Contents

1. Introduction 2
2. Conventions 2
3. Derived category of quasi-coherent modules 2
4. Total direct image 6
5. Affine morphisms 8
6. Cohomology with support in a closed 9
7. The coherator 14
8. The coherator for Noetherian schemes 18
9. Koszul complexes 19
10. Pseudo-coherent and perfect complexes 23
11. Derived category of coherent modules 26
12. Descent finiteness properties of complexes 28
13. Lifting complexes 31
14. Approximation by perfect complexes 36
15. Generating derived categories 38
16. An example generator 41
17. Compact and perfect objects 42
18. Derived categories as module categories 44
19. Characterizing pseudo-coherent complexes, I 46
20. An example equivalence 47
21. The coherator revisited 48
22. Cohomology and base change, IV 51
23. Künneth formula, II 54
24. Künneth formula, III 60
25. Künneth formula for Ext 62
26. Cohomology and base change, V 63
27. Producing perfect complexes 67
28. A projection formula for Ext 68
29. Limits and derived categories 71
30. Cohomology and base change, VI 73
31. Perfect complexes 76
32. Applications 78
33. Other applications 81
34. Characterizing pseudo-coherent complexes, II 83
35. Relatively perfect objects 86
36. The resolution property 91
37. The resolution property and perfect complexes 94
38. K-groups 97
1. Introduction

In this chapter we discuss derived categories of modules on schemes. Most of the material discussed here can be found in [TT90], [BN93], [BV03], and [LN07]. Of course there are many other references.

2. Conventions

If \(A \) is an abelian category and \(M \) is an object of \(A \) then we also denote \(M \) the object of \(K(A) \) and/or \(D(A) \) corresponding to the complex which has \(M \) in degree 0 and is zero in all other degrees.

If we have a ring \(A \), then \(K(A) \) denotes the homotopy category of complexes of \(A \)-modules and \(D(A) \) the associated derived category. Similarly, if we have a ringed space \((X, \mathcal{O}_X) \) the symbol \(K(\mathcal{O}_X) \) denotes the homotopy category of complexes of \(\mathcal{O}_X \)-modules and \(D(\mathcal{O}_X) \) the associated derived category.

3. Derived category of quasi-coherent modules

In this section we discuss the relationship between quasi-coherent modules and all modules on a scheme \(X \). A reference is [TT90, Appendix B]. By the discussion in Schemes, Section 24 the embedding \(\text{QCoh}(\mathcal{O}_X) \subset \text{Mod}(\mathcal{O}_X) \) exhibits \(\text{QCoh}(\mathcal{O}_X) \) as a weak Serre subcategory of the category of \(\mathcal{O}_X \)-modules. Denote

\[D_{\text{QCoh}}(\mathcal{O}_X) \subset D(\mathcal{O}_X) \]

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see Derived Categories, Section 17. Thus we obtain a canonical functor

\[D(\text{QCoh}(\mathcal{O}_X)) \rightarrow D_{\text{QCoh}}(\mathcal{O}_X) \]

see Derived Categories, Equation (17.1.1).

Lemma 3.1. Let \(X \) be a scheme. Then \(D_{\text{QCoh}}(\mathcal{O}_X) \) has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category \(D(\mathcal{O}_X) \) has direct sums and they are computed by taking termwise direct sums of any representatives. Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck abelian category). The lemma follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see Schemes, Section 24. □

We will need some information on derived limits. We warn the reader that in the lemma below the derived limit will typically not be an object of \(D_{\text{QCoh}} \).

Lemma 3.2. Let \(X \) be a scheme. Let \((K_n) \) be an inverse system of \(D_{\text{QCoh}}(\mathcal{O}_X) \) with derived limit \(K = R\lim K_n \) in \(D(\mathcal{O}_X) \). Assume \(H^q(K_{n+1}) \rightarrow H^q(K_n) \) is surjective for all \(q \in \mathbb{Z} \) and \(n \geq 1 \). Then
(1) $H^i(K) = \lim H^i(K_n)$,
(2) $R \lim H^i(K_n) = \lim H^i(K_n)$, and
(3) for every affine open $U \subset X$ we have $H^p(U, \lim H^q(K_n)) = 0$ for $p > 0$.

Proof. Let \mathcal{B} be the set of affine opens of X. Since $H^q(K_n)$ is quasi-coherent we have $H^p(U, H^q(K_n)) = 0$ for $U \in \mathcal{B}$ by Cohomology of Schemes, Lemma 2.2. Moreover, the maps $H^0(U, H^q(K_n+1)) \to H^0(U, H^q(K_n))$ are surjective for $U \in \mathcal{B}$ by Schemes, Lemma 7.5. Part (1) follows from Cohomology, Lemma 36.11 whose conditions we have just verified. Parts (2) and (3) follow from Cohomology, Lemma 36.4.

The following lemma will help us to "compute" a right derived functor on an object of $D_{QCoh}(\mathcal{O}_X)$.

Lemma 3.3. Let X be a scheme. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. Then the canonical map $E \to R \lim \tau_{\geq -n} E$ is an isomorphism.

Proof. Denote $\mathcal{H}^i = H^i(E)$ the ith cohomology sheaf of E. Let \mathcal{B} be the set of affine open subsets of X. Then $H^0(U, \mathcal{H}^i) = 0$ for all $p > 0$, all i in \mathbb{Z}, and all $U \in \mathcal{B}$, see Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology, Lemma 36.9.

Lemma 3.4. Let X be a scheme. Let $F : \text{Mod}(\mathcal{O}_X) \to \text{Ab}$ be an additive functor and $N \geq 0$ an integer. Assume that

(1) F commutes with countable direct products,
(2) $R^p F(F) = 0$ for all $p \geq N$ and F quasi-coherent.

Then for $E \in D_{QCoh}(\mathcal{O}_X)$

(1) $H^i(F(\tau_{\geq a}E)) \to H^i(F(E))$ is an isomorphism for $i \leq a$,
(2) $H^i(F(E)) \to H^i(F(\tau_{> b-N+1}E))$ is an isomorphism for $i \geq b$,
(3) if $H^i(E) = 0$ for $i \not\in [a, b]$ for some $-\infty \leq a \leq b \leq \infty$, then $H^i(F(E)) = 0$ for $i \not\in [a, b + N - 1]$.

Proof. Statement (1) is Derived Categories, Lemma 16.1. Proof of statement (2). Write $E_n = \tau_{\geq -n} E$. We have $E = R \lim E_n$, see Lemma 3.3. Thus $RF(E) = R \lim RF(E_n)$ in $D(\text{Ab})$ by Injectives, Lemma 13.6. Thus for every $i \in \mathbb{Z}$ we have a short exact sequence

$0 \to R^1 \lim H^{i-1}(RF(E_n)) \to H^i(RF(E)) \to \lim H^i(RF(E_n)) \to 0$

see More on Algebra, Remark 86.9. To prove (2) we will show that the term on the left is zero and that the term on the right equals $H^i(RF(E_{-b+N-1}))$ for any b with $i \geq b$.

For every n we have a distinguished triangle

$H^{-n}(E)[n] \to E_n \to E_{n-1} \to H^{-n}(E)[n+1]$

(Derived Categories, Remark 12.4) in $D(\mathcal{O}_X)$. Since $H^{-n}(E)$ is quasi-coherent we have

$H^i(RF(H^{-n}(E)[n])) = R^{i+n}F(H^{-n}(E)) = 0$

for $i + n \geq N$ and

$H^i(RF(H^{-n}(E)[n+1])) = R^{i+n+1}F(H^{-n}(E)) = 0$

\footnote{In particular, E has a K-injective representative as in Cohomology, Lemma 37.1}
for \(i + n + 1 \geq N\). We conclude that

\[
H^i(RF(E_n)) \to H^i(RF(E_{n-1}))
\]

is an isomorphism for \(n \geq N - i\). Thus the systems \(H^i(RF(E_n))\) all satisfy the ML condition and the \(R^i\) lim term in our short exact sequence is zero (see discussion in More on Algebra, Section [36]). Moreover, the system \(H^i(RF(E_n))\) is constant starting with \(n = N - i - 1\) as desired.

Proof of (3). Under the assumption on \(E\) we have \(\tau_{\leq a-1}E = 0\) and we get the vanishing of \(H^i(RF(E))\) for \(i \leq a - 1\) from (1). Similarly, we have \(\tau_{\geq b+1}E = 0\) and hence we get the vanishing of \(H^i(RF(E))\) for \(i \geq b + n\) from part (2).

The following lemma is the key ingredient to many of the results in this chapter.

Lemma 3.5. Let \(X = \text{Spec}(A)\) be an affine scheme. All the functors in the diagram

\[
\begin{array}{ccc}
D(QCoh(O_X)) & \xrightarrow{3.0.1} & D_{QCoh}(O_X) \\
\downarrow & & \downarrow \\
D(A) & \xleftarrow{R\Gamma(X,-)} & D_{QCoh}(O_X)
\end{array}
\]

are equivalences of triangulated categories. Moreover, for \(E\) in \(D_{QCoh}(O_X)\) we have \(H^0(X, E) = H^0(X, H^0(E))\).

Proof. The functor \(R\Gamma(X,-)\) gives a functor \(D(O_X) \to D(A)\) and hence by restriction a functor

\[
(3.5.1) \quad R\Gamma(X,-) : D_{QCoh}(O_X) \to D(A).
\]

We will show this functor is quasi-inverse to (3.0.1) via the equivalence between quasi-coherent modules on \(X\) and the category of \(A\)-modules.

Elucidation. Denote \((Y, O_Y)\) the one point space with sheaf of rings given by \(A\). Denote \(\pi : (X, O_X) \to (Y, O_Y)\) the obvious morphism of ringed spaces. Then \(R\Gamma(X,-)\) can be identified with \(R\pi_*\) and the functor (3.0.1) via the equivalence \(\text{Mod}(O_Y) = \text{Mod}_A = QCoh(O_X)\) can be identified with \(L\pi^* = \pi^* = -\) (see Modules, Lemma [10.5] and Schemes, Lemmas [7.1] and [7.5]). Thus the functors

\[
\begin{array}{ccc}
D(A) & \xrightarrow{a} & D(O_X) \\
\xleftarrow{b} & & \xleftarrow{D(\pi)} D(O_X)
\end{array}
\]

are adjoint (by Cohomology, Lemma [28.1]). In particular we obtain canonical adjunction mappings

\[
a : R\Gamma(X,E) \to E
\]

for \(E\) in \(D(O_X)\) and

\[
b : M^\bullet \to R\Gamma(X, \widetilde{M}^\bullet)
\]

for \(M^\bullet\) a complex of \(A\)-modules.

Let \(E\) be an object of \(D_{QCoh}(O_X)\). We may apply Lemma [3.4] to the functor \(F(-) = \Gamma(X,-)\) with \(N = 1\) by Cohomology of Schemes, Lemma [2.2]. Hence

\[
H^0(R\Gamma(X,E)) = H^0(R\Gamma(X, \tau_{\geq 0} E)) = \Gamma(X, H^0(E))
\]

(the last equality by definition of the canonical truncation). Using this we will show that the adjunction mappings \(a\) and \(b\) induce isomorphisms \(H^0(a)\) and \(H^0(b)\). Thus
a and b are quasi-isomorphisms (as the statement is invariant under shifts) and the lemma is proved.

In both cases we use that \(\text{\text迫} \) is an exact functor (Schemes, Lemma \[5.4\]). Namely, this implies that
\[
H^0 \left(R\Gamma(X, E) \right) = H^0 \left(R\Gamma(X, E) \right) = \Gamma(X, H^0(E))
\]
which is equal to \(H^0(E) \) because \(H^0(E) \) is quasi-coherent. Thus \(H^0(a) \) is an isomorphism. For the other direction we have
\[
H^0 \left(R\Gamma(X, \mathcal{M}^\bullet) \right) = \Gamma(X, H^0(\mathcal{M}^\bullet)) = \Gamma(X, H^0(\mathcal{M}^\bullet)) = H^0(\mathcal{M}^\bullet)
\]
which proves that \(H^0(b) \) is an isomorphism. □

Lemma 3.6. Let \(X = \text{Spec}(A) \) be an affine scheme. If \(K^\bullet \) is a K-flat complex of \(A \)-modules, then \(\text{\text迫}K^\bullet \) is a K-flat complex of \(O_X \)-modules.

Proof. By More on Algebra, Lemma \[59.3\] we see that \(K^\bullet \otimes_A A_p \) is a K-flat complex of \(A_p \)-modules for every \(p \in \text{Spec}(A) \). Hence we conclude from Cohomology, Lemma \[26.4\] (and Schemes, Lemma \[5.4\]) that \(\text{\text迫}K^\bullet \) is K-flat. □

Lemma 3.7. If \(f : X \to Y \) is a morphism of affine schemes given by the ring map \(A \to B \), then the diagram
\[
\begin{array}{ccc}
D(B) & \longrightarrow & D_{\text{QCoh}}(O_X) \\
\downarrow & & \downarrow Rf_* \\
D(A) & \longrightarrow & D_{\text{QCoh}}(O_Y)
\end{array}
\]
commutes.

Proof. Follows from Lemma \[3.5\] using that \(R\Gamma(Y, Rf_* K) = R\Gamma(X, K) \) by Cohomology, Lemma \[32.5\] □

Lemma 3.8. Let \(f : Y \to X \) be a morphism of schemes.

1. The functor \(Lf^* \) sends \(D_{\text{QCoh}}(O_X) \) into \(D_{\text{QCoh}}(O_Y) \).
2. If \(X \) and \(Y \) are affine and \(f \) is given by the ring map \(A \to B \), then the diagram
\[
\begin{array}{ccc}
D(B) & \longrightarrow & D_{\text{QCoh}}(O_Y) \\
\downarrow & & \downarrow Lf^* \\
D(A) & \longrightarrow & D_{\text{QCoh}}(O_X)
\end{array}
\]
commutes.

Proof. We first prove the diagram
\[
\begin{array}{ccc}
D(B) & \longrightarrow & D(O_Y) \\
\downarrow & & \downarrow Lf^* \\
D(A) & \longrightarrow & D(O_X)
\end{array}
\]
commutes. This is clear from Lemma \[3.6\] and the constructions of the functors in question. To see (1) let \(E \) be an object of \(D_{\text{QCoh}}(O_X) \). To see that \(Lf^* E \) has
quasi-coherent cohomology sheaves we may work locally on X. Note that $L f^*$ is compatible with restricting to open subschemes. Hence we can assume that f is a morphism of affine schemes as in (2). Then we can apply Lemma [3.5] to see that E comes from a complex of A-modules. By the commutativity of the first diagram of the proof the same holds for $L f^* E$ and we conclude (1) is true.

Lemma 3.9. Let X be a scheme.

1. For objects K, L of $D_{QCoh}(\mathcal{O}_X)$ the derived tensor product $K \otimes^L_X L$ is in $D_{QCoh}(\mathcal{O}_X)$.
2. If $X = \text{Spec}(A)$ is affine then
 $$\widehat{M}^\bullet \otimes^L_X \widehat{K}^\bullet = M^\bullet \otimes^L_A K^\bullet$$
 for any pair of complexes of A-modules K^\bullet, M^\bullet.

Proof. The equality of (2) follows immediately from Lemma [3.6] and the construction of the derived tensor product. To see (1) let K, L be objects of $D_{QCoh}(\mathcal{O}_X)$. To check that $K \otimes^L_X L$ is in $D_{QCoh}(\mathcal{O}_X)$ we may work locally on X, hence we may assume $X = \text{Spec}(A)$ is affine. By Lemma [3.5] we may represent K and L by complexes of A-modules. Then part (2) implies the result.

4. Total direct image

Lemma 4.1. Let $f : X \to S$ be a morphism of schemes. Assume that f is quasi-separated and quasi-compact.

1. The functor $R f_*$ sends $D_{QCoh}(\mathcal{O}_X)$ into $D_{QCoh}(\mathcal{O}_S)$.
2. If S is quasi-compact, there exists an integer $N = N(X, S, f)$ such that for an object E of $D_{QCoh}(\mathcal{O}_X)$ with $H^m(E) = 0$ for $m > 0$ we have $H^m(R f_* E) = 0$ for $m \geq N$.
3. In fact, if S is quasi-compact we can find $N = N(X, S, f)$ such that for every morphism of schemes $S' \to S$ the same conclusion holds for the functor $R(f')_*$ where $f' : X' \to S'$ is the base change of f.

Proof. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. To prove (1) we have to show that $R f_* E$ has quasi-coherent cohomology sheaves. The question is local on S, hence we may assume S is quasi-compact. Pick $N = N(X, S, f)$ as in Cohomology of Schemes, Lemma [4.5] Thus $R^p f_* \mathcal{F} = 0$ for all quasi-coherent \mathcal{O}_X-modules \mathcal{F} and all $p \geq N$ and the same remains true after base change.

First, assume E is bounded below. We will show (1) and (2) and (3) hold for such E with our choice of N. In this case we can for example use the spectral sequence

$$R^p f_* H^q(E) \Rightarrow R^{p+q} f_* E$$

(Derived Categories, Lemma [21.3]), the quasi-coherence of $R^p f_* H^q(E)$, and the vanishing of $R^p f_* H^q(E)$ for $p \geq N$ to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say $H^m(E) = 0$ for $m > 0$. Let $U \subset S$ be affine open. By Cohomology of Schemes, Lemma [4.6] and our choice of N we have $H^p(f^{-1}(U), \mathcal{F}) = 0$ for $p \geq N$ and any quasi-coherent \mathcal{O}_X-module \mathcal{F}. Hence we may apply Lemma [3.4] to the functor $\Gamma(f^{-1}(U), -)$ to see that

$$R \Gamma(U, R f_* E) = R \Gamma(f^{-1}(U), E)$$
has vanishing cohomology in degrees $\geq N$. Since this holds for all $U \subset S$ affine open we conclude that $H^m(Rf_\bullet E) = 0$ for $m \geq N$.

Next, we prove (1) in the general case. Recall that there is a distinguished triangle

$$
\tau_{\leq -n+1}E \to E \to \tau_{\geq -n}E \to (\tau_{\leq -n+1}E)[1]
$$

in $D(\mathcal{O}_X)$, see Derived Categories, Remark \[12.4\] By (2) we see that $Rf_*\tau_{\leq -n+1}E$ has vanishing cohomology sheaves in degrees $\geq -n + N$. Thus, given an integer q we see that R^qf_*E is equal to $R^qf_*\tau_{\geq -n}E$ for some n and the result above applies. \[\square\]

Lemma 4.2. Let $f : X \to S$ be a quasi-separated and quasi-compact morphism of schemes. Let \mathcal{F}^\bullet be a complex of quasi-coherent \mathcal{O}_X-modules each of which is right acyclic for f_*. Then $f_*\mathcal{F}^\bullet$ represents $Rf_*\mathcal{F}^\bullet$ in $D(\mathcal{O}_S)$.

Proof. There is always a canonical map $f_*\mathcal{F}^\bullet \to Rf_*\mathcal{F}^\bullet$. Our task is to show that this is an isomorphism on cohomology sheaves. As the statement is invariant under shifts it suffices to show that $R^0(f_*\mathcal{F}^\bullet) \to R^0f_*\mathcal{F}^\bullet$ is an isomorphism. The statement is local on S hence we may assume S affine. By Lemma \[4.1\] we have $R^n f_*\mathcal{F}^\bullet = R^n f_*\tau_{\geq -n}\mathcal{F}^\bullet$ for all sufficiently large n. Thus we may assume \mathcal{F}^\bullet bounded below. As each \mathcal{F}^n is right f_*-acyclic by assumption we see that $f_*\mathcal{F}^\bullet \to Rf_*\mathcal{F}^\bullet$ is a quasi-isomorphism by Leray’s acyclicity lemma (Derived Categories, Lemma \[16.7\]). \[\square\]

Lemma 4.3. Let X be a quasi-separated and quasi-compact scheme. Let \mathcal{F}^\bullet be a complex of quasi-coherent \mathcal{O}_X-modules each of which is right acyclic for $\Gamma(X, -)$. Then $\Gamma(X, \mathcal{F}^\bullet)$ represents $R\Gamma(X, F^\bullet)$ in $D(\Gamma(X, \mathcal{O}_X))$.

Proof. Apply Lemma \[4.2\] to the canonical morphism $X \to \text{Spec}(\Gamma(X, \mathcal{O}_X))$. Some details omitted. \[\square\]

Lemma 4.4. Let X be a quasi-separated and quasi-compact scheme. For any object K of $D_{QCoh}(\mathcal{O}_X)$ the spectral sequence

$$E_2^{i,j} = H^i(X, H^j(K)) \Rightarrow H^{i+j}(X, K)$$

of Cohomology, Example \[29.3\] is bounded and converges.

Proof. By the construction of the spectral sequence via Cohomology, Lemma \[29.1\] using the filtration given by $\tau_{\leq -p}K$, we see that suffice to show that given $n \in \mathbb{Z}$ we have

$$H^n(X, \tau_{\leq -p}K) = 0 \text{ for } p \gg 0$$

and

$$H^n(X, K) = H^n(X, \tau_{\leq -p}K) \text{ for } p \ll 0$$

The first follows from Lemma \[3.4\] applied with $F = \Gamma(X, -)$ and the bound in Cohomology of Schemes, Lemma \[4.5\]. The second holds whenever $-p \leq n$ for any ringed space (X, \mathcal{O}_X) and any $K \in D(\mathcal{O}_X)$. \[\square\]

Lemma 4.5. Let $f : X \to S$ be a quasi-separated and quasi-compact morphism of schemes. Then $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_S)$ commutes with direct sums.

Proof. Let E_i be a family of objects of $D_{QCoh}(\mathcal{O}_X)$ and set $E = \bigoplus E_i$. We want to show that the map

$$\bigoplus Rf_*E_i \longrightarrow Rf_*E$$
In this section we collect some information about pushforward along an affine morphism of schemes.

Lemma 5.1. Let \(f : X \to S \) be an affine morphism of schemes. Let \(F^\bullet \) be a complex of quasi-coherent \(\mathcal{O}_X \)-modules. Then \(f_* F^\bullet = Rf_* F^\bullet \).

Proof. Combine Lemma 4.2 with Cohomology of Schemes, Lemma 2.3. An alternative proof is to work affine locally on \(S \) and use Lemma 3.7.

Lemma 5.2. Let \(f : X \to S \) be an affine morphism of schemes. Then \(Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_S) \) reflects isomorphisms.

Proof. The statement means that a morphism \(\alpha : E \to F \) of \(D_{QCoh}(\mathcal{O}_X) \) is an isomorphism if \(Rf_* \alpha \) is an isomorphism. We may check this on cohomology sheaves. In particular, the question is local on \(S \). Hence we may assume \(S \) and therefore \(X \) is affine. In this case the statement is clear from the description of the derived categories \(D_{QCoh}(\mathcal{O}_X) \) and \(D_{QCoh}(\mathcal{O}_S) \) given in Lemma 3.5. Some details omitted.

Lemma 5.3. Let \(f : X \to S \) be an affine morphism of schemes. For \(E \) in \(D_{QCoh}(\mathcal{O}_S) \) we have \(f^! Rf_* E = E \otimes_{\mathcal{O}_S} f_* \mathcal{O}_X \).

Proof. Since \(f \) is affine the map \(f_* \mathcal{O}_X \to Rf_* \mathcal{O}_X \) is an isomorphism (Cohomology of Schemes, Lemma 2.3). There is a canonical map \(E \otimes^L f_* \mathcal{O}_X = E \otimes^L Rf_* \mathcal{O}_X \to Rf_* f^! Rf_* E \) adjoint to the map

\[
Lf^*(E \otimes^L Rf_* \mathcal{O}_X) = Lf^* E \otimes^L Lf^* Rf_* \mathcal{O}_X \to Lf^* E \otimes^L \mathcal{O}_X = Lf^* E
\]

coming from \(1 : Lf^* E \to Lf^* E \) and the canonical map \(Lf^* Rf_* \mathcal{O}_X \to \mathcal{O}_X \). To check the map so constructed is an isomorphism we may work locally on \(S \). Hence we may assume \(S \) and therefore \(X \) is affine. In this case the statement is clear from the description of the derived categories \(D_{QCoh}(\mathcal{O}_X) \) and \(D_{QCoh}(\mathcal{O}_S) \) and the functor \(Lf^* \) given in Lemmas 3.5 and 3.8. Some details omitted.

Let \(Y \) be a scheme. Let \(\mathcal{A} \) be a sheaf of \(\mathcal{O}_Y \)-algebras. We will denote \(D_{QCoh}(\mathcal{A}) \) the inverse image of \(D_{QCoh}(\mathcal{O}_X) \) under the restriction functor \(D(\mathcal{A}) \to D(\mathcal{O}_X) \).

In other words, \(K \in D(\mathcal{A}) \) is in \(D_{QCoh}(\mathcal{A}) \) if and only if its cohomology sheaves are quasi-coherent as \(\mathcal{O}_X \)-modules. If \(\mathcal{A} \) is quasi-coherent itself this is the same as asking the cohomology sheaves to be quasi-coherent as \(\mathcal{A} \)-modules, see Morphisms, Lemma 11.6.
Lemma 5.4. Let \(f : X \to Y \) be an affine morphism of schemes. Then \(f_* \) induces an equivalence

\[
\Phi : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(f_*\mathcal{O}_X)
\]

whose composition with \(D_{QCoh}(f_*\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_Y) \) is \(Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_Y) \).

Proof. Recall that \(Rf_* \) is computed on an object \(K \in D_{QCoh}(\mathcal{O}_X) \) by choosing a K-injective complex \(I^\bullet \) of \(\mathcal{O}_X \)-modules representing \(K \) and taking \(f_*I^\bullet \). Thus we let \(\Phi(K) \) be the complex \(f_*I^\bullet \) viewed as a complex of \(f_*\mathcal{O}_X \)-modules. Denote \(g : (X,\mathcal{O}_X) \to (Y, f_*\mathcal{O}_X) \) the obvious morphism of ringed spaces. Then \(g \) is a flat morphism of ringed spaces (see below for a description of the stalks) and \(\Phi \) is the restriction of \(Rg_* \) to \(D_{QCoh}(\mathcal{O}_X) \). We claim that \(Lg^* \) is a quasi-inverse. First, observe that \(Lg^* \) sends \(D_{QCoh}(f_*\mathcal{O}_X) \) into \(D_{QCoh}(\mathcal{O}_X) \) because \(g^* \) transforms quasi-coherent modules into quasi-coherent modules (Modules, Lemma 10.4). To finish the proof it suffices to show that the adjunction mappings

\[
Lg^*\Phi(K) = Lg^*Rg_*K \to K \quad \text{and} \quad M \to Rg_*Lg^*M = \Phi(Lg^*M)
\]

are isomorphisms for \(K \in D_{QCoh}(\mathcal{O}_X) \) and \(M \in D_{QCoh}(f_*\mathcal{O}_X) \). This is a local question, hence we may assume \(Y \) and therefore \(X \) are affine.

Assume \(Y = \text{Spec}(B) \) and \(X = \text{Spec}(A) \). Let \(p = x \in \text{Spec}(A) = X \) be a point mapping to \(q = y \in \text{Spec}(B) = Y \). Then \((f_*\mathcal{O}_X)_y = A_q \) and \(\mathcal{O}_{X,x} = A_p \), hence \(g \) is flat. Hence \(g^* \) is exact and \(H^i(Lg^*M) = g^*H^i(M) \) for any \(M \) in \(D(f_*\mathcal{O}_X) \). For \(K \in D_{QCoh}(\mathcal{O}_X) \) we see that

\[
H^i(\Phi(K)) = H^i(Rf_*K) = f_*H^i(K)
\]

by the vanishing of higher direct images (Cohomology of Schemes, Lemma 2.3) and Lemma 3.4 (small detail omitted). Thus it suffice to show that

\[
g^*g_*\mathcal{F} \to \mathcal{F} \quad \text{and} \quad \mathcal{G} \to g_*g^*\mathcal{F}
\]

are isomorphisms where \(\mathcal{F} \) is a quasi-coherent \(\mathcal{O}_X \)-module and \(\mathcal{G} \) is a quasi-coherent \(f_*\mathcal{O}_X \)-module. This follows from Morphisms, Lemma 11.6.

6. Cohomology with support in a closed

We elaborate on the material in Cohomology, Sections 21 and 34 for schemes and quasi-coherent modules.

Definition 6.1. Let \(X \) be a scheme. Let \(E \) be an object of \(D(\mathcal{O}_X) \). Let \(T \subset X \) be a closed subset. We say \(E \) is supported on \(T \) if the cohomology sheaves \(H^i(E) \) are supported on \(T \).

In the situation of Definition 6.1 denote \(i : T \to X \) the inclusion map. Recall from Cohomology, Section 34 that in this situation we have a functor \(RH_T : D(\mathcal{O}_X) \to D(i^{-1}\mathcal{O}_X) \) which is right adjoint to \(i_* : D(i^{-1}\mathcal{O}_X) \to D(\mathcal{O}_X) \).
Lemma 6.2. Let X be a scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is a retrocompact open of X. Let $i : T \to X$ be the inclusion.

1. For E in $D_{QCoh}(\mathcal{O}_X)$ we have $i_*R\mathcal{H}_T(E)$ in $D_{QCoh,T}(\mathcal{O}_X)$.
2. The functor $i_* \circ R\mathcal{H}_T : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh,T}(\mathcal{O}_X)$ is right adjoint to the inclusion functor $D_{QCoh,T}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_X)$.

Proof. Set $U = X \setminus T$ and denote $j : U \to X$ the inclusion. By Cohomology, Lemma 34.6 there is a distinguished triangle

$$i_*R\mathcal{H}_T(E) \to E \to Rj_*(E|_U) \to i_*R\mathcal{H}_Z(E)[1]$$

in $D(\mathcal{O}_X)$. By Lemma 4.1 the complex $Rj_*(E|_U)$ has quasi-coherent cohomology sheaves (this is where we use that U is retrocompact in X). Thus we see that (1) is true. Part (2) follows from this and the adjointness of functors in Cohomology, Lemma 34.2.

Lemma 6.3. Let X be a scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is a retrocompact open of X. Then for a family of objects E_i, $i \in I$ of $D_{QCoh}(\mathcal{O}_X)$ we have $R\mathcal{H}_T(\bigoplus E_i) = \bigoplus R\mathcal{H}_T(E_i)$.

Proof. Set $U = X \setminus T$ and denote $j : U \to X$ the inclusion. By Cohomology, Lemma 34.6 there is a distinguished triangle

$$i_*R\mathcal{H}_T(E) \to E \to Rj_*(E|_U) \to i_*R\mathcal{H}_Z(E)[1]$$

in $D(\mathcal{O}_X)$ for any E in $D(\mathcal{O}_X)$. The functor $E \mapsto Rj_*(E|_U)$ commutes with direct sums on $D_{QCoh}(\mathcal{O}_X)$ by Lemma 4.5. It follows that the same is true for the functor $i_* \circ R\mathcal{H}_T$ (details omitted). Since $i_* : D(i^{-1}\mathcal{O}_X) \to D_T(\mathcal{O}_X)$ is an equivalence (Cohomology, Lemma 34.2) we conclude.

Remark 6.4. Let X be a scheme. Let $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$. Denote $Z \subset X$ the closed subscheme cut out by f_1, \ldots, f_c. For $0 \leq p < c$ and $1 \leq i_0 < \ldots < i_p \leq c$ we denote $U_{i_0 \ldots i_p} \subset X$ the open subscheme where $f_{i_0} \ldots f_{i_p}$ is invertible. For any \mathcal{O}_X-module \mathcal{F} we set

$$\mathcal{F}_{i_0 \ldots i_p} = (U_{i_0 \ldots i_p} \to X)_*(\mathcal{F}|_{U_{i_0 \ldots i_p}})$$

In this situation the extended alternating Čech complex is the complex of \mathcal{O}_X-modules

$$0 \to \mathcal{F} \to \bigoplus_{i_0} \mathcal{F}_{i_0} \to \cdots \to \bigoplus_{i_0 < \ldots < i_p} \mathcal{F}_{i_0 \ldots i_p} \to \cdots \to \mathcal{F}_{1 \ldots c} \to 0$$

where \mathcal{F} is put in degree 0. The maps are constructed as follows. Given $1 \leq i_0 < \ldots < i_{p+1} \leq c$ and $0 \leq j \leq p + 1$ we have the canonical map

$$\mathcal{F}_{i_0 \ldots i_j \ldots i_{p+1}} \to \mathcal{F}_{i_0 \ldots i_p}$$

coming from the inclusion $U_{i_0 \ldots i_p} \subset U_{i_0 \ldots i_j \ldots i_{p+1}}$. The differentials in the extended alternating complex use these canonical maps with sign $(-1)^j$.

Lemma 6.5. With X, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and \mathcal{F} as in Remark 6.4 the complex $(6.4.1)$ restricts to an acyclic complex over $X \setminus Z$.

We remark that this lemma holds more generally for any extended alternating Čech complex defined as in Remark 6.4 starting with a finite open covering $X \setminus Z = U_1 \cup \ldots \cup U_c$.
Proof. Let $W \subset X \setminus Z$ be an open subset. Evaluating the complex of sheaves \([6.4.1]\) on W we obtain the complex

$$
\mathcal{F}(W) \to \bigoplus_{i_0} \mathcal{F}(U_{i_0} \cap W) \to \bigoplus_{i_0 < i_1} \mathcal{F}(U_{i_0i_1} \cap W) \to \ldots
$$

In other words, we obtain the extended ordered Čech complex for the covering $W = \bigcup U_i \cap W$ and the standard ordering on $\{1, \ldots, c\}$, see Cohomology, Section 29. By Cohomology, Lemma \[23.7\] this complex is homotopic to zero as soon as W is contained in $V(f_i)$ for some $1 \leq i \leq c$. This finishes the proof. \qed

Remark 6.6. Let $X, f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and \mathcal{F} be as in Remark 6.4. Denote \mathcal{F}^\bullet the complex \([6.4.1]\). By Lemma \[6.5\] the cohomology sheaves of \mathcal{F}^\bullet are supported on Z hence \mathcal{F}^\bullet is an object of $D_Z(\mathcal{O}_X)$. On the other hand, the equality $\mathcal{F}_0 = \mathcal{F}$ determines a canonical map $\mathcal{F}^\bullet \to \mathcal{F}$ in $D(\mathcal{O}_X)$. As $i_* R\mathcal{H}Z(\mathcal{F}^\bullet)$ is a right adjoint to the inclusion functor $D_Z(\mathcal{O}_X) \to D(\mathcal{O}_X)$, see Cohomology, Lemma \[34.2\] we obtain a canonical commutative diagram

$$
\begin{tikzcd}
\mathcal{F}^\bullet \ar[r, hook] \ar[d, dotted] & \mathcal{F} \ar[d, dotted] \\
i_* R\mathcal{H}Z(\mathcal{F}) &
\end{tikzcd}
$$

in $D(\mathcal{O}_X)$ functorial in the \mathcal{O}_X-module \mathcal{F}.

Lemma 6.7. With $X, f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and \mathcal{F} as in Remark 6.4. If \mathcal{F} is quasi-coherent, then the complex \([6.4.1]\) represents $i_* R\mathcal{H}Z(\mathcal{F})$ in $D_Z(\mathcal{O}_X)$.

Proof. Let us denote \mathcal{F}^\bullet the complex \([6.4.1]\). The statement of the lemma means that the map $\mathcal{F}^\bullet \to i_* R\mathcal{H}Z(\mathcal{F})$ of Remark 6.6 is an isomorphism. Since \mathcal{F}^\bullet is in $D_Z(\mathcal{O}_X)$ (see remark cited), we see that $i_* R\mathcal{H}Z(\mathcal{F}^\bullet) = \mathcal{F}^\bullet$ by Cohomology, Lemma \[34.2\]. The morphism $U_{i_0 \ldots i_p} \to X$ is affine as it is given over affine opens of X by inverting the function $f_{i_0} \ldots f_{i_p}$. Thus we see that

$$
\mathcal{F}_{i_0 \ldots i_p} = (U_{i_0 \ldots i_p} \to X)_* \mathcal{F}|_{U_{i_0 \ldots i_p}} = R(U_{i_0 \ldots i_p} \to X)_* \mathcal{F}|_{U_{i_0 \ldots i_p}}
$$

by Cohomology of Schemes, Lemma \[2.3\] and the assumption that \mathcal{F} is quasi-coherent. We conclude that $R\mathcal{H}Z(\mathcal{F}_{i_0 \ldots i_p}) = 0$ by Cohomology, Lemma \[34.7\]. Thus $i_* R\mathcal{H}Z(\mathcal{F}^p) = 0$ for $p > 0$. Putting everything together we obtain

$$
\mathcal{F}^\bullet = i_* R\mathcal{H}Z(\mathcal{F}^\bullet) = i_* R\mathcal{H}Z(\mathcal{F})
$$

as desired. \qed

Lemma 6.8. Let X be a scheme. Let $T \subset X$ be a closed subset which can locally be cut out by at most c elements of the structure sheaf. Then $\mathcal{H}Z^i(\mathcal{F}) = 0$ for $i > c$ and any quasi-coherent \mathcal{O}_X-module \mathcal{F}.

Proof. This follows immediately from the local description of $R\mathcal{H}Z_T(\mathcal{F})$ given in Lemma \[6.7\]. \qed

Lemma 6.9. Let X be a scheme. Let $T \subset X$ be a closed subset which can locally be cut out by a Koszul regular sequence having c elements. Then $\mathcal{H}Z^i(\mathcal{F}) = 0$ for $i \neq c$ for every flat, quasi-coherent \mathcal{O}_X-module \mathcal{F}.
Proof. By the description of $R\mathcal{H}_Z(\mathcal{F})$ given in Lemma 6.7 this boils down to the following algebra statement: given a ring R, a Koszul regular sequence $f_1, \ldots, f_c \in R$, and a flat R-module M, the extended alternating Čech complex $M \to \bigoplus_{i_0} M_{f_{i_0}} \to \bigoplus_{i_0 < i_1} M_{f_{i_0} f_{i_1}} \to \cdots \to M_{f_{i_1} \cdots f_c}$ from More on Algebra, Section 29 only has cohomology in degree c. By More on Algebra, Lemma 31.1 we obtain the desired vanishing for the extended alternating Čech complex of R. Since the complex for M is obtained by tensoring this with the flat R-module M (More on Algebra, Lemma 29.2) we conclude. □

Remark 6.10. With X, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and \mathcal{F} as in Remark 6.4. There is a canonical $\mathcal{O}_X|_Z$-linear map

$$c_{f_1, \ldots, f_c} : i^* \mathcal{F} \to \mathcal{H}_Z^c(\mathcal{F})$$

functorial in \mathcal{F}. Namely, denoting \mathcal{F}^\bullet the extended alternating Čech complex (6.4.1) we have the canonical map $\mathcal{F}^\bullet \to i_* R\mathcal{H}_Z(\mathcal{F})$ of Remark 6.6. This determines a canonical map

$$\text{Coker} \left(\bigoplus_{i_1 \leq \cdots \leq i_c} \mathcal{F}_{i_1 \cdots i_c} \to \mathcal{F}_{1 \cdots c} \right) \to i_* \mathcal{H}_Z^c(\mathcal{F})$$

on cohomology sheaves in degree c. Given a local section s of \mathcal{F} we can consider the local section

$$s_{f_1 \cdots f_c}$$

of $\mathcal{F}_{1 \cdots c}$. The class of this section in the cokernel displayed above depends only on s modulo the image of $(f_1, \ldots, f_c) : \mathcal{F}^\text{BC} \to \mathcal{F}$. Since $i_* i^* \mathcal{F}$ is equal to the cokernel of $(f_1, \ldots, f_c) : \mathcal{F}^\text{BC} \to \mathcal{F}$ we see that we get an \mathcal{O}_X-module map $i_* i^* \mathcal{F} \to i_* \mathcal{H}_Z^c(\mathcal{F})$. As i_* is fully faithful we get the map c_{f_1, \ldots, f_c}.

Example 6.11. Let $X = \text{Spec}(A)$ be affine, $f_1, \ldots, f_c \in A$, and let $\mathcal{F} = \mathcal{M}$ for some A-module M. The map c_{f_1, \ldots, f_c} of Remark 6.10 can be described as the map

$$M/(f_1, \ldots, f_c)M \to \text{Coker} \left(\bigoplus M_{f_1 \cdots f_c} \to M_{f_1 \cdots f_c} \right)$$

sending the class of $s \in M$ to the class of $s/f_1 \cdots f_c$ in the cokernel.

Lemma 6.12. With X, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and \mathcal{F} as in Remark 6.4. Let $a_{ji} \in \Gamma(X, \mathcal{O}_X)$ for $1 \leq i, j \leq c$ and set $g_j = \sum_{i=1}^c a_{ji} f_i$. Assume g_1, \ldots, g_c scheme theoretically cut out Z. If \mathcal{F} is quasi-coherent, then

$$c_{f_1, \ldots, f_c} = \det(a_{ij}) c_{g_1, \ldots, g_c}$$

where c_{f_1, \ldots, f_c} and c_{g_1, \ldots, g_c} are as in Remark 6.10.

Proof. We will prove that $c_{f_1, \ldots, f_c}(s) = \det(a_{ij}) c_{g_1, \ldots, g_c}(s)$ as global sections of $\mathcal{H}_Z(\mathcal{F})$ for any $s \in \mathcal{F}(X)$. This is sufficient since we then obtain the same result for section over any open subscheme of X. To do this, for $1 \leq i_0 < \cdots < i_p \leq c$ and $1 \leq j_0 < \cdots < j_q \leq c$ we denote $U_{i_0 \cdots i_p} \subset X$, $V_{j_0 \cdots j_q} \subset X$, and $W_{i_0 \cdots i_p j_0 \cdots j_q} \subset X$ the open subscheme where $f_{i_0} \cdots f_{i_p}$ is invertible, $g_{j_0} \cdots g_{j_q}$ is invertible, and where $f_{i_0} \cdots f_{i_p} g_{j_0} \cdots g_{j_q}$ is invertible. We denote $\mathcal{F}_{i_0 \cdots i_p}$, resp. $\mathcal{F}_{j_0 \cdots j_q}$, resp. $\mathcal{F}_{i_0 \cdots i_p j_0 \cdots j_q}$ the pushforward to X of the restriction of \mathcal{F} to $U_{i_0 \cdots i_p}$, resp. $V_{j_0 \cdots j_q}$, resp. $W_{i_0 \cdots i_p j_0 \cdots j_q}$. Then we obtain three extended alternating Čech complexes

$$\mathcal{F}^\bullet : \mathcal{F} \to \bigoplus_{i_0} \mathcal{F}_{i_0} \to \bigoplus_{i_0 < i_1} \mathcal{F}_{i_0 i_1} \to \cdots$$
and
\[(\mathcal{F}')^\bullet : \mathcal{F} \to \bigoplus_{j_0} \mathcal{F}'_{j_0} \to \bigoplus_{j_0 < j_1} \mathcal{F}'_{j_0,j_1} \to \ldots \]
and
\[(\mathcal{F}'')^\bullet : \mathcal{F} \to \bigoplus_{i_0} \mathcal{F}_{i_0} \oplus \bigoplus_{j_0} \mathcal{F}'_{j_0} \to \bigoplus_{i_0 < i_1} \mathcal{F}_{i_0,i_1} \oplus \bigoplus_{i_0,j_0} \mathcal{F}'_{i_0,j_0} \oplus \bigoplus_{j_0 < j_1} \mathcal{F}'_{j_0,j_1} \to \ldots \]
whose differentials are those used in defining (6.4.1). There are maps of complexes
\[(\mathcal{F}'')^\bullet \to \mathcal{F}^\bullet \quad \text{and} \quad (\mathcal{F}'')^\bullet \to (\mathcal{F}')^\bullet \]
given by the projection maps on the terms (and hence inducing the identity map in degree 0). Observe that by Lemma 6.7 each of these complexes represents \(i_*\mathcal{H}_Z(\mathcal{F})\) and these maps represent the identity on this object. Thus it suffices to find an element
\[\sigma \in H^c((\mathcal{F}'')^\bullet(X))\]
mapping to \(e_{f_1,\ldots,f_c}(s)\) and \(\det(a_{ij})e_{g_1,\ldots,g_c}(s)\) by these two maps. It turns out we can explicitly give a cocycle for \(\sigma\). Namely, we take
\[\sigma_{1\ldots c} = \frac{s}{f_1 \ldots f_c} \in \mathcal{F}_{1\ldots c}(X) \quad \text{and} \quad \sigma'_{1\ldots c} = \frac{\det(a_{ij})s}{g_1 \ldots g_c} \in \mathcal{F}'_{1\ldots c}(X)\]
and we take
\[\sigma_{i_0 \ldots i_p,j_0 \ldots j_{e-p-2}} = \frac{\lambda(i_0 \ldots i_p, j_0 \ldots j_{e-p-2})s}{f_{i_0} \ldots f_{i_p} g_{j_0} \ldots g_{j_{e-p-2}}} \in \mathcal{F}_{i_0 \ldots i_p,j_0 \ldots j_{e-p-2}}(X)\]
where \(\lambda(i_0 \ldots i_p, j_0 \ldots j_{e-p-2})\) is the coefficient of \(e_1 \wedge \ldots \wedge e_c\) in the formal expression
\[e_{i_0} \wedge \ldots \wedge e_{i_p} \wedge (a_{j_0 e_1} + \ldots + a_{j_0 c} e_c) \wedge \ldots \wedge (a_{j_{e-p-2} e_1} + \ldots + a_{j_{e-p-2} c} e_c)\]
To verify that \(\sigma\) is a cocycle, we have to show for \(1 \leq i_0 < \ldots < i_p \leq c\) and \(1 \leq j_0 < \ldots < j_{e-p-1} \leq c\) that we have
\[0 = \sum_{a=0,\ldots,p} (-1)^a f_{i_a} \lambda(i_0 \ldots i_a \ldots i_p, j_0 \ldots j_{e-p-1}) + \sum_{b=0,\ldots,c-p-1} (-1)^{p+b+1} g_{j_b} \lambda(i_0 \ldots i_p, j_0 \ldots j_b \ldots j_{e-p-1})\]
The easiest way to see this is perhaps to argue that the formal expression
\[\xi = e_{i_0} \wedge \ldots \wedge e_{i_p} \wedge (a_{j_0 e_1} + \ldots + a_{j_0 c} e_c) \wedge \ldots \wedge (a_{j_{e-p-1} e_1} + \ldots + a_{j_{e-p-1} c} e_c)\]
is 0 as it is an element of the \((c+1)\)st wedge power of the free module on \(e_1,\ldots,e_c\) and that the expression above is the image of \(\xi\) under the Koszul differential sending \(e_i \to f_i\). Some details omitted. \(\square\)

0G7T Lemma 6.13. Let \(X\) be a scheme. Let \(Z \to X\) be a closed immersion of finite presentation whose conormal sheaf \(\mathcal{C}_{Z/X}\) is locally free of rank \(c\). Then there is a canonical map
\[c : \wedge^c(\mathcal{C}_{Z/X})^\vee \otimes \mathcal{O}_Z \xrightarrow{i^*} \mathcal{F} \to \mathcal{H}^c_Z(\mathcal{F})\]
functorial in the quasi-coherent module \(\mathcal{F}\).

Proof. Follows from the construction in Remark 6.10 and the independence of the choice of generators of the ideal sheaf shown in Lemma 6.12. Some details omitted. \(\square\)
0G7U **Remark 6.14.** Let \(g : X' \rightarrow X \) be a morphism of schemes. Let \(f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X) \). Set \(f'_i = g^!(f_i) \in \Gamma(X', \mathcal{O}_{X'}) \). Denote \(Z \subset X \), resp. \(Z' \subset X' \) the closed subscheme cut out by \(f_1, \ldots, f_c \), resp. \(f'_1, \ldots, f'_c \). Then \(Z' = Z \times_X X' \). Denote \(h : Z' \rightarrow Z \) the induced morphism of schemes. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. Set \(\mathcal{F}' = g^* \mathcal{F} \). In this setting, if \(\mathcal{F} \) is quasi-coherent, then the diagram

\[
(i')^{-1} \mathcal{O}_{X'} \otimes_{h^{-1} \mathcal{O}_X} h^{-1} \mathcal{H}_Z^{i}(\mathcal{F}) \rightarrow \mathcal{H}_{Z'}^{i}(\mathcal{F}')
\]

is commutative where the top horizontal arrow is the map of Cohomology, Remark 34.12 on cohomology sheaves in degree \(c \). Namely, denote \(\mathcal{F}'^i \), resp. \((\mathcal{F}')^i \) the extended alternating Čech complex constructed in Remark 6.4 using \(\mathcal{F}, f_1, \ldots, f_c \), resp. \(\mathcal{F}', f'_1, \ldots, f'_c \). Note that \((\mathcal{F}')^i = g^* \mathcal{F}^i \). Then, without assuming \(\mathcal{F} \) is quasi-coherent, the diagram

\[
i'_* L(g|_{Z'})^* R\mathcal{H}_Z(\mathcal{F}) \rightarrow i'_* R\mathcal{H}_{Z'}(Lg^* \mathcal{F})
\]

is commutative where \(g|_{Z'} : (Z', (i')^{-1} \mathcal{O}_{X'}) \rightarrow (Z, i^{-1} \mathcal{O}_X) \) is the induced morphism of ringed spaces. Here the top horizontal arrow is given in Cohomology, Remark 34.12 as is the explanation for the equal sign. The arrows pointing up are from Remark 6.6. The lower horizontal arrow is the map \(Lg^* \mathcal{F} \rightarrow g^* \mathcal{F}' = (\mathcal{F}')^i \) and the arrow pointing down is induced by \(Lg^* \mathcal{F}
rightarrow g^* \mathcal{F}' = \mathcal{F}' \). The diagram commutes because going around the diagram both ways we obtain two arrows \(Lg^* \mathcal{F}' \rightarrow i'_* R\mathcal{H}_{Z'}(\mathcal{F}') \) whose composition with \(i'_* R\mathcal{H}_{Z'}(\mathcal{F}) \rightarrow \mathcal{F}' \) is the canonical map \(Lg^* \mathcal{F}' \rightarrow \mathcal{F}' \). Some details omitted. Now the commutativity of the first diagram follows by looking at this diagram on cohomology sheaves in degree \(c \) and using that the construction of the map \(i'_* \mathcal{F} \rightarrow \text{Coker}(\bigoplus \mathcal{F}_{1, \ldots, c} \rightarrow i_{1, \ldots, c}) \) used in Remark 6.10 is compatible with pullbacks.

