. $R\Gamma(P^n_A, E \otimes^L K)$ is a pseudo-coherent object of $D(A)$ for each perfect object E of $D(\mathcal{O}_{P^n_A})$,
4. $R\text{Hom}_{P^n_A}(E, K)$ is a pseudo-coherent object of $D(A)$ for each perfect object E of $D(\mathcal{O}_{P^n_A})$,
5. $R\Gamma(P^n_A, K \otimes^L \mathcal{O}_{P^n_A}(d))$ is pseudo-coherent object of $D(A)$ for $d = 0, 1, \ldots, n$.

Proof. Recall that $R\text{Hom}_{P^n_A}(E, K) = R\Gamma(P^n_A, R\text{Hom}_{\mathcal{O}_{P^n_A}}(E, K))$ by definition, see Cohomology, Section 40. Thus parts (4) and (3) are equivalent by Cohomology, Lemma 46.4.

Since every perfect complex is pseudo-coherent, it is clear that (2) implies (3).

Assume (1) holds. Then $E \otimes^L K$ is pseudo-coherent for every pseudo-coherent E, see Cohomology, Lemma 43.5. By Lemma 28.5 the direct image of such a pseudo-coherent complex is pseudo-coherent and we see that (2) is true.

Part (3) implies (5) because we can take $E = \mathcal{O}_{P^n_A}(d)$ for $d = 0, 1, \ldots, n$.

To finish the proof we have to show that (5) implies (1). Let P be as in (19.0.1) and R as in (19.0.2). By Lemma 19.1 we have an equivalence

$$- \otimes^L_R P : D(R) \rightarrow D_{QCoh}(\mathcal{O}_{P^n_A})$$

Let $M \in D(R)$ be an object such that $M \otimes^L P = K$. By Differential Graded Algebra, Lemma 35.4 there is an isomorphism

$$R\text{Hom}(R, M) = R\text{Hom}_{P^n_A}(P, K)$$
in $D(A)$. Arguing as above we obtain
\[
R\text{Hom}_{P^a}(P, K) = R\Gamma(P^a, R\text{Hom}_{\mathcal{O}_X}(E, K)) = R\Gamma(P^a, P^\vee \otimes^{L}_{\mathcal{O}_X} K).
\]
Using that P^\vee is the direct sum of $\mathcal{O}_{P^a}(d)$ for $d = 0, 1, \ldots, n$ and (5) we conclude $R\text{Hom}(R, M)$ is pseudo-coherent as a complex of A-modules. Of course $M = R\text{Hom}(R, M)$ in $D(A)$. Thus M is pseudo-coherent as a complex of A-modules. By Lemma 32.1 we may represent \mathcal{O} by a bounded above complex F^\bullet of finite free R-modules. Then $F^\bullet = \bigcup_{p>0} \sigma_{\geq p} F^\bullet$ is a filtration which shows that F^\bullet is a differential graded R-module with property (P), see Differential Graded Algebra, Section 20. Hence $K = M \otimes^L_R P$ is represented by $F^\bullet \otimes_R P$ (follows from the construction of the derived tensor functor, see for example the proof of Differential Graded Algebra, Lemma 35.3). Since $F^\bullet \otimes_R P$ is a bounded above complex whose terms are direct sums of copies of P we conclude that the lemma is true.

Lemma 32.3. Let A be a ring. Let X be a scheme over A which is quasi-compact and quasi-separated. Let $K \in D_{QCoh}(\mathcal{O}_X)$. If $R\Gamma(X, E \otimes^L K)$ is pseudo-coherent in $D(A)$ for every perfect E in $D(\mathcal{O}_X)$, then $R\Gamma(X, E \otimes^L K)$ is pseudo-coherent in $D(A)$ for every pseudo-coherent E in $D(\mathcal{O}_X)$.

This lemma is false if one drops the assumption that K is bounded above.

Proof. There exists an integer N such that $R\Gamma(X, -) : D_{QCoh}(\mathcal{O}_X) \to D(A)$ has cohomological dimension N as explained in Lemma 3.1. Let $b \in \mathbb{Z}$ be such that $H^i(K) = 0$ for $i > b$. Let E be pseudo-coherent on X. It suffices to show that $R\Gamma(X, E \otimes^L K)$ is m-pseudo-coherent for every m. Choose an approximation $P \to E$ by a perfect complex P of $(X, E, m - N - 1 - b)$. This is possible by Theorem 13.6. Choose a distinguished triangle
\[
P \to E \to C \to P[1]
\]
in $D_{QCoh}(\mathcal{O}_X)$. The cohomology sheaves of C are zero in degrees $\geq m - N - 1 - b$. Hence the cohomology sheaves of $C \otimes^L K$ are zero in degrees $\geq m - N - 1$. Thus the cohomology of $R\Gamma(X, C \otimes^L K)$ are zero in degrees $\geq m - 1$. Hence
\[
R\Gamma(X, P \otimes^L K) \to R\Gamma(X, E \otimes^L K)
\]
is an isomorphism on cohomology in degrees $\geq m$. By assumption the source is pseudo-coherent. We conclude that $R\Gamma(X, E \otimes^L K)$ is m-pseudo-coherent as desired.

33. Relatively perfect objects

Definition 33.1. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. An object E of $D(\mathcal{O}_X)$ is perfect relative to S or S-perfect if E is pseudo-coherent (Cohomology, Definition 43.1) and E locally has finite tor dimension as an object of $D(f^{-1}\mathcal{O}_S)$ (Cohomology, Definition 44.1).

Please see Remark 33.13 for a discussion.

Example 33.2. Let k be a field. Let X be a scheme of finite presentation over k (in particular X is quasi-compact). Then an object E of $D(\mathcal{O}_X)$ is k-perfect if and only if it is bounded and pseudo-coherent (by definition), i.e., if and only if it is in
Thus being relatively perfect does not mean “perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 78. We can link the notion for schemes with the algebraic notion as follows.

Lemma 33.3. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. The following are equivalent

1. E is S-perfect,
2. for any affine open $U \subset X$ mapping into an affine open $V \subset S$ the complex $R\Gamma(U, E)$ is $\mathcal{O}_S(V)$-perfect,
3. there exists an affine open covering $S = \bigcup V_i$ and for each i an affine open covering $f^{-1}(V_i) = \bigcup U_{ij}$ such that the complex $R\Gamma(U_{ij}, E)$ is $\mathcal{O}_S(V_i)$-perfect.

Proof. Being pseudo-coherent is a local property and “locally having finite tor dimension” is a local property. Hence this lemma immediately reduces to the statement: if X and S are affine, then E is S-perfect if and only if $K = R\Gamma(X, E)$ is $\mathcal{O}_S(S)$-perfect. Say $X = \text{Spec}(A)$, $S = \text{Spec}(R)$ and E corresponds to $K \in D(A)$, i.e., $K = R\Gamma(X, E)$, see Lemma 3.5.

Observe that K is R-perfect if and only if K is pseudo-coherent and has finite tor dimension as a complex of R-modules (More on Algebra, Definition 78.1). By Lemma 9.2 we see that E is pseudo-coherent if and only if K is pseudo-coherent.

By Lemma 9.5 we see that E has finite tor dimension over $f^{-1}\mathcal{O}_S$ if and only if K has finite tor dimension as a complex of R-modules. □

Lemma 33.4. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. The full subcategory of $D(\mathcal{O}_X)$ consisting of S-perfect objects is a saturated triangulated subcategory.

Proof. This follows from Cohomology, Lemmas 43.4, 43.6, 44.6, and 44.8. □

Lemma 33.5. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. A perfect object of $D(\mathcal{O}_X)$ is S-perfect. If $K, M \in D(\mathcal{O}_X)$, then $K \otimes^{L}_{\mathcal{O}_X} M$ is S-perfect if K is perfect and M is S-perfect.

Proof. First proof: reduce to the affine case using Lemma 33.3 and then apply More on Algebra, Lemma 78.3. □

Lemma 33.6. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. Let $g : S' \to S$ be a morphism of schemes. Set $X' = S' \times_S X$ and denote $g' : X' \to X$ the projection. If $K \in D(\mathcal{O}_X)$ is S-perfect, then $L(g')^* K$ is S'-perfect.

Proof. First proof: reduce to the affine case using Lemma 33.3 and then apply More on Algebra, Lemma 78.5. Second proof: $L(g')^* K$ is pseudo-coherent by Cohomology, Lemma 43.3 and the bounded tor dimension property follows from Lemma 21.8. □

4Derived Categories, Definition 6.1.
Let \(S = \lim_{i \in I} S_i \) be a limit of a directed system of schemes with affine transition morphisms \(g_{ij} : S_j \to S_i \). We assume that \(S_i \) is quasi-compact and quasi-separated for all \(i \in I \). We denote \(g_i : S \to S_i \) the projection. We fix an element \(0 \in I \) and a flat morphism of finite presentation \(X_0 \to S_0 \). We set \(X_i = S_i \times_{S_0} X_0 \) and \(X = S \times_{S_0} X_0 \) and we denote the transition morphisms \(f_{ij} : X_j \to X_i \) and \(f_i : X \to X_i \) the projections.

