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1. Introduction

0966 The material in this chapter and more can be found in the preprint [BS13].
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The goal of this chapter is to introduce the pro-étale topology and to develop the
basic theory of cohomology of abelian sheaves in this topology. A secondary goal
is to show how using the pro-étale topology simplifies the introduction of ℓ-adic
cohomology in algebraic geometry.
Here is a brief overview of the history of ℓ-adic étale cohomology as we have un-
derstood it. In [Gro77, Exposés V and VI] Grothendieck et al developed a theory
for dealing with ℓ-adic sheaves as inverse systems of sheaves of Z/ℓnZ-modules. In
his second paper on the Weil conjectures ([Del80]) Deligne introduced a derived
category of ℓ-adic sheaves as a certain 2-limit of categories of complexes of sheaves
of Z/ℓnZ-modules on the étale site of a scheme X. This approach is used in the
paper by Beilinson, Bernstein, and Deligne ([BBD82]) as the basis for their beauti-
ful theory of perverse sheaves. In a paper entitled “Continuous Étale Cohomology”
([Jan88]) Uwe Jannsen discusses an important variant of the cohomology of a ℓ-
adic sheaf on a variety over a field. His paper is followed up by a paper of Torsten
Ekedahl ([Eke90]) who discusses the adic formalism needed to work comfortably
with derived categories defined as limits.
It turns out that, working with the pro-étale site of a scheme, one can avoid some of
the technicalities these authors encountered. This comes at the expense of having
to work with non-Noetherian schemes, even when one is only interested in working
with ℓ-adic sheaves and cohomology of such on varieties over an algebraically closed
field.
A very important and remarkable feature of the (small) pro-étale site of a scheme
is that it has enough quasi-compact w-contractible objects. The existence of these
objects implies a number of useful and (perhaps) unusual consequences for the
derived category of abelian sheaves and for inverse systems of sheaves. This is
exactly the feature that will allow us to handle the intricacies of working with
ℓ-adic sheaves, but as we will see it has a number of other benefits as well.

2. Some topology

0967 Some preliminaries. We have defined spectral spaces and spectral maps of spectral
spaces in Topology, Section 23. The spectrum of a ring is a spectral space, see
Algebra, Lemma 26.2.

Lemma 2.1.0968 Let X be a spectral space. Let X0 ⊂ X be the set of closed points.
The following are equivalent

(1) Every open covering of X can be refined by a finite disjoint union decom-
position X =

∐
Ui with Ui open and closed in X.

(2) The composition X0 → X → π0(X) is bijective.
Moreover, if X0 is closed in X and every point of X specializes to a unique point
of X0, then these conditions are satisfied.

Proof. We will use without further mention that X0 is quasi-compact (Topology,
Lemma 12.9) and π0(X) is profinite (Topology, Lemma 23.9). Picture

X0

f ""

// X

π

��
π0(X)

https://stacks.math.columbia.edu/tag/0968
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If (2) holds, the continuous bijective map f : X0 → π0(X) is a homeomorphism by
Topology, Lemma 17.8. Given an open covering X =

⋃
Ui, we get an open covering

π0(X) =
⋃

f(X0∩Ui). By Topology, Lemma 22.4 we can find a finite open covering
of the form π0(X) =

∐
Vj which refines this covering. Since X0 → π0(X) is bijective

each connected component of X has a unique closed point, whence is equal to the
set of points specializing to this closed point. Hence π−1(Vj) is the set of points
specializing to the points of f−1(Vj). Now, if f−1(Vj) ⊂ X0∩Ui ⊂ Ui, then it follows
that π−1(Vj) ⊂ Ui (because the open set Ui is closed under generalizations). In this
way we see that the open covering X =

∐
π−1(Vj) refines the covering we started

out with. In this way we see that (2) implies (1).

Assume (1). Let x, y ∈ X be closed points. Then we have the open covering
X = (X \ {x}) ∪ (X \ {y}). It follows from (1) that there exists a disjoint union
decomposition X = U ⨿ V with U and V open (and closed) and x ∈ U and y ∈ V .
In particular we see that every connected component of X has at most one closed
point. By Topology, Lemma 12.8 every connected component (being closed) also
does have a closed point. Thus X0 → π0(X) is bijective. In this way we see that
(1) implies (2).

Assume X0 is closed in X and every point specializes to a unique point of X0.
Then X0 is a spectral space (Topology, Lemma 23.5) consisting of closed points,
hence profinite (Topology, Lemma 23.8). Let x, y ∈ X0 be distinct. By Topology,
Lemma 22.4 we can find a disjoint union decomposition X0 = U0⨿V0 with U0 and
V0 open and closed and x ∈ U0 and y ∈ V0. Let U ⊂ X, resp. V ⊂ X be the
set of points specializing to U0, resp. V0. Observe that X = U ⨿ V . By Topology,
Lemma 24.7 we see that U is an intersection of quasi-compact open subsets. Hence
U is closed in the constructible topology. Since U is closed under specialization,
we see that U is closed by Topology, Lemma 23.6. By symmetry V is closed and
hence U and V are both open and closed. This proves that x, y are not in the same
connected component of X. In other words, X0 → π0(X) is injective. The map is
also surjective by Topology, Lemma 12.8 and the fact that connected components
are closed. In this way we see that the final condition implies (2). □

Example 2.2.0969 Let T be a profinite space. Let t ∈ T be a point and assume that
T \{t} is not quasi-compact. Let X = T ×{0, 1}. Consider the topology on X with
a subbase given by the sets U ×{0, 1} for U ⊂ T open, X \{(t, 0)}, and U ×{1} for
U ⊂ T open with t ̸∈ U . The set of closed points of X is X0 = T × {0} and (t, 1)
is in the closure of X0. Moreover, X0 → π0(X) is a bijection. This example shows
that conditions (1) and (2) of Lemma 2.1 do no imply the set of closed points is
closed.

It turns out it is more convenient to work with spectral spaces which have the
slightly stronger property mentioned in the final statement of Lemma 2.1. We give
this property a name.

Definition 2.3.096A A spectral space X is w-local if the set of closed points X0 is
closed and every point of X specializes to a unique closed point. A continuous map
f : X → Y of w-local spaces is w-local if it is spectral and maps any closed point of
X to a closed point of Y .

https://stacks.math.columbia.edu/tag/0969
https://stacks.math.columbia.edu/tag/096A
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We have seen in the proof of Lemma 2.1 that in this case X0 → π0(X) is a home-
omorphism and that X0 ∼= π0(X) is a profinite space. Moreover, a connected
component of X is exactly the set of points specializing to a given x ∈ X0.

Lemma 2.4.096B Let X be a w-local spectral space. If Y ⊂ X is closed, then Y is
w-local.

Proof. The subset Y0 ⊂ Y of closed points is closed because Y0 = X0 ∩ Y . Since
X is w-local, every y ∈ Y specializes to a unique point of X0. This specialization
is in Y , and hence also in Y0, because {y} ⊂ Y . In conclusion, Y is w-local. □

Lemma 2.5.096C Let X be a spectral space. Let

Y //

��

T

��
X // π0(X)

be a cartesian diagram in the category of topological spaces with T profinite. Then
Y is spectral and T = π0(Y ). If moreover X is w-local, then Y is w-local, Y → X
is w-local, and the set of closed points of Y is the inverse image of the set of closed
points of X.

Proof. Note that Y is a closed subspace of X × T as π0(X) is a profinite space
hence Hausdorff (use Topology, Lemmas 23.9 and 3.4). Since X × T is spectral
(Topology, Lemma 23.10) it follows that Y is spectral (Topology, Lemma 23.5).
Let Y → π0(Y ) → T be the canonical factorization (Topology, Lemma 7.9). It
is clear that π0(Y ) → T is surjective. The fibres of Y → T are homeomorphic
to the fibres of X → π0(X). Hence these fibres are connected. It follows that
π0(Y ) → T is injective. We conclude that π0(Y ) → T is a homeomorphism by
Topology, Lemma 17.8.
Next, assume that X is w-local and let X0 ⊂ X be the set of closed points. The
inverse image Y0 ⊂ Y of X0 in Y maps bijectively onto T as X0 → π0(X) is
a bijection by Lemma 2.1. Moreover, Y0 is quasi-compact as a closed subset of
the spectral space Y . Hence Y0 → π0(Y ) = T is a homeomorphism by Topology,
Lemma 17.8. It follows that all points of Y0 are closed in Y . Conversely, if y ∈ Y
is a closed point, then it is closed in the fibre of Y → π0(Y ) = T and hence its
image x in X is closed in the (homeomorphic) fibre of X → π0(X). This implies
x ∈ X0 and hence y ∈ Y0. Thus Y0 is the collection of closed points of Y and for
each y ∈ Y0 the set of generalizations of y is the fibre of Y → π0(Y ). The lemma
follows. □

3. Local isomorphisms

096D We start with a definition.

Definition 3.1.096E Let φ : A→ B be a ring map.
(1) We say A → B is a local isomorphism if for every prime q ⊂ B there

exists a g ∈ B, g ̸∈ q such that A → Bg induces an open immersion
Spec(Bg)→ Spec(A).

(2) We say A→ B identifies local rings if for every prime q ⊂ B the canonical
map Aφ−1(q) → Bq is an isomorphism.

https://stacks.math.columbia.edu/tag/096B
https://stacks.math.columbia.edu/tag/096C
https://stacks.math.columbia.edu/tag/096E
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We list some elementary properties.

Lemma 3.2.096F Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B.

(1) If A→ B is a local isomorphism, then A′ → B′ is a local isomorphism.
(2) If A→ B identifies local rings, then A′ → B′ identifies local rings.

Proof. Omitted. □

Lemma 3.3.096G Let A→ B and B → C be ring maps.
(1) If A → B and B → C are local isomorphisms, then A → C is a local

isomorphism.
(2) If A → B and B → C identify local rings, then A → C identifies local

rings.

Proof. Omitted. □

Lemma 3.4.096H Let A be a ring. Let B → C be an A-algebra homomorphism.
(1) If A → B and A → C are local isomorphisms, then B → C is a local

isomorphism.
(2) If A → B and A → C identify local rings, then B → C identifies local

rings.

Proof. Omitted. □

Lemma 3.5.096I Let A→ B be a local isomorphism. Then
(1) A→ B is étale,
(2) A→ B identifies local rings,
(3) A→ B is quasi-finite.

Proof. Omitted. □

Lemma 3.6.096J Let A → B be a local isomorphism. Then there exist n ≥ 0,
g1, . . . , gn ∈ B, f1, . . . , fn ∈ A such that (g1, . . . , gn) = B and Afi

∼= Bgi .

Proof. Omitted. □

Lemma 3.7.096K Let p : (Y,OY )→ (X,OX) and q : (Z,OZ)→ (X,OX) be morphisms
of locally ringed spaces. If OY = p−1OX , then

MorLRS/(X,OX )((Z,OZ), (Y,OY )) −→ MorTop/X(Z, Y ), (f, f ♯) 7−→ f

is bijective. Here LRS/(X,OX) is the category of locally ringed spaces over X and
Top/X is the category of topological spaces over X.

Proof. This is immediate from the definitions. □

Lemma 3.8.096L Let A be a ring. Set X = Spec(A). The functor
B 7−→ Spec(B)

from the category of A-algebras B such that A → B identifies local rings to the
category of topological spaces over X is fully faithful.

Proof. This follows from Lemma 3.7 and the fact that if A → B identifies local
rings, then the pullback of the structure sheaf of Spec(A) via p : Spec(B)→ Spec(A)
is equal to the structure sheaf of Spec(B). □

https://stacks.math.columbia.edu/tag/096F
https://stacks.math.columbia.edu/tag/096G
https://stacks.math.columbia.edu/tag/096H
https://stacks.math.columbia.edu/tag/096I
https://stacks.math.columbia.edu/tag/096J
https://stacks.math.columbia.edu/tag/096K
https://stacks.math.columbia.edu/tag/096L
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4. Ind-Zariski algebra

096M We start with a definition; please see Remark 6.9 for a comparison with the corre-
sponding definition of the article [BS13].

Definition 4.1.096N A ring map A→ B is said to be ind-Zariski if B can be written
as a filtered colimit B = colim Bi with each A→ Bi a local isomorphism.

An example of an Ind-Zariski map is a localization A→ S−1A, see Algebra, Lemma
9.9. The category of ind-Zariski algebras is closed under several natural operations.

Lemma 4.2.096P Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-Zariski, then A′ → B′ is ind-Zariski.

Proof. Omitted. □

Lemma 4.3.096Q Let A → B and B → C be ring maps. If A → B and B → C are
ind-Zariski, then A→ C is ind-Zariski.

Proof. Omitted. □

Lemma 4.4.096R Let A be a ring. Let B → C be an A-algebra homomorphism. If
A→ B and A→ C are ind-Zariski, then B → C is ind-Zariski.

Proof. Omitted. □

Lemma 4.5.096S A filtered colimit of ind-Zariski A-algebras is ind-Zariski over A.

Proof. Omitted. □

Lemma 4.6.096T Let A→ B be ind-Zariski. Then A→ B identifies local rings,

Proof. Omitted. □

5. Constructing w-local affine schemes

096U An affine scheme X is called w-local if its underlying topological space is w-local
(Definition 2.3). It turns out given any ring A there is a canonical faithfully flat ind-
Zariski ring map A→ Aw such that Spec(Aw) is w-local. The key to constructing
Aw is the following simple lemma.

Lemma 5.1.096V Let A be a ring. Set X = Spec(A). Let Z ⊂ X be a locally closed
subscheme which is of the form D(f)∩V (I) for some f ∈ A and ideal I ⊂ A. Then

(1) there exists a multiplicative subset S ⊂ A such that Spec(S−1A) maps by a
homeomorphism to the set of points of X specializing to Z,

(2) the A-algebra A∼
Z = S−1A depends only on the underlying locally closed

subset Z ⊂ X,
(3) Z is a closed subscheme of Spec(A∼

Z ),
If A→ A′ is a ring map and Z ′ ⊂ X ′ = Spec(A′) is a locally closed subscheme of the
same form which maps into Z, then there is a unique A-algebra map A∼

Z → (A′)∼
Z′ .

Proof. Let S ⊂ A be the multiplicative set of elements which map to invertible
elements of Γ(Z,OZ) = (A/I)f . If p is a prime of A which does not specialize to
Z, then p generates the unit ideal in (A/I)f . Hence we can write fn = g + h for
some n ≥ 0, g ∈ p, h ∈ I. Then g ∈ S and we see that p is not in the spectrum of
S−1A. Conversely, if p does specialize to Z, say p ⊂ q ⊃ I with f ̸∈ q, then we see
that S−1A maps to Aq and hence p is in the spectrum of S−1A. This proves (1).

https://stacks.math.columbia.edu/tag/096N
https://stacks.math.columbia.edu/tag/096P
https://stacks.math.columbia.edu/tag/096Q
https://stacks.math.columbia.edu/tag/096R
https://stacks.math.columbia.edu/tag/096S
https://stacks.math.columbia.edu/tag/096T
https://stacks.math.columbia.edu/tag/096V


PRO-ÉTALE COHOMOLOGY 7

The isomorphism class of the localization S−1A depends only on the corresponding
subset Spec(S−1A) ⊂ Spec(A), whence (2) holds. By construction S−1A maps
surjectively onto (A/I)f , hence (3). The final statement follows as the multiplicative
subset S′ ⊂ A′ corresponding to Z ′ contains the image of the multiplicative subset
S. □

Let A be a ring. Let E ⊂ A be a finite subset. We get a stratification of X =
Spec(A) into locally closed subschemes by looking at the vanishing behaviour of the
elements of E. More precisely, given a disjoint union decomposition E = E′ ⨿ E′′

we set
(5.1.1)096W Z(E′, E′′) =

⋂
f∈E′

D(f)∩
⋂

f∈E′′
V (f) = D(

∏
f∈E′

f)∩V (
∑

f∈E′′
fA)

The points of Z(E′, E′′) are exactly those x ∈ X such that f ∈ E′ maps to a
nonzero element in κ(x) and f ∈ E′′ maps to zero in κ(x). Thus it is clear that

(5.1.2)096X X =
∐

E=E′⨿E′′
Z(E′, E′′)

set theoretically. Observe that each stratum is constructible.

Lemma 5.2.096Y Let X = Spec(A) as above. Given any finite stratification X =
∐

Ti

by constructible subsets, there exists a finite subset E ⊂ A such that the stratification
(5.1.2) refines X =

∐
Ti.

Proof. We may write Ti =
⋃

j Ui,j ∩ V c
i,j as a finite union for some Ui,j and Vi,j

quasi-compact open in X. Then we may write Ui,j =
⋃

D(fi,j,k) and Vi,j =⋃
D(gi,j,l). Then we set E = {fi,j,k} ∪ {gi,j,l}. This does the job, because the

stratification (5.1.2) is the one whose strata are labeled by the vanishing pattern of
the elements of E which clearly refines the given stratification. □

We continue the discussion. Given a finite subset E ⊂ A we set
(5.2.1)096Z AE =

∏
E=E′⨿E′′

A∼
Z(E′,E′′)

with notation as in Lemma 5.1. This makes sense because (5.1.1) shows that each
Z(E′, E′′) has the correct shape. We take the spectrum of this ring and denote it

(5.2.2)0970 XE = Spec(AE) =
∐

E=E′⨿E′′
XE′,E′′

with XE′,E′′ = Spec(A∼
Z(E′,E′′)). Note that

(5.2.3)0971 ZE =
∐

E=E′⨿E′′
Z(E′, E′′) −→ XE

is a closed subscheme. By construction the closed subscheme ZE contains all the
closed points of the affine scheme XE as every point of XE′,E′′ specializes to a point
of Z(E′, E′′).
Let I(A) be the partially ordered set of all finite subsets of A. This is a directed
partially ordered set. For E1 ⊂ E2 there is a canonical transition map AE1 → AE2

of A-algebras. Namely, given a decomposition E2 = E′
2 ⨿ E′′

2 we set E′
1 = E1 ∩ E′

2
and E′′

1 = E1 ∩ E′′
2 . Then observe that Z(E′

1, E′′
1 ) ⊂ Z(E′

2, E′′
2 ) hence a unique A-

algebra map A∼
Z(E′

1,E′′
1 ) → A∼

Z(E′
2,E′′

2 ) by Lemma 5.1. Using these maps collectively
we obtain the desired ring map AE1 → AE2 . Observe that the corresponding map
of affine schemes
(5.2.4)0972 XE2 −→ XE1

https://stacks.math.columbia.edu/tag/096Y
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maps ZE2 into ZE1 . By uniqueness we obtain a system of A-algebras over I(A) and
we set

(5.2.5)0973 Aw = colimE∈I(A) AE

This A-algebra is ind-Zariski and faithfully flat over A. Finally, we set Xw =
Spec(Aw) and endow it with the closed subscheme Z = limE∈I(A) ZE . In a formula

(5.2.6)0974 Xw = limE∈I(A) XE ⊃ Z = limE∈I(A) ZE

Lemma 5.3.0975 Let X = Spec(A) be an affine scheme. With A → Aw, Xw =
Spec(Aw), and Z ⊂ Xw as above.

(1) A→ Aw is ind-Zariski and faithfully flat,
(2) Xw → X induces a bijection Z → X,
(3) Z is the set of closed points of Xw,
(4) Z is a reduced scheme, and
(5) every point of Xw specializes to a unique point of Z.

In particular, Xw is w-local (Definition 2.3).

Proof. The map A→ Aw is ind-Zariski by construction. For every E the morphism
ZE → X is a bijection, hence (2). As Z ⊂ Xw we conclude Xw → X is surjective
and A→ Aw is faithfully flat by Algebra, Lemma 39.16. This proves (1).

Suppose that y ∈ Xw, y ̸∈ Z. Then there exists an E such that the image of y in
XE is not contained in ZE . Then for all E ⊂ E′ also y maps to an element of XE′

not contained in ZE′ . Let TE′ ⊂ XE′ be the reduced closed subscheme which is
the closure of the image of y. It is clear that T = limE⊂E′ TE′ is the closure of y in
Xw. For every E ⊂ E′ the scheme TE′ ∩ ZE′ is nonempty by construction of XE′ .
Hence lim TE′ ∩ ZE′ is nonempty and we conclude that T ∩ Z is nonempty. Thus
y is not a closed point. It follows that every closed point of Xw is in Z.

Suppose that y ∈ Xw specializes to z, z′ ∈ Z. We will show that z = z′ which will
finish the proof of (3) and will imply (5). Let x, x′ ∈ X be the images of z and z′.
Since Z → X is bijective it suffices to show that x = x′. If x ̸= x′, then there exists
an f ∈ A such that x ∈ D(f) and x′ ∈ V (f) (or vice versa). Set E = {f} so that

XE = Spec(Af )⨿ Spec(A∼
V (f))

Then we see that z and z′ map xE and x′
E which are in different parts of the

given decomposition of XE above. But then it impossible for xE and x′
E to be

specializations of a common point. This is the desired contradiction.