7. The coherator

08D6 Let \(X \) be a scheme. The **coherator** is a functor

\[
Q_X : \text{Mod}(\mathcal{O}_X) \rightarrow \text{QCoh}(\mathcal{O}_X)
\]

which is right adjoint to the inclusion functor \(\text{QCoh}(\mathcal{O}_X) \rightarrow \text{Mod}(\mathcal{O}_X) \). It exists for any scheme \(X \) and moreover the adjunction mapping \(Q_X(\mathcal{F}) \rightarrow \mathcal{F} \) is an isomorphism for every quasi-coherent module \(\mathcal{F} \), see Properties, Proposition 23.4. Since \(Q_X \) is left exact (as a right adjoint) we can consider its right derived extension

\[
RQ_X : D(\mathcal{O}_X) \rightarrow D(\text{QCoh}(\mathcal{O}_X)).
\]

Since \(Q_X \) is right adjoint to the inclusion functor \(\text{QCoh}(\mathcal{O}_X) \rightarrow \text{Mod}(\mathcal{O}_X) \) we see that \(RQ_X \) is right adjoint to the canonical functor \(D(\text{QCoh}(\mathcal{O}_X)) \rightarrow D(\mathcal{O}_X) \) by Derived Categories, Lemma 30.3.
In this section we will study the functor RQ_X. In Section \ref{08D7}, we will study the (closely related) right adjoint to the inclusion functor $D_{QCoh}(\mathcal{O}_X) \to D(\mathcal{O}_X)$ (when it exists).

Lemma 7.1. Let $f : X \to Y$ be an affine morphism of schemes. Then f_* defines a derived functor $f_* : D(QCoh(\mathcal{O}_X)) \to D(QCoh(\mathcal{O}_Y))$. This functor has the property that

$$D(QCoh(\mathcal{O}_X)) \xrightarrow{f_*} D(QCoh(\mathcal{O}_Y))$$

commutes.

Proof. The functor $f_* : QCoh(\mathcal{O}_X) \to QCoh(\mathcal{O}_Y)$ is exact, see Cohomology of Schemes, Lemma \ref{08D7}. Hence f_* defines a derived functor $f_* : D(QCoh(\mathcal{O}_X)) \to D(QCoh(\mathcal{O}_Y))$ by simply applying f_* to any representative complex, see Derived Categories, Lemma \ref{08D7}. The diagram commutes by Lemma \ref{08D7}. \hfill \Box

Lemma 7.2. Let $f : X \to Y$ be a morphism of schemes. Assume f is quasi-compact, quasi-separated, and flat. Then, denoting

$$\Phi : D(QCoh(\mathcal{O}_X)) \to D(QCoh(\mathcal{O}_Y))$$

the right derived functor of $f_* : QCoh(\mathcal{O}_X) \to QCoh(\mathcal{O}_Y)$ we have $RQ_Y \circ Rf_* = \Phi \circ RQ_X$.

Proof. We will prove this by showing that $RQ_Y \circ Rf_*$ and $\Phi \circ RQ_X$ are right adjoint to the same functor $D(QCoh(\mathcal{O}_Y)) \to D(\mathcal{O}_X)$.

Since f is quasi-compact and quasi-separated, we see that f_* preserves quasi-coherence, see Schemes, Lemma \ref{08D7}. Recall that $QCoh(\mathcal{O}_X)$ is a Grothendieck abelian category (Properties, Proposition \ref{08D7}). Hence any K in $D(QCoh(\mathcal{O}_X))$ can be represented by a K-injective complex I^\bullet of $QCoh(\mathcal{O}_X)$, see Injectives, Theorem \ref{08D7}. Then we can define $\Phi(K) = f_* I^\bullet$.

Since f is flat, the functor f^* is exact. Hence f^* defines $f^* : D(\mathcal{O}_Y) \to D(\mathcal{O}_X)$ and also $f^* : D(QCoh(\mathcal{O}_Y)) \to D(QCoh(\mathcal{O}_X))$. The functor $f^* = Lf^* : D(\mathcal{O}_Y) \to D(\mathcal{O}_X)$ is left adjoint to $Rf_* : D(\mathcal{O}_X) \to D(\mathcal{O}_Y)$, see Cohomology, Lemma \ref{08D7}. Similarly, the functor $f^* : D(QCoh(\mathcal{O}_Y)) \to D(QCoh(\mathcal{O}_X))$ is left adjoint to $\Phi : D(QCoh(\mathcal{O}_X)) \to D(QCoh(\mathcal{O}_Y))$ by Derived Categories, Lemma \ref{08D7}.

Let A be an object of $D(QCoh(\mathcal{O}_Y))$ and E an object of $D(\mathcal{O}_X)$. Then

$$\Hom_{D(QCoh(\mathcal{O}_Y))}(A, RQ_Y(Rf_*E)) = \Hom_{D(\mathcal{O}_Y)}(A, Rf_*E)$$

$$= \Hom_{D(\mathcal{O}_X)}(f^*A, E)$$

$$= \Hom_{D(QCoh(\mathcal{O}_X))}(f^*A, RQ_X(E))$$

$$= \Hom_{D(QCoh(\mathcal{O}_X))}(A, \Phi(RQ_X(E)))$$

This implies what we want. \hfill \Box

Lemma 7.3. Let $X = \text{Spec}(A)$ be an affine scheme. Then

1. $Q_X : Mod(\mathcal{O}_X) \to QCoh(\mathcal{O}_X)$ is the functor which sends \mathcal{F} to the quasi-coherent \mathcal{O}_X-module associated to the A-module $\Gamma(X, \mathcal{F})$,
(2) $RQ_X : D(O_X) \rightarrow D(QCoh(O_X))$ is the functor which sends E to the complex of quasi-coherent O_X-modules associated to the object $R\Gamma(X,E)$ of $D(A)$.

(3) restricted to $D_{QCoh}(O_X)$ the functor RQ_X defines a quasi-inverse to $[3.0.1]$.

Proof. The functor Q_X is the functor

$$\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$$

by Schemes, Lemma 7.1. This immediately implies (1) and (2). The third assertion follows from (the proof of) Lemma 3.5. \qed

At this point we are ready to prove a criterion for when the functor $D(QCoh(O_X)) \rightarrow D_{QCoh}(O_X)$ is an equivalence.

Lemma 7.4. Let X be a quasi-compact and quasi-separated scheme. Suppose that for every affine open $U \subset X$ the right derived functor

$$\Phi : D(QCoh(O_U)) \rightarrow D(QCoh(O_X))$$

of the left exact functor $j_* : QCoh(O_U) \rightarrow QCoh(O_X)$ fits into a commutative diagram

$$
\begin{array}{ccc}
D(QCoh(O_U)) & \xrightarrow{i_U} & D_{QCoh}(O_U) \\
\Phi \downarrow & & \downarrow Rj_* \\
D(QCoh(O_X)) & \xrightarrow{i_X} & D_{QCoh}(O_X)
\end{array}
$$

Then the functor $[3.0.1]$

$$D(QCoh(O_X)) \rightarrow D_{QCoh}(O_X)$$

is an equivalence with quasi-inverse given by RQ_X.

Proof. Let E be an object of $D_{QCoh}(O_X)$ and let A be an object of $D(QCoh(O_X))$. We have to show that the adjunction maps

$$RQ_X(i_X(A)) \rightarrow A \quad \text{and} \quad E \rightarrow i_X(RQ_X(E))$$

are isomorphisms. Consider the hypothesis H_n: the adjunction maps above are isomorphisms whenever E and $i_X(A)$ are supported (Definition 6.1) on a closed subset of X which is contained in the union of n affine opens of X. We will prove H_n by induction on n.

Base case: $n = 0$. In this case $E = 0$, hence the map $E \rightarrow i_X(RQ_X(E))$ is an isomorphism. Similarly $i_X(A) = 0$. Thus the cohomology sheaves of $i_X(A)$ are zero. Since the inclusion functor $QCoh(O_X) \rightarrow Mod(O_X)$ is fully faithful and exact, we conclude that the cohomology objects of A are zero, i.e., $A = 0$ and $RQ_X(i_X(A)) \rightarrow A$ is an isomorphism as well.

Induction step. Suppose that E and $i_X(A)$ are supported on a closed subset T of X contained in $U_1 \cup \ldots \cup U_n$ with $U_i \subset X$ affine open. Set $U = U_n$. Consider the distinguished triangles

$$A \rightarrow \Phi(A|_U) \rightarrow A' \rightarrow A[1] \quad \text{and} \quad E \rightarrow Rj_*(E|_U) \rightarrow E' \rightarrow E[1]$$

where Φ is as in the statement of the lemma. Note that $E \rightarrow Rj_*(E|_U)$ is a quasi-isomorphism over $U = U_n$. Since $i_X \circ \Phi = Rj_* \circ i_U$ by assumption and since $i_X(A)|_U = i_U(A|_U)$ we see that $i_X(A) \rightarrow i_X(\Phi(A|_U))$ is a quasi-isomorphism over
Let $i_X(A')$ and E' are supported on the closed subset $T \setminus U$ of X which is contained in $U_1 \cup \ldots \cup U_{n-1}$. By induction hypothesis the statement is true for A' and E'. By Derived Categories, Lemma 4.3 it suffices to prove the maps

$$RQ_X(i_X(\Phi(A|_U))) \rightarrow \Phi(A|_U) \quad \text{and} \quad Rj_* (E|_U) \rightarrow i_X(RQ_X(Rj_*E|_U))$$

are isomorphisms. By assumption and by Lemma 7.2 (the inclusion morphism $j: U \rightarrow X$ is flat, quasi-compact, and quasi-separated) we have

$$RQ_X(i_X(\Phi(A|_U))) = RQ_X(Rj_*(i_U(A|_U))) = \Phi(RQ_U(i_U(A|_U)))$$

and

$$i_X(RQ_X(Rj_*(E|_U))) = i_X(\Phi(RQ_U(E|_U))) = Rj_*(i_U(RQ_U(E|_U)))$$

Finally, the maps

$$RQ_U(i_U(A|_U)) \rightarrow A|_U \quad \text{and} \quad E|_U \rightarrow i_U(RQ_U(E|_U))$$

are isomorphisms by Lemma 7.3. The result follows. \qed

Proposition 7.5. Let X be a quasi-compact scheme with affine diagonal. Then the functor $D(QCoh(O_X)) \rightarrow D_{QCoh}(O_X)$ is an equivalence with quasi-inverse given by RQ_X.

Proof. Let $U \subset X$ be an affine open. Then the morphism $U \rightarrow X$ is affine by Morphisms, Lemma 11.11. Thus the assumption of Lemma 7.4 holds by Lemma 7.1 and we win. \qed

Lemma 7.6. Let $f: X \rightarrow Y$ be a morphism of schemes. Assume X and Y are quasi-compact and have affine diagonal. Then, denoting

$$\Phi: D(QCoh(O_X)) \rightarrow D(QCoh(O_Y))$$

the right derived functor of $f_*: QCoh(O_X) \rightarrow QCoh(O_Y)$ the diagram

$$\begin{array}{ccc}
D(QCoh(O_X)) & \rightarrow & D_{QCoh}(O_X) \\
\Phi \downarrow & & \downarrow Rf_* \\
D(QCoh(O_Y)) & \rightarrow & D_{QCoh}(O_Y)
\end{array}$$

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of categories by Proposition 7.5. Hence we can identify these categories (and similarly for other quasi-compact schemes with affine diagonal). The statement of the lemma is that the canonical map $\Phi(K) \rightarrow Rf_*(K)$ is an isomorphism for all K in $D(QCoh(O_X))$. Note that if $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow K_1[1]$ is a distinguished triangle in $D(QCoh(O_X))$ and the statement is true for two-out-of-three, then it is true for the third.

Let $U \subset X$ be an affine open. Since the diagonal of X is affine, the inclusion morphism $j: U \rightarrow X$ is affine (Morphisms, Lemma 11.11). Similarly, the composition $g = f \circ j: U \rightarrow Y$ is affine. Let $f^*: QCoh(O_Y) \rightarrow QCoh(O_U)$.

Since $j_*: QCoh(O_U) \rightarrow QCoh(O_X)$ has an exact left adjoint $j^*: QCoh(O_X) \rightarrow
Let X be a Noetherian scheme. Let \mathcal{J} be an injective object of $\text{QCoh}(\mathcal{O}_X)$. Then \mathcal{J} is a flasque sheaf of \mathcal{O}_X-modules.
Proof. Let $U \subset X$ be an open subset and let $s \in \mathcal{J}(U)$ be a section. Let $\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on $X \setminus U$ (see Schemes, Definition 12.5). By Cohomology of Schemes, Lemma 10.5 the section s corresponds to a map $\sigma : \mathcal{I}^n \to \mathcal{J}$ for some n. As \mathcal{J} is an injective object of $\text{QCoh}(\mathcal{O}_X)$ we can extend σ to a map $\tilde{s} : \mathcal{O}_X \to \mathcal{J}$. Then \tilde{s} corresponds to a global section of \mathcal{J} restricting to s. □

Lemma 8.2. Let $f : X \to Y$ be a morphism of Noetherian schemes. Then f_* on quasi-coherent sheaves has a right derived extension $\Phi : D(\text{QCoh}(\mathcal{O}_X)) \to D(\text{QCoh}(\mathcal{O}_Y))$ such that the diagram

$$
\begin{array}{ccc}
D(\text{QCoh}(\mathcal{O}_X)) & \longrightarrow & D_{\text{QCoh}}(\mathcal{O}_X) \\
\Phi \downarrow & & \downarrow Rf_* \\
D(\text{QCoh}(\mathcal{O}_Y)) & \longrightarrow & D_{\text{QCoh}}(\mathcal{O}_Y)
\end{array}
$$

commutes.

Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and quasi-separated (see Properties, Lemma 5.4 and Schemes, Remark 21.18). Thus f_* preserve quasi-coherence, see Schemes, Lemma 24.1. Next, let K be an object of $D(\text{QCoh}(\mathcal{O}_X))$. Since $\text{QCoh}(\mathcal{O}_X)$ is a Grothendieck abelian category (Properties, Proposition 23.4), we can represent K by a K-injective complex I^\bullet such that each I^n is an injective object of $\text{QCoh}(\mathcal{O}_X)$, see Injectives, Theorem 12.6. Thus we see that the functor Φ is defined by setting

$$
\Phi(K) = f_*I^\bullet
$$

where the right hand side is viewed as an object of $D(\text{QCoh}(\mathcal{O}_Y))$. To finish the proof of the lemma it suffices to show that the canonical map

$$
f_*I^\bullet \longrightarrow Rf_*I^\bullet
$$

is an isomorphism in $D(\mathcal{O}_Y)$. To see this by Lemma 4.2 it suffices to show that I^n is right f_*-acyclic for all $n \in \mathbb{Z}$. This is true because f_*I^n is flasque by Lemma 8.1 and flasque modules are right f_*-acyclic by Cohomology, Lemma 12.5. □

Proposition 8.3. Let X be a Noetherian scheme. Then the functor (3.0.1)

$$
D(\text{QCoh}(\mathcal{O}_X)) \to D_{\text{QCoh}}(\mathcal{O}_X)
$$

is an equivalence with quasi-inverse given by RQ_X.

Proof. This follows from Lemma 7.4 and Lemma 8.2. □

9. Koszul complexes

Let A be a ring and let f_1, \ldots, f_r be a sequence of elements of A. We have defined the Koszul complex $K_*(f_1, \ldots, f_r)$ in More on Algebra, Definition 28.2. It is a chain complex sitting in degrees $r, \ldots, 0$. We turn this into a cochain complex $K^*(f_1, \ldots, f_r)$ by setting $K^-(f_1, \ldots, f_r) = K_n(f_1, \ldots, f_r)$ and using the same differentials. In the rest of this section all the complexes will be cochain complexes.

We define a complex $I^*(f_1, \ldots, f_r)$ such that we have a distinguished triangle

$$
I^*(f_1, \ldots, f_r) \to A \to K^*(f_1, \ldots, f_r) \to I^*(f_1, \ldots, f_r)[1]
$$
in $K(A)$. In other words, we set

$$I^i(f_1, \ldots, f_r) = \begin{cases} K^{i-1}(f_1, \ldots, f_r) & \text{if } i \leq 0 \\ 0 & \text{else} \end{cases}$$

and we use the negative of the differential on $K^\bullet(f_1, \ldots, f_r)$. The maps in the
distinguished triangle are the obvious ones. Note that $I^0(f_1, \ldots, f_r) = A^{\oplus r} \to A$ is
given by multiplication by f_i on the ith factor. Hence $I^\bullet(f_1, \ldots, f_r) \to A$ factors as

$$I^\bullet(f_1, \ldots, f_r) \to I \to A$$

where $I = (f_1, \ldots, f_r)$. In fact, there is a short exact sequence

$$0 \to H^{-1}(K^\bullet(f_1, \ldots, f_r)) \to H^0(I^\bullet(f_1, \ldots, f_r)) \to I \to 0$$

and for every $i < 0$ we have $H^i(I^\bullet(f_1, \ldots, f_r)) = H^{i-1}(K^\bullet(f_1, \ldots, f_r))$. Observe that
given a second sequence g_1, \ldots, g_r of elements of A there are canonical maps

$$I^\bullet(f_1, \ldots, f_r, g_r) \to I^\bullet(f_1, \ldots, f_r) \quad \text{and} \quad K^\bullet(f_1, \ldots, f_r, g_r) \to K^\bullet(f_1, \ldots, f_r)$$

compatible with the maps described above. The first of these maps is given by multiplication by g_i on
the ith summand of $I^\bullet(f_1, \ldots, f_r, g_r) = A^{\oplus r}$. In particular, given f_1, \ldots, f_r we obtain an
inverse system of complexes

$$08CY \quad (9.0.1) \quad I^\bullet(f_1, \ldots, f_r) \leftarrow I^\bullet(f_1^2, \ldots, f_r^2) \leftarrow I^\bullet(f_1^3, \ldots, f_r^3) \leftarrow \cdots$$

which will play an important role in that which is to follow. To easily formulate
the following lemmas we fix some notation.

Situation 9.1. Here A is a ring and f_1, \ldots, f_r is a sequence of elements of A.
We set $X = \text{Spec}(A)$ and $U = D(f_1) \cup \ldots \cup D(f_r) \subset X$. We denote $\mathcal{U} = U = \bigcup_{i=1, \ldots, r} D(f_i)$ the given
open covering of U.

Our first lemma is that the complexes above can be used to compute the cohomology of
 quasi-coherent sheaves on U. Suppose given a complex I^\bullet of A-modules and an
A-module M. Then we define $\text{Hom}_A(I^\bullet, M)$ to be the complex with nth term
$\text{Hom}_A(I^n, M)$ and differentials given as the contragredients of the differentials on
I^\bullet.

Lemma 9.2. In Situation 9.1 Let M be an A-module and denote \mathcal{F} the associated
\mathcal{O}_X-module. Then there is a canonical isomorphism of complexes

$$\text{colim}_r \text{Hom}_A(I^\bullet(f_1^r, \ldots, f_r^r), M) \to \check{C}^\bullet_{\text{alt}}(\mathcal{U}, \mathcal{F})$$

functorial in M.

Proof. Recall that the alternating Čech complex is the subcomplex of the usual
Čech complex given by alternating cochains, see Cohomology, Section 23. As usual we view a p-cochain in
$\check{C}^\bullet_{\text{alt}}(\mathcal{U}, \mathcal{F})$ as an alternating function s on $\{1, \ldots, r\}^{p+1}$ whose value
s_{i_0, \ldots, i_p} at (i_0, \ldots, i_p) lies in $M_{i_0, \ldots, i_p} = \mathcal{F}(U_{i_0, \ldots, i_p})$. On the other hand, a
p-cochain t in $\text{Hom}_A(I^\bullet(f_1^r, \ldots, f_r^r), M)$ is given by a map $t : \wedge^{p+1}(A^{\oplus r}) \to M$.
Write $[i] \in A^{\oplus r}$ for the ith basis element and write

$$[i_0, \ldots, i_p] = [i_0] \wedge \ldots \wedge [i_p] \in \wedge^{p+1}(A^{\oplus r})$$

Then we send t as above to s with

$$s_{i_0, \ldots, i_p} = \frac{t([i_0, \ldots, i_p])}{f_{i_0}^{r_0} \cdots f_{i_p}^{r_p}}$$
It is clear that \(s \) so defined is an alternating cochain. The construction of this map is compatible with the transition maps of the system as the transition map

\[
I^\bullet(f_1^e, \ldots, f_r^e) \leftarrow I^\bullet(f_1^{e+1}, \ldots, f_r^{e+1}),
\]

of the \([0,0,1]\) sends \([i_0, \ldots, i_p]\) to \(f_{i_0} \ldots f_{i_p} [i_0, \ldots, i_p] \). It is clear from the description of the localizations \(M_{f_{i_0} \ldots f_{i_p}} \) in Algebra, Lemma \(9.9 \) that these maps define an isomorphism of cochain modules in degree \(p \) in the limit. To finish the proof we have to show that the map is compatible with differentials. To see this recall that

\[
d(s)_{i_0 \ldots i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j s_{i_0 \ldots \hat{i}_j \ldots i_p}
\]

\[
= \sum_{j=0}^{p+1} (-1)^j t([i_0, \ldots, \hat{i}_j, \ldots i_{p+1}])
\]

On the other hand, we have

\[
d(t)([i_0, \ldots, i_{p+1}]) = t(d([i_0, \ldots, i_{p+1}]))
\]

\[
= \sum_{j} (-1)^j f_{i_j}^e t([i_0, \ldots, \hat{i}_j, \ldots i_{p+1}])
\]

The two formulas agree by inspection. □

Suppose given a finite complex \(I^\bullet \) of \(A \)-modules and a complex of \(A \)-modules \(M^\bullet \). We obtain a double complex \(H^\bullet, \bullet = \text{Hom}_A(I^\bullet, M^\bullet) \) where \(H^{p,q} = \text{Hom}_A(I^p, M^q) \). The first differential comes from the differential on \(\text{Hom}_A(I^\bullet, M^\bullet) \) and the second from the differential on \(M^\bullet \). Associated to this double complex is the total complex with degree \(n \) term given by

\[
\bigoplus_{p+q=n} \text{Hom}_A(I^p, M^q)
\]

and differential as in Homology, Definition \(18.3 \). As our complex \(I^\bullet \) has only finitely many nonzero terms, the direct sum displayed above is finite. The conventions for taking the total complex associated to a Čech complex of a complex are as in Cohomology, Section \(25 \).

Lemma 9.3. In Situation \(9.1 \). Let \(M^\bullet \) be a complex of \(A \)-modules and denote \(F^\bullet \) the associated complex of \(\mathcal{O}_X \)-modules. Then there is a canonical isomorphism of complexes

\[
\text{colim}_c \text{Tot}(\text{Hom}_A(I^\bullet(f_1^e, \ldots, f_r^e), M^\bullet)) \to \text{Tot}(\check{C}_\text{alt}^\bullet(U, F^\bullet))
\]

functorial in \(M^\bullet \).

Proof. Immediate from Lemma \(9.2 \) and our conventions for taking associated total complexes. □

Lemma 9.4. In Situation \(9.1 \). Let \(F^\bullet \) be a complex of quasi-coherent \(\mathcal{O}_X \)-modules. Then there is a canonical isomorphism

\[
\text{Tot}(\check{C}_\text{alt}^\bullet(U, F^\bullet)) \to R\Gamma(U, F^\bullet)
\]

in \(D(A) \) functorial in \(F^\bullet \).
In Situation 9.1 denote I_e the object of $D(\mathcal{O}_X)$ corresponding to the complex of A-modules $I^*(f_1^*, \ldots, f_r^*)$ via the equivalence of Lemma 3.5. The maps $(9.0.1)$ give a system
\[I_1 \leftarrow I_2 \leftarrow I_3 \leftarrow \ldots \]
Moreover, there is a compatible system of maps $I_e \to \mathcal{O}_X$ which become isomorphisms when restricted to U. Thus we see that for every object E of $D(\mathcal{O}_X)$ there is a canonical map
\[\text{colim}_e \text{Hom}_{D(\mathcal{O}_X)}(I_e, E) \to H^0(U, E) \]
constructed by sending a map $I_e \to E$ to its restriction to U and using that $\text{Hom}_{D(\mathcal{O}_U)}(\mathcal{O}_U, E|_U) = H^0(U, E)$.

Proposition 9.5. In Situation 9.1, for every object E of $D_{\text{QCoh}}(\mathcal{O}_X)$ the map $(9.4.1)$ is an isomorphism.

Proof. By Lemma 3.5 we may assume that E is given by a complex of quasi-coherent sheaves \mathcal{F}^*. Let $M^* = \Gamma(X, \mathcal{F}^*)$ be the corresponding complex of A-modules. By Lemmas 9.3 and 9.4 we have quasi-isomorphisms
\[\text{colim}_e \text{Tot}(\text{Hom}_{A}(I^*(f_1^*, \ldots, f_r^*), M^*)) \to \text{Tot}(\check{\mathcal{C}}_{\text{alt}}(U, \mathcal{F}^*)) \to R\Gamma(U, \mathcal{F}^*) \]
Taking H^0 on both sides we obtain
\[\text{colim}_e \text{Hom}_{D(A)}(I^*(f_1^*, \ldots, f_r^*), M^*) = H^0(U, E) \]
Since $\text{Hom}_{D(A)}(I^*(f_1^*, \ldots, f_r^*), M^*) = \text{Hom}_{D(\mathcal{O}_X)}(I_e, E)$ by Lemma 3.5 the lemma follows. □

In Situation 9.1 denote K_e the object of $D(\mathcal{O}_X)$ corresponding to the complex of A-modules $K^*(f_1^*, \ldots, f_r^*)$ via the equivalence of Lemma 3.5. Thus we have distinguished triangles
\[I_e \to \mathcal{O}_X \to K_e \to I_e[1] \]
and a system
\[K_1 \leftrightarrow K_2 \leftrightarrow K_3 \leftarrow \ldots \]
compatible with the system (I_e). Moreover, there is a compatible system of maps
\[K_e \to H^0(K_e) = \mathcal{O}_X/(f_1, \ldots, f_r) \]

Lemma 9.6. In Situation 9.1, let E be an object of $D_{\text{QCoh}}(\mathcal{O}_X)$. Assume that $H^i(E)|_U = 0$ for $i = -r + 1, \ldots, 0$. Then given $s \in H^0(X, E)$ there exists an $e \geq 0$ and a morphism $K_e \to E$ such that s is in the image of $H^0(X, K_e) \to H^0(X, E)$.

Proof. Since U is covered by r affine opens we have $H^j(U, \mathcal{F}) = 0$ for $j \geq r$ and any quasi-coherent module (Cohomology of Schemes, Lemma 4.2). By Lemma 3.4 we see that $H^0(U, E)$ is equal to $H^0(U, \tau_{\geq -r+1}E)$. There is a spectral sequence
\[H^j(U, H^i(\tau_{\geq -r+1}E)) \Rightarrow H^{i+j}(U, \tau_{\geq -N}E) \]
see Derived Categories, Lemma 21.3. Hence $H^0(U, E) = 0$ by our assumed vanishing of cohomology sheaves of E. We conclude that $s|_U = 0$. Think of s as a morphism $\mathcal{O}_X \to E$ in $D(\mathcal{O}_X)$. By Proposition 9.5 the composition $I_e \to \mathcal{O}_X \to E$
is zero for some e. By the distinguished triangle $I_e \to \mathcal{O}_X \to K_e \to I_e[1]$ we obtain a morphism $K_e \to E$ such that s is the composition $\mathcal{O}_X \to K_e \to E$. \hfill \Box

10. Pseudo-coherent and perfect complexes

In this section we make the connection between the general notions defined in Cohomology, Sections 14, 45, 46, and 47 and the corresponding notions for complexes of modules in More on Algebra, Sections 64, 66 and 74.

Lemma 10.1. Let X be a scheme. If E is an m-pseudo-coherent object of $D(\mathcal{O}_X)$, then $H^i(E)$ is a quasi-coherent \mathcal{O}_X-module for $i > m$ and $H^m(E)$ is a quotient of a quasi-coherent \mathcal{O}_X-module. If E is pseudo-coherent, then E is an object of $D_{QCoh}(\mathcal{O}_X)$.

\textbf{Proof.} Locally on X there exists a strictly perfect complex \mathcal{E}^\bullet such that $H^i(E)$ is isomorphic to $H^i(\mathcal{E}^\bullet)$ for $i > m$ and $H^m(E)$ is a quotient of $H^m(\mathcal{E}^\bullet)$. The sheaves \mathcal{E}^i are direct summands of finite free modules, hence quasi-coherent. The lemma follows. \hfill \Box

Lemma 10.2. Let $X = \text{Spec}(A)$ be an affine scheme. Let M^\bullet be a complex of A-modules and let E be the corresponding object of $D(\mathcal{O}_X)$. Then E is an m-pseudo-coherent (resp. pseudo-coherent) as an object of $D(\mathcal{O}_X)$ if and only if M^\bullet is m-pseudo-coherent (resp. pseudo-coherent) as a complex of A-modules.

\textbf{Proof.} It is immediate from the definitions that if M^\bullet is m-pseudo-coherent, so is E. To prove the converse, assume E is m-pseudo-coherent. As $X = \text{Spec}(A)$ is quasi-compact with a basis for the topology given by standard opens, we can find a standard open covering $X = D(f_1) \cup \ldots \cup D(f_n)$ and strictly perfect complexes \mathcal{E}^\bullet_i on $D(f_i)$ and maps $\alpha_i : \mathcal{E}^\bullet_i \to E|_{U_i}$ inducing isomorphisms on H^j for $j > m$ and surjections on H^m. By Cohomology, Lemma 14.8 after refining the open covering we may assume α_i is given by a map of complexes $\mathcal{E}^\bullet_i \to M^\bullet|_{U_i}$ for each i. By Modules, Lemma 14.6 the terms \mathcal{E}^m_i are finite locally free modules. Hence after refining the open covering we may assume each \mathcal{E}^m_i is a finite free \mathcal{O}_{U_i}-module. From the definition it follows that M^\bullet is an m-pseudo-coherent complex of A_{f_i}-modules. We conclude by applying More on Algebra, Lemma 64.13.

The case “pseudo-coherent” follows from the fact that E is pseudo-coherent if and only if E is m-pseudo-coherent for all m (by definition) and the same is true for M^\bullet by More on Algebra, Lemma 64.5. \hfill \Box

Lemma 10.3. Let X be a Noetherian scheme. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. For $m \in \mathbb{Z}$ the following are equivalent

1. $H^i(E)$ is coherent for $i \geq m$ and zero for $i \gg 0$, and
2. E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of $D_{QCoh}(\mathcal{O}_X)$.

\textbf{Proof.} As X is quasi-compact we see that in both (1) and (2) the object E is bounded above. Thus the question is local on X and we may assume X is affine. Say $X = \text{Spec}(A)$ for some Noetherian ring A. In this case E corresponds to a complex of A-modules M^\bullet by Lemma 3.3. By Lemma 10.2 we see that E is m-pseudo-coherent if and only if M^\bullet is m-pseudo-coherent. On the other hand, $H^i(M^\bullet)$ is coherent if and only if $H^i(M^\bullet)$ is a finite A-module (Properties, Lemma 16.1). Thus the result follows from More on Algebra, Lemma 64.17. \hfill \Box
Lemma 10.4. Let $X = \text{Spec}(A)$ be an affine scheme. Let M^\bullet be a complex of A-modules and let E be the corresponding object of $D(\mathcal{O}_X)$. Then

(1) E has tor amplitude in $[a, b]$ if and only if M^\bullet has tor amplitude in $[a, b]$.

(2) E has finite tor dimension if and only if M^\bullet has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the equivalence $D(A) = D_{\text{QCoh}}(X)$ of Lemma 3.5 without further mention. Assume M^\bullet has tor amplitude in $[a, b]$. Then K^\bullet is isomorphic in $D(A)$ to a complex K^\bullet of flat A-modules with $K^i = 0$ for $i \notin [a, b]$, see More on Algebra, Lemma 66.3. Then E is isomorphic to \tilde{K}^\bullet. Since each \tilde{K}^i is a flat \mathcal{O}_X-module, we see that E has tor amplitude in $[a, b]$.

Assume that E has tor amplitude in $[a, b]$. Then E is bounded whence M^\bullet is in $K^{-}(A)$. Thus we may replace M^\bullet by a bounded above complex of A-modules. We may even choose a projective resolution and assume that M^\bullet is a bounded above complex of free A-modules. Then for any A-module N we have

$$E \otimes_{\mathcal{O}_X} \tilde{N} \cong M^\bullet \otimes_{\mathcal{O}_X} \tilde{N} \cong M^\bullet \otimes_{A} N$$

in $D(\mathcal{O}_X)$. Thus the vanishing of cohomology sheaves of the left hand side implies M^\bullet has tor amplitude in $[a, b]$. □

Lemma 10.5. Let $f : X \to S$ be a morphism of affine schemes corresponding to the ring map $R \to A$. Let M^\bullet be a complex of A-modules and let E be the corresponding object of $D(\mathcal{O}_X)$. Then

(1) E as an object of $D(f^{-1}\mathcal{O}_S)$ has tor amplitude in $[a, b]$ if and only if M^\bullet has tor amplitude in $[a, b]$ as an object of $D(R)$.

(2) E locally has finite tor dimension as an object of $D(f^{-1}\mathcal{O}_S)$ if and only if M^\bullet has finite tor dimension as an object of $D(R)$.

Proof. Consider a prime $q \subset A$ lying over $p \subset R$. Let $x \in X$ and $s = f(x) \in S$ be the corresponding points. Then $(f^{-1}\mathcal{O}_S)_x = \mathcal{O}_{S,s} = R_q$ and $E_x = M^\bullet_q$. Keeping this in mind we can see the equivalence as follows.

If M^\bullet has tor amplitude in $[a, b]$ as a complex of R-modules, then the same is true for the localization of M^\bullet at any prime of A. Then we conclude by Cohomology, Lemma 46.5 that E has tor amplitude in $[a, b]$ as a complex of sheaves of $f^{-1}\mathcal{O}_S$-modules. Conversely, assume that E has tor amplitude in $[a, b]$ as an object of $D(f^{-1}\mathcal{O}_S)$. We conclude (using the last cited lemma) that M^\bullet_q has tor amplitude in $[a, b]$ as a complex of R_q-modules for every prime $q \subset A$ lying over $p \subset R$. By More on Algebra, Lemma 66.15 we find that M^\bullet has tor amplitude in $[a, b]$ as a complex of R-modules. This finishes the proof of (1).

Since X is quasi-compact, if E locally has finite tor dimension as a complex of $f^{-1}\mathcal{O}_S$-modules, then actually E has tor amplitude in $[a, b]$ for some a, b as a complex of $f^{-1}\mathcal{O}_S$-modules. Thus (2) follows from (1). □

Lemma 10.6. Let X be a quasi-separated scheme. Let E be an object of $D_{\text{QCoh}}(\mathcal{O}_X)$. Let $a \leq b$. The following are equivalent

(1) E has tor amplitude in $[a, b]$, and

(2) for all F in $\text{QCoh}(\mathcal{O}_X)$ we have $H^i(E \otimes_{\mathcal{O}_X} F) = 0$ for $i \notin [a, b]$.
Lemma 10.7. Let $X = \text{Spec}(A)$ be an affine scheme. Let M^\bullet be a complex of A-modules and let E be the corresponding object of $D(O_X)$. Then E is a perfect object of $D(O_X)$ if and only if M^\bullet is perfect as an object of $D(A)$.

Proof. This is a logical consequence of Lemmas 10.2 and 10.4, Cohomology, Lemma 47.5, and More on Algebra, Lemma 74.2.

As a consequence of our description of pseudo-coherent complexes on schemes we can prove certain internal homs are quasi-coherent.

Lemma 10.8. Let X be a scheme.

1. If L is in $D^+_{QCoh}(O_X)$ and K in $D(O_X)$ is pseudo-coherent, then $R\mathcal{H}om(K, L)$ is in $D_{QCoh}(O_X)$ and locally bounded below.

2. If L is in $D_{QCoh}(O_X)$ and K in $D(O_X)$ is perfect, then $R\mathcal{H}om(K, L)$ is in $D_{QCoh}(O_X)$.

3. If $X = \text{Spec}(A)$ is affine and $K, L \in D(A)$ then

$$R\mathcal{H}om(\widetilde{K}, \widetilde{L}) = \widetilde{R\mathcal{H}om_A(K, L)}$$

in the following two cases

(a) K is pseudo-coherent and L is bounded below,

(b) K is perfect and L arbitrary.

4. If $X = \text{Spec}(A)$ and K, L are in $D(A)$, then the nth cohomology sheaf of $R\mathcal{H}om(K, L)$ is the sheaf associated to the presheaf

$$X \ni f \mapsto \text{Ext}_{A_f}^n(K \otimes_A A_f, L \otimes_A A_f)$$

for $f \in A$.

Proof. The construction of the internal hom in the derived category of O_X commutes with localization (see Cohomology, Section 40). Hence to prove (1) and (2) we may replace X by an affine open. By Lemmas 3.5, 10.2, and 10.7 in order to prove (1) and (2) it suffices to prove (3).

Part (3) follows from the computation of the internal hom of Cohomology, Lemma 44.11 by representing K by a bounded above (resp. finite) complex of finite projective A-modules and L by a bounded below (resp. arbitrary) complex of A-modules.

To prove (4) recall that on any ringed space the nth cohomology sheaf of $R\mathcal{H}om(A, B)$ is the sheaf associated to the presheaf

$$U \mapsto \mathcal{H}om_{D(U)}(A[U], B[U]) = \text{Ext}_{D(O_U)}^n(A, B[U])$$
See Cohomology, Section 40. On the other hand, the restriction of \tilde{K} to a principal open $D(f)$ is the image of $K \otimes A_f$ and similarly for L. Hence (4) follows from the equivalence of categories of Lemma 3.5. □

Lemma 10.9. Let X be a scheme. Let K, L, M be objects of $D_{Q\text{Coh}}(O_X)$. The map

$$K \otimes_{O_X}^L R\text{Hom}(M, L) \to R\text{Hom}(M, K \otimes_{O_X}^L L)$$

of Cohomology, Lemma 40.6 is an isomorphism in the following cases

1. M perfect, or
2. K is perfect, or
3. M is pseudo-coherent, $L \in D^+(O_X)$, and K has finite tor dimension.

Proof. Lemma 10.8 reduces cases (1) and (3) to the affine case which is treated in More on Algebra, Lemma 98.3. (You also have to use Lemmas 10.2, 10.7, and 10.4 to do the translation into algebra.) If K is perfect but no other assumptions are made, then we do not know that either side of the arrow is in $D_{Q\text{Coh}}(O_X)$ but the result is still true because we can work locally and reduce to the case that K is a finite complex of finite free modules in which case it is clear. □

11. Derived category of coherent modules

Let X be a locally Noetherian scheme. In this case the category $\text{Coh}(O_X) \subset \text{Mod}(O_X)$ of coherent O_X-modules is a weak Serre subcategory, see Homology, Section 10 and Cohomology of Schemes, Lemma 9.2. Denote

$$D_{\text{Coh}}(O_X) \subset D(O_X)$$

the subcategory of complexes whose cohomology sheaves are coherent, see Derived Categories, Section 17. Thus we obtain a canonical functor

$$D(\text{Coh}(O_X)) \to D_{\text{Coh}}(O_X)$$

see Derived Categories, Equation (17.1.1).

Lemma 11.1. Let X be a Noetherian scheme. Then the functor

$$D^{-}(\text{Coh}(O_X)) \to D^{-}_{\text{Coh}}(O_X)(Q\text{Coh}(O_X))$$

is an equivalence.

Proof. Observe that $\text{Coh}(O_X) \subset Q\text{Coh}(O_X)$ is a Serre subcategory, see Homology, Definition 10.1 and Lemma 10.2 and Cohomology of Schemes, Lemmas 9.2 and 9.3. On the other hand, if $\mathcal{G} \to \mathcal{F}$ is a surjection from a quasi-coherent O_X-module to a coherent O_X-module, then there exists a coherent submodule $\mathcal{G}' \subset \mathcal{G}$ which surjects onto \mathcal{F}. Namely, we can write \mathcal{G} as the filtered union of its coherent submodules by Properties, Lemma 22.3 and then one of these will do the job. Thus the lemma follows from Derived Categories, Lemma 17.4. □

Proposition 11.2. Let X be a Noetherian scheme. Then the functors

$$D^{-}(\text{Coh}(O_X)) \to D^{-}_{\text{Coh}}(O_X) \text{ and } D^b(\text{Coh}(O_X)) \to D^b_{\text{Coh}}(O_X)$$

are equivalences.
Lemma 11.3. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let E be an object of $D^b_{Coh}(\mathcal{O}_X)$ such that the support of $H^i(E)$ is proper over S for all i. Then Rf_*E is an object of $D^b_{Coh}(\mathcal{O}_S)$.

Proof. Consider the spectral sequence

$$
R^p f_* H^q(E) \Rightarrow R^{p+q} f_* E
$$

see Derived Categories, Lemma 21.3. By assumption and Cohomology of Schemes, Lemma 26.10 the sheaves $R^p f_* H^q(E)$ are coherent. Hence $R^{p+q} f_* E$ is coherent, i.e., $Rf_* E \in D_{Coh}(\mathcal{O}_S)$. Boundedness from below is trivial. Boundedness from above follows from Cohomology of Schemes, Lemma 4.5 or from Lemma 11.1.

Lemma 11.4. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let E be an object of $D^b_{Coh}(\mathcal{O}_X)$ such that the support of $H^i(E)$ is proper over S for all i. Then $Rf_* E$ is an object of $D^b_{Coh}(\mathcal{O}_S)$.

Proof. The proof is the same as the proof of Lemma 11.3. You can also deduce it from Lemma 11.3 by considering what the exact functor Rf_* does to the distinguished triangles $\tau_{\leq a} E \to E \to \tau_{\geq a+1} E \to \tau_{\leq a} E[1]$.

Lemma 11.5. Let X be a locally Noetherian scheme. If L is in $D^+_{Coh}(\mathcal{O}_X)$ and K in $D^b_{Coh}(\mathcal{O}_X)$, then $R Hom(K, L)$ is in $D^b_{Coh}(\mathcal{O}_X)$.

Proof. It suffices to prove this when X is the spectrum of a Noetherian ring A. By Lemma 10.3 we see that K is pseudo-coherent. Then we can use Lemma 10.8 to translate the problem into the following algebra problem: for $L \in D^b_{Coh}(A)$ and K in $D^b_{Coh}(A)$, then $R Hom_A(K, L)$ is in $D^b_{Coh}(A)$. Since L is bounded and below and K is bounded below there is a convergent spectral sequence

$$
Ext^p_A(K, H^q(L)) \Rightarrow Ext^{p+q}_A(K, L)
$$

and there are convergent spectral sequences

$$
Ext^i_A(H^{-j}(K), H^q(L)) \Rightarrow Ext^{i+j}_A(K, H^q(L))
$$
See Injectives, Remarks 13.9 and 13.11. This finishes the proof as the modules \(\text{Ext}^p_A(M, N) \) are finite for finite \(A \)-modules \(M, N \) by Algebra, Lemma 71.9.

Lemma 11.6. Let \(X \) be a Noetherian scheme. Let \(E \) in \(D(\mathcal{O}_X) \) be perfect. Then

1. \(E \) is in \(D^b_\text{Coh}(\mathcal{O}_X) \),
2. if \(L \) is in \(D^b_\text{Coh}(\mathcal{O}_X) \) then \(E \otimes^{\mathbb{L}}_{\mathcal{O}_X} L \) and \(R\text{Hom}_{\mathcal{O}_X}(E, L) \) are in \(D^b_\text{Coh}(\mathcal{O}_X) \),
3. if \(L \) is in \(D^b_\text{Coh}(\mathcal{O}_X) \) then \(E \otimes^{\mathbb{L}}_{\mathcal{O}_X} L \) and \(R\text{Hom}_{\mathcal{O}_X}(E, L) \) are in \(D^b_\text{Coh}(\mathcal{O}_X) \),
4. if \(L \) is in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \) then \(E \otimes_{\mathcal{O}_X} L \) and \(R\text{Hom}_{\mathcal{O}_X}(E, L) \) are in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \),
5. if \(L \) is in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \) then \(E \otimes_{\mathcal{O}_X} L \) and \(R\text{Hom}_{\mathcal{O}_X}(E, L) \) are in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \).

Proof. Since \(X \) is quasi-compact, each of these statements can be checked over the members of any open covering of \(X \). Thus we may assume \(E \) is represented by a bounded complex \(\mathcal{E}^\bullet \) of finite free modules, see Cohomology, Lemma 17.3. In this case each of the statements is clear as both \(R\text{Hom}_{\mathcal{O}_X}(E, L) \) and \(E \otimes_{\mathcal{O}_X} L \) can be computed on the level of complexes using \(\mathcal{E}^\bullet \), see Cohomology, Lemmas 44.9 and 26.9. Some details omitted.

Lemma 11.7. Let \(A \) be a Noetherian ring. Let \(X \) be a proper scheme over \(A \). For \(L \) in \(D^+_\text{Coh}(\mathcal{O}_X) \) and \(K \) in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \), the \(A \)-modules \(\text{Ext}^n_{\mathcal{O}_X}(K, L) \) are finite.

Proof. Recall that

\[
\text{Ext}^n_X(K, L) = H^n(X, R\text{Hom}_{\mathcal{O}_X}(K, L)) = H^n(\text{Spec}(A), Rf_*R\text{Hom}_{\mathcal{O}_X}(K, L))
\]

see Cohomology, Lemma 40.1 and Cohomology, Section 13. Thus the result follows from Lemmas 11.5 and 11.4.

Lemma 11.8. Let \(X \) be a Noetherian regular scheme. Then every object of \(D^b_{-\text{Coh}}(\mathcal{O}_X) \) is perfect and conversely every perfect object of \(D(\mathcal{O}_X) \) is in \(D^b_{-\text{Coh}}(\mathcal{O}_X) \).

Proof. Since \(X \) is Noetherian, it is in particular quasi-compact. Hence being bounded can be checked on the members of a finite affine open covering of \(X \). This remark, plus similar remarks on having coherent cohomology sheaves and being perfect, shows that it suffices to prove the lemma when \(X \) is affine. This case translated via Lemma 10.7 into More on Algebra, Lemma 74.14.

12. Descent finiteness properties of complexes

This section is the analogue of Descent, Section 4 for objects of the derived category of a scheme. The easiest such result is probably the following.

Lemma 12.1. Let \(f : X \rightarrow Y \) be a surjective flat morphism of schemes (or more generally locally ringed spaces). Let \(E \in D(\mathcal{O}_Y) \). Let \(a, b \in \mathbb{Z} \). Then \(E \) has tor-amplitude in \([a, b]\) if and only if \(Lf^*E \) has tor-amplitude in \([a, b]\).

Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 46.4. We may check tor-amplitude in \([a, b]\) on stalks, see Cohomology, Lemma 46.5. A flat local ring homomorphism is faithfully flat by Algebra, Lemma 39.17. Thus the result follows from More on Algebra, Lemma 66.17.

