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1. Introduction

0B93 In this chapter we do just enough work to construct the Picard scheme of a pro-
jective nonsingular curve over an algebraically closed field. See [Kle05] for a more
thorough discussion as well as historical background.
Later in the Stacks project we will discuss Hilbert and Quot functors in much
greater generality.

2. Hilbert scheme of points

0B94 Let X → S be a morphism of schemes. Let d ≥ 0 be an integer. For a scheme T
over S we let

Hilbd
X/S(T ) =

{
Z ⊂ XT closed subscheme such that

Z → T is finite locally free of degree d

}
If T ′ → T is a morphism of schemes over S and if Z ∈ Hilbd

X/S(T ), then the base
change ZT ′ ⊂ XT ′ is an element of Hilbd

X/S(T ′). In this way we obtain a functor

Hilbd
X/S : (Sch/S)opp −→ Sets, T −→ Hilbd

X/S(T )

In general Hilbd
X/S is an algebraic space (insert future reference here). In this section

we will show that Hilbd
X/S is representable by a scheme if any finite number of points

in a fibre of X → S are contained in an affine open. If Hilbd
X/S is representable by

a scheme, we often denote this scheme by Hilbd
X/S .

Lemma 2.1.0B95 Let X → S be a morphism of schemes. The functor Hilbd
X/S satisfies

the sheaf property for the fpqc topology (Topologies, Definition 9.12).

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi
=

X ×S Ti. Note that {Xi → XT }i∈I is an fpqc covering of XT (Topologies, Lemma
9.7) and that XTi×T Ti′ = Xi×XT

Xi′ . Suppose that Zi ∈ Hilbd
X/S(Ti) is a collection

of elements such that Zi and Zi′ map to the same element of Hilbd
X/S(Ti ×T Ti′).

By effective descent for closed immersions (Descent, Lemma 37.2) there is a closed
immersion Z → XT whose base change by Xi → XT is equal to Zi → Xi. The
morphism Z → T then has the property that its base change to Ti is the morphism
Zi → Ti. Hence Z → T is finite locally free of degree d by Descent, Lemma
23.30. □

Lemma 2.2.0B96 Let X → S be a morphism of schemes. If X → S is of finite
presentation, then the functor Hilbd

X/S is limit preserving (Limits, Remark 6.2).

Proof. Let T = lim Ti be a limit of affine schemes over S. We have to show
that Hilbd

X/S(T ) = colim Hilbd
X/S(Ti). Observe that if Z → XT is an element

of Hilbd
X/S(T ), then Z → T is of finite presentation. Hence by Limits, Lemma

10.1 there exists an i, a scheme Zi of finite presentation over Ti, and a morphism
Zi → XTi

over Ti whose base change to T gives Z → XT . We apply Limits, Lemma
8.5 to see that we may assume Zi → XTi is a closed immersion after increasing i.
We apply Limits, Lemma 8.8 to see that Zi → Ti is finite locally free of degree d
after possibly increasing i. Then Zi ∈ Hilbd

X/S(Ti) as desired. □

Let S be a scheme. Let i : X → Y be a closed immersion of schemes over S. Then
there is a transformation of functors

Hilbd
X/S −→ Hilbd

Y/S

which maps an element Z ∈ Hilbd
X/S(T ) to iT (Z) ⊂ YT in Hilbd

Y/S . Here iT : XT →
YT is the base change of i.

Lemma 2.3.0B97 Let S be a scheme. Let i : X → Y be a closed immersion of schemes.
If Hilbd

Y/S is representable by a scheme, so is Hilbd
X/S and the corresponding mor-

phism of schemes Hilbd
X/S → Hilbd

Y/S is a closed immersion.

Proof. Let T be a scheme over S and let Z ∈ Hilbd
Y/S(T ). Claim: there is a closed

subscheme TX ⊂ T such that a morphism of schemes T ′ → T factors through TX

if and only if ZT ′ → YT ′ factors through XT ′ . Applying this to a scheme Tuniv

representing Hilbd
Y/S and the universal object1 Zuniv ∈ Hilbd

Y/S(Tuniv) we get a
closed subscheme Tuniv,X ⊂ Tuniv such that Zuniv,X = Zuniv ×Tuniv

Tuniv,X is a
closed subscheme of X×STuniv,X and hence defines an element of Hilbd

X/S(Tuniv,X).
A formal argument then shows that Tuniv,X is a scheme representing Hilbd

X/S with
universal object Zuniv,X .
Proof of the claim. Consider Z ′ = XT ×YT

Z. Given T ′ → T we see that ZT ′ → YT ′

factors through XT ′ if and only if Z ′
T ′ → ZT ′ is an isomorphism. Thus the claim

follows from the very general More on Flatness, Lemma 23.4. However, in this
special case one can prove the statement directly as follows: first reduce to the case
T = Spec(A) and Z = Spec(B). After shrinking T further we may assume there is
an isomorphism φ : B → A⊕d as A-modules. Then Z ′ = Spec(B/J) for some ideal

1See Categories, Section 3

https://stacks.math.columbia.edu/tag/0B96
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J ⊂ B. Let gβ ∈ J be a collection of generators and write φ(gβ) = (g1
β , . . . , gd

β).
Then it is clear that TX is given by Spec(A/(gj

β)). □

Lemma 2.4.0B98 Let X → S be a morphism of schemes. If X → S is separated and
Hilbd

X/S is representable, then Hilbd
X/S → S is separated.

Proof. In this proof all unadorned products are over S. Let H = Hilbd
X/S and

let Z ∈ Hilbd
X/S(H) be the universal object. Consider the two objects Z1, Z2 ∈

Hilbd
X/S(H × H) we get by pulling back Z by the two projections H × H → H.

Then Z1 = Z × H ⊂ XH×H and Z2 = H × Z ⊂ XH×H . Since H represents
the functor Hilbd

X/S , the diagonal morphism ∆ : H → H × H has the following
universal property: A morphism of schemes T → H × H factors through ∆ if and
only if Z1,T = Z2,T as elements of Hilbd

X/S(T ). Set Z = Z1 ×XH×H
Z2. Then we see

that T → H × H factors through ∆ if and only if the morphisms ZT → Z1,T and
ZT → Z2,T are isomorphisms. It follows from the very general More on Flatness,
Lemma 23.4 that ∆ is a closed immersion. In the proof of Lemma 2.3 the reader
finds an alternative easier proof of the needed result in our special case. □

Lemma 2.5.0B99 Let X → S be a morphism of affine schemes. Let d ≥ 0. Then
Hilbd

X/S is representable.