Recall that given a finite subset E ⊂ A we have ZE is a disjoint union of the locally
closed subschemes Z(E′, E′′) each isomorphic to the spectrum of (A/I)f where I is
the ideal generated by E′′ and f the product of the elements of E′. Any nilpotent
element b of (A/I)f is the class of g/fn for some g ∈ A. Then setting E′ = E ∪{g}
the reader verifies that b is pulls back to zero under the transition map ZE′ → ZE

of the system. This proves (4). □

Remark 5.4.0976 Let A be a ring. Let κ be an infinite cardinal bigger or equal than
the cardinality of A. Then the cardinality of Aw (Lemma 5.3) is at most κ. Namely,
each AE has cardinality at most κ and the set of finite subsets of A has cardinality
at most κ as well. Thus the result follows as κ⊗ κ = κ, see Sets, Section 6.

https://stacks.math.columbia.edu/tag/0975
https://stacks.math.columbia.edu/tag/0976
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Lemma 5.5 (Universal property of the construction).0977 Let A be a ring. Let A→
Aw be the ring map constructed in Lemma 5.3. For any ring map A → B such
that Spec(B) is w-local, there is a unique factorization A → Aw → B such that
Spec(B)→ Spec(Aw) is w-local.

Proof. Denote Y = Spec(B) and Y0 ⊂ Y the set of closed points. Denote
f : Y → X the given morphism. Recall that Y0 is profinite, in particular ev-
ery constructible subset of Y0 is open and closed. Let E ⊂ A be a finite subset.
Recall that Aw = colim AE and that the set of closed points of Spec(Aw) is the
limit of the closed subsets ZE ⊂ XE = Spec(AE). Thus it suffices to show there is
a unique factorization A → AE → B such that Y → XE maps Y0 into ZE . Since
ZE → X = Spec(A) is bijective, and since the strata Z(E′, E′′) are constructible
we see that

Y0 =
∐

f−1(Z(E′, E′′)) ∩ Y0

is a disjoint union decomposition into open and closed subsets. As Y0 = π0(Y )
we obtain a corresponding decomposition of Y into open and closed pieces. Thus
it suffices to construct the factorization in case f(Y0) ⊂ Z(E′, E′′) for some de-
composition E = E′ ⨿ E′′. In this case f(Y ) is contained in the set of points of
X specializing to Z(E′, E′′) which is homeomorphic to XE′,E′′ . Thus we obtain a
unique continuous map Y → XE′,E′′ over X. By Lemma 3.7 this corresponds to a
unique morphism of schemes Y → XE′,E′′ over X. This finishes the proof. □

Recall that the spectrum of a ring is profinite if and only if every point is closed.
There are in fact a whole slew of equivalent conditions that imply this. See Algebra,
Lemma 26.5 or Topology, Lemma 23.8.

Lemma 5.6.0978 Let A be a ring such that Spec(A) is profinite. Let A→ B be a ring
map. Then Spec(B) is profinite in each of the following cases:

(1) if q, q′ ⊂ B lie over the same prime of A, then neither q ⊂ q′, nor q′ ⊂ q,
(2) A→ B induces algebraic extensions of residue fields,
(3) A→ B is a local isomorphism,
(4) A→ B identifies local rings,
(5) A→ B is weakly étale,
(6) A→ B is quasi-finite,
(7) A→ B is unramified,
(8) A→ B is étale,
(9) B is a filtered colimit of A-algebras as in (1) – (8),

(10) etc.

Proof. By the references mentioned above (Algebra, Lemma 26.5 or Topology,
Lemma 23.8) there are no specializations between distinct points of Spec(A) and
Spec(B) is profinite if and only if there are no specializations between distinct points
of Spec(B). These specializations can only happen in the fibres of Spec(B) →
Spec(A). In this way we see that (1) is true.
The assumption in (2) implies all primes of B are maximal by Algebra, Lemma
35.9. Thus (2) holds. If A→ B is a local isomorphism or identifies local rings, then
the residue field extensions are trivial, so (3) and (4) follow from (2). If A → B
is weakly étale, then More on Algebra, Lemma 104.17 tells us it induces separable
algebraic residue field extensions, so (5) follows from (2). If A→ B is quasi-finite,
then the fibres are finite discrete topological spaces. Hence (6) follows from (1).

https://stacks.math.columbia.edu/tag/0977
https://stacks.math.columbia.edu/tag/0978


PRO-ÉTALE COHOMOLOGY 10

Hence (3) follows from (1). Cases (7) and (8) follow from this as unramified and
étale ring map are quasi-finite (Algebra, Lemmas 151.6 and 143.6). If B = colim Bi

is a filtered colimit of A-algebras, then Spec(B) = lim Spec(Bi) in the category of
topological spaces by Limits, Lemma 4.2. Hence if each Spec(Bi) is profinite, so is
Spec(B) by Topology, Lemma 22.3. This proves (9). □

Lemma 5.7.0979 Let A be a ring. Let V (I) ⊂ Spec(A) be a closed subset which is a
profinite topological space. Then there exists an ind-Zariski ring map A→ B such
that Spec(B) is w-local, the set of closed points is V (IB), and A/I ∼= B/IB.

Proof. Let A → Aw and Z ⊂ Y = Spec(Aw) as in Lemma 5.3. Let T ⊂ Z be
the inverse image of V (I). Then T → V (I) is a homeomorphism by Topology,
Lemma 17.8. Let B = (Aw)∼

T , see Lemma 5.1. It is clear that B is w-local with
closed points V (IB). The ring map A/I → B/IB is ind-Zariski and induces a
homeomorphism on underlying topological spaces. Hence it is an isomorphism by
Lemma 3.8. □

Lemma 5.8.097A Let A be a ring such that X = Spec(A) is w-local. Let I ⊂ A be
the radical ideal cutting out the set X0 of closed points in X. Let A→ B be a ring
map inducing algebraic extensions on residue fields at primes. Then

(1) every point of Z = V (IB) is a closed point of Spec(B),
(2) there exists an ind-Zariski ring map B → C such that

(a) B/IB → C/IC is an isomorphism,
(b) the space Y = Spec(C) is w-local,
(c) the induced map p : Y → X is w-local, and
(d) p−1(X0) is the set of closed points of Y .

Proof. By Lemma 5.6 applied to A/I → B/IB all points of Z = V (IB) =
Spec(B/IB) are closed, in fact Spec(B/IB) is a profinite space. To finish the
proof we apply Lemma 5.7 to IB ⊂ B. □

6. Identifying local rings versus ind-Zariski

097B An ind-Zariski ring map A → B identifies local rings (Lemma 4.6). The converse
does not hold (Examples, Section 45). However, it turns out that there is a kind of
structure theorem for ring maps which identify local rings in terms of ind-Zariski
ring maps, see Proposition 6.6.

Let A be a ring. Let X = Spec(A). The space of connected components π0(X) is
a profinite space by Topology, Lemma 23.9 (and Algebra, Lemma 26.2).

Lemma 6.1.097C Let A be a ring. Let X = Spec(A). Let T ⊂ π0(X) be a closed subset.
There exists a surjective ind-Zariski ring map A→ B such that Spec(B)→ Spec(A)
induces a homeomorphism of Spec(B) with the inverse image of T in X.

Proof. Let Z ⊂ X be the inverse image of T . Then Z is the intersection Z =
⋂

Zα

of the open and closed subsets of X containing Z, see Topology, Lemma 12.12. For
each α we have Zα = Spec(Aα) where A→ Aα is a local isomorphism (a localization
at an idempotent). Setting B = colim Aα proves the lemma. □

Lemma 6.2.097D Let A be a ring and let X = Spec(A). Let T be a profinite space and
let T → π0(X) be a continuous map. There exists an ind-Zariski ring map A→ B

https://stacks.math.columbia.edu/tag/0979
https://stacks.math.columbia.edu/tag/097A
https://stacks.math.columbia.edu/tag/097C
https://stacks.math.columbia.edu/tag/097D
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such that with Y = Spec(B) the diagram

Y //

��

π0(Y )

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(Y ) = T as spaces
over π0(X).

Proof. Namely, write T = lim Ti as the limit of an inverse system finite discrete
spaces over a directed set (see Topology, Lemma 22.2). For each i let Zi = Im(T →
π0(X) × Ti). This is a closed subset. Observe that X × Ti is the spectrum of
Ai =

∏
t∈Ti

A and that A → Ai is a local isomorphism. By Lemma 6.1 we see
that Zi ⊂ π0(X × Ti) = π0(X) × Ti corresponds to a surjection Ai → Bi which is
ind-Zariski such that Spec(Bi) = X ×π0(X) Zi as subsets of X × Ti. The transition
maps Ti → Ti′ induce maps Zi → Zi′ and X×π0(X) Zi → X×π0(X) Zi′ . Hence ring
maps Bi′ → Bi (Lemmas 3.8 and 4.6). Set B = colim Bi. Because T = lim Zi we
have X ×π0(X) T = lim X ×π0(X) Zi and hence Y = Spec(B) = lim Spec(Bi) fits
into the cartesian diagram

Y //

��

T

��
X // π0(X)

of topological spaces. By Lemma 2.5 we conclude that T = π0(Y ). □

Example 6.3.09BJ Let k be a field. Let T be a profinite topological space. There
exists an ind-Zariski ring map k → A such that Spec(A) is homeomorphic to T .
Namely, just apply Lemma 6.2 to T → π0(Spec(k)) = {∗}. In fact, in this case we
have

A = colim Map(Ti, k)
whenever we write T = lim Ti as a filtered limit with each Ti finite.

Lemma 6.4.097E Let A→ B be ring map such that
(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local,
(3) Spec(B)→ Spec(A) is w-local, and
(4) π0(Spec(B))→ π0(Spec(A)) is bijective.

Then A→ B is an isomorphism

Proof. Let X0 ⊂ X = Spec(A) and Y0 ⊂ Y = Spec(B) be the sets of closed points.
By assumption Y0 maps into X0 and the induced map Y0 → X0 is a bijection. As
a space Spec(A) is the disjoint union of the spectra of the local rings of A at closed
points. Similarly for B. Hence X → Y is a bijection. Since A→ B is flat we have
going down (Algebra, Lemma 39.19). Thus Algebra, Lemma 41.11 shows for any
prime q ⊂ B lying over p ⊂ A we have Bq = Bp. Since Bq = Ap by assumption, we
see that Ap = Bp for all primes p of A. Thus A = B by Algebra, Lemma 23.1. □

Lemma 6.5.097F Let A→ B be ring map such that
(1) A→ B identifies local rings,

https://stacks.math.columbia.edu/tag/09BJ
https://stacks.math.columbia.edu/tag/097E
https://stacks.math.columbia.edu/tag/097F
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(2) the topological spaces Spec(B), Spec(A) are w-local, and
(3) Spec(B)→ Spec(A) is w-local.

Then A→ B is ind-Zariski.

Proof. Set X = Spec(A) and Y = Spec(B). Let X0 ⊂ X and Y0 ⊂ Y be the set
of closed points. Let A → A′ be the ind-Zariski morphism of affine schemes such
that with X ′ = Spec(A′) the diagram

X ′ //

��

π0(X ′)

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(X ′) = π0(Y ) as
spaces over π0(X), see Lemma 6.2. By Lemma 2.5 we see that X ′ is w-local and
the set of closed points X ′

0 ⊂ X ′ is the inverse image of X0.
We obtain a continuous map Y → X ′ of underlying topological spaces over X
identifying π0(Y ) with π0(X ′). By Lemma 3.8 (and Lemma 4.6) this corresponds
to a morphism of affine schemes Y → X ′ over X. Since Y → X maps Y0 into X0
we see that Y → X ′ maps Y0 into X ′

0, i.e., Y → X ′ is w-local. By Lemma 6.4 we
see that Y ∼= X ′ and we win. □

The following proposition is a warm up for the type of result we will prove later.

Proposition 6.6.097G Let A → B be a ring map which identifies local rings. Then
there exists a faithfully flat, ind-Zariski ring map B → B′ such that A → B′ is
ind-Zariski.

Proof. Let A → Aw, resp. B → Bw be the faithfully flat, ind-Zariski ring map
constructed in Lemma 5.3 for A, resp. B. Since Spec(Bw) is w-local, there exists a
unique factorization A→ Aw → Bw such that Spec(Bw)→ Spec(Aw) is w-local by
Lemma 5.5. Note that Aw → Bw identifies local rings, see Lemma 3.4. By Lemma
6.5 this means Aw → Bw is ind-Zariski. Since B → Bw is faithfully flat, ind-Zariski
(Lemma 5.3) and the composition A → B → Bw is ind-Zariski (Lemma 4.3) the
proposition is proved. □

The proposition above allows us to characterize the affine, weakly contractible ob-
jects in the pro-Zariski site of an affine scheme.

Lemma 6.7.09AZ Let A be a ring. The following are equivalent
(1) every faithfully flat ring map A→ B identifying local rings has a retraction,
(2) every faithfully flat ind-Zariski ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local, and
(b) π0(Spec(A)) is extremally disconnected.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 6.6.
Assume (3)(a) and (3)(b). Let A → B be faithfully flat and ind-Zariski. We will
use without further mention the fact that a flat map A→ B is faithfully flat if and
only if every closed point of Spec(A) is in the image of Spec(B) → Spec(A). We
will show that A→ B has a retraction.

https://stacks.math.columbia.edu/tag/097G
https://stacks.math.columbia.edu/tag/09AZ
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Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 5.8 for A → B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB).

Assume Spec(B) is w-local and the set of closed points of Spec(B) is V (IB). Choose
a continuous section to the surjective continuous map V (IB)→ V (I). This is pos-
sible as V (I) ∼= π0(Spec(A)) is extremally disconnected, see Topology, Proposition
26.6. The image is a closed subspace T ⊂ π0(Spec(B)) ∼= V (IB) mapping homeo-
morphically onto π0(A). Replacing B by the ind-Zariski quotient ring constructed
in Lemma 6.1 we see that we may assume π0(Spec(B))→ π0(Spec(A)) is bijective.
At this point A→ B is an isomorphism by Lemma 6.4.

Assume (1) or equivalently (2). Let A → Aw be the ring map constructed in
Lemma 5.3. By (1) there is a retraction Aw → A. Thus Spec(A) is homeomorphic
to a closed subset of Spec(Aw). By Lemma 2.4 we see (3)(a) holds. Finally, let
T → π0(A) be a surjective map with T an extremally disconnected, quasi-compact,
Hausdorff topological space (Topology, Lemma 26.9). Choose A→ B as in Lemma
6.2 adapted to T → π0(Spec(A)). By (1) there is a retraction B → A. Thus
we see that T = π0(Spec(B)) → π0(Spec(A)) has a section. A formal categorical
argument, using Topology, Proposition 26.6, implies that π0(Spec(A)) is extremally
disconnected. □

Lemma 6.8.09B0 Let A be a ring. There exists a faithfully flat, ind-Zariski ring map
A→ B such that B satisfies the equivalent conditions of Lemma 6.7.

Proof. We first apply Lemma 5.3 to see that we may assume that Spec(A) is w-
local. Choose an extremally disconnected space T and a surjective continuous map
T → π0(Spec(A)), see Topology, Lemma 26.9. Note that T is profinite. Apply
Lemma 6.2 to find an ind-Zariski ring map A → B such that π0(Spec(B)) →
π0(Spec(A)) realizes T → π0(Spec(A)) and such that

Spec(B) //

��

π0(Spec(B))

��
Spec(A) // π0(Spec(A))

is cartesian in the category of topological spaces. Note that Spec(B) is w-local,
that Spec(B) → Spec(A) is w-local, and that the set of closed points of Spec(B)
is the inverse image of the set of closed points of Spec(A), see Lemma 2.5. Thus
condition (3) of Lemma 6.7 holds for B. □

Remark 6.9.0A0D In each of Lemmas 6.1, 6.2, Proposition 6.6, and Lemma 6.8 we
find an ind-Zariski ring map with some properties. In the paper [BS13] the authors
use the notion of an ind-(Zariski localization) which is a filtered colimit of finite
products of principal localizations. It is possible to replace ind-Zariski by ind-
(Zariski localization) in each of the results listed above. However, we do not need
this and the notion of an ind-Zariski homomorphism of rings as defined here has
slightly better formal properties. Moreover, the notion of an ind-Zariski ring map
is the natural analogue of the notion of an ind-étale ring map defined in the next
section.

https://stacks.math.columbia.edu/tag/09B0
https://stacks.math.columbia.edu/tag/0A0D
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7. Ind-étale algebra

097H We start with a definition.

Definition 7.1.097I A ring map A→ B is said to be ind-étale if B can be written as
a filtered colimit of étale A-algebras.

The category of ind-étale algebras is closed under a number of natural operations.

Lemma 7.2.097J Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-étale, then A′ → B′ is ind-étale.

Proof. This is Algebra, Lemma 154.1. □

Lemma 7.3.097K Let A → B and B → C be ring maps. If A → B and B → C are
ind-étale, then A→ C is ind-étale.

Proof. This is Algebra, Lemma 154.2. □

Lemma 7.4.097L A filtered colimit of ind-étale A-algebras is ind-étale over A.

Proof. This is Algebra, Lemma 154.3. □

Lemma 7.5.097M Let A be a ring. Let B → C be an A-algebra map of ind-étale
A-algebras. Then C is an ind-étale B-algebra.

Proof. This is Algebra, Lemma 154.5. □

Lemma 7.6.097N Let A → B be ind-étale. Then A → B is weakly étale (More on
Algebra, Definition 104.1).

Proof. This follows from More on Algebra, Lemma 104.14. □

Lemma 7.7.097P Let A be a ring and let I ⊂ A be an ideal. The base change functor
ind-étale A-algebras −→ ind-étale A/I-algebras, C 7−→ C/IC

has a fully faithful right adjoint v. In particular, given an ind-étale A/I-algebra C
there exists an ind-étale A-algebra C = v(C) such that C = C/IC.

Proof. Let C be an ind-étale A/I-algebra. Consider the category C of factoriza-
tions A→ B → C where A→ B is étale. (We ignore some set theoretical issues in
this proof.) We will show that this category is directed and that C = colimC B is
an ind-étale A-algebra such that C = C/IC.
We first prove that C is directed (Categories, Definition 19.1). The category is
nonempty as A→ A→ C is an object. Suppose that A→ B → C and A→ B′ → C
are two objects of C. Then A → B ⊗A B′ → C is another (use Algebra, Lemma
143.3). Suppose that f, g : B → B′ are two maps between objects A → B → C
and A → B′ → C of C. Then a coequalizer is A → B′ ⊗f,B,g B′ → C. This is an
object of C by Algebra, Lemmas 143.3 and 143.8. Thus the category C is directed.
Write C = colim Bi as a filtered colimit with Bi étale over A/I. For every i there
exists A→ Bi étale with Bi = Bi/IBi, see Algebra, Lemma 143.10. Thus C → C is
surjective. Since C/IC → C is ind-étale (Lemma 7.5) we see that it is flat. Hence C
is a localization of C/IC at some multiplicative subset S ⊂ C/IC (Algebra, Lemma
108.2). Take an f ∈ C mapping to an element of S ⊂ C/IC. Choose A→ B → C
in C and g ∈ B mapping to f in the colimit. Then we see that A→ Bg → C is an
object of C as well. Thus f is an invertible element of C. It follows that C/IC = C.

https://stacks.math.columbia.edu/tag/097I
https://stacks.math.columbia.edu/tag/097J
https://stacks.math.columbia.edu/tag/097K
https://stacks.math.columbia.edu/tag/097L
https://stacks.math.columbia.edu/tag/097M
https://stacks.math.columbia.edu/tag/097N
https://stacks.math.columbia.edu/tag/097P
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Next, we claim that for an ind-étale algebra D over A we have

MorA(D, C) = MorA/I(D/ID, C)

Namely, let D/ID → C be an A/I-algebra map. Write D = colimi∈I Di as a
colimit over a directed set I with Di étale over A. By choice of C we obtain a
transformation I → C and hence a map D → C compatible with maps to C.
Whence the claim.

It follows that the functor v defined by the rule

C 7−→ v(C) = colimA→B→C B

is a right adjoint to the base change functor u as required by the lemma. The
functor v is fully faithful because u◦v = id by construction, see Categories, Lemma
24.4. □

8. Constructing ind-étale algebras

097Q Let A be a ring. Recall that any étale ring map A→ B is isomorphic to a standard
smooth ring map of relative dimension 0. Such a ring map is of the form

A −→ A[x1, . . . , xn]/(f1, . . . , fn)

where the determinant of the n×n-matrix with entries ∂fi/∂xj is invertible in the
quotient ring. See Algebra, Lemma 143.2.

Let S(A) be the set of all faithfully flat1 standard smooth A-algebras of relative
dimension 0. Let I(A) be the partially ordered (by inclusion) set of finite subsets
E of S(A). Note that I(A) is a directed partially ordered set. For E = {A →
B1, . . . , A→ Bn} set

BE = B1 ⊗A . . .⊗A Bn

Observe that BE is a faithfully flat étale A-algebra. For E ⊂ E′, there is a canonical
transition map BE → BE′ of étale A-algebras. Namely, say E = {A→ B1, . . . , A→
Bn} and E′ = {A → B1, . . . , A → Bn+m} then BE → BE′ sends b1 ⊗ . . . ⊗ bn to
the element b1 ⊗ . . .⊗ bn ⊗ 1⊗ . . .⊗ 1 of BE′ . This construction defines a system
of faithfully flat étale A-algebras over I(A) and we set

T (A) = colimE∈I(A) BE

Observe that T (A) is a faithfully flat ind-étale A-algebra (Algebra, Lemma 39.20).
By construction given any faithfully flat étale A-algebra B there is a (non-unique)
A-algebra map B → T (A). Namely, pick some (A → B0) ∈ S(A) and an isomor-
phism B ∼= B0. Then the canonical coprojection

B → B0 → T (A) = colimE∈I(A) BE

is the desired map.