Lemma 12.2. Let \(\{f_i : X_i \rightarrow X\} \) be an fpqc covering of schemes. Let \(E \in D_{QCoh}(\mathcal{O}_X) \). Let \(m \in \mathbb{Z} \). Then \(E \) is \(m \)-pseudo-coherent if and only if each \(Lf_i^*E \) is \(m \)-pseudo-coherent.
Let \(U \subset X \) be an affine open. It suffices to prove that \(E|_U \) is \(m \)-pseudo-coherent. Since \(\{ f_i : X_i \to X \} \) is an fpqc covering, we can find finitely many affine open \(V_j \subset X_{a(j)} \) such that \(f_{a(j)}(V_j) \subset U \) and \(U = \bigcup f_{a(j)}(V_j) \). Set \(V = \coprod V_i \). Thus we may replace \(X \) by \(U \) and \(\{ f_i : X_i \to X \} \) by \(\{ V \to U \} \) and assume that \(X \) is affine and our covering is given by a single surjective flat morphism \(\{ f : Y \to X \} \) of affine schemes. In this case the result follows from More on Algebra, Lemma 64.15 via Lemmas 3.3 and 10.2.

Lemma 12.3. Let \(\{ f_i : X_i \to X \} \) be an fppf covering of schemes. Let \(E \in D(\mathcal{O}_X) \). Let \(m \in \mathbb{Z} \). Then \(E \) is \(m \)-pseudo-coherent if and only if each \(Lf_i^*E \) is \(m \)-pseudo-coherent.

Proof. Pullback always preserves \(m \)-pseudo-coherence, see Cohomology, Lemma 45.3. Conversely, assume that \(Lf_i^*E \) is \(m \)-pseudo-coherent for all \(i \). Let \(U \subset X \) be an affine open. It suffices to prove that \(E|_U \) is \(m \)-pseudo-coherent. Since \(\{ f_i : X_i \to X \} \) is an fppf covering, we can find finitely many affine open \(V_j \subset X_{a(j)} \) such that \(f_{a(j)}(V_j) \subset U \) and \(U = \bigcup f_{a(j)}(V_j) \). Set \(V = \coprod V_i \). Thus we may replace \(X \) by \(U \) and \(\{ f_i : X_i \to X \} \) by \(\{ V \to U \} \) and assume that \(X \) is affine and our covering is given by a single surjective flat morphism \(\{ f : Y \to X \} \) of finite presentation.

Since \(f \) is flat the derived functor \(Lf^* \) is just given by \(f^* \) and \(f^* \) is exact. Hence \(H^i(Lf^*E) = f^*H^i(E) \). Since \(Lf^*E \) is \(m \)-pseudo-coherent, we see that \(Lf^*E \in D^{-}(\mathcal{O}_Y) \). Since \(f \) is surjective and flat, we see that \(E \in D^{-}(\mathcal{O}_X) \). Let \(i \in \mathbb{Z} \) be the largest integer such that \(H^i(E) \) is nonzero. If \(i < m \), then we are done. Otherwise, \(f^*H^i(E) \) is a finite type \(\mathcal{O}_Y \)-module by Cohomology, Lemma 45.9. Then by Descent, Lemma 7.2 the \(\mathcal{O}_X \)-module \(H^i(E) \) is of finite type. Thus, after replacing \(X \) by the members of a finite affine open covering, we may assume there exists a map

\[
\alpha : \mathcal{O}_X^m[-i] \to E
\]

such that \(H^i(\alpha) \) is a surjection. Let \(C \) be the cone of \(\alpha \) in \(D(\mathcal{O}_X) \). Pulling back to \(Y \) and using Cohomology, Lemma 45.4, we find that \(Lf^*C \) is \(m \)-pseudo-coherent. Moreover \(H^j(C) = 0 \) for \(j \geq i \). Thus by induction on \(i \) we see that \(C \) is \(m \)-pseudo-coherent. Using Cohomology, Lemma 45.4 again we conclude.

Lemma 12.4. Let \(\{ f_i : X_i \to X \} \) be an fpqc covering of schemes. Let \(E \in D(\mathcal{O}_X) \). Then \(E \) is perfect if and only if each \(Lf_i^*E \) is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 47.6. Conversely, assume that \(Lf_i^*E \) is perfect for all \(i \). Then the cohomology sheaves of each \(Lf_i^*E \) are quasi-coherent, see Lemma 10.1 and Cohomology, Lemma 47.5. Since the morphisms \(f_i \) is flat we see that \(H^p(Lf_i^*E) = f_i^*H^p(E) \). Thus the cohomology sheaves of \(E \) are quasi-coherent by Descent, Proposition 5.2. Having said this the lemma follows formally from Cohomology, Lemma 47.5 and Lemmas 12.4 and 12.2.

Lemma 12.5. Let \(i : Z \to X \) be a morphism of ringed spaces such that \(i \) is a closed immersion of underlying topological spaces and such that \(i_* \mathcal{O}_Z \) is pseudo-coherent as an \(\mathcal{O}_X \)-module. Let \(E \in D(\mathcal{O}_Z) \). Then \(E \) is \(m \)-pseudo-coherent if and only if \(Ri_*E \) is \(m \)-pseudo-coherent.
Theorem 09VB. Let \(f : X \to Y \) be a finite morphism of schemes such that \(f_*\mathcal{O}_X \) is pseudo-coherent as an \(\mathcal{O}_Y \)-module\(^2\). Let \(E \in D_{Qcoh}(\mathcal{O}_X) \). Then \(E \) is \(f_* \)-pseudo-coherent if and only if \(Rf_*E \) is \(f_* \)-pseudo-coherent.

Proof. This is a translation of More on Algebra, Lemma 64.11 into the language of schemes. To do the translation, use Lemmas 3.5 and 10.2.

\(^2\)This means that \(f \) is pseudo-coherent, see More on Morphisms, Lemma 58.8.
13. Lifting complexes

Let $U \subset X$ be an open subspace of a ringed space and denote $j : U \to X$ the inclusion morphism. The functor $D(O_X) \to D(O_U)$ is essentially surjective as Rj_* is a right inverse to restriction. In this section we extend this to complexes with quasi-coherent cohomology sheaves, etc.

Lemma 13.1. Let X be a scheme and let $j : U \to X$ be a quasi-compact open immersion. The functors

$$D_{Qcoh}(O_X) \to D_{Qcoh}(O_U) \quad \text{and} \quad D_{Qcoh}^+(O_X) \to D_{Qcoh}^+(O_U)$$

are essentially surjective. If X is quasi-compact, then the functors

$$D_{Qcoh}^-(O_X) \to D_{Qcoh}^-(O_U) \quad \text{and} \quad D_{Qcoh}^b(O_X) \to D_{Qcoh}^b(O_U)$$

are essentially surjective.

Proof. The argument preceding the lemma applies for the first case because Rj_* maps $D_{Qcoh}(O_U)$ into $D_{Qcoh}(O_X)$ by Lemma 13.1. It is clear that Rj_* maps $D_{Qcoh}^+(O_U)$ into $D_{Qcoh}^+(O_X)$ which implies the statement on bounded below complexes. Finally, Lemma 13.1 guarantees that Rj_* maps $D_{Qcoh}^-(O_U)$ into $D_{Qcoh}^-(O_X)$ if X is quasi-compact. Combining these two we obtain the last statement.

Lemma 13.2. Let X be a Noetherian scheme and let $j : U \to X$ be an open immersion. The functor $D_{Qcoh}^b(O_X) \to D_{Qcoh}^b(O_U)$ is essentially surjective.

Proof. Let K be an object of $D^b_{Qcoh}(O_U)$. By Proposition 11.2 we can represent K by a bounded complex F^\bullet of coherent O_U-modules. Say $F^i = 0$ for $i \notin [a, b]$ for some $a \leq b$. Since j is quasi-compact and separated, the terms of the bounded complex j_*F^\bullet are quasi-coherent modules on X, see Schemes, Lemma 24.1. We inductively pick a coherent submodule $G^i \subset j_*F^i$ as follows. For $i = a$ we pick any coherent submodule $G^a \subset j_*F^a$ whose restriction to U is F^a. This is possible by Properties, Lemma 22.2. For $i > a$ we first pick any coherent submodule $H^i \subset j_*F^i$ whose restriction to U is F^i and then we set $G^i = \text{Im}(H^i \oplus G^{i-1} \to j_*F^i)$. It is clear that $G^\bullet \subset j_*F^\bullet$ is a bounded complex of coherent O_X-modules whose restriction to U is F^\bullet as desired.

Lemma 13.3. Let X be an affine scheme and let $U \subset X$ be a quasi-compact open subscheme. For any pseudo-coherent object E of $D(O_U)$ there exists a bounded above complex of finite free O_X-modules whose restriction to U is isomorphic to E.

Proof. By Lemma 10.1 we see that E is an object of $D_{Qcoh}(O_U)$. By Lemma 13.1 we may assume $E = E'|U$ for some object E' of $D_{Qcoh}(O_X)$. Write $X = \text{Spec}(A)$. By Lemma 3.3 we can find a complex M^\bullet of A-modules whose associated complex of O_X-modules is a representative of E'.

Choose $f_1, \ldots, f_r \in A$ such that $U = D(f_1) \cup \ldots \cup D(f_r)$. By Lemma 10.2 the complexes $M^\bullet_{f_i}$ are pseudo-coherent complexes of A_{f_i}-modules. Let n be an integer. Assume we have a map of complexes $\alpha : F^\bullet \to M^\bullet$ where F^\bullet is bounded above, $F^i = 0$ for $i < n$, each F^i is a finite free R-module, such that $H^i(\alpha_{f_i}) : H^i(F^\bullet_{f_i}) \to H^i(M^\bullet_{f_i})$
is an isomorphism for \(i > n \) and surjective for \(i = n \). Picture

\[
\begin{array}{ccc}
F^n & \longrightarrow & F^{n+1} \\
\downarrow \alpha & & \downarrow \alpha \\
M^{n-1} & \longrightarrow & M^n \\
& \longrightarrow & M^{n+1} \\
\end{array}
\]

Since each \(M^n_f \) has vanishing cohomology in large degrees we can find such a map for \(n \gg 0 \). By induction on \(n \) we are going to extend this to a map of complexes \(F^* \to M^* \) such that \(H^i(\alpha_f) \) is an isomorphism for all \(i \). The lemma will follow by taking \(\tilde{F}^* \).

The induction step will be to extend the diagram above by adding \(F^{n-1} \). Let \(C^* \) be the cone on \(\alpha \) (Derived Categories, Definition 13.4). The long exact sequence of cohomology shows that \(H^i(C^n_f) \cong 0 \) for \(i \geq n \). By More on Algebra, Lemma 64.2 we see that \(C^n_f \) is \((n-1)\)-pseudo-coherent. By More on Algebra, Lemma 64.3 we see that \(H^{n-1}(C^n_f) \) is a finite \(A_f \)-module. Choose a finite free \(A \)-module \(F^{n-1} \) and an \(A \)-module \(\beta : F^{n-1} \to C^{-1} \) such that the composition \(F^{n-1} \to C^{n-1} \to C^n \) is zero and such that \(F^{n-1}_f \) surjects onto \(H^{n-1}(C^n_f) \). (Some details omitted; hint: clear denominators.) Since \(C^{n-1} = M^{n-1} \oplus F^n \) we can write \(\beta = (\alpha^{n-1}, -d^{n-1}) \). The vanishing of the composition \(F^{n-1} \to C^{n-1} \to C^n \) implies these maps fit into a morphism of complexes

\[
\begin{array}{ccc}
F^{n-1} & \longrightarrow & F^n \\
\downarrow \alpha^{n-1} & & \downarrow \alpha \\
M^{n-1} & \longrightarrow & M^n \\
& \longrightarrow & M^{n+1} \\
\end{array}
\]

Moreover, these maps define a morphism of distinguished triangles

\[
\begin{array}{ccc}
(F^n \to \ldots) & \longrightarrow & (F^{n-1} \to \ldots) \\
\downarrow & & \downarrow \beta \\
(F^n \to \ldots) & \longrightarrow & M^* \\
& \longrightarrow & C^* \\
\end{array}
\]

Hence our choice of \(\beta \) implies that the map of complexes \(F^{-1} \to \ldots \to M^* \) induces an isomorphism on cohomology localized at \(f_j \) in degrees \(\geq n \) and a surjection in degree \(-1\). This finishes the proof of the lemma.

\textbf{08EF Lemma 13.4.} Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(E \in D^b_{\mathcal{QCoh}}(\mathcal{O}_X) \). There exists an integer \(n_0 \geq 0 \) such that \(\text{Ext}_{D(\mathcal{O}_X)}^n(\mathcal{E}, E) = 0 \) for every finite locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \) and every \(n \geq n_0 \).

\textbf{Proof.} Recall that \(\text{Ext}_{D(\mathcal{O}_X)}^n(\mathcal{E}, E) = \text{Hom}_{D(\mathcal{O}_X)}(\mathcal{E}, E[n]) \). We have Mayer-Vietoris for morphisms in the derived category, see Cohomology, Lemma 33.3. Thus if \(X = U \cup V \) and the result of the lemma holds for \(E|_U \), \(E|_V \), and \(E|_{U \cap V} \) for some bound \(n_0 \), then the result holds for \(E \) with bound \(n_0 + 1 \). Thus it suffices to prove the lemma when \(X \) is affine, see Cohomology of Schemes, Lemma 4.1

Assume \(X = \text{Spec}(A) \) is affine. Choose a complex of \(A \)-modules \(M^* \) whose associated complex of quasi-coherent modules represents \(E \), see Lemma 3.5. Write
Let $\mathcal{E} = \tilde{P}$ for some A-module P. Since \mathcal{E} is finite locally free, we see that P is a finite projective A-module. We have
\[
\text{Hom}_{D(\mathcal{O}_X)}(\mathcal{E}, E[n]) = \text{Hom}_{D(A)}(P, M^*[n]) = \text{Hom}_A(P, H^n(M^*)).
\]
The first equality by Lemma 3.5, the second equality by Derived Categories, Lemma 19.8, and the final equality because $\text{Hom}_A(P, -)$ is an exact functor. As E and hence M^* is bounded we get zero for all sufficiently large n.

Lemma 13.5. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. For every perfect object E of $\mathcal{D}(\mathcal{O}_U)$ there exists an integer r and a finite locally free sheaf \mathcal{F} on U such that $\mathcal{F}[-r] \oplus E$ is the restriction of a perfect object of $\mathcal{D}(\mathcal{O}_X)$.

Proof. Say $X = \text{Spec}(A)$. Recall that a perfect complex is pseudo-coherent, see Cohomology, Lemma 47.5. By Lemma 13.3 we can find a bounded above complex \mathcal{F}^* of finite free A-modules such that E is isomorphic to \mathcal{F}^*_U in $\mathcal{D}(\mathcal{O}_U)$. By Cohomology, Lemma 47.5 and since U is quasi-compact, we see that E has finite tor dimension, say E has tor amplitude in $[a, b]$. Pick $r < a$ and set
\[
\mathcal{F} = \text{Ker}(\mathcal{F}^r \to \mathcal{F}^{r+1}) = \text{Im}(\mathcal{F}^{r-1} \to \mathcal{F}^r).
\]
Since E has tor amplitude in $[a, b]$ we see that \mathcal{F}_U is flat (Cohomology, Lemma 46.2). Hence \mathcal{F}_U is flat and of finite presentation, thus finite locally free (Properties, Lemma 20.2). It follows that
\[
(\mathcal{F} \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \cdots)|_U
\]
is a strictly perfect complex on U representing E. We obtain a distinguished triangle
\[
\mathcal{F}|_U[-r-1] \to E \to (\mathcal{F} \to \mathcal{F}^{r+1} \to \cdots)|_U \to \mathcal{F}|_U[-r]
\]
Note that $(\mathcal{F} \to \mathcal{F}^{r+1} \to \cdots)$ is a perfect complex on X. To finish the proof it suffices to pick r such that the map $\mathcal{F}|_U[-r-1] \to E$ is zero in $\mathcal{D}(\mathcal{O}_U)$, see Derived Categories, Lemma 13.4. This holds if $r \ll 0$. \hfill \qed

Lemma 13.6. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. Let E, E' be objects of $\mathcal{D}(\mathcal{O}_X)$ with E perfect. For every map $\alpha : E|_U \to E'|_U$ there exist maps
\[
E \leftarrow E_1 \leftarrow E'
\]
of perfect complexes on X such that $\beta : E_1 \to E$ restricts to an isomorphism on U and such that $\alpha = \gamma|_U \circ \beta|_U^{-1}$. Moreover we can assume $E_1 = E \otimes_{\mathcal{O}_X} I$ for some perfect complex I on X.

Proof. Write $X = \text{Spec}(A)$. Write $U = D(f_1) \cup \ldots \cup D(f_r)$. Choose finite complex of finite projective A-modules M^* representing E (Lemma 10.7). Choose a complex of A-modules $(M')^*$ representing E' (Lemma 3.5). In this case the complex $H^* = \text{Hom}_A(M^*, (M')^*)$ is a complex of A-modules whose associated complex of quasi-coherent \mathcal{O}_X-modules represents $R\text{Hom}(E, E')$, see Cohomology, Lemma 44.9. Then α determines an element s of $H^0(U, R\text{Hom}(E, E'))$, see Cohomology, Lemma 40.1. There exists an e and a map
\[
\xi : I^*(f_1, \ldots, f_r) \to \text{Hom}_A(M^*, (M')^*)
\]
corresponding to s, see Proposition \[3.5\]. Letting E_1 be the object corresponding to complex of quasi-coherent \mathcal{O}_X-modules associated to

$$\text{Tot}(I^\bullet(f_1^\bullet, \ldots, f_r^\bullet) \otimes_A M^\bullet)$$

we obtain $E_1 \to E$ using the canonical map $I^\bullet(f_1^\bullet, \ldots, f_r^\bullet) \to A$ and $E_1 \to E'$ using ξ and Cohomology, Lemma \[40.1\].

Lemma 13.7. Let X be an affine scheme. Let $U \subset X$ be a quasi-compact open. For every perfect object F of $D(\mathcal{O}_U)$ the object $F \oplus F[1]$ is the restriction of a perfect object of $D(\mathcal{O}_X)$.

Proof. By Lemma \[13.5\] we can find a perfect object E of $D(\mathcal{O}_X)$ such that $E|_U = \mathcal{F}[r] \oplus F$ for some finite locally free \mathcal{O}_U-module \mathcal{F}. By Lemma \[13.6\] we can find a morphism of perfect complexes $\alpha : E_1 \to E$ such that $(E_1)|_U \cong E|_U$ and such that $\alpha|_U$ is the map

$$\begin{pmatrix} \text{id}_{\mathcal{F}[r]} & 0 \\ 0 & 0 \end{pmatrix} : \mathcal{F}[r] \oplus F \to \mathcal{F}[r] \oplus F$$

Then the cone on α is a solution. \[\square\]

Lemma 13.8. Let X be a quasi-compact and quasi-separated scheme. Let $f \in \Gamma(X, \mathcal{O}_X)$. For any morphism $\alpha : E \to E'$ in $D_{\mathcal{QCoh}}(\mathcal{O}_X)$ such that

1. E is perfect, and
2. E' is supported on $T = V(f)$

there exists an $n \geq 0$ such that $f^n \alpha = 0$.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Cohomology, Lemma \[33.3\]. Thus if $X = U \cup V$ and the result of the lemma holds for $f|_U$, $f|_V$, and $f|_{U \cap V}$, then the result holds for f. Thus it suffices to prove the lemma when X is affine, see Cohomology of Schemes, Lemma \[4.1\]. Let t be the largest integer such that P^t is nonzero. The distinguished triangle

$$P^t[-t] \to P^\bullet \to \sigma_{\leq t-1} P^\bullet \to P^t[-t + 1]$$

shows that by induction on the length of the complex P^\bullet we can reduce to the case where P^\bullet has a single nonzero term. This and the shift functor reduces us to the case where P^\bullet consists of a single finite projective A-module P in degree 0. Represent E' by a complex M^\bullet of A-modules. Then α corresponds to a map $P \to H^0(M^\bullet)$. Since the module $H^0(M^\bullet)$ is supported on $V(f)$ by assumption (2) we see that every element of $H^0(M^\bullet)$ is annihilated by a power of f. Since P is a finite A-module the map $f^n \alpha : P \to H^0(M^\bullet)$ is zero for some n as desired. \[\square\]

Lemma 13.9. Let X be an affine scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. Let $U \subset X$ be a quasi-compact open. For every perfect object F of $D(\mathcal{O}_U)$ supported on $T \cap U$ the object $F \oplus F[1]$ is the restriction of a perfect object E of $D(\mathcal{O}_X)$ supported in T.

Proof. Say $T = V(g_1, \ldots, g_r)$. After replacing g_j by a power we may assume multiplication by g_j is zero on F, see Lemma 13.8. Choose E as in Lemma 13.7. Note that $g_j : E \to E$ restricts to zero on U. Choose a distinguished triangle

$$E \to E \to C_1 \to E[1]$$

By Derived Categories, Lemma 4.11 the object C_1 restricts to $F \oplus F[1] \oplus F[1] \oplus F[2]$ on U. Moreover, $g_1 : C_1 \to C_1$ has square zero by Derived Categories, Lemma 4.5. Namely, the diagram

$$
\begin{array}{ccc}
E & \to & C_1 \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
E & \to & E[1]
\end{array}
$$

is commutative since the compositions $E \to E \to C_1$ and $C_1 \to E[1] \to E[1]$ are zero. Continuing, setting C_{i+1} equal to the cone of the map $g_i : C_i \to C_i$ we obtain a perfect complex C_s on X supported on T whose restriction to U gives

$$F \oplus F[1]^{\oplus s} \oplus F[2]^{\oplus (s)} \oplus \ldots \oplus F[s]$$

Choose morphisms of perfect complexes $\beta : C' \to C_s$ and $\gamma : C' \to C_s$ as in Lemma 13.6 such that $\beta|_U$ is an isomorphism and such that $\gamma|_U \circ \beta|_U^{-1}$ is the morphism

$$F \oplus F[1]^{\oplus s} \oplus F[2]^{\oplus (s)} \oplus \ldots \oplus F[s] \to F \oplus F[1]^{\oplus s} \oplus F[2]^{\oplus (s)} \oplus \ldots \oplus F[s]$$

which is the identity on all summands except for F where it is zero. By Lemma 13.6 we also have $C'|_U = C_s \oplus F[I]$ for some perfect complex I on X. Hence the nullity of $g_j^2|_{C_s}$ implies the same thing for C'. Thus C' is supported on T as well. Then $\text{Cone}(\gamma)$ is a solution.

A special case of the following lemma can be found in [Nee96].

Remark 13.11. The proof of Lemma 13.10 shows that

$$R|_U = P \oplus P^{\oplus n_1}[1] \oplus \ldots \oplus P^{\oplus n_m}[m]$$
for some \(m \geq 0 \) and \(n_j \geq 0 \). Thus the highest degree cohomology sheaf of \(R|_U \) equals that of \(P \). By repeating the construction for the map \(P^{\oplus n_1}[1] \oplus \ldots \oplus P^{\oplus n_m}[m] \to R|_U \), taking cones, and using induction we can achieve equality of cohomology sheaves of \(R|_U \) and \(P \) above any given degree.

14. Approximation by perfect complexes

In this section we discuss the observation, due to Neeman and Lipman, that a pseudo-coherent complex can be “approximated” by perfect complexes.

Definition 14.1. Let \(X \) be a scheme. Consider triples \((T, E, m)\) where

1. \(T \subset X \) is a closed subset,
2. \(E \) is an object of \(D_{QCoh}(\mathcal{O}_X) \), and
3. \(m \in \mathbb{Z} \).

We say *approximation holds for the triple \((T, E, m)\)* if there exists a perfect object \(P \) of \(D(\mathcal{O}_X) \) supported on \(T \) and a map \(\alpha : P \to E \) which induces isomorphisms \(H^i(P) \to H^i(E) \) for \(i > m \) and a surjection \(H^m(P) \to H^m(E) \).

Approximation cannot hold for every triple. Namely, it is clear that if approximation holds for the triple \((T, E, m)\), then

1. \(E \) is \((m - r)\)-pseudo-coherent, see Cohomology, Definition [45.1], and
2. the cohomology sheaves \(H^i(E) \) are supported on \(T \) for \(i \geq m \).

Moreover, the “support” of a perfect complex is a closed subscheme whose complement is retrocompact in \(X \) (details omitted). Hence we cannot expect approximation to hold without this assumption on \(T \). This partly explains the conditions in the following definition.

Definition 14.2. Let \(X \) be a scheme. We say *approximation by perfect complexes holds on \(X \)* if for any closed subset \(T \subset X \) with \(X \setminus T \) retro-compact in \(X \) there exists an integer \(r \) such that for every triple \((T, E, m)\) as in Definition [14.1] with

1. \(E \) is \((m - r)\)-pseudo-coherent, and
2. \(H^i(E) \) is supported on \(T \) for \(i \geq m - r \)

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact and quasi-separated schemes. It seems that the second condition is necessary for our method of proof. It is possible that the first condition may be weakened to “\(E \) is \(m \)-pseudo-coherent” by carefully analyzing the arguments below.

Lemma 14.3. Let \(X \) be a scheme. Let \(U \subset X \) be an open subscheme. Let \((T, E, m)\) be a triple as in Definition [14.1] if

1. \(T \subset U \),
2. approximation holds for \((T, E|_U, m)\), and
3. the sheaves \(H^i(E) \) for \(i \geq m \) are supported on \(T \),

then approximation holds for \((T, E, m)\).

Proof. Let \(j : U \to X \) be the inclusion morphism. If \(P \to E|_U \) is an approximation of the triple \((T, E|_U, m)\) over \(U \), then \(j^*P = Rj_*P \to j^!(E|_U) \to E \) is an approximation of \((T, E, m)\) over \(X \). See Cohomology, Lemmas [43.6] and [47.10].

Lemma 14.4. Let \(X \) be an affine scheme. Then approximation holds for every triple \((T, E, m)\) as in Definition [14.1] such that there exists an integer \(r \geq 0 \) with
(1) E is m-pseudo-coherent,
(2) $H^i(E)$ is supported on T for $i \geq m - r + 1$,
(3) $X \setminus T$ is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Say $X = \text{Spec}(A)$. Write $T = V(f_1, \ldots, f_r)$. (The case $r = 0$, i.e., $T = X$ follows immediately from Lemma [10.2] and the definitions.) Let (T, E, m) be a triple as in the lemma. Let t be the largest integer such that $H^t(E)$ is nonzero. We will proceed by induction on t. The base case is $t < m$; in this case the result is trivial. Now suppose that $t \geq m$. By Cohomology, Lemma [45.9] the sheaf $H^t(E)$ is of finite type. Since it is quasi-coherent it is generated by finitely many sections (Properties, Lemma [16.1]). For every $s \in \Gamma(X, H^t(E)) = H^t(X, E)$ (see proof of Lemma [3.5]) we can find an $e > 0$ and a morphism $K_e[-t] \to E$ such that s is in the image of $H^e(K_e) = H^t(K_e[-t]) \to H^t(E)$, see Lemma [9.6]. Taking a finite direct sum of these maps we obtain a map $P \to E$ where P is a perfect complex supported on T, where $H^i(P) = 0$ for $i > t$, and where $H^t(P) \to E$ is surjective. Choose a distinguished triangle

$$P \to E \to E' \to P[1]$$

Then E' is m-pseudo-coherent (Cohomology, Lemma [45.4]), $H^i(E') = 0$ for $i \geq t$, and $H^t(E')$ is supported on T for $i \geq m - r + 1$. By induction we find an approximation $P' \to E'$ of (T, E', m). Fit the composition $P' \to E' \to P[1]$ into a distinguished triangle $P \to P'' \to P' \to P[1]$ and extend the morphisms $P' \to E'$ and $P[1] \to P[1]$ into a morphism of distinguished triangles

$$\begin{array}{c}
P \to P'' \to P' \to P[1] \\
P \to E \to E' \to P[1]
\end{array}$$

using TR3. Then P'' is a perfect complex (Cohomology, Lemma [47.7]) supported on T. An easy diagram chase shows that $P'' \to E$ is the desired approximation. \qed

Lemma 14.5. Let X be a scheme. Let $X = U \cup V$ be an open covering with U quasi-compact, V affine, and $U \cap V$ quasi-compact. If approximation by perfect complexes holds on U, then approximation holds on X.

Proof. Let $T \subset X$ be a closed subset with $X \setminus T$ retro-compact in X. Let r_U be the integer of Definition [14.2] adapted to the pair $(U, T \cap U)$. Set $T' = T \setminus U$. Note that $T' \subset V$ and that $V \setminus T' = (X \setminus T) \cap U \cap V$ is quasi-compact by our assumption on T. Let r' be the number of affines needed to cover $V \setminus T'$. We claim that $r = \max(r_U, r')$ works for the pair (X, T).

To see this choose a triple (T, E, m) such that E is $(m - r)$-pseudo-coherent and $H^i(E)$ is supported on T for $i \geq m - r$. Let t be the largest integer such that $H^t(E)|_U$ is nonzero. (Such an integer exists as U is quasi-compact and $E|_U$ is $(m - r)$-pseudo-coherent.) We will prove that E can be approximated by induction on t.

Base case: $t \leq m - r'$. This means that $H^i(E)$ is supported on T' for $i \geq m - r'$. Hence Lemma [14.4] guarantees the existence of an approximation $P \to E|_V$ of
(T', E|_V, m) on V. Applying Lemma \[14.3\] we see that (T', E, m) can be approximated. Such an approximation is also an approximation of (T, E, m).

Induction step. Choose an approximation \(P \to E|_U \) of \((T \cap U, E|_U, m)\). This in particular gives a surjection \(H^i(P) \to H^i(E|_U) \). By Lemma \[13.9\] we can choose a perfect object \(Q \) in \(D(O_Y) \) supported on \(T \cap V \) and an isomorphism \(Q|_{U \cap V} \to (P \oplus P[1])|_{U \cap V} \). By Lemma \[13.6\] we can replace \(Q \) by \(Q \otimes^{\mathbb{L}} I \) and assume that the map
\[
Q|_{U \cap V} \to (P \oplus P[1])|_{U \cap V} \to P|_{U \cap V} \to E|_{U \cap V}
\]
lifts to \(Q \to E|_V \). By Cohomology, Lemma \[43.1\] we find a morphism \(a : R \to E \) of \(D(O_X) \) such that \(a|_U \) is isomorphic to \(P \oplus P[1] \to E|_U \) and \(a|_V \) isomorphic to \(Q \to E|_V \). Thus \(R \) is perfect and supported on \(T \) and the map \(H^i(R) \to H^i(E) \) is surjective on restriction to \(U \). Choose a distinguished triangle
\[
R \to E \to E' \to R[1]
\]
Then \(E' \) is \((m-r)\)-pseudo-coherent (Cohomology, Lemma \[45.4\]), \(H^i(E')|_U = 0 \) for \(i \geq t \), and \(H^i(E') \) is supported on \(T \) for \(i \geq m - r \). By induction we find an approximation \(R' \to E' \) of \((T, E', m)\). Fit the composition \(R' \to E' \to R[1] \) into a distinguished triangle \(R \to R'' \to R' \to R[1] \) and extend the morphisms \(R' \to E' \) and \(R[1] \to R[1] \) into a morphism of distinguished triangles
\[
\begin{array}{c}
R \to R'' \to R' \to R[1] \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
R \to E \to E' \to R[1]
\end{array}
\]
using TR3. Then \(R'' \) is a perfect complex (Cohomology, Lemma \[47.7\]) supported on \(T \). An easy diagram chase shows that \(R'' \to E \) is the desired approximation. \(\square \)

08ES Theorem 14.6. Let \(X \) be a quasi-compact and quasi-separated scheme. Then approximation by perfect complexes holds on \(X \).

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma \[4.1\] and Lemmas \[14.3\] and \[14.4\]. \(\square \)

15. Generating derived categories

In this section we prove that the derived category \(D_{QCoh}(O_X) \) of a quasi-compact and quasi-separated scheme can be generated by a single perfect object. We urge the reader to read the proof of this result in the wonderful paper by Bondal and van den Bergh, see \[BV03\].

09IP Lemma 15.1. Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(U \) be a quasi-compact open subscheme. Let \(P \) be a perfect object of \(D(O_U) \). Then \(P \) is a direct summand of the restriction of a perfect object of \(D(O_X) \).

Proof. Special case of Lemma \[13.10\]. \(\square \)

09IR Lemma 15.2. In Situation \[9.1\] denote \(j : U \to X \) the open immersion and let \(K \) be the perfect object of \(D(O_X) \) corresponding to the Koszul complex on \(f_1, \ldots, f_r \) over \(A \). For \(E \in D_{QCoh}(O_X) \) the following are equivalent
\[
\begin{align*}
(1) & \ E = Rj_*(E|_U), \\
(2) & \ Hom_{D(O_X)}(K[n], E) = 0 \text{ for all } n \in \mathbb{Z}.
\end{align*}
\]
Proof. Choose a distinguished triangle $E \to Rj_*(E|_U) \to N \to E[1]$. Observe that
\[\text{Hom}_{D(O_X)}(K[n], Rj_*(E|_U)) = \text{Hom}_{D(O_U)}(K|_U[n], E) = 0 \]
for all n as $K|_U = 0$. Thus it suffices to prove the result for N. In other words, we may assume that E restricts to zero on U. Observe that there are distinguished triangles
\[K^\bullet(f^e_1, \ldots, f^e_i, \ldots, f^e_r) \to K^\bullet(f^e_1, \ldots, f^{e_i+e_i'}, \ldots, f^e_r) \to K^\bullet(f^e_1, \ldots, f^{e_i''}, \ldots, f^e_r) \to \ldots \]
of Koszul complexes, see More on Algebra, Lemma 28.11. Hence if $\text{Hom}_{D(O_X)}(K[n], E) = 0$ for all $n \in \mathbb{Z}$ then the same thing is true for the K replaced by K_x as in Lemma 9.6. Thus our lemma follows immediately from that one and the fact that E is determined by the complex of A-modules $R\Gamma(X, E)$, see Lemma 3.5.

09IS Theorem 15.3. Let X be a quasi-compact and quasi-separated scheme. The category $D_{QCoh}(O_X)$ can be generated by a single perfect object. More precisely, there exists a perfect object P of $D(O_X)$ such that for $E \in D_{QCoh}(O_X)$ the following are equivalent
\begin{enumerate}
\item $E = 0$, and
\item $\text{Hom}_{D(O_X)}(P[n], E) = 0$ for all $n \in \mathbb{Z}$.
\end{enumerate}

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1.

If X is affine, then O_X is a perfect generator. This follows from Lemma 3.5.

Assume that $X = U \cup V$ is an open covering with U quasi-compact such that the theorem holds for U and V is an affine open. Let P be a perfect object of $D(O_U)$ which is a generator for $D_{QCoh}(O_U)$. Using Lemma 15.1 we may choose a perfect object Q of $D(O_X)$ whose restriction to U is a direct sum one of whose summands is P. Say $V = \text{Spec}(A)$. Let $Z = X \setminus U$. This is a closed subset of V with $V \setminus Z$ quasi-compact. Choose $f_1, \ldots, f_r \in A$ such that $Z = V(f_1, \ldots, f_r)$. Let $K \in D(O_V)$ be the perfect object corresponding to the Koszul complex on f_1, \ldots, f_r over A. Note that since K is supported on $Z \subset V$ closed, the pushforward $K' = R(V \to X)_*K$ is a perfect object of $D(O_X)$ whose restriction to V is K (see Cohomology, Lemma 47.10). We claim that $Q \oplus K'$ is a generator for $D_{QCoh}(O_X)$.

Let E be an object of $D_{QCoh}(O_X)$ such that there are no nontrivial maps from any shift of $Q \oplus K'$ into E. By Cohomology, Lemma 33.6, we have $K' = R(V \to X)_*K$ and hence
\[\text{Hom}_{D(O_X)}(K'[n], E) = \text{Hom}_{D(O_V)}(K[n], E|_V) \]
Thus by Lemma 15.2 the vanishing of these groups implies that $E|_V$ is isomorphic to $R(U \cap V \to V)_*E|_{U \cap V}$. This implies that $E = R(U \to X)_*E|_U$ (small detail omitted). If this is the case then
\[\text{Hom}_{D(O_X)}(Q[n], E) = \text{Hom}_{D(O_U)}(Q|_U[n], E|_U) \]
which contains $\text{Hom}_{D(O_U)}(P[n], E|_U)$ as a direct summand. Thus by our choice of P the vanishing of these groups implies that $E|_U$ is zero. Whence E is zero.

The following result is an strengthening of Theorem 15.3 proved using exactly the same methods. Recall that for a closed subset T of a scheme X we denote $D_T(O_X)$ the strictly full, saturated, triangulated subcategory of $D(O_X)$ consisting of objects supported on T (Definition 6.1). We similarly denote $D_{QCoh,T}(O_X)$ the strictly full,
Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. With notation as above, the category $D_{Qcoh,T}(\mathcal{O}_X)$ is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1.

Assume $X = \text{Spec}(A)$ is affine. In this case there exist $f_1, \ldots, f_r \in A$ such that $T = V(f_1, \ldots, f_r)$. Let K be the Koszul complex on f_1, \ldots, f_r as in Lemma 15.2. Then K is a perfect object with cohomology supported on T and hence a perfect object of $D_{Qcoh,T}(\mathcal{O}_X)$. On the other hand, if $E \in D_{Qcoh,T}(\mathcal{O}_X)$ and $\text{Hom}(K, E[n]) = 0$ for all n, then Lemma 15.2 tells us that $E = R_j\ast(E|_{X\setminus T}) = 0$. Hence K generates $D_{Qcoh,T}(\mathcal{O}_X)$, (by our definition of generators of triangulated categories in Derived Categories, Definition 36.3).

Assume that $X = U \cup V$ is an open covering with V affine and U quasi-compact such that the lemma holds for U. Let P be a perfect object of $D(O_U)$ supported on $T \cap U$ which is a generator for $D_{Qcoh,U}(O_U)$. Using Lemma 13.10 we may choose a perfect object Q of $D(O_X)$ supported on T whose restriction to U is a direct sum of one of whose summands is P. Write $V = \text{Spec}(B)$. Let $Z = X \setminus U$. Then Z is a closed subset of V such that $V \setminus Z$ is quasi-compact. As X is quasi-separated, it follows that $Z \cap T$ is a closed subset of V such that $V = V \setminus (Z \cap T)$ is quasi-compact. Thus we can choose $g_1, \ldots, g_r \in B$ such that $Z \cap T = V(g_1, \ldots, g_r)$. Let $K \in D(O_V)$ be the perfect object corresponding to the Koszul complex on g_1, \ldots, g_r over B. Note that since K is supported on $(Z \cap T) \subset V$ closed, the pushforward $K' = R(V \to X)_\ast K$ is a perfect object of $D(O_X)$ whose restriction to V is K (see Cohomology, Lemma 47.10). We claim that $Q \oplus K'$ is a generator for $D_{Qcoh,T}(\mathcal{O}_X)$.

Let E be an object of $D_{Qcoh,T}(\mathcal{O}_X)$ such that there are no nontrivial maps from any shift of $Q \oplus K'$ into E. By Cohomology, Lemma 33.6 we have $K' = R(V \to X)_\ast K$ and hence

$$\text{Hom}(D(O_X), (K'[n], E)) = \text{Hom}(D(O_V), (K[n], E|_V))$$

Thus by Lemma 15.2 we have $E|_V = Rj_\ast(E|_W)$ where $j : W \to V$ is the inclusion. Picture

$$\begin{array}{ccc}
W & \to & V \\
| & & | \\
\uparrow j & & \uparrow j' \\
U \cap V & \to & Z \cap T \\
| & & | \\
\uparrow j'' & & \uparrow \\
U & \to & Z
\end{array}$$

Since E is supported on T we see that $E|_W$ is supported on $T \cap W = T \cap U \cap V$ which is closed in W. We conclude that

$$E|_V = Rj_\ast(E|_W) = Rj_\ast(Rj'_\ast(E|_{U \cap V})) = Rj''_\ast(E|_{U \cap V})$$

where the second equality is part (1) of Cohomology, Lemma 33.6. This implies that $E = R(U \to X)_\ast E|_U$ (small detail omitted). If this is the case then

$$\text{Hom}(D(O_X), (Q[n], E)) = \text{Hom}(D(O_U), (Q|_U[n], E|_U))$$

which contains $\text{Hom}(D(O_U), (P[n], E|_U))$ as a direct summand. Thus by our choice of P the vanishing of these groups implies that $E|_U$ is zero. Whence E is zero.
16. An example generator

Let A be a ring. Let $X = \mathbb{P}^n_A$. For every $a \in \mathbb{Z}$ there exists an exact complex

$$0 \to \mathcal{O}_X(a) \to \ldots \to \mathcal{O}_X(a + i) \oplus (n+1) \to \ldots \to \mathcal{O}_X(a + n + 1) \to 0$$

of vector bundles on X.

Proof. Recall that \mathbb{P}^n_A is Proj$(A[X_0, \ldots, X_n])$, see Constructions, Definition 13.2. Consider the Koszul complex

$$K_\bullet = K_\bullet(A[X_0, \ldots, X_n], X_0, \ldots, X_n)$$

over $S = A[X_0, \ldots, X_n]$ on X_0, \ldots, X_n. Since X_0, \ldots, X_n is clearly a regular sequence in the polynomial ring S, we see that (More on Algebra, Lemma 30.2) that the Koszul complex K_\bullet is exact, except in degree 0 where the cohomology is $S/(X_0, \ldots, X_n)$. Note that K_\bullet becomes a complex of graded modules if we put the generators of K_0 in degree $+i$. In other words an exact complex

$$0 \to S(-n-1) \to \ldots \to S(-n-1+i) \oplus (n+1) \to \ldots \to S/(X_0, \ldots, X_n) \to 0$$

Applying the exact functor $- \otimes \mathcal{L}$ functor of Constructions, Lemma 8.3 and using that the last term is in the kernel of this functor, we obtain the exact complex

$$0 \to \mathcal{O}_X(-n-1) \to \ldots \to \mathcal{O}_X(-n-1+i) \oplus (n+1) \to \ldots \to \mathcal{O}_X \to 0$$

Twisting by the invertible sheaves $\mathcal{O}_X(n+a)$ we get the exact complexes of the lemma. \qed

Lemma 16.3. Let A be a ring. Let $X = \mathbb{P}^n_A$. Then

$$E = \mathcal{O}_X \oplus \mathcal{O}_X(-1) \oplus \ldots \oplus \mathcal{O}_X(-n)$$

is a generator (Derived Categories, Definition 36.3) of $D_{QCoh}(X)$.

Proof. Recall that as X has an ample invertible sheaf, it is quasi-compact and separated (Properties, Definition 26.1 and Lemma 26.7). Thus we may apply Proposition 7.5 and represent K by a complex F^\bullet of quasi-coherent modules. Pick any p such that $\mathcal{H}^p = \text{Ker}(F^p \to F^{p+1})/\text{Im}(F^{p-1} \to F^p)$ is nonzero. Choose a point $x \in X$ such that the stalk \mathcal{H}^p_x is nonzero. Choose an $n \geq 0$ and $s \in \Gamma(X, \mathcal{L}^\oplus n)$ such that s is an affine open neighbourhood of x. Choose $\tau \in \mathcal{H}^p(X_s)$ which maps to a nonzero element of the stalk \mathcal{H}^p_x; this is possible as \mathcal{H}^p is quasi-coherent and X_s is affine. Since taking sections over X_s is an exact functor on quasi-coherent modules, we can find a section $\tau' \in F^p(X_s)$ mapping to zero in $F^{p+1}(X_s)$ and mapping to τ in $\mathcal{H}^p(X_s)$. By Properties, Lemma 17.2 there exists an m such that $\tau' \otimes s^\otimes m$ is the image of a section $\tau'' \in \Gamma(X, F^p \otimes \mathcal{L}^{\otimes mn})$. Applying the same lemma once more, we find $l \geq 0$ such that $\tau'' \otimes s^\otimes l$ maps to zero in $F^{p+1} \otimes \mathcal{L}^{\otimes (m+l)n}$. Then τ'' gives a nonzero class in $H^p(X, K \otimes _{\mathcal{O}_X} \mathcal{L}^{\otimes (m+l)n})$ as desired. \qed
Proof. Let $K \in D_{QCoh}(\mathcal{O}_X)$. Assume $\text{Hom}(E, K^p) = 0$ for all $p \in \mathbb{Z}$. We have to show that $K = 0$. By Derived Categories, Lemma \ref{lemma-finite-direct-sums} we see that $\text{Hom}(E', K^p)$ is zero for all $E' \in (E)$ and $p \in \mathbb{Z}$. By Lemma \ref{lemma-direct-sums} applied with $a = -n - 1$ we see that $\mathcal{O}_X(-n-1) \in (E)$ because it is quasi-isomorphic to a finite complex whose terms are finite direct sums of summands of E. Repeating the argument with $a = -n - 2$ we see that $\mathcal{O}_X(-n-2) \in (E)$. Arguing by induction we find that $\mathcal{O}_X(-m) \in (E)$ for all $m \geq 0$. Since $\text{Hom}(\mathcal{O}_X(-m), K^p) = H^p(X, K \otimes_{\mathcal{O}_X} \mathcal{O}_X(m)) \cong H^p(X, K \otimes_{\mathcal{O}_X} \mathcal{O}_X(1)^{\otimes m})$ we conclude that $K = 0$ by Lemma \ref{lemma-generator}. (This also uses that $\mathcal{O}_X(1)$ is an ample invertible sheaf on X which follows from Properties, Lemma \ref{lemma-ample}.)

Remark 16.4. Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated schemes. Let $E \in D_{QCoh}(\mathcal{O}_Y)$ be a generator (see Theorem \ref{theorem-generator}). Then the following are equivalent

(1) for $K \in D_{QCoh}(\mathcal{O}_X)$ we have $Rf_* K = 0$ if and only if $K = 0$,
(2) $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_Y)$ reflects isomorphisms, and
(3) $Lf^* E$ is a generator for $D_{QCoh}(\mathcal{O}_X)$.

The equivalence between (1) and (2) is a formal consequence of the fact that $Rf_* : D_{QCoh}(\mathcal{O}_X) \to D_{QCoh}(\mathcal{O}_Y)$ is an exact functor of triangulated categories. Similarly, the equivalence between (1) and (3) follows formally from the fact that Lf^* is the left adjoint to Rf_*. These conditions hold if f is affine (Lemma \ref{lemma-affine}) or if f is an open immersion, or if f is a composition of such. We conclude that

(1) if X is a quasi-affine scheme then \mathcal{O}_X is a generator for $D_{QCoh}(\mathcal{O}_X)$,
(2) if $X \subset \mathbb{P}^n_A$ is a quasi-compact locally closed subscheme, then $\mathcal{O}_X \oplus \mathcal{O}_X(-1) \oplus \cdots \oplus \mathcal{O}_X(-n)$ is a generator for $D_{QCoh}(\mathcal{O}_X)$ by Lemma \ref{lemma-generator2}.

17. Compact and perfect objects

Let X be a Noetherian scheme of finite dimension. By Cohomology, Proposition \ref{proposition-cohomology} and Cohomology on Sites, Lemma \ref{lemma-modules} the sheaves of modules $j_! \mathcal{O}_U$ are compact objects of $D(\mathcal{O}_X)$ for all opens $U \subset X$. These sheaves are typically not quasi-coherent, hence these do not give perfect objects of the derived category $D(\mathcal{O}_X)$. However, if we restrict ourselves to complexes with quasi-coherent cohomology sheaves, then this does not happen. Here is the precise statement.

Proposition 17.1. Let X be a quasi-compact and quasi-separated scheme. An object of $D_{QCoh}(\mathcal{O}_X)$ is compact if and only if it is perfect.

Proof. If K is a perfect object of $D(\mathcal{O}_X)$ with dual K^\vee (Cohomology, Lemma \ref{lemma-dual-of-compact}) we have

$$\text{Hom}_{D(\mathcal{O}_X)}(K, M) = H^0(X, K^\vee \otimes_{\mathcal{O}_X}^L M)$$

functorially in M. Since $K^\vee \otimes_{\mathcal{O}_X}^L -$ commutes with direct sums and since $H^0(X, -)$ commutes with direct sums on $D_{QCoh}(\mathcal{O}_X)$ by Lemma \ref{lemma-direct-sums} we conclude that K is compact in $D_{QCoh}(\mathcal{O}_X)$.

Conversely, let K be a compact object of $D_{QCoh}(\mathcal{O}_X)$. To show that K is perfect, it suffices to show that $K|_U$ is perfect for every affine open $U \subset X$, see Cohomology, Lemma \ref{lemma-covering}. Observe that $j : U \to X$ is a quasi-compact and separated morphism. Hence $Rj_* : D_{QCoh}(\mathcal{O}_U) \to D_{QCoh}(\mathcal{O}_X)$ commutes with direct sums, see Lemma...
Thus the adjointness of restriction to U and R_J, implies that $K|_U$ is a compact object of $D_{QCoh}(O_U)$. Hence we reduce to the case that X is affine.