0D76 **Situation 33.7.** Let \(S = \lim_{i \in I} S_i \) be a limit of a directed system of schemes with affine transition morphisms \(g_{ij} : S_j \to S_i \). We assume that \(S_i \) is quasi-compact and quasi-separated for all \(i \in I \). We denote \(g_i : S \to S_i \) the projection. We fix an element \(0 \in I \) and a flat morphism of finite presentation \(X_0 \to S_0 \). We set \(X_i = S_i \times_{S_0} X_0 \) and \(X = S \times_{S_0} X_0 \) and we denote the transition morphisms \(f_{ij} : X_j \to X_i \) and \(f_i : X \to X_i \) the projections.

0D77 **Lemma 33.8.** In Situation 33.7 let \(K_0 \) and \(L_0 \) be objects of \(D(\mathcal{O}_{X_0}) \). Set \(K_i = Lf_{i0}^*K_0 \) and \(L_i = Lf_{i0}^*L_0 \) for \(i \geq 0 \) and set \(K = Lf_0^*K_0 \) and \(L = Lf_0^*L_0 \). Then the map

\[
\colim_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{X_i})}(K_i, L_i) \to \text{Hom}_{D(\mathcal{O}_X)}(K, L)
\]

is an isomorphism if \(K_0 \) is pseudo-coherent and \(L_0 \in \mathcal{D}_{QCoh}(\mathcal{O}_{X_0}) \) has (locally) finite tor dimension as an object of \(D((X_0 \to S_0)^{-1}\mathcal{O}_{S_0}) \).

Proof. For every quasi-compact open \(U_0 \subset X_0 \) consider the condition \(P \) that

\[
\colim_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{U_i})}(K_i|_{U_i}, L_i|_{U_i}) \to \text{Hom}_{D(\mathcal{O}_U)}(K|_U, L|_U)
\]

is an isomorphism where \(U = f_0^{-1}(U_0) \) and \(U_i = f_{i0}^{-1}(U_0) \). If \(P \) holds for \(U_0, V_0 \) and \(U_0 \cap V_0 \), then it holds for \(U_0 \cup V_0 \) by Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 33.3.

Denote \(\pi_0 : X_0 \to S_0 \) the given morphism. Then we can first consider \(U_0 = \pi_0^{-1}(W_0) \) with \(W_0 \subset S_0 \) quasi-compact open. By the induction principle of Cohomology of Schemes, Lemma 4.1 applied to quasi-compact opens of \(S_0 \) and the remark above, we find that it is enough to prove \(P \) for \(U_0 = \pi_0^{-1}(W_0) \) with \(W_0 \) affine. In other words, we have reduced to the case where \(S_0 \) is affine. Next, we apply the induction principle again, this time to all quasi-compact and quasi-separated opens of \(X_0 \), to reduce to the case where \(X_0 \) is affine as well.

If \(X_0 \) and \(S_0 \) are affine, the result follows from More on Algebra, Lemma 78.7. Namely, by Lemmas 9.1 and 3.5 the statement is translated into computations of homs in the derived category of modules. Then Lemma 9.2 shows that the complex of modules corresponding to \(K_0 \) is pseudo-coherent. And Lemma 9.5 shows that the complex of modules corresponding to \(L_0 \) has finite tor dimension over \(\mathcal{O}_{S_0}(S_0) \). Thus the assumptions of More on Algebra, Lemma 78.7 are satisfied and we win.

0D83 **Lemma 33.9.** In Situation 33.7 the category of \(S \)-perfect objects of \(D(\mathcal{O}_X) \) is the colimit of the categories of \(S_i \)-perfect objects of \(D(\mathcal{O}_{X_i}) \).

Proof. For every quasi-compact open \(U_0 \subset X_0 \) consider the condition \(P \) that the functor

\[
\colim_{i \geq 0} D_{S_i}\text{-perfect}(\mathcal{O}_{U_i}) \to D_{S}\text{-perfect}(\mathcal{O}_U)
\]

is an equivalence where \(U = f_0^{-1}(U_0) \) and \(U_i = f_{i0}^{-1}(U_0) \). We observe that we already know this functor is fully faithful by Lemma 33.8. Thus it suffices to prove essential surjectivity.

Suppose that \(P \) holds for quasi-compact opens \(U_0, V_0 \) of \(X_0 \). We claim that \(P \) holds for \(U_0 \cup V_0 \). We will use the notation \(U_i = f_{i0}^{-1}U_0, U = f_0^{-1}U_0, V_i = f_{i0}^{-1}V_0 \), and \(V = f_0^{-1}V_0 \) and we will abusively use the symbol \(f_i \) for all the morphisms \(U \to U_i, V \to V_i, U \cap V \to U_i \cap V_i \), and \(U \cup V \to U_i \cup V_i \). Suppose \(E \) is an \(S \)-perfect object of \(D(\mathcal{O}_{U \cup V}) \). Goal: show \(E \) is in the essential image of the functor. By assumption,
we can find \(i \geq 0 \), an \(S_i \)-perfect object \(E_{U,i} \) on \(U_i \), an \(S_i \)-perfect object \(E_{V,i} \) on \(V_i \), and isomorphisms \(Lf_i^* E_{U,i} \to E\vert_U \) and \(Lf_i^* E_{V,i} \to E\vert_V \). Let

\[
\begin{align*}
 a : E_{U,i} &\to (Rf_i,*,E)\vert_U, \\
 b : E_{V,i} &\to (Rf_i,*,E)\vert_V
\end{align*}
\]

the maps adjoint to the isomorphisms \(Lf_i^* E_{U,i} \to E\vert_U \) and \(Lf_i^* E_{V,i} \to E\vert_V \). By fully faithfulness, after increasing \(i \), we can find an isomorphism \(c : E_{U,i}\vert_{U\cap V} \to E_{V,i}\vert_{U\cap V} \), which pulls back to the identifications

\[
Lf_i^* E_{U,i}\vert_{U\cap V} \to E\vert_{U\cap V} \to Lf_i^* E_{V,i}\vert_{U\cap V}.
\]

Apply Cohomology, Lemma 41.1 to get an object \(E \) fully faithfulness, after increasing \(i \), we can find an object \(E \) and flat over \(Rf_i \). By exactly the same argument as used in the proof of Lemma 33.8 using the induction principle (Cohomology of Schemes, Lemma 4.1) we reduce to the case where \(X_0 \) and \(S_0 \) are affine. (First work with opens in \(S_0 \) to reduce to \(S_0 \) affine, then work with opens in \(X_0 \) to reduce to \(X_0 \) affine.) In the affine case the result follows from More on Algebra, Lemma 78.7. The translation into algebra is done by Lemma 33.3. \(\square \)

0DJT \begin{dfn}
Lemma 33.10. \(\text{Let } f : X \to S \text{ be a morphism of schemes which is flat, proper, and of finite presentation. Let } E \in D(O_X) \text{ be } S\text{-perfect. Then } Rf_* E \text{ is a perfect object of } D(O_S) \text{ and its formation commutes with arbitrary base change.} \)
\end{dfn}

0DJU \begin{dfn}
Lemma 33.11. \(\text{Let } f : X \to S \text{ be a morphism of schemes. Let } E, K \in D(O_X). \)
\end{dfn}

Assume

1. \(X \) is quasi-compact and quasi-separated,
2. \(f \) is proper, flat, and of finite presentation,
3. \(E \) is \(S\)-perfect,
4. \(K \) is pseudo-coherent.