Proof. Say S = Spec(R). Then we can choose a closed immersion of X into the
spectrum of R[xi; i ∈ I] for some set I (of sufficiently large cardinality. Hence by
Lemma 2.3 we may assume that X = Spec(A) where A = R[xi; i ∈ I]. We will use
Schemes, Lemma 15.4 to prove the lemma in this case.
Condition (1) of the lemma follows from Lemma 2.1.
For every subset W ⊂ A of cardinality d we will construct a subfunctor FW of
Hilbd

X/S . (It would be enough to consider the case where W consists of a collection
of monomials in the xi but we do not need this.) Namely, we will say that Z ∈
Hilbd

X/S(T ) is in FW (T ) if and only if the OT -linear map⊕
f∈W

OT −→ (Z → T )∗OZ , (gf ) 7−→
∑

gf f |Z

is surjective (equivalently an isomorphism). Here for f ∈ A and Z ∈ Hilbd
X/S(T )

we denote f |Z the pullback of f by the morphism Z → XT → X.
Openness, i.e., condition (2)(b) of the lemma. This follows from Algebra, Lemma
79.4.
Covering, i.e., condition (2)(c) of the lemma. Since

A ⊗R OT = (XT → T )∗OXT
→ (Z → T )∗OZ

is surjective and since (Z → T )∗OZ is finite locally free of rank d, for every point
t ∈ T we can find a finite subset W ⊂ A of cardinality d whose images form a basis
of the d-dimensional κ(t)-vector space ((Z → T )∗OZ)t ⊗OT,t

κ(t). By Nakayama’s
lemma there is an open neighbourhood V ⊂ T of t such that ZV ∈ FW (V ).
Representable, i.e., condition (2)(a) of the lemma. Let W ⊂ A have cardinality d.
We claim that FW is representable by an affine scheme over R. We will construct
this affine scheme here, but we encourage the reader to think it trough for them-
selves. Choose a numbering f1, . . . , fd of the elements of W . We will construct a

https://stacks.math.columbia.edu/tag/0B98
https://stacks.math.columbia.edu/tag/0B99
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universal element Zuniv = Spec(Buniv) of FW over Tuniv = Spec(Runiv) which will
be the spectrum of

Buniv = Runiv[e1, . . . , ed]/(ekel −
∑

cm
klem)

where the el will be the images of the fl and where the closed immersion Zuniv →
XTuniv is given by the ring map

A ⊗R Runiv −→ Buniv

mapping 1 ⊗ 1 to
∑

blel and xi to
∑

bl
iel. In fact, we claim that FW is represented

by the spectrum of the ring
Runiv = R[cm

kl, bl, bl
i]/auniv

where the ideal auniv is generated by the following elements:
(1) multiplication on Buniv is commutative, i.e., cm

lk − cm
kl ∈ auniv,

(2) multiplication on Buniv is associative, i.e., cm
lkcp

mn − cp
lqcq

kn ∈ auniv,
(3)

∑
blel is a multiplicative 1 in Buniv, in other words, we should have (

∑
blel)ek =

ek for all k, which means
∑

blcm
lk − δkm ∈ auniv (Kronecker delta).

After dividing out by the ideal a′
univ of the elements listed sofar we obtain a well

defined ring map

Ψ : A ⊗R R[cm
kl, bl, bl

i]/a′
univ −→

(
R[cm

kl, bl, bl
i]/a′

univ

)
[e1, . . . , ed]/(ekel −

∑
cm

klem)

sending 1 ⊗ 1 to
∑

blel and xi ⊗ 1 to
∑

bl
iel. We need to add some more elements

to our ideal because we need
(5) fl to map to el in Buniv. Write Ψ(fl)−el =

∑
hm

l em with hm
l ∈ R[cm

kl, bl, bl
i]/a′

univ

then we need to set hm
l equal to zero.

Thus setting auniv ⊂ R[cm
kl, bl, bl

i] equal to a′
univ+ ideal generated by lifts of hm

l to
R[cm

kl, bl, bl
i], then it is clear that FW is represented by Spec(Runiv). □

Proposition 2.6.0B9A Let X → S be a morphism of schemes. Let d ≥ 0. Assume
for all (s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an affine open
U ⊂ X with x1, . . . , xd ∈ U . Then Hilbd

X/S is representable by a scheme.

Proof. Either using relative glueing (Constructions, Section 2) or using the func-
torial point of view (Schemes, Lemma 15.4) we reduce to the case where S is affine.
Details omitted.
Assume S is affine. For U ⊂ X affine open, denote FU ⊂ Hilbd

X/S the subfunctor
such that for a scheme T/S an element Z ∈ Hilbd

X/S(T ) is in FU (T ) if and only if
Z ⊂ UT . We will use Schemes, Lemma 15.4 and the subfunctors FU to conclude.
Condition (1) is Lemma 2.1.

Condition (2)(a) follows from the fact that FU = Hilbd
U/S and that this is rep-

resentable by Lemma 2.5. Namely, if Z ∈ FU (T ), then Z can be viewed as a
closed subscheme of UT which is finite locally free of degree d over T and hence
Z ∈ Hilbd

U/S(T ). Conversely, if Z ∈ Hilbd
U/S(T ) then Z → UT → XT is a closed

immersion2 and we may view Z as an element of FU (T ).