Assume $X = \text{Spec}(A)$ is affine. By Lemma 3.5 the problem is translated into the same problem for $D(A)$. For $D(A)$ the result is More on Algebra, Proposition 78.3. \hfill \Box

Remark 17.2. Let X be a quasi-compact and quasi-separated scheme. Let G be a perfect object of $D(O_X)$ which is a generator for $D_{QCoh}(O_X)$. By Theorem 15.3 there is at least one of these. Combining Lemma 3.1 with Proposition 17.1 and with Derived Categories, Proposition 37.6 we see that G is a classical generator for $D_{perf}(O_X)$.

The following result is a strengthening of Proposition 17.1. Let $T \subset X$ be a closed subset of a scheme X. As before $D_T(O_X)$ denotes the strictly full, saturated, triangulated subcategory of $D(O_X)$ consisting of objects supported on T (Definition 6.1). Since taking direct sums commutes with taking cohomology sheaves, it follows that $D_T(O_X)$ has direct sums and that they are equal to direct sums in $D(O_X)$.

Lemma 17.3. Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. An object of $D_{QCoh,T}(O_X)$ is compact if and only if it is perfect as an object of $D(O_X)$.

Proof. We observe that $D_{QCoh,T}(O_X)$ is a triangulated category with direct sums by the remark preceding the lemma. By Proposition 17.1 the perfect objects define compact objects of $D(O_X)$ hence a fortiori of any subcategory preserved under taking direct sums. For the converse we will use there exists a generator $E \in D_{QCoh,T}(O_X)$ which is a perfect complex of O_X-modules, see Lemma 15.4. Hence by the above, E is compact. Then it follows from Derived Categories, Proposition 37.6 that E is a classical generator of the full subcategory of compact objects of $D_{QCoh,T}(O_X)$. Thus any compact object can be constructed out of E by a finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these operations preserves the property of being perfect and the result follows. \hfill \Box

Remark 17.4. Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. Let G be a perfect object of $D_{QCoh,T}(O_X)$ which is a generator for $D_{QCoh,T}(O_X)$. By Lemma 15.4 there is at least one of these. Combining the fact that $D_{QCoh,T}(O_X)$ has direct sums with Lemma 17.3 and with Derived Categories, Proposition 37.6 we see that G is a classical generator for $D_{perf,T}(O_X)$.

The following lemma is an application of the ideas that go into the proof of the preceding lemma.

Lemma 17.5. Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $U = X \setminus T$ is quasi-compact. Let $\alpha : P \to E$ be a morphism of $D_{QCoh}(O_X)$ with either

1. P is perfect and E supported on T, or
2. P pseudo-coherent, E supported on T, and E bounded below.

Then there exists a perfect complex of O_X-modules I and a map $I \to O_X[0]$ such that $I \otimes^L P \to E$ is zero and such that $I|_U \to O_U[0]$ is an isomorphism.
Proof. Set $D = \mathcal{D}_{QCoh, T}(\mathcal{O}_X)$. In both cases the complex $K = R\text{Hom}(P, E)$ is an object of \mathcal{D}. See Lemma [10.8] for quasi-coherence. It is clear that K is supported on T as formation of $R\text{Hom}$ commutes with restriction to opens. The map α defines an element of $H^0(K) = \text{Hom}_{D(\mathcal{O}_X)}(\mathcal{O}_X[0], K)$. Then it suffices to prove the result for the map $\alpha: \mathcal{O}_X[0] \to K$.

Let $E \in \mathcal{D}$ be a perfect generator, see Lemma [15.4]. Write $K = \text{hocolim}\ K_n$ as in Derived Categories, Lemma 37.3 using the generator E. Since the functor $\mathcal{D} \to D(\mathcal{O}_X)$ commutes with direct sums, we see that $K = \text{hocolim}\ K_n$ holds in $D(\mathcal{O}_X)$. Since \mathcal{O}_X is a compact object of $D(\mathcal{O}_X)$ we find an n and a morphism $\alpha_n: \mathcal{O}_X \to K_n$ which gives rise to α, see Derived Categories, Lemma 33.9. By Derived Categories, Lemma 37.4 applied to the morphism $\mathcal{O}_X[0] \to K_n$ in the ambient category $D(\mathcal{O}_X)$ we see that α_n factors as $\mathcal{O}_X[0] \to Q \to K_n$ where Q is an object of $\langle E \rangle$. We conclude that Q is a perfect complex supported on T.

Choose a distinguished triangle

$I \to \mathcal{O}_X[0] \to Q \to I[1]$

By construction I is perfect, the map $I \to \mathcal{O}_X[0]$ restricts to an isomorphism over U, and the composition $I \to K$ is zero as α factors through Q. This proves the lemma. \hfill \Box

18. Derived categories as module categories

In this section we draw some conclusions of what has gone before. Before we do so we need a couple more lemmas.

Lemma 18.1. Let X be a scheme. Let K^\bullet be a complex of \mathcal{O}_X-modules whose cohomology sheaves are quasi-coherent. Let $(E, d) = \text{Hom}_{\text{Comp}^s(\mathcal{O}_X)}(K^\bullet, K^\bullet)$ be the endomorphism differential graded algebra. Then the functor

$- \otimes^L_E K^\bullet: D(E, d) \to D(\mathcal{O}_X)$

of Differential Graded Algebra, Lemma 33.3 has image contained in $D_{QCoh}(\mathcal{O}_X)$.

Proof. Let P be a differential graded E-module with property (P) and let F_\bullet be a filtration on P as in Differential Graded Algebra, Section 20. Then we have

$P \otimes_E K^\bullet = \text{hocolim}\ F_i P \otimes_E K^\bullet$

Each of the $F_i P$ has a finite filtration whose graded pieces are direct sums of $E[k]$. The result follows easily. \hfill \Box

The following lemma can be strengthened (there is a uniformity in the vanishing over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 18.2. Let X be a quasi-compact and quasi-separated scheme. Let K be a perfect object of $D(\mathcal{O}_X)$. Then

1. there exist integers $a \leq b$ such that $\text{Hom}_{D(\mathcal{O}_X)}(K, L) = 0$ for $L \in D_{QCoh}(\mathcal{O}_X)$ with $H^i(L) = 0$ for $i \in [a, b]$, and
2. if L is bounded, then $\text{Ext}^n_{D(\mathcal{O}_X)}(K, L)$ is zero for all but finitely many n.

Let us obtain by generalities on adjoint functors. On the other hand, it follows from Lemma 18.1 by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor \(D \) compact object of \(K \) of Differential Graded Algebra, Lemma 35.3. Since it has a right adjoint above is fully faithful as follows from Differential Graded Algebra, Lemmas 35.6. Consider the functor for all \(n \) \(\mathbb{Z} \). It has a right adjoint with only a finite number of nonzero cohomology groups \(H^i(E) \) such that \(D_{QCoh}(\mathcal{O}_X) \) is equivalent to \(D(E,d) \).

\[(E,d) = \text{Hom}_{\mathbf{Comp}^d(\mathcal{O}_X)}(K^\bullet, K^\bullet) \]

where \(\mathbf{Comp}^d(\mathcal{O}_X) \) is the differential graded category of complexes of \(\mathcal{O} \)-modules. Please see Differential Graded Algebra, Section 33. Since \(K^\bullet \) is K-injective we have

\[H^n(E) = \text{Ext}^n_{D(\mathcal{O}_X)}(K^\bullet, K^\bullet) \]

for all \(n \in \mathbb{Z} \). Only a finite number of these Exts are nonzero by Lemma 18.2. Consider the functor \(- \otimes^L_E K^\bullet : D(E,d) \rightarrow D(\mathcal{O}_X) \) of Differential Graded Algebra, Lemma 35.3. Since \(K^\bullet \) is perfect, it defines a compact object of \(D(\mathcal{O}_X) \), see Proposition 17.1. Combined with (18.3.1) the functor above is fully faithful as follows from Differential Graded Algebra, Lemmas 35.6. It has a right adjoint

\[R\text{Hom}(K^\bullet,-) : D(\mathcal{O}_X) \rightarrow D(E,d) \]

by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor by generalities on adjoint functors. On the other hand, it follows from Lemma 18.1 that we obtain

\[- \otimes^L_E K^\bullet : D(E,d) \rightarrow D_{QCoh}(\mathcal{O}_X) \]
and by our choice of K^\bullet as a generator of $D_{QCoh}(\mathcal{O}_X)$ the kernel of the adjoint restricted to $D_{QCoh}(\mathcal{O}_X)$ is zero. A formal argument shows that we obtain the desired equivalence, see Derived Categories, Lemma 7.2. □

0DJL Remark 18.4 (Variant with support). Let X be a quasi-compact and quasi-separated scheme. Let $T \subset X$ be a closed subset such that $X \setminus T$ is quasi-compact. The analogue of Theorem 18.3 holds for $D_{QCoh,T}(\mathcal{O}_X)$. This follows from the exact same argument as in the proof of the theorem, using Lemmas 15.4 and 17.3 and a variant of Lemma 18.1 with supports. If we ever need this, we will precisely state the result here and give a detailed proof.

09SU Remark 18.5 (Uniqueness of dga). Let X be a quasi-compact and quasi-separated scheme over a ring R. By the construction of the proof of Theorem 18.3 there exists a differential graded algebra (A,d) over R such that $D_{QCoh}(X)$ is R-linearly equivalent to $D(A,d)$ as a triangulated category. One may ask: how unique is (A,d)? The answer is (only) slightly better than just saying that (A,d) is well defined up to derived equivalence. Namely, suppose that (B,d) is a second such pair. Then we have

$$(A,d) = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(K^\bullet, K^\bullet)$$

and

$$(B,d) = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(L^\bullet, L^\bullet)$$

for some K-injective complexes K^\bullet and L^\bullet of \mathcal{O}_X-modules corresponding to perfect generators of $D_{QCoh}(\mathcal{O}_X)$. Set

$$\Omega = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(K^\bullet, L^\bullet) \quad \Omega' = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(L^\bullet, K^\bullet)$$

Then Ω is a differential graded $B^{opp} \otimes_R A$-module and Ω' is a differential graded $A^{opp} \otimes_R B$-module. Moreover, the equivalence

$$D(A,d) \to D_{QCoh}(\mathcal{O}_X) \to D(B,d)$$

is given by the functor $- \otimes^L_{\mathcal{O}_X} \Omega'$ and similarly for the quasi-inverse. Thus we are in the situation of Differential Graded Algebra, Remark 37.10. If we ever need this remark we will provide a precise statement with a detailed proof here.

19. Characterizing pseudo-coherent complexes, I

0DJM We can use the methods above to characterize pseudo-coherent objects as derived homotopy limits of approximations by perfect objects.

0DJN Lemma 19.1. Let X be a quasi-compact and quasi-separated scheme. Let $K \in D(\mathcal{O}_X)$. The following are equivalent

1. K is pseudo-coherent, and
2. $K = \text{hocolim} K_n$ where K_n is perfect and $\tau_{\geq -n} K_n \to \tau_{\geq -n} K$ is an isomorphism for all n.

Proof. The implication (2) \implies (1) is true on any ringed space. Namely, assume (2) holds. Recall that a perfect object of the derived category is pseudo-coherent, see Cohomology, Lemma 47.5. Then it follows from the definitions that $\tau_{\geq -n} K_n$ is $(-n+1)$-pseudo-coherent and hence $\tau_{\geq -n} K$ is $(-n+1)$-pseudo-coherent, hence K is $(-n+1)$-pseudo-coherent. This is true for all n, hence K is pseudo-coherent, see Cohomology, Definition 45.1.
Assume (1). We start by choosing an approximation $K_1 \to K$ of $(X,K,-2)$ by a perfect complex K_1, see Definitions 14.1 and 14.2 and Theorem 14.6. Suppose by induction we have $K_1 \to K_2 \to \ldots \to K_n \to K$ with K_i perfect such that such that $\tau_{\geq-n}K_i \to \tau_{\geq-n}K$ is an isomorphism for all $1 \leq i \leq n$. Then we pick $a \leq b$ as in Lemma 18.2 for the perfect object K_n. Choose an approximation $K_{n+1} \to K$ of $(X,K,\min(a-1,-n-1))$. Choose a distinguished triangle $K_{n+1} \to K \to C \to K_{n+1}[1]$ then we see that $C \in D_{QCoh}(\mathcal{O}_X)$ has $H^i(C) = 0$ for $i \geq a$. Thus by our choice of a,b we see that $\Hom_{D(\mathcal{O}_X)}(K_n,C) = 0$. Hence by Derived Categories, Lemma 4.2 we can factor $K_n \to K$ through K_{n+1} proving the induction step.

We still have to prove that $K = \hocolim K_n$. This follows by an application of Derived Categories, Lemma 33.8 to the functors $H^i(-) : D(\mathcal{O}_X) \to \Mod(\mathcal{O}_X)$ and our choice of K_n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 19.1 except that in the choice of the approximations we use the triples (T,K,m).

20. An example equivalence

In Section 16 we proved that the derived category of projective space \mathbf{P}^n_A over a ring A is generated by a vector bundle, in fact a direct sum of shifts of the structure sheaf. In this section we prove this determines an equivalence of $D_{QCoh}(\mathcal{O}_{\mathbf{P}^n_A})$ with the derived category of an A-algebra.

Before we can state the result we need some notation. Let A be a ring. Let $X = \mathbf{P}^n_A = \Proj(S)$ where $S = A[X_0,\ldots,X_n]$. By Lemma 16.3 we know that $P_0 = \mathcal{O}_X \oplus \mathcal{O}_X(-1) \oplus \ldots \oplus \mathcal{O}_X(-n)$ is a perfect generator of $D_{QCoh}(\mathcal{O}_X)$. Consider the (noncommutative) A-algebra

$$\begin{pmatrix}
S_0 & S_1 & S_2 & \ldots & \\
0 & S_0 & S_1 & \ldots & \\
0 & 0 & S_0 & \ldots & \\
\vdots & \vdots & \vdots & \ddots & \\
0 & \ldots & \ldots & \ldots & S_0
\end{pmatrix}$$

with obvious multiplication and addition. If we view P as a complex of \mathcal{O}_X-modules in the usual way (i.e., with P in degree 0 and zero in every other degree), then we have $R = \Hom_{\Comp^s(\mathcal{O}_X)}(P,P)$.
where on the right hand side we view R as a differential graded algebra over A with zero differential (i.e., with R in degree 0 and zero in every other degree). According to the discussion in Differential Graded Algebra, Section 35 we obtain a derived functor

$$- \otimes^L_R P : D(R) \to D(O_X),$$

see especially Differential Graded Algebra, Lemma 35.3. By Lemma 18.1 we see that the essential image of this functor is contained in $D_{QCoh}(O_X)$.

Lemma 20.1. Let A be a ring. Let $X = \mathbb{P}^n_A = \text{Proj}(S)$ where $S = A[X_0, \ldots, X_n]$. With P as in (20.0.1) and R as in (20.0.2) the functor

$$- \otimes^L_R P : D(R) \to D_{QCoh}(O_X)$$

is an A-linear equivalence of triangulated categories sending R to P.

Proof. To prove that our functor is fully faithful it suffices to prove that $\text{Ext}^i_X(P, P)$ is zero for $i \neq 0$ and equal to R for $i = 0$, see Differential Graded Algebra, Lemma 35.6. As in the proof of Lemma 18.2 we see that

$$\text{Ext}^i_X(P, P) = H^i(X, P^\wedge \otimes P) = \bigoplus_{0 \leq a, b \leq n} H^i(X, O_X(a - b)).$$

By the computation of cohomology of projective space (Cohomology of Schemes, Lemma 8.1) we find that these Ext-groups are zero unless $i = 0$. For $i = 0$ we recover R because this is how we defined R in (20.0.2). By Differential Graded Algebra, Lemma 35.5 our functor has a right adjoint, namely $R \text{Hom}(P, -) : D_{QCoh}(O_X) \to D(R)$. Since P is a generator for $D_{QCoh}(O_X)$ by Lemma 16.3 we see that the kernel of $R \text{Hom}(P, -)$ is zero. Hence our functor is an equivalence of triangulated categories by Derived Categories, Lemma 7.2. □

21. The coherator revisited

In Section 7 we constructed and studied the right adjoint RQ_X to the canonical functor $D(QCoh(O_X)) \to D(O_X)$. It was constructed as the right derived extension of the coherator $Q_X : \text{Mod}(O_X) \to QCoh(O_X)$. In this section, we study when the inclusion functor

$$D_{QCoh}(O_X) \to D(O_X)$$

has a right adjoint. If this right adjoint exists, we will denote it

$$DQ_X : D(O_X) \to D_{QCoh}(O_X)$$

It turns out that quasi-compact and quasi-separated schemes have such a right adjoint.

Lemma 21.1. Let X be a quasi-compact and quasi-separated scheme. The inclusion functor $D_{QCoh}(O_X) \to D(O_X)$ has a right adjoint DQ_X.

3This is probably nonstandard notation. However, we have already used Q_X for the coherator and RQ_X for its derived extension.
First proof. We will use the induction principle as in Cohomology of Schemes, Lemma 4.1 to prove this. If $D(QCoh(O_X)) \rightarrow D_{QCoh}(O_X)$ is an equivalence, then the lemma is true because the functor RQ_X of Section 13.3 is a right adjoint to the functor $D(QCoh(O_X)) \rightarrow D(O_X)$. In particular, our lemma is true for affine schemes, see Lemma 7.3. Thus we see that it suffices to show: if $X = U \cup V$ is a union of two quasi-compact opens and the lemma holds for U, V, and $U \cap V$, then the lemma holds for X.

The adjoint exists if and only if for every object K of $D(O_X)$ we can find a distinguished triangle

$$E' \rightarrow E \rightarrow K \rightarrow E'[1]$$

in $D(O_X)$ such that E' is in $D_{QCoh}(O_X)$ and such that $\text{Hom}(M, K) = 0$ for all M in $D_{QCoh}(O_X)$. See Derived Categories, Lemma 40.7. Consider the distinguished triangle

$$E \rightarrow Rj_{U, *}E|_U \oplus Rj_{V, *}E|_V \rightarrow Rj_{U \cap V, *}E|_{U \cap V} \rightarrow E[1]$$

in $D(O_X)$ of Cohomology, Lemma 33.2. By Derived Categories, Lemma 40.5 it suffices to construct the desired distinguished triangles for $Rj_{U, *}E|_U$, $Rj_{V, *}E|_V$, and $Rj_{U \cap V, *}E|_{U \cap V}$. This reduces us to the statement discussed in the next paragraph.

Let $j : U \rightarrow X$ be an open immersion corresponding with U a quasi-compact open for which the lemma is true. Let L be an object of $D(O_U)$. Then there exists a distinguished triangle

$$E' \rightarrow Rj_*L \rightarrow K \rightarrow E'[1]$$

in $D(O_X)$ such that E' is in $D_{QCoh}(O_X)$ and such that $\text{Hom}(M, K) = 0$ for all M in $D_{QCoh}(O_X)$. To see this we choose a distinguished triangle

$$L' \rightarrow L \rightarrow Q \rightarrow L'[1]$$

in $D(O_U)$ such that L' is in $D_{QCoh}(O_U)$ and such that $\text{Hom}(N, Q) = 0$ for all N in $D_{QCoh}(O_U)$. This is possible because the statement in Derived Categories, Lemma 40.7 is an if and only if. We obtain a distinguished triangle

$$Rj_*L' \rightarrow Rj_*L \rightarrow Rj_*Q \rightarrow Rj_*L'[1]$$

in $D(O_X)$. Observe that Rj_*L' is in $D_{QCoh}(O_X)$ by Lemma 4.1. On the other hand, if M in $D_{QCoh}(O_X)$, then

$$\text{Hom}(M, Rj_*Q) = \text{Hom}(Lj^*M, Q) = 0$$

because Lj^*M is in $D_{QCoh}(O_U)$ by Lemma 3.8. This finishes the proof. □

Second proof. The adjoint exists by Derived Categories, Proposition 38.2. The hypotheses are satisfied: First, note that $D_{QCoh}(O_X)$ has direct sums and direct sums commute with the inclusion functor (Lemma 3.1). On the other hand, $D_{QCoh}(O_X)$ is compactly generated because it has a perfect generator Theorem 15.3. and because perfect objects are compact by Proposition 17.1. □
Proof. The statement makes sense because Rf_* sends $D_{Qcoh}(\mathcal{O}_X)$ into $D_{Qcoh}(\mathcal{O}_Y)$ by Lemma 4.1. The statement is true because Lf^* similarly maps $D_{Qcoh}(\mathcal{O}_Y)$ into $D_{Qcoh}(\mathcal{O}_X)$ (Lemma 3.8) and hence both $Rf_* \circ D_{QX}$ and $D_{QY} \circ Rf_*$ are right adjoint to $Lf^* : D_{Qcoh}(\mathcal{O}_Y) \to D(\mathcal{O}_X)$. □

0CR2 Remark 21.3. Let X be a quasi-compact and quasi-separated scheme. Let $X = U \cup V$ with U and V quasi-compact open. By Lemma 21.1 the functors D_{QX}, D_{QU}, D_{QV}, $D_{QU\cap V}$ exist. Moreover, there is a canonical distinguished triangle
\[
D_{QX}(K) \to Rj_{U*},D_{QU}(K|_U) \oplus Rj_{V*},D_{QV}(K|_V) \to Rj_{U\cap V*},D_{QU\cap V}(K|_{U\cap V}) \to
\]
for any $K \in D(\mathcal{O}_X)$. This follows by applying the exact functor D_{QX} to the distinguished triangle of Cohomology, Lemma 33.2 and using Lemma 21.2 three times.

0CSA Lemma 21.4. Let X be a quasi-compact and quasi-separated scheme. The functor D_{QX} of Lemma 21.1 has the following boundedness property: there exists an integer $N = N(X)$ such that, if K in $D(\mathcal{O}_X)$ with $H^i(U,K) = 0$ for U affine open in X and $i \notin [a,b]$, then the cohomology sheaves $H^i(D_{QX}(K))$ are zero for $i \notin [a,b+N]$.

Proof. We will prove this using the induction principle of Cohomology of Schemes, Lemma 4.1

If X is affine, then the lemma is true with $N = 0$ because then $RQ_X = D_{QX}$ is given by taking the complex of quasi-coherent sheaves associated to $R\Gamma(X,K)$. See Lemmas 3.5 and 7.3

Assume U,V are quasi-compact open in X and the lemma holds for U, V, and $U \cap V$. Say with integers $N(U)$, $N(V)$, and $N(U \cap V)$. Now suppose K is in $D(\mathcal{O}_X)$ with $H^i(W,K) = 0$ for all affine open $W \subset X$ and all $i \notin [a,b]$. Then $K|_U$, $K|_V$, $K|_{U\cap V}$ have the same property. Hence we see that $RQ_U(K|_U)$ and $RQ_V(K|_V)$ and $RQ_{U\cap V}(K|_{U\cap V})$ have vanishing cohomology sheaves outside the interval $[a,b + \max(N(U),N(V),N(U \cap V))]$. Since the functors Rj_{U*}, Rj_{V*}, $Rj_{U\cap V*}$ have finite cohomological dimension on D_{Qcoh} by Lemma 4.1 we see that there exists an N such that $Rj_{U*},D_{QU}(K|_U)$, $Rj_{V*},D_{QV}(K|_V)$, and $Rj_{U\cap V*},D_{QU\cap V}(K|_{U\cap V})$ have vanishing cohomology sheaves outside the interval $[a,b + N]$. Then finally we conclude by the distinguished triangle of Remark 21.3. □

0CSB Example 21.5. Let X be a quasi-compact and quasi-separated scheme. Let (\mathcal{F}_n) be an inverse system of quasi-coherent sheaves. Since D_{QX} is a right adjoint it commutes with products and therefore with derived limits. Hence we see that

$$D_{QX}(R\lim_n \mathcal{F}_n) = (R\lim_n D_{Qcoh}(\mathcal{O}_X))(\mathcal{F}_n)$$

where the first $R\lim$ is taken in $D(\mathcal{O}_X)$. In fact, let’s write $K = R\lim_n \mathcal{F}_n$ for this. For any affine open $U \subset X$ we have

$$H^i(U,K) = H^i(R\Gamma(U,Rlim_n \mathcal{F}_n)) = H^i(Rlim_n R\Gamma(U,\mathcal{F}_n)) = H^i(Rlim_n \Gamma(U,\mathcal{F}_n))$$

since cohomology commutes with derived limits and since the quasi-coherent sheaves \mathcal{F}_n have no higher cohomology on affines. By the computation of $R\lim$ in the category of abelian groups, we see that $H^i(U,K) = 0$ unless $i \in [0,1]$. Then finally we conclude that the $R\lim$ in $D_{Qcoh}(\mathcal{O}_X)$, which is $D_{QX}(K)$ by the above, is in $D^b_{Qcoh}(\mathcal{O}_X)$ by Lemma 21.4.
22. Cohomology and base change, IV

This section continues the discussion of Cohomology of Schemes, Section 22. First, we have a very general version of the projection formula for quasi-compact and quasi-separated morphisms of schemes and complexes with quasi-coherent cohomology sheaves.

Lemma 22.1. Let \(f : X \to Y \) be a quasi-compact and quasi-separated morphism of schemes. For \(E \) in \(D_{QCoh}(\mathcal{O}_X) \) and \(K \) in \(D_{QCoh}(\mathcal{O}_Y) \) the map

\[
Rf_* (E) \otimes^{L}_{\mathcal{O}_Y} K \to Rf_* (E \otimes^{L}_{\mathcal{O}_X} Lf^* K)
\]

defined in Cohomology, Equation (52.2.1) is an isomorphism.

Proof. To check the map is an isomorphism we may work locally on \(Y \). Hence we reduce to the case that \(Y \) is affine.

Suppose that \(K = \bigoplus K_i \) is a direct sum of some complexes \(K_i \in D_{QCoh}(\mathcal{O}_Y) \). If the statement holds for each \(K_i \), then it holds for \(K \). Namely, the functors \(Lf^* \) and \(\otimes^L \) preserve direct sums by construction and \(Rf_* \) commutes with direct sums (for complexes with quasi-coherent cohomology sheaves) by Lemma 4.5. Moreover, suppose that \(K \to L \to M \to K[1] \) is a distinguished triangle in \(D_{QCoh}(Y) \). Then if the statement of the lemma holds for two of \(K, L, M \), then it holds for the third (as the functors involved are exact functors of triangulated categories).

Assume \(Y \) affine, say \(Y = \text{Spec}(A) \). The functor \(\sim : D(A) \to D_{QCoh}(\mathcal{O}_Y) \) is an equivalence (Lemma 8.5). Let \(T \) be the property for \(K \in D(A) \) that the statement of the lemma holds for \(K \). The discussion above and More on Algebra, Remark 59.11 shows that it suffices to prove \(T \) holds for \(A[k] \). This finishes the proof, as the statement of the lemma is clear for shifts of the structure sheaf. \(\blacksquare \)

Definition 22.2. Let \(S \) be a scheme. Let \(X, Y \) be schemes over \(S \). We say \(X \) and \(Y \) are **Tor independent over \(S \)** if for every \(x \in X \) and \(y \in Y \) mapping to the same point \(s \in S \) the rings \(\mathcal{O}_{X,x} \) and \(\mathcal{O}_{Y,y} \) are Tor independent over \(\mathcal{O}_{S,s} \) (see More on Algebra, Definition 61.1).

Lemma 22.3. Let \(f : X \to S \) and \(g : Y \to S \) be morphisms of schemes. The following are equivalent

1. \(X \) and \(Y \) are tor independent over \(S \), and
2. for every affine opens \(U \subset X \), \(V \subset Y \), \(W \subset S \) with \(f(U) \subset W \) and \(g(V) \subset W \) the rings \(\mathcal{O}_X(U) \) and \(\mathcal{O}_Y(V) \) are tor independent over \(\mathcal{O}_S(W) \).
3. there exists an affine open overing \(S = \bigcup W_i \) and for each \(i \) affine open coverings \(f^{-1}(W_i) = \bigcup U_{ij} \) and \(g^{-1}(W_i) = \bigcup V_{ik} \) such that the rings \(\mathcal{O}_X(U_{ij}) \) and \(\mathcal{O}_Y(V_{ik}) \) are tor independent over \(\mathcal{O}_S(W_i) \) for all \(i, j, k \).

Proof. Omitted. Hint: use More on Algebra, Lemma 61.6 \(\blacksquare \)

Lemma 22.4. Let \(X \to S \) and \(Y \to S \) be morphisms of schemes. Let \(S' \to S \) be a morphism of schemes and denote \(X' = X \times_S S' \) and \(Y' = Y \times_S S' \). If \(X \) and \(Y \) are tor independent over \(S \) and \(S' \to S \) is flat, then \(X' \) and \(Y' \) are tor independent over \(S' \).

Proof. Omitted. Hint: use Lemma 22.3 and on affine opens use More on Algebra, Lemma 61.4 \(\blacksquare \)
Consider a cartesian square

\[
\begin{array}{ccc}
X' & \xrightarrow{g} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{g} & S
\end{array}
\]

If \(X\) and \(S'\) are Tor independent over \(S\), then for all \(E \in D_{QCoh}(\mathcal{O}_X)\) we have \(Rf'_*L(g')^*E = Lg^*Rf_*E\).

Proof. For any object \(E\) of \(D(\mathcal{O}_X)\) we can use Cohomology, Remark 28.3 to get a canonical base change map \(Lg^*Rf_*E \to Rf'_*L(g')^*E\). To check this is an isomorphism we may work locally on \(S'\). Hence we may assume \(g: S' \to S\) is a morphism of affine schemes. In particular, \(g\) is affine and it suffices to show that

\[
Rg_*Lg^*Rf_*E \to Rg_*Rf'_*L(g')^*E = Rf_*(Rg'_*L(g')^*E)
\]

is an isomorphism, see Lemma 5.2 (and use Lemmas 3.3, 3.9 and 4.1 to see that the objects \(Rf'_*L(g')^*E\) and \(Lg^*Rf_*E\) have quasi-coherent cohomology sheaves). Note that \(g'\) is affine as well (Morphisms, Lemma 11.8). By Lemma 5.3 the map becomes a map

\[
Rf_*E \otimes_L g_*\mathcal{O}_{S'} \to Rf_*(E \otimes_L g'_*\mathcal{O}_{X'}).
\]

Observe that \(g'_*\mathcal{O}_{X'} = f^*g_*\mathcal{O}_{S'}\). Thus by Lemma 22.1 it suffices to prove that \(Lf^*g_*\mathcal{O}_{S'} = f^*g_*\mathcal{O}_{S'}\). This follows from our assumption that \(X\) and \(S'\) are Tor independent over \(S\). Namely, to check it we may work locally on \(X\), hence we may also assume \(X\) is affine. Say \(X = \text{Spec}(A)\), \(S = \text{Spec}(R)\) and \(S' = \text{Spec}(R')\). Our assumption implies that \(A\) and \(R'\) are Tor independent over \(R\) (More on Algebra, Lemma 61.6), i.e., \(\text{Tor}^i_A(A, R') = 0\) for \(i > 0\). In other words \(A \otimes_R R' = A \otimes_R R'\) which exactly means that \(Lf^*g_*\mathcal{O}_{S'} = f^*g_*\mathcal{O}_{S'}\) (use Lemma 3.8). \(\square\)

The following lemma will be used in the chapter on dualizing complexes.

Lemma 22.6. Consider a cartesian square

\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{g} & S
\end{array}
\]

of quasi-compact and quasi-separated schemes. Assume \(g\) and \(f\) Tor independent and \(S = \text{Spec}(R)\), \(S' = \text{Spec}(R')\) affine. For \(M, K \in D(\mathcal{O}_X)\) the canonical map

\[
R\text{Hom}_X(M, K) \otimes_R R' \to R\text{Hom}_X(L(g')^*M, L(g')^*K)
\]

in \(D(R')\) is an isomorphism in the following two cases

1. \(M \in D(\mathcal{O}_X)\) is perfect and \(K \in D_{QCoh}(X)\), or
2. \(M \in D(\mathcal{O}_X)\) is pseudo-coherent, \(K \in D^\infty_{QCoh}(X)\), and \(R'\) has finite tor dimension over \(R\).

Proof. There is a canonical map \(R\text{Hom}_X(M, K) \to R\text{Hom}_X(L(g')^*M, L(g')^*K)\) in \(D(\Gamma(X, \mathcal{O}_X))\) of global hom complexes, see Cohomology, Section 42. Restricting scalars we can view this as a map in \(D(R)\). Then we can use the adjointness of restriction and \(- \otimes_R R'\) to get the displayed map of the lemma. Having defined
the map it suffices to prove it is an isomorphism in the derived category of abelian groups.

The right hand side is equal to
\[R\text{Hom}_X(M, R(g')_! L(g')^* K) = R\text{Hom}_X(M, K \otimes^L_{O_X} g'_* O_{X'}) \]
by Lemma 5.3. In both cases the complex \(R\text{Hom}(M, K) \) is an object of \(D_{QCoh}(O_X) \)
by Lemma 10.8. There is a natural map
\[R\text{Hom}(M, K) \otimes^L_{O_X} g'_* O_{X'} \rightarrow R\text{Hom}(M, K \otimes^L_{O_X} g'_* O_{X'}) \]
which is an isomorphism in both cases by Lemma 10.9. To see that this lemma applies in case (2) we note that \(g'_* O_{X'} = Rg'_* O_X = Lf^* g_* O_X \), the second equality by Lemma 22.5. Using Lemma 10.4 and Cohomology, Lemma 46.4 we conclude that \(g'_* O_{X'} \) has finite Tor dimension. Hence, in both cases by replacing \(K \) by \(R\text{Hom}(M, K) \) we reduce to proving
\[R\Gamma(X, K) \otimes^L_A A' \rightarrow R\Gamma(X, K \otimes^L_{O_X} g'_* O_{X'}) \]
is an isomorphism. Note that the left hand side is equal to \(R\Gamma(X', L(g')^* K) \) by Lemma 5.3. Hence the result follows from Lemma 22.5. \(\square \)

Remark 22.7. With notation as in Lemma 22.6. The diagram
\[
\begin{array}{ccc}
R\text{Hom}_X(M, Rg'_! L) & \cong & R\text{Hom}_{X'}(L(g')^* M, L(g')^* Rg'_! L) \\
\mu & & \alpha \\
R\text{Hom}_X(M, Rg'! L) & \cong & R\text{Hom}_{X'}(L(g')^* M, L)
\end{array}
\]
is commutative where the top horizontal arrow is the map from the lemma, \(\mu \) is the multiplication map, and \(\alpha \) comes from the adjunction map \(L(g')^* Rg'_! L \rightarrow L \). The multiplication map is the adjunction map \(K' \otimes^L_R R' \rightarrow K' \) for any \(K' \in D(R') \).

Lemma 22.8. Consider a cartesian square of schemes
\[
\begin{array}{ccc}
X' & \rightarrow & X \\
\downarrow f' & & \downarrow f \\
S' & \rightarrow & S
\end{array}
\]
Assume \(g \) and \(f \) Tor independent.

1. If \(E \in D(O_X) \) has tor amplitude in \([a, b]\) as a complex of \(f^{-1}O_S \)-modules, then \(L(g')^* E \) has tor amplitude in \([a, b]\) as a complex of \(f^{-1}O_{S'} \)-modules.
2. If \(G \) is an \(O_X \)-module flat over \(S \), then \(L(g')^* G = (g')^* G \).

Proof. We can compute Tor dimension at stalks, see Cohomology, Lemma 46.5. If \(x' \in X' \) with image \(x \in X \), then
\[
(L(g')^* E)_{x'} = E_x \otimes_{O_{X,x'}} O_{X',x'}
\]
Let \(s' \in S' \) and \(s \in S \) be the image of \(x' \) and \(x \). Since \(X \) and \(S' \) are tor independent over \(S \), we can apply More on Algebra, Lemma 61.2 to see that the right hand side of the displayed formula is equal to \(E_x \otimes_{O_{S',s'}} O_{S',x'} \) in \(D(O_{S',s'}) \). Thus (1) follows from More on Algebra, Lemma 66.13. To see (2) observe that flatness of \(G \) is equivalent to the condition that \(G[0] \) has tor amplitude in \([0, 0]\). Applying (1) we conclude. \(\square \)
Lemma 22.9. Consider a cartesian diagram of schemes

\[
\begin{array}{ccc}
Z' & \longrightarrow & X' \\
\downarrow^i & & \downarrow^f \\
Z & \longrightarrow & X
\end{array}
\]

where \(i \) is a closed immersion. If \(Z \) and \(X' \) are tor independent over \(X \), then \(R^i_*(Lg^* \circ Ri_*) \) as functors \(D(O_Z) \rightarrow D(O_{X'}) \).

Proof. Note that the lemma is supposed to hold for all \(K \in D(O_Z) \). Observe that \(i_* \) and \(i'_* \) are exact functors and hence \(R^i_* \) and \(R^{i'}_* \) are computed by applying \(i_* \) and \(i'_* \) to any representatives. Thus the base change map
\[
Lf^*(Ri_*(K)) \longrightarrow R^{i'}_*(Lg^*(K))
\]
on stalks at a point \(z' \in Z' \) with image \(z \in Z \) is given by
\[
K_z \otimes L_{O_{Z,z}} \otimes \mathcal{O}_{Z,z}' \longrightarrow K_z \otimes L_{O_{X,z}} \otimes \mathcal{O}_{X,z}'
\]
This map is an isomorphism by More on Algebra, Lemma 61.2 and the assumed tor independence. \(\square \)

23. Künneth formula, II

For the case where the base is a field, please see Varieties, Section 29. Consider a cartesian diagram of schemes

\[
\begin{array}{ccc}
X \times_S Y & & \\
\downarrow^p & & \downarrow^q \\
X & \longrightarrow & Y
\end{array}
\]

Let \(K \in D(O_X) \) and \(M \in D(O_Y) \). There is a canonical map
\[
Ra_*K \otimes_{O_S}^{L} Rb_*M \longrightarrow Rf_*(Lp^*K \otimes_{O_{X\times_S Y}}^{L} Lq^*M)
\]
Namely, we can use the maps \(Ra_* \rightarrow Ra_*Rp_*Lp^*K = Rf_*Lp^*K \) and \(Rb_* \rightarrow Rb_*Rq_*Lq^*M = Rf_*Lq^*M \) and then we can use the relative cup product (Cohomology, Remark 28.7).

Set \(A = \Gamma(S, O_S) \). There is a global Künneth map
\[
\Gamma(X, K) \otimes_{A} \Gamma(Y, M) \longrightarrow \Gamma(X \times_S Y, Lp^*K \otimes_{O_{X\times_S Y}}^{L} Lq^*M)
\]
in \(D(A) \). This map is constructed using the pullback maps \(\Gamma(X, K) \rightarrow \Gamma(X \times_S Y, Lp^*K) \) and \(\Gamma(Y, M) \rightarrow \Gamma(X \times_S Y, Lq^*M) \) and the cup product constructed in Cohomology, Section 31.

Lemma 23.1. In the situation above, if \(a \) and \(b \) are quasi-compact and quasi-separated and \(X \) and \(Y \) are tor-independent over \(S \), then \(23.0.1 \) is an isomorphism for \(K \in D(Qcoh(O_X)) \) and \(M \in D(Qcoh(O_Y)) \). If in addition \(S = \text{Spec}(A) \) is affine, then the map \(23.0.2 \) is an isomorphism.
First proof. This follows from the following sequence of isomorphisms
\[
Rf_*(L^pK \otimes_{O_{X \times S}} L^qM) = Ra_*Rp_*(L^pK \otimes_{O_{X \times S}} L^qM) \\
= Ra_*(K \otimes_{O_X} R^pL^qM) \\
= Ra_*(K \otimes_{O_X} La^*Rb_*M) \\
= Ra_*K \otimes_{O_S} L^a_*M
\]
The first equality holds because \(f = a \circ p \). The second equality by Lemma \[22.1\] The third equality by Lemma \[22.5\] The fourth equality by Lemma \[22.1\]. We omit the verification that the composition of these isomorphisms is the same as the map \[23.0.1\]. If \(S \) is affine, then the source and target of the arrow \[23.0.2\] are the result of applying \(R\Gamma(S, -) \) to the source and target of \[23.0.1\] and we obtain the final statement; details omitted.

Second proof. The construction of the arrow \[23.0.1\] is compatible with restricting to open subschemes of \(S \) as is immediate from the construction of the relative cup product. Thus it suffices to prove that \[23.0.1\] is an isomorphism when \(S \) is affine.

Assume \(S = \text{Spec}(A) \) is affine. By Leray we have \(R\Gamma(S, Rf_*K) = R\Gamma(X, K) \) and similarly for the other cases. By Cohomology, Lemma \[31.7\] the map \[23.0.1\] induces the map \[23.0.2\] on taking \(R\Gamma(S, -) \). On the other hand, by Lemmas \[4.1\] and \[3.9\] the source and target of the map \[23.0.1\] are in \(D_{QCoh}(\mathcal{O}_S) \). Thus, by Lemma \[3.5\] it suffices to prove that \[23.0.2\] is an isomorphism.

Assume \(S = \text{Spec}(A) \) and \(X = \text{Spec}(B) \) and \(Y = \text{Spec}(C) \) are all affine. We will use Lemma \[3.3\] without further mention. In this case we can choose a K-flat complex \(K^\cdot \) of \(B \)-modules whose terms are flat such that \(K \) is represented by \(K^\cdot \).
Similarly, we can choose a K-flat complex \(M^\cdot \) of \(C \)-modules whose terms are flat such that \(M \) is represented by \(M^\cdot \). See More on Algebra, Lemma \[59.10\]. Then \(K^\cdot \) is a K-flat complex of \(O_X \)-modules and similarly for \(M^\cdot \), see Lemma \[3.6\]. Thus \(La^*K \) is represented by
\[
a^*K^\cdot = K^\cdot \otimes_A C
\]
and similarly for \(Lb^*M \). This in turn is a K-flat complex of \(O_{X \times S} \)-modules by the lemma cited above and More on Algebra, Lemma \[59.3\]. Thus we finally see that the complex of \(O_{X \times S} \)-modules associated to
\[
\text{Tot}((K^\cdot \otimes_A C) \otimes_{B \otimes A} C (B \otimes_A M^\cdot)) = \text{Tot}(K^\cdot \otimes_A M^\cdot)
\]
represents \(La^*K \otimes_{O_{X \times S}} Lb^*M \) in the derived category of \(X \times S \). Taking global sections we obtain \(\text{Tot}(K^\cdot \otimes_A M^\cdot) \) which of course is also the complex representing \(R\Gamma(X, K) \otimes_A R\Gamma(Y, M) \). The fact that the isomorphism is given by cup product follows from the relationship between the genuine cup product and the naïve one in Cohomology, Section \[31\] (and in particular Cohomology, Lemma \[31.3\] and the discussion following it).

Assume \(S = \text{Spec}(A) \) and \(Y \) are affine. We will use the induction principle of Cohomology of Schemes, Lemma \[4.1\] to prove the statement. To do this we only have to show: if \(X = U \cup V \) is an open covering with \(U \) and \(V \) quasi-compact and if the map \[23.0.2\]
\[
R\Gamma(U, K) \otimes_{A} R\Gamma(Y, M) \longrightarrow R\Gamma(U \times S Y, Lp^*K \otimes_{O_{X \times S Y}} Lq^*M)
\]
for \(U \) and \(Y \) over \(S \), the map \((23.0.2)\)
\[
R\Gamma(V, K) \otimes^{L}_{A} R\Gamma(Y, M) \to R\Gamma(V \times_{S} Y, Lp^{*}K \otimes^{L}_{\mathcal{O}_{X \times_{S} Y}} Lq^{*}M)
\]
for \(V \) and \(Y \) over \(S \), and the map \((23.0.2)\)
\[
R\Gamma(U \cap V, K) \otimes^{L}_{A} R\Gamma(Y, M) \to R\Gamma((U \cap V) \times_{S} Y, Lp^{*}K \otimes^{L}_{\mathcal{O}_{X \times_{S} Y}} Lq^{*}M)
\]
for \(U \cap V \) and \(Y \) over \(S \) are isomorphisms, then so is the map \((23.0.2)\) for \(X \) and \(Y \) over \(S \). However, by Cohomology, Lemma \ref{lem:acyclicity} these maps fit into a map of distinguished triangles with \((23.0.2)\) the final leg and hence we conclude by Derived Categories, Lemma \ref{lem:acyclicity}.

Assume \(S = \text{Spec}(A) \) is affine. To finish the proof we can use the induction principle of Cohomology of Schemes, Lemma \ref{lem:acyclicity} on \(Y \). Namely, by the above we already know that our map is an isomorphism when \(Y \) is affine. The rest of the argument is exactly the same as in the previous paragraph but with the roles of \(X \) and \(Y \) switched. \(\square\)

Lemma 23.2. Let \(a : X \to S \) be a quasi-compact and quasi-separated morphism of schemes. Let \(\mathcal{F}^{\bullet} \) be a locally bounded complex of \(a^{-1}\mathcal{O}_{S}\)-modules. Assume for all \(n \in \mathbb{Z} \) the sheaf \(\mathcal{F}^{n} \) is a flat \(a^{-1}\mathcal{O}_{S}\)-module and \(\mathcal{F}^{n} \) has the structure of a quasi-coherent \(\mathcal{O}_{X} \)-module compatible with the given \(a^{-1}\mathcal{O}_{S}\)-module structure (but the differentials in the complex \(\mathcal{F}^{\bullet} \) need not be \(\mathcal{O}_{X}\)-linear). Then the following hold

1. \(Ra_{*}\mathcal{F}^{\bullet} \) is locally bounded,
2. \(Ra_{*}\mathcal{F}^{\bullet} \) is in \(D_{Qcoh}(\mathcal{O}_{S}) \),
3. \(Ra_{*}\mathcal{F}^{\bullet} \) locally has finite tor dimension,
4. \(G \otimes^{L}_{\mathcal{O}_{S}} Ra_{*}\mathcal{F}^{\bullet} = Ra_{*}(a^{-1}G \otimes_{a^{-1}\mathcal{O}_{S}} \mathcal{F}^{\bullet}) \) for \(G \in \text{QCoh}(\mathcal{O}_{S}) \), and
5. \(K \otimes^{L}_{\mathcal{O}_{S}} Ra_{*}\mathcal{F}^{\bullet} = Ra_{*}(a^{-1}K \otimes_{a^{-1}\mathcal{O}_{S}} \mathcal{F}^{\bullet}) \) for \(K \in D_{Qcoh}(\mathcal{O}_{S}) \).

Proof. Parts (1), (2), (3) are local on \(S \) hence we may and do assume \(S \) is affine. Since \(a \) is quasi-compact we conclude that \(X \) is quasi-compact. Since \(\mathcal{F}^{\bullet} \) is locally bounded, we conclude that \(\mathcal{F}^{\bullet} \) is bounded.

For (1) and (2) we can use the first spectral sequence \(R^{p}a_{*}\mathcal{F}^{q} \Rightarrow R^{p+q}a_{*}\mathcal{F}^{\bullet} \) of Derived Categories, Lemma \ref{lem:acyclicity} and Homology, Lemma \ref{lem:acyclicity} we conclude.

Let us prove (3) by the induction principle of Cohomology of Schemes, Lemma \ref{lem:acyclicity}. Namely, for a quasi-compact open of \(U \) of \(X \) consider the condition that \(R(a|_{U})_{*}(\mathcal{F}^{\bullet}|_{U}) \) has finite tor dimension. If \(U, V \) are quasi-compact open in \(X \), then we have a relative Mayer-Vietoris distinguished triangle
\[
R(a|_{U \cup V})_{*}\mathcal{F}^{\bullet}|_{U \cup V} \to R(a|_{U})_{*}\mathcal{F}^{\bullet}|_{U} \oplus R(a|_{V})_{*}\mathcal{F}^{\bullet}|_{V} \to R(a|_{U \cap V})_{*}\mathcal{F}^{\bullet}|_{U \cap V} \to
\]
by Cohomology, Lemma \ref{lem:acyclicity}. By the behaviour of tor amplitude in distinguished triangles (see Cohomology, Lemma \ref{lem:acyclicity}) we see that if we know the result for \(U, V, U \cap V \), then the result holds for \(U \cup V \). This reduces us to the case where \(X \) is affine. In this case we have
\[
Ra_{*}\mathcal{F}^{\bullet} = a_{*}\mathcal{F}^{\bullet}
\]
by Leray’s acyclicity lemma (Derived Categories, Lemma \ref{lem:acyclicity}) and the vanishing of higher direct images of quasi-coherent modules under an affine morphism (Cohomology of Schemes, Lemma \ref{lem:acyclicity}). Since \(\mathcal{F}^{n} \) is \(S \)-flat by assumption and \(X \) affine,
the modules \(a_* \mathcal{F}^n \) are flat for all \(n \). Hence \(a_* \mathcal{F}^* \) is a bounded complex of flat \(\mathcal{O}_S \)-modules and hence has finite tor dimension.