Lemma 8.1.097R Given a ring A there exists a faithfully flat ind-étale A-algebra C
such that every faithfully flat étale ring map C → B has a retraction.

1In the presence of flatness, e.g., for smooth or étale ring maps, this just means that the
induced map on spectra is surjective. See Algebra, Lemma 39.16.

https://stacks.math.columbia.edu/tag/097R


PRO-ÉTALE COHOMOLOGY 16

Proof. Set T 1(A) = T (A) and T n+1(A) = T (T n(A)). Let
C = colim T n(A)

This algebra is faithfully flat over each T n(A) and in particular over A, see Algebra,
Lemma 39.20. Moreover, C is ind-étale over A by Lemma 7.4. If C → B is
étale, then there exists an n and an étale ring map T n(A) → B′ such that B =
C⊗T n(A)B

′, see Algebra, Lemma 143.3. If C → B is faithfully flat, then Spec(B)→
Spec(C)→ Spec(T n(A)) is surjective, hence Spec(B′)→ Spec(T n(A)) is surjective.
In other words, T n(A)→ B′ is faithfully flat. By our construction, there is a T n(A)-
algebra map B′ → T n+1(A). This induces a C-algebra map B → C which finishes
the proof. □

Remark 8.2.097S Let A be a ring. Let κ be an infinite cardinal bigger or equal than
the cardinality of A. Then the cardinality of T (A) is at most κ. Namely, each BE

has cardinality at most κ and the index set I(A) has cardinality at most κ as well.
Thus the result follows as κ ⊗ κ = κ, see Sets, Section 6. It follows that the ring
constructed in the proof of Lemma 8.1 has cardinality at most κ as well.

Remark 8.3.097T The construction A 7→ T (A) is functorial in the following sense: If
A→ A′ is a ring map, then we can construct a commutative diagram

A //

��

T (A)

��
A′ // T (A′)

Namely, given (A → A[x1, . . . , xn]/(f1, . . . , fn)) in S(A) we can use the ring map
φ : A → A′ to obtain a corresponding element (A′ → A′[x1, . . . , xn]/(fφ

1 , . . . , fφ
n ))

of S(A′) where fφ means the polynomial obtained by applying φ to the coefficients
of the polynomial f . Moreover, there is a commutative diagram

A //

��

A[x1, . . . , xn]/(f1, . . . , fn)

��
A′ // A′[x1, . . . , xn]/(fφ

1 , . . . , fφ
n )

which is a in the category of rings. For E ⊂ S(A) finite, set E′ = φ(E) and
define BE → BE′ in the obvious manner. Taking the colimit gives the desired map
T (A)→ T (A′), see Categories, Lemma 14.8.

Lemma 8.4.097U Let A be a ring such that every faithfully flat étale ring map A→ B
has a retraction. Then the same is true for every quotient ring A/I.

Proof. Let A/I → B be faithfully flat étale. By Algebra, Lemma 143.10 we can
write B = B/IB for some étale ring map A → B′. The image U of Spec(B) →
Spec(A) is open and contains V (I). Hence the complement Z = Spec(A) \ U is
quasi-compact and disjoint from V (I). Hence Z ⊂ D(f1) ∪ . . . ∪ D(fr) for some
r ≥ 0 and fi ∈ I. Then A→ B′ = B×

∏
Afi

is faithfully flat étale and B = B′/IB′.
Hence the retraction B′ → A to A→ B′, induces a retraction to A/I → B. □

Lemma 8.5.097V Let A be a ring such that every faithfully flat étale ring map A→ B
has a retraction. Then every local ring of A at a maximal ideal is strictly henselian.

https://stacks.math.columbia.edu/tag/097S
https://stacks.math.columbia.edu/tag/097T
https://stacks.math.columbia.edu/tag/097U
https://stacks.math.columbia.edu/tag/097V
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Proof. Let m be a maximal ideal of A. Let A → B be an étale ring map and let
q ⊂ B be a prime lying over m. By the description of the strict henselization Ash

m

in Algebra, Lemma 155.11 it suffices to show that Am = Bq. Note that there are
finitely many primes q = q1, q2, . . . , qn lying over m and there are no specializations
between them as an étale ring map is quasi-finite, see Algebra, Lemma 143.6. Thus
qi is a maximal ideal and we can find g ∈ q2∩ . . .∩qn, g ̸∈ q (Algebra, Lemma 15.2).
After replacing B by Bg we see that q is the only prime of B lying over m. The
image U ⊂ Spec(A) of Spec(B) → Spec(A) is open (Algebra, Proposition 41.8).
Thus the complement Spec(A) \U is closed and we can find f ∈ A, f ̸∈ p such that
Spec(A) = U ∪D(f). The ring map A→ B ×Af is faithfully flat and étale, hence
has a retraction σ : B × Af → A by assumption on A. Observe that σ is étale,
hence flat as a map between étale A-algebras (Algebra, Lemma 143.8). Since q is
the only prime of B×Af lying over A we find that Ap → Bq has a retraction which
is also flat. Thus Ap → Bq → Ap are flat local ring maps whose composition is
the identity. Since a flat local homomorphism of local rings is injective we conclude
these maps are isomorphisms as desired. □

Lemma 8.6.097W Let A be a ring such that every faithfully flat étale ring map A→ B
has a retraction. Let Z ⊂ Spec(A) be a closed subscheme. Let A → A∼

Z be as
constructed in Lemma 5.1. Then every faithfully flat étale ring map A∼

Z → C has
a retraction.

Proof. There exists an étale ring map A → B′ such that C = B′ ⊗A A∼
Z as A∼

Z -
algebras. The image U ′ ⊂ Spec(A) of Spec(B′) → Spec(A) is open and contains
V (I), hence we can find f ∈ I such that Spec(A) = U ′ ∪D(f). Then A→ B′×Af

is étale and faithfully flat. By assumption there is a retraction B′ × Af → A.
Localizing we obtain the desired retraction C → A∼

Z . □

Lemma 8.7.097X Let A→ B be a ring map inducing algebraic extensions on residue
fields. There exists a commutative diagram

B // D

A //

OO

C

OO

with the following properties:
(1) A→ C is faithfully flat and ind-étale,
(2) B → D is faithfully flat and ind-étale,
(3) Spec(C) is w-local,
(4) Spec(D) is w-local,
(5) Spec(D)→ Spec(C) is w-local,
(6) the set of closed points of Spec(D) is the inverse image of the set of closed

points of Spec(C),
(7) the set of closed points of Spec(C) surjects onto Spec(A),
(8) the set of closed points of Spec(D) surjects onto Spec(B),
(9) for m ⊂ C maximal the local ring Cm is strictly henselian.

Proof. There is a faithfully flat, ind-Zariski ring map A→ A′ such that Spec(A′)
is w-local and such that the set of closed points of Spec(A′) maps onto Spec(A),
see Lemma 5.3. Let I ⊂ A′ be the ideal such that V (I) is the set of closed points
of Spec(A′). Choose A′ → C ′ as in Lemma 8.1. Note that the local rings C ′

m′ at
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maximal ideals m′ ⊂ C ′ are strictly henselian by Lemma 8.5. We apply Lemma
5.8 to A′ → C ′ and I ⊂ A′ to get C ′ → C with C ′/IC ′ ∼= C/IC. Note that since
A′ → C ′ is faithfully flat, Spec(C ′/IC ′) surjects onto the set of closed points of
A′ and in particular onto Spec(A). Moreover, as V (IC) ⊂ Spec(C) is the set of
closed points of C and C ′ → C is ind-Zariski (and identifies local rings) we obtain
properties (1), (3), (7), and (9).

Denote J ⊂ C the ideal such that V (J) is the set of closed points of Spec(C). Set
D′ = B ⊗A C. The ring map C → D′ induces algebraic residue field extensions.
Keep in mind that since V (J) → Spec(A) is surjective the map T = V (JD) →
Spec(B) is surjective too. Apply Lemma 5.8 to C → D′ and J ⊂ C to get D′ → D
with D′/JD′ ∼= D/JD. All of the remaining properties given in the lemma are
immediate from the results of Lemma 5.8. □

9. Weakly étale versus pro-étale

097Y Recall that a ring homomorphism A → B is weakly étale if A → B is flat and
B ⊗A B → B is flat. We have proved some properties of such ring maps in More
on Algebra, Section 104. In particular, if A → B is a local homomorphism, and
A is a strictly henselian local rings, then A = B, see More on Algebra, Theorem
104.24. Using this theorem and the work we’ve done above we obtain the following
structure theorem for weakly étale ring maps.

Proposition 9.1.097Z Let A → B be a weakly étale ring map. Then there exists a
faithfully flat, ind-étale ring map B → B′ such that A→ B′ is ind-étale.

Proof. The ring map A → B induces (separable) algebraic extensions of residue
fields, see More on Algebra, Lemma 104.17. Thus we may apply Lemma 8.7 and
choose a diagram

B // D

A //

OO

C

OO

with the properties as listed in the lemma. Note that C → D is weakly étale by
More on Algebra, Lemma 104.11. Pick a maximal ideal m ⊂ D. By construction
this lies over a maximal ideal m′ ⊂ C. By More on Algebra, Theorem 104.24 the
ring map Cm′ → Dm is an isomorphism. As every point of Spec(C) specializes to a
closed point we conclude that C → D identifies local rings. Thus Proposition 6.6
applies to the ring map C → D. Pick D → D′ faithfully flat and ind-Zariski such
that C → D′ is ind-Zariski. Then B → D′ is a solution to the problem posed in
the proposition. □

10. The V topology and the pro-h topology

0EVM The V topology was introduced in Topologies, Section 10. The h topology was
introduced in More on Flatness, Section 34. A kind of intermediate topology,
namely the ph topology, was introduced in Topologies, Section 8.

Given a topology τ on a suitable category C of schemes, we can introduce a “pro-
τ topology” on C as follows. Recall that for X in C we use hX to denote the
representable presheaf associated to X. Let us temporarily say a morphism X → Y

https://stacks.math.columbia.edu/tag/097Z
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of C is a τ -cover2 if the τ -sheafification of hX → hY is surjective. Then we can define
the pro-τ topology as the coarsest topology such that

(1) the pro-τ topology is finer than the τ topology, and
(2) X → Y is a pro-τ -cover if Y is affine and X = lim Xλ is a directed limit of

affine schemes Xλ over Y such that hXλ
→ hY is a τ -cover for all λ.

We use this pedantic formulation because we do not want to specify a choice of pro-
τ coverings: for different τ different choices of collections of coverings are suitable.
For example, in Section 12 we will see that in order to define the pro-étale topology
looking at families of weakly étale morphisms with some finiteness property works
well. More generally, the proposed construction given in this paragraph is meant
mainly to motivate the results in this section and we will never implicitly define a
pro-τ topology using this method.
The following lemma tells us that the pro-V topology is equal to the V topology.

Lemma 10.1.0EVN Let Y be an affine scheme. Let X = lim Xi be a directed limit of
affine schemes over Y . The following are equivalent

(1) {X → Y } is a standard V covering (Topologies, Definition 10.1), and
(2) {Xi → Y } is a standard V covering for all i.

Proof. A singleton {X → Y } is a standard V covering if and only if given a
morphism g : Spec(V ) → Y there is an extension of valuation rings V ⊂ W and a
commutative diagram

Spec(W ) //

��

X

��
Spec(V ) g // Y

Thus (1) ⇒ (2) is immediate from the definition. Conversely, assume (2) and let
g : Spec(V ) → Y as above be given. Write Spec(V ) ×Y Xi = Spec(Ai). Since
{Xi → Y } is a standard V covering, we may choose a valuation ring Wi and a
ring map Ai → Wi such that the composition V → Ai → Wi is an extension of
valuation rings. In particular, the quotient A′

i of Ai by its V -torsion is a faitfhully
flat V -algebra. Flatness by More on Algebra, Lemma 22.10 and surjectivity on
spectra because Ai →Wi factors through A′

i. Thus
A = colim A′

i

is a faithfully flat V -algebra (Algebra, Lemma 39.20). Since {Spec(A)→ Spec(V )}
is a standard fpqc cover, it is a standard V cover (Topologies, Lemma 10.2) and
hence we can choose Spec(W ) → Spec(A) such that V → W is an extension
of valuation rings. Since we can compose with the morphism Spec(A) → X =
Spec(colim Ai) the proof is complete. □

The following lemma tells us that the pro-h topology is equal to the pro-ph topology
is equal to the V topology.

Lemma 10.2.0EVP Let X → Y be a morphism of affine schemes. The following are
equivalent

2This should not be confused with the notion of a covering. For example if τ = étale, any
morphism X → Y which has a section is a τ -covering. But our definition of étale coverings
{Vi → Y }i∈I forces each Vi → Y to be étale.
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(1) {X → Y } is a standard V covering (Topologies, Definition 10.1),
(2) X = lim Xi is a directed limit of affine schemes over Y such that {Xi → Y }

is a ph covering for each i, and
(3) X = lim Xi is a directed limit of affine schemes over Y such that {Xi → Y }

is an h covering for each i.

Proof. Proof of (2)⇒ (1). Recall that a V covering given by a single arrow between
affines is a standard V covering, see Topologies, Definition 10.7 and Lemma 10.6.
Recall that any ph covering is a V covering, see Topologies, Lemma 10.10. Hence
if X = lim Xi as in (2), then {Xi → Y } is a standard V covering for each i. Thus
by Lemma 10.1 we see that (1) is true.
Proof of (3) ⇒ (2). This is clear because an h covering is always a ph covering, see
More on Flatness, Definition 34.2.
Proof of (1) ⇒ (3). This is the interesting direction, but the interesting content in
this proof is hidden in More on Flatness, Lemma 34.1. Write X = Spec(A) and
Y = Spec(R). We can write A = colim Ai with Ai of finite presentation over R,
see Algebra, Lemma 127.2. Set Xi = Spec(Ai). Then {Xi → Y } is a standard V
covering for all i by (1) and Topologies, Lemma 10.6. Hence {Xi → Y } is an h
covering by More on Flatness, Definition 34.2. This finishes the proof. □

The following lemma tells us, roughly speaking, that an h sheaf which is limit
preserving satisfies the sheaf condition for V coverings. Please also compare with
Remark 10.4.

Lemma 10.3.0EVQ Let S be a scheme. Let F be a contravariant functor defined on
the category of all schemes over S. If

(1) F satisfies the sheaf property for the h topology, and
(2) F is limit preserving (Limits, Remark 6.2),

then F satisfies the sheaf property for the V topology.

Proof. We will prove this by verifying (1) and (2’) of Topologies, Lemma 10.12.
The sheaf property for Zariski coverings follows from the fact that F has the sheaf
property for all h coverings. Finally, suppose that X → Y is a morphism of affine
schemes over S such that {X → Y } is a V covering. By Lemma 10.2 we can write
X = lim Xi as a directed limit of affine schemes over Y such that {Xi → Y } is an
h covering for each i. We obtain

Equalizer( F (X) //
// F (X ×Y X) )

= Equalizer( colim F (Xi)
//
// colim F (Xi ×Y Xi) )

= colim Equalizer( F (Xi)
//
// F (Xi ×Y Xi) )

= colim F (Y ) = F (Y )
which is what we wanted to show. The first equality because F is limit preserving
and X = lim Xi and X×Y X = lim Xi×Y Xi. The second equality because filtered
colimits are exact. The third equality because F satisfies the sheaf property for h
coverings. □

Remark 10.4.0EVR Let S be a scheme contained in a big site Schh. Let F be a
sheaf of sets on (Sch/S)h such that F (T ) = colim F (Ti) whenever T = lim Ti is a
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directed limit of affine schemes in (Sch/S)h. In this situation F extends uniquely
to a contravariant functor F ′ on the category of all schemes over S such that (a)
F ′ satisfies the sheaf property for the h topology and (b) F ′ is limit preserving.
See More on Flatness, Lemma 35.4. In this situation Lemma 10.3 tells us that F ′

satisfies the sheaf property for the V topology.

11. Constructing w-contractible covers

0980 In this section we construct w-contractible covers of affine schemes.

Definition 11.1.0981 Let A be a ring. We say A is w-contractible if every faithfully
flat weakly étale ring map A→ B has a retraction.

We remark that by Proposition 9.1 an equivalent definition would be to ask that
every faithfully flat, ind-étale ring map A → B has a retraction. Here is a key
observation that will allow us to construct w-contractible rings.

Lemma 11.2.0982 Let A be a ring. The following are equivalent
(1) A is w-contractible,
(2) every faithfully flat, ind-étale ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local,
(b) π0(Spec(A)) is extremally disconnected, and
(c) for every maximal ideal m ⊂ A the local ring Am is strictly henselian.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 9.1.

Assume (3)(a), (3)(b), and (3)(c). Let A→ B be faithfully flat and ind-étale. We
will use without further mention the fact that a flat map A → B is faithfully flat
if and only if every closed point of Spec(A) is in the image of Spec(B)→ Spec(A)
We will show that A→ B has a retraction.

Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 5.8 for A → B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB). In this case A→ B identifies local rings by condition
(3)(c) as it suffices to check this at maximal ideals of B which lie over maximal
ideals of A. Thus A→ B has a retraction by Lemma 6.7.

Assume (1) or equivalently (2). We have (3)(c) by Lemma 8.5. Properties (3)(a)
and (3)(b) follow from Lemma 6.7. □

Proposition 11.3.0983 For every ring A there exists a faithfully flat, ind-étale ring
map A→ D such that D is w-contractible.

Proof. Applying Lemma 8.7 to idA : A→ A we find a faithfully flat, ind-étale ring
map A → C such that C is w-local and such that every local ring at a maximal
ideal of C is strictly henselian. Choose an extremally disconnected space T and
a surjective continuous map T → π0(Spec(C)), see Topology, Lemma 26.9. Note
that T is profinite. Apply Lemma 6.2 to find an ind-Zariski ring map C → D such
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that π0(Spec(D))→ π0(Spec(C)) realizes T → π0(Spec(C)) and such that

Spec(D) //

��

π0(Spec(D))

��
Spec(C) // π0(Spec(C))

is cartesian in the category of topological spaces. Note that Spec(D) is w-local,
that Spec(D) → Spec(C) is w-local, and that the set of closed points of Spec(D)
is the inverse image of the set of closed points of Spec(C), see Lemma 2.5. Thus it
is still true that the local rings of D at its maximal ideals are strictly henselian (as
they are isomorphic to the local rings at the corresponding maximal ideals of C).
It follows from Lemma 11.2 that D is w-contractible. □

Remark 11.4.0984 Let A be a ring. Let κ be an infinite cardinal bigger or equal than
the cardinality of A. Then the cardinality of the ring D constructed in Proposition
11.3 is at most

κ222κ

.

Namely, the ring map A→ D is constructed as a composition
A→ Aw = A′ → C ′ → C → D.

Here the first three steps of the construction are carried out in the first paragraph
of the proof of Lemma 8.7. For the first step we have |Aw| ≤ κ by Remark 5.4. We
have |C ′| ≤ κ by Remark 8.2. Then |C| ≤ κ because C is a localization of (C ′)w (it
is constructed from C ′ by an application of Lemma 5.7 in the proof of Lemma 5.8).
Thus C has at most 2κ maximal ideals. Finally, the ring map C → D identifies
local rings and the cardinality of the set of maximal ideals of D is at most 222κ

by
Topology, Remark 26.10. Since D ⊂

∏
m⊂D Dm we see that D has at most the size

displayed above.

Lemma 11.5.0985 Let A→ B be a quasi-finite and finitely presented ring map. If the
residue fields of A are separably algebraically closed and Spec(A) is Hausdorff and
extremally disconnected, then Spec(B) is extremally disconnected.

Proof. Set X = Spec(A) and Y = Spec(B). Choose a finite partition X =
∐

Xi

and X ′
i → Xi as in Étale Cohomology, Lemma 72.3. The map of topological spaces∐

Xi → X (where the source is the disjoint union in the category of topological
spaces) has a section by Topology, Proposition 26.6. Hence we see that X is topo-
logically the disjoint union of the strata Xi. Thus we may replace X by the Xi

and assume there exists a surjective finite locally free morphism X ′ → X such that
(X ′ ×X Y )red is isomorphic to a finite disjoint union of copies of X ′

red. Picture∐
i=1,...,r X ′ //

��

Y

��
X ′ // X

The assumption on the residue fields of A implies that this diagram is a fibre product
diagram on underlying sets of points (details omitted). Since X is extremally
disconnected and X ′ is Hausdorff (Lemma 5.6), the continuous map X ′ → X has
a continuous section σ. Then

∐
i=1,...,r σ(X) → Y is a bijective continuous map.
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By Topology, Lemma 17.8 we see that it is a homeomorphism and the proof is
done. □

Lemma 11.6.0986 Let A → B be a finite and finitely presented ring map. If A is
w-contractible, so is B.