2This is clear if X → S is separated as in this case Morphisms, Lemma 41.7 tells us that the
immersion φ : Z → XT has closed image and hence is a closed immersion by Schemes, Lemma
10.4. We suggest the reader skip the rest of this footnote as we don’t know of any instance where

https://stacks.math.columbia.edu/tag/0B9A
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Let Z ∈ Hilbd
X/S(T ) for some scheme T over S. Let

B = (Z → T )
(
(Z → XT → X)−1(X \ U)

)
This is a closed subset of T and it is clear that over the open TZ,U = T \ B the
restriction Zt′ maps into UT ′ . On the other hand, for any b ∈ B the fibre Zb does
not map into U . Thus we see that given a morphism T ′ → T we have ZT ′ ∈ FU (T ′)
⇔ T ′ → T factors through the open TZ,U . This proves condition (2)(b).
Condition (2)(c) follows from our assumption on X/S. All we have to do is show
the following: If T is the spectrum of a field and Z ⊂ XT is a closed subscheme,
finite flat of degree d over T , then Z → XT → X factors through an affine open
U of X. This is clear because Z will have at most d points and these will all map
into the fibre of X over the image point of T → S. □

Remark 2.7.0B9B Let f : X → S be a morphism of schemes. The assumption of
Proposition 2.6 and hence the conclusion holds in each of the following cases:

(1) X is quasi-affine,
(2) f is quasi-affine,
(3) f is quasi-projective,
(4) f is locally projective,
(5) there exists an ample invertible sheaf on X,
(6) there exists an f -ample invertible sheaf on X, and
(7) there exists an f -very ample invertible sheaf on X.

Namely, in each of these cases, every finite set of points of a fibre Xs is contained
in a quasi-compact open U of X which comes with an ample invertible sheaf, is
isomorphic to an open of an affine scheme, or is isomorphic to an open of Proj of
a graded ring (in each case this follows by unwinding the definitions). Thus the
existence of suitable affine opens by Properties, Lemma 29.5.

3. Moduli of divisors on smooth curves

0B9C For a smooth morphism X → S of relative dimension 1 the functor Hilbd
X/S

parametrizes relative effective Cartier divisors as defined in Divisors, Section 18.

Lemma 3.1.0B9D Let X → S be a smooth morphism of schemes of relative dimension
1. Let D ⊂ X be a closed subscheme. Consider the following conditions

(1) D → S is finite locally free,
(2) D is a relative effective Cartier divisor on X/S,
(3) D → S is locally quasi-finite, flat, and locally of finite presentation, and
(4) D → S is locally quasi-finite and flat.

We always have the implications
(1) ⇒ (2) ⇔ (3) ⇒ (4)

If S is locally Noetherian, then the last arrow is an if and only if. If X → S is
proper (and S arbitrary), then the first arrow is an if and only if.

the assumptions on X → S hold but X → S is not separated. In the general case, let x ∈ XT

be a point in the closure of φ(Z). We have to show that x ∈ φ(Z). Let t ∈ T be the image of
x. By assumption on X → S we can choose an affine open W ⊂ XT containing x and φ(Zt).
Then φ−1(W ) is an open containing the whole fibre Zt and since Z → T is closed, we may after
replacing T by an open neighbourhood of t assume that Z = φ−1(W ). Then φ(Z) ⊂ W is closed
by the separated case (as W → T is separated) and we conclude x ∈ φ(Z).

https://stacks.math.columbia.edu/tag/0B9B
https://stacks.math.columbia.edu/tag/0B9D
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Proof. Equivalence of (2) and (3). This follows from Divisors, Lemma 18.9 if we
can show the equivalence of (2) and (3) when S is the spectrum of a field k. Let
x ∈ X be a closed point. As X is smooth of relative dimension 1 over k and we see
that OX,x is a regular local ring of dimension 1 (see Varieties, Lemma 25.3). Thus
OX,x is a discrete valuation ring (Algebra, Lemma 119.7) and hence a PID. It follows
that every sheaf of ideals I ⊂ OX which is nonvanishing at all the generic points of
X is invertible (Divisors, Lemma 15.2). In other words, every closed subscheme of
X which does not contain a generic point is an effective Cartier divisor. It follows
that (2) and (3) are equivalent.
If S is Noetherian, then any locally quasi-finite morphism D → S is locally of finite
presentation (Morphisms, Lemma 21.9), whence (3) is equivalent to (4).
If X → S is proper (and S is arbitrary), then D → S is proper as well. Since a
proper locally quasi-finite morphism is finite (More on Morphisms, Lemma 44.1)
and a finite, flat, and finitely presented morphism is finite locally free (Morphisms,
Lemma 48.2), we see that (1) is equivalent to (2). □

Lemma 3.2.0B9E Let X → S be a smooth morphism of schemes of relative dimension
1. Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over S.
Then D1 + D2 is finite locally free of degree d1 + d2 over S.

Proof. By Lemma 3.1 we see that D1 and D2 are relative effective Cartier divisors
on X/S. Thus D = D1 + D2 is a relative effective Cartier divisor on X/S by
Divisors, Lemma 18.3. Hence D → S is locally quasi-finite, flat, and locally of finite
presentation by Lemma 3.1. Applying Morphisms, Lemma 41.11 the surjective
integral morphism D1⨿D2 → D we find that D → S is separated. Then Morphisms,
Lemma 41.9 implies that D → S is proper. This implies that D → S is finite (More
on Morphisms, Lemma 44.1) and in turn we see that D → S is finite locally free
(Morphisms, Lemma 48.2). Thus it suffice to show that the degree of D → S is
d1 + d2. To do this we may base change to a fibre of X → S, hence we may assume
that S = Spec(k) for some field k. In this case, there exists a finite set of closed
points x1, . . . , xn ∈ X such that D1 and D2 are supported on {x1, . . . , xn}. In fact,
there are nonzerodivisors fi,j ∈ OX,xi

such that

D1 =
∐

Spec(OX,xi
/(fi,1)) and D2 =

∐
Spec(OX,xi

/(fi,2))

Then we see that
D =

∐
Spec(OX,xi/(fi,1fi,2))

From this one sees easily that D has degree d1 + d2 over k (if need be, use Algebra,
Lemma 121.1). □

Lemma 3.3.0B9F Let X → S be a smooth morphism of schemes of relative dimension
1. Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over S.
If D1 ⊂ D2 (as closed subschemes) then there is a closed subscheme D ⊂ X finite
locally free of degree d2 − d1 over S such that D2 = D1 + D.