Proof of part (5). Denote \(a' : (X, a^{-1} \mathcal{O}_S) \to (S, \mathcal{O}_S) \) the obvious flat morphism of ringed spaces. Part (5) says that

\[
K \otimes^L_{\mathcal{O}_S} Ra'_* \mathcal{F}^* = Ra'_*(L(a')^* K \otimes^L_{a^{-1} \mathcal{O}_S} \mathcal{F}^*)
\]

Thus Cohomology, Equation 52.2.1 gives a functorial map from the left to the right and we want to show this map is an isomorphism. This question is local on \(S \) hence we may and do assume \(S \) is affine. The rest of the proof is exactly the same as the proof of Lemma 22.1 except that we have to show that the functor \(K \to Ra'_*(L(a')^* K \otimes^L_{a^{-1} \mathcal{O}_S} \mathcal{F}^*) \) commutes with direct sums. This is where we will use \(\mathcal{F}^n \) has the structure of a quasi-coherent \(\mathcal{O}_X \)-module. Namely, observe that \(K \to L(a')^* K \otimes^L_{a^{-1} \mathcal{O}_S} \mathcal{F}^* \) commutes with arbitrary direct sums. Next, if \(\mathcal{F}^* \) consists of a single quasi-coherent \(\mathcal{O}_X \)-module \(\mathcal{F}^* = \mathcal{F}^n[-n] \) then we have \(L(a')^* G \otimes^L_{a^{-1} \mathcal{O}_S} \mathcal{F}^* = L a^* K \otimes^L_{\mathcal{O}_X} \mathcal{F}^n[-n] \), see Cohomology, Lemma 27.4. Hence in this case the commutation with direct sums follows from Lemma 4.5. Now, in general, since \(S \) is affine (hence \(X \) quasi-compact) and \(\mathcal{F}^* \) is locally bounded, we see that

\[
\mathcal{F}^* = (\mathcal{F}^a \to \cdots \to \mathcal{F}^b)
\]

is bounded. Arguing by induction on \(b-a \) and considering the distinguished triangle

\[
\mathcal{F}^b[-b] \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^b) \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^{b-1}) \to \mathcal{F}^b[-b+1]
\]

the proof of this part is finished. Some details omitted.

Proof of part (4). Let \(a' : (X, a^{-1} \mathcal{O}_S) \to (S, \mathcal{O}_S) \) be as above. Since \(\mathcal{F}^* \) is a locally bounded complex of flat \(a^{-1} \mathcal{O}_S \)-modules we see the complex \(a^{-1} \mathcal{G} \otimes_{a^{-1} \mathcal{O}_S} \mathcal{F}^* \) represents \(L(a')^* \mathcal{G} \otimes^L_{a^{-1} \mathcal{O}_S} \mathcal{F}^* \) in \(D(a^{-1} \mathcal{O}_S) \). Hence (4) follows from (5).

\(\Box\)

0FMQ Lemma 23.3. Let \(f : X \to Y \) be a morphism of schemes with \(Y = \text{Spec}(A) \) affine. Let \(\mathcal{U} : X = \bigcup_{i \in I} U_i \) be a finite affine open covering such that all the finite intersections \(U_{i_0 \cap \cdots \cap i_p} = U_{i_0} \cap \cdots \cap U_{i_p} \) are affine. Let \(\mathcal{F}^* \) be a bounded complex of \(f^{-1} \mathcal{O}_Y \)-modules. Assume for all \(n \in \mathbb{Z} \) the sheaf \(\mathcal{F}^n \) is a flat \(f^{-1} \mathcal{O}_Y \)-module and \(\mathcal{F}^n \) has the structure of a quasi-coherent \(\mathcal{O}_X \)-module compatible with the given \(p^{-1} \mathcal{O}_Y \)-module structure (but the differentials in the complex \(\mathcal{F}^* \) need not be \(\mathcal{O}_X \)-linear). Then the complex \(\text{Tot}(\check{\mathcal{C}}^* (\mathcal{U}, \mathcal{F}^*)) \) is \(K \)-flat as a complex of \(A \)-modules.

Proof. We may write

\[
\mathcal{F}^* = (\mathcal{F}^a \to \cdots \to \mathcal{F}^b)
\]

Arguing by induction on \(b-a \) and considering the distinguished triangle

\[
\mathcal{F}^b[-b] \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^b) \to (\mathcal{F}^a \to \cdots \to \mathcal{F}^{b-1}) \to \mathcal{F}^b[-b+1]
\]

and using More on Algebra, Lemma 59.5 we reduce to the case where \(\mathcal{F}^* \) consists of a single quasi-coherent \(\mathcal{O}_X \)-module \(\mathcal{F} \) placed in degree 0. In this case the Čech complex for \(\mathcal{F} \) and \(\mathcal{U} \) is homotopy equivalent to the alternating Čech complex, see Cohomology, Lemma 23.6. Since \(U_{i_0 \cdots \cap i_p} \) is always affine, we see that \(\mathcal{F}(U_{i_0 \cdots \cap i_p}) \) is \(A \)-flat. Hence \(\check{\mathcal{C}}^*_{\text{alt}}(\mathcal{U}, \mathcal{F}) \) is a bounded complex of flat \(A \)-modules and hence \(K \)-flat by More on Algebra, Lemma 59.7.

\(\Box\)
Let \(X, Y, S, a, b, p, q, f \) be as in the introduction to this section. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. Let \(\mathcal{G} \) be an \(\mathcal{O}_Y \)-module. Consider the map

\[
\text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})
\]

in \(D(A) \). This map is constructed using the pullback maps \(\text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \), and \(\text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \), the cup product constructed in Cohomology, Section 31 and the canonical map \(p^* \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \to p^* \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \).

\[
\text{Lemma 23.4.}
\]

\(\text{In the situation above the map } (23.3.1) \text{ is an isomorphism if } S \text{ is affine, } \mathcal{F} \text{ and } \mathcal{G} \text{ are } S\text{-flat and quasi-coherent and } X \text{ and } Y \text{ are quasi-compact with affine diagonal.} \)

\(\text{Proof.} \) We strongly urge the reader to read the proof of Varieties, Lemma 29.1 first. Choose finite affine open coverings \(U : X = \bigcup_{i \in I} U_i \) and \(V : Y = \bigcup_{j \in J} V_j \). This determines an affine open covering \(W : X \times_S Y = \bigcup_{(i,j) \in I \times J} U_i \times_S V_j \). Note that \(W \) is a refinement of \(pr^{-1}_1 U \) and of \(pr^{-1}_2 V \). Thus by the discussion in Cohomology, Section 25 we obtain maps

\[
\check{\mathcal{C}}^*(U, \mathcal{F}) \to \check{\mathcal{C}}^*(V, p^* \mathcal{F}) \quad \text{and} \quad \check{\mathcal{C}}^*(V, \mathcal{G}) \to \check{\mathcal{C}}^*(W, q^* \mathcal{G})
\]

well defined up to homotopy and compatible with pullback maps on cohomology. In Cohomology, Equation (25.3.2) we have constructed a map of complexes

\[
\text{Tot}(\check{\mathcal{C}}^*(V, p^* \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, q^* \mathcal{G})) \to \check{\mathcal{C}}^*(W, p^* \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})
\]

which is compatible with the cup product on cohomology by Cohomology, Lemma 31.4 Combining the above we obtain a map of complexes

\[
\text{Tot}(\check{\mathcal{C}}^*(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, \mathcal{G})) \to \check{\mathcal{C}}^*(W, p^* \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})
\]

We claim this is the map in the statement of the lemma, i.e., the source and target of this arrow are the same as the source and target of (23.3.1). Namely, by Cohomology of Schemes, Lemma 2.2 and Cohomology, Lemma 23.2 the canonical maps

\[
\check{\mathcal{C}}^*(U, \mathcal{F}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}), \quad \check{\mathcal{C}}^*(V, \mathcal{G}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})
\]

and

\[
\check{\mathcal{C}}^*(W, p^* \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \to \text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})
\]

are isomorphisms. On the other hand, the complex \(\check{\mathcal{C}}^*(U, \mathcal{F}) \) is \(K\)-flat by Lemma 23.3 and we conclude that \(\text{Tot}(\check{\mathcal{C}}^*(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, \mathcal{G})) \) represents the derived tensor product \(\text{Tot}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) \) as claimed.

We still have to show that (23.4.1) is a quasi-isomorphism. We will do this using dimension shifting. Set \(d(\mathcal{F}) = \max\{d \mid H^d(X, \mathcal{F}) \neq 0\} \). Assume \(d(\mathcal{F}) > 0 \). Set \(U = \coprod_{i \in I} U_i \). This is an affine scheme as \(I \) is finite. Denote \(j : U \to X \) the morphism which is the inclusion \(U_i \to X \) on each \(U_i \). Since the diagonal of \(X \) is affine, the morphism \(j \) is affine, see Morphisms, Lemma 11.11 It follows that \(\mathcal{F}' = j_* j^* \mathcal{F} \) is \(S\)-flat, see Morphisms, Lemma 25.4 It also follows that \(d(\mathcal{F}') = 0 \) by combining Cohomology of Schemes, Lemmas 2.1 and 2.2 For all \(x \in X \) we have \(\mathcal{F}_x \to \mathcal{F}'_x \) is the inclusion of a direct summand: if \(x \in U_i \), then \(\mathcal{F}' \to (U_i \setminus X), \mathcal{F}'|_{U_i} \) gives a splitting. We conclude that \(\mathcal{F} \to \mathcal{F}' \) is injective and \(\mathcal{F}'' = \mathcal{F}'/\mathcal{F} \) is \(S\)-flat as well. The short exact sequence \(0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0 \) of flat quasi-coherent \(\mathcal{O}_X \)-modules produces a short exact sequence of complexes

\[
0 \to \text{Tot}(\check{\mathcal{C}}^*(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, \mathcal{G})) \to \text{Tot}(\check{\mathcal{C}}^*(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, \mathcal{G})) \to \text{Tot}(\check{\mathcal{C}}^*(U, \mathcal{F}) \otimes_A \check{\mathcal{C}}^*(V, \mathcal{G})) \to 0
\]
and a short exact sequence of complexes

\[0 \to \hat{\mathcal{C}}^\bullet(\mathcal{W}, p^* \mathcal{F} \otimes \mathcal{O}_{X, g}) \to \hat{\mathcal{C}}^\bullet(\mathcal{W}, p^* \mathcal{F}' \otimes \mathcal{O}_{X, g}) \to \hat{\mathcal{C}}^\bullet(\mathcal{W}, p^* \mathcal{F}'' \otimes \mathcal{O}_{X, g}) \to 0 \]

Moreover, the maps \[23.4.1\] between these are compatible with these short exact sequences. Hence it suffices to prove that the isomorphism is indeed given by cup product in degree \(G \).

Using Lemma 22.1 for the morphism \(j : X \to Y \) we conclude that

\[\hat{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \cong \hat{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}' \otimes \mathcal{O}_{X, g}) \]

is associative, see Cohomology, Lemma 31.5.

Arguing in the same fashion for \(\mathcal{G} \) we find that we may assume that both \(\mathcal{F} \) and \(\mathcal{G} \) have nonzero cohomology only in degree 0. Observe that this means that \(\Gamma(X, \mathcal{F}) \) is quasi-isomorphic to the \(K \)-flat complex \(\hat{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \) of \(A \)-modules sitting in degrees \(\geq 0 \).

It follows that \(\Gamma(X, \mathcal{F}) \) is a flat \(A \)-module (because we can compute higher \(\text{Tor} \)’s against this module by tensoring with the \(\text{Cech} \) complex). Let \(V \subset Y \) be an affine open. Consider the affine open covering \(\mathcal{U}_V : X \times_S V = \bigcup_{i \in I} U_i \times_S V \). It is immediate that

\[\hat{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \otimes_A \mathcal{G}(V) = \hat{\mathcal{C}}^\bullet(\mathcal{U}, p^* \mathcal{F} \otimes \mathcal{O}_{X, g} \otimes \mathcal{G}) \]

(equality of complexes). By the flatness of \(\mathcal{G}(V) \) over \(A \) we see that \(\Gamma(V, \mathcal{F}) \otimes_A \mathcal{G}(V) \to \hat{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \otimes_A \mathcal{G}(V) \) is a quasi-isomorphism. Since the sheafification of \(V \to \hat{\mathcal{C}}^\bullet(\mathcal{U}, p^* \mathcal{F} \otimes \mathcal{O}_{X, g} \otimes \mathcal{G}) \) represents \(Rq_*(p^* \mathcal{F} \otimes \mathcal{O}_{X, Y} \otimes \mathcal{G}) \) by Cohomology of Schemes, Lemma \[7.1\] we conclude that

\[Rq_*(p^* \mathcal{F} \otimes \mathcal{O}_{X, g} \otimes \mathcal{G}) \cong \Gamma(X, \mathcal{F}) \otimes_A \mathcal{G} \]

on \(Y \) where the notation on the right hand side indicates the module

\[b^* \Gamma(\hat{\mathcal{F}}) \otimes_{\mathcal{O}_Y} \mathcal{G} \]

Using the Leray spectral sequence for \(q \) we find

\[H^n(X \times_S Y, p^* \mathcal{F} \otimes \mathcal{O}_{X, g} \otimes \mathcal{G}) = H^n(Y, b^* \Gamma(\hat{\mathcal{F}}) \otimes_{\mathcal{O}_Y} \mathcal{G}) \]

Using Lemma \[22.1\] for the morphism \(b : Y \to S = \text{Spec}(A) \) and using that \(\Gamma(X, \mathcal{F}) \) is \(A \)-flat we conclude that \(H^n(X \times_S Y, p^* \mathcal{F} \otimes \mathcal{O}_{X, g} \otimes \mathcal{G}) \) is zero for \(n > 0 \) and isomorphic to \(H^0(X, \mathcal{F}) \otimes_A H^0(Y, \mathcal{G}) \) for \(n = 0 \). Of course, here we also use that \(\mathcal{G} \) only has cohomology in degree 0. This finishes the proof (except that we should check that the isomorphism is indeed given by cup product in degree 0; we omit the verification). \[\square \]

Remark 23.5. Let \(S = \text{Spec}(A) \) be an affine scheme. Let \(a : X \to S \) and \(b : Y \to S \) be morphisms of schemes. Let \(\mathcal{F}, \mathcal{G} \) be quasi-coherent \(\mathcal{O}_X \)-modules and let \(\mathcal{E} \) be a quasi-coherent \(\mathcal{O}_Y \)-module. Let \(\xi \in H^1(X, \mathcal{G}) \) with pullback \(p^* \xi \in H^1(X \times_S Y, p^* \mathcal{G}) \).

Then the following diagram is commutative

\[
\begin{array}{ccc}
R\Gamma(X, \mathcal{F})[-1] \otimes_A R\Gamma(Y, \mathcal{E}) & \longrightarrow & R\Gamma(X, \mathcal{G} \otimes \mathcal{O}_X \mathcal{F}) \otimes L_{\xi \otimes \text{id}} R\Gamma(Y, \mathcal{E}) \\
\downarrow & & \downarrow \\
R\Gamma(X \times_S Y, p^* \mathcal{F} \otimes q^* \mathcal{E})[-1] & \longrightarrow & R\Gamma(X \times_S Y, p^* (\mathcal{G} \otimes \mathcal{O}_X \mathcal{F}) \otimes q^* \mathcal{E})
\end{array}
\]

where the unadorned tensor products are over \(\mathcal{O}_{X \times_S Y} \). The horizontal arrows are from Cohomology, Remark 31.2, and the vertical arrows are \[23.0.2\] hence given by pulling back followed by cup product on \(X \times_S Y \). The diagram commutes because the global cup product (on \(X \times_S Y \) with the sheaves \(p^* \mathcal{G}, p^* \mathcal{F} \), and \(q^* \mathcal{E} \)) is associative, see Cohomology, Lemma 31.5.
24. Künneth formula, III

Let X, Y, S, a, b, p, q, f be as in the introduction to Section 23. In this section, given an \mathcal{O}_X-module F and an \mathcal{O}_Y-module G let us set

$$\mathcal{F} \boxtimes \mathcal{G} = p^* \mathcal{F} \otimes_{\mathcal{O}_X \times S} q^* \mathcal{G}$$

Note that, contrary to what happens in a future section, we take the nonderived tensor product here.

On X let \mathcal{F}^\bullet be a complex of sheaves of abelian groups whose terms are quasi-coherent \mathcal{O}_X-modules such that the differentials $d^i_{\mathcal{F}}: \mathcal{F}^i \rightarrow \mathcal{F}^{i+1}$ are differential operators on X/S of finite order, see Morphisms, Section 33. Similarly, on Y let \mathcal{G}^\bullet be a complex of sheaves of abelian groups whose terms are quasi-coherent \mathcal{O}_Y-modules such that the differentials $d^j_{\mathcal{G}}: \mathcal{G}^j \rightarrow \mathcal{G}^{j+1}$ are differential operators on Y/S of finite order. Applying the construction of Morphisms, Lemma 33.2 we obtain a double complex

\[
\cdots \rightarrow \mathcal{F}^i \boxtimes \mathcal{G}^{j+1} \overset{d^i_{\mathcal{F}} \boxtimes 1}{\longrightarrow} \mathcal{F}^{i+1} \boxtimes \mathcal{G}^{j+1} \overset{1 \boxtimes d^j_{\mathcal{G}}}{\longrightarrow} \cdots
\]

of quasi-coherent modules whose maps are differential operators of finite order on $X \times_S Y/S$. Please see the discussion in Morphisms, Remark 33.3 and Homology, Example 18.2. To be explicit, we set

$$d^i_{1,j} = d^i_{\mathcal{F}} \boxtimes 1 \quad \text{and} \quad d^j_{2,i} = 1 \boxtimes d^j_{\mathcal{G}}$$

In the discussion below the notation

$$\text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet)$$

refers to the total complex associated to this double complex. This complex has terms which are quasi-coherent $\mathcal{O}_{X \times_S Y}$-modules and whose differentials are differential operators of finite order on $X \times_S Y/S$.

In the situation above there exists a “relative cup product” map

$$Ra_*(\mathcal{F}^\bullet) \otimes^L_{\mathcal{O}_S} Rb_*(\mathcal{G}^\bullet) \rightarrow Rf_* (\text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet))$$

Namely, we can construct this map by combining

(1) $Ra_*(\mathcal{F}^\bullet) \rightarrow Rf_*(p^{-1}\mathcal{F}^\bullet)$,
(2) $Rb_*(\mathcal{G}^\bullet) \rightarrow Rf_*(q^{-1}\mathcal{G}^\bullet)$,
(3) $Rf_*(p^{-1}\mathcal{F}^\bullet) \otimes^L_{\mathcal{O}_S} Rf_*(q^{-1}\mathcal{G}^\bullet) \rightarrow Rf_*(p^{-1}\mathcal{F}^\bullet \otimes^L_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet)$,
(4) $p^{-1}\mathcal{F}^\bullet \otimes^L_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet \rightarrow \text{Tot}(p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet)$,
(5) $\text{Tot}(p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet) \rightarrow \text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet)$.

Maps (1) and (2) are pullback maps, map (3) is the relative cup product, see Cohomology, Remark 28.7 map (4) compares the derived and nonderived tensor...
products, and map (5) is given by the obvious maps $p^{-1}\mathcal{F}^i \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^j \to \mathcal{F}^i \boxtimes \mathcal{G}^j$ on the underlying double complexes.

Set $A = \Gamma(S, \mathcal{O}_S)$. There exists a “global cup product” map

$0FLR \ (24.0.2) \quad R\Gamma(X, \mathcal{F}^\bullet) \otimes^L_A R\Gamma(Y, \mathcal{G}^\bullet) \to R\Gamma(X \times_S Y, \text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet))$

in $D(A)$. This is constructed similarly to the relative cup product above using

1. $R\Gamma(X, \mathcal{F}^\bullet) \to R\Gamma(X \times_S Y, p^{-1}\mathcal{F}^\bullet)$
2. $R\Gamma(Y, \mathcal{G}^\bullet) \to R\Gamma(X \times_S Y, q^{-1}\mathcal{G}^\bullet)$,
3. $R\Gamma(X \times_S Y, p^{-1}\mathcal{F}^\bullet) \otimes^L_A R\Gamma(X \times_S Y, q^{-1}\mathcal{G}^\bullet) \to R\Gamma(X \times_S Y, p^{-1}\mathcal{F}^\bullet \otimes^L_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet)$,
4. $p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet \to \text{Tot}(p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet)$
5. $\text{Tot}(p^{-1}\mathcal{F}^\bullet \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G}^\bullet) \to \text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet)$.

Here maps (1) and (2) are the pullback maps, map (3) is the cup product constructed in Cohomology, Section \textit{31}. Maps (4) and (5) are as indicated in the previous paragraph.

\textbf{Lemma 24.1.} In the situation above the cup product \textit{(24.0.2)} is an isomorphism in $D(A)$ if the following assumptions hold

1. $S = \text{Spec}(A)$ is affine,
2. X and Y are quasi-compact with affine diagonal,
3. \mathcal{F}^\bullet is bounded,
4. \mathcal{G}^\bullet is bounded below,
5. \mathcal{F}^n is S-flat, and
6. \mathcal{G}^n is S-flat.

\textbf{Proof.} We will use the notation $\mathcal{A}_{X/S}$ and $\mathcal{A}_{Y/S}$ introduced in Morphisms, Remark \textit{33.3}. Suppose that we have maps of complexes

$\mathcal{F}_1^\bullet \to \mathcal{F}_2^\bullet \to \mathcal{F}_3^\bullet \to \mathcal{F}_1^*[1]$ in the category $\mathcal{A}_{X/S}$. Then by the functoriality of the cup product we obtain a commutative diagram

$\begin{array}{c}
R\Gamma(X, \mathcal{F}^\bullet) \otimes^L_A R\Gamma(Y, \mathcal{G}^\bullet) \\
\downarrow \quad \downarrow \\
R\Gamma(X, \mathcal{F}_2^\bullet) \otimes^L_A R\Gamma(Y, \mathcal{G}^\bullet) \\
\downarrow \quad \downarrow \\
R\Gamma(X, \mathcal{F}_3^\bullet) \otimes^L_A R\Gamma(Y, \mathcal{G}^\bullet) \\
\downarrow \quad \downarrow \\
R\Gamma(X, \mathcal{F}_1^*[1]) \otimes^L_A R\Gamma(Y, \mathcal{G}^\bullet)
\end{array}$

$\to R\Gamma(X \times_S Y, \text{Tot}(\mathcal{F}^\bullet \boxtimes \mathcal{G}^\bullet))$

If the original maps form a distinguished triangle in the homotopy category of $\mathcal{A}_{X/S}$, then the columns of this diagram form distinguished triangles in $D(A)$.

In the situation of the lemma, suppose that $\mathcal{F}^n = 0$ for $n < i$. Then we may consider the termwise split short exact sequence of complexes

$0 \to \sigma_{\geq i+1} \mathcal{F}^\bullet \to \mathcal{F}^\bullet \to \mathcal{F}^i[-i] \to 0$
where the truncation is as in Homology, Section 15. This produces the distinguished triangle

$$\sigma_{\geq i+1} F^\bullet \to F^\bullet \to F^i[-i] \to (\sigma_{\geq i+1} F^\bullet)[1]$$

in the homotopy category of $\mathcal{A}_{X/S}$ where the final arrow is given by the boundary map $F^i \to F^{i+1}$. It follows from the discussion above that it suffices to prove the lemma for $F^i[-i]$ and $\sigma_{\geq i+1} F^\bullet$. Since $\sigma_{\geq i+1} F^\bullet$ has fewer nonzero terms, by induction, if we can prove the lemma if F^\bullet is nonzero only in single degree, then the lemma follows. Thus we may assume F^\bullet is nonzero only in one degree.

Assume F^\bullet is the complex which has an S-flat quasi-coherent \mathcal{O}_X-module F sitting in degree 0 and is zero in other degrees. Observe that $R\Gamma(X, F)$ has finite tor dimension by Lemma 23.2 for example. Say it has tor amplitude in $[i, j]$. Pick $N \gg 0$ and consider the distinguished triangle

$$\sigma_{\geq N+1} G^\bullet \to G^\bullet \to \sigma_{\leq N} G^\bullet \to (\sigma_{\geq N+1} G^\bullet)[1]$$

in the homotopy category of $\mathcal{A}_{Y/S}$. Now observe that both

$$R\Gamma(X, F) \otimes_A L_i R\Gamma(Y, \sigma_{\geq N+1} G^\bullet) \quad \text{and} \quad R\Gamma(X \times_S Y, \text{Tot}(F \boxtimes \sigma_{\geq N+1} G^\bullet))$$

have vanishing cohomology in degrees $\leq N + i$. Thus, using the arguments given above, if we want to prove our statement in a given degree, then we may assume G^\bullet is bounded. Repeating the arguments above one more time we may also assume G^\bullet is nonzero only in one degree. This case is handled by Lemma 23.4. \qed

25. K"unneth formula for Ext

Consider a cartesian diagram of schemes

$$
\begin{array}{ccc}
X \times_S Y & \xleftarrow{\delta} & Y \\
\downarrow p & & \downarrow q \\
X & \xrightarrow{f} & Y \\
\downarrow a & & \downarrow b \\
S & \xleftarrow{g} & \ast
\end{array}
$$

For $K \in D(\mathcal{O}_X)$ and $M \in D(\mathcal{O}_Y)$ in this section let us define

$$K \boxtimes M = Lp^* K \otimes_{\mathcal{O}_{X \times_S Y}} Lq^* M$$

We claim there is a canonical map

$$(25.0.1)$$

for $K, K' \in D(\mathcal{O}_X)$ and $M, M' \in D(\mathcal{O}_Y)$. Namely, we can take the map adjoint to the map

$$L f^* (Ra_* R \mathcal{H}om(K, K') \otimes_{\mathcal{O}_S} Rb_* R \mathcal{H}om(M, M')) \to R f_* (R \mathcal{H}om(K \boxtimes M, K' \boxtimes M'))$$

for $K, K' \in D(\mathcal{O}_X)$ and $M, M' \in D(\mathcal{O}_Y)$.
Here the first equality is compatibility of pullbacks with tensor products, Cohomology, Lemma 27.3. The second equality is \(f = a \circ p = b \circ q \) and composition of pullbacks, Cohomology, Lemma 27.2. The first arrow is given by the adjunction maps \(La^* Ra_* \to \text{id} \) and \(Lb^* Rb_* \to \text{id} \) because pushforward and pullback are adjoint, Cohomology, Lemma 28.1. The second arrow is given by Cohomology, Remark 40.13. The third and final arrow is Cohomology, Remark 40.10. A simple special case of this is the following result.

Lemma 25.1. In the situation above, assume \(a \) and \(b \) are quasi-compact and \(a \) and \(b \) are quasi-separated and \(X \) and \(Y \) are tor independent over \(S \). If \(K \) is perfect, \(K' \in D_{QCoh}(\mathcal{O}_X) \), \(M \) is perfect, and \(M' \in D_{QCoh}(\mathcal{O}_Y) \), then (25.0.1) is an isomorphism.

Proof. In this case we have \(R\text{Hom}(K, K') = K' \otimes^L K^\vee \), \(R\text{Hom}(M, M') = M' \otimes^L M^\vee \), and

\[
R\text{Hom}(K \boxtimes M, K' \boxtimes M') = (K' \otimes^L K^\vee) \boxtimes (M' \otimes^L M^\vee)
\]

See Cohomology, Lemma 48.5 and we also use that being perfect is preserved by pullback and by tensor products. Hence this case follows from Lemma 23.1. (We omit the verification that with these identifications we obtain the same map.) \(\square \)

26. Cohomology and base change, V

In Section 22 we saw a base change theorem holds when the morphisms are tor independent. Even in the affine case there cannot be a base change theorem without such a condition, see More on Algebra, Section 64. In this section we analyze when one can get a base change result “one complex at a time”.

To make this work, suppose we have a commutative diagram

\[
\begin{array}{ccc}
X' & \to & X \\
\downarrow f' & & \downarrow f \\
S' & \to & S \\
\end{array}
\]

of schemes (usually we will assume it is cartesian). Let \(K \in D_{QCoh}(\mathcal{O}_X) \) and let \(L(g')^* K \to K' \) be a map in \(D_{QCoh}(\mathcal{O}_X) \). For a point \(x' \in X' \) set \(x = g'(x') \in X \), \(s' = f'(x') \in S' \) and \(s = f(x) = g(s') \). Then we can consider the maps

\[
K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{S',s'} \to K_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{X',x'} \to K'_{x'}
\]

where the first arrow is More on Algebra, Equation (61.0.1) and the second comes from \((L(g')^* K)_{x'} = K_x \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{X',x'} \) and the given map \(L(g')^* K \to K' \). For each \(i \in \mathbb{Z} \) we obtain a \(\mathcal{O}_{X,x} \otimes \mathcal{O}_{S,s} \) \(\mathcal{O}_{S',s'} \)-module structure on \(H^i(K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{S',s'}) \). Putting everything together we obtain canonical maps

\[
H^i(K_x \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{S',s'}) \otimes (\mathcal{O}_{X,x} \otimes \mathcal{O}_{S,s} \otimes \mathcal{O}_{S',s'}) \mathcal{O}_{X',x'} \to H^i(K'_{x'})
\]

of \(\mathcal{O}_{X',x'} \)-modules.

Lemma 26.1. Let

\[
\begin{array}{ccc}
X' & \to & X \\
\downarrow f' & & \downarrow f \\
S' & \to & S \\
\end{array}
\]
be a cartesian diagram of schemes. Let $K \in D_{QCoh}(\mathcal{O}_X)$ and let $L(g')^* K \to K'$ be a map in $D_{QCoh}(\mathcal{O}_{X'})$. The following are equivalent

1. for any $x' \in X'$ and $i \in \mathbb{Z}$ the map (26.0.1) is an isomorphism,
2. for $U \subset X$, $V' \subset S'$ affine open both mapping into the affine open $V \subset S$ with $U' = V' \times_V U$ the composition
 \[R\Gamma(U, K) \otimes_{\mathcal{O}_{S(U)}}^{L} \mathcal{O}_{S'}(V') \to R\Gamma(U, K) \otimes_{\mathcal{O}_{X(U)}}^{L} \mathcal{O}_{X'}(U') \to R\Gamma(U', K') \]
 is an isomorphism in $D(\mathcal{O}_{S'}(V'))$, and
3. there is a set I of quadruples $U_i, V'_i, V_i, U'_i, i \in I$ as in (2) with $X' = \bigcup U'_i$.

Proof. The second arrow in (2) comes from the equality
\[R\Gamma(U, K) \otimes_{\mathcal{O}_{X(U)}}^{L} \mathcal{O}_{X'}(U') = R\Gamma(U', L(g')^* K) \]
of Lemma 3.8 and the given arrow $L(g')^* K \to K'$. The first arrow of (2) is More on Algebra, Equation (61.0.1). It is clear that (2) implies (3). Observe that (1) is local on X'. Therefore it suffices to show that if X, S, S', X' are affine, then (1) is equivalent to the condition that
\[R\Gamma(X, K) \otimes_{\mathcal{O}_{S(S)}}^{L} \mathcal{O}_{S'}(S') \to R\Gamma(X, K) \otimes_{\mathcal{O}_{X(X)}}^{L} \mathcal{O}_{X'}(X') \to R\Gamma(X', K') \]
is an isomorphism in $D(\mathcal{O}_{S'}(S'))$. Say $S = \text{Spec}(R)$, $X = \text{Spec}(A)$, $S' = \text{Spec}(R')$, $X' = \text{Spec}(A')$, K corresponds to the complex M^\bullet of A-modules, and K' corresponds to the complex N^\bullet of A'-modules. Note that $A' = A \otimes_R R'$. The condition above is that the composition
\[M^\bullet \otimes_R R' \to M^\bullet \otimes_A A' \to N^\bullet \]
is an isomorphism in $D(R')$. Equivalently, it is that for all $i \in \mathbb{Z}$ the map
\[H^i(M^\bullet \otimes_R R') \to H^i(M^\bullet \otimes_A A') \to H^i(N^\bullet) \]
is an isomorphism. Observe that this is a map of $A \otimes_R R'$-modules, i.e., of A'-modules. On the other hand, (1) is the requirement that for compatible primes $q' \subset A'$, $q \subset A$, $p' \subset R'$, $p \subset R$ the composition
\[H^i(M^\bullet_q \otimes_{R,p} R'_{p'}) \otimes (A_q \otimes_{R,q} A'_{p'}) \to H^i(M^\bullet_q \otimes_{A,q} A'_{p'}) \to H^i(N^\bullet_{q'}) \]
is an isomorphism. Since
\[H^i(M^\bullet_q \otimes_{R,p} R'_{p'}) \otimes (A_q \otimes_{R,q} A'_{p'}) \to H^i(M^\bullet_q \otimes_{A,q} A'_{p'}) \]
is the localization at q', we see that these two conditions are equivalent by Algebra, Lemma 23.1. \hfill \Box

Lemma 26.2. Let
\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{a} & S
\end{array}
\]
be a cartesian diagram of schemes. Let $K \in D_{QCoh}(\mathcal{O}_X)$ and let $L(g')^* K \to K'$ be a map in $D_{QCoh}(\mathcal{O}_{X'})$. If

1. the equivalent conditions of Lemma 26.1 hold, and
2. f is quasi-compact and quasi-separated,

then the composition $Lg^* Rf_* K \to Rf'_* L(g')^* K \to Rf'_* K'$ is an isomorphism.
Let \mathfrak{O} be the base changes of Mayer-Vietoris (Cohomology, Lemma 33.5) we obtain a commutative diagram.

Similarly constructed map $Schemes$, Lemma 4.1 to prove that for any quasi-compact open and quasi-separated scheme. We will use the induction principle of Cohomology of quasi-compact such that the result holds for U, V, and $U \cap V$. Denote $a = f|_U$, $b = f|_V$ and $c = f|_{U \cap V}$. Let $a' : U' \to S'$, $b' : V' \to S'$ and $c' : U' \cap V' \to S'$ be the base changes of a, b, and c. Using the distinguished triangles from relative Mayer-Vietoris (Cohomology, Lemma 33.5) we obtain a commutative diagram

\[
\begin{array}{ccc}
Lg^*Rf_*K & \to & Rf'_*K' \\
| & | & | \\
Lg^*Ra_*K|_U \oplus Lg^*Rb_*K|_V & \to & Ra'_*K'|_{U'} \oplus Rb'_*K'|_{V'} \\
| & | & | \\
Lg^*Rc_*K|_{U \cap V} & \to & Rc'_*K'|_{U' \cap V'} \\
| & | & | \\
Lg^*Rf_*K[1] & \to & Rf'_*K'[1]
\end{array}
\]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived Categories, Lemma 1.3) and the proof of the lemma is finished.

Proof. We could prove this using the same method as in the proof of Lemma 22.5 but instead we will prove it using the induction principle and relative Mayer-Vietoris.

To check the map is an isomorphism we may work locally on S'. Hence we may assume $g : S' \to S$ is a morphism of affine schemes. In particular X is a quasi-compact and quasi-separated scheme. We will use the induction principle of Cohomology of Schemes, Lemma 4.3 to prove that for any quasi-compact open $U \subset X$ the similarly constructed map $Lg^*R(U \to S)_*, K|_U \to R(U' \to S'), K'|_{U'}$ is an isomorphism. Here $U' = (g')^{-1}(U)$.

If $U \subset X$ is an affine open, then we find that the result is true by assumption, see Lemma 26.1 part (2) and the translation into algebra afforded to us by Lemmas 3.5 and 3.8.

The induction step. Suppose that $X = U \cup V$ is an open covering with U, V, $U \cap V$ quasi-compact such that the result holds for U, V, and $U \cap V$. Denote $a = f|_U$, $b = f|_V$ and $c = f|_{U \cap V}$. Let $a' : U' \to S'$, $b' : V' \to S'$ and $c' : U' \cap V' \to S'$ be the base changes of a, b, and c. Using the distinguished triangles from relative Mayer-Vietoris (Cohomology, Lemma 33.5) we obtain a commutative diagram

\[
\begin{array}{ccc}
Lg^*Rf_*K & \to & Rf'_*K' \\
| & | & | \\
Lg^*Ra_*K|_U \oplus Lg^*Rb_*K|_V & \to & Ra'_*K'|_{U'} \oplus Rb'_*K'|_{V'} \\
| & | & | \\
Lg^*Rc_*K|_{U \cap V} & \to & Rc'_*K'|_{U' \cap V'} \\
| & | & | \\
Lg^*Rf_*K[1] & \to & Rf'_*K'[1]
\end{array}
\]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived Categories, Lemma 1.3) and the proof of the lemma is finished.

Lemma 26.3. Let

\[
\begin{array}{ccc}
X' \xrightarrow{g} & X \\
f' \downarrow & \downarrow f \\
S' & \to & S
\end{array}
\]

be a cartesian diagram of schemes. Let $K \in D_{QCoh}(\mathfrak{O}_X)$ and let $L(g')^*K \to K'$ be a map in $D_{QCoh}(\mathfrak{O}_{X'})$. If the equivalent conditions of Lemma 26.1 hold, then

1. for $E \in D_{QCoh}(\mathfrak{O}_X)$ the equivalent conditions of Lemma 26.1 hold for $L(g')^*(E \otimes^L K) \to L(g')^*E \otimes^L K'$,
2. if E in $D(\mathfrak{O}_X)$ is perfect the equivalent conditions of Lemma 26.1 hold for $L(g')^*R\mathbb{H}om(E, K) \to R\mathbb{H}om(L(g')^*E, K')$, and
3. if K is bounded below and E in $D(\mathfrak{O}_X)$ pseudo-coherent the equivalent conditions of Lemma 26.1 hold for $L(g')^*R\mathbb{H}om(E, K) \to R\mathbb{H}om(L(g')^*E, K')$.

Proof. The statement makes sense as the complexes involved have quasi-coherent cohomology sheaves by Lemmas 3.8, 3.9 and 10.8 and Cohomology, Lemmas 45.3.
Having said this, we can check the maps (26.0.1) are isomorphisms in case (1) by computing the source and target of (26.0.1) using the transitive property of tensor product, see More on Algebra, Lemma 59.15. The map in (2) and (3) is the composition
\[L(g')^* R\mathcal{H}om(E, K) \to R\mathcal{H}om(L(g')^* E, L(g')^* K) \to R\mathcal{H}om(L(g')^* E, K') \]
where the first arrow is Cohomology, Remark 40.13 and the second arrow comes from the given map \(L(g')^* K \to K' \). To prove the maps (26.0.1) are isomorphisms one represents \(E \) by a bounded complex of finite projective \(\mathcal{O}_X \)-modules in case (2) or by a bounded above complex of finite free modules in case (3) and computes the source and target of the arrow. Some details omitted.

Lemma 26.4. Let \(f : X \to S \) be a quasi-compact and quasi-separated morphism of schemes. Let \(E \in D_{QCoh}(\mathcal{O}_X) \). Let \(G^\bullet \) be a bounded above complex of quasi-coherent \(\mathcal{O}_X \)-modules flat over \(S \). Then formation of

\[Rf_*(E \otimes_{\mathcal{O}_X} G^\bullet) \]

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let \(g : S' \to S \) be a morphism of schemes and consider the base change diagram

\[
\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow f' & \swarrow & \downarrow f \\
S' & \longrightarrow & S
\end{array}
\]

in other words \(X' = S' \times_S X \). The lemma asserts that

\[Lg^* Rf_*(E \otimes_{\mathcal{O}_X} G^\bullet) \longrightarrow Rf'_*(L(g')^* E \otimes_{\mathcal{O}_{X'}} (g')^* G^\bullet) \]

is an isomorphism. Observe that on the right hand side we do not use the derived pullback on \(G^\bullet \). To prove this, we apply Lemmas 26.2 and 26.3 to see that it suffices to prove the canonical map

\[L(g')^* G^\bullet \to (g')^* G^\bullet \]

satisfies the equivalent conditions of Lemma 26.1. This follows by checking the condition on stalks, where it immediately follows from the fact that \(G^\bullet \otimes_{\mathcal{O}_{S', s'}} \mathcal{O}_{S', s'} \) computes the derived tensor product by our assumptions on the complex \(G^\bullet \).

Lemma 26.5. Let \(f : X \to S \) be a quasi-compact and quasi-separated morphism of schemes. Let \(E \) be an object of \(D(\mathcal{O}_X) \). Let \(G^\bullet \) be a complex of quasi-coherent \(\mathcal{O}_X \)-modules. If

1. \(E \) is perfect, \(G^\bullet \) is a bounded above, and \(G^n \) is flat over \(S \), or
2. \(E \) is pseudo-coherent, \(G^\bullet \) is bounded, and \(G^n \) is flat over \(S \),

then formation of

\[Rf_* R\mathcal{H}om(E, G^\bullet) \]

commutes with arbitrary base change (see proof for precise statement).
Proof. The statement means the following. Let $g : S' \to S$ be a morphism of schemes and consider the base change diagram

$$
\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow g' & & \downarrow g \\
S' & \longrightarrow & S
\end{array}
$$

in other words $X' = S' \times_S X$. The lemma asserts that

$$Lg^* Rf_* R\mathcal{H}om(E, \mathcal{G}^\bullet) \longrightarrow R(f')_* R\mathcal{H}om(L(g')^* E, (g')^* \mathcal{G}^\bullet)$$

is an isomorphism. Observe that on the right hand side we do not use the derived pullback on \mathcal{G}^\bullet. To prove this, we apply Lemmas 26.2 and 26.3 to see that it suffices to prove the canonical map

$$L(g')^* \mathcal{G}^\bullet \to (g')^* \mathcal{G}^\bullet$$

satisfies the equivalent conditions of Lemma 26.1. This was shown in the proof of Lemma 26.4. □

27. Producing perfect complexes

0A1E The following lemma is our main technical tool for producing perfect complexes. Later versions of this result will reduce to this by Noetherian approximation, see Section 30.

Lemma 27.1. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E \in D(\mathcal{O}_X)$ such that

1. $E \in D^{\text{b}}(\text{Coh}(\mathcal{O}_X))$,
2. the support of $H^i(E)$ is proper over S for all i, and
3. E has finite tor dimension as an object of $D(f^{-1}\mathcal{O}_S)$.

Then $Rf_* E$ is a perfect object of $D(\mathcal{O}_S)$.

Proof. By Lemma 11.3 we see that $Rf_* E$ is an object of $D^{\text{b}}_{\text{Coh}}(\mathcal{O}_S)$. Hence $Rf_* E$ is pseudo-coherent (Lemma 10.3). Hence it suffices to show that $Rf_* E$ has finite tor dimension, see Cohomology, Lemma 47.5. By Lemma 10.6 it suffices to check that $Rf_* (E \otimes_{\mathcal{O}_S} \mathcal{F})$ has universally bounded cohomology for all quasi-coherent sheaves \mathcal{F} on S. Bounded from above is clear as $Rf_* (E)$ is bounded from above. Let $T \subset X$ be the union of the supports of $H^i(E)$ for all i. Then T is proper over S by assumptions (1) and (2), see Cohomology of Schemes, Lemma 26.6. In particular there exists a quasi-compact open $X' \subset X$ containing T. Setting $f' = f|_{X'}$, we have $Rf_* (E) = Rf'_* (E|_{X'})$ because E restricts to zero on $X \setminus T$. Thus we may replace X by X' and assume f is quasi-compact. Moreover, f is quasi-separated by Morphisms, Lemma 15.7. Now

$$Rf_* (E) \otimes_{\mathcal{O}_S} \mathcal{F} = Rf_* (E \otimes_{\mathcal{O}_X} Lf^* \mathcal{F}) = Rf_* \left(E \otimes_{f^{-1}\mathcal{O}_S} f^{-1} \mathcal{F} \right)$$

by Lemma 22.1 and Cohomology, Lemma 27.4. By assumption (3) the complex $E \otimes_{f^{-1}\mathcal{O}_S} f^{-1} \mathcal{F}$ has cohomology sheaves in a given finite range, say $[a, b]$. Then Rf_* of it has cohomology in the range $[a, \infty)$ and we win. □

0DJQ Lemma 27.2. Let S be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E \in D(\mathcal{O}_X)$ be perfect. Let \mathcal{G}^\bullet be a
bounded complex of coherent \(\mathcal{O}_X \)-modules flat over \(S \) with support proper over \(S \). Then \(K = Rf_* (E \otimes_{\mathcal{O}_X} G^\bullet) \) is a perfect object of \(D(\mathcal{O}_S) \).

Proof. The object \(K \) is perfect by Lemma 27.1. We check the lemma applies: Locally \(E \) is isomorphic to a finite complex of finite free \(\mathcal{O}_X \)-modules. Hence locally \(E \otimes_{\mathcal{O}_X} G^\bullet \) is isomorphic to a finite complex whose terms are of the form

\[
\bigoplus_{i=a,\ldots,b} (G^i)^{\oplus r_i}
\]

for some integers \(a, b, r_a, \ldots, r_b \). This immediately implies the cohomology sheaves \(H^i(E \otimes_{\mathcal{O}_X} G^\bullet) \) are coherent. The hypothesis on the tor dimension also follows as \(G^i \) is flat over \(f^{-1}\mathcal{O}_S \). \(\square \)

0DJR **Lemma 27.3.** Let \(S \) be a Noetherian scheme. Let \(f : X \to S \) be a morphism of schemes which is locally of finite type. Let \(E \in D(\mathcal{O}_X) \) be perfect. Let \(G^\bullet \) be a bounded complex of coherent \(\mathcal{O}_X \)-modules flat over \(S \) with support proper over \(S \). Then \(K = Rf_* R\mathcal{H}om(E, G^\bullet) \) is a perfect object of \(D(\mathcal{O}_S) \).

Proof. Since \(E \) is a perfect complex there exists a dual perfect complex \(E^\vee \), see Cohomology, Lemma 48.5. Observe that \(R\mathcal{H}om(E, G^\bullet) = E^\vee \otimes_{\mathcal{O}_X} G^\bullet \). Thus the perfectness of \(K \) follows from Lemma 27.2. \(\square \)

We will generalize the following lemma to flat and proper morphisms over general bases in Lemma 30.4 and to perfect proper morphisms in More on Morphisms, Lemma 59.13.

0B6F **Lemma 27.4.** Let \(S \) be a Noetherian scheme. Let \(f : X \to S \) be a flat proper morphism of schemes. Let \(E \in D(\mathcal{O}_X) \) be perfect. Then \(Rf_* E \) is a perfect object of \(D(\mathcal{O}_S) \).

Proof. We claim that Lemma 27.1 applies. Conditions (1) and (2) are immediate. Condition (3) is local on \(X \). Thus we may assume \(X \) and \(S \) affine and \(E \) represented by a strictly perfect complex of \(\mathcal{O}_X \)-modules. Since \(\mathcal{O}_X \) is flat as a sheaf of \(f^{-1}\mathcal{O}_S \)-modules we find that condition (3) is satisfied. \(\square \)

28. A projection formula for Ext

08IC Lemma 28.3 (or similar results in the literature) is sometimes used to verify one of Artin’s criteria for Quot functors, Hilbert schemes, and other moduli problems. Suppose that \(f : X \to S \) is a proper, flat, finitely presented morphism of schemes and \(E \in D(\mathcal{O}_X) \) is perfect. Here the lemma says

\[
\text{Ext}_X^i(E, f^* F) = \text{Ext}_S^i((Rf_*) (E^\vee)^\vee, F)
\]

for \(F \) quasi-coherent on \(S \). Writing it this way makes it look like a projection formula for Ext and indeed the result follows rather easily from Lemma 22.1.