Proof. We will use the criterion of Lemma 11.2. Set X = Spec(A) and Y =
Spec(B) and denote f : Y → X the induced morphism. As f : Y → X is a finite
morphism, we see that the set of closed points Y0 of Y is the inverse image of the
set of closed points X0 of X. Let y ∈ Y with image x ∈ X. Then x specializes
to a unique closed point x0 ∈ X. Say f−1({x0}) = {y1, . . . , yn} with yi closed
in Y . Since R = OX,x0 is strictly henselian and since f is finite, we see that
Y ×f,X Spec(R) is equal to

∐
i=1,...,n Spec(Ri) where each Ri is a local ring finite

over R whose maximal ideal corresponds to yi, see Algebra, Lemma 153.3 part (10).
Then y is a point of exactly one of these Spec(Ri) and we see that y specializes
to exactly one of the yi. In other words, every point of Y specializes to a unique
point of Y0. Thus Y is w-local. For every y ∈ Y0 with image x ∈ X0 we see that
OY,y is strictly henselian by Algebra, Lemma 153.4 applied to OX,x → B⊗AOX,x.
It remains to show that Y0 is extremally disconnected. To do this we look at
X0 ×X Y → X0 where X0 ⊂ X is the reduced induced scheme structure. Note
that the underlying topological space of X0 ×X Y agrees with Y0. Now the desired
result follows from Lemma 11.5. □

Lemma 11.7.0987 Let A be a ring. Let Z ⊂ Spec(A) be a closed subset of the form
Z = V (f1, . . . , fr). Set B = A∼

Z , see Lemma 5.1. If A is w-contractible, so is B.

Proof. Let A∼
Z → B be a weakly étale faithfully flat ring map. Consider the ring

map
A −→ Af1 × . . .×Afr ×B

this is faithful flat and weakly étale. If A is w-contractible, then there is a retraction
σ. Consider the morphism

Spec(A∼
Z )→ Spec(A) Spec(σ)−−−−−→

∐
Spec(Afi

)⨿ Spec(B)

Every point of Z ⊂ Spec(A∼
Z ) maps into the component Spec(B). Since every point

of Spec(A∼
Z ) specializes to a point of Z we find a morphism Spec(A∼

Z ) → Spec(B)
as desired. □

12. The pro-étale site

0988 In this section we only discuss the actual definition and construction of the var-
ious pro-étale sites and the morphisms between them. The existence of weakly
contractible objects will be done in Section 13.
The pro-étale topology is a bit like the fpqc topology (see Topologies, Section 9)
in that the topos of sheaves on the small pro-étale site of a scheme depends on the
choice of the underlying category of schemes. Thus we cannot speak of the pro-étale
topos of a scheme. However, it will be true that the cohomology groups of a sheaf
are unchanged if we enlarge our underlying category of schemes, see Section 31.
We will define pro-étale coverings using weakly étale morphisms of schemes, see
More on Morphisms, Section 64. The reason is that, on the one hand, it is somewhat
awkward to define the notion of a pro-étale morphism of schemes, and on the other,
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Proposition 9.1 assures us that we obtain the same sheaves3 with the definition that
follows.
Definition 12.1.0989 Let T be a scheme. A pro-étale covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is weakly-étale and such
that for every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and
affine opens Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃

fi(Ti). Here is a lemma that will allow
us to recognize pro-étale coverings. It will also allow us to reduce many lemmas
about pro-étale coverings to the corresponding results for fpqc coverings.
Lemma 12.2.098A Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is a pro-étale covering,
(2) each fi is weakly étale and {fi : Ti → T}i∈I is an fpqc covering,
(3) each fi is weakly étale and for every affine open U ⊂ T there exist quasi-

compact opens Ui ⊂ Ti which are almost all empty, such that U =
⋃

fi(Ui),
(4) each fi is weakly étale and there exists an affine open covering T =

⋃
α∈A Uα

and for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens
Uα,j ⊂ Tiα,j

such that Uα =
⋃

j=1,...,n(α) fiα,j
(Uα,j).

If T is quasi-separated, these are also equivalent to
(5) each fi is weakly étale, and for every t ∈ T there exist i1, . . . , in ∈ I and

quasi-compact opens Uj ⊂ Tij such that
⋃

j=1,...,n fij (Uj) is a (not neces-
sarily open) neighbourhood of t in T .

Proof. The equivalence of (1) and (2) is immediate from the definitions. Hence
the lemma follows from Topologies, Lemma 9.2. □

Lemma 12.3.098B Any étale covering and any Zariski covering is a pro-étale covering.
Proof. This follows from the corresponding result for fpqc coverings (Topologies,
Lemma 9.6), Lemma 12.2, and the fact that an étale morphism is a weakly étale
morphism, see More on Morphisms, Lemma 64.9. □

Lemma 12.4.098C Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a pro-étale covering of T .
(2) If {Ti → T}i∈I is a pro-étale covering and for each i we have a pro-étale

covering {Tij → Ti}j∈Ji
, then {Tij → T}i∈I,j∈Ji

is a pro-étale covering.
(3) If {Ti → T}i∈I is a pro-étale covering and T ′ → T is a morphism of

schemes then {T ′ ×T Ti → T ′}i∈I is a pro-étale covering.
Proof. This follows from the fact that composition and base changes of weakly
étale morphisms are weakly étale (More on Morphisms, Lemmas 64.5 and 64.6),
Lemma 12.2, and the corresponding results for fpqc coverings, see Topologies,
Lemma 9.7. □

Lemma 12.5.098D Let T be an affine scheme. Let {Ti → T}i∈I be a pro-étale covering
of T . Then there exists a pro-étale covering {Uj → T}j=1,...,n which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.

3To be precise the pro-étale topology we obtain using our choice of coverings is the same as
the one gotten from the general procedure explained in Section 10 starting with τ = étale.
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Proof. This follows directly from the definition. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 12.6.098E Let T be an affine scheme. A standard pro-étale covering of T
is a family {fi : Ti → T}i=1,...,n where each Tj is affine, each fi is weakly étale, and
T =

⋃
fi(Ti).

We follow the general outline given in Topologies, Section 2 for constructing the big
pro-étale site we will be working with. However, because we need a bit larger rings
to accommodate for the size of certain constructions we modify the constructions
slightly.

Definition 12.7.098G A big pro-étale site is any site Schpro-étale as in Sites, Definition
6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of pro-étale coverings Cov0
among these schemes.

(2) Change the function Bound of Sets, Equation (9.1.1) into

Bound(κ) = max{κ222κ

, κℵ0 , κ+}.
(3) As underlying category take any category Schα constructed as in Sets,

Lemma 9.2 starting with the set S0 and the function Bound.
(4) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cat-

egory Schα and the class of pro-étale coverings, and the set Cov0 chosen
above.

See the remarks following Topologies, Definition 3.5 for motivation and explanation
regarding the definition of big sites.
It will turn out, see Lemma 31.1, that the topology on a big pro-étale site Schpro-étale

is in some sense induced from the pro-étale topology on the category of all schemes.

Definition 12.8.098K Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S.

(1) The big pro-étale site of S, denoted (Sch/S)pro-étale, is the site Schpro-étale/S
introduced in Sites, Section 25.

(2) The small pro-étale site of S, which we denote Spro-étale, is the full subcat-
egory of (Sch/S)pro-étale whose objects are those U/S such that U → S
is weakly étale. A covering of Spro-étale is any covering {Ui → U} of
(Sch/S)pro-étale with U ∈ Ob(Spro-étale).

(3) The big affine pro-étale site of S, denoted (Aff/S)pro-étale, is the full sub-
category of (Sch/S)pro-étale whose objects are affine U/S. A covering of
(Aff/S)pro-étale is any covering {Ui → U} of (Sch/S)pro-étale which is a
standard pro-étale covering.

It is not completely clear that the small pro-étale site and the big affine pro-étale
site are sites. We check this now.

Lemma 12.9.098L Let S be a scheme. Let Schpro-étale be a big pro-étale site containing
S. Both Spro-étale and (Aff/S)pro-étale are sites.

Proof. Let us show that Spro-étale is a site. It is a category with a given set of
families of morphisms with fixed target. Thus we have to show properties (1), (2)
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and (3) of Sites, Definition 6.2. Since (Sch/S)pro-étale is a site, it suffices to prove
that given any covering {Ui → U} of (Sch/S)pro-étale with U ∈ Ob(Spro-étale) we
also have Ui ∈ Ob(Spro-étale). This follows from the definitions as the composition
of weakly étale morphisms is weakly étale.
To show that (Aff/S)pro-étale is a site, reasoning as above, it suffices to show that the
collection of standard pro-étale coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 6.2. This follows from Lemma 12.2 and the corresponding
result for standard fpqc coverings (Topologies, Lemma 9.10). □

Lemma 12.10.098M Let S be a scheme. Let Schpro-étale be a big pro-étale site con-
taining S. Let Sch be the category of all schemes.

(1) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale, and (Aff/S)pro-étale

have fibre products agreeing with fibre products in Sch.
(2) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale have equalizers agree-

ing with equalizers in Sch.
(3) The categories (Sch/S)pro-étale, and Spro-étale both have a final object, namely

S/S.
(4) The category Schpro-étale has a final object agreeing with the final object of

Sch, namely Spec(Z).

Proof. The category Schpro-étale contains Spec(Z) and is closed under products
and fibre products by construction, see Sets, Lemma 9.9. Suppose we have U → S,
V → U , W → U morphisms of schemes with U, V, W ∈ Ob(Schpro-étale). The fibre
product V ×U W in Schpro-étale is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)pro-étale. This proves the result for (Sch/S)pro-étale. If
U → S, V → U and W → U are weakly étale then so is V ×U W → S (see More on
Morphisms, Section 64) and hence we get fibre products for Spro-étale. If U, V, W
are affine, so is V ×U W and hence we get fibre products for (Aff/S)pro-étale.
Let a, b : U → V be two morphisms in Schpro-étale. In this case the equalizer of a
and b (in the category of schemes) is

V ×∆V/ Spec(Z),V ×Spec(Z)V,(a,b) (U ×Spec(Z) U)
which is an object of Schpro-étale by what we saw above. Thus Schpro-étale has
equalizers. If a and b are morphisms over S, then the equalizer (in the category of
schemes) is also given by

V ×∆V/S ,V ×SV,(a,b) (U ×S U)

hence we see that (Sch/S)pro-étale has equalizers. Moreover, if U and V are weakly-
étale over S, then so is the equalizer above as a fibre product of schemes weakly
étale over S. Thus Spro-étale has equalizers. The statements on final objects is
clear. □

Next, we check that the big affine pro-étale site defines the same topos as the big
pro-étale site.

Lemma 12.11.098N Let S be a scheme. Let Schpro-étale be a big pro-étale site con-
taining S. The functor (Aff/S)pro-étale → (Sch/S)pro-étale is a special cocontinu-
ous functor. Hence it induces an equivalence of topoi from Sh((Aff/S)pro-étale) to
Sh((Sch/S)pro-étale).
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Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)pro-étale → (Sch/S)pro-étale. Being cocon-
tinuous just means that any pro-étale covering of T/S, T affine, can be refined by
a standard pro-étale covering of T . This is the content of Lemma 12.5. Hence (1)
holds. We see u is continuous simply because a standard pro-étale covering is a
pro-étale covering. Hence (2) holds. Parts (3) and (4) follow immediately from the
fact that u is fully faithful. And finally condition (5) follows from the fact that
every scheme has an affine open covering. □

Lemma 12.12.098P Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor Tpro-étale → (Sch/S)pro-étale is cocontinuous
and induces a morphism of topoi

if : Sh(Tpro-étale) −→ Sh((Sch/S)pro-étale)
For a sheaf G on (Sch/S)pro-étale we have the formula (i−1

f G)(U/T ) = G(U/S).
The functor i−1

f also has a left adjoint if,! which commutes with fibre products and
equalizers.

Proof. Denote the functor u : Tpro-étale → (Sch/S)pro-étale. In other words, given
a weakly étale morphism j : U → T corresponding to an object of Tpro-étale we
set u(U → T ) = (f ◦ j : U → S). This functor commutes with fibre products,
see Lemma 12.10. Moreover, Tpro-étale has equalizers and u commutes with them
by Lemma 12.10. It is clearly cocontinuous. It is also continuous as u transforms
coverings to coverings and commutes with fibre products. Hence the lemma follows
from Sites, Lemmas 21.5 and 21.6. □

Lemma 12.13.098Q Let S be a scheme. Let Schpro-étale be a big pro-étale site contain-
ing S. The inclusion functor Spro-étale → (Sch/S)pro-étale satisfies the hypotheses
of Sites, Lemma 21.8 and hence induces a morphism of sites

πS : (Sch/S)pro-étale −→ Spro-étale

and a morphism of topoi
iS : Sh(Spro-étale) −→ Sh((Sch/S)pro-étale)

such that πS ◦ iS = id. Moreover, iS = iidS
with iidS

as in Lemma 12.12. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Spro-étale → (Sch/S)pro-étale, in addition to
the properties seen in the proof of Lemma 12.12 above, also is fully faithful and
transforms the final object into the final object. The lemma follows from Sites,
Lemma 21.8. □

Definition 12.14.098R In the situation of Lemma 12.13 the functor i−1
S = πS,∗ is

often called the restriction to the small pro-étale site, and for a sheaf F on the big
pro-étale site we denote F|Spro-étale

this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(Spro-étale)(F|Spro-étale
,G) = MorSh((Sch/S)pro-étale)(F , iS,∗G)

MorSh(Spro-étale)(G,F|Spro-étale
) = MorSh((Sch/S)pro-étale)(π−1

S G,F)
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Moreover, we have (iS,∗G)|Spro-étale
= G and we have (π−1

S G)|Spro-étale
= G.

Lemma 12.15.098S Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor

u : (Sch/T )pro-étale −→ (Sch/S)pro-étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)pro-étale −→ (Sch/T )pro-étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )pro-étale) −→ Sh((Sch/S)pro-étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 12.12). Hence
Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the
existence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 12.16.098T Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale.

(1) We have if = fbig ◦ iT with if as in Lemma 12.12 and iT as in Lemma
12.13.

(2) The functor Spro-étale → Tpro-étale, (U → S) 7→ (U×ST → T ) is continuous
and induces a morphism of topoi

fsmall : Sh(Tpro-étale) −→ Sh(Spro-étale).

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tpro-étale

fsmall

��

(Sch/T )pro-étale

fbig

��

πT

oo

Spro-étale (Sch/S)pro-étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Spro-étale → Tpro-étale, u(U → S) = (U ×S T → T ) transforms
coverings into coverings and commutes with fibre products, see Lemmas 12.4 and
12.10. Moreover, both Spro-étale, Tpro-étale have final objects, namely S/S and T/T
and u(S/S) = T/T . Hence by Sites, Proposition 14.7 the functor u corresponds to
a morphism of sites Tpro-étale → Spro-étale. This in turn gives rise to the morphism
of topoi, see Sites, Lemma 15.2. The description of the pushforward is clear from
these references.
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Part (3) follows because πS and πT are given by the inclusion functors and fsmall

and fbig by the base change functors U 7→ U ×S T .
Statement (4) follows from (3) by precomposing with iT . □

In the situation of the lemma, using the terminology of Definition 12.14 we have:
for F a sheaf on the big pro-étale site of T

(12.16.1)0F60 (fbig,∗F)|Spro-étale
= fsmall,∗(F|Tpro-étale

),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small pro-étale site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.
Lemma 12.17.098U Given schemes X, Y , Y in Schpro-étale and morphisms f : X →
Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.
Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 12.15. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 12.16. □

Lemma 12.18.0F61 Let Schpro-étale be a big pro-étale site. Consider a cartesian
diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schpro-étale. Then i−1
g ◦fbig,∗ = f ′

small,∗◦(ig′)−1 and g−1
big◦fbig,∗ = f ′

big,∗◦(g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )pro-étale to

the sheaf U ′ 7→ F(U ′ ×S′ T ′) on S′
pro-étale (use Lemmas 12.12 and 12.15). The

second equality can be proved in the same manner or can be deduced from the very
general Sites, Lemma 28.1. □

We can think about a sheaf on the big pro-étale site of S as a collection of sheaves
on the small pro-étale site on schemes over S.
Lemma 12.19.098V Let S be a scheme contained in a big pro-étale site Schpro-étale.
A sheaf F on the big pro-étale site (Sch/S)pro-étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)pro-étale) a sheaf FT on Tpro-étale,
(2) for every f : T ′ → T in (Sch/S)pro-étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)pro-étale the composition
cg ◦ g−1

smallcf is equal to cf◦g, and
(b) if f : T ′ → T in (Sch/S)pro-étale is weakly étale then cf is an isomorphism.

Proof. Identical to the proof of Topologies, Lemma 4.20. □

Lemma 12.20.098W Let S be a scheme. Let Saffine,pro-étale denote the full subcategory
of Spro-étale consisting of affine objects. A covering of Saffine,pro-étale will be a
standard pro-étale covering, see Definition 12.6. Then restriction

F 7−→ F|Saffine,étale

defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Saffine,pro-étale).
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Proof. This you can show directly from the definitions, and is a good exercise. But
it also follows immediately from Sites, Lemma 29.1 by checking that the inclusion
functor Saffine,pro-étale → Spro-étale is a special cocontinuous functor (see Sites,
Definition 29.2). □

Lemma 12.21.098X Let S be an affine scheme. Let Sapp denote the full subcategory
of Spro-étale consisting of affine objects U such that O(S) → O(U) is ind-étale. A
covering of Sapp will be a standard pro-étale covering, see Definition 12.6. Then
restriction

F 7−→ F|Sapp

defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Sapp).

Proof. By Lemma 12.20 we may replace Spro-étale by Saffine,pro-étale. The lemma
follows from Sites, Lemma 29.1 by checking that the inclusion functor Sapp →
Saffine,pro-étale is a special cocontinuous functor, see Sites, Definition 29.2. The
conditions of Sites, Lemma 29.1 follow immediately from the definition and the
facts (a) any object U of Saffine,pro-étale has a covering {V → U} with V ind-étale
over X (Proposition 9.1) and (b) the functor u is fully faithful. □

Lemma 12.22.098Z Let S be a scheme. The topology on each of the pro-étale sites
Schpro-étale, Spro-étale, (Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale is sub-
canonical.

Proof. Combine Lemma 12.2 and Descent, Lemma 13.7. □

13. Weakly contractible objects

0F4N In this section we prove the key fact that our pro-étale sites contain many weakly
contractible objects. In fact, the proof of Lemma 13.3 is the reason for the shape
of the function Bound in Definition 12.7 (although for readers who are ignoring set
theoretical questions, this information is without content).
We first express the notion of w-contractible rings in terms of pro-étale coverings.

Lemma 13.1.098F Let T = Spec(A) be an affine scheme. The following are equivalent
(1) A is w-contractible, and
(2) every pro-étale covering of T can be refined by a Zariski covering of the

form T =
∐

i=1,...,n Ui.

Proof. Assume A is w-contractible. By Lemma 12.5 it suffices to prove we can
refine every standard pro-étale covering {fi : Ti → T}i=1,...,n by a Zariski covering
of T . The morphism

∐
Ti → T is a surjective weakly étale morphism of affine

schemes. Hence by Definition 11.1 there exists a morphism σ : T →
∐

Ti over T .
Then the Zariski covering T =

∐
σ−1(Ti) refines {fi : Ti → T}.

Conversely, assume (2). If A→ B is faithfully flat and weakly étale, then {Spec(B)→
T} is a pro-étale covering. Hence there exists a Zariski covering T =

∐
Ui and mor-

phisms Ui → Spec(B) over T . Since T =
∐

Ui we obtain T → Spec(B), i.e., an
A-algebra map B → A. This means A is w-contractible. □

Lemma 13.2.098H Let Schpro-étale be a big pro-étale site as in Definition 12.7. Let
T = Spec(A) be an affine object of Schpro-étale. The following are equivalent

(1) A is w-contractible,
(2) T is a weakly contractible (Sites, Definition 40.2) object of Schpro-étale, and
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(3) every pro-étale covering of T can be refined by a Zariski covering of the
form T =

∐
i=1,...,n Ui.

Proof. We have seen the equivalence of (1) and (3) in Lemma 13.1.

Assume (3) and let F → G be a surjection of sheaves on Schpro-étale. Let s ∈
G(T ). To prove (2) we will show that s is in the image of F(T ) → G(T ). We
can find a covering {Ti → T} of Schpro-étale such that s lifts to a section of F
over Ti (Sites, Definition 11.1). By (3) we may assume we have a finite covering
T =

∐
j=1,...,m Uj by open and closed subsets and we have tj ∈ F(Uj) mapping to

s|Uj
. Since Zariski coverings are coverings in Schpro-étale (Lemma 12.3) we conclude

that F(T ) =
∏
F(Uj). Thus t = (t1, . . . , tm) ∈ F(T ) is a section mapping to s.