Proof. This proof is almost exactly the same as the proof of Lemma 3.2. By
Lemma 3.1 we see that D1 and D2 are relative effective Cartier divisors on X/S.
By Divisors, Lemma 18.4 there is a relative effective Cartier divisor D ⊂ X such
that D2 = D1 + D. Hence D → S is locally quasi-finite, flat, and locally of finite
presentation by Lemma 3.1. Since D is a closed subscheme of D2, we see that

https://stacks.math.columbia.edu/tag/0B9E
https://stacks.math.columbia.edu/tag/0B9F
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D → S is finite. It follows that D → S is finite locally free (Morphisms, Lemma
48.2). Thus it suffice to show that the degree of D → S is d2 − d1. This follows
from Lemma 3.2. □

Let X → S be a smooth morphism of schemes of relative dimension 1. By Lemma
3.1 for a scheme T over S and D ∈ Hilbd

X/S(T ), we can view D as a relative effective
Cartier divisor on XT /T such that D → T is finite locally free of degree d. Hence,
by Lemma 3.2 we obtain a transformation of functors

Hilbd1
X/S × Hilbd2

X/S −→ Hilbd1+d2
X/S , (D1, D2) 7−→ D1 + D2

If Hilbd
X/S is representable for all degrees d, then this transformation of functors

corresponds to a morphism of schemes

Hilbd1
X/S ×S Hilbd2

X/S −→ Hilbd1+d2
X/S

over S. Observe that Hilb0
X/S = S and Hilb1

X/S = X. A special case of the
morphism above is the morphism

Hilbd
X/S ×S X −→ Hilbd+1

X/S , (D, x) 7−→ D + x

Lemma 3.4.0B9G Let X → S be a smooth morphism of schemes of relative dimension
1 such that the functors Hilbd

X/S are representable. The morphism Hilbd
X/S ×S X →

Hilbd+1
X/S is finite locally free of degree d + 1.

Proof. Let Duniv ⊂ X ×S Hilbd+1
X/S be the universal object. There is a commutative

diagram

Hilbd
X/S ×S X //

&&

Duniv

{{

� � // Hilbd+1
X/S ×S X

Hilbd+1
X/S

where the top horizontal arrow maps (D′, x) to (D′ +x, x). We claim this morphism
is an isomorphism which certainly proves the lemma. Namely, given a scheme T
over S, a T -valued point ξ of Duniv is given by a pair ξ = (D, x) where D ⊂ XT

is a closed subscheme finite locally free of degree d + 1 over T and x : T → X is
a morphism whose graph x : T → XT factors through D. Then by Lemma 3.3
we can write D = D′ + x for some D′ ⊂ XT finite locally free of degree d over T .
Sending ξ = (D, x) to the pair (D′, x) is the desired inverse. □

Lemma 3.5.0B9H Let X → S be a smooth morphism of schemes of relative dimension 1
such that the functors Hilbd

X/S are representable. The schemes Hilbd
X/S are smooth

over S of relative dimension d.

Proof. We have Hilb0
X/S = S and Hilb1

X/S = X thus the result is true for d = 0, 1.
Assuming the result for d, we see that Hilbd

X/S ×S X is smooth over S (Morphisms,
Lemma 34.5 and 34.4). Since Hilbd

X/S ×S X → Hilbd+1
X/S is finite locally free of

degree d + 1 by Lemma 3.4 the result follows from Descent, Lemma 14.5. We omit
the verification that the relative dimension is as claimed (you can do this by looking
at fibres, or by keeping track of the dimensions in the argument above). □

https://stacks.math.columbia.edu/tag/0B9G
https://stacks.math.columbia.edu/tag/0B9H
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We collect all the information obtained sofar in the case of a proper smooth curve
over a field.

Proposition 3.6.0B9I Let X be a geometrically irreducible smooth proper curve over
a field k.

(1) The functors Hilbd
X/k are representable by smooth proper varieties Hilbd

X/k

of dimension d over k.
(2) For a field extension k′/k the k′-rational points of Hilbd

X/k are in 1-to-1
bijection with effective Cartier divisors of degree d on Xk′ .

(3) For d1, d2 ≥ 0 there is a morphism

Hilbd1
X/k ×k Hilbd2

X/k −→ Hilbd1+d2
X/k

which is finite locally free of degree
(

d1+d2
d1

)
.

Proof. The functors Hilbd
X/k are representable by Proposition 2.6 (see also Remark

2.7) and the fact that X is projective (Varieties, Lemma 43.4). The schemes Hilbd
X/k

are separated over k by Lemma 2.4. The schemes Hilbd
X/k are smooth over k

by Lemma 3.5. Starting with X = Hilb1
X/k, the morphisms of Lemma 3.4, and

induction we find a morphism

Xd = X ×k X ×k . . . ×k X −→ Hilbd
X/k, (x1, . . . , xd) −→ x1 + . . . + xd

which is finite locally free of degree d!. Since X is proper over k, so is Xd, hence
Hilbd

X/k is proper over k by Morphisms, Lemma 41.9. Since X is geometrically
irreducible over k, the product Xd is irreducible (Varieties, Lemma 8.4) hence the
image is irreducible (in fact geometrically irreducible). This proves (1). Part (2)
follows from the definitions. Part (3) follows from the commutative diagram

Xd1 ×k Xd2

��

Xd1+d2

��
Hilbd1

X/k ×k Hilbd2
X/k

// Hilbd1+d2
X/k

and multiplicativity of degrees of finite locally free morphisms. □

Remark 3.7.0B9J Let X be a geometrically irreducible smooth proper curve over a
field k as in Proposition 3.6. Let d ≥ 0. The universal closed object is a relatively
effective divisor

Duniv ⊂ Hilbd+1
X/k ×k X

over Hilbd+1
X/k by Lemma 3.1. In fact, Duniv is isomorphic as a scheme to Hilbd

X/k ×k

X, see proof of Lemma 3.4. In particular, Duniv is an effective Cartier divisor and
we obtain an invertible module O(Duniv). If [D] ∈ Hilbd+1

X/k denotes the k-rational
point corresponding to the effective Cartier divisor D ⊂ X of degree d + 1, then
the restriction of O(Duniv) to the fibre [D] × X is OX(D).

4. The Picard functor

0B9K Given any scheme X we denote Pic(X) the set of isomorphism classes of invertible
OX -modules. See Modules, Definition 25.9. Given a morphism f : X → Y of

https://stacks.math.columbia.edu/tag/0B9I
https://stacks.math.columbia.edu/tag/0B9J
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schemes, pullback defines a group homomorphism Pic(Y ) → Pic(X). The assign-
ment X ⇝ Pic(X) is a contravariant functor from the category of schemes to the
category of abelian groups. This functor is not representable, but it turns out that
a relative variant of this construction sometimes is representable.
Let us define the Picard functor for a morphism of schemes f : X → S. The idea
behind our construction is that we’ll take it to be the sheaf R1f∗Gm where we use
the fppf topology to compute the higher direct image. Unwinding the definitions
this leads to the following more direct definition.