0A1F **Lemma 28.1.** Assumptions and notation as in Lemma 27.2. Then there are functorial isomorphisms

\[
H^i(S, K \otimes_{\mathcal{O}_S} F) \to H^i(X, E \otimes_{\mathcal{O}_X} (G^\bullet \otimes_{\mathcal{O}_X} f^* F))
\]

for \(F \) quasi-coherent on \(S \) compatible with boundary maps (see proof).
Proof. We have

\[G^* \otimes_{O_X} L_f^* F = G^* \otimes_{f^{-1} O_S} f^{-1} F = G^* \otimes_{f^{-1} O_S} f^{-1} F = G^* \otimes_{O_X} f^* F \]

the first equality by Cohomology, Lemma 27.4, the second as \(G^n \) is a flat \(f^{-1} O_S \)-module, and the third by definition of pullbacks. Hence we obtain

\[H^i(X, E \otimes_{O_X} (G^* \otimes_{O_X} f^* F)) = H^i(X, E \otimes_{O_X} G^* \otimes_{O_X} L_f^* F) \]
\[= H^i(S, Rf_*(E \otimes_{O_X} G^* \otimes_{O_X} L_f^* F)) \]
\[= H^i(S, Rf_*(E \otimes_{O_X} G^* \otimes_{O_X} F)) \]
\[= H^i(S, K \otimes_{O_S} F) \]

The first equality by the above, the second by Leray (Cohomology, Lemma 13.1), and the third equality by Lemma 21.1. The statement on boundary maps means the following: Given a short exact sequence \(0 \to F_1 \to F_2 \to F_3 \to 0 \) of quasi-coherent \(O_S \)-modules, the isomorphisms fit into commutative diagrams

\[\begin{array}{ccc}
H^i(S, K \otimes_{O_S} F_3) & \longrightarrow & H^i(X, E \otimes_{O_X} (G^* \otimes_{O_X} f^* F)) \\
\delta & & \delta \\
H^{i+1}(S, K \otimes_{O_S} F_1) & \longrightarrow & H^{i+1}(X, E \otimes_{O_X} (G^* \otimes_{O_X} f^* F))
\end{array} \]

where the boundary maps come from the distinguished triangle

\[K \otimes_{O_S} F_1 \to K \otimes_{O_S} F_2 \to K \otimes_{O_S} F_3 \to K \otimes_{O_S} F_1[1] \]

and the distinguished triangle in \(D(O_X) \) associated to the short exact sequence

\[0 \to G^* \otimes_{O_X} f^* F_1 \to G^* \otimes_{O_X} f^* F_2 \to G^* \otimes_{O_X} f^* F_3 \to 0 \]

of complexes of \(O_X \)-modules. This sequence is exact because \(G^n \) is flat over \(S \). We omit the verification of the commutativity of the displayed diagram.

\[\square \]

Lemma 28.2. Assumptions and notation as in Lemma 27.3. Then there are functorial isomorphisms

\[H^i(S, K \otimes_{O_S} F) \to \text{Ext}_{O_X}^i(E, G^* \otimes_{O_X} f^* F) \]

for \(F \) quasi-coherent on \(S \) compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 27.3 let \(E^\vee \) be the dual perfect complex and recall that \(K = Rf_*(E^\vee \otimes_{O_X} G^*) \). Since we also have

\[\text{Ext}_{O_X}^i(E, G^* \otimes_{O_X} f^* F) = H^i(X, E^\vee \otimes_{O_X} (G^* \otimes_{O_X} f^* F)) \]

by construction of \(E^\vee \), the existence of the isomorphisms follows from Lemma 28.1 applied to \(E^\vee \) and \(G^* \). The statement on boundary maps means the following: Given a short exact sequence \(0 \to F_1 \to F_2 \to F_3 \to 0 \) then the isomorphisms fit into commutative diagrams

\[\begin{array}{ccc}
H^i(S, K \otimes_{O_S} F_3) & \longrightarrow & \text{Ext}_{O_X}^i(E, G^* \otimes_{O_X} f^* F_3) \\
\delta & & \delta \\
H^{i+1}(S, K \otimes_{O_S} F_1) & \longrightarrow & \text{Ext}_{O_X}^{i+1}(E, G^* \otimes_{O_X} f^* F_1)
\end{array} \]
where the boundary maps come from the distinguished triangle
\[K \otimes^{L}_{S} F_1 \to K \otimes^{L}_{S} F_2 \to K \otimes^{L}_{S} F_3 \to K \otimes^{L}_{S} F_1[1] \]
and the distinguished triangle in \(D(O_X) \) associated to the short exact sequence
\[0 \to G^* \otimes_{O_X} f^* F_1 \to G^* \otimes_{O_X} f^* F_2 \to G^* \otimes_{O_X} f^* F_3 \to 0 \]
of complexes. This sequence is exact because \(G \) is flat over \(S \). We omit the verification of the commutativity of the displayed diagram. \(\square \)

Lemma 28.3. Let \(f : X \to S \) be a morphism of schemes, \(E \in D(O_X) \) and \(G^* \) a complex of \(O_X \)-modules. Assume

1. \(S \) is Noetherian,
2. \(f \) is locally of finite type,
3. \(E \in D_{coh}(O_X) \),
4. \(G^* \) is a bounded complex of coherent \(O_X \)-modules flat over \(S \) with support proper over \(S \).

Then the following two statements are true

(A) for every \(m \in \mathbb{Z} \) there exists a perfect object \(K \) of \(D(O_S) \) and functorial maps
\[\alpha^i_F : \text{Ext}^i_{O_X}(E, G^* \otimes_{O_X} f^* F) \to H^i(S, K \otimes^{L}_{O_S} F) \]
for \(F \) quasi-coherent on \(S \) compatible with boundary maps (see proof) such that \(\alpha^i_F \) is an isomorphism for \(i \leq m \)

(B) there exists a pseudo-coherent \(L \in D(O_S) \) and functorial isomorphisms
\[\text{Ext}^i_{O_S}(L, F) \to \text{Ext}^i_{O_X}(E, G^* \otimes_{O_X} f^* F) \]
for \(F \) quasi-coherent on \(S \) compatible with boundary maps.

Proof. Proof of (A). Suppose \(G^i \) is nonzero only for \(i \in [a, b] \). We may replace \(X \) by a quasi-compact open neighbourhood of the union of the supports of \(G^i \). Hence we may assume \(X \) is Noetherian. In this case \(X \) and \(f \) are quasi-compact and quasi-separated. Choose an approximation \(P \to E \) by a perfect complex \(P \) of \((X, E, -m - 1 + a) \) (possible by Theorem 14.6). Then the induced map
\[\text{Ext}^i_{O_X}(E, G^* \otimes_{O_X} f^* F) \to \text{Ext}^i_{O_X}(P, G^* \otimes_{O_X} f^* F) \]
is an isomorphism for \(i \leq m \). Namely, the kernel, resp. cokernel of this map is a quotient, resp. submodule of
\[\text{Ext}^i_{O_X}(C, G^* \otimes_{O_X} f^* F) \]
where \(C \) is the cone of \(P \to E \). Since \(C \) has vanishing cohomology sheaves in degrees \(\geq -m - 1 + a \) these Ext-groups are zero for \(i \leq m + 1 \) by Derived Categories, Lemma 27.3. This reduces us to the case that \(E \) is a perfect complex which is Lemma 28.2.

The statement on boundaries is explained in the proof of Lemma 28.2.

Proof of (B). As in the proof of (A) we may assume \(X \) is Noetherian. Observe that \(E \) is pseudo-coherent by Lemma 10.3. By Lemma 19.1 we can write \(E = \text{hocolim} E_n \) with \(E_n \) perfect and \(E_n \to E \) inducing an isomorphism on truncations \(r_{\geq -n} \). Let \(E_{n} \) be the dual perfect complex (Cohomology, Lemma 48.5). We obtain an inverse system \(\ldots \to E_{2} \to E_{1} \to E_{0} \) of perfect objects. This in turn gives rise to an inverse system
\[\ldots \to K_3 \to K_2 \to K_1 \]
with \(K_n = \text{Rf}_*(E_n^{L}_{O_X} G^*) \)
Let S be a scheme. In this section we collect some results about the derived category of a scheme which are isomorphisms for $i \leq n + a$. Let $L_n = K_n^\vee$ be the dual perfect complex. Then we see that $L_1 \to L_2 \to L_3 \to \ldots$ is a system of perfect objects in $D(O_S)$ such that for any quasi-coherent F on S the maps

$$\text{Ext}^i_{O_S}(L, F) \to \text{Ext}^i_{O_S}(L_n, F)$$

are isomorphisms for $i \leq n + a - 1$. This implies that $L_n \to L_{n+1}$ induces an isomorphism on truncations $t_{\geq -n-a+2}$ (hint: take cone of $L_n \to L_{n+1}$ and look at its last nonvanishing cohomology sheaf). Thus $L = \text{hocolim} L_n$ is pseudo-coherent, see Lemma 19.1. The mapping property of homotopy colimits gives that $\text{Ext}^i_{O_S}(L, F) = \text{Ext}^i_{O_S}(L_n, F)$ for $i \leq n + a - 3$ which finishes the proof. □

Remark 28.4. The pseudo-coherent complex L of part (B) of Lemma 28.3 is canonically associated to the situation. For example, formation of L as in (B) is compatible with base change. In other words, given a cartesian diagram

$$
\begin{array}{ccc}
X' & \longrightarrow & X \\
g' \downarrow & & \downarrow f \\
S' & \longrightarrow & S
\end{array}
$$

of schemes we have canonical functorial isomorphisms

$$\text{Ext}^i_{O_{X'}}(L(g^* L), \mathcal{F}') \to \text{Ext}^i_{O_X}(L(g')^* E, (g')^* \mathcal{G}^* \otimes O_{X'}, (f')^* \mathcal{F}')$$

for \mathcal{F}' quasi-coherent on S'. Observe that we do not use derived pullback on \mathcal{G}^* on the right hand side. If we ever need this, we will formulate a precise result here and give a detailed proof.

29. Limits and derived categories

Situation 29.1. Let $S = \text{lim}_{i \in I} S_i$ be a limit of a directed system of schemes with affine transition morphisms $f_{ij} : S_i \to S_j$. We assume that S_i is quasi-compact and quasi-separated for all $i \in I$. We denote $f_i : S \to S_i$ the projection. We also fix an element $0 \in I$.

Lemma 29.2. In Situation 29.1. Let E_0 and K_0 be objects of $D(O_{S_0})$. Set $E_i = Lf_{i0}^* E_0$ and $K_i = Lf_{i0}^* K_0$ for $i \geq 0$ and set $E = LF_0^* E_0$ and $K = LF_0^* K_0$. Then the map

$$\text{colim}_{i \geq 0} \text{Hom}_{D(O_{S_i})}(E_i, K_i) \to \text{Hom}_{D(O_S)}(E, K)$$

is an isomorphism if either
(1) E_0 is perfect and $K_0 \in D_{Qcoh}(\mathcal{O}_{S_0})$, or
(2) E_0 is pseudo-coherent and $K_0 \in D_{Qcoh}(\mathcal{O}_{S_0})$ has finite tor dimension.

Proof. For every open $U_0 \subset S_0$ consider the condition P that the canonical map

$$\text{colim}_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{U_i})}(E_{i+1}, K_{i+1}) \longrightarrow \text{Hom}_{D(\mathcal{O}_{U_i})}(E_i, K_i)$$

is an isomorphism, where $U = f_0^{-1}(U_0)$ and $U_i = f_0^{-1}(U_0)$. We will prove P holds for all quasi-compact opens U_0 by the induction principle of Cohomology of Schemes, Lemma 4.1. Condition (2) of this lemma follows immediately from Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 33.3. Thus it suffices to prove the lemma when S_0 is affine.

Assume S_0 is affine. Say $S_0 = \text{Spec}(A_0)$, $S_i = \text{Spec}(A_i)$, and $S = \text{Spec}(A)$. We will use Lemma 3.5 without further mention.

In case (1) the object E_0 corresponds to a finite complex of finite projective A_0-modules, see Lemma 10.7. We may represent the object K_0 by a K-flat complex K_0 of A_0-modules. In this situation we are trying to prove

$$\text{colim}_{i \geq 0} \text{Hom}_{D(A_i)}(E_{i+1} \otimes_{A_i} A_i, K_{i+1} \otimes_{A_i} A_i) \longrightarrow \text{Hom}_{D(A_i)}(E_{i+1} \otimes_{A_i} A_i, K_{i+1} \otimes_{A_i} A_i)$$

Because E_0 is a bounded above complex of projective modules we can rewrite this as

$$\text{colim}_{i \geq 0} \text{Hom}_{K(A_0)}(E_0, K_0) \longrightarrow \text{Hom}_{K(A_0)}(E_0, K_0)$$

Since there are only a finite number of nonzero modules E_0 and since these are all finitely presented modules, this map is an isomorphism.

In case (2) the object E_0 corresponds to a bounded above complex E_0 of finite free A_0-modules, see Lemma 10.2. We may represent K_0 by a finite complex K_0 of flat A_0-modules, see Lemma 10.4 and More on Algebra, Lemma 66.3. In particular K_0 is K-flat and we can argue as before to arrive at the map

$$\text{colim}_{i \geq 0} \text{Hom}_{K(A_0)}(E_{i+1} \otimes_{A_i} A_i) \longrightarrow \text{Hom}_{K(A_0)}(E_{i+1} \otimes_{A_i} A_i)$$

It is clear that this map is an isomorphism (only a finite number of terms are involved since K_0 is bounded).

Lemma 29.3. In Situation 29.1 the category of perfect objects of $D(\mathcal{O}_S)$ is the colimit of the categories of perfect objects of $D(\mathcal{O}_{S_i})$.

Proof. For every open $U_0 \subset S_0$ consider the condition P that the functor

$$\text{colim}_{i \geq 0} D_{perf}(\mathcal{O}_{U_i}) \longrightarrow D_{perf}(\mathcal{O}_{U})$$

is an equivalence where perf indicates the full subcategory of perfect objects and where $U = f_0^{-1}(U_0)$ and $U_i = f_0^{-1}(U_0)$. We will prove P holds for all quasi-compact opens U_0 by the induction principle of Cohomology of Schemes, Lemma 4.1. First, we observe that we already know the functor is fully faithful by Lemma 29.2. Thus it suffices to prove essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have $S_0 = U_0 \cup V_0$ and that P holds for U_0, V_0, and $U_0 \cap V_0$. Let E be a perfect object of $D(\mathcal{O}_S)$. We can find $i \geq 0$ and $E_{U,i}$ perfect on U_i and $E_{V,i}$ perfect on V_i whose pullback to U and V are isomorphic to $E_{|U}$ and $E_{|V}$. Denote

$$a : E_{U,i} \rightarrow (Rf_{i,*}E)_{|U_i} \quad \text{and} \quad b : E_{V,i} \rightarrow (Rf_{i,*}E)_{|V_i}$$
the maps adjoint to the isomorphisms $Lf_{i*}E_{U,i} \to E|_U$ and $Lf_{i*}E_{V,i} \to E|_V$. By fully faithfulness, after increasing i, we can find an isomorphism $c: E_{U,i}|_{U \cap V} \to E_{V,i}|_{U \cap V}$ which pulls back to the identifications

$$Lf_{i*}E_{U,i}|_{U \cap V} \to E|_{U \cap V} \to Lf_{i*}E_{V,i}|_{U \cap V}.$$

Apply Cohomology, Lemma 43.1 to get an object E_i on S_i and a map $d : E_i \to Rf_{i*}E$ which restricts to the maps a and b over U_i and V_i. Then it is clear that E_i is perfect and that d is adjoint to an isomorphism $Lf_{i*}E_i \to E$.

Finally, we check condition (1) of the induction principle, in other words, we check the lemma holds when S_0 is affine. Say $S_0 = \text{Spec}(A_0)$, $S_i = \text{Spec}(A_i)$, and $S = \text{Spec}(A)$. Using Lemmas 3.5 and 10.7 we see that we have to show that

$$D_{\text{perf}}(A) = \text{colim} D_{\text{perf}}(A_i).$$

This is clear from the fact that perfect complexes over rings are given by finite complexes of finite projective (hence finitely presented) modules. See More on Algebra, Lemma 74.17 for details. \hfill \Box

30. Cohomology and base change, VI

Lemma 30.1. Let $f : X \to S$ be a morphism of finite presentation. Let $E \in D(\mathcal{O}_X)$ be a perfect object. Let \mathcal{G}^\bullet be a bounded complex of finitely presented \mathcal{O}_X-modules, flat over S, with support proper over S. Then

$$K = Rf_*(E \otimes_{\mathcal{O}_X} \mathcal{G}^\bullet)$$

is a perfect object of $D(\mathcal{O}_S)$ and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 26.4. Thus it suffices to show that K is a perfect object. If S is Noetherian, then this follows from Lemma 27.2. We will reduce to this case by Noetherian approximation. We encourage the reader to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say $S = \text{Spec}(R)$. We write $R = \text{colim} R_i$ as a filtered colimit of Noetherian rings R_i. By Limits, Lemma 10.1 there exists an i and a scheme X_i of finite presentation over R_i whose base change to R is X. By Limits, Lemma 10.2 we may assume after increasing i, that there exists a bounded complex of finitely presented \mathcal{O}_{X_i}-modules \mathcal{G}_i^\bullet whose pullback to X is \mathcal{G}^\bullet. After increasing i we may assume \mathcal{G}_i^n is flat over R_i, see Limits, Lemma 10.4. After increasing i we may assume the support of \mathcal{G}_i^n is proper over R_i, see Limits, Lemma 13.5 and Cohomology of Schemes, Lemma 26.7. Finally, by Lemma 29.3 we may, after increasing i, assume there exists a perfect object E_i of $D(\mathcal{O}_{X_i})$ whose pullback to X is E. Applying Lemma 27.2 to $X_i \to \text{Spec}(R_i)$, E_i, \mathcal{G}_i^\bullet and using the base change property already shown we obtain the result. \hfill \Box

Remark 30.2. Let R be a ring. Let X be a scheme of finite presentation over R. Let \mathcal{G} be a finitely presented \mathcal{O}_X-module flat over R with support proper over R. By Lemma 30.1 there exists a finite complex of finite projective R-modules M^\bullet such that we have

$$R\Gamma(X_R, \mathcal{G}_R) = M^\bullet \otimes_R R'$$

functorially in the R-algebra R'.

Lemma 30.3. Let $f : X \to S$ be a morphism of finite presentation. Let $E \in D(O_X)$ be a pseudo-coherent object. Let G^\bullet be a bounded above complex of finitely presented O_X-modules, flat over S, with support proper over S. Then

$$K = Rf_*(E \otimes^{L}_{O_X} G^\bullet)$$

is a pseudo-coherent object of $D(O_S)$ and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 26.4. Thus it suffices to show that K is a pseudo-coherent object. This will follow from Lemma 30.1 by approximation by perfect complexes. We encourage the reader to skip the rest of the proof.

The question is local on S, hence we may assume S is affine. Then X is quasi-compact and quasi-separated. Moreover, there exists an integer N such that total direct image $Rf_* : D_{QCoh}(O_X) \to D_{QCoh}(O_S)$ has cohomological dimension N as explained in Lemma 4.1. Choose an integer b such that $G^i = 0$ for $i > b$. It suffices to show that K is m-pseudo-coherent for every m. Choose an approximation $P \to E$ by a perfect complex P of $(X, E, m - N - 1 - b)$. This is possible by Theorem 14.6. Choose a distinguished triangle

$$P \to E \to C \to P[1]$$

in $D_{QCoh}(O_X)$. The cohomology sheaves of C are zero in degrees $\geq m - N - 1 - b$. Hence the cohomology sheaves of $C \otimes^{L}_E G^\bullet$ are zero in degrees $\geq m - N - 1$. Thus the cohomology sheaves of $Rf_*(C \otimes^{L}_E G^\bullet)$ are zero in degrees $\geq m - 1$. Hence

$$Rf_*(P \otimes^{L}_E G^\bullet) \to Rf_*(E \otimes^{L}_E G^\bullet)$$

is an isomorphism on cohomology sheaves in degrees $\geq m$. Next, suppose that $H^i(P) = 0$ for $i > a$. Then $P \otimes^{L}_E \sigma_{\geq m-N-1-a}G^\bullet \to P \otimes^{L}_E G^\bullet$ is an isomorphism on cohomology sheaves in degrees $\geq m - N - 1$. Thus again we find that

$$Rf_*(P \otimes^{L}_E \sigma_{\geq m-N-1-a}G^\bullet) \to Rf_*(P \otimes^{L}_E G^\bullet)$$

is an isomorphism on cohomology sheaves in degrees $\geq m$. By Lemma 30.1 the source is a perfect complex. We conclude that K is m-pseudo-coherent as desired.

Lemma 30.4. Let S be a scheme. Let $f : X \to S$ be a proper morphism of finite presentation.

1. Let $E \in D(O_X)$ be perfect and f flat. Then Rf_*E is a perfect object of $D(O_S)$ and its formation commutes with arbitrary base change.

2. Let G be an O_X-module of finite presentation, flat over S. Then Rf_*G is a perfect object of $D(O_S)$ and its formation commutes with arbitrary base change.

Proof. Special cases of Lemma 30.1 applied with (1) G^\bullet equal to O_X in degree 0 and (2) $E = O_X$ and G^\bullet consisting of G sitting in degree 0.

Lemma 30.5. Let S be a scheme. Let $f : X \to S$ be a flat proper morphism of finite presentation. Let $E \in D(O_X)$ be pseudo-coherent. Then Rf_*E is a pseudo-coherent object of $D(O_S)$ and its formation commutes with arbitrary base change.

More generally, if $f : X \to S$ is proper and E on X is pseudo-coherent relative to S (More on Morphisms, Definition 57.2), then Rf_*E is pseudo-coherent (but formation does not commute with base change in this generality). See [Kie72].
Proof. Special case of Lemma 30.3 applied with G^\bullet equal to \mathcal{O}_X in degree 0. □

Lemma 30.6. Let R be a ring. Let X be a scheme and let $f : X \to \text{Spec}(R)$ be proper, flat, and of finite presentation. Let (M_n) be an inverse system of R-modules with surjective transition maps. Then the canonical map

$$\mathcal{O}_X \otimes_R (\lim M_n) \longrightarrow \lim \mathcal{O}_X \otimes_R M_n$$

induces an isomorphism from the source to $D\mathcal{Q}_X$ applied to the target.

Proof. The statement means that for any object E of $D\mathcal{Q}_\text{Coh}(\mathcal{O}_X)$ the induced map

$$\text{Hom}(E, \mathcal{O}_X \otimes_R (\lim M_n)) \longrightarrow \text{Hom}(E, \lim \mathcal{O}_X \otimes_R M_n)$$

is an isomorphism. Since $D\mathcal{Q}_\text{Coh}(\mathcal{O}_X)$ has a perfect generator (Theorem 15.3) it suffices to check this for perfect E. By Lemma 32.1 we have $\lim \mathcal{O}_X \otimes_R M_n = R\lim \mathcal{O}_X \otimes_R M_n$. The exact functor $R\text{Hom}_X(E, -) : D\mathcal{Q}_\text{Coh}(\mathcal{O}_X) \to D(R)$ of Cohomology, Section 42 commutes with products and hence with derived limits, whence

$$R\text{Hom}_X(E, \lim \mathcal{O}_X \otimes_R M_n) = R\lim R\text{Hom}_X(E, \mathcal{O}_X \otimes_R M_n)$$

Let E^\vee be the dual perfect complex, see Cohomology, Lemma 48.5. We have

$$R\text{Hom}_X(E, \mathcal{O}_X \otimes_R M_n) = R\Gamma(X, E^\vee \otimes^L_{\mathcal{O}_X} Lf^* M_n) = R\Gamma(X, E^\vee) \otimes^L_R M_n$$

by Lemma 22.1. From Lemma 30.4 we see $R\Gamma(X, E^\vee)$ is a perfect complex of R-modules. In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 102.3 we obtain

$$R\lim R\Gamma(X, E^\vee) \otimes^L_R M_n = R\Gamma(X, E^\vee) \otimes^L_R \lim M_n$$

as desired. □

Lemma 30.7. Let $f : X \to S$ be a morphism of finite presentation. Let $E \in D(\mathcal{O}_X)$ be a perfect object. Let G^\bullet be a bounded complex of finitely presented \mathcal{O}_X-modules, flat over S, with support proper over S. Then

$$K = Rf_* R\text{Hom}(E, G^\bullet)$$

is a perfect object of $D(\mathcal{O}_S)$ and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 26.5. Thus it suffices to show that K is a perfect object. If S is Noetherian, then this follows from Lemma 27.3. We will reduce to this case by Noetherian approximation. We encourage the reader to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say $S = \text{Spec}(R)$. We write $R = \text{colim} R_i$ as a filtered colimit of Noetherian rings R_i. By Limits, Lemma 10.1 there exists an i and a scheme X_i of finite presentation over R_i whose base change to R is X. By Limits, Lemma 10.2 we may assume after increasing i, that there exists a bounded complex of finitely presented \mathcal{O}_{X_i}-modules G^\bullet_i whose pullback to X is G^\bullet. After increasing i we may assume G^\bullet_i is flat over R_i, see Limits, Lemma 10.4. After increasing i we may assume the support of G^\bullet_i is proper over R_i, see Limits, Lemma 13.5 and Cohomology of Schemes, Lemma 26.7. Finally, by Lemma 29.3 we may, after increasing i, assume there exists a perfect object E_i of $D(\mathcal{O}_{X_i})$ whose pullback to X is E. Applying Lemma 27.3 to $X_i \to \text{Spec}(R_i)$, E_i, G^\bullet_i and using the base change property already shown we obtain the result. □
31. Perfect complexes

We first talk about jumping loci for betti numbers of perfect complexes. Given a complex E on a scheme X and a point x of X we often write $E \otimes_{\mathcal{O}_X}^L \kappa(x)$ instead of the more correct Li_x^*E, where $i_x : x \to X$ is the canonical morphism.

Lemma 31.1. Let X be a scheme. Let $E \in D(\mathcal{O}_X)$ be pseudo-coherent (for example perfect). For any $i \in \mathbb{Z}$ consider the function

$$\beta_i : X \to \{0, 1, 2, \ldots\}, \quad x \mapsto \dim_{\kappa(x)} H^i(E \otimes_{\mathcal{O}_X}^L \kappa(x))$$

Then we have

1. formation of β_i commutes with arbitrary base change,
2. the functions β_i are upper semi-continuous, and
3. the level sets of β_i are locally constructible in X.

Proof. Consider a morphism of schemes $f : Y \to X$ and a point $y \in Y$. Let x be the image of y and consider the commutative diagram

$$
\begin{array}{ccc}
\mathcal{O}_X & \xrightarrow{g} & \mathcal{O}_Y \\
\downarrow f & & \downarrow f \\
X & \xrightarrow{i} & Y
\end{array}
$$

Then we see that $Lg^* \circ Li_x^* = Lj^* \circ Lf^*$. This implies that the function β'_i associated to the pseudo-coherent complex Lf^*E is the pullback of the function β_i, in a formula: $\beta'_i = \beta_i \circ f$. This is the meaning of (1).

Fix i and let $x \in X$. It is enough to prove (2) and (3) holds in an open neighbourhood of x, hence we may assume X affine. Then we can represent E by a bounded above complex F^\bullet of finite free modules (Lemma \[31.1\]). Then $P = \sigma_{\geq i-1}F^\bullet$ is a perfect object and $P \to E$ induces an isomorphism

$$H^i(P \otimes_{\mathcal{O}_X}^L \kappa(x')) \to H^i(E \otimes_{\mathcal{O}_X}^L \kappa(x'))$$

for all $x' \in X$. Thus we may assume E is perfect. In this case by More on Algebra, Lemma \[75.6\] there exists an affine open neighbourhood U of x and $a \leq b$ such that $E|_U$ is represented by a complex

$$
\cdots \to 0 \to \mathcal{O}_U^{\oplus \beta_a(x)} \to \mathcal{O}_U^{\oplus \beta_{a+1}(x)} \to \cdots \to \mathcal{O}_U^{\oplus \beta_{b-1}(x)} \to \mathcal{O}_U^{\oplus \beta_b(x)} \to 0 \to \cdots
$$

(This also uses earlier results to turn the problem into algebra, for example Lemmas \[3.5\] and \[10.7\].) It follows immediately that $\beta_i(x') \leq \beta_i(x)$ for all $x' \in U$. This proves that β_i is upper semi-continuous.

To prove (3) we may assume that X is affine and E is given by a complex of finite free \mathcal{O}_X-modules (for example by arguing as in the previous paragraph, or by using Cohomology, Lemma \[47.3\]). Thus we have to show that given a complex

$$
\mathcal{O}_X^{\oplus a} \to \mathcal{O}_X^{\oplus b} \to \mathcal{O}_X^{\oplus c}
$$

the function associated to a point $x \in X$ the dimension of the cohomology of $\kappa_x^{\oplus a} \to \kappa_x^{\oplus b} \to \kappa_x^{\oplus c}$ in the middle has constructible level sets. Let $A \in \text{Mat}(a \times b, \Gamma(X, \mathcal{O}_X))$ be the matrix of the first arrow. The rank of the image of A in $\text{Mat}(a \times b, \kappa(x))$ is equal to r if all $(r+1) \times (r+1)$-minors of A vanish at x and there is some $r \times r$-minor of A which does not vanish at x. Thus the set of points where the rank

DERIVED CATEGORIES OF SCHEMES 76
is \(r \) is a constructible locally closed set. Arguing similarly for the second arrow and putting everything together we obtain the desired result.

Lemma 31.2. Let \(X \) be a scheme. Let \(E \in D(\mathcal{O}_X) \) be perfect. The function

\[
\chi_E : X \to \mathbb{Z}, \quad x \mapsto \sum (-1)^i \dim_{k(x)} H^i(E \otimes_{\mathcal{O}_X} \kappa(x))
\]

is locally constant on \(X \).

Proof. By Cohomology, Lemma 47.3 we see that we can, locally on \(X \), represent \(E \) by a finite complex \(\mathcal{E}^\bullet \) of finite free \(\mathcal{O}_X \)-modules. On such an open the function \(\chi_E \) is constant with value \(\sum (-1)^i \text{rank}(\mathcal{E}^i) \).

Lemma 31.3. Let \(X \) be a scheme. Let \(E \in D(\mathcal{O}_X) \) be perfect. Given \(i, r \in \mathbb{Z} \), there exists an open subscheme \(U \subset X \) characterized by the following

1. \(E|_U \cong H^i(E|_U)[-i] \) and \(H^i(E|_U) \) is a locally free \(\mathcal{O}_U \)-module of rank \(r \),
2. a morphism \(f : Y \to X \) factors through \(U \) if and only if \(Lf^*E \) is isomorphic to a locally free module of rank \(r \) placed in degree \(i \).

Proof. Let \(\beta_j : X \to \{0, 1, 2, \ldots \} \) for \(j \in \mathbb{Z} \) be the functions of Lemma 31.1. Then the set

\[
W = \{x \in X \mid \beta_j(x) \leq 0 \text{ for all } j \neq i\}
\]

is open in \(X \) and its formation commutes with pullback to any \(Y \) over \(X \). This follows from the lemma using that apriori in a neighbourhood of any point only a finite number of the \(\beta_j \) are nonzero. Thus we may replace \(X \) by \(W \) and assume that \(\beta_j(x) = 0 \) for all \(x \in X \) and all \(j \neq i \). In this case \(H^i(E) \) is a finite locally free module and \(E \cong H^i(E)[-i] \), see for example More on Algebra, Lemma 75.6. Thus \(X \) is the disjoint union of the open subschemes where the rank of \(H^i(E) \) is fixed and we win.

Lemma 31.4. Let \(X \) be a scheme. Let \(E \in D(\mathcal{O}_X) \) be perfect of tor-amplitude in \([a, b]\) for some \(a, b \in \mathbb{Z} \). Let \(r \geq 0 \). Then there exists a locally closed subscheme \(j : Z \to X \) characterized by the following

1. \(H^a(Lj^*E) \) is a locally free \(\mathcal{O}_Z \)-module of rank \(r \), and
2. a morphism \(f : Y \to X \) factors through \(Z \) if and only if for all morphisms \(g : Y' \to Y \) the \(\mathcal{O}_{Y'} \)-module \(H^a(L(f \circ g)^*E) \) is locally free of rank \(r \).

Moreover, \(j : Z \to X \) is of finite presentation and we have

3. if \(f : Y \to X \) factors as \(Y \to Z \to X \), then \(H^a(Lf^*E) = g^* H^a(Lj^*E) \),
4. if \(\beta_a(x) \leq r \) for all \(x \in X \), then \(j \) is a closed immersion and given \(f : Y \to X \) the following are equivalent
 (a) \(f : Y \to X \) factors through \(Z \),
 (b) \(H^a(Lf^*E) \) is a locally free \(\mathcal{O}_Y \)-module of rank \(r \),
 and if \(r = 1 \) these are also equivalent to
 (c) \(\mathcal{O}_Y \to \text{Hom}_{\mathcal{O}_Y}(H^0(Lf^*E), H^0(Lj^*E)) \) is injective.

Proof. First, let \(U \subset X \) be the locally constructible open subscheme where the function \(\beta_a \) of Lemma 31.1 has values \(\leq r \). Let \(f : Y \to X \) be as in (2). Then for any \(y \in Y \) we have \(\beta_a(Lf^*E) = r \) hence \(y \) maps into \(U \) by Lemma 31.1. Hence \(f \) as in (2) factors through \(U \). Thus we may replace \(X \) by \(U \) and assume that \(\beta_a(x) \in \{0, 1, \ldots, r \} \) for all \(x \in X \). We will show that in this case there is a closed subscheme \(Z \subset X \) cut out by a finite type quasi-coherent ideal characterized by the
equivalence of (4) (a), (b) and (4) (c) if \(r = 1 \) and that (3) holds. This will finish the proof because it will a fortiori show that morphisms as in (2) factor through \(Z \).

If \(x \in X \) and \(\beta_a(x) < r \), then there is an open neighbourhood of \(x \) where \(\beta_a < r \) (Lemma 31.1). In this way we see that set theoretically at least \(Z \) is a closed subset.

To get a scheme theoretic structure, consider a point \(x \in X \) with \(\beta_a(x) = r \). Set \(\beta = \beta_{a+1}(x) \). By More on Algebra, Lemma 35.6 there exists an affine open neighbourhood \(U \) of \(x \) such that \(K|_U \) is represented by a complex

\[
\cdots \to 0 \to \mathcal{O}_U^{\oplus r} \xrightarrow{(f_{ij})} \mathcal{O}_U^{\oplus \beta} \to \cdots \to \mathcal{O}_U^{\oplus \beta_{k-1}(x)} \to \mathcal{O}_U^{\oplus \beta_k(x)} \to 0 \to \cdots
\]

(This also uses earlier results to turn the problem into algebra, for example Lemmas 3.5 and 10.7.) Now, if \(g : Y \to U \) is any morphism of schemes such that \(g^!(f_{ij}) \) is nonzero for some pair \(i, j \), then \(H^0(Lg^*E) \) is a locally free \(\mathcal{O}_Y \)-module of rank \(r \).

See More on Algebra, Lemma 35.7. Trivially \(H^0(Lg^*E) \) is a locally free \(\mathcal{O}_Y \)-module if \(g^!(f_{ij}) = 0 \) for all \(i, j \). Thus we see that over \(U \) the closed subscheme cut out by all \(f_{ij} \) satisfies (3) and we have the equivalence of (4)(a) and (b). The characterization of \(Z \) shows that the locally constructed patches glue (details omitted). Finally, if \(r = 1 \) then (4)(c) is equivalent to (4)(b) because in this case locally \(H^0(Lg^*E) \subset \mathcal{O}_Y \) is the annihilator of the ideal generated by the elements \(g^!(f_{ij}) \).

\[\blacksquare\]

32. Applications

0BDM Mostly applications of cohomology and base change. In the future we may generalize these results to the situation discussed in Lemma 30.4.

0BDN **Lemma 32.1.** Let \(f : X \to S \) be a flat, proper morphism of finite presentation. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module of finite presentation, flat over \(S \). For fixed \(i \in \mathbb{Z} \) consider the function

\[\beta_i : S \to \{0, 1, 2, \ldots\}, \quad s \mapsto \dim_{\kappa(s)} H^i(X_s, \mathcal{F}_s) \]

Then we have

1. formation of \(\beta_i \) commutes with arbitrary base change,
2. the functions \(\beta_i \) are upper semi-continuous, and
3. the level sets of \(\beta_i \) are locally constructible in \(S \).

Proof. By cohomology and base change (more precisely by Lemma 30.4) the object \(K = Rf_*\mathcal{F} \) is a perfect object of the derived category of \(S \) whose formation commutes with arbitrary base change. In particular we have

\[H^i(X_s, \mathcal{F}_s) = H^i(K \otimes_{\mathcal{O}_S} \kappa(s)) \]

Thus the lemma follows from Lemma 31.1.

0B9T **Lemma 32.2.** Let \(f : X \to S \) be a flat, proper morphism of finite presentation. Let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module of finite presentation, flat over \(S \). The function

\[s \mapsto \chi(X_s, \mathcal{F}_s) \]

is locally constant on \(S \). Formation of this function commutes with base change.

Proof. By cohomology and base change (more precisely by Lemma 30.4) the object \(K = Rf_*\mathcal{F} \) is a perfect object of the derived category of \(S \) whose formation commutes with arbitrary base change. Thus we have to show the map

\[s \mapsto \sum (-1)^i \dim_{\kappa(s)} H^i(K \otimes_{\mathcal{O}_S} \kappa(s)) \]
is locally constant on S. This is Lemma \ref{lem:perfect-object-torsion}.

Proof. By cohomology and base change (more precisely by Lemma \ref{lem:cohomology-base-change}) the object $K = Rf_*\mathcal{F}$ is a perfect object of the derived category of S whose formation commutes with arbitrary base change. Thus this lemma follows immediately from Lemma \ref{lem:perfect-object-torsion}.

Lemma 32.4. Let $f : X \to S$ be a morphism of finite presentation. Let \mathcal{F} be an \mathcal{O}_X-module of finite presentation, flat over S. Fix $i, r \in \mathbb{Z}$. Then there exists an open subscheme $U \subset S$ with the following property: A morphism $T \to S$ factors through U if and only if $Rf_T^*\mathcal{F}_T$ is isomorphic to a finite locally free module of rank r placed in degree i.

Proof. By Lemma \ref{lem:cohomology-base-change} the object $K = Rf_*\mathcal{F}$ is a perfect object of the derived category of S whose formation commutes with arbitrary base change. Thus this lemma follows immediately from Lemma \ref{lem:perfect-object-torsion}.

Lemma 32.5. Let $f : X \to S$ be a morphism of schemes. Assume

1. f is proper, flat, and of finite presentation, and
2. for all $s \in S$ we have $\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$.

Then we have

(a) $f_*\mathcal{O}_X = \mathcal{O}_S$ and this holds after any base change,
(b) locally on S we have

$$Rf_*\mathcal{O}_X = \mathcal{O}_S \oplus P$$

in $D(\mathcal{O}_S)$ where P is perfect of tor amplitude in $[1, \infty)$.

Proof. By cohomology and base change (Lemma \ref{lem:cohomology-base-change}) the complex $E = Rf_*\mathcal{O}_X$ is perfect and its formation commutes with arbitrary base change. This first implies that E has tor amplitude in $[0, \infty)$. Second, it implies that for $s \in S$ we have $H^0(E \otimes \kappa(s)) = H^0(X_s, \mathcal{O}_{X_s}) = \kappa(s)$. It follows that the map $\mathcal{O}_S \to Rf_*\mathcal{O}_X = E$ induces an isomorphism $\mathcal{O}_S \otimes \kappa(s) \to H^0(E \otimes \kappa(s))$. Hence $H^0(E) \otimes \kappa(s) \to H^0(E \otimes \kappa(s))$ is surjective and we may apply More on Algebra, Lemma \ref{lem:canonical-injective} to see that, after replacing S by an affine open neighbourhood of s, we have a decomposition $E = H^0(E) \oplus \tau_{\geq 1}E$ with $\tau_{\geq 1}E$ perfect of tor amplitude in $[1, \infty)$.
Since E has tor amplitude in $[0, \infty)$ we find that $H^0(E)$ is a flat \mathcal{O}_S-module. It follows that $H^0(E)$ is a flat, perfect \mathcal{O}_S-module, hence finite locally free, see More on Algebra, Lemma \[74.2\] (and the fact that finite projective modules are finite locally free by Algebra, Lemma \[78.2\]). It follows that the map $\mathcal{O}_S \to H^0(E)$ is an isomorphism as we can check this after tensoring with residue fields (Algebra, Lemma \[79.4\]).

\[\square\]

Lemma 32.6. Let $f : X \to S$ be a morphism of schemes. Assume

1. f is proper, flat, and of finite presentation, and
2. the geometric fibres of f are reduced and connected.

Then $f_* \mathcal{O}_X = \mathcal{O}_S$ and this holds after any base change.

Proof. By Lemma 32.5 it suffices to show that $\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$ for all $s \in S$. This follows from Varieties, Lemma 9.3 and the fact that X_s is geometrically connected and geometrically reduced. □

Lemma 32.7. Let $f : X \to S$ be a proper morphism of schemes. Let $s \in S$ and let $e \in H^0(X_s, \mathcal{O}_{X_s})$ be an idempotent. Then e is in the image of the map $(f_* \mathcal{O}_X)_s \to H^0(X_s, \mathcal{O}_{X_s})$.

Proof. Let $X_s = T_1 \amalg T_2$ be the disjoint union decomposition with T_1 and T_2 nonempty and open and closed in X_s corresponding to e, i.e., such that e is identically 1 on T_1 and identically 0 on T_2.

Assume S is Noetherian. We will use the theorem on formal functions in the form of Cohomology of Schemes, Lemma 20.7. It tells us that

$$(f_* \mathcal{O}_X)^{\wedge}_s = \lim_n H^0(X_n, \mathcal{O}_{X_n})$$

where X_n is the nth infinitesimal neighbourhood of X_s. Since the underlying topological space of X_n is equal to that of X_s we obtain for all n a disjoint union decomposition of schemes $X_n = T_{1,n} \amalg T_{2,n}$ where the underlying topological space of $T_{i,n}$ is T_i for $i = 1, 2$. This means $H^0(X_n, \mathcal{O}_{X_n})$ contains a nontrivial idempotent e_n, namely the function which is identically 1 on $T_{1,n}$ and identically 0 on $T_{2,n}$. It is clear that e_{n+1} restricts to e_n on X_n. Hence $e_\infty = \lim e_n$ is a nontrivial idempotent of the limit. Thus e_∞ is an element of the completion of $(f_* \mathcal{O}_X)_s$ mapping to e in $H^0(X_s, \mathcal{O}_{X_s})$. Since the map $(f_* \mathcal{O}_X)^{\wedge}_s \to H^0(X_s, \mathcal{O}_{X_s})$ factors through $(f_* \mathcal{O}_X)^{\wedge}_s / \mathfrak{m}_s(f_* \mathcal{O}_X)^{\wedge}_s = (f_* \mathcal{O}_X)_s / \mathfrak{m}_s(f_* \mathcal{O}_X)_s$ (Algebra, Lemma 96.3) we conclude that e is in the image of the map $(f_* \mathcal{O}_X)_s \to H^0(X_s, \mathcal{O}_{X_s})$ as desired.

General case: We reduce the general case to the Noetherian case by limit arguments. We urge the reader to skip the proof. We may replace S by an affine open neighbourhood of s. Thus we may and do assume that S is affine. By Limits, Lemma 13.3 we can write $(f : X \to S) = \lim (f_i : X_i \to S_i)$ with f_i proper and S_i Noetherian. Denote $s_i \in S_i$ the image of s. Then $s = \lim s_i$, see Limits, Lemma 14.4. Then $X_s = X \times_S s = \lim X_i \times_{S_i} s_i = \lim X_i, s_i$ because limits commute with limits (Categories, Lemma 14.10). Hence e is the image of some idempotent $e_i \in H^0(X_i, s_i, \mathcal{O}_{X_i, s_i})$ by Limits, Lemma 14.7. By the Noetherian case there is an element \tilde{e}_i in the stalk $(f_{i,s} \mathcal{O}_{X_i})_{s_i}$ mapping to e_i. Taking the pullback of \tilde{e}_i we get an element \tilde{e} of $(f_* \mathcal{O}_X)_s$ mapping to e and the proof is complete. □

Lemma 32.8. Let $f : X \to S$ be a morphism of schemes. Let $s \in S$. Assume

1. f is proper, flat, and of finite presentation, and
(2) the fibre X_s is geometrically reduced.

Then, after replacing S by an open neighbourhood of s, there exists a direct sum decomposition $Rf_*\mathcal{O}_X = f_*\mathcal{O}_X \oplus P$ in $D(\mathcal{O}_S)$ where $f_*\mathcal{O}_X$ is a finite étale \mathcal{O}_S-algebra and P is a perfect of tor amplitude in $[1, \infty)$.

Proof. The proof of this lemma is similar to the proof of Lemma 32.5 which we suggest the reader read first. By cohomology and base change (Lemma 30.4) the complex $E = Rf_*\mathcal{O}_X$ is perfect and its formation commutes with arbitrary base change. This first implies that E has tor amplitude in $[0, \infty)$.

We claim that after replacing S by an open neighbourhood of s we can find a direct sum decomposition $E = H^0(E) \oplus \tau_{\geq 1}E$ in $D(\mathcal{O}_S)$ with $\tau_{\geq 1}E$ of tor amplitude in $[1, \infty)$. Assume the claim is true for now and assume we’ve made the replacement so we have the direct sum decomposition. Since E has tor amplitude in $[0, \infty)$ we find that $H^0(E)$ is a flat \mathcal{O}_S-module. Hence $H^0(E)$ is a flat, perfect \mathcal{O}_S-module, hence finite locally free, see More on Algebra, Lemma 74.2 (and the fact that finite projective modules are finite locally free by Algebra, Lemma 78.2).

Of course $H^0(E) = f_*\mathcal{O}_X$ is an \mathcal{O}_S-algebra. By cohomology and base change we obtain $H^0(E) \otimes \kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$. By Varieties, Lemma 9.3 and the assumption that X_s is geometrically reduced, we see that $\kappa(s) \to H^0(E) \otimes \kappa(s)$ is finite étale. By Morphisms, Lemma 36.17 applied to the finite locally free morphism $\text{Spec}_k(H^0(E)) \to S$, we conclude that after shrinking S the \mathcal{O}_S-algebra $H^0(E)$ is finite étale.

It remains to prove the claim. For this it suffices to prove that the map

$$(f_*\mathcal{O}_X)_s \to H^0(X_s, \mathcal{O}_{X_s}) = H^0(E \otimes^L \kappa(s))$$

is surjective, see More on Algebra, Lemma 76.2. Choose a flat local ring homomorphism $\mathcal{O}_{S,s} \to A$ such that the residue field k of A is algebraically closed, see Algebra, Lemma 159.1. By flat base change (Cohomology of Schemes, Lemma 5.2) we get $H^0(X_A, \mathcal{O}_{X_A}) = (f_*\mathcal{O}_X)_s \otimes_{\mathcal{O}_{S,s}} A$ and $H^0(X_k, \mathcal{O}_{X_k}) = H^0(X_s, \mathcal{O}_{X_s}) \otimes_{\kappa(s)} k$.

Hence it suffices to prove that $H^0(X_A, \mathcal{O}_{X_A}) \to H^0(X_k, \mathcal{O}_{X_k})$ is surjective. Since X_k is a reduced proper scheme over k and since k is algebraically closed, we see that $H^0(X_k, \mathcal{O}_{X_k})$ is a finite product of copies of k by the already used Varieties, Lemma 9.3. Since by Lemma 32.7 the idempotents of this k-algebra are in the image of $H^0(X_A, \mathcal{O}_{X_A}) \to H^0(X_k, \mathcal{O}_{X_k})$ we conclude.

□

33. Other applications

0CRN In this section we state and prove some results that can be deduced from the theory worked out above.

0EX6 Lemma 33.1. Let R be a coherent ring. Let X be a scheme of finite presentation over R. Let \mathcal{G} be an \mathcal{O}_X-module of finite presentation, flat over R, with support proper over R. Then $H^i(X, \mathcal{G})$ is a coherent R-module.

Proof. Combine Lemma 30.1 with More on Algebra, Lemmas 64.18 and 74.2 □

0CRP Lemma 33.2. Let X be a quasi-compact and quasi-separated scheme. Let K be an object of $D_{QCoh}(\mathcal{O}_X)$ such that the cohomology sheaves $H^i(K)$ have countable
sets of sections over affine opens. Then for any quasi-compact open \(U \subset X \) and any perfect object \(E \) in \(D(\mathcal{O}_X) \) the sets

\[
H^i(U, K \otimes^L E), \quad \text{Ext}^i(E|_U, K|_U)
\]

are countable.

Proof. Using Cohomology, Lemma \([48.5]\) we see that it suffices to prove the result for the groups \(H^i(U, K \otimes^L E) \). We will use the induction principle to prove the lemma, see Cohomology of Schemes, Lemma \([4.1]\).

First we show that it holds when \(U = \text{Spec}(A) \) is affine. Namely, we can represent \(K \) by a complex of \(A \)-modules \(K^\bullet \) and \(E \) by a finite complex of finite projective \(A \)-modules \(P^\bullet \). See Lemmas \([3.5]\) and \([10.7]\) and our definition of perfect complexes of \(A \)-modules (More on Algebra, Definition \([74.1]\)). Then \((E \otimes^L K)|_U \) is represented by the total complex associated to the double complex \(P^\bullet \otimes_A K^\bullet \) (Lemma \([3.9]\)). Using induction on the length of the complex \(P^\bullet \) (or using a suitable spectral sequence) we see that it suffices to show that \(H^i(P^a \otimes_A K^\bullet) \) is countable for each \(a \). Since \(P^a \) is a direct summand of \(A^{\oplus n} \) for some \(n \) this follows from the assumption that the cohomology group \(H^i(K^\bullet) \) is countable.

To finish the proof it suffices to show: if \(U = V \cup W \) and the result holds for \(V \), \(W \), and \(V \cap W \), then the result holds for \(U \). This is an immediate consequence of the Mayer-Vietoris sequence, see Cohomology, Lemma \([33.4]\) \(\square \).