Then there exists a pseudo-coherent \(L \in D(O_S) \) such that

\[
Rf_* R\text{Hom}(K,E) = R\text{Hom}(L,O_S)
\]

and the same is true after arbitrary base change: given

\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow{f'} & & \downarrow{f} \\
S' & \xrightarrow{g} & S
\end{array}
\]

cartesian, then we have

\[
Rf_* R\text{Hom}(L(g')^* K, L(g')^* E) = R\text{Hom}(Lg^* L, O_S)
\]
Proof. Since S is quasi-compact and quasi-separated, the same is true for X. By Lemma 18.1 we can write $K = \text{hocolim} K_n$ with K_n perfect and $K_n \to K$ inducing an isomorphism on truncations $\tau_{\geq -n}$. Let K_n^\vee be the dual perfect complex (Cohomology, Lemma 46.4). We obtain an inverse system $\ldots \to K_3^\vee \to K_2^\vee \to K_1^\vee$ of perfect objects. By Lemma 33.5 we see that $K_n^\vee \otimes_{\mathcal{O}_X} E$ is S-perfect. Thus we may apply Lemma 33.10 to $K_n^\vee \otimes_{\mathcal{O}_X} E$ and we obtain an inverse system

$$\ldots \to M_3 \to M_2 \to M_1$$

of perfect complexes on S with

$$M_n = Rf_*(K_n^\vee \otimes_{\mathcal{O}_S} E) = Rf_* R\mathcal{H}om(K_n, E)$$

Moreover, the formation of these complexes commutes with any base change, namely $Lg^* M_n = Rf'_*((L(g')^* K_n)^\vee \otimes_{\mathcal{O}_{X'}} L(g')^* E) = Rf'_* R\mathcal{H}om(L(g')^* K_n, L(g')^* E)$.

As $K_n \to K$ induces an isomorphism on $\tau_{\geq -n}$, we see that $K_n \to K_{n+1}$ induces an isomorphism on $\tau_{\leq -n}$. It follows that $K_{n+1}^\vee \to K_n^\vee$ induces an isomorphism on $\tau_{\leq n}$ as $K_n^\vee = R\mathcal{H}om(K_n, \mathcal{O}_X)$. Suppose that E has tor amplitude in $[a, b]$ as a complex of $f^{-1}\mathcal{O}_Y$-modules. Then the same is true after any base change, see Lemma 21.8. We find that $K_{n+1}^\vee \otimes_{\mathcal{O}_X} E \to K_n^\vee \otimes_{\mathcal{O}_X} E$ induces an isomorphism on $\tau_{\leq n+a}$ and the same is true after any base change. Applying the right derived functor Rf_* we conclude the maps $M_{n+1} \to M_n$ induce isomorphisms on $\tau_{\leq n+a}$ and the same is true after any base change. Choose a distinguished triangle

$$M_{n+1} \to M_n \to C_n \to M_{n+1}[1]$$

Take S' equal to the spectrum of the residue field at a point $s \in S$ and pull back to see that $C_n \otimes_{\mathcal{O}_S} \kappa(s)$ has nonzero cohomology only in degrees $\geq n + a$. By More on Algebra, Lemma 71.6 we see that the perfect complex C_n has tor amplitude in $[n + a, m_n]$ for some integer m_n. In particular, the dual perfect complex C_n^\vee has tor amplitude in $[-m_n, -n - a]$.

Let $L_n = M_n^\vee$ be the dual perfect complex. The conclusion from the discussion in the previous paragraph is that $L_n \to L_{n+1}$ induces isomorphisms on $\tau_{\geq -n-a}$. Thus $L = \text{hocolim} L_n$ is pseudo-coherent, see Lemma 18.1. Since we have

$$R\mathcal{H}om(K, E) = R\mathcal{H}om(\text{hocolim} K_n, E) = R\lim R\mathcal{H}om(K_n, E) = R\lim K_n^\vee \otimes_{\mathcal{O}_X} E$$

(Cohomology, Lemma 46.8) and since $R\lim$ commutes with Rf_* we find that

$$Rf_* R\mathcal{H}om(K, E) = R\lim M_n = R\lim R\mathcal{H}om(L_n, \mathcal{O}_S) = R\mathcal{H}om(L, \mathcal{O}_S)$$

This proves the formula over S. Since the construction of M_n is compatible with base change, the formula continues to hold after any base change. \hfill \square

Remark 33.12. The reader may have noticed the similarity between Lemma 33.11 and Lemma 26.3. Indeed, the pseudo-coherent complex L of Lemma 33.11 may be characterized as the unique pseudo-coherent complex on S such that there are functorial isomorphisms

$$\text{Ext}^i_{\mathcal{O}_S}(L, \mathcal{F}) \to \text{Ext}^i_{\mathcal{O}_X}(K, E \otimes_{\mathcal{O}_X} Lf^* \mathcal{F})$$

compatible with boundary maps for \mathcal{F} ranging over $\text{QCoh}(\mathcal{O}_S)$. If we ever need this we will formulate a precise result here and give a detailed proof.
Remark 33.13. Our Definition 33.1 of a relatively perfect complex is equivalent to the one given in [Lie06] whenever our definition applies. Next, suppose that $f : X \to S$ is only assumed to be locally of finite type (not necessarily flat, nor locally of finite presentation). The definition in the paper cited above is that $E \in D(O_X)$ is relatively perfect if

(A) locally on X the object E should be quasi-isomorphic to a finite complex of S-flat, finitely presented O_X-modules.

On the other hand, the natural generalization of our Definition 33.1 is

(B) E is pseudo-coherent relative to S (More on Morphisms, Definition 51.2) and E locally has finite tor dimension as an object of $D(f^{-1}O_S)$ (Cohomology, Definition 44.1).

The advantage of condition (B) is that it clearly defines a triangulated subcategory of $D(O_X)$, whereas we suspect this is not the case for condition (A). The advantage of condition (A) is that it is easier to work with in particular in regards to limits.

34. The resolution property

This notion is discussed in the paper [Tot04]. It is currently not known if a proper scheme over a field always has the resolution property or if this is false. If you know the answer to this question, please email stacks.project@gmail.com.

We can make the following definition although it scarecely makes sense to consider it for general schemes.

Definition 34.1. Let X be a scheme. We say X has the resolution property if every quasi-coherent O_X-module of finite type is the quotient of a finite locally free O_X-module.

If X is a quasi-compact and quasi-separated scheme, then it suffices to check every O_X-module module of finite presentation (automatically quasi-coherent) is the quotient of a finite locally free O_X-module, see Properties, Lemma 22.8. If X is a Noetherian scheme, then finite type quasi-coherent modules are exactly the coherent O_X-modules, see Cohomology of Schemes, Lemma 9.1.

Lemma 34.2. Let X be a scheme. If X has an ample invertible O_X-module, then X has the resolution property.

Lemma 34.3. Let $f : X \to Y$ be a morphism of schemes. Assume

1. Y is quasi-compact and quasi-separated and has the resolution property,
2. there exists an f-ample invertible module on X.

Then X has the resolution property.

Proof. Let \mathcal{F} be a finite type quasi-coherent O_X-module. Let \mathcal{L} be an f-ample invertible module. Choose an affine open covering $Y = V_1 \cup \ldots \cup V_m$. Set $U_j = f^{-1}(V_j)$. By Properties, Proposition 26.13 for each j we know there exists finitely many maps $s_{j,i} : L^\otimes n \otimes_{O_Y} \mathcal{F}|_{U_j} \to \mathcal{F}|_{U_j}$ which are jointly surjective. Consider the quasi-coherent O_Y-modules

$$\mathcal{H}_n = f_* (\mathcal{F} \otimes_{O_X} \mathcal{L}^\otimes n)$$

5To see this, use Lemma 33.3 and More on Algebra, Lemma 78.4.
We may think of $s_{j,i}$ as a section over V_j of the sheaf $\mathcal{H}_{-n_{j,i}}$. Suppose we can find finite locally free \mathcal{O}_Y-modules $\mathcal{E}_{i,j}$ and maps $\mathcal{E}_{i,j} \to \mathcal{H}_{-n_{j,i}}$, such that $s_{j,i}$ is in the image. Then the corresponding maps

$$f^*\mathcal{E}_{i,j} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n_{j,i}} \to \mathcal{F}$$

are going to be jointly surjective and the lemma is proved. By Properties, Lemma 22.3 for each i,j we can find a finite type quasi-coherent submodule $\mathcal{H}_{i,j} \subset \mathcal{H}_{-n_{j,i}}$, which contains the section $s_{i,j}$ over V_j. Thus using the resolution property of Y to get surjections $\mathcal{E}_{i,j} \to \mathcal{H}_{i,j}$ and we conclude.

Lemma 34.4. Let $f : X \to Y$ be an affine morphism of schemes with Y quasi-compact and quasi-separated. If Y has the resolution property, so does X.

Proof. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module of finite type. The pushforward $f_*\mathcal{F}$ is quasi-coherent, see Schemes, Lemma 24.1. The adjunction map $f^*f_*\mathcal{F} \to \mathcal{F}$ is surjective; this follows from Schemes, Lemma 7.3 after restricting to $f^{-1}(V)$ for $V \subset Y$ affine open. Write $f_*\mathcal{F} = \text{colim} \mathcal{G}_i$ as a filtered colimit with \mathcal{G}_i quasi-coherent \mathcal{O}_Y-modules of finite type, see Properties, Lemma 22.3. Then we see that $\text{colim} f^*\mathcal{G}_i \to \mathcal{F}$ is surjective. Since \mathcal{F} is of finite type and X is quasi-compact, we conclude that for some i the map $f^*\mathcal{G}_i \to \mathcal{F}$ is surjective (details omitted; look at generators on affines). Hence if \mathcal{G}_i is a quotient of a finite locally free \mathcal{O}_Y-module, then \mathcal{F} is a quotient of the pullback which is a finite locally free \mathcal{O}_X-module.