Definition 4.1.0B9L Let Schfppf be a big site as in Topologies, Definition 7.8. Let
f : X → S be a morphism of this site. The Picard functor PicX/S is the fppf
sheafification of the functor

(Sch/S)fppf −→ Sets, T 7−→ Pic(XT )
If this functor is representable, then we denote PicX/S a scheme representing it.

An often used remark is that if T ∈ Ob((Sch/S)fppf ), then PicXT /T is the restric-
tion of PicX/S to (Sch/T )fppf . It turns out to be nontrivial to see what the value
of PicX/S is on schemes T over S. Here is a lemma that helps with this task.

Lemma 4.2.0B9M Let f : X → S be as in Definition 4.1. If OT → fT,∗OXT
is an

isomorphism for all T ∈ Ob((Sch/S)fppf ), then
0 → Pic(T ) → Pic(XT ) → PicX/S(T )

is an exact sequence for all T .

Proof. We may replace S by T and X by XT and assume that S = T to simplify
the notation. Let N be an invertible OS-module. If f∗N ∼= OX , then we see that
f∗f∗N ∼= f∗OX

∼= OS by assumption. Since N is locally trivial, we see that the
canonical map N → f∗f∗N is locally an isomorphism (because OS → f∗f∗OS is
an isomorphism by assumption). Hence we conclude that N → f∗f∗N → OS is an
isomorphism and we see that N is trivial. This proves the first arrow is injective.
Let L be an invertible OX -module which is in the kernel of Pic(X) → PicX/S(S).
Then there exists an fppf covering {Si → S} such that L pulls back to the trivial
invertible sheaf on XSi . Choose a trivializing section si. Then pr∗

0si and pr∗
1sj are

both trivialising sections of L over XSi×SSj
and hence differ by a multiplicative

unit
fij ∈ Γ(XSi×SSj

, O∗
XSi×S Sj

) = Γ(Si ×S Sj , O∗
Si×SSj

)

(equality by our assumption on pushforward of structure sheaves). Of course these
elements satisfy the cocycle condition on Si ×S Sj ×S Sk, hence they define a
descent datum on invertible sheaves for the fppf covering {Si → S}. By Descent,
Proposition 5.2 there is an invertible OS-module N with trivializations over Si

whose associated descent datum is {fij}. Then f∗N ∼= L as the functor from
descent data to modules is fully faithful (see proposition cited above). □

Lemma 4.3.0B9N Let f : X → S be as in Definition 4.1. Assume f has a section σ
and that OT → fT,∗OXT

is an isomorphism for all T ∈ Ob((Sch/S)fppf ). Then
0 → Pic(T ) → Pic(XT ) → PicX/S(T ) → 0

is a split exact sequence with splitting given by σ∗
T : Pic(XT ) → Pic(T ).

https://stacks.math.columbia.edu/tag/0B9L
https://stacks.math.columbia.edu/tag/0B9M
https://stacks.math.columbia.edu/tag/0B9N
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Proof. Denote K(T ) = Ker(σ∗
T : Pic(XT ) → Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 4.2 we
see that K(T ) ⊂ PicX/S(T ) for all T . Moreover, it is clear from the construction
that PicX/S is the sheafification of the presheaf K. To finish the proof it suffices
to show that K satisfies the sheaf condition for fppf coverings which we do in the
next paragraph.

Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the
same elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi →
σ∗

Ti
Li for all i. Choose an isomorphism

φij : Li|XTi×T Tj
−→ Lj |XTi×T Tj

If the map

αj |Ti×T Tj
◦ σ∗

Ti×T Tj
φij ◦ αi|Ti×T Tj

: OTi×T Tj
→ OTi×T Tj

is not equal to multiplication by 1 but some uij , then we can scale φij by u−1
ij to

correct this. Having done this, consider the self map

φki|XTi×T Tj ×T Tk
◦ φjk|XTi×T Tj ×T Tk

◦ φij |XTi×T Tj ×T Tk
on Li|XTi×T Tj ×T Tk

which is given by multiplication by some regular function fijk on the scheme
XTi×T Tj×T Tk

. By our choice of φij we see that the pullback of this map by σ
is equal to multiplication by 1. By our assumption on functions on X, we see that
fijk = 1. Thus we obtain a descent datum for the fppf covering {XTi → X}. By
Descent, Proposition 5.2 there is an invertible OXT

-module L and an isomorphism
α : OT → σ∗

T L whose pullback to XTi
recovers (Li, αi) (small detail omitted). Thus

L defines an object of K(T ) as desired. □

5. A representability criterion

0B9P To prove the Picard functor is representable we will use the following criterion.

Lemma 5.1.0B9Q Let k be a field. Let G : (Sch/k)opp → Groups be a functor. With
terminology as in Schemes, Definition 15.3, assume that

(1) G satisfies the sheaf property for the Zariski topology,
(2) there exists a subfunctor F ⊂ G such that

(a) F is representable,
(b) F ⊂ G is representable by open immersion,
(c) for every field extension K of k and g ∈ G(K) there exists a g′ ∈ G(k)

such that g′g ∈ F (K).
Then G is representable by a group scheme over k.

Proof. This follows from Schemes, Lemma 15.4. Namely, take I = G(k) and for
i = g′ ∈ I take Fi ⊂ G the subfunctor which associates to T over k the set of
elements g ∈ G(T ) with g′g ∈ F (T ). Then Fi

∼= F by multiplication by g′. The
map Fi → G is isomorphic to the map F → G by multiplication by g′, hence
is representable by open immersions. Finally, the collection (Fi)i∈I covers G by
assumption (2)(c). Thus the lemma mentioned above applies and the proof is
complete. □

https://stacks.math.columbia.edu/tag/0B9Q
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6. The Picard scheme of a curve

0B9R In this section we will apply Lemma 5.1 to show that PicX/k is representable, when
k is an algebraically closed field and X is a smooth projective curve over k. To make
this work we use a bit of cohomology and base change developed in the chapter on
derived categories of schemes.

Lemma 6.1.0B9U Let k be a field. Let X be a smooth projective curve over k which
has a k-rational point. Then the hypotheses of Lemma 4.3 are satisfied.