Assume (2). Let A → D be as in Proposition 11.3. Then {V → T} is a covering
of Schpro-étale. (Note that V = Spec(D) is an object of Schpro-étale by Remark
11.4 combined with our choice of the function Bound in Definition 12.7 and the
computation of the size of affine schemes in Sets, Lemma 9.5.) Since the topology
on Schpro-étale is subcanonical (Lemma 12.22) we see that hV → hT is a surjective
map of sheaves (Sites, Lemma 12.4). Since T is assumed weakly contractible, we
see that there is an element f ∈ hV (T ) = Mor(T, V ) whose image in hT (T ) is idT .
Thus A → D has a retraction σ : D → A. Now if A → B is faithfully flat and
weakly étale, then D → D⊗A B has the same properties, hence there is a retraction
D⊗A B → D and combined with σ we get a retraction B → D⊗A B → D → A of
A→ B. Thus A is w-contractible and (1) holds. □

Lemma 13.3.098I Let Schpro-étale be a big pro-étale site as in Definition 12.7. For
every object T of Schpro-étale there exists a covering {Ti → T} in Schpro-étale with
each Ti affine and the spectrum of a w-contractible ring. In particular, Ti is weakly
contractible in Schpro-étale.

Proof. For those readers who do not care about set-theoretical issues this lemma
is a trivial consequence of Lemma 13.2 and Proposition 11.3. Here are the details.
Choose an affine open covering T =

⋃
Ui. Write Ui = Spec(Ai). Choose faithfully

flat, ind-étale ring maps Ai → Di such that Di is w-contractible as in Proposition
11.3. The family of morphisms {Spec(Di) → T} is a pro-étale covering. If we
can show that Spec(Di) is isomorphic to an object, say Ti, of Schpro-étale, then
{Ti → T} will be combinatorially equivalent to a covering of Schpro-étale by the
construction of Schpro-étale in Definition 12.7 and more precisely the application of
Sets, Lemma 11.1 in the last step. To prove Spec(Di) is isomorphic to an object of
Schpro-étale, it suffices to prove that |Di| ≤ Bound(size(T )) by the construction of
Schpro-étale in Definition 12.7 and more precisely the application of Sets, Lemma
9.2 in step (3). Since |Ai| ≤ size(Ui) ≤ size(T ) by Sets, Lemmas 9.4 and 9.7 we get
|Di| ≤ κ222κ

where κ = size(T ) by Remark 11.4. Thus by our choice of the function
Bound in Definition 12.7 we win. □

Lemma 13.4.0990 Let S be a scheme. The pro-étale sites Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale and if S is affine Sapp have enough (affine)
quasi-compact, weakly contractible objects, see Sites, Definition 40.2.

Proof. Follows immediately from Lemma 13.3. □
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Lemma 13.5.0F4P Let S be a scheme. The pro-étale sites Schpro-étale, Spro-étale,
(Sch/S)pro-étale have the following property: for any object U there exists a covering
{V → U} with V a weakly contractible object. If U is quasi-compact, then we may
choose V affine and weakly contractible.

Proof. Suppose that V =
∐

j∈J Vj is an object of (Sch/S)pro-étale which is the
disjoint union of weakly contractible objects Vj . Since a disjoint union decompo-
sition is a pro-étale covering we see that F(V ) =

∏
j∈J F(Vj) for any pro-étale

sheaf F . Let F → G be a surjective map of sheaves of sets. Since Vj is weakly
contractible, the map F(Vj)→ G(Vj) is surjective, see Sites, Definition 40.2. Thus
F(V )→ G(V ) is surjective as a product of surjective maps of sets and we conclude
that V is weakly contractible.

Choose a covering {Ui → U}i∈I with Ui affine and weakly contractible as in Lemma
13.3. Take V =

∐
i∈I Ui (there is a set theoretic issue here which we will address

below). Then {V → U} is the desired pro-étale covering by a weakly contractible
object (to check it is a covering use Lemma 12.2). If U is quasi-compact, then it
follows immediately from Lemma 12.2 that we can choose a finite subset I ′ ⊂ I
such that {Ui → U}i∈I′ is still a covering and then {

∐
i∈I′ Ui → U} is the desired

covering by an affine and weakly contractible object.

In this paragraph, which we urge the reader to skip, we address set theoretic prob-
lems. In order to know that the disjoint union lies in our partial universe, we
need to bound the cardinality of the index set I. It is seen immediately from
the construction of the covering {Ui → U}i∈I in the proof of Lemma 13.3 that
|I| ≤ size(U) where the size of a scheme is as defined in Sets, Section 9. Moreover,
for each i we have size(Ui) ≤ Bound(size(U)); this follows for the bound of the
cardinality of Γ(Ui,OUi

) in the proof of Lemma 13.3 and Sets, Lemma 9.4. Thus
size(

∐
i∈I Ui)) ≤ Bound(size(U)) by Sets, Lemma 9.5. Hence by construction of

the big pro-étale site through Sets, Lemma 9.2 we see that
∐

i∈I Ui is isomorphic
to an object of our site and the proof is complete. □

14. Weakly contractible hypercoverings

09A0 The results of Section 13 leads to the existence of hypercoverings made up out
weakly contractible objects.

Lemma 14.1.09A1 Let X be a scheme.
(1) For every object U of Xpro-étale there exists a hypercovering K of U in

Xpro-étale such that each term Kn consists of a single weakly contractible
object of Xpro-étale covering U .

(2) For every quasi-compact and quasi-separated object U of Xpro-étale there
exists a hypercovering K of U in Xpro-étale such that each term Kn consists
of a single affine and weakly contractible object of Xpro-étale covering U .

Proof. Let B ⊂ Ob(Xpro-étale) be the set of weakly contractible objects of Xpro-étale.
Every object T of Xpro-étale has a covering {Ti → T}i∈I with I finite and Ti ∈ B
by Lemma 13.5. By Hypercoverings, Lemma 12.6 we get a hypercovering K of
U such that Kn = {Un,i}i∈In with In finite and Un,i weakly contractible. Then
we can replace K by the hypercovering of U given by {Un} in degree n where
Un =

∐
i∈In

Un,i This is allowed by Hypercoverings, Remark 12.9.
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Let Xqcqs,pro-étale ⊂ Xpro-étale be the full subcategory consisting of quasi-compact
and quasi-separated objects. A covering of Xqcqs,pro-étale will be a finite pro-étale
covering. Then Xqcqs,pro-étale is a site, has fibre products, and the inclusion functor
Xqcqs,pro-étale → Xpro-étale is continuous and commutes with fibre products. In par-
ticular, if K is a hypercovering of an object U in Xqcqs,pro-étale then K is a hypercov-
ering of U in Xpro-étale by Hypercoverings, Lemma 12.5. Let B ⊂ Ob(Xqcqs,pro-étale)
be the set of affine and weakly contractible objects. By Lemma 13.3 and the fact
that finite unions of affines are affine, for every object U of Xqcqs,pro-étale there ex-
ists a covering {V → U} of Xqcqs,pro-étale with V ∈ B. By Hypercoverings, Lemma
12.6 we get a hypercovering K of U such that Kn = {Un,i}i∈In

with In finite and
Un,i affine and weakly contractible. Then we can replace K by the hypercover-
ing of U given by {Un} in degree n where Un =

∐
i∈In

Un,i. This is allowed by
Hypercoverings, Remark 12.9. □

In the following lemma we use the Čech complex s(F(K)) associated to a hyper-
covering K in a site. See Hypercoverings, Section 5. If K is a hypercovering of U
and Kn = {Un → U}, then the Čech complex looks like this:

s(F(K)) = (F(U0)→ F(U1)→ F(U2)→ . . .)

where s(F(Un)) is placed in cohomological degree n.

Lemma 14.2.09A2 Let X be a scheme. Let E ∈ D+(Xpro-étale) be represented by a
bounded below complex E• of abelian sheaves. Let K be a hypercovering of U ∈
Ob(Xpro-étale) with Kn = {Un → U} where Un is a weakly contractible object of
Xpro-étale. Then

RΓ(U, E) = Tot(s(E•(K)))
in D(Ab).

Proof. If E is an abelian sheaf on Xpro-étale, then the spectral sequence of Hyper-
coverings, Lemma 5.3 implies that

RΓ(Xpro-étale, E) = s(E(K))

because the higher cohomology groups of any sheaf over Un vanish, see Cohomology
on Sites, Lemma 51.1.

If E• is bounded below, then we can choose an injective resolution E• → I• and
consider the map of complexes

Tot(s(E•(K))) −→ Tot(s(I•(K)))

For every n the map E•(Un) → I•(Un) is a quasi-isomorphism because taking
sections over Un is exact. Hence the displayed map is a quasi-isomorphism by one
of the spectral sequences of Homology, Lemma 25.3. Using the result of the first
paragraph we see that for every p the complex s(Ip(K)) is acyclic in degrees n > 0
and computes Ip(U) in degree 0. Thus the other spectral sequence of Homology,
Lemma 25.3 shows Tot(s(I•(K))) computes RΓ(U, E) = I•(U). □

Lemma 14.3.09A3 Let X be a quasi-compact and quasi-separated scheme. The functor
RΓ(X,−) : D+(Xpro-étale) → D(Ab) commutes with direct sums and homotopy
colimits.
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Proof. The statement means the following: Suppose we have a family of ob-
jects Ei of D+(Xpro-étale) such that

⊕
Ei is an object of D+(Xpro-étale). Then

RΓ(X,
⊕

Ei) =
⊕

RΓ(X, Ei). To see this choose a hypercovering K of X with
Kn = {Un → X} where Un is an affine and weakly contractible scheme, see Lemma
14.1. Let N be an integer such that Hp(Ei) = 0 for p < N . Choose a complex
of abelian sheaves E•

i representing Ei with Ep
i = 0 for p < N . The termwise di-

rect sum
⊕
E•

i represents
⊕

Ei in D(Xpro-étale), see Injectives, Lemma 13.4. By
Lemma 14.2 we have

RΓ(X,
⊕

Ei) = Tot(s((
⊕
E•

i )(K)))

and
RΓ(X, Ei) = Tot(s(E•

i (K)))
Since each Un is quasi-compact we see that

Tot(s((
⊕
E•

i )(K))) =
⊕

Tot(s(E•
i (K)))

by Modules on Sites, Lemma 30.3. The statement on homotopy colimits is a formal
consequence of the fact that RΓ is an exact functor of triangulated categories and
the fact (just proved) that it commutes with direct sums. □

Remark 14.4.09A4 Let X be a scheme. Because Xpro-étale has enough weakly con-
tractible objects for all K in D(Xpro-étale) we have K = R lim τ≥−nK by Coho-
mology on Sites, Proposition 51.2. Since RΓ commutes with R lim by Injectives,
Lemma 13.6 we see that

RΓ(X, K) = R lim RΓ(X, τ≥−nK)
in D(Ab). This will sometimes allow us to extend results from bounded below
complexes to all complexes.

15. Compact generation

0994 In this section we prove that various derived categories associated to our pro-étale
sites are compactly generated as defined in Derived Categories, Definition 37.5.

Lemma 15.1.0F4Q Let S be a scheme. Let Λ be a ring.
(1) D(Spro-étale) is compactly generated,
(2) D(Spro-étale, Λ) is compactly generated,
(3) D(Spro-étale,A) is compactly generated for any sheaf of rings A on Spro-étale,
(4) D((Sch/S)pro-étale) is compactly generated,
(5) D((Sch/S)pro-étale, Λ) is compactly generated, and
(6) D((Sch/S)pro-étale,A) is compactly generated for any sheaf of rings A on

(Sch/S)pro-étale,

Proof. Proof of (3). Let U be an affine object of Spro-étale which is weakly con-
tractible. Then jU !AU is a compact object of the derived category D(Spro-étale,A),
see Cohomology on Sites, Lemma 52.6. Choose a set I and for each i ∈ I an
affine weakly contractible object Ui of Spro-étale such that every affine weakly con-
tractible object of Spro-étale is isomorphic to one of the Ui. This is possible because
Ob(Spro-étale) is a set. To finish the proof of (3) it suffices to show that

⊕
jUi,!AUi

is a generator of D(Spro-étale,A), see Derived Categories, Definition 36.3. To see
this, let K be a nonzero object of D(Spro-étale,A). Then there exists an object
T of our site Spro-étale and a nonzero element ξ of Hn(K)(T ). In other words,

https://stacks.math.columbia.edu/tag/09A4
https://stacks.math.columbia.edu/tag/0F4Q


PRO-ÉTALE COHOMOLOGY 35

ξ is a nonzero section of the nth cohomology sheaf of K. We may assume K is
represented by a complex K• of sheaves of A-modules and ξ is the class of a section
s ∈ Kn(T ) with d(s) = 0. Namely, ξ is locally represented as the class of a section
(so you get the result after replacing T by a member of a covering of T ). Next, we
choose a covering {Tj → T}j∈J as in Lemma 13.3. Since Hn(K) is a sheaf, we see
that for some j the restriction ξ|Tj

remains nonzero. Thus s|Tj
defines a nonzero

map jTj ,!ATj → K in D(Spro-étale,A). Since Tj
∼= Ui for some i ∈ I we conclude.

The exact same argument works for the big pro-étale site of S. □

16. Comparing topologies

0F62 This section is the analogue of Étale Cohomology, Section 39.

Lemma 16.1.0F63 Let X be a scheme. Let F be a presheaf of sets on Xpro-étale which
sends finite disjoint unions to products. Then F#(W ) = F(W ) if W is an affine
weakly contractible object of Xpro-étale.

Proof. Recall that F# is equal to (F+)+, see Sites, Theorem 10.10, where F+

is the presheaf which sends an object U of Xpro-étale to colim H0(U ,F) where the
colimit is over all pro-étale coverings U of U . Thus it suffices to prove that (a) F+

sends finite disjoint unions to products and (b) sends W to F(W ). If U = U1⨿U2,
then given a pro-étale covering U = {fj : Vj → U} of U we obtain pro-étale
coverings Ui = {f−1

j (Ui)→ Ui} and we clearly have

H0(U ,F) = H0(U1,F)×H0(U2,F)
because F sends finite disjoint unions to products (this includes the condition that
F sends the empty scheme to the singleton). This proves (a). Finally, any pro-
étale covering of W can be refined by a finite disjoint union decomposition W =
W1 ⨿ . . . Wn by Lemma 13.2. Hence F+(W ) = F(W ) exactly because the value of
F on W is the product of the values of F on the Wj . This proves (b). □

Lemma 16.2.0F64 Let f : X → Y be a morphism of schemes. Let F be a sheaf of sets
on Xpro-étale. If W is an affine weakly contractible object of Xpro-étale, then

f−1
smallF(W ) = colimW →V F(V )

where the colimit is over morphisms W → V over Y with V ∈ Ypro-étale.

Proof. Recall that f−1
smallF is the sheaf associated to the presheaf

upF : U 7→ colimU→V F(V )
on Xétale, see Sites, Sections 14 and 13; we’ve surpressed from the notation that
the colimit is over the opposite of the category {U → V, V ∈ Ypro-étale}. By Lemma
16.1 it suffices to prove that upF sends finite disjoint unions to products. Suppose
that U = U1 ⨿ U2 is a disjoint union of open and closed subschemes. There is a
functor
{U1 → V1} × {U2 → V2} −→ {U → V }, (U1 → V1, U2 → V2) 7−→ (U → V1 ⨿ V2)
which is initial (Categories, Definition 17.3). Hence the corresponding functor on
opposite categories is cofinal and by Categories, Lemma 17.2 we see that upF on
U is the colimit of the values F(V1 ⨿ V2) over the product category. Since F is a
sheaf it sends disjoint unions to products and we conclude upF does too. □
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Lemma 16.3.0F65 Let S be a scheme. Consider the morphism

πS : (Sch/S)pro-étale −→ Spro-étale

of Lemma 12.13. Let F be a sheaf on Spro-étale. Then π−1
S F is given by the rule

(π−1
S F)(T ) = Γ(Tpro-étale, f−1

smallF)

where f : T → S. Moreover, π−1
S F satisfies the sheaf condition with respect to fpqc

coverings.

Proof. Observe that we have a morphism if : Sh(Tpro-étale)→ Sh(Sch/S)pro-étale)
such that πS ◦ if = fsmall as morphisms Tpro-étale → Spro-étale, see Lemma 12.12.
Since pullback is transitive we see that i−1

f π−1
S F = f−1

smallF as desired.

Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tpro-étale and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks
to Ti×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees
with si. We will prove this statement when T is affine and the covering is given by
a single surjective flat morphism T ′ → T of affines and omit the reduction of the
general case to this case.

Let g : T ′ → T be a surjective flat morphism of affines and let s′ ∈ g−1
smallG(T ′) be a

section with pr∗
0s′ = pr∗

1s′ on T ′×T T ′. Choose a surjective weakly étale morphism
W → T ′ with W affine and weakly contractible, see Lemma 13.5. By Lemma
16.2 the restriction s′|W is an element of colimW →U G(U). Choose ϕ : W → U0
and s0 ∈ G(U0) corresponding to s′. Choose a surjective weakly étale morphism
V → W ×T W with V affine and weakly contractible. Denote a, b : V → W
the induced morphisms. Since a∗(s′|W ) = b∗(s′|W ) and since the category {V →
U, U ∈ Tpro-étale} is cofiltered (this is clear but see Sites, Lemma 14.6 if in doubt),
we see that the two morphisms ϕ ◦ a, ϕ ◦ b : V → U0 have to be equal. By the
results in Descent, Section 13 (especially Descent, Lemma 13.7) it follows there is
a unique morphism T → U0 such that ϕ is the composition of this morphism with
the structure morphism W → T (small detail omitted). Then we can let s be the
pullback of s0 by this morphism. We omit the verification that s pulls back to s′

on T ′. □

17. Comparing big and small topoi

0F66 This section is the analogue of Étale Cohomology, Section 99. In the following we
will often denote F 7→ F|Spro-étale

the pullback functor i−1
S corresponding to the

morphism of topoi iS : Sh(Spro-étale)→ Sh((Sch/S)pro-étale) of Lemma 12.13.

Lemma 17.1.0F67 Let S be a scheme. Let T be an object of (Sch/S)pro-étale.
(1) If I is injective in Ab((Sch/S)pro-étale), then

(a) i−1
f I is injective in Ab(Tpro-étale),

(b) I|Spro-étale
is injective in Ab(Spro-étale),

(2) If I• is a K-injective complex in Ab((Sch/S)pro-étale), then
(a) i−1

f I• is a K-injective complex in Ab(Tpro-étale),
(b) I•|Spro-étale

is a K-injective complex in Ab(Spro-étale),

Proof. Proof of (1)(a) and (2)(a): i−1
f is a right adjoint of an exact functor if,!.

Namely, recall that if corresponds to a cocontinuous functor u : Tpro-étale →
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(Sch/S)pro-étale which is continuous and commutes with fibre products and equal-
izers, see Lemma 12.12 and its proof. Hence we obtain if,! by Modules on Sites,
Lemma 16.2. It is shown in Modules on Sites, Lemma 16.3 that it is exact. Then we
conclude (1)(a) and (2)(a) hold by Homology, Lemma 29.1 and Derived Categories,
Lemma 31.9.

Parts (1)(b) and (2)(b) are special cases of (1)(a) and (2)(a) as iS = iidS
. □

Lemma 17.2.0F68 Let f : T → S be a morphism of schemes. For K in D((Sch/T )pro-étale)
we have

(Rfbig,∗K)|Spro-étale
= Rfsmall,∗(K|Tpro-étale

)
in D(Spro-étale). More generally, let S′ ∈ Ob((Sch/S)pro-étale) with structure mor-
phism g : S′ → S. Consider the fibre product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

Then for K in D((Sch/T )pro-étale) we have

i−1
g (Rfbig,∗K) = Rf ′

small,∗(i−1
g′ K)

in D(S′
pro-étale) and

g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K)

in D((Sch/S′)pro-étale).

Proof. The first equality follows from Lemma 17.1 and (12.16.1) on choosing a
K-injective complex of abelian sheaves representing K. The second equality follows
from Lemma 17.1 and Lemma 12.18 on choosing a K-injective complex of abelian
sheaves representing K. The third equality follows similarly from Cohomology on
Sites, Lemmas 7.1 and 20.1 and Lemma 12.18 on choosing a K-injective complex
of abelian sheaves representing K. □

Let S be a scheme and let H be an abelian sheaf on (Sch/S)pro-étale. Recall that
Hn

pro-étale(U,H) denotes the cohomology of H over an object U of (Sch/S)pro-étale.

Lemma 17.3.0F69 Let f : T → S be a morphism of schemes. For K in D(Spro-étale)
we have

Hn
pro-étale(S, π−1

S K) = Hn(Spro-étale, K)
and

Hn
pro-étale(T, π−1

S K) = Hn(Tpro-étale, f−1
smallK).

For M in D((Sch/S)pro-étale) we have

Hn
pro-étale(T, M) = Hn(Tpro-étale, i−1

f M).

Proof. To prove the last equality represent M by a K-injective complex of abelian
sheaves and apply Lemma 17.1 and work out the definitions. The second equality
follows from this as i−1

f ◦ π−1
S = f−1

small. The first equality is a special case of the
second one. □
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Lemma 17.4.0F6A Let S be a scheme. For K ∈ D(Spro-étale) the map

K −→ RπS,∗π−1
S K

is an isomorphism.

Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. □

18. Points of the pro-étale site

0991 We first apply Deligne’s criterion to show that there are enough points.

Lemma 18.1.0992 Let S be a scheme. The pro-étale sites Schpro-étale, Spro-étale,
(Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale have enough points.

Proof. The big pro-étale topos of S is equivalent to the topos defined by (Aff/S)pro-étale,
see Lemma 12.11. The topos of sheaves on Spro-étale is equivalent to the topos asso-
ciated to Saffine,pro-étale, see Lemma 12.20. The result for the sites (Aff/S)pro-étale

and Saffine,pro-étale follows immediately from Deligne’s result Sites, Lemma 39.4.
The case Schpro-étale is handled because it is equal to (Sch/ Spec(Z))pro-étale. □

Let S be a scheme. Let s : Spec(k)→ S be a geometric point. We define a pro-étale
neighbourhood of s to be a commutative diagram

Spec(k)
u
//

s
##

U

��
S

with U → S weakly étale.

Lemma 18.2.0F6B Let S be a scheme and let s : Spec(k) → S be a geometric point.
The category of pro-étale neighbourhoods of s is cofiltered.

Proof. The proof is identitical to the proof of Étale Cohomology, Lemma 29.4 but
using the corresponding facts about weakly étale morphisms proven in More on
Morphisms, Lemmas 64.5, 64.6, and 64.13. □

Lemma 18.3.0F6C Let S be a scheme. Let s be a geometric point of S. Let U = {φi :
Si → S}i∈I be a pro-étale covering. Then there exist i ∈ I and geometric point si

of Si mapping to s.

Proof. Immediate from the fact that
∐

φi is surjective and that residue field exten-
sions induced by weakly étale morphisms are separable algebraic (see for example
More on Morphisms, Lemma 64.11. □

Let S be a scheme and let s be a geometric point of S. For F in Sh(Spro-étale)
define the stalk of F at s by the formula

Fs = colim(U,u) F(U)
where the colimit is over all pro-étale neighbourhoods (U, u) of s with U ∈ Ob(Spro-étale).
It follows from the two lemmas above that the functor

Spro-étaleSets, U 7−→ {u geometric point of U mapping to s}
defines a point of the site Spro-étale, see Sites, Definition 32.2 and Lemma 33.1.
Hence the functor F 7→ Fs defines a point of the topos Sh(Spro-étale), see Sites,
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Definition 32.1 and Lemma 32.7. In particular this functor is exact and commutes
with arbitrary colimits. In fact, this functor has another description.

Lemma 18.4.0993 In the situation above the scheme Spec(Osh
S,s) is an object of

Xpro-étale and there is a canonical isomorphism

F(Spec(Osh
S,s)) = Fs

functorial in F .

Proof. The first statement is clear from the construction of the strict henselization
as a filtered colimit of étale algebras over S, or by the characterization of weakly
étale morphisms of More on Morphisms, Lemma 64.11. The second statement
follows as by Olivier’s theorem (More on Algebra, Theorem 104.24) the scheme
Spec(Osh

S,s) is an initial object of the category of pro-étale neighbourhoods of s. □

Contrary to the situation with the étale topos of S it is not true that every point
of Sh(Spro-étale) is of this form, and it is not true that the collection of points
associated to geometric points is conservative. Namely, suppose that S = Spec(k)
where k is an algebraically closed field. Let A be a nonzero abelian group. Consider
the sheaf F on Spro-étale defined by the

F(U) = {functions U → A}
{locally constant functions}

for U affine and by sheafification in general, see Example 19.12. Then F(U) = 0 if
U = S = Spec(k) but in general F is not zero. Namely, Spro-étale contains affine
objects with infinitely many points. For example, let E = lim En be an inverse limit
of finite sets with surjective transition maps, e.g., E = Zp = lim Z/pnZ. The scheme
U = Spec(colim Map(En, k)) is an object of Spro-étale because colim Map(En, k) is
weakly étale (even ind-Zariski) over k. Thus F(U) is nonzero as there exist maps
E → A which aren’t locally constant. Thus F is a nonzero abelian sheaf whose
stalk at the unique geometric point of S is zero. Since we know that Spro-étale has
enough points, we conclude there must be a point of the pro-étale site which does
not come from the construction explained above.
The replacement for arguments using points, is to use affine weakly contractible
objects. First, there are enough affine weakly contractible objects by Lemma 13.4.
Second, if W ∈ Ob(Spro-étale) is affine weakly contractible, then the functor

Sh(Spro-étale) −→ Sets, F 7−→ F(W )
is an exact functor Sh(Spro-étale) → Sets which commutes with all limits. The
functor

Ab(Spro-étale) −→ Ab, F 7−→ F(W )
is exact and commutes with direct sums (as W is quasi-compact, see Sites, Lemma
17.7), hence commutes with all limits and colimits. Moreover, we can check exact-
ness of a complex of abelian sheaves by evaluation at these affine weakly contractible
objects of Spro-étale, see Cohomology on Sites, Proposition 51.2.
A final remark is that the functor F 7→ F(W ) for W affine weakly contractible
in general isn’t a stalk functor of a point of Spro-étale because it doesn’t preserve
coproducts of sheaves of sets if W is disconnected. And in fact, W is disconnected
as soon as W has more than 1 closed point, i.e., when W is not the spectrum of a
strictly henselian local ring (which is the special case discussed above).
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19. Comparison with the étale site

099R Let X be a scheme. With suitable choices of sites4 the functor u : Xétale →
Xpro-étale sending U/X to U/X defines a morphism of sites

ϵ : Xpro-étale −→ Xétale

This follows from Sites, Proposition 14.7.

Lemma 19.1.0GLZ With notation as above. Let F be a sheaf on Xétale. The rule

Xpro-étale −→ Sets, (f : Y → X) 7−→ Γ(Yétale, f−1
étaleF)

is a sheaf and is equal to ϵ−1F . Here fétale : Yétale → Xétale is the morphism of
small étale sites constructed in Étale Cohomology, Section 34.

Proof. By Lemma 12.2 any pro-étale covering is an fpqc covering. Hence the
formula defines a sheaf on Xpro-étale by Étale Cohomology, Lemma 39.2. Let a :
Sh(Xétale) → Sh(Xpro-étale) be the functor sending F to the sheaf given by the
formula in the lemma. To show that a = ϵ−1 it suffices to show that a is a left
adjoint to ϵ∗.

Let G be an object of Sh(Xpro-étale). Recall that ϵ∗G is simply given by the restric-
tion of G to the full subcategory Xétale. Let f : Y → X be an object of Xpro-étale.
We view Yétale as a subcategory of Xpro-étale. The restriction maps of the sheaf G
define a map

ϵ∗G = G|Xétale
−→ fétale,∗(G|Yétale

)
Namely, for U in Xétale the value of fétale,∗(G|Yétale

) on U is G(Y ×X U) and there
is a restriction map G(U)→ G(Y ×X U). By adjunction this determines a map

f−1
étale(ϵ∗G)→ G|Yétale

Putting these together for all f : Y → X in Xpro-étale we obtain a canonical map
a(ϵ∗G)→ G.

Let F be an object of Sh(Xétale). It is immediately clear that F = ϵ∗a(F).

We claim the maps F → ϵ∗a(F) and a(ϵ∗G) → G are the unit and counit of the
adjunction (see Categories, Section 24). To see this it suffices to show that the
corresponding maps

MorSh(Xpro-étale)(a(F),G)→ MorSh(Xétale)(F , ϵ−1G)

and
MorSh(Xétale)(F , ϵ−1G)→ MorSh(Xpro-étale)(a(F),G)

are mutually inverse. We omit the detailed verification. □

Lemma 19.2.099T Let X be a scheme. For every sheaf F on Xétale the adjunction
map F → ϵ∗ϵ−1F is an isomorphism, i.e., ϵ−1F(U) = F(U) for U in Xétale.

Proof. Follows immediately from the description of ϵ−1 in Lemma 19.1. □

4Choose a big pro-étale site Schpro-étale containing X as in Definition 12.7. Then let Schétale

be the site having the same underlying category as Schpro-étale but whose coverings are ex-
actly those pro-étale coverings which are also étale coverings. With these choices let Xétale and
Xpro-étale be the subcategories defined in Definition 12.8 and Topologies, Definition 4.8. Compare
with Topologies, Remark 11.1.
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Lemma 19.3.099S Let X be a scheme. Let Y = lim Yi be the limit of a directed
inverse system of quasi-compact and quasi-separated objects of Xpro-étale with affine
transition morphisms. For any sheaf F on Xétale we have

ϵ−1F(Y ) = colim ϵ−1F(Yi)
Moreover, if Yi is in Xétale we have ϵ−1F(Y ) = colimF(Yi).

Proof. By the description of ϵ−1F in Lemma 19.1, the displayed formula is a
special case of Étale Cohomology, Theorem 51.3. (When X, Y , and the Yi are all
affine, see the easier to parse Étale Cohomology, Lemma 51.5.) The final statement
follows immediately from this and Lemma 19.2. □

Lemma 19.4.099U Let X be an affine scheme. For injective abelian sheaf I on Xétale

we have Hp(Xpro-étale, ϵ−1I) = 0 for p > 0.

Proof. We are going to use Cohomology on Sites, Lemma 10.9 to prove this. Let
B ⊂ Ob(Xpro-étale) be the set of affine objects U of Xpro-étale such that O(X) →
O(U) is ind-étale. Let Cov be the set of pro-étale coverings {Ui → U}i=1,...,n with
U ∈ B such that O(U)→ O(Ui) is ind-étale for i = 1, . . . , n. Properties (1) and (2)
of Cohomology on Sites, Lemma 10.9 hold for B and Cov by Lemmas 7.3, 7.2, and
12.5 and Proposition 9.1.
To check condition (3) suppose that U = {Ui → U}i=1,...,n is an element of Cov.
We have to show that the higher Cech cohomology groups of ϵ−1I with respect
to U are zero. First we write Ui = lima∈Ai

Ui,a as a directed inverse limit with
Ui,a → U étale and Ui,a affine. We think of A1 × . . . × An as a direct set with
ordering (a1, . . . , an) ≥ (a′

1, . . . , a′
n) if and only if ai ≥ a′

i for i = 1, . . . , n. Observe
that U(a1,...,an) = {Ui,ai

→ U}i=1,...,n is an étale covering for all a1, . . . , an ∈
A1 × . . .×An. Observe that
Ui0×U Ui1×U . . .×U Uip

= lim(a1,...,an)∈A1×...×An
Ui0,ai0

×U Ui1,ai1
×U . . .×U Uip,aip

for all i0, . . . , ip ∈ {1, . . . , n} because limits commute with fibred products. Hence
by Lemma 19.3 and exactness of filtered colimits we have

Ȟp(U , ϵ−1I) = colim Ȟp(U(a1,...,an), ϵ−1I)
Thus it suffices to prove the vanishing for étale coverings of U !
Let U = {Ui → U}i=1,...,n be an étale covering with Ui affine. Write U = limb∈B Ub

as a directed inverse limit with Ub affine and Ub → X étale. By Limits, Lemmas
10.1, 4.13, and 8.10 we can choose a b0 ∈ B such that for i = 1, . . . , n there is an étale
morphism Ui,b0 → Ub0 of affines such that Ui = U×Ub0

Ui,b0 . Set Ui,b = Ub×Ub0
Ui,b0

for b ≥ b0. For b large enough the family Ub = {Ui,b → Ub}i=1,...,n is an étale
covering, see Limits, Lemma 8.15. Exactly as before we find that

Ȟp(U , ϵ−1I) = colim Ȟp(Ub, ϵ−1I) = colim Ȟp(Ub, I)
the final equality by Lemma 19.2. Since each of the Čech complexes on the right
hand side is acyclic in positive degrees (Cohomology on Sites, Lemma 10.2) it
follows that the one on the left is too. This proves condition (3) of Cohomology on
Sites, Lemma 10.9. Since X ∈ B the lemma follows. □

Lemma 19.5.099V Let X be a scheme.
(1) For an abelian sheaf F on Xétale we have Rϵ∗(ϵ−1F) = F .

https://stacks.math.columbia.edu/tag/099S
https://stacks.math.columbia.edu/tag/099U
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(2) For K ∈ D+(Xétale) the map K → Rϵ∗ϵ−1K is an isomorphism.

Proof. Let I be an injective abelian sheaf on Xétale. Recall that Rqϵ∗(ϵ−1I) is
the sheaf associated to U 7→ Hq(Upro-étale, ϵ−1I), see Cohomology on Sites, Lemma
7.4. By Lemma 19.4 we see that this is zero for q > 0 and U affine and étale over
X. Since every object of Xétale has a covering by affine objects, it follows that
Rqϵ∗(ϵ−1I) = 0 for q > 0.
Let K ∈ D+(Xétale). Choose a bounded below complex I• of injective abelian
sheaves on Xétale representing K. Then ϵ−1K is represented by ϵ−1I•. By Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7) we see that Rϵ∗ϵ−1K is repre-
sented by ϵ∗ϵ−1I•. By Lemma 19.2 we conclude that Rϵ∗ϵ−1I• = I• and the proof
of (2) is complete. Part (1) is a special case of (2). □

Lemma 19.6.099W Let X be a scheme.
(1) For an abelian sheaf F on Xétale we have

Hi(Xétale,F) = Hi(Xpro-étale, ϵ−1F)
for all i.

(2) For K ∈ D+(Xétale) we have
RΓ(Xétale, K) = RΓ(Xpro-étale, ϵ−1K)

Proof. Immediate consequence of Lemma 19.5 and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.6). □

Lemma 19.7.099X Let X be a scheme. Let G be a sheaf of (possibly noncommutative)
groups on Xétale. We have

H1(Xétale,G) = H1(Xpro-étale, ϵ−1G)
where H1 is defined as the set of isomorphism classes of torsors (see Cohomology
on Sites, Section 4).

Proof. Since the functor ϵ−1 is fully faithful by Lemma 19.2 it is clear that the map
H1(Xétale,G) → H1(Xpro-étale, ϵ−1G) is injective. To show surjectivity it suffices
to show that any ϵ−1G-torsor F is étale locally trivial. To do this we may assume
that X is affine. Thus we reduce to proving surjectivity for X affine.
Choose a covering {U → X} with (a) U affine, (b) O(X) → O(U) ind-étale, and
(c) F(U) nonempty. We can do this by Proposition 9.1 and the fact that standard
pro-étale coverings of X are cofinal among all pro-étale coverings of X (Lemma
12.5). Write U = lim Ui as a limit of affine schemes étale over X. Pick s ∈ F(U).
Let g ∈ ϵ−1G(U×X U) be the unique section such that g ·pr∗

1s = pr∗
2s in F(U×X U).

Then g satisfies the cocycle condition
pr∗

12g · pr∗
23g = pr∗

13g

in ϵ−1G(U ×X U ×X U). By Lemma 19.3 we have
ϵ−1G(U ×X U) = colimG(Ui ×X Ui)

and
ϵ−1G(U ×X U ×X U) = colimG(Ui ×X Ui ×X Ui)

hence we can find an i and an element gi ∈ G(Ui ×X Ui) mapping to g satisfying
the cocycle condition. The cocycle gi then defines a torsor for G on Xétale whose
pullback is isomorphic to F by construction. Some details omitted (namely, the

https://stacks.math.columbia.edu/tag/099W
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relationship between torsors and 1-cocycles which should be added to the chapter
on cohomology on sites). □

Lemma 19.8.09B1 Let X be a scheme. Let Λ be a ring.
(1) The essential image of the fully faithful functor ϵ−1 : Mod(Xétale, Λ) →

Mod(Xpro-étale, Λ) is a weak Serre subcategory C.
(2) The functor ϵ−1 defines an equivalence of categories of D+(Xétale, Λ) with

D+
C (Xpro-étale, Λ) with question inverse given by Rϵ∗.

Proof. To prove (1) we will prove conditions (1) – (4) of Homology, Lemma 10.3.
Since ϵ−1 is fully faithful (Lemma 19.2) and exact, everything is clear except for
condition (4). However, if

0→ ϵ−1F1 → G → ϵ−1F2 → 0

is a short exact sequence of sheaves of Λ-modules on Xpro-étale, then we get

0→ ϵ∗ϵ−1F1 → ϵ∗G → ϵ∗ϵ−1F2 → R1ϵ∗ϵ−1F1

which by Lemma 19.5 is the same as a short exact sequence

0→ F1 → ϵ∗G → F2 → 0

Pulling pack we find that G = ϵ−1ϵ∗G. This proves (1).

Part (2) follows from part (1) and Cohomology on Sites, Lemma 28.5. □

Let Λ be a ring. In Modules on Sites, Section 43 we have defined the notion of a
locally constant sheaf of Λ-modules on a site. If M is a Λ-module, then M is of
finite presentation as a sheaf of Λ-modules if and only if M is a finitely presented
Λ-module, see Modules on Sites, Lemma 42.5.

Lemma 19.9.099Y Let X be a scheme. Let Λ be a ring. The functor ϵ−1 defines an
equivalence of categorieslocally constant sheaves

of Λ-modules on Xétale

of finite presentation

←→
 locally constant sheaves

of Λ-modules on Xpro-étale

of finite presentation


Proof. Let F be a locally constant sheaf of Λ-modules on Xpro-étale of finite pre-
sentation. Choose a pro-étale covering {Ui → X} such that F|Ui is constant, say
F|Ui

∼= MiUi
. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For

each Λ-module M let IM = {i ∈ I | Mi
∼= M}. As pro-étale coverings are fpqc

coverings and by Descent, Lemma 13.6 we see that UM =
⋃

i∈IM
Im(Ui → X) is

an open subset of X. Then X =
∐

UM is a disjoint open covering of X. We may
replace X by UM for some M and assume that Mi = M for all i.

Consider the sheaf I = Isom(M,F). This sheaf is a torsor for G = Isom(M, M).
By Modules on Sites, Lemma 43.4 we have G = G where G = IsomΛ(M, M). Since
torsors for the étale topology and the pro-étale topology agree by Lemma 19.7 it
follows that I has sections étale locally on X. Thus F is étale locally a constant
sheaf which is what we had to show. □

Lemma 19.10.099Z Let X be a scheme. Let Λ be a Noetherian ring. Let Dflc(Xétale, Λ),
resp. Dflc(Xpro-étale, Λ) be the full subcategory of D(Xétale, Λ), resp. D(Xpro-étale, Λ)

https://stacks.math.columbia.edu/tag/09B1
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consisting of those complexes whose cohomology sheaves are locally constant sheaves
of Λ-modules of finite type. Then

ϵ−1 : D+
flc(Xétale, Λ) −→ D+

flc(Xpro-étale, Λ)
is an equivalence of categories.

Proof. The categories Dflc(Xétale, Λ) and Dflc(Xpro-étale, Λ) are strictly full, sat-
urated, triangulated subcategories of D(Xétale, Λ) and D(Xpro-étale, Λ) by Modules
on Sites, Lemma 43.5 and Derived Categories, Section 17. The statement of the
lemma follows by combining Lemmas 19.8 and 19.9. □

Lemma 19.11.09B2 Let X be a scheme. Let Λ be a Noetherian ring. Let K be an
object of D(Xpro-étale, Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is
(1) in the essential image of ϵ−1 : D(Xétale, Λ/I)→ D(Xpro-étale, Λ/I), and
(2) has tor amplitude in [a,∞) for some a ∈ Z,

then (1) and (2) hold for Kn as an object of D(Xpro-étale, Λ/In).

Proof. Assertion (2) for Kn follows from the more general Cohomology on Sites,
Lemma 46.9. Assertion (1) for Kn follows by induction on n from the distinguished
triangles

K ⊗L
Λ In/In+1 → Kn+1 → Kn → K ⊗L

Λ In/In+1[1]
and the isomorphism

K ⊗L
Λ In/In+1 = K1 ⊗L

Λ/I In/In+1

and the fact proven in Lemma 19.8 that the essential image of ϵ−1 is a triangulated
subcategory of D+(Xpro-étale, Λ/In). □

Example 19.12.0F6D Let X be a scheme. Let A be an abelian group. Denote
fun(−, A) the sheaf on Xpro-étale which maps U to the set of all maps U → A
(of sets of points). Consider the sequence of sheaves

0→ A→ fun(−, A)→ F → 0
on Xpro-étale. Since the constant sheaf is the pullback from the final topos we see
that A = ϵ−1A. However, if A has more than one element, then neither fun(−, A)
nor F are pulled back from the étale site of X. To work out the values of F in
some cases, assume that all points of X are closed with separably closed residue
fields and U is affine. Then all points of U are closed with separably closed residue
fields and we have

H1
pro-étale(U, A) = H1

étale(U, A) = 0
by Lemma 19.6 and Étale Cohomology, Lemma 80.3. Hence in this case we have

F(U) = fun(U, A)/A(U)

20. Derived completion in the constant Noetherian case

099L We continue the discussion started in Algebraic and Formal Geometry, Section 6;
we assume the reader has read at least some of that section.
Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Recall from
Modules on Sites, Lemma 42.4 that

Λ∧ = lim Λ/In

https://stacks.math.columbia.edu/tag/09B2
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is a flat Λ-algebra and that the map Λ → Λ∧ identifies quotients by I. Hence
Algebraic and Formal Geometry, Lemma 6.17 tells us that

Dcomp(C, Λ) = Dcomp(C, Λ∧)
In particular the cohomology sheaves Hi(K) of an object K of Dcomp(C, Λ) are
sheaves of Λ∧-modules. For notational convenience we often work with Dcomp(C, Λ).