Lemma 34.5. Let X be a scheme. Suppose given

1. a finite affine open covering $X = U_1 \cup \ldots \cup U_m$
2. finite type quasi-coherent ideals \mathcal{I}_j with $V(\mathcal{I}_j) = X \setminus U_j$

Then X has the resolution property if and only if \mathcal{I}_j is the quotient of a finite locally free \mathcal{O}_X-module for $j = 1, \ldots, m$.

Proof. One direction of the lemma is trivial. For the other, say $\mathcal{E}_j \to \mathcal{I}_j$ is a surjection with \mathcal{E}_j finite locally free. In the next paragraph, we deduce to the Noetherian case; we suggest the reader skip it.

The first observation is that $U_j \cap U_{j'}$ is quasi-compact as the complement of the zero scheme of the quasi-coherent finite type ideal $\mathcal{I}_{j'}|U_j$ on the affine scheme U_j, see Properties, Lemma 24.1. Hence X is quasi-compact and quasi-separated, see Schemes, Lemma 21.6. By Limits, Proposition 5.4 we can write $X = \lim X_i$ as the limit of a direct system of Noetherian schemes with affine transition morphisms. For each j we can find an i and a finite type quasi-coherent ideal sheaf $\mathcal{I}_{i,j} \subset \mathcal{O}_{X_j}$ pulling back to \mathcal{I}_j, see Limits, Lemma 10.3. Denoting $U_{i,j} \subset X_i$ the complementary opens, we may assume these are affine for all i,j, see Limits, Lemma 4.13. Similarly, we may assume the maps $\mathcal{E}_j \to \mathcal{I}_j$ are the pullbacks of surjections $\mathcal{E}_{i,j} \to \mathcal{I}_{i,j}$ with $\mathcal{E}_{i,j}$ finite locally free on X_i, see Limits, Lemmas 10.3 and 10.2. Using this and Lemma 34.4 we reduce to the case of a Noetherian scheme.

Assume X is Noetherian. For every coherent module \mathcal{F} we can choose a finite list of sections $s_{jk} \in \mathcal{F}(U_j)$, $k = 1, \ldots, e_j$ which generate the restriction of \mathcal{F} to U_j. By Cohomology of Schemes, Lemma 10.4 we can extend s_{jk} to a map $s_{jk} : \mathcal{I}_{i,j}^{n_{jk}} \to \mathcal{F}$ for some $n_{jk} \geq 1$. Then we can consider the compositions

$$\mathcal{E}_j^{\otimes n_{jk}} \to \mathcal{I}_{i,j}^{n_{jk}} \to \mathcal{F}$$

to conclude.
\textbf{Lemma 34.6.} Let X be a quasi-compact, regular scheme with affine diagonal. Then X has the resolution property.

\textbf{Proof.} Observe that X is a finite disjoint union of integral schemes (Properties, Lemmas 9.4 and 7.6). Thus we may assume that X is integral as well as Noetherian, regular, and having affine diagonal. Choose an affine open covering $X = U_1 \cup \ldots \cup U_m$. We may and do assume U_j nonempty for all j. By More on Algebra, Lemma 110.2 the local rings of X are UFDs and hence by Divisors, Lemma 16.7 we can find an effective Cartier divisors $D_j \subset X$ whose complement is U_j. Then the ideal sheaf of D_j is invertible, hence a finite locally free module and we conclude that X has the resolution property by Lemma 34.5. \hfill \square

\textbf{Lemma 34.7.} Let $X = \text{lim } X_i$ be a limit of a direct system of quasi-compact and quasi-separated schemes with affine transition morphisms. Then X has the resolution property if and only if X_i has the resolution properties for some i.

\textbf{Proof.} If X_i has the resolution property, then X does by Lemma 34.4. Assume X has the resolution property. Choose a finite affine open covering $X = U_1 \cup \ldots \cup U_m$. For each j choose a finite type quasi-coherent sheaf of ideals $I_j \subset \mathcal{O}_X$ such that $X \setminus V(I_j) = U_j$, see Properties, Lemma 24.1. Choose finite locally free \mathcal{O}_X-modules and surjections $\mathcal{E}_j \to I_j$. By Limits, Lemmas 10.3 and 10.2 we can find an i and finite locally free \mathcal{O}_{X_i}-modules $\mathcal{E}_{i,j}$ and maps $\mathcal{E}_{i,j} \to \mathcal{O}_{X_i}$ whose base changes to X recover the maps $\mathcal{E}_j \to I_j$, $j = 1, \ldots, m$. Denote $I_{i,j} \subset \mathcal{O}_{X_i}$ the image of these maps. Set $U_{i,j} = X_i \setminus V(I_{i,j})$. After increasing i we may assume $U_{i,j}$ is affine, see Limits, Lemma 4.13 Then we conclude that X_i has the resolution property by Lemma 34.5. \hfill \square

\textbf{Lemma 34.8.} Let X be a quasi-compact and quasi-separated scheme with the resolution property. Then X has affine diagonal.

\textbf{Proof.} Combining Limits, Proposition 5.4 and Lemma 34.7 this reduces to the case where X is Noetherian (small detail omitted). Assume X is Noetherian. Recall that $X \times X$ is covered by the affine opens $U \times V$ for affine opens U, V of X, see Schemes, Section 17. Hence to show that the diagonal $\Delta : X \to X \times X$ is affine, it suffices to show that $U \cap V = \Delta^{-1}(U \times V)$ is affine for all affine opens U, V of X, see Morphisms, Lemma 11.3. In particular, it suffices to show that the inclusion morphism $j : U \to X$ is affine if U is an affine open of X. By Cohomology of Schemes, Lemma 3.4 it suffices to show that $R^1j_*\mathcal{G} = 0$ for any quasi-coherent \mathcal{O}_U-module \mathcal{G}. By Proposition 7.3 (this is where we use that we’ve reduced to the Noetherian case) we can represent $Rj_*\mathcal{G}$ by a complex \mathcal{H}^\bullet of quasi-coherent \mathcal{O}_X-modules. Assume $H^1(\mathcal{H}^\bullet) = \text{Ker}(\mathcal{H}^1 \to \mathcal{H}^2)/\text{Im}(\mathcal{H}^0 \to \mathcal{H}^1)$ is nonzero in order to get a contradiction. Then we can find a coherent \mathcal{O}_X-module \mathcal{F} and a map

$$\mathcal{F} \longrightarrow \text{Ker}(\mathcal{H}^1 \to \mathcal{H}^2)$$

such that the composition with the projection onto $H^1(\mathcal{H}^\bullet)$ is nonzero. Namely, we can write $\text{Ker}(\mathcal{H}^1 \to \mathcal{H}^2)$ as the filtered union of its coherent submodules by Properties, Lemma 22.3 and then one of these will do the job. Next, we choose
a finite locally free \(O_X \)-module \(\mathcal{E} \) and a surjection \(\mathcal{E} \to \mathcal{F} \) using the resolution property of \(X \). This produces a map in the derived category

\[
\mathcal{E}[-1] \longrightarrow Rj_*\mathcal{G}
\]

which is nonzero on cohomology sheaves and hence nonzero in \(D(O_X) \). By adjunction, this is the same thing as a map

\[
j^*\mathcal{E}[-1] \to \mathcal{G}
\]

nonzero in \(D(O_U) \). Since \(\mathcal{E} \) is finite locally free this is the same thing as a nonzero element of

\[
H^1(U, j^*\mathcal{E}^\vee \otimes O_U \mathcal{G})
\]

where \(\mathcal{E}^\vee = \mathcal{H}om_{O_X}(\mathcal{E}, O_X) \) is the dual finite locally free module. However, this group is zero by Cohomology of Schemes, Lemma 2.2 which is the desired contradiction. (If in doubt about the step using duals, please see the more general Cohomology, Lemma 46.4.)

\[\square\]

35. The resolution property and perfect complexes

0F8D In this section we discuss the relationship between perfect complexes and strictly perfect complexes on schemes which have the resolution property.