Proof. The meaning of the phrase “has a k-rational point” is exactly that the
structure morphism f : X → Spec(k) has a section, which verifies the first condi-
tion. By Varieties, Lemma 26.2 we see that k′ = H0(X, OX) is a field extension of
k. Since X has a k-rational point there is a k-algebra homomorphism k′ → k and
we conclude k′ = k. Since k is a field, any morphism T → Spec(k) is flat. Hence
we see by cohomology and base change (Cohomology of Schemes, Lemma 5.2) that
OT → fT,∗OXT

is an isomorphism. This finishes the proof. □

Let X be a smooth projective curve over a field k with a k-rational point σ. Then
the functor

PicX/k,σ : (Sch/k)opp −→ Ab, T 7−→ Ker(Pic(XT ) σ∗
T−−→ Pic(T ))

is isomorphic to PicX/k on (Sch/k)fppf by Lemmas 6.1 and 4.3. Hence it will suffice
to prove that PicX/k,σ is representable. We will use the notation “L ∈ PicX/k,σ(T )”
to signify that T is a scheme over k and L is an invertible OXT

-module whose
restriction to T via σT is isomorphic to OT .

Lemma 6.2.0B9V Let k be a field. Let X be a smooth projective curve over k with a
k-rational point σ. For a scheme T over k, consider the subset F (T ) ⊂ PicX/k,σ(T )
consisting of L such that RfT,∗L is isomorphic to an invertible OT -module placed
in degree 0. Then F ⊂ PicX/k,σ is a subfunctor and the inclusion is representable
by open immersions.

Proof. Immediate from Derived Categories of Schemes, Lemma 32.3 applied with
i = 0 and r = 1 and Schemes, Definition 15.3. □

To continue it is convenient to make the following definition.

Definition 6.3.0B9W Let k be a field. Let X be a smooth projective geometrically
irreducible curve over k. The genus of X is g = dimk H1(X, OX).

Lemma 6.4.0B9X Let k be a field. Let X be a smooth projective curve of genus g
over k with a k-rational point σ. The open subfunctor F defined in Lemma 6.2 is
representable by an open subscheme of Hilbg

X/k.

Proof. In this proof unadorned products are over Spec(k). By Proposition 3.6 the
scheme H = Hilbg

X/k exists. Consider the universal divisor Duniv ⊂ H × X and
the associated invertible sheaf O(Duniv), see Remark 3.7. We adjust by tensoring
with the pullback via σH : H → H × X to get

LH = O(Duniv) ⊗OH×X
pr∗

Hσ∗
HO(Duniv)⊗−1 ∈ PicX/k,σ(H)

By the Yoneda lemma (Categories, Lemma 3.5) the invertible sheaf LH defines a
natural transformation

hH −→ PicX/k,σ

https://stacks.math.columbia.edu/tag/0B9U
https://stacks.math.columbia.edu/tag/0B9V
https://stacks.math.columbia.edu/tag/0B9W
https://stacks.math.columbia.edu/tag/0B9X
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Because F is an open subfuctor, there exists a maximal open W ⊂ H such that
LH |W ×X is in F (W ). Of course, this open is nothing else than the open subscheme
constructed in Derived Categories of Schemes, Lemma 32.3 with i = 0 and r = 1
for the morphism H × X → H and the sheaf F = O(Duniv). Applying the Yoneda
lemma again we obtain a commutative diagram

hW

��

// F

��
hH

// PicX/k,σ

To finish the proof we will show that the top horizontal arrow is an isomorphism.
Let L ∈ F (T ) ⊂ PicX/k,σ(T ). Let N be the invertible OT -module such that
RfT,∗L ∼= N [0]. The adjunction map

f∗
T N −→ L corresponds to a section s of L ⊗ f∗

T N ⊗−1

on XT . Claim: The zero scheme of s is a relative effective Cartier divisor D on
(T × X)/T finite locally free of degree g over T .
Let us finish the proof of the lemma admitting the claim. Namely, D defines a
morphism m : T → H such that D is the pullback of Duniv. Then

(m × idX)∗O(Duniv) ∼= OT ×X(D)
Hence (m × idX)∗LH and O(D) differ by the pullback of an invertible sheaf on
H. This in particular shows that m : T → H factors through the open W ⊂ H
above. Moreover, it follows that these invertible modules define, after adjusting
by pullback via σT as above, the same element of PicX/k,σ(T ). Chasing diagrams
using Yoneda’s lemma we see that m ∈ hW (T ) maps to L ∈ F (T ). We omit
the verification that the rule F (T ) → hW (T ), L 7→ m defines an inverse of the
transformation of functors above.
Proof of the claim. Since D is a locally principal closed subscheme of T × X,
it suffices to show that the fibres of D over T are effective Cartier divisors, see
Lemma 3.1 and Divisors, Lemma 18.9. Because taking cohomology of L commutes
with base change (Derived Categories of Schemes, Lemma 30.4) we reduce to T =
Spec(K) where K/k is a field extension. Then L is an invertible sheaf on XK with
H0(XK , L) = K and H1(XK , L) = 0. Thus

deg(L) = χ(XK , L) − χ(XK , OXK
) = 1 − (1 − g) = g

See Varieties, Definition 44.1. To finish the proof we have to show a nonzero section
of L defines an effective Cartier divisor on XK . This is clear. □

Lemma 6.5.0B9Y Let k be a separably closed field. Let X be a smooth projective curve
of genus g over k. Let K/k be a field extension and let L be an invertible sheaf on
XK . Then there exists an invertible sheaf L0 on X such that dimK H0(XK , L⊗OXK

L0|XK
) = 1 and dimK H1(XK , L ⊗OXK

L0|XK
) = 0.

Proof. This proof is a variant of the proof of Varieties, Lemma 44.16. We encour-
age the reader to read that proof first.
First we pick an ample invertible sheaf L0 and we replace L by L ⊗OXK

L⊗n
0 |XK

for some n ≫ 0. The result will be that we may assume that H0(XK , L) ̸= 0 and

https://stacks.math.columbia.edu/tag/0B9Y
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H1(XK , L) = 0. Namely, we will get the vanishing by Cohomology of Schemes,
Lemma 17.1 and the nonvanishing because the degree of the tensor product is ≫ 0.
We will finish the proof by descending induction on t = dimK H0(XK , L). The
base case t = 1 is trivial. Assume t > 1.