Lemma 33.3. Let \(X \) be a quasi-compact and quasi-separated scheme such that the sets of sections of \(\mathcal{O}_X \) over affine opens are countable. Let \(K \) be an object of \(D_{QCoh}(\mathcal{O}_X) \). The following are equivalent

1. \(K = \text{hocolim} E_n \) with \(E_n \) a perfect object of \(D(\mathcal{O}_X) \), and
2. the cohomology sheaves \(H^i(K) \) have countable sets of sections over affine opens.

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with taking cohomology sheaves (by Derived Categories, Lemma \([33.8]\) and because a perfect complex is locally isomorphic to a finite complex of finite free \(\mathcal{O}_X \)-modules and therefore satisfies (2) by assumption on \(X \).

Assume (2). Choose a \(K \)-injective complex \(K^\bullet \) representing \(K \). Choose a perfect generator \(E \) of \(D_{QCoh}(\mathcal{O}_X) \) and represent it by a \(K \)-injective complex \(I^\bullet \). According to Theorem \([18.3]\) and its proof there is an equivalence of triangulated categories \(F : D_{QCoh}(\mathcal{O}_X) \to D(A, d) \) where \((A, d)\) is the differential graded algebra

\[
(A, d) = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(I^\bullet, I^\bullet)
\]

which maps \(K \) to the differential graded module

\[
M = \text{Hom}_{\text{Comp}^{dg}(\mathcal{O}_X)}(I^\bullet, K^\bullet)
\]

Note that \(H^i(A) = \text{Ext}^i(E, E) \) and \(H^i(M) = \text{Ext}^i(E, K) \). Moreover, since \(F \) is an equivalence it and its quasi-inverse commute with homotopy colimits. Therefore, it suffices to write \(M \) as a homotopy colimit of compact objects of \(D(A, d) \). By Differential Graded Algebra, Lemma \([38.3]\) it suffices show that \(\text{Ext}^i(E, E) \) and \(\text{Ext}^i(E, K) \) are countable for each \(i \). This follows from Lemma \([33.2]\) \(\square \).

Lemma 33.4. Let \(A \) be a ring. Let \(X \) be a scheme of finite presentation over \(A \). Let \(f : U \to X \) be a flat morphism of finite presentation. Then
(1) there exists an inverse system of perfect objects L_n of $D(O_X)$ such that
\[R\Gamma(U, Lf^* K) = \text{hocolim} \ R\text{Hom}_X(L_n, K) \]
in $D(A)$ functorially in K in $D_{QCoh}(O_X)$, and
(2) there exists a system of perfect objects E_n of $D(O_X)$ such that
\[R\Gamma(U, Lf^* K) = \text{hocolim} \ R\Gamma(X, E_n \otimes^L K) \]
in $D(A)$ functorially in K in $D_{QCoh}(O_X)$.

Proof. By Lemma 22.1 we have
\[R\Gamma(U, Lf^* K) = R\Gamma(X, Rf_* O_U \otimes^L K) \]
functorially in K. Observe that $R\Gamma(X, -)$ commutes with homotopy colimits because it commutes with direct sums by Lemma 4.5. Similarly, $- \otimes^L K$ commutes with derived colimits because $- \otimes^L K$ commutes with direct sums (because direct sums in $D(O_X)$ are given by direct sums of representing complexes). Hence to prove (2) it suffices to write $Rf_* O_U = \text{hocolim} E_n$ for a system of perfect objects E_n of $D(O_X)$. Once this is done we obtain (1) by setting $L_n = E_n'$, see Cohomology, Lemma 38.3.

Write $A = \text{colim} A_i$ with A_i of finite type over Z. By Limits, Lemma 10.1 we can find an i and morphisms $U_i \to X_i \to \text{Spec}(A_i)$ of finite presentation whose base change to $\text{Spec}(A)$ recovers $U \to X \to \text{Spec}(A)$. After increasing i we may assume that $f_i : U_i \to X_i$ is flat, see Limits, Lemma 8.7. By Lemma 22.3 the derived pullback of $Rf_i_* O_{U_i}$ by $g : X \to X_i$ is equal to $Rf_* O_U$. Since Lg^* commutes with derived colimits, it suffices to prove what we want for f_i. Hence we may assume that U and X are of finite type over Z.

Assume $f : U \to X$ is a morphism of schemes of finite type over Z. To finish the proof we will show that $Rf_* O_U$ is a homotopy colimit of perfect complexes. To see this we apply Lemma 33.3. Thus it suffices to show that $R^i f_* O_U$ has countable sets of sections over affine opens. This follows from Lemma 33.2 applied to the structure sheaf. \qed

34. Characterizing pseudo-coherent complexes, II

0CSE This section is a continuation of Section 19. In this section we discuss characterizations of pseudo-coherent complexes in terms of cohomology. More results of this nature can be found in More on Morphisms, Section 67.

0CSF **Lemma 34.1.** Let A be a ring. Let R be a (possibly noncommutative) A-algebra which is finite free as an A-module. Then any object M of $D(R)$ which is pseudo-coherent in $D(A)$ can be represented by a bounded above complex of finite free (right) R-modules.

Proof. Choose a complex M^\bullet of right R-modules representing M. Since M is pseudo-coherent we have $H^i(M) = 0$ for large enough i. Let m be the smallest index such that $H^m(M)$ is nonzero. Then $H^m(M)$ is a finite A-module by More on Algebra, Lemma 64.3. Thus we can choose a finite free R-module F^m and a map $F^m \to M^m$ such that $F^m \to M^m \to M^{m+1}$ is zero and such that $F^m \to H^m(M)$
is surjective. Picture:

\[
\begin{array}{ccccccc}
F^m & \rightarrow & F^{n+1} & \rightarrow & \ldots & \rightarrow & F^i & \rightarrow & 0 & \rightarrow & \ldots \\
\downarrow & & \downarrow \\
M^{n-1} & \rightarrow & M^n & \rightarrow & M^{n+1} & \rightarrow & M^i & \rightarrow & M^{i+1} & \rightarrow & \ldots \\
\end{array}
\]

By descending induction on \(n \leq m \) we are going to construct finite free \(R \)-modules \(F^i \) for \(i \geq n \), differentials \(d^i : F^i \rightarrow F^{i+1} \) for \(i \geq n \), maps \(\alpha : F^i \rightarrow K^i \) compatible with differentials, such that (1) \(H^i(\alpha) \) is an isomorphism for \(i > n \) and surjective for \(i = n \), and (2) \(F^i = 0 \) for \(i > m \). Picture

The base case is \(n = m \) which we’ve done above. Induction step. Let \(C^\bullet \) be the cone on \(\alpha \) (Derived Categories, Definition 9.1). The long exact sequence of cohomology shows that \(H^i(C^\bullet) = 0 \) for \(i \geq n \). Observe that \(F^\bullet \) is pseudo-coherent as a complex of \(A \)-modules because \(R \) is finite free as an \(A \)-module. Hence by More on Algebra, Lemma 64.2 we see that \(C^\bullet \) is \((n-1)\)-pseudo-coherent as a complex of \(A \)-modules. By More on Algebra, Lemma 64.3 we see that \(H^{n-1}(C^\bullet) \) is a finite \(A \)-module. Choose a finite free \(R \)-module \(F^{n-1} \) and a map \(\beta : F^{n-1} \rightarrow C^{n-1} \) such that the composition \(F^{n-1} \rightarrow C^{n-1} \rightarrow C^n \) is zero and such that \(F^{n-1} \) surjects onto \(H^{n-1}(C^\bullet) \). Since \(C^{n-1} = M^{n-1} \oplus F^n \) we can write \(\beta = (\alpha^{n-1}, -d^{n-1}) \). The vanishing of the composition \(F^{n-1} \rightarrow C^{n-1} \rightarrow C^n \) implies these maps fit into a morphism of complexes

\[
\begin{array}{cccccccc}
F^{n-1} & \rightarrow & F^n & \rightarrow & F^{n+1} & \rightarrow & \ldots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\ldots & \rightarrow & M^{n-1} & \rightarrow & M^n & \rightarrow & M^{n+1} & \rightarrow & \ldots \\
\end{array}
\]

Moreover, these maps define a morphism of distinguished triangles

\[
\begin{array}{cccccccc}
(F^n \rightarrow \ldots) & \rightarrow & (F^{n-1} \rightarrow \ldots) & \rightarrow & F^{n-1} & \rightarrow & (F^n \rightarrow \ldots)[1] \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
(F^n \rightarrow \ldots) & \rightarrow & M^\bullet & \rightarrow & C^\bullet & \rightarrow & (F^n \rightarrow \ldots)[1] \\
\end{array}
\]

Hence our choice of \(\beta \) implies that the map of complexes \((F^{n-1} \rightarrow \ldots) \rightarrow M^\bullet \) induces an isomorphism on cohomology in degrees \(\geq n \) and a surjection in degree \(n - 1 \). This finishes the proof of the lemma. \(\square \)

Lemma 34.2. Let \(A \) be a ring. Let \(n \geq 0 \). Let \(K \in D_{QCoh}(\mathcal{O}_\mathbb{P}^n_A) \). The following are equivalent

1. \(K \) is pseudo-coherent,
2. \(R\Gamma(\mathbb{P}^n_A; E \otimes^L K) \) is a pseudo-coherent object of \(D(A) \) for each pseudo-coherent object \(E \) of \(D(\mathcal{O}_{\mathbb{P}^n_A}) \),
3. \(R\Gamma(\mathbb{P}^n_A; E \otimes^L K) \) is a pseudo-coherent object of \(D(A) \) for each perfect object \(E \) of \(D(\mathcal{O}_{\mathbb{P}^n_A}) \),
(4) $\mathbf{RHom}_{\mathcal{P}_A}(E, K)$ is a pseudo-coherent object of $D(A)$ for each perfect object E of $D(\mathcal{O}_{\mathcal{P}_A})$.

(5) $\mathbf{R}\Gamma(\mathcal{P}_A^n, K \otimes^L \mathcal{O}_{\mathcal{P}_A}(d))$ is pseudo-coherent object of $D(A)$ for $d = 0, 1, \ldots, n$.

Proof. Recall that

$$\mathbf{RHom}_{\mathcal{P}_A}(E, K) = \mathbf{R}\Gamma(\mathcal{P}_A^n, \mathbf{R}\hom_{\mathcal{O}_{\mathcal{P}_A}}(E, K))$$

by definition, see Cohomology, Section 42. Thus parts (4) and (3) are equivalent by Cohomology, Lemma 18.5.

Since every perfect complex is pseudo-coherent, it is clear that (2) implies (3).

Assume (1) holds. Then $E \otimes^L K$ is pseudo-coherent for every pseudo-coherent E, see Cohomology, Lemma 15.5. By Lemma 30.5 the direct image of such a pseudo-coherent complex is pseudo-coherent and we see that (2) is true.

Part (3) implies (5) because we can take $E = \mathcal{O}_{\mathcal{P}_A}(d)$ for $d = 0, 1, \ldots, n$.

To finish the proof we have to show that (5) implies (1). Let P be as in (20.0.1) and R as in (20.0.2). By Lemma 20.1 we have an equivalence

$$- \otimes^L_R P : D(R) \rightarrow D_{\mathbf{QCoh}}(\mathcal{O}_{\mathcal{P}_A})$$

Let $M \in D(R)$ be an object such that $M \otimes^L P = K$. By Differential Graded Algebra, Lemma 35.4 there is an isomorphism

$$\mathbf{R}\hom(R, M) = \mathbf{R}\hom_{\mathcal{P}_A}(P, K)$$

in $D(A)$. Arguing as above we obtain

$$\mathbf{R}\hom_{\mathcal{P}_A}(P, K) = \mathbf{R}\Gamma(\mathcal{P}_A^n, \mathbf{R}\hom_{\mathcal{O}_{\mathcal{P}_A}}(E, K)) = \mathbf{R}\Gamma(\mathcal{P}_A^n, P^\vee \otimes^L_{\mathcal{O}_{\mathcal{P}_A}} K).$$

Using that P^\vee is the direct sum of $\mathcal{O}_{\mathcal{P}_A}(d)$ for $d = 0, 1, \ldots, n$ and (5) we conclude $\mathbf{R}\hom(R, M)$ is pseudo-coherent as a complex of A-modules. Of course $M = \mathbf{R}\hom(R, M)$ in $D(A)$. Thus M is pseudo-coherent as a complex of A-modules.

By Lemma 34.1 we may represent M by a bounded above complex F^\bullet of finite free R-modules. Then $F^\bullet = \bigcup_{p \geq 0} \sigma_{p} F^\bullet$ is a filtration which shows that F^\bullet is a differential graded R-module with property (P), see Differential Graded Algebra, Section 20. Hence $K = M \otimes^L_R P$ is represented by $F^\bullet \otimes^L_R P$ (follows from the construction of the derived tensor functor, see for example the proof of Differential Graded Algebra, Lemma 35.3). Since $F^\bullet \otimes^L_R P$ is a bounded above complex whose terms are direct sums of copies of P we conclude that the lemma is true. \[\square\]

0CSH Lemma 34.3. Let A be a ring. Let X be a scheme over A which is quasi-compact and quasi-separated. Let $K \in D_{\mathbf{QCoh}}(\mathcal{O}_X)$. If $\mathbf{R}\Gamma(X, E \otimes^L K)$ is pseudo-coherent in $D(A)$ for every perfect E in $D(\mathcal{O}_X)$, then $\mathbf{R}\Gamma(X, E \otimes^L K)$ is pseudo-coherent in $D(A)$ for every pseudo-coherent E in $D(\mathcal{O}_X)$.

Proof. There exists an integer N such that $\mathbf{R}\Gamma(X, -) : D_{\mathbf{QCoh}}(\mathcal{O}_X) \rightarrow D(A)$ has cohomological dimension N as explained in Lemma 1.1. Let $b \in \mathbb{Z}$ be such that $H^i(K) = 0$ for $i > b$. Let E be pseudo-coherent on X. It suffices to show that $\mathbf{R}\Gamma(X, E \otimes^L K)$ is m-pseudo-coherent for every m. Choose an approximation $P \rightarrow E$ by a perfect complex P of $(X, E, m - N - 1 - b)$. This is possible by Theorem 14.6. Choose a distinguished triangle

$$P \rightarrow E \rightarrow C \rightarrow P[1]$$
in $D_{QCoh}(\mathcal{O}_X)$. The cohomology sheaves of C are zero in degrees $\geq m - N - 1 - b$. Hence the cohomology sheaves of $C \otimes^L K$ are zero in degrees $\geq m - N - 1$. Thus the cohomology of $R\Gamma(X, C \otimes^L K)$ are zero in degrees $\geq m - 1$. Hence

$$R\Gamma(X, P \otimes^L K) \to R\Gamma(X, E \otimes^L K)$$

is an isomorphism on cohomology in degrees $\geq m$. By assumption the source is pseudo-coherent. We conclude that $R\Gamma(X, E \otimes^L K)$ is m-pseudo-coherent as desired. □

35. Relatively perfect objects

In this section we introduce a notion from [Lie06].

Definition 35.1. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. An object E of $D(\mathcal{O}_X)$ is S-perfect if E is pseudo-coherent (Cohomology, Definition 45.1) and E locally has finite tor dimension as an object of $D(f^{-1}\mathcal{O}_S)$ (Cohomology, Definition 46.1).

Please see Remark 35.14 for a discussion.

Example 35.2. Let k be a field. Let X be a scheme of finite presentation over k (in particular X is quasi-compact). Then an object E of $D(\mathcal{O}_X)$ is k-perfect if and only if it is bounded and pseudo-coherent (by definition), i.e., if and only if it is in $D^b_{Coh}(X)$ (by Lemma 10.3). Thus being relatively perfect does not mean “perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 83. We can link the notion for schemes with the algebraic notion as follows.

Lemma 35.3. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. Let E be an object of $D_{QCoh}(\mathcal{O}_X)$. The following are equivalent

1. E is S-perfect,
2. for any affine open $U \subset X$ mapping into an affine open $V \subset S$ the complex $R\Gamma(U, E)$ is $\mathcal{O}_S(V)$-perfect.
3. there exists an affine open covering $S = \bigcup V_i$ and for each i an affine open covering $f^{-1}(V_i) = \bigcup U_{ij}$ such that the complex $R\Gamma(U_{ij}, E)$ is $\mathcal{O}_S(V_i)$-perfect.

Proof. Being pseudo-coherent is a local property and “locally having finite tor dimension” is a local property. Hence this lemma immediately reduces to the statement: if X and S are affine, then E is S-perfect if and only if $K = R\Gamma(X, E)$ is $\mathcal{O}_S(S)$-perfect. Say $X = \text{Spec}(A)$, $S = \text{Spec}(R)$ and E corresponds to $K \in D(A)$, i.e., $K = R\Gamma(X, E)$, see Lemma 3.5

Observe that K is R-perfect if and only if K is pseudo-coherent and has finite tor dimension as a complex of R-modules (More on Algebra, Definition 83.1). By Lemma 10.2 we see that E is pseudo-coherent if and only if K is pseudo-coherent. By Lemma 10.5 we see that E has finite tor dimension over $f^{-1}\mathcal{O}_S$ if and only if K has finite tor dimension as a complex of R-modules. □

Lemma 35.4. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. The full subcategory of $D(\mathcal{O}_X)$ consisting of S-perfect objects is a saturated triangulated subcategory.

4Derived Categories, Definition 6.1.
Proof. This follows from Cohomology, Lemmas \[45.4\, 45.6\, 46.6\] and \[46.8\]. □

0DI4 **Lemma 35.5.** Let \(f : X \to S \) be a morphism of schemes which is flat and locally of finite presentation. A perfect object of \(D(\mathcal{O}_X) \) is \(S \)-perfect. If \(K, M \in D(\mathcal{O}_X) \), then \(K \otimes_{\mathcal{O}_X}^L M \) is \(S \)-perfect if \(K \) is perfect and \(M \) is \(S \)-perfect.

Proof. First proof: reduce to the affine case using Lemma 35.3 and then apply More on Algebra, Lemma 83.3. □

0DI5 **Lemma 35.6.** Let \(f : X \to S \) be a morphism of schemes which is flat and locally of finite presentation. Let \(g : S' \to S \) be a morphism of schemes. Set \(X' = S' \times_S X \) and denote \(g' : X' \to X \) the projection. If \(K \in D(\mathcal{O}_X) \) is \(S \)-perfect, then \(L(g')^* K \) is \(S' \)-perfect.

Proof. First proof: reduce to the affine case using Lemma 35.3 and then apply More on Algebra, Lemma 83.3.

Second proof: \(L(g')^* K \) is pseudo-coherent by Cohomology, Lemma 45.5 and the bounded tor dimension property follows from Lemma 22.8. □

0DI6 **Situation 35.7.** Let \(S = \lim_{i \in I} S_i \) be a limit of a directed system of schemes with affine transition morphisms \(g_{ij} : S_j \to S_i \). We assume that \(S_i \) is quasi-compact and quasi-separated for all \(i \in I \). We denote \(g_i : S \to S_i \) the projection. We fix an element \(0 \in I \) and a flat morphism of finite presentation \(X_0 \to S_0 \). We set \(X_i = S_i \times_{S_0} X_0 \) and \(X = S \times_{S_0} X_0 \) and we denote the transition morphisms \(f_{i} : X_i \to X_{i-1} \) and \(f_i : X \to X_i \) the projections.

0DI7 **Lemma 35.8.** In Situation 35.7. Let \(K_0 \) and \(L_0 \) be objects of \(D(\mathcal{O}_{X_0}) \). Set \(K_i = Lf_0^* K_0 \) and \(L_i = Lf_0^* L_0 \) for \(i \geq 0 \) and set \(K = Lf_0^* K_0 \) and \(L = Lf_0^* L_0 \). Then the map

\[
\text{colim}_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{X_0})}(K_i, L_i) \to \text{Hom}_{D(\mathcal{O}_X)}(K, L)
\]

is an isomorphism if \(K_0 \) is pseudo-coherent and \(L_0 \in D_{QCoh}(\mathcal{O}_{X_0}) \) has (locally) finite tor dimension as an object of \(D((X_0 \to S_0)^{-1} \mathcal{O}_{S_0}) \).

Proof. For every quasi-compact open \(U_0 \subset X_0 \) consider the condition \(P \) that

\[
\text{colim}_{i \geq 0} \text{Hom}_{D(\mathcal{O}_{U_0})}(K_i|_{U_0}, L_i|_{U_0}) \to \text{Hom}_{D(\mathcal{O}_{U})}(K|_{U}, L|_{U})
\]

is an isomorphism where \(U = f_0^{-1}(U_0) \) and \(U_i = f_{i0}^{-1}(U_0) \). If \(P \) holds for \(U_0, V_0 \) and \(U_0 \cap V_0 \), then it holds for \(U_0 \cup V_0 \) by Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 33.3.

Denote \(\pi_0 : X_0 \to S_0 \) the given morphism. Then we can first consider \(U_0 = \pi_0^{-1}(W_0) \) with \(W_0 \subset S_0 \) quasi-compact open. By the induction principle of Cohomology of Schemes, Lemma 4.1 applied to quasi-compact opens of \(S_0 \) and the remark above, we find that it is enough to prove \(P \) for \(U_0 = \pi_0^{-1}(W_0) \) with \(W_0 \) affine. In other words, we have reduced to the case where \(S_0 \) is affine. Next, we apply the induction principle again, this time to all quasi-compact and quasi-separated opens of \(X_0 \), to reduce to the case where \(X_0 \) is affine as well.

If \(X_0 \) and \(S_0 \) are affine, the result follows from More on Algebra, Lemma 83.7.

Namely, by Lemmas 10.1 and 3.5 the statement is translated into computations of homs in the derived categories of modules. Then Lemma 10.2 shows that the complex of modules corresponding to \(K_0 \) is pseudo-coherent. And Lemma 10.5...
shows that the complex of modules corresponding to L_0 has finite tor dimension over $\mathcal{O}_{S_0}(S_0)$. Thus the assumptions of More on Algebra, Lemma \ref{lemma-flat-proper-affine} are satisfied and we win.

Lemma 35.9. In Situation \ref{situation-flat-proper-affine} the category of S-perfect objects of $D(\mathcal{O}_X)$ is the colimit of the categories of S_i-perfect objects of $D(\mathcal{O}_X)$.

Proof. For every quasi-compact open $U_0 \subset X_0$ consider the condition P that the functor

$$\operatorname{colim}_{i \geq 0} D_{S_i\text{-perfect}}(\mathcal{O}_{U_i}) \rightarrow D_{S\text{-perfect}}(\mathcal{O}_U)$$

is an equivalence where $U = f_0^{-1}(U_0)$ and $U_i = f_i^{-1}(U_0)$. We observe that we already know this functor is fully faithful by Lemma \ref{lemma-flat-proper-affine}. Thus it suffices to prove essential surjectivity.

Suppose that P holds for quasi-compact opens U_0, V_0 of X_0. We claim that P holds for $U_0 \cup V_0$. We will use the notation $U_i = f_0^{-1}U_0, U = f_0^{-1}U_0, V_i = f_i^{-1}V_0$, and $V = f_0^{-1}V_0$ and we will abusively use the symbol f_i for all the morphisms $U \rightarrow U_i, V \rightarrow V_i, U \cap V \rightarrow U_i \cap V_i$, and $U \cup V \rightarrow U_i \cup V_i$. Suppose E is an S-perfect object of $D(\mathcal{O}_{U \cup V})$. Goal: show E is in the essential image of the functor. By assumption, we can find $i \geq 0$, an S_i-perfect object $E_{U,i}$ on U_i, an S_i-perfect object $E_{V,i}$ on V_i, and isomorphisms $Lf_i^*E_{U,i} \rightarrow E_U$ and $Lf_i^*E_{V,i} \rightarrow E_V$. Let

$$a : E_{U,i} \rightarrow (Rf_{i,*}E)|_{U_i} \text{ and } b : E_{V,i} \rightarrow (Rf_{i,*}E)|_{V_i}$$

the maps adjoint to the isomorphisms $Lf_i^*E_{U,i} \rightarrow E_U$ and $Lf_i^*E_{V,i} \rightarrow E_V$. By fully faithfulness, after increasing i, we can find an isomorphism $c : E_{U,i}|_{U \cap V_i} \rightarrow E_{V,i}|_{U \cap V_i}$ which pulls back to the identifications

$$Lf_i^*E_{U,i}|_{U \cap V} \rightarrow E_{U,i}|_{U \cap V} \rightarrow Lf_i^*E_{V,i}|_{U \cap V}.$$

Apply Cohomology, Lemma \ref{lemma-cohomology} to get an object E_i on $U_i \cup V_i$ and a map $d : E_i \rightarrow Rf_{i,*}E$ which restricts to the maps a and b over U_i and V_i. Then it is clear that E_i is S_i-perfect (because being relatively perfect is a local property) and that d is adjoint to an isomorphism $Lf_i^*E_i \rightarrow E$.

By exactly the same argument as used in the proof of Lemma \ref{lemma-flat-proper-affine} using the induction principle (Cohomology of Schemes, Lemma \ref{cohomology-lemma}) we reduce to the case where both X_0 and S_0 are affine. (First work with opens in S_0 to reduce to S_0 affine, then work with opens in X_0 to reduce to X_0 affine.) In the affine case the result follows from More on Algebra, Lemma \ref{lemma-flat-proper-affine}. The translation into algebra is done by Lemma \ref{lemma-flat-proper-affine}. \qed

Lemma 35.10. Let $f : X \rightarrow S$ be a morphism of schemes which is flat, proper, and of finite presentation. Let $E \in D(\mathcal{O}_X)$ be S-perfect. Then Rf_*E is a perfect object of $D(\mathcal{O}_S)$ and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma \ref{lemma-base-change}. Thus it suffices to show that Rf_*E is a perfect object. We will reduce to the case where S is Noetherian affine by a limit argument.

The question is local on S, hence we may assume S is affine. Say $S = \text{Spec}(R)$. We write $R = \operatorname{colim} R_i$ as a filtered colimit of Noetherian rings R_i. By Limits, Lemma \ref{limits-lemma} there exists an i and a scheme X_i of finite presentation over R_i whose base change to R is X. By Limits, Lemmas \ref{limits-lemma-closed} and \ref{limits-lemma-open} we may assume X_i is proper and flat over R_i. By Lemma \ref{lemma-flat-proper-affine} we may assume there exists a R_i-perfect object
Let \(E \) be a morphism of schemes. Let \(E, K \in D(\mathcal{O}_X) \).

Lemma 35.11. Let \(f : X \to S \) be a morphism of schemes. Let \(E, K \in D(\mathcal{O}_X) \).

Assume

1. \(S \) is quasi-compact and quasi-separated,
2. \(f \) is proper, flat, and of finite presentation,
3. \(E \) is \(S \)-perfect,
4. \(K \) is pseudo-coherent.

Then there exists a pseudo-coherent \(L \in D(\mathcal{O}_S) \) such that

\[
Rf_* R\text{Hom}(K, E) = R\text{Hom}(L, \mathcal{O}_S)
\]

and the same is true after arbitrary base change: given

\[
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{g} & S
\end{array}
\]

is cartesian, then we have

\[
Rf'_* R\text{Hom}(L(g')^* K, L(g')^* E) = R\text{Hom}(Lg^* L, \mathcal{O}_{S'})
\]

Proof. Since \(S \) is quasi-compact and quasi-separated, the same is true for \(X \).

By Lemma 19.1, we can write \(K = \text{hocolim}_n K_n \) with \(K_n \) perfect and \(K_n \to K \)
inducing an isomorphism on truncations \(\tau_{\geq -n} \). Let \(K_n^\vee \) be the dual perfect complex
(Cohomology, Lemma 48.5). We obtain an inverse system \(\ldots \to K_3^\vee \to K_2^\vee \to K_1^\vee \)
of perfect objects. By Lemma 19.4, we see that \(K_n^\vee \otimes_{\mathcal{O}_X} E \) is \(S \)-perfect. Thus we
may apply Lemma 35.10 to \(K_n^\vee \otimes_{\mathcal{O}_X} E \) and we obtain an inverse system

\[
\ldots \to M_3 \to M_2 \to M_1
\]

of perfect complexes on \(S \) with

\[
M_n = Rf_*(K_n^\vee \otimes_{\mathcal{O}_X} E) = Rf_* R\text{Hom}(K_n, E)
\]

Moreover, the formation of these complexes commutes with any base change, namely

\[
Lg^* M_n = Rf'_* ((L(g')^* K_n^\vee) \otimes_{\mathcal{O}_X} L(g')^* E) = Rf'_* R\text{Hom}(L(g')^* K_n, L(g')^* E).
\]

As \(K_n \to K \) induces an isomorphism on \(\tau_{\geq -n} \), we see that \(K_n \to K_{n+1} \) induces an
isomorphism on \(\tau_{\geq -n} \). It follows that \(K_{n+1}^\vee \to K_n^\vee \) induces an isomorphism on \(\tau_{\leq n} \)
as \(K_n^\vee = R\text{Hom}(K_n, \mathcal{O}_X) \). Suppose that \(E \) has tor amplitude in \([a, b]\) as a complex
of \(f^{-1}\mathcal{O}_Y \)-modules. Then the same is true after any base change, see Lemma 22.8.

We find that \(K_{n+1}^\vee \otimes_{\mathcal{O}_X} E \to K_n^\vee \otimes_{\mathcal{O}_X} E \) induces an isomorphism on \(\tau_{\leq n+a} \) and the same is true after any base change. Applying the right derived functor \(Rf_* \) we conclude the maps \(M_{n+1} \to M_n \) induce isomorphisms on \(\tau_{\leq n+a} \) and the same is true after any base change. Choose a distinguished triangle

\[
M_{n+1} \to M_n \to C_n \to M_{n+1}[1]
\]

Take \(S' \) equal to the spectrum of the residue field at a point \(s \in S \) and pull back to see that \(C_n \otimes_{\mathcal{O}_s} \kappa(s) \) has nonzero cohomology only in degrees \(\geq n + a \). By More on Algebra, Lemma 25.6, we see that the perfect complex \(C_n \) has tor amplitude in \([n + a, m_n]\) for some integer \(m_n \). In particular, the dual perfect complex \(C_n^\vee \)
has tor amplitude in \([-m_n, -n - a] \).

Let \(L_n = M_n^\vee \) be the dual perfect complex. The conclusion from the discussion in
the previous paragraph is that \(L_n \to L_{n+1} \) induces isomorphisms on \(\tau_{\geq -n - a} \). Thus
$L = \text{hocolim} L_n$ is pseudo-coherent, see Lemma 19.1. Since we have

$$R\text{Hom}(K, E) = R\text{Hom}(\text{hocolim} K_n, E) = R\lim R\text{Hom}(K_n, E) = R\lim K_n^\vee \otimes_{O_X} E$$

(Cohomology, Lemma 19.1) and since $R\lim$ commutes with Rf_* we find that

$$Rf_*R\text{Hom}(K, E) = R\lim M_n = R\lim R\text{Hom}(L_n, O_S) = R\text{Hom}(L, O_S)$$

This proves the formula over S. Since the construction of M_n is compatible with base change, the formula continues to hold after any base change. □

Remark 35.12. The reader may have noticed the similarity between Lemma 35.11 and Lemma 28.3. Indeed, the pseudo-coherent complex L of Lemma 35.11 may be characterized as the unique pseudo-coherent complex on S such that there are functorial isomorphisms

$$\text{Ext}^i_{O_S}(L, F) \to \text{Ext}^i_{O_X}(K, E \otimes_{O_X} Lf^*F)$$

compatible with boundary maps for F ranging over $\text{QCoh}(O_S)$. If we ever need this we will formulate a precise result here and give a detailed proof.

Lemma 35.13. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. Let E be a pseudo-coherent object of $D(O_X)$. The following are equivalent

1. E is S-perfect, and
2. E is locally bounded below and for every point $s \in S$ the object $L(X_s \to X)^*E$ of $D(O_{X_s})$ is locally bounded below.

Proof. Since everything is local we immediately reduce to the case that X and S are affine, see Lemma 35.3. Say $X \to S$ corresponds to $\text{Spec}(A) \to \text{Spec}(R)$ and E corresponds to K in $D(A)$. If s corresponds to the prime $\mathfrak{p} \subset R$, then $L(X_s \to X)^*E$ corresponds to $K \otimes_{R}^\mathbb{L} \kappa(\mathfrak{p})$ as $R \to A$ is flat, see for example Lemma 22.5. Thus we see that our lemma follows from the corresponding algebra result, see More on Algebra, Lemma 83.10. □

Remark 35.14. Our Definition 35.1 of a relatively perfect complex is equivalent to the one given in [Lie06] whenever our definition applies. Next, suppose that $f : X \to S$ is only assumed to be locally of finite type (not necessarily flat, nor locally of finite presentation). The definition in the paper cited above is that $E \in D(O_X)$ is relatively perfect if

(A) locally on X the object E should be quasi-isomorphic to a finite complex of S-flat, finitely presented O_X-modules.

On the other hand, the natural generalization of our Definition 35.1 is

(B) E is pseudo-coherent relative to S (More on Morphisms, Definition 57.2) and E locally has finite tor dimension as an object of $D(f^{-1}O_S)$ (Cohomology, Definition 46.1).

The advantage of condition (B) is that it clearly defines a triangulated subcategory of $D(O_X)$, whereas we suspect this is not the case for condition (A). The advantage of condition (A) is that it is easier to work with in particular in regards to limits.

5To see this, use Lemma 35.3 and More on Algebra, Lemma 83.4.
36. The resolution property

This notion is discussed in the paper [Tot04]; the discussion is continued in [Gro10], [Gro12], and [Gro17]. It is currently not known if a proper scheme over a field always has the resolution property or if this is false. If you know the answer to this question, please email stacks.project@gmail.com.

We can make the following definition although it scarcely makes sense to consider it for general schemes.

Definition 36.1. Let X be a scheme. We say X has the resolution property if every quasi-coherent \mathcal{O}_X-module of finite type is the quotient of a finite locally free \mathcal{O}_X-module.

If X is a quasi-compact and quasi-separated scheme, then it suffices to check every \mathcal{O}_X-module module of finite presentation (automatically quasi-coherent) is the quotient of a finite locally free \mathcal{O}_X-module, see Properties, Lemma 22.8. If X is a Noetherian scheme, then finite type quasi-coherent modules are exactly the coherent \mathcal{O}_X-modules, see Cohomology of Schemes, Lemma 9.1.

Lemma 36.2. Let X be a scheme. If X has an ample invertible \mathcal{O}_X-module, then X has the resolution property.

Lemma 36.3. Let $f : X \to Y$ be a morphism of schemes. Assume

1. Y is quasi-compact and quasi-separated and has the resolution property,
2. there exists an f-ample invertible module on X.

Then X has the resolution property.

Proof. Let \mathcal{F} be a finite type quasi-coherent \mathcal{O}_X-module. Let \mathcal{L} be an f-ample invertible module. Choose an affine open covering $Y = V_1 \cup \ldots \cup V_m$. Set $U_j = f^{-1}(V_j)$. By Properties, Proposition 26.13 for each j we know there exists finitely many maps $s_{j,i} : \mathcal{L}^{\otimes n_i} \mid_{U_j} \to \mathcal{F}_{\mid U_j}$ which are jointly surjective. Consider the quasi-coherent \mathcal{O}_Y-modules

$$\mathcal{H}_n = f_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$$

We may think of $s_{j,i}$ as a section over V_j of the sheaf \mathcal{H}_{-n_i}. Suppose we can find finite locally free \mathcal{O}_Y-modules $\mathcal{E}_{i,j}$ and maps $\mathcal{E}_{i,j} \to \mathcal{H}_{-n_i}$, such that $s_{j,i}$ is in the image. Then the corresponding maps

$$f^*\mathcal{E}_{i,j} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n_i} \to \mathcal{F}$$

are going to be jointly surjective and the lemma is proved. By Properties, Lemma 22.3 for each i, j we can find a finite type quasi-coherent submodule $\mathcal{H}'_{i,j} \subset \mathcal{H}_{-n_i}$ which contains the section $s_{i,j}$ over V_j. Thus the resolution property of Y produces surjections $\mathcal{E}_{i,j} \to \mathcal{H}'_{i,j}$ and we conclude. □

Lemma 36.4. Let $f : X \to Y$ be an affine or quasi-affine morphism of schemes with Y quasi-compact and quasi-separated. If Y has the resolution property, so does X.

Proof. By Morphisms, Lemma 37.6 this is a special case of Lemma 36.3. □

Here is a case where one can prove the resolution property goes down.
\textbf{Lemma 36.5.} Let \(f : X \to Y \) be a surjective finite locally free morphism of schemes. If \(X \) has the resolution property, so does \(Y \).

\textbf{Proof.} The condition means that \(f \) is affine and that \(f_* \mathcal{O}_X \) is a finite locally free \(\mathcal{O}_Y \)-module of positive rank. Let \(\mathcal{G} \) be a quasi-coherent \(\mathcal{O}_Y \)-module of finite type. By assumption there exists a surjection \(\mathcal{E} \to f^* \mathcal{G} \) for some finite locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \). Since \(f_* \) is exact on quasi-coherent modules (Cohomology of Schemes, Lemma \[2.3\]) we get a surjection

\[
f_* \mathcal{E} \to f_* f^* \mathcal{G} = \mathcal{G} \otimes_{\mathcal{O}_Y} f_* \mathcal{O}_X
\]

Taking duals we get a surjection

\[
f_* \mathcal{E} \otimes_{\mathcal{O}_Y} \text{Hom}_{\mathcal{O}_Y}(f_* \mathcal{O}_X, \mathcal{O}_Y) \to \mathcal{G}
\]

Since \(f_* \mathcal{E} \) is finite locally free\footnote{Namely, if \(A \to B \) is a finite locally free ring map and \(N \) is a finite locally free \(B \)-module, then \(N \) is a finite locally free \(A \)-module. To see this, first note that \(N \) finite locally free over \(B \) implies \(N \) is flat and finitely presented as a \(B \)-module, see Algebra, Lemma \[7.4\]. Then \(N \) is an \(A \)-module of finite presentation by Algebra, Lemma \[39.2\] and a flat \(A \)-module by Algebra, Lemma \[39.4\]. Then conclude by using Algebra, Lemma \[78.2\] over \(A \).} we conclude. \(\square \)

\textbf{Lemma 36.6.} Let \(X \) be a scheme. Suppose given

1. a finite affine open covering \(X = U_1 \cup \ldots U_m \)
2. finite type quasi-coherent ideals \(\mathcal{I}_j \) with \(V(\mathcal{I}_j) = X \setminus U_j \)

Then \(X \) has the resolution property if and only if \(\mathcal{I}_j \) is the quotient of a finite locally free \(\mathcal{O}_X \)-module for \(j = 1, \ldots, m \).

\textbf{Proof.} One direction of the lemma is trivial. For the other, say \(\mathcal{E}_j \to \mathcal{I}_j \) is a surjection with \(\mathcal{E}_j \) finite locally free. In the next paragraph, we reduce to the Noetherian case; we suggest the reader skip it.

The first observation is that \(U_j \cap U_j' \) is quasi-compact as the complement of the zero scheme of the quasi-coherent finite type ideal \(\mathcal{I}_j \cap \mathcal{I}_j' \) on the affine scheme \(U_j \), see Properties, Lemma \[24.1\]. Hence \(X \) is quasi-compact and quasi-separated, see Schemes, Lemma \[21.6\]. By Limits, Proposition \[5.4\] we can write \(X = \lim X_i \) as the limit of a direct system of Noetherian schemes with affine transition morphisms. For each \(j \) we can find an \(i \) and a finite locally free \(\mathcal{O}_{X_i} \)-module \(\mathcal{E}_{i,j} \) pulling back to \(\mathcal{E}_j \), see Limits, Lemma \[10.3\]. After increasing \(i \) we may assume that the composition \(\mathcal{E}_j \to \mathcal{I}_j \to \mathcal{O}_{X_i} \) is the pullback of a map \(\mathcal{E}_{i,j} \to \mathcal{O}_{X_i} \), see Limits, Lemma \[10.2\]. Denote \(\mathcal{I}_{i,j} \subset \mathcal{O}_{X_i} \) the image of this map; this is a quasi-coherent ideal sheaf on the Noetherian scheme \(X_i \) whose pullback to \(X \) is \(\mathcal{I}_j \). Denoting \(U_{i,j} \subset X_i \) the complementary opens, we may assume these are affine for all \(i, j \), see Limits, Lemma \[4.13\]. If we can prove the lemma for the opens \(U_{i,j} \) and the ideal sheaves \(\mathcal{I}_{i,j} \) on \(X_i \) then \(X \), being affine over \(X_i \), will have the resolution property by Lemma \[36.4\]. In this way we reduce to the case of a Noetherian scheme.

Assume \(X \) is Noetherian. For every coherent module \(\mathcal{F} \) we can choose a finite list of sections \(s_{jk} \in \mathcal{F}(U_j), k = 1, \ldots, e_j \) which generate the restriction of \(\mathcal{F} \) to \(U_j \). By Cohomology of Schemes, Lemma \[10.5\] we can extend \(s_{jk} \) to a map \(s_{jk}^i : \mathcal{I}_{i,j}^{n_{jk}} \to \mathcal{F} \) for some \(n_{jk} \geq 1 \). Then we can consider the compositions

\[
\mathcal{E}_j^{\otimes n_{jk}} \to \mathcal{I}_j^{n_{jk}} \to \mathcal{F}
\]

to conclude. \(\square \)
Lemma 36.7. Let X be a scheme. If X has an ample family of invertible modules (Morphisms, Definition 12.1), then X has the resolution property.

Proof. Since X is quasi-compact, there exists n and pairs (\mathcal{L}_i, s_i), $i = 1, \ldots, n$ where \mathcal{L}_i is an invertible \mathcal{O}_X-module and $s_i \in \Gamma(X, \mathcal{L}_i)$ is a section such that the set of points $U_i \subset X$ where s_i is nonvanishing is affine and $X = U_1 \cup \ldots \cup U_n$. Let $I_i \subset \mathcal{O}_X$ be the image of $s_i : \mathcal{L}_i^{-1} \to \mathcal{O}_X$. Applying Lemma 36.6 we find that X has the resolution property. □

Lemma 36.8. Let X be a quasi-compact, regular scheme with affine diagonal. Then X has the resolution property.

Lemma 36.9. Let $X = \lim X_i$ be a limit of a direct system of quasi-compact and quasi-separated schemes with affine transition morphisms. Then X has the resolution property if and only if X_i has the resolution properties for some i.

Proof. If X_i has the resolution property, then X does by Lemma 36.4. Assume X has the resolution property. Choose $i \in I$. Choose a finite affine open covering $X_i = U_{i,1} \cup \ldots \cup U_{i,m}$. For each j choose a finite type quasi-coherent sheaf of ideals $I_{i,j} \subset O_{X_i}$ such that $X_i \setminus V(I_{i,j}) = U_{i,j}$, see Properties, Lemma 24.1. Denote $U_j \subset X$ the inverse image of $U_{i,j}$ and denote $I_j \subset O_X$ the pullback of $I_{i,j}$. Since X has the resolution property, we may choose finite locally free O_X-modules E_j and surjections $E_j \to I_j$. By Limits, Lemmas 10.3 and 10.2 after increasing i we can find finite locally free O_{X_i}-modules $E_{i,j}$ and maps $E_{i,j} \to O_{X_i}$, whose base changes to X recover the compositions $E_j \to I_j \to O_X$, $j = 1, \ldots, m$. The pullbacks of the finitely presented O_X-modules $\text{Coker}(E_{i,j} \to O_{X_i})$ and $O_{X_i}/I_{i,j}$ to X agree as quotients of O_X. Hence by Limits, Lemma 10.2 we may assume that these agree, in other words that the image of $E_{i,j} \to O_{X_i}$ is equal to $I_{i,j}$. Then we conclude that X_i has the resolution property by Lemma 36.6. □

Lemma 36.10. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Then X has affine diagonal.

Proof. Combining Limits, Proposition 5.4 and Lemma 36.9, this reduces to the case where X is Noetherian (small detail omitted). Assume X is Noetherian. Recall that $X \times X$ is covered by the affine opens $U \times V$ for affine opens U, V of X, see Schemes, Section 17. Hence to show that the diagonal $\Delta : X \to X \times X$ is affine, it suffices to show that $U \cap V = \Delta^{-1}(U \times V)$ is affine for all affine opens U, V of X, see Morphisms, Lemma 11.3. In particular, it suffices to show that the inclusion morphism $j : U \to X$ is affine if U is an affine open of X. By Cohomology of Schemes, Lemma 3.4 it suffices to show that $R^1 j_* \mathcal{G} = 0$ for any quasi-coherent O_U-module \mathcal{G}. By Proposition 8.3 (this is where we use that we’ve reduced to the Noetherian case) we can represent $R^1 j_* \mathcal{G}$ by a complex \mathcal{H}^* of quasi-coherent O_X-modules. Assume

$$H^1(\mathcal{H}^*) = \text{Ker}(\mathcal{H}^1 \to \mathcal{H}^2)/\text{Im}(\mathcal{H}^0 \to \mathcal{H}^1)$$

is nonzero in order to get a contradiction. Then we can find a coherent O_X-module \mathcal{F} and a map

$$\mathcal{F} \to \text{Ker}(\mathcal{H}^1 \to \mathcal{H}^2)$$

Special case of Tot04, Proposition 1.3. [Tot04] Proposition 1.3.
such that the composition with the projection onto $H^1(\mathcal{H}^*)$ is nonzero. Namely, we can write $\text{Ker}(H^1 \to H^2)$ as the filtered union of its coherent submodules by Properties, Lemma \ref{properties-lemma-coherent-union} and then one of these will do the job. Next, we choose a finite locally free \mathcal{O}_X-module \mathcal{E} and a surjection $\mathcal{E} \to \mathcal{F}$ using the resolution property of X. This produces a map in the derived category
\[
\mathcal{E}[-1] \to Rj_*\mathcal{G}
\]
which is nonzero on cohomology sheaves and hence nonzero in $D(\mathcal{O}_X)$. By adjunction, this is the same thing as a map
\[
j^*\mathcal{E}[-1] \to \mathcal{G}
\]
nonzero in $D(\mathcal{O}_U)$. Since \mathcal{E} is finite locally free this is the same thing as a nonzero element of
\[
H^1(U, j^*\mathcal{E}^\vee \otimes \mathcal{O}_U \mathcal{G})
\]
where $\mathcal{E}^\vee = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$ is the dual finite locally free module. However, this group is zero by Cohomology of Schemes, Lemma \ref{cohomology-lemma-dual-zero} which is the desired contradiction. (If in doubt about the step using duals, please see the more general Cohomology, Lemma \ref{cohomology-lemma-dual-step}.)

□

37. The resolution property and perfect complexes

0F8D In this section we discuss the relationship between perfect complexes and strictly perfect complexes on schemes which have the resolution property.

0FSE Lemma 37.1. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Let \mathcal{F}^\bullet be a bounded below complex of quasi-coherent \mathcal{O}_X-modules representing a perfect object of $D(\mathcal{O}_X)$. Then there exists a bounded complex \mathcal{E}^\bullet of finite locally free \mathcal{O}_X-modules and a quasi-isomorphism $\mathcal{E}^\bullet \to \mathcal{F}^\bullet$.

Proof. Let $a, b \in \mathbb{Z}$ be integers such that \mathcal{F}^\bullet has tor amplitude in $[a, b]$ and such that $\mathcal{F}^n = 0$ for $n < a$. The existence of such a pair of integers follows from Cohomology, Lemma \ref{coh-lemma-tor-amplitude} and the fact that X is quasi-compact. If $b < a$, then \mathcal{F}^\bullet is zero in the derived category and the lemma holds. We will prove by induction on $b - a \geq 0$ that there exists a complex $\mathcal{E}^a \to \ldots \to \mathcal{E}^b$ with \mathcal{E}^i finite locally free and a quasi-isomorphism $\mathcal{E}^\bullet \to \mathcal{F}^\bullet$.

The base case is the case $b - a = 0$. In this case $H^b(\mathcal{F}^\bullet) = H^a(\mathcal{F}^\bullet) = \text{Ker}(\mathcal{F}^a \to \mathcal{F}^{a+1})$ is finite locally free. Namely, it is a finitely presented \mathcal{O}_X-module of tor dimension 0 and hence finite locally free. See Cohomology, Lemmas \ref{coh-lemma-tor-zero} and \ref{coh-lemma-finite-dimension} and Properties, Lemma \ref{properties-lemma-finite-type}. Thus we can take \mathcal{E}^\bullet to be $H^b(\mathcal{F}^\bullet)$ sitting in degree b. The rest of the proof is dedicated to the induction step.