Lemma 20.1.099M Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an
ideal. The left adjoint to the inclusion functor Dcomp(C, Λ)→ D(C, Λ) of Algebraic
and Formal Geometry, Proposition 6.12 sends K to

K∧ = R lim(K ⊗L
Λ Λ/In)

In particular, K is derived complete if and only if K = R lim(K ⊗L
Λ Λ/In).

Proof. Choose generators f1, . . . , fr of I. By Algebraic and Formal Geometry,
Lemma 6.9 we have

K∧ = R lim(K ⊗L
Λ Kn)

where Kn = K(Λ, fn
1 , . . . , fn

r ). In More on Algebra, Lemma 94.1 we have seen
that the pro-systems {Kn} and {Λ/In} of D(Λ) are isomorphic. Thus the lemma
follows. □

Lemma 20.2.099N Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let f : Sh(D)→
Sh(C) be a morphism of topoi. Then

(1) Rf∗ sends Dcomp(D, Λ) into Dcomp(C, Λ),
(2) the map Rf∗ : Dcomp(D, Λ) → Dcomp(C, Λ) has a left adjoint Lf∗

comp :
Dcomp(C, Λ)→ Dcomp(D, Λ) which is Lf∗ followed by derived completion,

(3) Rf∗ commutes with derived completion,
(4) for K in Dcomp(D, Λ) we have Rf∗K = R lim Rf∗(K ⊗L

Λ Λ/In).
(5) for M in Dcomp(C, Λ) we have Lf∗

compM = R lim Lf∗(M ⊗L
Λ Λ/In).

Proof. We have seen (1) and (2) in Algebraic and Formal Geometry, Lemma 6.18.
Part (3) follows from Algebraic and Formal Geometry, Lemma 6.19. For (4) let K
be derived complete. Then

Rf∗K = Rf∗(R lim K ⊗L
Λ Λ/In) = R lim Rf∗(K ⊗L

Λ Λ/In)

the first equality by Lemma 20.1 and the second because Rf∗ commutes with R lim
(Cohomology on Sites, Lemma 23.3). This proves (4). To prove (5), by Lemma
20.1 we have

Lf∗
compM = R lim(Lf∗M ⊗L

Λ Λ/In)
Since Lf∗ commutes with derived tensor product by Cohomology on Sites, Lemma
18.4 and since Lf∗Λ/In = Λ/In we get (5). □

21. Derived completion and weakly contractible objects

099P We continue the discussion in Section 20. In this section we will see how the
existence of weakly contractible objects simplifies the study of derived complete
modules.
Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Although the
general theory concerning Dcomp(C, Λ) is quite satisfactory it is hard to explicitly
give examples of derived complete complexes. We know that

https://stacks.math.columbia.edu/tag/099M
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PRO-ÉTALE COHOMOLOGY 46

(1) every object M of D(C, Λ/In) restricts to a derived complete object of
D(C, Λ), and

(2) for every K ∈ D(C, Λ) the derived completion K∧ = R lim(K ⊗L
Λ Λ/In) is

derived complete.
The first type of objects are trivially complete and perhaps not interesting. The
problem with (2) is that derived completion in general is somewhat mysterious, even
in case K = Λ. Namely, by definition of homotopy limits there is a distinguished
triangle

R lim(Λ/In)→
∏

Λ/In →
∏

Λ/In → R lim(Λ/In)[1]

in D(C, Λ) where the products are in D(C, Λ). These are computed by taking
products of injective resolutions (Injectives, Lemma 13.4), so we see that the sheaf
Hp(

∏
Λ/In) is the sheafification of the presheaf

U 7−→
∏

Hp(U, Λ/In).

As an explicit example, if X = Spec(C[t, t−1]), C = Xétale, Λ = Z, I = (2), and
p = 1, then we get the sheafification of the presheaf

U 7→
∏

H1(Uétale, Z/2nZ)

for U étale over X. Note that H1(Xétale, Z/mZ) is cyclic of order m with generator
αm given by the finite étale Z/mZ-covering given by the equation t = sm (see Étale
Cohomology, Section 6). Then the section

α = (α2n) ∈
∏

H1(Xétale, Z/2nZ)

of the presheaf above does not restrict to zero on any nonempty étale scheme over
X, whence the sheaf associated to the presheaf is not zero.

However, on the pro-étale site this phenomenon does not occur. The reason is
that we have enough (quasi-compact) weakly contractible objects. In the following
proposition we collect some results about derived completion in the Noetherian con-
stant case for sites having enough weakly contractible objects (see Sites, Definition
40.2).

Proposition 21.1.099Q Let C be a site. Assume C has enough weakly contractible
objects. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.

(1) The category of derived complete sheaves Λ-modules is a weak Serre subcat-
egory of Mod(C, Λ).

(2) A sheaf F of Λ-modules satisfies F = limF/InF if and only if F is derived
complete and

⋂
InF = 0.

(3) The sheaf Λ∧ is derived complete.
(4) If . . . → F3 → F2 → F1 is an inverse system of derived complete sheaves

of Λ-modules, then limFn is derived complete.
(5) An object K ∈ D(C, Λ) is derived complete if and only if each cohomology

sheaf Hp(K) is derived complete.
(6) An object K ∈ Dcomp(C, Λ) is bounded above if and only if K ⊗L

Λ Λ/I is
bounded above.

(7) An object K ∈ Dcomp(C, Λ) is bounded if K⊗L
ΛΛ/I has finite tor dimension.

https://stacks.math.columbia.edu/tag/099Q
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Proof. Let B ⊂ Ob(C) be a subset such that every U ∈ B is weakly contractible
and every object of C has a covering by elements of B. We will use the results of
Cohomology on Sites, Lemma 51.1 and Proposition 51.2 without further mention.

Recall that R lim commutes with RΓ(U,−), see Injectives, Lemma 13.6. Let f ∈ I.
Recall that T (K, f) is the homotopy limit of the system

. . .
f−→ K

f−→ K
f−→ K

in D(C, Λ). Thus
RΓ(U, T (K, f)) = T (RΓ(U, K), f).

Since we can test isomorphisms of maps between objects of D(C, Λ) by evaluating
at U ∈ B we conclude an object K of D(C, Λ) is derived complete if and only if for
every U ∈ B the object RΓ(U, K) is derived complete as an object of D(Λ).

The remark above implies that items (1), (5) follow from the corresponding results
for modules over rings, see More on Algebra, Lemmas 91.1 and 91.6. In the same
way (2) can be deduced from More on Algebra, Proposition 91.5 as (InF)(U) =
In · F(U) for U ∈ B (by exactness of evaluating at U).

Proof of (4). The homotopy limit R limFn is in Dcomp(X, Λ) (see discussion fol-
lowing Algebraic and Formal Geometry, Definition 6.4). By part (5) just proved
we conclude that limFn = H0(R limFn) is derived complete. Part (3) is a special
case of (4).

Proof of (6) and (7). Follows from Lemma 20.1 and Cohomology on Sites, Lemma
46.9 and the computation of homotopy limits in Cohomology on Sites, Proposition
51.2. □

22. Cohomology of a point

09B3 Let Λ be a Noetherian ring complete with respect to an ideal I ⊂ Λ. Let k be a
field. In this section we “compute”

Hi(Spec(k)pro-étale, Λ∧)

where Λ∧ = limm Λ/Im as before. Let ksep be a separable algebraic closure of k.
Then

U = {Spec(ksep)→ Spec(k)}
is a pro-étale covering of Spec(k). We will use the Čech to cohomology spectral
sequence with respect to this covering. Set U0 = Spec(ksep) and

Un = Spec(ksep)×Spec(k) Spec(ksep)×Spec(k) . . .×Spec(k) Spec(ksep)
= Spec(ksep ⊗k ksep ⊗k . . .⊗k ksep)

(n + 1 factors). Note that the underlying topological space |U0| of U0 is a singleton
and for n ≥ 1 we have

|Un| = G× . . .×G (n factors)

as profinite spaces where G = Gal(ksep/k). Namely, every point of Un has residue
field ksep and we identify (σ1, . . . , σn) with the point corresponding to the surjection

ksep ⊗k ksep ⊗k . . .⊗k ksep −→ ksep, λ0 ⊗ λ1 ⊗ . . . λn 7−→ λ0σ1(λ1) . . . σn(λn)
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Then we compute

RΓ((Un)pro-étale, Λ∧) = R limm RΓ((Un)pro-étale, Λ/Im)
= R limm RΓ((Un)étale, Λ/Im)
= limm H0(Un, Λ/Im)
= Mapscont(G× . . .×G, Λ)

The first equality because RΓ commutes with derived limits and as Λ∧ is the derived
limit of the sheaves Λ/Im by Proposition 21.1. The second equality by Lemma
19.6. The third equality by Étale Cohomology, Lemma 80.3. The fourth equality
uses Étale Cohomology, Remark 23.2 to identify sections of the constant sheaf
Λ/Im. Then it uses the fact that Λ is complete with respect to I and hence
equal to limm Λ/Im as a topological space, to see that limm Mapcont(G, Λ/Im) =
Mapcont(G, Λ) and similarly for higher powers of G. At this point Cohomology on
Sites, Lemmas 10.3 and 10.7 tell us that

Λ→ Mapscont(G, Λ)→ Mapscont(G×G, Λ)→ . . .

computes the pro-étale cohomology. In other words, we see that

Hi(Spec(k)pro-étale, Λ∧) = Hi
cont(G, Λ)

where the right hand side is Tate’s continuous cohomology, see Étale Cohomology,
Section 58. Of course, this is as it should be.

Lemma 22.1.09B4 Let k be a field. Let G = Gal(ksep/k) be its absolute Galois group.
Further,

(1) let M be a profinite abelian group with a continuous G-action, or
(2) let Λ be a Noetherian ring and I ⊂ Λ an ideal an let M be an I-adically

complete Λ-module with continuous G-action.
Then there is a canonical sheaf M∧ on Spec(k)pro-étale associated to M such that

Hi(Spec(k), M∧) = Hi
cont(G, M)

as abelian groups or Λ-modules.

Proof. Proof in case (2). Set Mn = M/InM . Then M = lim Mn as M is assumed
I-adically complete. Since the action of G is continuous we get continuous actions of
G on Mn. By Étale Cohomology, Theorem 56.3 this action corresponds to a (locally
constant) sheaf Mn of Λ/In-modules on Spec(k)étale. Pull back to Spec(k)pro-étale

by the comparison morphism ϵ and take the limit

M∧ = lim ϵ−1Mn

to get the sheaf promised in the lemma. Exactly the same argument as given in
the introduction of this section gives the comparison with Tate’s continuous Galois
cohomology. □

23. Functoriality of the pro-étale site

09A5 Let f : X → Y be a morphism of schemes. The functor Ypro-étale → Xpro-étale,
V 7→ X ×Y V induces a morphism of sites fpro-étale : Xpro-étale → Ypro-étale, see

https://stacks.math.columbia.edu/tag/09B4
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Sites, Proposition 14.7. In fact, we obtain a commutative diagram of morphisms of
sites

Xpro-étale ϵ
//

fpro-étale

��

Xétale

fétale

��
Ypro-étale

ϵ // Yétale

where ϵ is as in Section 19. In particular we have ϵ−1f−1
étale = f−1

pro-étaleϵ−1. Here is
the corresponding result for pushforward.

Lemma 23.1.09A6 Let f : X → Y be a morphism of schemes.
(1) Let F be a sheaf of sets on Xétale. Then we have fpro-étale,∗ϵ−1F =

ϵ−1fétale,∗F .
(2) Let F be an abelian sheaf on Xétale. Then we have Rfpro-étale,∗ϵ−1F =

ϵ−1Rfétale,∗F .

Proof. Proof of (1). Let F be a sheaf of sets on Xétale. There is a canonical map
ϵ−1fétale,∗F → fpro-étale,∗ϵ−1F , see Sites, Section 45. To show it is an isomorphism
we may work (Zariski) locally on Y , hence we may assume Y is affine. In this case
every object of Ypro-étale has a covering by objects V = lim Vi which are limits of
affine schemes Vi étale over Y (by Proposition 9.1 for example). Evaluating the
map ϵ−1fétale,∗F → fpro-étale,∗ϵ−1F on V we obtain a map

colim Γ(X ×Y Vi,F) −→ Γ(X ×Y V, ϵ∗F).

see Lemma 19.3 for the left hand side. By Lemma 19.3 we have

Γ(X ×Y V, ϵ∗F) = Γ(X ×Y V,F)

Hence the result holds by Étale Cohomology, Lemma 51.5.

Proof of (2). Arguing in exactly the same manner as above we see that it suffices
to show that

colim Hi
étale(X ×Y Vi,F) −→ Hi

étale(X ×Y V,F)

which follows once more from Étale Cohomology, Lemma 51.5. □

24. Finite morphisms and pro-étale sites

09A7 It is not clear that a finite morphism of schemes determines an exact pushforward
on abelian pro-étale sheaves.

Lemma 24.1.09A8 Let f : Z → X be a finite morphism of schemes which is locally of
finite presentation. Then fpro-étale,∗ : Ab(Zpro-étale)→ Ab(Xpro-étale) is exact.

Proof. The prove this we may work (Zariski) locally on X and assume that X
is affine, say X = Spec(A). Then Z = Spec(B) for some finite A-algebra B of
finite presentation. The construction in the proof of Proposition 11.3 produces a
faithfully flat, ind-étale ring map A → D with D w-contractible. We may check
exactness of a sequence of sheaves by evaluating on U = Spec(D) be such an object.
Then fpro-étale,∗F evaluated at U is equal to F evaluated at V = Spec(D ⊗A B).
Since D ⊗A B is w-contractible by Lemma 11.6 evaluation at V is exact. □

https://stacks.math.columbia.edu/tag/09A6
https://stacks.math.columbia.edu/tag/09A8


PRO-ÉTALE COHOMOLOGY 50

25. Closed immersions and pro-étale sites

09A9 It is not clear (and likely false) that a closed immersion of schemes determines an
exact pushforward on abelian pro-étale sheaves.

Lemma 25.1.09BK Let i : Z → X be a closed immersion morphism of affine schemes.
Denote Xapp and Zapp the sites introduced in Lemma 12.21. The base change
functor

u : Xapp → Zapp, U 7−→ u(U) = U ×X Z

is continuous and has a fully faithful left adjoint v. For V in Zapp the morphism
V → v(V ) is a closed immersion identifying V with u(v(V )) = v(V ) ×X Z and
every point of v(V ) specializes to a point of V . The functor v is cocontinuous and
sends coverings to coverings.

Proof. The existence of the adjoint follows immediately from Lemma 7.7 and the
definitions. It is clear that u is continuous from the definition of coverings in Xapp.

Write X = Spec(A) and Z = Spec(A/I). Let V = Spec(C) be an object of
Zapp and let v(V ) = Spec(C). We have seen in the statement of Lemma 7.7 that
V equals v(V ) ×X Z = Spec(C/IC). Any g ∈ C which maps to an invertible
element of C/IC = C is invertible in C. Namely, we have the A-algebra maps
C → Cg → C/IC and by adjointness we obtain an C-algebra map Cg → C. Thus
every point of v(V ) specializes to a point of V .

Suppose that {Vi → V } is a covering in Zapp. Then {v(Vi) → v(V )} is a finite
family of morphisms of Zapp such that every point of V ⊂ v(V ) is in the image
of one of the maps v(Vi) → v(V ). As the morphisms v(Vi) → v(V ) are flat (since
they are weakly étale) we conclude that {v(Vi)→ v(V )} is jointly surjective. This
proves that v sends coverings to coverings.

Let V be an object of Zapp and let {Ui → v(V )} be a covering in Xapp. Then we
see that {u(Ui) → u(v(V )) = V } is a covering of Zapp. By adjointness we obtain
morphisms v(u(Ui)) → Ui. Thus the family {v(u(Ui)) → v(V )} refines the given
covering and we conclude that v is cocontinuous. □

Lemma 25.2.09BL Let Z → X be a closed immersion morphism of affine schemes.
The corresponding morphism of topoi i = ipro-étale is equal to the morphism of topoi
associated to the fully faithful cocontinuous functor v : Zapp → Xapp of Lemma 25.1.
It follows that

(1) i−1F is the sheaf associated to the presheaf V 7→ F(v(V )),
(2) for a weakly contractible object V of Zapp we have i−1F(V ) = F(v(V )),
(3) i−1 : Sh(Xpro-étale)→ Sh(Zpro-étale) has a left adjoint iSh

! ,
(4) i−1 : Ab(Xpro-étale)→ Ab(Zpro-étale) has a left adjoint i!,
(5) id→ i−1iSh

! , id→ i−1i!, and i−1i∗ → id are isomorphisms, and
(6) i∗, iSh

! and i! are fully faithful.

Proof. By Lemma 12.21 we may describe ipro-étale in terms of the morphism of
sites u : Xapp → Zapp, V 7→ V ×X Z. The first statement of the lemma follows
from Sites, Lemma 22.2 (but with the roles of u and v reversed).

Proof of (1). By the description of i as the morphism of topoi associated to v this
holds by the construction, see Sites, Lemma 21.1.
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Proof of (2). Since the functor v sends coverings to coverings by Lemma 25.1 we
see that the presheaf G : V 7→ F(v(V )) is a separated presheaf (Sites, Definition
10.9). Hence the sheafification of G is G+, see Sites, Theorem 10.10. Next, let V
be a weakly contractible object of Zapp. Let V = {Vi → V }i=1,...,n be any covering
in Zapp. Set V ′ = {

∐
Vi → V }. Since v commutes with finite disjoint unions (as

a left adjoint or by the construction) and since F sends finite disjoint unions into
products, we see that

H0(V,G) = H0(V ′,G)
(notation as in Sites, Section 10; compare with Étale Cohomology, Lemma 22.1).
Thus we may assume the covering is given by a single morphism, like so {V ′ → V }.
Since V is weakly contractible, this covering can be refined by the trivial covering
{V → V }. It therefore follows that the value of G+ = i−1F on V is simply F(v(V ))
and (2) is proved.

Proof of (3). Every object of Zapp has a covering by weakly contractible objects
(Lemma 13.4). By the above we see that we would have iSh

! hV = hv(V ) for V

weakly contractible if iSh
! existed. The existence of iSh

! then follows from Sites,
Lemma 24.1.

Proof of (4). Existence of i! follows in the same way by setting i!ZV = Zv(V ) for V
weakly contractible in Zapp, using similar for direct sums, and applying Homology,
Lemma 29.6. Details omitted.

Proof of (5). Let V be a contractible object of Zapp. Then i−1iSh
! hV = i−1hv(V ) =

hu(v(V )) = hV . (It is a general fact that i−1hU = hu(U).) Since the sheaves hV for V

contractible generate Sh(Zapp) (Sites, Lemma 12.5) we conclude id→ i−1iSh
! is an

isomorphism. Similarly for the map id→ i−1i!. Then (i−1i∗H)(V ) = i∗H(v(V )) =
H(u(v(V ))) = H(V ) and we find that i−1i∗ → id is an isomorphism.

The fully faithfulness statements of (6) now follow from Categories, Lemma 24.4.
□

Lemma 25.3.09AA Let i : Z → X be a closed immersion of schemes. Then
(1) i−1

pro-étale commutes with limits,
(2) ipro-étale,∗ is fully faithful, and
(3) i−1

pro-étaleipro-étale,∗ ∼= idSh(Zpro-étale).

Proof. Assertions (2) and (3) are equivalent by Sites, Lemma 41.1. Parts (1) and
(3) are (Zariski) local on X, hence we may assume that X is affine. In this case
the result follows from Lemma 25.2. □

Lemma 25.4.09AB Let i : Z → X be an integral universally injective and surjective
morphism of schemes. Then ipro-étale,∗ and i−1

pro-étale are quasi-inverse equivalences
of categories of pro-étale topoi.

Proof. There is an immediate reduction to the case that X is affine. Then Z is
affine too. Set A = O(X) and B = O(Z). Then the categories of étale algebras
over A and B are equivalent, see Étale Cohomology, Theorem 45.2 and Remark
45.3. Thus the categories of ind-étale algebras over A and B are equivalent. In
other words the categories Xapp and Zapp of Lemma 12.21 are equivalent. We omit
the verification that this equivalence sends coverings to coverings and vice versa.
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Thus the result as Lemma 12.21 tells us the pro-étale topos is the topos of sheaves
on Xapp. □

Lemma 25.5.09AC Let i : Z → X be a closed immersion of schemes. Let U → X be
an object of Xpro-étale such that

(1) U is affine and weakly contractible, and
(2) every point of U specializes to a point of U ×X Z.

Then i−1
pro-étaleF(U ×X Z) = F(U) for all abelian sheaves on Xpro-étale.