Observe that for a k-rational point x of X, the inverse image xK is a K-rational
point of XK . Moreover, there are infinitely many k-rational points by Varieties,
Lemma 25.6. Therefore the points xK form a Zariski dense collection of points of
XK .

Let s ∈ H0(XK , L) be nonzero. From the previous paragraph we deduce there
exists a k-rational point x such that s does not vanish in xK . Let I be the ideal
sheaf of i : xK → XK as in Varieties, Lemma 43.8. Look at the short exact sequence

0 → I ⊗OXK
L → L → i∗i∗L → 0

Observe that H0(XK , i∗i∗L) = H0(xK , i∗L) has dimension 1 over K. Since s does
not vanish at x we conclude that

H0(XK , L) −→ H0(X, i∗i∗L)

is surjective. Hence dimK H0(XK , I ⊗OXK
L) = t − 1. Finally, the long exact

sequence of cohomology also shows that H1(XK , I ⊗OXK
L) = 0 thereby finishing

the proof of the induction step. □

Proposition 6.6.0B9Z Let k be a separably closed field. Let X be a smooth projective
curve over k. The Picard functor PicX/k is representable.

Proof. Since k is separably closed there exists a k-rational point σ of X, see
Varieties, Lemma 25.6. As discussed above, it suffices to show that the functor
PicX/k,σ classifying invertible modules trivial along σ is representable. To do this
we will check conditions (1), (2)(a), (2)(b), and (2)(c) of Lemma 5.1.

The functor PicX/k,σ satisfies the sheaf condition for the fppf topology because it is
isomorphic to PicX/k. It would be more correct to say that we’ve shown the sheaf
condition for PicX/k,σ in the proof of Lemma 4.3 which applies by Lemma 6.1. This
proves condition (1)

As our subfunctor we use F as defined in Lemma 6.2. Condition (2)(b) follows.
Condition (2)(a) is Lemma 6.4. Condition (2)(c) is Lemma 6.5. □

In fact, the proof given above produces more information which we collect here.

Lemma 6.7.0BA0 Let k be a separably closed field. Let X be a smooth projective curve
of genus g over k.

(1) PicX/k is a disjoint union of g-dimensional smooth proper varieties Picd
X/k,

(2) k-points of Picd
X/k correspond to invertible OX-modules of degree d,

(3) Pic0
X/k is an open and closed subgroup scheme,

(4) for d ≥ 0 there is a canonical morphism γd : Hilbd
X/k → Picd

X/k

(5) the morphisms γd are surjective for d ≥ g and smooth for d ≥ 2g − 1,
(6) the morphism Hilbg

X/k → Picg
X/k is birational.

https://stacks.math.columbia.edu/tag/0B9Z
https://stacks.math.columbia.edu/tag/0BA0
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Proof. Pick a k-rational point σ of X. Recall that PicX/k is isomorphic to the
functor PicX/k,σ. By Derived Categories of Schemes, Lemma 32.2 for every d ∈ Z
there is an open subfunctor

Picd
X/k,σ ⊂ PicX/k,σ

whose value on a scheme T over k consists of those L ∈ PicX/k,σ(T ) such that
χ(Xt, Lt) = d + 1 − g and moreover we have

PicX/k,σ =
∐

d∈Z
Picd

X/k,σ

as fppf sheaves. It follows that the scheme PicX/k (which exists by Proposition 6.6)
has a corresponding decomposition

PicX/k,σ =
∐

d∈Z
Picd

X/k,σ

where the points of Picd
X/k,σ correspond to isomorphism classes of invertible mod-

ules of degree d on X.
Fix d ≥ 0. There is a morphism

γd : Hilbd
X/k −→ Picd

X/k

coming from the invertible sheaf O(Duniv) on Hilbd
X/k ×k X (Remark 3.7) by the

Yoneda lemma (Categories, Lemma 3.5). Our proof of the representability of the
Picard functor of X/k in Proposition 6.6 and Lemma 6.4 shows that γg induces an
open immersion on a nonempty open of Hilbg

X/k. Moreover, the proof shows that
the translates of this open by k-rational points of the group scheme PicX/k define
an open covering. Since Hilbg

X/K is smooth of dimension g (Proposition 3.6) over
k, we conclude that the group scheme PicX/k is smooth of dimension g over k.
By Groupoids, Lemma 7.3 we see that PicX/k is separated. Hence, for every d ≥ 0,
the image of γd is a proper variety over k (Morphisms, Lemma 41.10).
Let d ≥ g. Then for any field extension K/k and any invertible OXK

-module L of
degree d, we see that χ(XK , L) = d+1−g > 0. Hence L has a nonzero section and
we conclude that L = OXK

(D) for some divisor D ⊂ XK of degree d. It follows
that γd is surjective.
Combining the facts mentioned above we see that Picd

X/k is proper for d ≥ g. This
finishes the proof of (2) because now we see that Picd

X/k is proper for d ≥ g but
then all Picd

X/k are proper by translation.
It remains to prove that γd is smooth for d ≥ 2g − 1. Consider an invertible
OX -module L of degree d. Then the fibre of the point corresponding to L is

Z = {D ⊂ X | OX(D) ∼= L} ⊂ Hilbd
X/k

with its natural scheme structure. Since any isomorphism OX(D) → L is well
defined up to multiplying by a nonzero scalar, we see that the canonical section
1 ∈ OX(D) is mapped to a section s ∈ Γ(X, L) well defined up to multiplication
by a nonzero scalar. In this way we obtain a morphism

Z −→ Proj(Sym(Γ(X, L)∗))
(dual because of our conventions). This morphism is an isomorphism, because
given an section of L we can take the associated effective Cartier divisor, in other
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words we can construct an inverse of the displayed morphism; we omit the precise
formulation and proof. Since dim H0(X, L) = d + 1 − g for every L of degree
d ≥ 2g − 1 by Varieties, Lemma 44.17 we see that Proj(Sym(Γ(X, L)∗)) ∼= Pd−g

k .
We conclude that dim(Z) = dim(Pd−g

k ) = d − g. We conclude that the fibres of the
morphism γd all have dimension equal to the difference of the dimensions of Hilbd

X/k

and Picd
X/k. It follows that γd is flat, see Algebra, Lemma 128.1. As moreover the

fibres are smooth, we conclude that γd is smooth by Morphisms, Lemma 34.3. □

7. Some remarks on Picard groups

0CDS This section continues the discussion in Varieties, Section 30 and will be continued
in Algebraic Curves, Section 17.