0F8E **Lemma 35.1.** Let \(X \) be a quasi-compact and quasi-separated scheme with the resolution property. Let \(\mathcal{F}^* \) be a bounded below complex of quasi-coherent \(O_X \)-modules representing a perfect object of \(D(O_X) \). Then there exists a bounded complex \(\mathcal{E}^* \) of finite locally free \(O_X \)-modules and a quasi-isomorphism \(\mathcal{E}^* \to \mathcal{F}^* \).

Proof. Let \(a, b \in \mathbb{Z} \) be integers such that \(\mathcal{F}^* \) has tor amplitude in \([a, b] \) and such that \(\mathcal{F}^n = 0 \) for \(n < a \). The existence of such a pair of integers follows from Cohomology, Lemma [45.5] and the fact that \(X \) is quasi-compact. If \(b < a \), then \(\mathcal{F}^* \) is zero in the derived category and the lemma holds. We will prove by induction on \(b - a \geq 0 \) that there exists a complex \(\mathcal{E}^a \to \cdots \to \mathcal{E}^b \) with \(\mathcal{E}^i \) finite locally free and a quasi-isomorphism \(\mathcal{E}^* \to \mathcal{F}^* \).

The base case is the case \(b - a = 0 \). In this case \(H^b(\mathcal{F}^*) = H^a(\mathcal{F}^*) = \text{Ker}(\mathcal{F}^a \to \mathcal{F}^{a+1}) \) is finite locally free. Namely, it is a finitely presented \(O_X \)-module of tor dimension 0 and hence finite locally free. See Cohomology, Lemmas [45.5] and [43.9] and Properties, Lemma [20.2]. Thus we can take \(\mathcal{E}^* \) to be \(H^b(\mathcal{F}^*) \) sitting in degree \(b \). The rest of the proof is dedicated to the induction step.

Assume \(b > a \). Observe that

\[
H^b(\mathcal{F}^*) = \text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1})/\text{Im}(\mathcal{F}^{b-1} \to \mathcal{F}^b)
\]

is a finite type quasi-coherent \(O_X \)-module, see Cohomology, Lemmas [45.5] and [43.9]. Then we can find a coherent \(O_X \)-module \(\mathcal{F} \) and a map

\[
\mathcal{F} \longrightarrow \text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1})
\]

such that the composition with the projection onto \(H^b(\mathcal{F}^*) \) is surjective. Namely, we can write \(\text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1}) \) as the filtered union of its coherent submodules by Properties, Lemma [22.3] and then one of these will do the job. Next, we choose a finite locally free \(O_X \)-module \(\mathcal{E}^b \) and a surjection \(\mathcal{E}^b \to \mathcal{F} \) using the resolution property of \(X \). Consider the map of complexes

\[
\alpha : \mathcal{E}^b[-b] \to \mathcal{F}^*
\]
and its cone \(C(\alpha^\bullet) \), see Derived Categories, Definition 9.1. We observe that \(C(\alpha^\bullet) \)
\(\)is nonzero only in degrees \(\geq a \), has tor amplitude in \([a, b] \) by Cohomology, Lemma 44.6 and has \(H^b(C(\alpha^\bullet)) = 0 \) by construction. Thus we actually find that \(C(\alpha^\bullet) \)
\(\)has tor amplitude in \([a, b - 1] \). Hence the induction hypothesis applies to \(C(\alpha^\bullet) \)
\(\)and we find a map of complexes
\[
(\mathcal{E}^a \to \ldots \to \mathcal{E}^{b-1}) \to C(\alpha^\bullet)
\]
with properties as stated in the induction hypothesis. Unwinding the definition of the cone this gives a commutative diagram
\[
\begin{array}{c}
\ldots \to \mathcal{E}^{b-2} \to \mathcal{E}^{b-1} \to 0 \to \ldots \\
\downarrow \quad \downarrow \quad \downarrow \\
\ldots \to \mathcal{F}^{b-2} \to \mathcal{F}^{b-1} \oplus \mathcal{E}^b \to \mathcal{F}^b \to \ldots
\end{array}
\]
It is clear that we obtain a map of complexes \((\mathcal{E}^a \to \ldots \to \mathcal{E}^b) \to \mathcal{F}^\bullet\). We omit the verification that this map is a quasi-isomorphism.

Lemma 35.2. Let \(X \) be a quasi-compact and quasi-separated scheme with the resolution property. Then every perfect object of \(D(\mathcal{O}_X) \) can be represented by a bounded complex of finite locally free \(\mathcal{O}_X \)-modules.

Proof. Let \(E \) be a perfect object of \(D(\mathcal{O}_X) \). By Lemma 34.8 we see that \(X \) has affine diagonal. Hence by Proposition 6.6 we can represent \(E \) by a complex \(\mathcal{F}^\bullet \)
\(\)of quasi-coherent \(\mathcal{O}_X \)-modules. Observe that \(E \) is in \(D^b(\mathcal{O}_X) \) because \(X \) is quasi-compact. Hence \(\tau_{\geq n} \mathcal{F}^\bullet \)
\(\)is a bounded below complex of quasi-coherent \(\mathcal{O}_X \)-modules which represents \(E \) if \(n \ll 0 \). Thus we may apply Lemma 35.1 to conclude.

Lemma 35.3. Let \(X \) be a quasi-compact and quasi-separated scheme with the resolution property. Let \(\mathcal{E}^\bullet \) and \(\mathcal{F}^\bullet \)
\(\)be finite complexes of finite locally free \(\mathcal{O}_X \)-modules. Then any \(\alpha \in \text{Hom}_{D(\mathcal{O}_X)}(\mathcal{E}^\bullet, \mathcal{F}^\bullet) \) can be represented by a diagram
\[
\mathcal{E}^\bullet \leftarrow \mathcal{G}^\bullet \to \mathcal{F}^\bullet
\]
where \(\mathcal{G}^\bullet \)
\(\)is a bounded complex of finite locally free \(\mathcal{O}_X \)-modules and where \(\mathcal{G}^\bullet \to \mathcal{E}^\bullet \)
\(\)is a quasi-isomorphism.

Proof. By Lemma 34.8 we see that \(X \) has affine diagonal. Hence by Proposition 6.6 we can represent \(\alpha \) by a diagram
\[
\mathcal{E}^\bullet \leftarrow \mathcal{H}^\bullet \to \mathcal{F}^\bullet
\]
where \(\mathcal{H}^\bullet \)
\(\)is a complex of quasi-coherent \(\mathcal{O}_X \)-modules and where \(\mathcal{H}^\bullet \to \mathcal{E}^\bullet \)
\(\)is a quasi-isomorphism. For \(n \ll 0 \) the maps \(\mathcal{H}^\bullet \to \mathcal{E}^\bullet \) and \(\mathcal{H}^\bullet \to \mathcal{F}^\bullet \)
\(\)factor through the quasi-isomorphism \(\mathcal{H}^\bullet \to \tau_{\geq n} \mathcal{H}^\bullet \)
\(\)simply because \(\mathcal{E}^\bullet \) and \(\mathcal{F}^\bullet \)
\(\)are bounded complexes. Thus we may replace \(\mathcal{H}^\bullet \) by \(\tau_{\geq n} \mathcal{H}^\bullet \) and assume that \(\mathcal{H}^\bullet \)
\(\)is bounded below. Then we may apply Lemma 35.1 to conclude.

Lemma 35.4. Let \(X \) be a quasi-compact and quasi-separated scheme with the resolution property. Let \(\mathcal{E}^\bullet \) and \(\mathcal{F}^\bullet \)
\(\)be finite complexes of finite locally free \(\mathcal{O}_X \)-modules. Let \(\alpha^\bullet, \beta^\bullet : \mathcal{E}^\bullet \to \mathcal{F}^\bullet \)
\(\)be two maps of complexes defining the same map in \(D(\mathcal{O}_X) \). Then there exists a quasi-isomorphism \(\gamma^\bullet : \mathcal{G}^\bullet \to \mathcal{E}^\bullet \)
\(\)where \(\mathcal{G}^\bullet \)
\(\)is a bounded complex of finite locally free \(\mathcal{O}_X \)-modules such that \(\alpha^\bullet \circ \gamma^\bullet \) and \(\beta^\bullet \circ \gamma^\bullet \)
\(\)are homotopic maps of complexes.
Proof. By Lemma 34.8 we see that X has affine diagonal. Hence by Proposition 6.6 (and the definition of the derived category) there exists a quasi-isomorphism $\gamma^\bullet : G^\bullet \to E^\bullet$ where G^\bullet is a complex of quasi-coherent \mathcal{O}_X-modules such that $\alpha^\bullet \circ \gamma^\bullet$ and $\beta^\bullet \circ \gamma^\bullet$ are homotopic maps of complexes. Choose a homotopy $h^i : G^i \to F^{i-1}$ witnessing this fact. Choose $n \ll 0$. Then the map γ^\bullet factors canonically over the quotient map $G^\bullet \to \tau_{\geq n} G^\bullet$ as E^\bullet is bounded below. For the exact same reason the maps h^i will factor over the surjections $G^i \to (\tau_{\geq n} G)^i$. Hence we see that we may replace G^\bullet by $\tau_{\geq n} G^\bullet$. Then we may apply Lemma 35.1 to conclude. □

Proposition 35.5. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Denote

1. A the additive category of finite locally free \mathcal{O}_X-modules,
2. $K^b(A)$ the homotopy category of bounded complexes in A, see Derived Categories, Section 8, and
3. $D_{\text{perf}}(\mathcal{O}_X)$ the strictly full, saturated, triangulated subcategory of $D(\mathcal{O}_X)$ consisting of perfect objects.