Assume $b > a$. Observe that
\[
H^b(\mathcal{F}^\bullet) = \text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1})/\text{Im}(\mathcal{F}^{b-1} \to \mathcal{F}^b)
\]
is a finite type quasi-coherent \mathcal{O}_X-module, see Cohomology, Lemmas \ref{coh-lemma-tor-zero} and \ref{coh-lemma-finite-dimension}. Then we can find a finite type quasi-coherent \mathcal{O}_X-module \mathcal{F} and a map
\[
\mathcal{F} \to \text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1})
\]
such that the composition with the projection onto $H^b(\mathcal{F}^\bullet)$ is surjective. Namely, we can write $\text{Ker}(\mathcal{F}^b \to \mathcal{F}^{b+1})$ as the filtered union of its finite type quasi-coherent submodules by Properties, Lemma \ref{properties-lemma-coherent-union} and then one of these will do the job. Next,
we choose a finite locally free \mathcal{O}_X-module \mathcal{E}^b and a surjection $\mathcal{E}^b \to \mathcal{F}$ using the resolution property of X. Consider the map of complexes
\[\alpha : \mathcal{E}^b[-b] \to \mathcal{F}^* \]
and its cone $C(\alpha)^*$, see Derived Categories, Definition \[9.1\]. We observe that $C(\alpha)^*$ is nonzero only in degrees $\geq a$, has tor amplitude in $[a, b]$ by Cohomology, Lemma \[46.6\] and has $H^b(C(\alpha)^*) = 0$ by construction. Thus we actually find that $C(\alpha)^*$ has tor amplitude in $[a, b - 1]$. Hence the induction hypothesis applies to $C(\alpha)^*$ and we find a map of complexes
\[(\mathcal{E}^a \to \ldots \to \mathcal{E}^{b-1}) \to C(\alpha)^* \]
with properties as stated in the induction hypothesis. Unwinding the definition of the cone this gives a commutative diagram

\[
\begin{array}{ccccccccc}
\ldots & \mathcal{E}^{b-2} & \mathcal{E}^{b-1} & 0 & \ldots \\
& & \downarrow & & \\
\ldots & \mathcal{F}^{b-2} & \mathcal{F}^{b-1} \oplus \mathcal{E}^b & \mathcal{F}^b & \ldots \\
\end{array}
\]

It is clear that we obtain a map of complexes $(\mathcal{E}^a \to \ldots \to \mathcal{E}^b) \to \mathcal{F}^*$. We omit the verification that this map is a quasi-isomorphism. □

Lemma 37.2. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Then every perfect object of $\mathcal{D}(\mathcal{O}_X)$ can be represented by a bounded complex of finite locally free \mathcal{O}_X-modules.

Proof. Let E be a perfect object of $\mathcal{D}(\mathcal{O}_X)$. By Lemma 36.10 we see that X has affine diagonal. Hence by Proposition 7.5 we can represent E by a complex F^* of quasi-coherent \mathcal{O}_X-modules. Observe that E is in $\mathcal{D}^b(\mathcal{O}_X)$ because X is quasi-compact. Hence $\tau_{\geq n} F^*$ is a bounded below complex of quasi-coherent \mathcal{O}_X-modules which represents \check{E} if $n \ll 0$. Thus we may apply Lemma 37.1 to conclude. □

Lemma 37.3. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Let E^* and F^* be finite complexes of finite locally free \mathcal{O}_X-modules. Then any $\alpha \in \text{Hom}_{\mathcal{D}(\mathcal{O}_X)}(E^*, F^*)$ can be represented by a diagram

\[E^* \leftarrow G^* \to F^* \]

where G^* is a bounded complex of finite locally free \mathcal{O}_X-modules and where $G^* \to E^*$ is a quasi-isomorphism.

Proof. By Lemma 36.10 we see that X has affine diagonal. Hence by Proposition 7.5 we can represent α by a diagram

\[E^* \leftarrow H^* \to F^* \]

where H^* is a complex of quasi-coherent \mathcal{O}_X-modules and where $H^* \to E^*$ is a quasi-isomorphism. For $n \ll 0$ the maps $H^* \to E^*$ and $H^* \to F^*$ factor through the quasi-isomorphism $H^* \to \tau_{\geq n} H^*$ simply because E^* and F^* are bounded complexes. Thus we may replace H^* by $\tau_{\geq n} H^*$ and assume that H^* is bounded below. Then we may apply Lemma 37.1 to conclude. □
0F8H Lemma 37.4. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Let \mathcal{E}^\bullet and \mathcal{F}^\bullet be finite complexes of finite locally free \mathcal{O}_X-modules. Let $\alpha^\bullet, \beta^\bullet : \mathcal{E}^\bullet \to \mathcal{F}^\bullet$ be two maps of complexes defining the same map in $D(\mathcal{O}_X)$. Then there exists a quasi-isomorphism $\gamma^\bullet : \mathcal{G}^\bullet \to \mathcal{E}^\bullet$ where \mathcal{G}^\bullet is a bounded complex of finite locally free \mathcal{O}_X-modules such that $\alpha^\bullet \circ \gamma^\bullet$ and $\beta^\bullet \circ \gamma^\bullet$ are homotopic maps of complexes.

Proof. By Lemma 36.10 we see that X has affine diagonal. Hence by Proposition 7.5 (and the definition of the derived category) there exists a quasi-isomorphism $\gamma^\bullet : \mathcal{G}^\bullet \to \mathcal{E}^\bullet$ where \mathcal{G}^\bullet is a complex of quasi-coherent \mathcal{O}_X-modules such that $\alpha^\bullet \circ \gamma^\bullet$ and $\beta^\bullet \circ \gamma^\bullet$ are homotopic maps of complexes. Choose a homotopy $h^i : \mathcal{G}^i \to \mathcal{F}^{i-1}$ witnessing this fact. Choose $n \ll 0$. Then the map γ^\bullet factors canonically over the quotient map $\mathcal{G}^\bullet \to \tau_{\geq n} \mathcal{G}^\bullet$ as \mathcal{E}^\bullet is bounded below. For the exact same reason the maps h^i will factor over the surjections $\mathcal{G}^i \to (\tau_{\geq n} \mathcal{G})^i$. Hence we see that we may replace \mathcal{G}^\bullet by $\tau_{\geq n} \mathcal{G}^\bullet$. Then we may apply Lemma 37.1 to conclude. □

0F8I Proposition 37.5. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Denote

1. A the additive category of finite locally free \mathcal{O}_X-modules,
2. $K^b(A)$ the homotopy category of bounded complexes in A, see Derived Categories, Section 8 and
3. $D_{perf}(\mathcal{O}_X)$ the strictly full, saturated, triangulated subcategory of $D(\mathcal{O}_X)$ consisting of perfect objects.

With this notation the obvious functor

$$K^b(A) \to D_{perf}(\mathcal{O}_X)$$

is an exact functor of triangulated categories which factors through an equivalence $S^{-1} K^b(A) \to D_{perf}(\mathcal{O}_X)$ of triangulated categories where S is the saturated multiplicative system of quasi-isomorphisms in $K^b(A)$.

Proof. If you can parse the statement of the proposition, then please skip this first paragraph. For some of the definitions used, please see Derived Categories, Definition 3.4 (triangulated subcategory), Derived Categories, Definition 6.1 (saturated triangulated subcategory), Derived Categories, Definition 5.1 (multiplicative system compatible with the triangulated structure), and Categories, Definition 27.20 (saturated multiplicative system). Observe that $D_{perf}(\mathcal{O}_X)$ is a saturated triangulated subcategory of $D(\mathcal{O}_X)$ by Cohomology, Lemmas 47.7 and 47.9. Also, note that $K^b(A)$ is a triangulated category, see Derived Categories, Lemma 10.5.

It is clear that the functor sends distinguished triangles to distinguished triangles, i.e., is exact. Then S is a saturated multiplicative system compatible with the triangulated structure on $K^b(A)$ by Derived Categories, Lemma 5.3. Hence the localization $S^{-1} K^b(A)$ exists and is a triangulated category by Derived Categories, Proposition 5.5. We get an exact factorization $S^{-1} K^b(A) \to D_{perf}(\mathcal{O}_X)$ by Derived Categories, Lemma 5.6. By Lemmas 37.2, 37.3, and 37.4 this functor is an equivalence. Then finally the functor $S^{-1} K^b(A) \to D_{perf}(\mathcal{O}_X)$ is an equivalence of triangulated categories (in the sense that distinguished triangles correspond) by Derived Categories, Lemma 4.18. □
38. K-groups

0FDE A tiny bit about K_0 of various categories associated to schemes. Previous material can be found in Algebra, Section 55 Homology, Section 11 Derived Categories, Section 28 and More on Algebra, Lemma 119.2

Analogous to Algebra, Section 55 we will define two K-groups $K'_0(X)$ and $K_0(X)$ for any Noetherian scheme X. The first will use coherent O_X-modules and the second will use finite locally free O_X-modules.

0FDF Lemma 38.1. Let X be a Noetherian scheme. Then

$$K_0(Coh(O_X)) = K_0(D^b(Coh(O_X))) = K_0(D^b_{Coh}(O_X))$$

Proof. The first equality is Derived Categories, Lemma 28.2. The second equality holds because $D^b(Coh(O_X)) = D^b_{Coh}(O_X)$ by Proposition 11.2

Here is the definition.

0FDG Definition 38.2. Let X be a scheme.

(1) We denote $K_0(X)$ the Grothendieck group of X. It is the zeroth K-group of the strictly full, saturated, triangulated subcategory $D_{perf}(O_X)$ of $D(O_X)$ consisting of perfect objects. In a formula

$$K_0(X) = K_0(D_{perf}(O_X))$$

(2) If X is locally Noetherian, then we denote $K'_0(X)$ the Grothendieck group of coherent sheaves on X. It is the is the zeroth K-group of the abelian category of coherent O_X-modules. In a formula

$$K'_0(X) = K_0(Coh(O_X))$$

We will show that our definition of $K_0(X)$ agrees with the often used definition in terms of finite locally free modules if X has the resolution property (for example if X has an ample invertible module). See Lemma 38.5

0FDH Lemma 38.3. Let $X = Spec(R)$ be an affine scheme. Then $K_0(X) = K_0(R)$ and if R is Noetherian then $K'_0(X) = K'_0(R)$.

Proof. Recall that $K'_0(R)$ and $K_0(R)$ have been defined in Algebra, Section 55 By More on Algebra, Lemma 119.2 we have $K_0(R) = K_0(D_{perf}(R))$. By Lemmas 10.7 and 3.5 we have $D_{perf}(R) = D_{perf}(O_X)$. This proves the equality $K_0(R) = K_0(X)$.

The equality $K'_0(R) = K'_0(X)$ holds because $Coh(O_X)$ is equivalent to the category of finite R-modules by Cohomology of Schemes, Lemma 9.1. Moreover it is clear that $K'_0(R)$ is the zeroth K-group of the category of finite R-modules from the definitions.

Let X be a Noetherian scheme. Then both $K'_0(X)$ and $K_0(X)$ are defined. In this case there is a canonical map

$$K_0(X) = K_0(D_{perf}(O_X)) \longrightarrow K_0(D^b_{Coh}(O_X)) = K'_0(X)$$

Namely, perfect complexes are in $D^b_{Coh}(O_X)$ (by Lemma 10.3), the inclusion functor $D_{perf}(O_X) \rightarrow D^b_{Coh}(O_X)$ induces a map on zeroth K-groups (Derived Categories, Lemma 28.3), and we have the equality on the right by Lemma 38.1
Lemma 38.4. Let X be a Noetherian regular scheme. Then the map $K_0(X) \to K'_0(X)$ is an isomorphism.

Proof. Follows immediately from Lemma [11.8] and our construction of the map $K_0(X) \to K'_0(X)$ above. \square

Let X be a scheme. Let us denote $\text{Vect}(X)$ the category of finite locally free \mathcal{O}_X-modules. Although $\text{Vect}(X)$ isn’t an abelian category in general, it is clear what a short exact sequence of $\text{Vect}(X)$ is. Denote $K_0(\text{Vect}(X))$ the unique abelian group with the following properties:

1. For every finite locally free \mathcal{O}_X-module \mathcal{E} there is given an element $[\mathcal{E}]$ in $K_0(\text{Vect}(X))$.
2. for every short exact sequence $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ of finite locally free \mathcal{O}_X-modules we have the relation $[\mathcal{E}] = [\mathcal{E}'] + [\mathcal{E}'']$ in $K_0(\text{Vect}(X))$.
3. the group $K_0(\text{Vect}(X))$ is generated by the elements $[\mathcal{E}]$, and
4. all relations in $K_0(\text{Vect}(X))$ among the generators $[\mathcal{E}]$ are \mathbb{Z}-linear combinations of the relations coming from exact sequences as above.

We omit the detailed construction of $K_0(\text{Vect}(X))$. There is a natural map $K_0(\text{Vect}(X)) \to K_0(X)$

Namely, given a finite locally free \mathcal{O}_X-module \mathcal{E} let us denote $\mathcal{E}[0]$ the perfect complex on X which has \mathcal{E} sitting in degree 0 and zero in other degrees. Given a short exact sequence $0 \to \mathcal{E} \to \mathcal{E}' \to \mathcal{E}'' \to 0$ of finite locally free \mathcal{O}_X-modules we obtain a distinguished triangle $\mathcal{E}[0] \to \mathcal{E}'[0] \to \mathcal{E}''[0] \to \mathcal{E}[1]$, see Derived Categories, Section 12. This shows that we obtain a map $K_0(\text{Vect}(X)) \to K_0(D_{\text{perf}}(\mathcal{O}_X)) = K_0(X)$ by sending $[\mathcal{E}]$ to $[\mathcal{E}[0]]$ with apologies for the horrendous notation.

Lemma 38.5. Let X be a quasi-compact and quasi-separated scheme with the resolution property. Then the map $K_0(\text{Vect}(X)) \to K_0(X)$ is an isomorphism.

Proof. This lemma will follow in a straightforward manner from Lemmas 37.2, 37.3, and 37.4 whose results we will use without further mention. Let us construct an inverse map

$$c : K_0(X) = K_0(D_{\text{perf}}(\mathcal{O}_X)) \to K_0(\text{Vect}(X))$$

Namely, any object of $D_{\text{perf}}(\mathcal{O}_X)$ can be represented by a bounded complex \mathcal{E}^\bullet of finite locally free \mathcal{O}_X-modules. Then we set

$$c([\mathcal{E}^\bullet]) = \sum (-1)^i [\mathcal{E}_i]$$

Of course we have to show that this is well defined. For the moment we view c as a map defined on bounded complexes of finite locally free \mathcal{O}_X-modules.

Suppose that $\mathcal{E}^\bullet \to \mathcal{F}^\bullet$ is a surjective map of bounded complexes of finite locally free \mathcal{O}_X-modules. Let \mathcal{K}^\bullet be the kernel. Then we obtain short exact sequences of \mathcal{O}_X-modules

$$0 \to \mathcal{K}^n \to \mathcal{E}^n \to \mathcal{F}^n \to 0$$

which are locally split because \mathcal{F}^n is finite locally free. Hence \mathcal{K}^\bullet is also a bounded complex of finite locally free \mathcal{O}_X-modules and we have $c(\mathcal{E}^\bullet) = c(\mathcal{K}^\bullet) + c(\mathcal{F}^\bullet)$ in $K_0(\text{Vect}(X))$.

7The correct generality here would be to define K_0 for any exact category, see Injectives, Remark 9.6.
Suppose given a bounded complex E^\bullet of finite locally free O_X-modules which is acyclic. Say $E^n = 0$ for $n \not\in [a, b]$. Then we can break E^\bullet into short exact sequences

\[0 \to E^a \to E^{a+1} \to F^{a+1} \to 0, \]
\[0 \to F^{a+1} \to E^{a+2} \to F^{a+2} \to 0, \]
\[0 \to F^{b-3} \to E^{b-2} \to F^{b-2} \to 0, \]
\[0 \to F^{b-2} \to E^{b-1} \to E^b \to 0 \]

Arguing by descending induction we see that F^{b-2}, \ldots, F^{a+1} are finite locally free O_X-modules, and

\[c(E^\bullet) = \sum (-1)^{|E^n|} = \sum (-1)^n([F^{n-1}] + [F^n]) = 0 \]

Thus our construction gives zero on acyclic complexes.

It follows from the results of the preceding two paragraphs that c is well defined. Namely, suppose the bounded complexes E^\bullet and F^\bullet of finite locally free O_X-modules represent the same object of $D(O_X)$. Then we can find quasi-isomorphisms $a : G^\bullet \to E^\bullet$ and $b : G^\bullet \to F^\bullet$ with G^\bullet bounded complex of finite locally free O_X-modules. We obtain a short exact sequence of complexes

\[0 \to E^\bullet \to C(a)^\bullet \to G^\bullet[1] \to 0 \]

see Derived Categories, Definition 9.1. Since a is a quasi-isomorphism, the cone $C(a)^\bullet$ is acyclic (this follows for example from the discussion in Derived Categories, Section 12). Hence

\[0 = c(C(f)^\bullet) = c(E^\bullet) + c(G^\bullet[1]) = c(E^\bullet) - c(G^\bullet) \]

as desired. The same argument using b shows that $0 = c(F^\bullet) - c(G^\bullet)$. Hence we find that $c(E^\bullet) = c(F^\bullet)$ and c is well defined.

A similar argument using the cone on a map $E^\bullet \to F^\bullet$ of bounded complexes of finite locally free O_X-modules shows that $c(Y) = c(X) + c(Z)$ if $X \to Y \to Z$ is a distinguished triangle in $D_{perf}(O_X)$. Details omitted. Thus we get the desired homomorphism of abelian groups $c : K_0(X) \to K_0(\text{Vect}(X))$.

It is clear that the composition $K_0(\text{Vect}(X)) \to K_0(X) \to K_0(\text{Vect}(X))$ is the identity. On the other hand, let E^\bullet be a bounded complex of finite locally free O_X-modules. Then the the existence of the distinguished triangles of “stupid truncations” (see Homology, Section 15)

\[\sigma_{\geq n}E^\bullet \to \sigma_{\geq n-1}E^\bullet \to E^{n-1}[-n + 1] \to (\sigma_{\geq n}E^\bullet)[1] \]

and induction show that

\[[E^\bullet] = \sum (-1)^{|E'|[E'[0]]} \]

in $K_0(X) = K_0(D_{perf}(O_X))$ with apologies for the notation. Hence the map $K_0(\text{Vect}(X)) \to K_0(D_{perf}(O_X)) = K_0(X)$ is surjective which finishes the proof.

Remark 38.6. Let X be a scheme. The K-group $K_0(X)$ is canonically a commutative ring. Namely, using the derived tensor product

\[\otimes = \otimes_{O_X}^L : D_{perf}(O_X) \times D_{perf}(O_X) \to D_{perf}(O_X) \]

and Derived Categories, Lemma 28.6 we obtain a bilinear multiplication. Since $K \otimes L \cong L \otimes K$ we see that this product is commutative. Since $(K \otimes L) \otimes M =$
If $\text{Vect}(X)$ and $K_0(\text{Vect}(X))$ are as above, then it is clearly the case that $K_0(\text{Vect}(X))$ also has a ring structure: if E and F are finite locally free O_X-modules, then we set

$$[E] \cdot [F] = [E \otimes_{O_X} F]$$

The reader easily verifies that this indeed defines a bilinear commutative, associative product. Details omitted. The map constructed above is a ring map with these definitions.

Now assume X is Noetherian. The derived tensor product also produces a map

$$\otimes = \otimes^L_{O_X} : D_{\text{perf}}(O_X) \times D^b_{\text{Coh}}(O_X) \to D^b_{\text{Coh}}(O_X)$$

Again using Derived Categories, Lemma 28.6 we obtain a bilinear multiplication $K_0(X) \times K_0(X) \to K_0(X)$ since $K_0(X) = \ovl{K_0}(D^b_{\text{Coh}}(O_X))$ by Lemma 38.1. The reader easily shows that this gives $K_0(X)$ the structure of a module over the ring $K_0(X)$.

Remark 38.7. Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes. There is a map $f_* : K_0(X) \to K_0(Y)$ which sends $[F]$ to

$$\bigoplus_{i \geq 0} R^{2i}f_*F - \bigoplus_{i \geq 0} R^{2i+1}f_*F$$

This is well defined because the sheaves R^if_*F are coherent (Cohomology of Schemes, Lemma 16.3), because locally only a finite number are nonzero, and because a short exact sequence of coherent sheaves on X produces a long exact sequence of R^if_* on Y. If Y is quasi-compact (the only case most often used in practice), then we can rewrite the above as

$$f_*[F] = \sum (-1)^i [R^if_*F] = [Rf_*F]$$

where we have used the equality $K_0(Y) = \ovl{K_0}(D^b_{\text{Coh}}(Y))$ from Lemma 38.1.

Lemma 38.8. Let $f : X \to Y$ be a proper morphism of locally Noetherian schemes. Then we have $f_*(\alpha \cdot f^*\beta) = f_*\alpha \cdot \beta$ for $\alpha \in K_0^f(X)$ and $\beta \in K_0(Y)$.

Proof. Follows from Lemma 22.1 the discussion in Remark 38.7 and the definition of the product $K_0^f(X) \times K_0^f(X) \to K_0^f(X)$ in Remark 38.6. \qed

Remark 38.9. Let X be a scheme. Let $Z \subset X$ be a closed subscheme. Consider the strictly full, saturated, triangulated subcategory

$$D_{Z,\text{perf}}(O_X) \subset D(O_X)$$

consisting of perfect complexes of O_X-modules whose cohomology sheaves are set-theoretically supported on Z. The zeroth K-group $K_0(D_{Z,\text{perf}}(O_X))$ of this triangulated category is sometimes denoted $K_Z(X)$ or $K_{0,Z}(X)$. Using derived tensor product exactly as in Remark 38.6 we see that $K_0(D_{Z,\text{perf}}(O_X))$ has a multiplication which is associative and commutative, but in general $K_0(D_{Z,\text{perf}}(O_X))$ doesn’t have a unit.
39. Determinants of complexes

0FJW This section is the continuation of More on Algebra, Section 122. For any ringed space \((X, \mathcal{O}_X)\) there is a functor

\[
\det : \left\{ \begin{array}{c}
\text{category of perfect complexes} \\
\text{morphisms are isomorphisms}
\end{array} \right\} \longrightarrow \left\{ \begin{array}{c}
\text{category of invertible modules} \\
\text{morphisms are isomorphisms}
\end{array} \right\}
\]

Moreover, given an object \((L, F)\) of the filtered derived category \(DF(\mathcal{O}_X)\) whose filtration is finite and whose graded parts are perfect complexes, there is a canonical isomorphism \(\det(\text{gr}L) \to \det(L)\). See [KM76] for the original exposition. We will add this material later (insert future reference).

For the moment we will present an ad hoc construction in the case where \(X\) is a scheme and where we consider perfect objects \(L\) in \(D(\mathcal{O}_X)\) of tor-amplitude in \([-1, 0]\).

0FJX Lemma 39.1. Let \(X\) be a scheme. There is a functor

\[
\det : \left\{ \begin{array}{c}
\text{category of perfect complexes} \\
\text{with tor amplitude in } [-1, 0] \\
\text{morphisms are isomorphisms}
\end{array} \right\} \longrightarrow \left\{ \begin{array}{c}
\text{category of invertible modules} \\
\text{morphisms are isomorphisms}
\end{array} \right\}
\]

In addition, given a rank 0 perfect object \(L\) of \(D(\mathcal{O}_X)\) with tor-amplitude in \([-1, 0]\) there is a canonical element \(\delta(L) \in \Gamma(X, \text{det}(L))\) such that for any isomorphism \(a : L \to K\) in \(D(\mathcal{O}_X)\) we have \(\text{det}(a)(\delta(L)) = \delta(K)\). Moreover, the construction is affine locally given by the construction of More on Algebra, Section 122.

Proof. Let \(L\) be an object of the left hand side. If \(\text{Spec}(A) = U \subset X\) is an affine open, then \(L|_U\) corresponds to a perfect complex \(L^*\) of \(A\)-modules with tor-amplitude in \([-1, 0]\), see Lemmas 3.5, 10.4, and 10.7. Then we can consider the invertible \(A\)-module \(\text{det}(L^*)\) constructed in More on Algebra, Lemma 122.4. If \(\text{Spec}(B) = V \subset U\) is another affine open contained in \(U\), then \(\text{det}(L^*) \otimes_A B = \text{det}(L^* \otimes_A B)\) and hence this construction is compatible with restriction mappings (see Lemma 3.8 and note \(A \to B\) is flat). Thus we can glue these invertible modules to obtain an invertible module \(\text{det}(L)\) on \(X\). The functoriality and canonical sections are constructed in exactly the same manner. Details omitted. \(\square\)

0FYJ Remark 39.2. The construction of Lemma 39.1 is compatible with pullbacks. More precisely, given a morphism \(f : X \to Y\) of schemes and a perfect object \(K\) of \(D(\mathcal{O}_X)\) of tor-amplitude in \([-1, 0]\) then \(Lf^*K\) is a perfect object \(K\) of \(D(\mathcal{O}_X)\) of tor-amplitude in \([-1, 0]\) and we have a canonical identification

\[
f^* \delta(K) \longrightarrow \text{det}(Lf^*K)
\]

Moreover, if \(K\) has rank 0, then \(\delta(K)\) pulls back to \(\delta(Lf^*K)\) via this map. This is clear from the affine local construction of the determinant.

40. Detecting Boundedness

0GEI In this section, we show that compact generators of \(D_{QCoh}\) of a quasi-compact, quasi-separated scheme, as constructed in Section 15, have a special property. We recommend reading that section first as it is very similar to this one.

0GEJ Lemma 40.1. In Situation 2.1 denote \(j : U \to X\) the open immersion and let \(K\) be the perfect object of \(D(\mathcal{O}_X)\) corresponding to the Koszul complex on \(f_1, \ldots, f_r\) over \(A\). Let \(E \in D_{QCoh}(\mathcal{O}_X)\) and \(a \in \mathbb{Z}\). Consider the following conditions
(1) The canonical map \(\tau_{\geq a}E \to \tau_{\geq a}Rj_*(E|_U) \) is an isomorphism.

(2) We have \(\text{Hom}_{D(O_X)}(K[-n], E) = 0 \) for all \(n \geq a \).

Then (2) implies (1) and (1) implies (2) with \(a \) replaced by \(a + 1 \).

Proof. Choose a distinguished triangle \(N \to E \to Rj_*(E|_U) \to N[1] \). Then (1) implies \(\tau_{\geq a+1}N = 0 \) and (1) is implied by \(\tau_{\geq a}N = 0 \). Observe that

\[
\text{Hom}_{D(O_X)}(K[-n], Rj_*(E|_U)) = \text{Hom}_{D(O_U)}(K|_U[-n], E) = 0
\]

for all \(n \) as \(K|_U = 0 \). Thus (2) is equivalent to \(\text{Hom}_{D(O_X)}(K[-n], N) = 0 \) for all \(n \geq a \). Observe that there are distinguished triangles

\[
K^*(f^{i_1}_1, \ldots, f^{i_r}_r) \to K^*(f^{i_1}_1, \ldots, f^{i_r}_{r+\varepsilon}, \ldots, f^{i_r}_r) \to K^*(f^{i_1}_1, \ldots, f^{i_r}_{r+\varepsilon}, \ldots, f^{i_r}_r) \to \ldots
\]

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence \(\text{Hom}_{D(O_X)}(K[-n], N) = 0 \) for all \(n \geq a \) as \(\tau \) implies Lemma 3.5. Thus we find that our lemma is true. \(\square \)

Lemma 40.2. In Situation 9.1 denote \(j : U \to X \) the open immersion and let \(K \) be the perfect object of \(D(O_X) \) corresponding to the Koszul complex on \(f_1, \ldots, f_r \)

over \(A \). Let \(E \in D_{QCoh}(O_X) \) and \(a \in \mathbb{Z} \). Consider the following conditions

(1) The canonical map \(\tau_{\leq a}E \to \tau_{\leq a}Rj_*(E|_U) \) is an isomorphism, and

(2) \(\text{Hom}_{D(O_X)}(K[-n], E) = 0 \) for all \(n \leq a \).

Then (2) implies (1) and (1) implies (2) with a replaced by \(a - 1 \).

Proof. Choose a distinguished triangle \(E \to Rj_*(E|_U) \to N \to E[1] \). Then (1) implies \(\tau_{\leq a-1}N = 0 \) and (1) is implied by \(\tau_{\leq a}N = 0 \). Observe that

\[
\text{Hom}_{D(O_X)}(K[-n], Rj_*(E|_U)) = \text{Hom}_{D(O_U)}(K|_U[-n], E) = 0
\]

for all \(n \) as \(K|_U = 0 \). Thus (2) is equivalent to \(\text{Hom}_{D(O_X)}(K[-n], N) = 0 \) for all \(n \leq a \). Observe that there are distinguished triangles

\[
K^*(f^{i_1}_1, \ldots, f^{i_r}_r) \to K^*(f^{i_1}_1, \ldots, f^{i_r}_{r+\varepsilon}, \ldots, f^{i_r}_r) \to K^*(f^{i_1}_1, \ldots, f^{i_r}_{r+\varepsilon}, \ldots, f^{i_r}_r) \to \ldots
\]

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence \(\text{Hom}_{D(O_X)}(K[-n], N) = 0 \) for all \(n \leq a \) as \(\tau \) implies Lemma 3.5. Thus we find that our lemma is true. \(\square \)

Lemma 40.3. Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(P \in D_{perf}(O_X) \) and \(E \in D_{QCoh}(O_X) \). Let \(a \in \mathbb{Z} \). The following are equivalent

(1) \(\text{Hom}_{D(O_X)}(P[-i], E) = 0 \) for \(i \gg 0 \), and

(2) \(\text{Hom}_{D(O_X)}(P[-i], \tau_{\geq a}E) = 0 \) for \(i \gg 0 \).

Proof. Using the triangle \(\tau_{<a}E \to E \to \tau_{\geq a}E \to \) we see that the equivalence follows if we can show

\[
\text{Hom}_{D(O_X)}(P[-i], \tau_{<a}E) = \text{Hom}_{D(O_X)}(P, (\tau_{<a}E)[i]) = 0
\]

for \(i \gg 0 \). As \(P \) is perfect this is true by Lemma 18.2. \(\square \)
Lemma 40.4. Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(P \in D_{\text{perf}}(\mathcal{O}_X) \) and \(E \in D_{\text{QCoh}}(\mathcal{O}_X) \). Let \(a \in \mathbb{Z} \). The following are equivalent

1. \(\text{Hom}_{D(\mathcal{O}_X)}(P[-i], E) = 0 \) for \(i \ll 0 \), and
2. \(\text{Hom}_{D(\mathcal{O}_X)}(P[-i], \tau_{\geq a} E) = 0 \) for \(i \ll 0 \).

Proof. Using the triangle \(\tau_{\leq a} E \to E \to \tau_{> a} E \) we see that the equivalence follows if we can show

\[
\text{Hom}_{D(\mathcal{O}_X)}(P[-i], \tau_{> a} E) = \text{Hom}_{D(\mathcal{O}_X)}(P, (\tau_{> a} E)[i]) = 0
\]

for \(i \ll 0 \). As \(P \) is perfect this is true by Lemma \[18.2\].

Proposition 40.5. Let \(X \) be a quasi-compact and quasi-separated scheme. Let \(G \in D_{\text{perf}}(\mathcal{O}_X) \) be a perfect complex which generates \(D_{\text{QCoh}}(\mathcal{O}_X) \). Let \(E \in D_{\text{QCoh}}(\mathcal{O}_X) \). The following are equivalent

1. \(E \in D_{\text{Qcoh}}(\mathcal{O}_X) \),
2. \(\text{Hom}_{D(\mathcal{O}_X)}(G[-i], E) = 0 \) for \(i \gg 0 \),
3. \(\text{Ext}^1_X(G, E) = 0 \) for \(i \gg 0 \),
4. \(R\text{Hom}_X(G, E) \) is in \(D^{-}(\mathbb{Z}) \),
5. \(H^i(X, G^\vee \otimes_{\mathcal{O}_X} E) = 0 \) for \(i \gg 0 \),
6. \(R\Gamma(X, G^\vee \otimes_{\mathcal{O}_X} E) \) is in \(D^{-}(\mathbb{Z}) \),
7. for every perfect object \(P \) of \(D(\mathcal{O}_X) \)
 a. the assertions (2), (3), (4) hold with \(G \) replaced by \(P \), and
 b. \(H^i(X, P \otimes_{\mathcal{O}_X} E) = 0 \) for \(i \gg 0 \),
 c. \(R\Gamma(X, P \otimes_{\mathcal{O}_X} E) \) is in \(D^{-}(\mathbb{Z}) \).

Proof. Assume (1). Since \(\text{Hom}_{D(\mathcal{O}_X)}(G[-i], E) = \text{Hom}_{D(\mathcal{O}_X)}(G, E[i]) \) we see that this is zero for \(i \gg 0 \) by Lemma \[18.2\]. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section \[42\]. Part (5) and (6) are equivalent as \(H^i(X, -) = H^i(R\Gamma(X, -)) \) by definition. The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology, Lemma \[48.5\] and the fact that \((G[-i])^\vee = G^\vee[i]\).

It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2) – (6) imply (7). Recall that \(G \) is a classical generator for \(D_{\text{perf}}(\mathcal{O}_X) \) by Remark \[17.2\]. For \(P \in D_{\text{perf}}(\mathcal{O}_X) \) let \(T(P) \) be the assertion that \(R\text{Hom}_X(P, E) \) is in \(D^{-}(\mathbb{Z}) \). Clearly, \(T \) is inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles, is inherited by direct summands, and is preserved by shifts. Hence by Derived Categories, Remark \[36.7\] we see that (4) implies \(T \) holds on all of \(D_{\text{perf}}(\mathcal{O}_X) \). The same argument works for all other properties, except that for property (7)(b) and (7)(c) we also use that \(P \mapsto P^\vee \) is a self equivalence of \(D_{\text{perf}}(\mathcal{O}_X) \). Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle of Cohomology of Schemes, Lemma \[4.1\].

First, we prove (2) \(\Rightarrow \) (1) if \(X \) is affine. Set \(P = \mathcal{O}_X[0] \). From (7) we obtain \(H^i(X, E) = 0 \) for \(i \gg 0 \). Hence (1) follows since \(E \) is determined by \(R\Gamma(X, E) \), see Lemma \[3.3\].

Now assume \(X = U \cup V \) with \(U \) a quasi-compact open of \(X \) and \(V \) an affine open, and assume the implication (2) \(\Rightarrow \) (1) is known for the schemes \(U, V, \) and \(U \cap V \). Suppose \(E \in D_{\text{QCoh}}(\mathcal{O}_X) \) satisfies (2) – (7). By Lemma \[15.1\] and Theorem...
there exists a perfect complex Q on X such that $Q|_U$ generates $D_{Qcoh}(O_U)$. Let $f_1, \ldots, f_r \in \Gamma(V, O_V)$ be such that $V \setminus U = V(f_1, \ldots, f_r)$ as subsets of V. Let $K \in D_{perf}(O_V)$ be the object corresponding to the Koszul complex on f_1, \ldots, f_r. Let $K' \in D_{perf}(O_X)$ be

\begin{equation}
K' = R(V \to X)_*K = R(V \to X)_!K,
\end{equation}

see Cohomology, Lemmas \cite{33.6 and 47.10}. This is a perfect complex on X supported on the closed set $X \setminus U \subset V$ and isomorphic to K on V. By assumption, we know $R\text{Hom}_{O_X}(Q, E)$ and $R\text{Hom}_{O_X}(K', E)$ are bounded above.

By the second description of K' in \eqref{40.5.1} we have

\[\text{Hom}_{D(O_X)}(K[-i], E|_V) = \text{Hom}_{D(O_X)}(K'[\leq -i], E) = 0\]

for $i \gg 0$. Therefore, we may apply Lemma \ref{40.1} to $E|_V$ to obtain an integer a such that $\tau_{\geq a}(E|_V) = \tau_{\geq a}R(U \cap V \to V)_*(E|_{U \cap V})$. Then \(\tau_{\geq a}E = \tau_{\geq a}R(U \to X)_*(E|_U)\) (check that the canonical map is an isomorphism after restricting to U and to V). Hence using Lemma \ref{40.3} (twice we see that

\[\text{Hom}_{D(O_X)}(Q|_U[-i], E|_V) = \text{Hom}_{D(O_X)}(Q[-i], R(U \to X)_*(E|_U)) = 0\]

for $i \gg 0$. Since the Proposition holds for U and the generator $Q|_U$, we have $E|_U \in D_{Qcoh}(O_U)$. But then since the functor $R(U \to X)_*$ preserves $D_{Qcoh}(O_X)$ (by Lemma \ref{4.1}, we get $\tau_{\geq a}E \in D_{Qcoh}(O_X)$. Thus $E \in D_{Qcoh}(O_X)$.

\begin{proposition}
\textbf{Proposition 40.6.} Let X be a quasi-compact and quasi-separated scheme. Let $G \in D_{perf}(O_X)$ be a perfect complex which generates $D_{Qcoh}(O_X)$. Let $E \in D_{Qcoh}(O_X)$. The following are equivalent
\begin{enumerate}
\item $E \in D_{Qcoh}(O_X)$,
\item $\text{Hom}_{D(O_X)}(G[-i], E) = 0$ for $i \ll 0$,
\item $\text{Ext}^i_X(G, E) = 0$ for $i \ll 0$,
\item $R\text{Hom}_X(G, E)$ is in $D^+(Z)$,
\item $H^i(X, G^\vee \otimes_{O_X} E) = 0$ for $i \ll 0$,
\item $R\Gamma(X, G^\vee \otimes_{O_X} E)$ is in $D^+(Z)$,
\item for every perfect object P of $D(O_X)$
\begin{enumerate}
\item the assertions (2), (3), (4) hold with G replaced by P, and
\item $H^i(X, P \otimes_{O_X} E) = 0$ for $i \ll 0$,
\item $R\Gamma(X, P \otimes_{O_X} E)$ is in $D^+(Z)$.
\end{enumerate}
\end{enumerate}
\end{proposition}

\textbf{Proof.} Assume (1). Since $\text{Hom}_{D(O_X)}(G[-i], E) = \text{Hom}_{D(O_X)}(G, E[i])$ we see that this is zero for $i \ll 0$ by Lemma \ref{18.2}. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section \ref{42}. Part (5) and (6) are equivalent as $H^i(X, -) = H^i(R\Gamma(X, -))$ by definition. The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology, Lemma \ref{48.5} and the fact that $(G[-i])^\vee = G^\vee[i]$.

It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2) – (6) imply (7). Recall that G is a classical generator for $D_{perf}(O_X)$ by Remark \ref{17.2}. For $P \in D_{perf}(O_X)$ let $T(P)$ be the assertion that $R\text{Hom}_X(P, E)$ is in $D^+(Z)$. Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles, is inherited by direct summands, and is preserved by shifts. Hence by Derived Categories, Remark \ref{36.7} we see that (4) implies T holds.
on all of $D_{perf}(\mathcal{O}_X)$. The same argument works for all other properties, except that for property (7)(b) and (7)(c) we also use that $P \mapsto P^\vee$ is a self equivalence of $D_{perf}(\mathcal{O}_X)$. Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle of Cohomology of Schemes, Lemma 4.1.

First, we prove (2) – (7) ⇒ (1) if X is affine. Let $P = \mathcal{O}_X[0]$. From (7) we obtain $H^i(X, E) = 0$ for $i \ll 0$. Hence (1) follows since E is determined by $R\Gamma(X, E)$, see Lemma 3.5.

Now assume $X = U \cup V$ with U a quasi-compact open of X and V an affine open, and assume the implication (2) – (7) ⇒ (1) is known for the schemes U, V, and $U \cap V$. Suppose $E \in D_{QCoh}(\mathcal{O}_X)$ satisfies (2) – (7). By Lemma 15.1 and Theorem 15.3 there exists a perfect complex Q on X such that $Q|_U$ generates $D_{QCoh}(\mathcal{O}_U)$. Let $f_1, \ldots, f_r \in \Gamma(V, \mathcal{O}_V)$ be such that $V \setminus U = V(f_1, \ldots, f_r)$ as subsets of V. Let $K \in D_{perf}(\mathcal{O}_V)$ be the object corresponding to the Koszul complex on f_1, \ldots, f_r. Let $K' \in D_{perf}(\mathcal{O}_X)$ be

$$K' = R(V \to X)_* K = R(V \to X)_! K,$$

see Cohomology, Lemmas 33.6 and 47.10. This is a perfect complex on X supported on the closed set $X \setminus U \subset V$ and isomorphic to K on V. By assumption, we know $R\Hom_{\mathcal{O}_X}(Q, E)$ and $R\Hom_{\mathcal{O}_X}(K', E)$ are bounded below. By the second description of K' in (40.6.1) we have

$$\Hom_{D(\mathcal{O}_V)}(K[-i], E|_V) = \Hom_{D(\mathcal{O}_X)}(K'[-i], E)_0$$

for $i \ll 0$. Therefore, we may apply Lemma 40.2 to $E|_V$ to obtain an integer a such that $\tau_{\leq a}(E|_V) = \tau_{\leq a} R(U \cap V \to X)_*(E|_{U \cap V})$. Then $\tau_{\leq a} E = \tau_{\leq a} R(U \to X)_*(E|_U)$ (check that the canonical map is an isomorphism after restricting to U and to V). Hence using Lemma 40.4 twice we see that

$$\Hom_{D(\mathcal{O}_U)}(Q|_U[-i], E|_U) = \Hom_{D(\mathcal{O}_X)}(Q[-i], R(U \to X)_*(E|_U)) = 0$$

for $i \ll 0$. Since the Proposition holds for U and the generator $Q|_U$, we have $E|_U \in D_{QCoh}^+(\mathcal{O}_U)$. But then since the functor $R(U \to X)_*$ preserves bounded below objects (see Cohomology, Section 3) we get $\tau_{\leq a} E \in D_{QCoh}^+(\mathcal{O}_X)$. Thus $E \in D_{QCoh}^+(\mathcal{O}_X)$. \qed

41. Quasi-coherent objects in the derived category

0GZy Let X be a scheme. Recall that $X_{affine,Zar}$ denotes the category of affine opens of X with topology given by standard Zariski coverings, see Topologies, Definition 3.7. We remind the reader that the topos of $X_{affine,Zar}$ is the small Zariski topos of X, see Topologies, Lemma 3.11. The site $X_{affine,Zar}$ comes with a structure sheaf \mathcal{O} and there is an equivalence of ringed topos

$$(\text{Sh}(X_{affine,Zar}), \mathcal{O}) \to (\text{Sh}(X_{Zar}), \mathcal{O})$$

See Descent, Equation (11.1.1) and the discussion in Descent, Section 11 surrounding it where a slightly different notation is used.
In this section we denote X_{affine} the underlying category of $X_{\text{affine,Zar}}$ endowed with the chaotic topology, i.e., such that sheaves agree with presheaves. In particular, the structure sheaf \mathcal{O} becomes a sheaf on X_{affine} as well. We obtain a morphisms of ringed sites

$$\epsilon : (X_{\text{affine,Zar}}, \mathcal{O}) \to (X_{\text{affine}}, \mathcal{O})$$

as in Cohomology on Sites, Section 27. In this section we will identify $D_{\text{QCoh}}(\mathcal{O}_X)$ with the category $\mathcal{QC}(X_{\text{affine}}, \mathcal{O})$ introduced in Cohomology on Sites, Section 43.

Lemma 41.1. In the situation above there are canonical exact equivalences between the following triangulated categories

1. $D_{\text{QCoh}}(\mathcal{O}_X)$,
2. $D_{\text{QCoh}}(X_{\text{Zar}}, \mathcal{O})$,
3. $D_{\text{QCoh}}(X_{\text{affine,Zar}}, \mathcal{O})$,
4. $D_{\text{QCoh}}(X_{\text{affine}}, \mathcal{O}_X)$, and
5. $\mathcal{QC}(X_{\text{affine}}, \mathcal{O})$.

Proof. If $U \subset V \subset X$ are affine open, then the ring map $\mathcal{O}(V) \to \mathcal{O}(U)$ is flat. Hence the equivalence between (4) and (5) is a special case of Cohomology on Sites, Lemma 43.11 (the proof also clarifies the statement).

The ringed site $(X_{\text{Zar}}, \mathcal{O})$ and the ringed space (X, \mathcal{O}_X) have the same categories of modules by Descent, Remark 8.3. Via this equivalence the quasi-coherent modules correspond by Descent, Proposition 8.9. Hence we get a canonical exact equivalence between the triangulated categories in (1) and (2).

The discussion preceding the lemma shows that we have an equivalence of ringed topoi $(\mathcal{Sh}(X_{\text{affine,Zar}}), \mathcal{O}) \to (\mathcal{Sh}(X_{\text{Zar}}), \mathcal{O})$ and hence an equivalence between abelian categories of modules. Since the notion of quasi-coherent modules is intrinsic (Modules on Sites, Lemma 23.2) we see that this equivalence preserves the subcategories of quasi-coherent modules. Thus we get a canonical exact equivalence between the triangulated categories in (2) and (3).

To get an exact equivalence between the triangulated categories in (3) and (4) we will apply Cohomology on Sites, Lemma 29.1 to the morphism $\epsilon : (X_{\text{affine,Zar}}, \mathcal{O}) \to (X_{\text{affine}}, \mathcal{O})$ above. We take $\mathcal{B} = \text{Ob}(X_{\text{affine}})$ and we take $\mathcal{A} \subset \text{PMod}(X_{\text{affine}}, \mathcal{O})$ to be the full subcategory of those presheaves \mathcal{F} such that $\mathcal{F}(V) \otimes_{\mathcal{O}(V)} \mathcal{O}(U) \to \mathcal{F}(U)$ is an isomorphism. Observe that by Descent, Lemma 11.2 objects of \mathcal{A} are exactly those sheaves in the Zariski topology which are quasi-coherent modules on $(X_{\text{affine,Zar}}, \mathcal{O})$. On the other hand, by Modules on Sites, Lemma 24.2 the objects of \mathcal{A} are exactly the quasi-coherent modules on $(X_{\text{affine}}, \mathcal{O})$, i.e., in the chaotic topology. Thus if we show that Cohomology on Sites, Lemma 29.1 applies, then we do indeed get the canonical equivalence between the categories of (3) and (4) using ϵ^* and $R\epsilon_*$. We have to verify 4 conditions:

1. Every object of \mathcal{A} is a sheaf for the Zariski topology. This we have seen above.
2. \mathcal{A} is a weak Serre subcategory of $\text{Mod}(X_{\text{affine,Zar}}, \mathcal{O})$. Above we have seen that $\mathcal{A} = \text{QCoh}(X_{\text{affine,Zar}}, \mathcal{O})$ and we have seen above that these, via the
equivalence $\text{Mod}(\mathcal{X}_{\text{affine,Zar}}, \mathcal{O}) = \text{Mod}(\mathcal{X}, \mathcal{O}_X)$, correspond to the quasi-coherent modules on \mathcal{X}. Thus the result by the discussion in Schemes, Section 24.

(3) Every object of $\mathcal{X}_{\text{affine}}$ has a covering in the chaotic topology whose members are elements of \mathcal{B}. This holds because \mathcal{B} contains all objects.

(4) For every object U of $\mathcal{X}_{\text{affine}}$ and \mathcal{F} in \mathcal{A} we have $H^p_{\text{Zar}}(U, \mathcal{F}) = 0$ for $p > 0$. This holds by the vanishing of cohomology of quasi-coherent modules on affines, see Cohomology of Schemes, Lemma 27.2.

This finishes the proof. □

0H00 **Remark 41.2.** Let S be a scheme. We will later show that also $QC((\text{Aff}/S), \mathcal{O})$ is canonically equivalent to $D_{QCoh}(\mathcal{O}_S)$. See Sheaves on Stacks, Proposition 26.4.

42. Other chapters

Preliminaries

1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks
9. Fields
10. Commutative Algebra
11. Brauer Groups
12. Homological Algebra
13. Derived Categories
14. Simplicial Methods
15. More on Algebra
16. Smoothing Ring Maps
17. Sheaves of Modules
18. Modules on Sites
19. Injectives
20. Cohomology of Sheaves
21. Cohomology on Sites
22. Differential Graded Algebra
23. Divided Power Algebra
24. Differential Graded Sheaves
25. Hypercoverings

Schemes

26. Schemes
27. Constructions of Schemes
28. Properties of Schemes
29. Morphisms of Schemes
30. Cohomology of Schemes
31. Divisors

Topics in Scheme Theory

32. Limits of Schemes
33. Varieties
34. Topologies on Schemes
35. Descent
36. Derived Categories of Schemes
37. More on Morphisms
38. More on Flatness
39. Groupoid Schemes
40. More on Groupoid Schemes
41. Étale Morphisms of Schemes
42. Chow Homology
43. Intersection Theory
44. Picard Schemes of Curves
45. Well Cohomology Theories
46. Adequate Modules
47. Dualizing Complexes
48. Duality for Schemes
49. Discriminants and Differents
50. de Rham Cohomology
51. Local Cohomology
52. Algebraic and Formal Geometry
53. Algebraic Curves
54. Resolution of Surfaces
55. Semistable Reduction
56. Functors and Morphisms
57. Derived Categories of Varieties
58. Fundamental Groups of Schemes
59. Étale Cohomology
60. Crystalline Cohomology
61. Pro-étale Cohomology
62. More Etale Cohomology
63. The Trace Formula
References