Lemma 7.1.0CDT Let k be a field. Let X be a quasi-compact and quasi-separated
scheme over k with H0(X, OX) = k. If X has a k-rational point, then for any
Galois extension k′/k we have

Pic(X) = Pic(Xk′)Gal(k′/k)

Moreover the action of Gal(k′/k) on Pic(Xk′) is continuous.

Proof. Since Gal(k′/k) = Aut(k′/k) it acts (from the right) on Spec(k′), hence
it acts (from the right) on Xk′ = X ×Spec(k) Spec(k′), and since Pic(−) is a con-
travariant functor, it acts (from the left) on Pic(Xk′). If k′/k is an infinite Galois
extension, then we write k′ = colim k′

λ as a filtered colimit of finite Galois exten-
sions, see Fields, Lemma 22.3. Then Xk′ = lim Xkλ

(as in Limits, Section 2) and
we obtain

Pic(Xk′) = colim Pic(Xkλ
)

by Limits, Lemma 10.3. Moreover, the transition maps in this system of abelian
groups are injective by Varieties, Lemma 30.3. It follows that every element of
Pic(Xk′) is fixed by one of the open subgroups Gal(k′/kλ), which exactly means
that the action is continuous. Injectivity of the transition maps implies that it
suffices to prove the statement on fixed points in the case that k′/k is finite Galois.
Assume k′/k is finite Galois with Galois group G = Gal(k′/k). Let L be an element
of Pic(Xk′) fixed by G. We will use Galois descent (Descent, Lemma 6.1) to prove
that L is the pullback of an invertible sheaf on X. Recall that fσ = idX ×Spec(σ) :
Xk′ → Xk′ and that σ acts on Pic(Xk′) by pulling back by fσ. Hence for each
σ ∈ G we can choose an isomorphism φσ : L → f∗

σL because L is a fixed by the
G-action. The trouble is that we don’t know if we can choose φσ such that the
cocycle condition φστ = f∗

σφτ ◦ φσ holds. To see that this is possible we use that
X has a k-rational point x ∈ X(k). Of course, x similarly determines a k′-rational
point x′ ∈ Xk′ which is fixed by fσ for all σ. Pick a nonzero element s in the fibre
of L at x′; the fibre is the 1-dimensional k′ = κ(x′)-vector space

Lx′ ⊗OX
k′ ,x′ κ(x′).

Then f∗
σs is a nonzero element of the fibre of f∗

σL at x′. Since we can multiply φσ

by an element of (k′)∗ we may assume that φσ sends s to f∗
σs. Then we see that

both φστ and f∗
σφτ ◦ φσ send s to f∗

στ s = f∗
τ f∗

σs. Since H0(Xk′ , OXk′ ) = k′ these
two isomorphisms have to be the same (as one is a global unit times the other and
they agree in x′) and the proof is complete. □

https://stacks.math.columbia.edu/tag/0CDT
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Lemma 7.2.0CD5 Let k be a field of characteristic p > 0. Let X be a quasi-compact
and quasi-separated scheme over k with H0(X, OX) = k. Let n be an integer prime
to p. Then the map

Pic(X)[n] −→ Pic(Xk′)[n]
is bijective for any purely inseparable extension k′/k.

Proof. First we observe that the map Pic(X) → Pic(Xk′) is injective by Varieties,
Lemma 30.3. Hence we have to show the map in the lemma is surjective. Let L
be an invertible OXk′ -module which has order dividing n in Pic(Xk′). Choose an
isomorphism α : L⊗n → OXk′ of invertible modules. We will prove that we can
descend the pair (L, α) to X.
Set A = k′ ⊗k k′. Since k′/k is purely inseparable, the kernel of the multiplication
map A → k′ is a locally nilpotent ideal I of A. Observe that

XA = X ×Spec(k) Spec(A) = Xk′ ×X Xk′

comes with two projections pri : XA → Xk′ , i = 0, 1 which agree over A/I. Hence
the invertible modules Li = pr∗

i L agree over the closed subscheme XA/I = Xk′ .
Since XA/I → XA is a thickening and since Li are n-torsion, we see that there exists
an isomorphism φ : L0 → L1 by More on Morphisms, Lemma 4.2. We may pick φ to
reduce to the identity modulo I. Namely, H0(X, OX) = k implies H0(Xk′ , OXk′ ) =
k′ by Cohomology of Schemes, Lemma 5.2 and A → k′ is surjective hence we can
adjust φ by multiplying by a suitable element of A. Consider the map

λ : OXA

pr∗
0α−1

−−−−−→ L⊗n
0

φ⊗n

−−−→ L⊗n
1

pr∗
0α−−−→ OXA

We can view λ as an element of A because H0(XA, OXA
) = A (same reference as

above). Since φ reduces to the identity modulo I we see that λ = 1 mod I. Then
there is a unique nth root of λ in 1+I (Algebra, Lemma 32.8) and after multiplying
φ by its inverse we get λ = 1. We claim that (L, φ) is a descent datum for the fpqc
covering {Xk′ → X} (Descent, Definition 2.1). If true, then L is the pullback of
an invertible OX -module N by Descent, Proposition 5.2. Injectivity of the map on
Picard groups shows that N is a torsion element of Pic(X) of the same order as L.
Proof of the claim. To see this we have to verify that

pr∗
12φ ◦ pr∗

01φ = pr∗
02φ on Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′

As before the diagonal morphism ∆ : Xk′ → Xk′⊗kk′⊗kk′ is a thickening. The left
and right hand sides of the equality signs are maps a, b : p∗

0L → p∗
2L compatible with

p∗
0α and p∗

2α where pi : Xk′⊗kk′⊗kk′ → Xk′ are the projection morphisms. Finally,
a, b pull back to the same map under ∆. Affine locally (in local trivializations) this
means that a, b are given by multiplication by invertible functions which reduce to
the same function modulo a locally nilpotent ideal and which have the same nth
powers. Then it follows from Algebra, Lemma 32.8 that these functions are the
same. □
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