With this notation the obvious functor

$$K^b(A) \to D_{\text{perf}}(\mathcal{O}_X)$$

is an exact functor of triangulated categories which factors through an equivalence $S^{-1}K^b(A) \to D_{\text{perf}}(\mathcal{O}_X)$ of triangulated categories where S is the saturated multiplicative system of quasi-isomorphisms in $K^b(A)$.

Proof. If you can parse the statement of the proposition, then please skip this first paragraph. For some of the definitions used, please see Derived Categories, Definition 3.4 (triangulated subcategory), Derived Categories, Definition 5.1 (multiplicative system compatible with the triangulated structure), and Categories, Definition 27.20 (saturated multiplicative system). Observe that $D_{\text{perf}}(\mathcal{O}_X)$ is a saturated triangulated subcategory of $D(\mathcal{O}_X)$ by Cohomology, Lemmas 45.7 and 45.9. Also, note that $K^b(A)$ is a triangulated category, see Derived Categories, Lemma 10.5.

It is clear that the functor sends distinguished triangles to distinguished triangles, i.e., is exact. Then S is a saturated multiplicative system compatible with the triangulated structure on $K^b(A)$ by Derived Categories, Lemma 5.3. Hence the localization $S^{-1}K^b(A)$ exists and is a triangulated category by Derived Categories, Proposition 5.5. We get an exact factorization $S^{-1}K^b(A) \to D_{\text{perf}}(\mathcal{O}_X)$ by Derived Categories, Lemma 5.6. By Lemmas 35.2, 35.3, and 35.4 this functor is an equivalence. Then finally the functor $S^{-1}K^b(A) \to D_{\text{perf}}(\mathcal{O}_X)$ is an equivalence of triangulated categories (in the sense that distinguished triangles correspond) by Derived Categories, Lemma 1.18.

36. K-groups

A tiny bit about K_0 of various categories associated to schemes. Previous material can be found in Algebra, Section 54, Homology, Section 11, Derived Categories, Section 28, and More on Algebra, Lemma 109.2. Analogous to Algebra, Section 54 we will define two K-groups $K'_0(X)$ and $K_0(X)$ for any Noetherian scheme X. The first will use coherent \mathcal{O}_X-modules and the second will use finite locally free \mathcal{O}_X-modules.
Lemma 36.1. Let X be a Noetherian scheme. Then

$$K_0(\text{Coh}(\mathcal{O}_X)) = K_0(D^b(\text{Coh}(\mathcal{O}_X))) = K_0(D^b_{\text{Coh}}(\mathcal{O}_X))$$

Proof. The first equality is Derived Categories, Lemma 28.2. The second equality holds because $D^b(\text{Coh}(\mathcal{O}_X)) = D^b_{\text{Coh}}(\mathcal{O}_X)$ by Proposition 10.2. □

Here is the definition.

Definition 36.2. Let X be a scheme.

(1) We denote $K_0(X)$ the Grothendieck group of X. It is the zeroth K-group of the strictly full, saturated, triangulated subcategory $D_{\text{perf}}(\mathcal{O}_X)$ of $D(\mathcal{O}_X)$ consisting of perfect objects. In a formula

$$K_0(X) = K_0(D_{\text{perf}}(\mathcal{O}_X))$$

(2) If X is locally Noetherian, then we denote $K'_0(X)$ the Grothendieck group of coherent sheaves on X. It is the is the zeroth K-group of the abelian category of coherent \mathcal{O}_X-modules. In a formula

$$K'_0(X) = K_0(\text{Coh}(\mathcal{O}_X))$$

We will show that our definition of $K_0(X)$ agrees with the often used definition in terms of finite locally free modules if X has the resolution property (for example if X has an ample invertible module). See Lemma 36.5.

Lemma 36.3. Let $X = \text{Spec}(R)$ be an affine scheme. Then $K_0(X) = K_0(R)$ and if R is Noetherian then $K'_0(X) = K'_0(R)$.

Proof. Recall that $K'_0(R)$ and $K_0(R)$ have been defined in Algebra, Section 54. By More on Algebra, Lemma 109.2 we have $K_0(R) = K_0(D_{\text{perf}}(R))$. By Lemmas 9.7 and 3.5 we have $D_{\text{perf}}(R) = D_{\text{perf}}(\mathcal{O}_X)$. This proves the equality $K_0(R) = K_0(X)$.

The equality $K'_0(R) = K'_0(X)$ holds because $\text{Coh}(\mathcal{O}_X)$ is equivalent to the category of finite R-modules by Cohomology of Schemes, Lemma 9.1. Moreover it is clear that $K'_0(R)$ is the zeroth K-group of the category of finite R-modules from the definitions. □

Let X be a Noetherian scheme. Then both $K'_0(X)$ and $K_0(X)$ are defined. In this case there is a canonical map

$$K_0(X) = K_0(D_{\text{perf}}(\mathcal{O}_X)) \rightarrow K_0(D^b_{\text{Coh}}(\mathcal{O}_X)) = K'_0(X)$$

Namely, perfect complexes are in $D^b_{\text{Coh}}(\mathcal{O}_X)$ (by Lemma 9.3), the inclusion functor $D_{\text{perf}}(\mathcal{O}_X) \rightarrow D^b_{\text{Coh}}(\mathcal{O}_X)$ induces a map on zeroth K-groups (Derived Categories, Lemma 28.3), and we have the equality on the right by Lemma 36.1.

Lemma 36.4. Let X be a Noetherian regular scheme of finite dimension. Then the map $K_0(X) \rightarrow K'_0(X)$ is an isomorphism.

Proof. Follows immediately from Lemma 10.8 and our construction of the map $K_0(X) \rightarrow K'_0(X)$ above. □
Let X be a scheme. Let us denote $\text{Vect}(X)$ the category of finite locally free \mathcal{O}_X-modules. Although $\text{Vect}(X)$ isn’t an abelian category in general, it is clear what a short exact sequence of $\text{Vect}(X)$ is. Denote $K_0(\text{Vect}(X))$ the unique abelian group with the following properties:

1. For every finite locally free \mathcal{O}_X-module \mathcal{E} there is given an element $[\mathcal{E}]$ in $K_0(\text{Vect}(X))$,
2. for every short exact sequence $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ of finite locally free \mathcal{O}_X-modules we have the relation $[\mathcal{E}] = [\mathcal{E}'] + [\mathcal{E}'']$ in $K_0(\text{Vect}(X))$,
3. the group $K_0(\text{Vect}(X))$ is generated by the elements $[\mathcal{E}]$, and
4. all relations in $K_0(\text{Vect}(X))$ among the generators $[\mathcal{E}]$ are \mathbb{Z}-linear combinations of the relations coming from exact sequences as above.

We omit the detailed construction of $K_0(\text{Vect}(X))$. There is a natural map

$$K_0(\text{Vect}(X)) \rightarrow K_0(X)$$

Namely, given a finite locally free \mathcal{O}_X-module \mathcal{E} let us denote $\mathcal{E}[0]$ the perfect complex on X which has \mathcal{E} sitting in degree 0 and zero in other degrees. Given a short exact sequence $0 \to \mathcal{E} \to \mathcal{E}' \to \mathcal{E}'' \to 0$ of finite locally free \mathcal{O}_X-modules we obtain a distinguished triangle $\mathcal{E}[0] \to \mathcal{E}'[0] \to \mathcal{E}''[0] \to \mathcal{E}[1]$, see Derived Categories, Section 12. This shows that we obtain a map $K_0(\text{Vect}(X)) \rightarrow K_0(\text{D}_{\text{perf}}(\mathcal{O}_X)) = K_0(X)$ by sending $[\mathcal{E}]$ to $[\mathcal{E}[0]]$ with apologies for the horrendous notation.

Lemma 36.5. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Then the map $K_0(\text{Vect}(X)) \rightarrow K_0(X)$ is an isomorphism.

Proof. This lemma will follow in a straightforward manner from Lemmas 35.2, 35.3 and 35.4 whose results we will use without further mention. Let us construct an inverse map

$$c : K_0(X) = K_0(\text{D}_{\text{perf}}(\mathcal{O}_X)) \rightarrow K_0(\text{Vect}(X))$$

Namely, any object of $D_{\text{perf}}(\mathcal{O}_X)$ can be represented by a bounded complex \mathcal{E}^\bullet of finite locally free \mathcal{O}_X-modules. Then we set

$$c(\mathcal{E}^\bullet) = \sum (-1)^i [\mathcal{E}^i]$$

Of course we have to show that this is well defined. For the moment we view c as a map defined on bounded complexes of finite locally free \mathcal{O}_X-modules.

Suppose that $\mathcal{E}^\bullet \rightarrow \mathcal{F}^\bullet$ is a surjective map of bounded complexes of finite locally free \mathcal{O}_X-modules. Let \mathcal{K}^\bullet be the kernel. Then we obtain short exact sequences of \mathcal{O}_X-modules

$$0 \rightarrow \mathcal{K}^n \rightarrow \mathcal{E}^n \rightarrow \mathcal{F}^n \rightarrow 0$$

which are locally split because \mathcal{F}^n is finite locally free. Hence \mathcal{K}^\bullet is also a bounded complex of finite locally free \mathcal{O}_X-modules and we have $c(\mathcal{E}^\bullet) = c(\mathcal{K}^\bullet) + c(\mathcal{F}^\bullet)$ in $K_0(\text{Vect}(X))$.\footnote{The correct generality here would be to define K_0 for any exact category, see Injectives, Remark 9.6}
Suppose given a bounded complex \mathcal{E}^\bullet of finite locally free \mathcal{O}_X-modules which is acyclic. Say $\mathcal{E}^n = 0$ for $n \notin [a, b]$. Then we can break \mathcal{E}^\bullet into short exact sequences

\[
0 \to \mathcal{E}^a \to \mathcal{E}^{a+1} \to \mathcal{F}^{a+1} \to 0,
\]
\[
0 \to \mathcal{F}^{a+1} \to \mathcal{E}^{a+2} \to \mathcal{F}^{a+2} \to 0,
\]
\[
0 \to \mathcal{F}^{b-3} \to \mathcal{E}^{b-2} \to \mathcal{F}^{b-2} \to 0,
\]
\[
0 \to \mathcal{F}^{b-2} \to \mathcal{E}^{b-1} \to \mathcal{E}^b \to 0
\]

Arguing by descending induction we see that $\mathcal{F}^{b-2}, \ldots, \mathcal{F}^{a+1}$ are finite locally free \mathcal{O}_X-modules, and

\[
c(\mathcal{E}^\bullet) = \sum (-1)^n[\mathcal{E}^n] = \sum (-1)^n([\mathcal{F}^{a+1}] + [\mathcal{F}^n]) = 0
\]

Thus our construction gives zero on acyclic complexes.

It follows from the results of the preceding two paragraphs that c is well defined. Namely, suppose the bounded complexes \mathcal{E}^\bullet and \mathcal{F}^\bullet of finite locally free \mathcal{O}_X-modules represent the same object of $D(\mathcal{O}_X)$. Then we can find quasi-isomorphisms $a : \mathcal{G}^\bullet \to \mathcal{E}^\bullet$ and $b : \mathcal{G}^\bullet \to \mathcal{F}^\bullet$ with \mathcal{G}^\bullet bounded complex of finite locally free \mathcal{O}_X-modules. We obtain a short exact sequence of complexes

\[
0 \to \mathcal{E}^\bullet \to C(a)^\bullet \to \mathcal{G}^\bullet[1] \to 0
\]

see Derived Categories, Definition 28.6. Since a is a quasi-isomorphism, the cone $C(a)^\bullet$ is acyclic (this follows for example from the discussion in Derived Categories, Section 28). Hence

\[
0 = c(C(f)^\bullet) = c(\mathcal{E}^\bullet) + c(\mathcal{G}^\bullet[1]) = c(\mathcal{E}^\bullet) - c(\mathcal{G}^\bullet)
\]

as desired. The same argument using b shows that $0 = c(\mathcal{F}^\bullet) - c(\mathcal{G}^\bullet)$. Hence we find that $c(\mathcal{E}^\bullet) = c(\mathcal{F}^\bullet)$ and c is well defined.

A similar argument using the cone on a map $\mathcal{E}^\bullet \to \mathcal{F}^\bullet$ of bounded complexes of finite locally free \mathcal{O}_X-modules shows that $c(Y) = c(X) + c(Z)$ if $X \to Y \to Z$ is a distinguished triangle in $D_{perf}(\mathcal{O}_X)$. Details omitted. Thus we get the desired homomorphism of abelian groups $c : K_0(X) \to K_0(\text{Vect}(X))$. It is clear that the composition $K_0(\text{Vect}(X)) \to K_0(\mathcal{O}_X) \to K_0(\text{Vect}(X))$ is the identity. On the other hand, let \mathcal{E}^\bullet be a bounded complex of finite locally free \mathcal{O}_X-modules. Then the the existence of the distinguished triangles of “stupid truncations” (see Homology, Section 15)

\[
s_{\geq n}^n\mathcal{E}^\bullet \to s_{\geq n-1}^n\mathcal{E}^\bullet \to \mathcal{E}^{n-1}[-n+1] \to (s_{\geq n}^n\mathcal{E}^\bullet)[1]
\]

and induction show that

\[
[k] = \sum (-1)^i[k_i^i][\mathcal{E}^i[0]]
\]

in $K_0(X) = K_0(D_{perf}(\mathcal{O}_X))$ with apologies for the notation. Hence the map $K_0(\text{Vect}(X)) \to K_0(D_{perf}(\mathcal{O}_X)) = K_0(X)$ is surjective which finishes the proof. □
Let $K \otimes (L \otimes M)$ we see that this product is associative. Finally, the unit of $K_0(X)$ is the element $1 = [O_X]$.

If $Vect(X)$ and $K_0(Vect(X))$ are as above, then it is clearly the case that $K_0(Vect(X))$ also has a ring structure: if E and F are finite locally free O_X-modules, then we set

$$[E] \cdot [F] = [E \otimes_{O_X} F]$$

The reader easily verifies that this indeed defines a bilinear commutative, associative product. Details omitted. The map constructed above is a ring map with these definitions.

Now assume X is Noetherian. The derived tensor product also produces a map

$$\boxtimes = \otimes^L_{O_X} : D_{perf}(O_X) \times D^b_{Coh}(O_X) \to D^b_{Coh}(O_X)$$

Again using Derived Categories, Lemma 28.6 we obtain a bilinear multiplication $K_0(X) \times K'_0(X) \to K'_0(X)$ since $K'_0(X) = K_0(D^b_{Coh}(O_X))$ by Lemma 36.1. The reader easily shows that this gives $K'_0(X)$ the structure of a module over the ring $K_0(X)$.

Remark 36.7. Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes. There is a map

$$f_* : K'_0(X) \to K'_0(Y)$$

which sends $[F]$ to

$$\bigoplus_{i \geq 0} R^{2i}f_* F - \bigoplus_{i \geq 0} R^{2i+1}f_* F$$

This is well defined because the sheaves $R^if_* F$ are coherent (Cohomology of Schemes, Lemma 16.3), because locally only a finite number are nonzero, and because a short exact sequence of coherent sheaves on X produces a long exact sequence of R^if_* on Y. If Y is quasi-compact (the only case most often used in practice), then we can rewrite the above as

$$f_* [F] = \sum (-1)^i [R^i f_* F] = [Rf_* F]$$

where we have used the equality $K'_0(Y) = K_0(D^b_{Coh}(Y))$ from Lemma 36.1.

Lemma 36.8. Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes. Then we have $f_*(\alpha \cdot f^* \beta) = f_* \alpha \cdot f^* \beta$ for $\alpha \in K'_0(X)$ and $\beta \in K_0(Y)$.

Proof. Follows from Lemma 21.1 the discussion in Remark 36.7 and the definition of the product $K'_0(X) \times K'_0(X) \to K'_0(X)$ in Remark 36.6.

Remark 36.9. Let X be a scheme. Let $Z \subset X$ be a closed subscheme. Consider the strictly full, saturated, triangulated subcategory

$$D_{Z,perf}(O_X) \subset D(O_X)$$

consisting of perfect complexes of O_X-modules whose cohomology sheaves are set-theoretically supported on Z. The zeroth K-group $K_0(D_{Z,perf}(O_X))$ of this triangulated category is sometimes denoted $K_Z(X)$ or $K_{0,Z}(X)$. Using derived tensor product exactly as in Remark 36.6 we see that $K_0(D_{Z,perf}(O_X))$ has a multiplication which is associative and commutative, but in general $K_0(D_{Z,perf}(O_X))$ doesn’t have a unit.
37. Determinants of complexes

This section is the continuation of More on Algebra, Section 111. For any ringed space \((X, \mathcal{O}_X)\) there is a functor

\[
\text{det} : \left\{ \begin{array}{c}
\text{category of perfect complexes} \\
\text{morphisms are isomorphisms}
\end{array} \right\} \longrightarrow \left\{ \begin{array}{c}
\text{category of invertible modules} \\
\text{morphisms are isomorphisms}
\end{array} \right\}
\]

Moreover, given an object \((L, F)\) of the filtered derived category \(DF(\mathcal{O}_X)\) whose filtration is finite and whose graded parts are perfect complexes, there is a canonical isomorphism \(\text{det}(\text{gr} L) \to \text{det}(L)\). See [KM76] for the original exposition. We will add this material later (insert future reference).

For the moment we will present an ad hoc construction in the case where \(X\) is a scheme and where we consider perfect objects \(L\) in \(D(\mathcal{O}_X)\) of tor-amplitude in \([-1, 0]\).

Lemma 37.1. Let \(X\) be a scheme. There is a functor

\[
\text{det} : \left\{ \begin{array}{c}
\text{category of perfect complexes} \\
\text{with tor amplitude in } [-1, 0] \\
\text{morphisms are isomorphisms}
\end{array} \right\} \longrightarrow \left\{ \begin{array}{c}
\text{category of invertible modules} \\
\text{morphisms are isomorphisms}
\end{array} \right\}
\]

In addition, given a rank 0 perfect object \(L\) of \(D(\mathcal{O}_X)\) with tor-amplitude in \([-1, 0]\) there is a canonical element \(\delta(L) \in \Gamma(X, \text{det}(L))\) such that for any isomorphism \(a : L \to K\) in \(D(\mathcal{O}_X)\) we have \(\text{det}(a)(\delta(L)) = \delta(K)\). Moreover, the construction is affine locally given by the construction of More on Algebra, Section 111.

Proof. Let \(L\) be an object of the left hand side. If \(\text{Spec}(A) = U \subset X\) is an affine open, then \(L|_U\) corresponds to a perfect complex \(L^*\) of \(A\)-modules with tor-amplitude in \([-1, 0]\), see Lemmas 3.5, 9.4, and 9.7. Then we can consider the invertible \(A\)-module \(\text{det}(L^*)\) constructed in More on Algebra, Lemma 111.4. If \(\text{Spec}(B) = V \subset U\) is another affine open contained in \(U\), then \(\text{det}(L^*) \otimes_A B = \text{det}(L^* \otimes_A B)\) and hence this construction is compatible with restriction mappings (see Lemma 3.8 and note \(A \to B\) is flat). Thus we can glue these invertible modules to obtain an invertible module \(\text{det}(L)\) on \(X\). The functoriality and canonical sections are constructed in exactly the same manner. Details omitted. \(\square\)

Remark 37.2. The construction of Lemma 37.1 is compatible with pullbacks. More precisely, given a morphism \(f : X \to Y\) of schemes and a perfect object \(K\) of \(D(\mathcal{O}_Y)\) of tor-amplitude in \([-1, 0]\) then \(Lf^*K\) is a perfect object \(K\) of \(D(\mathcal{O}_X)\) of tor-amplitude in \([-1, 0]\) and we have a canonical identification

\[
f^* \delta(K) \longrightarrow \text{det}(Lf^*K)
\]

Moreover, if \(K\) has rank 0, then \(\delta(K)\) pulls back to \(\delta(Lf^*K)\) via this map. This is clear from the affine local construction of the determinant.

38. Other chapters

<table>
<thead>
<tr>
<th>Preliminaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Introduction</td>
</tr>
<tr>
<td>(2) Conventions</td>
</tr>
<tr>
<td>(3) Set Theory</td>
</tr>
<tr>
<td>(4) Categories</td>
</tr>
<tr>
<td>(5) Topology</td>
</tr>
<tr>
<td>(6) Sheaves on Spaces</td>
</tr>
<tr>
<td>(7) Sites and Sheaves</td>
</tr>
<tr>
<td>(8) Stacks</td>
</tr>
<tr>
<td>(9) Fields</td>
</tr>
<tr>
<td>(10)</td>
</tr>
<tr>
<td>(11)</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>(13)</td>
</tr>
<tr>
<td>(14)</td>
</tr>
<tr>
<td>(15)</td>
</tr>
<tr>
<td>(16)</td>
</tr>
<tr>
<td>(17)</td>
</tr>
<tr>
<td>(18)</td>
</tr>
<tr>
<td>(19)</td>
</tr>
<tr>
<td>(20)</td>
</tr>
<tr>
<td>(21)</td>
</tr>
<tr>
<td>(22)</td>
</tr>
<tr>
<td>(23)</td>
</tr>
<tr>
<td>(24)</td>
</tr>
<tr>
<td>(25)</td>
</tr>
<tr>
<td>(26)</td>
</tr>
<tr>
<td>(27)</td>
</tr>
<tr>
<td>(28)</td>
</tr>
<tr>
<td>(29)</td>
</tr>
<tr>
<td>(30)</td>
</tr>
<tr>
<td>(31)</td>
</tr>
<tr>
<td>(32)</td>
</tr>
<tr>
<td>(33)</td>
</tr>
<tr>
<td>(34)</td>
</tr>
<tr>
<td>(35)</td>
</tr>
<tr>
<td>(36)</td>
</tr>
<tr>
<td>(37)</td>
</tr>
<tr>
<td>(38)</td>
</tr>
<tr>
<td>(39)</td>
</tr>
<tr>
<td>(40)</td>
</tr>
<tr>
<td>(41)</td>
</tr>
<tr>
<td>(42)</td>
</tr>
<tr>
<td>(43)</td>
</tr>
<tr>
<td>(44)</td>
</tr>
<tr>
<td>(45)</td>
</tr>
<tr>
<td>(46)</td>
</tr>
<tr>
<td>(47)</td>
</tr>
<tr>
<td>(48)</td>
</tr>
<tr>
<td>(49)</td>
</tr>
<tr>
<td>(50)</td>
</tr>
<tr>
<td>(51)</td>
</tr>
<tr>
<td>(52)</td>
</tr>
<tr>
<td>(53)</td>
</tr>
<tr>
<td>(54)</td>
</tr>
<tr>
<td>(55)</td>
</tr>
<tr>
<td>(56)</td>
</tr>
<tr>
<td>(57)</td>
</tr>
<tr>
<td>(58)</td>
</tr>
<tr>
<td>(59)</td>
</tr>
<tr>
<td>(60)</td>
</tr>
<tr>
<td>(61)</td>
</tr>
<tr>
<td>(62)</td>
</tr>
<tr>
<td>(63)</td>
</tr>
<tr>
<td>(64)</td>
</tr>
<tr>
<td>(65)</td>
</tr>
<tr>
<td>(66)</td>
</tr>
<tr>
<td>(67)</td>
</tr>
<tr>
<td>(68)</td>
</tr>
<tr>
<td>(69)</td>
</tr>
<tr>
<td>(70)</td>
</tr>
<tr>
<td>(71)</td>
</tr>
<tr>
<td>(72)</td>
</tr>
<tr>
<td>(73)</td>
</tr>
<tr>
<td>(74)</td>
</tr>
<tr>
<td>(75)</td>
</tr>
<tr>
<td>(76)</td>
</tr>
<tr>
<td>(77)</td>
</tr>
<tr>
<td>(78)</td>
</tr>
<tr>
<td>(79)</td>
</tr>
<tr>
<td>(80)</td>
</tr>
<tr>
<td>(81)</td>
</tr>
<tr>
<td>(82)</td>
</tr>
<tr>
<td>(83)</td>
</tr>
<tr>
<td>(84)</td>
</tr>
<tr>
<td>(85)</td>
</tr>
<tr>
<td>(86)</td>
</tr>
<tr>
<td>(87)</td>
</tr>
<tr>
<td>(88)</td>
</tr>
<tr>
<td>(89)</td>
</tr>
<tr>
<td>(90)</td>
</tr>
<tr>
<td>(91)</td>
</tr>
<tr>
<td>(92)</td>
</tr>
<tr>
<td>(93)</td>
</tr>
<tr>
<td>(94)</td>
</tr>
<tr>
<td>(95)</td>
</tr>
<tr>
<td>(96)</td>
</tr>
<tr>
<td>(97)</td>
</tr>
<tr>
<td>(98)</td>
</tr>
<tr>
<td>Topics</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>