Proof. Since pullback commutes with restriction, we may replace X by U . Thus
we may assume that X is affine and weakly contractible and that every point of
X specializes to a point of Z. By Lemma 25.2 part (1) it suffices to show that
v(Z) = X in this case. Thus we have to show: If A is a w-contractible ring, I ⊂ A
an ideal contained in the Jacobson radical of A and A→ B → A/I is a factorization
with A → B ind-étale, then there is a unique retraction B → A compatible with
maps to A/I. Observe that B/IB = A/I × R as A/I-algebras. After replacing
B by a localization we may assume B/IB = A/I. Note that Spec(B) → Spec(A)
is surjective as the image contains V (I) and hence all closed points and is closed
under specialization. Since A is w-contractible there is a retraction B → A. Since
B/IB = A/I this retraction is compatible with the map to A/I. We omit the proof
of uniqueness (hint: use that A and B have isomorphic local rings at maximal ideals
of A). □

Lemma 25.6.09BM Let i : Z → X be a closed immersion of schemes. If X \ i(Z) is a
retrocompact open of X, then ipro-étale,∗ is exact.

Proof. The question is local on X hence we may assume X is affine. Say X =
Spec(A) and Z = Spec(A/I). There exist f1, . . . , fr ∈ I such that Z = V (f1, . . . , fr)
set theoretically, see Algebra, Lemma 29.1. By Lemma 25.4 we may assume that
Z = Spec(A/(f1, . . . , fr)). In this case the functor ipro-étale,∗ is exact by Lemma
24.1. □

26. Extension by zero

09AD The general material in Modules on Sites, Section 19 allows us to make the following
definition.

Definition 26.1.09AE Let j : U → X be a weakly étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xpro-étale) → Sh(Upro-étale) has a left

adjoint jSh
! : Sh(Xpro-étale)→ Sh(Upro-étale).

(2) The restriction functor j−1 : Ab(Xpro-étale) → Ab(Upro-étale) has a left
adjoint which is denoted j! : Ab(Upro-étale) → Ab(Xpro-étale) and called
extension by zero.

(3) Let Λ be a ring. The functor j−1 : Mod(Xpro-étale, Λ)→ Mod(Upro-étale, Λ)
has a left adjoint j! : Mod(Upro-étale, Λ) → Mod(Xpro-étale, Λ) and called
extension by zero.

As usual we compare this to what happens in the étale case.

Lemma 26.2.09AF Let j : U → X be an étale morphism of schemes. Let G be an
abelian sheaf on Uétale. Then ϵ−1j!G = j!ϵ

−1G as sheaves on Xpro-étale.
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Proof. This is true because both are left adjoints to jpro-étale,∗ϵ−1 = ϵ−1jétale,∗,
see Lemma 23.1. □

Lemma 26.3.09AG Let j : U → X be a weakly étale morphism of schemes. Let
i : Z → X be a closed immersion such that U ×X Z = ∅. Let V → X be an affine
object of Xpro-étale such that every point of V specializes to a point of VZ = Z×X V .
Then j!F(V ) = 0 for all abelian sheaves on Upro-étale.

Proof. Let {Vi → V } be a pro-étale covering. The lemma follows if we can refine
this covering to a covering where the members have no morphisms into U over X
(see construction of j! in Modules on Sites, Section 19). First refine the covering to
get a finite covering with Vi affine. For each i let Vi = Spec(Ai) and let Zi ⊂ Vi be
the inverse image of Z. Set Wi = Spec(A∼

i,Zi
) with notation as in Lemma 5.1. Then∐

Wi → V is weakly étale and the image contains all points of VZ . Hence the image
contains all points of V by our assumption on specializations. Thus {Wi → V } is
a pro-étale covering refining the given one. But each point in Wi specializes to a
point lying over Z, hence there are no morphisms Wi → U over X. □

Lemma 26.4.09BN Let j : U → X be an open immersion of schemes. Then id ∼= j−1j!
and j−1j∗ ∼= id and the functors j! and j∗ are fully faithful.

Proof. See Modules on Sites, Lemma 19.8 (and Sites, Lemma 27.4 for the case of
sheaves of sets) and Categories, Lemma 24.4. □

Here is the relationship between extension by zero and restriction to the comple-
mentary closed subscheme.

Lemma 26.5.09AH Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. Assume that j is a quasi-compact morphism. For every abelian sheaf
on Xpro-étale there is a canonical short exact sequence

0→ j!j
−1F → F → i∗i−1F → 0

on Xpro-étale where all the functors are for the pro-étale topology.

Proof. We obtain the maps by the adjointness properties of the functors involved.
It suffices to show that Xpro-étale has enough objects (Sites, Definition 40.2) on
which the sequence evaluates to a short exact sequence. Let V = Spec(A) be an
affine object of Xpro-étale such that A is w-contractible (there are enough objects
of this type). Then V ×X Z is cut out by an ideal I ⊂ A. The assumption that j
is quasi-compact implies there exist f1, . . . , fr ∈ I such that V (I) = V (f1, . . . , fr).
We obtain a faithfully flat, ind-Zariski ring map

A −→ Af1 × . . .×Afr
×A∼

V (I)

with A∼
V (I) as in Lemma 5.1. Since Vi = Spec(Afi

)→ X factors through U we have

j!j
−1F(Vi) = F(Vi) and i∗i−1F(Vi) = 0

On the other hand, for the scheme V ∼ = Spec(A∼
V (I)) we have

j!j
−1F(V ∼) = 0 and F(V ∼) = i∗i−1F(V ∼)

the first equality by Lemma 26.3 and the second by Lemmas 25.5 and 11.7. Thus
the sequence evaluates to an exact sequence on Spec(Af1 × . . .×Afr

×A∼
V (I)) and

the lemma is proved. □
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Lemma 26.6.09BP Let j : U → X be a quasi-compact open immersion morphism of
schemes. The functor j! : Ab(Upro-étale)→ Ab(Xpro-étale) commutes with limits.

Proof. Since j! is exact it suffices to show that j! commutes with products. The
question is local on X, hence we may assume X affine. Let G be an abelian sheaf
on Upro-étale. We have j−1j∗G = G. Hence applying the exact sequence of Lemma
26.5 we get

0→ j!G → j∗G → i∗i−1j∗G → 0

where i : Z → X is the inclusion of the reduced induced scheme structure on the
complement Z = X \ U . The functors j∗ and i∗ commute with products as right
adjoints. The functor i−1 commutes with products by Lemma 25.3. Hence j! does
because on the pro-étale site products are exact (Cohomology on Sites, Proposition
51.2). □

27. Constructible sheaves on the pro-étale site

09AI We stick to constructible sheaves of Λ-modules for a Noetherian ring. In the future
we intend to discuss constructible sheaves of sets, groups, etc.

Definition 27.1.09AJ Let X be a scheme. Let Λ be a Noetherian ring. A sheaf of
Λ-modules on Xpro-étale is constructible if for every affine open U ⊂ X there exists
a finite decomposition of U into constructible locally closed subschemes U =

∐
i Ui

such that F|Ui
is of finite type and locally constant for all i.

Again this does not give anything “new”.

Lemma 27.2.09AK Let X be a scheme. Let Λ be a Noetherian ring. The functor ϵ−1

defines an equivalence of categories{
constructible sheaves of

Λ-modules on Xétale

}
←→

{
constructible sheaves of
Λ-modules on Xpro-étale

}
between constructible sheaves of Λ-modules on Xétale and constructible sheaves of
Λ-modules on Xpro-étale.

Proof. By Lemma 19.2 the functor ϵ−1 is fully faithful and commutes with pullback
(restriction) to the strata. Hence ϵ−1 of a constructible étale sheaf is a constructible
pro-étale sheaf. To finish the proof let F be a constructible sheaf of Λ-modules on
Xpro-étale as in Definition 27.1. There is a canonical map

ϵ−1ϵ∗F −→ F

We will show this map is an isomorphism. This will prove that F is in the essential
image of ϵ−1 and finish the proof (details omitted).

To prove this we may assume that X is affine. In this case we have a finite partition
X =

∐
i Xi by constructible locally closed strata such that F|Xi

is locally constant
of finite type. Let U ⊂ X be one of the open strata in the partition and let Z ⊂ X
be the reduced induced structure on the complement. By Lemma 26.5 we have a
short exact sequence

0→ j!j
−1F → F → i∗i−1F → 0
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on Xpro-étale. Functoriality gives a commutative diagram

0 // ϵ−1ϵ∗j!j
−1F //

��

ϵ−1ϵ∗F //

��

ϵ−1ϵ∗i∗i−1F //

��

0

0 // j!j
−1F // F // i∗i−1F // 0

By induction on the length of the partition we know that on the one hand ϵ−1ϵ∗i−1F →
i−1F and ϵ−1ϵ∗j−1F → j−1F are isomorphisms and on the other that i−1F = ϵ−1A
and j−1F = ϵ−1B for some constructible sheaves of Λ-modules A on Zétale and B
on Uétale. Then

ϵ−1ϵ∗j!j
−1F = ϵ−1ϵ∗j!ϵ

−1B = ϵ−1ϵ∗ϵ−1j!B = ϵ−1j!B = j!ϵ
−1B = j!j

−1F

the second equality by Lemma 26.2, the third equality by Lemma 19.2, and the
fourth equality by Lemma 26.2 again. Similarly, we have

ϵ−1ϵ∗i∗i−1F = ϵ−1ϵ∗i∗ϵ−1A = ϵ−1ϵ∗ϵ−1i∗A = ϵ−1i∗A = i∗ϵ−1A = i∗i−1F

this time using Lemma 23.1. By the five lemma we conclude the vertical map in
the middle of the big diagram is an isomorphism. □

Lemma 27.3.09B5 Let X be a scheme. Let Λ be a Noetherian ring. The category
of constructible sheaves of Λ-modules on Xpro-étale is a weak Serre subcategory of
Mod(Xpro-étale, Λ).

Proof. This is a formal consequence of Lemmas 27.2 and 19.8 and the result for
the étale site (Étale Cohomology, Lemma 71.6). □

Lemma 27.4.09AL Let X be a scheme. Let Λ be a Noetherian ring. Let Dc(Xétale, Λ),
resp. Dc(Xpro-étale, Λ) be the full subcategory of D(Xétale, Λ), resp. D(Xpro-étale, Λ)
consisting of those complexes whose cohomology sheaves are constructible sheaves
of Λ-modules. Then

ϵ−1 : D+
c (Xétale, Λ) −→ D+

c (Xpro-étale, Λ)

is an equivalence of categories.

Proof. The categories Dc(Xétale, Λ) and Dc(Xpro-étale, Λ) are strictly full, satu-
rated, triangulated subcategories of D(Xétale, Λ) and D(Xpro-étale, Λ) by Étale Co-
homology, Lemma 71.6 and Lemma 27.3 and Derived Categories, Section 17. The
statement of the lemma follows by combining Lemmas 19.8 and 27.2. □

Lemma 27.5.09BQ Let X be a scheme. Let Λ be a Noetherian ring. Let K, L ∈
D−

c (Xpro-étale, Λ). Then K ⊗L
Λ L is in D−

c (Xpro-étale, Λ).

Proof. Note that Hi(K ⊗L
Λ L) is the same as Hi(τ≥i−1K ⊗L

Λ τ≥i−1L). Thus we
may assume K and L are bounded. In this case we can apply Lemma 27.4 to reduce
to the case of the étale site, see Étale Cohomology, Lemma 76.6. □

Lemma 27.6.09BR Let X be a scheme. Let Λ be a Noetherian ring. Let K be an object
of D(Xpro-étale, Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is in D−
c (Xpro-étale, Λ/I), then

Kn is in D−
c (Xpro-étale, Λ/In) for all n.
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Proof. Consider the distinguished triangles
K ⊗L

Λ In/In+1 → Kn+1 → Kn → K ⊗L
Λ In/In+1[1]

and the isomorphisms
K ⊗L

Λ In/In+1 = K1 ⊗L
Λ/I In/In+1

By Lemma 27.5 we see that this tensor product has constructible cohomology
sheaves (and vanishing when K1 has vanishing cohomology). Hence by induc-
tion on n using Lemma 27.3 we see that each Kn has constructible cohomology
sheaves. □

28. Constructible adic sheaves

09BS In this section we define the notion of a constructible Λ-sheaf as well as some
variants.

Definition 28.1.09BT Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. Let F be a sheaf of Λ-modules on Xpro-étale.

(1) We say F is a constructible Λ-sheaf if F = limF/InF and each F/InF is
a constructible sheaf of Λ/In-modules.

(2) If F is a constructible Λ-sheaf, then we say F is lisse if each F/InF is
locally constant.

(3) We say F is adic lisse5 if there exists a I-adically complete Λ-module M
with M/IM finite such that F is locally isomorphic to

M∧ = lim M/InM.

(4) We say F is adic constructible6 if for every affine open U ⊂ X there exists a
decomposition U =

∐
Ui into constructible locally closed subschemes such

that F|Ui
is adic lisse.

The definition of a constructible Λ-sheaf is equivalent to the one in [Gro77, Exposé
VI, Definition 1.1.1] when Λ = Zℓ and I = (ℓ). It is clear that we have the
implications

lisse adic +3

��

adic constructible

��
lisse constructible Λ-sheaf +3 constructible Λ-sheaf

The vertical arrows can be inverted in some cases (see Lemmas 28.2 and 28.5).
In general neither the category of adic constructible sheaves nor the category of
constructible Λ-sheaves is closed under kernels and cokernels.
Namely, let X be an affine scheme whose underlying topological space |X| is homeo-
morphic to Λ = Zℓ, see Example 6.3. Denote f : |X| → Zℓ = Λ a homeomorphism.
We can think of f as a section of Λ∧ over X and multiplication by f then defines
a two term complex

Λ∧ f−→ Λ∧

on Xpro-étale. The sheaf Λ∧ is adic lisse. However, the cokernel of the map above,
is not adic constructible, as the isomorphism type of the stalks of this cokernel

5This may be nonstandard notation.
6This may be nonstandard notation.
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attains infinitely many values: Z/ℓnZ and Zℓ. The cokernel is a constructible
Zℓ-sheaf. However, the kernel is not even a constructible Zℓ-sheaf as it is zero a
non-quasi-compact open but not zero.

Lemma 28.2.09BU Let X be a Noetherian scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then there exists
a finite partition X =

∐
Xi by locally closed subschemes such that the restriction

F|Xi
is lisse.

Proof. Let R =
⊕

In/In+1. Observe that R is a Noetherian ring. Since each of
the sheaves F/InF is a constructible sheaf of Λ/InΛ-modules also InF/In+1F is a
constructible sheaf of Λ/I-modules and hence the pullback of a constructible sheaf
Gn on Xétale by Lemma 27.2. Set G =

⊕
Gn. This is a sheaf of R-modules on

Xétale and the map
G0 ⊗Λ/I R −→ G

is surjective because the maps
F/IF ⊗ In/In+1 → InF/In+1F

are surjective. Hence G is a constructible sheaf of R-modules by Étale Cohomology,
Proposition 74.1. Choose a partition X =

∐
Xi such that G|Xi

is a locally constant
sheaf of R-modules of finite type (Étale Cohomology, Lemma 71.2). We claim this
is a partition as in the lemma. Namely, replacing X by Xi we may assume G is
locally constant. It follows that each of the sheaves InF/In+1F is locally constant.
Using the short exact sequences

0→ InF/In+1F → F/In+1F → F/InF → 0
induction and Modules on Sites, Lemma 43.5 the lemma follows. □

Lemma 28.3.09BV Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and I ⊂ Λ be an ideal. Let F be a sheaf of Λ-modules on Xpro-étale such that

(1) F = limF/InF ,
(2) F/InF is a constant sheaf of Λ/In-modules,
(3) F/IF is of finite type.

Then F ∼= M∧ where M is a finite Λ∧-module.

Proof. Pick a Λ/In-module Mn such that F/InF ∼= Mn. Since we have the
surjections F/In+1F → F/InF we conclude that there exist surjections Mn+1 →
Mn inducing isomorphisms Mn+1/InMn+1 →Mn. Fix a choice of such surjections
and set M = lim Mn. Then M is an I-adically complete Λ-module with M/InM =
Mn, see Algebra, Lemma 98.2. Since M1 is a finite type Λ-module (Modules on
Sites, Lemma 42.5) we see that M is a finite Λ∧-module. Consider the sheaves

In = Isom(Mn,F/InF)
on Xpro-étale. Modding out by In defines a transition map

In+1 −→ In

By our choice of Mn the sheaf In is a torsor under
Isom(Mn, Mn) = IsomΛ(Mn, Mn)

(Modules on Sites, Lemma 43.4) since F/InF is (étale) locally isomorphic to Mn.
It follows from More on Algebra, Lemma 100.4 that the system of sheaves (In) is
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Mittag-Leffler. For each n let I ′
n ⊂ In be the image of IN → In for all N ≫ n.

Then
. . .→ I ′

3 → I ′
2 → I ′

1 → ∗
is a sequence of sheaves of sets on Xpro-étale with surjective transition maps. Since
∗(X) is a singleton (not empty) and since evaluating at X transforms surjective
maps of sheaves of sets into surjections of sets, we can pick s ∈ lim I ′

n(X). The
sections define isomorphisms M∧ → limF/InF = F and the proof is done. □

Lemma 28.4.09BW Let X be a connected scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. If F is a lisse constructible Λ-sheaf on Xpro-étale, then F is adic
lisse.

Proof. By Lemma 19.9 we have F/InF = ϵ−1Gn for some locally constant sheaf
Gn of Λ/In-modules. By Étale Cohomology, Lemma 64.8 there exists a finite
Λ/In-module Mn such that Gn is locally isomorphic to Mn. Choose a covering
{Wt → X}t∈T with each Wt affine and weakly contractible. Then F|Wt

satisfies
the assumptions of Lemma 28.3 and hence F|Wt

∼= Nt
∧ for some finite Λ∧-module

Nt. Note that Nt/InNt
∼= Mn for all t and n. Hence Nt

∼= Nt′ for all t, t′ ∈ T , see
More on Algebra, Lemma 100.5. This proves that F is adic lisse. □

Lemma 28.5.09BX Let X be a Noetherian scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then F is adic
constructible.

Proof. This is a consequence of Lemmas 28.2 and 28.4, the fact that a Noetherian
scheme is locally connected (Topology, Lemma 9.6), and the definitions. □

It will be useful to identify the constructible Λ-sheaves inside the category of derived
complete sheaves of Λ-modules. It turns out that the naive analogue of More on
Algebra, Lemma 94.5 is wrong in this setting. However, here is the analogue of
More on Algebra, Lemma 91.7.

Lemma 28.6.09BY Let X be a scheme. Let Λ be a ring and let I ⊂ Λ be a finitely
generated ideal. Let F be a sheaf of Λ-modules on Xpro-étale. If F is derived
complete and F/IF = 0, then F = 0.

Proof. Assume that F/IF is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that G = F/(f1, . . . , fi)F is nonzero. If i does not exist, then F = 0
which is what we want to show. Then G is derived complete as a cokernel of a
map between derived complete modules, see Proposition 21.1. By our choice of i
we have that fi+1 : G → G is surjective. Hence

lim(. . .→ G fi+1−−−→ G fi+1−−−→ G)

is nonzero, contradicting the derived completeness of G. □

Lemma 28.7.09BZ Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and let I ⊂ Λ be an ideal. Let F be a derived complete sheaf of Λ-modules on
Xpro-étale with F/IF a locally constant sheaf of Λ/I-modules of finite type. Then
there exists an integer t and a surjective map

(Λ∧)⊕t → F

https://stacks.math.columbia.edu/tag/09BW
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Proof. Since X is weakly contractible, there exists a finite disjoint open covering
X =

∐
Ui such that F/IF|Ui is isomorphic to the constant sheaf associated to a

finite Λ/I-module Mi. Choose finitely many generators mij of Mi. We can find
sections sij ∈ F(X) restricting to mij viewed as a section of F/IF over Ui. Let t
be the total number of sij . Then we obtain a map

α : Λ⊕t −→ F

which is surjective modulo I by construction. By Lemma 20.1 the derived comple-
tion of Λ⊕t is the sheaf (Λ∧)⊕t. Since F is derived complete we see that α factors
through a map

α∧ : (Λ∧)⊕t −→ F

Then Q = Coker(α∧) is a derived complete sheaf of Λ-modules by Proposition 21.1.
By construction Q/IQ = 0. It follows from Lemma 28.6 that Q = 0 which is what
we wanted to show. □

29. A suitable derived category

09C0 Let X be a scheme. It will turn out that for many schemes X a suitable derived
category of ℓ-adic sheaves can be gotten by considering the derived complete objects
K of D(Xpro-étale, Λ) with the property that K⊗L

Λ Fℓ is bounded with constructible
cohomology sheaves. Here is the general definition.

Definition 29.1.09C1 Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. An object K of D(Xpro-étale, Λ) is called constructible if

(1) K is derived complete with respect to I,
(2) K ⊗L

Λ Λ/I has constructible cohomology sheaves and locally has finite tor
dimension.

We denote Dcons(X, Λ) the full subcategory of constructible K in D(Xpro-étale, Λ).

Recall that with our conventions a complex of finite tor dimension is bounded
(Cohomology on Sites, Definition 46.1). In fact, let’s collect everything proved so
far in a lemma.

Lemma 29.2.09C2 In the situation above suppose K is in Dcons(X, Λ) and X is quasi-
compact. Set Kn = K ⊗L

Λ Λ/In. There exist a, b such that

(1) K = R lim Kn and Hi(K) = 0 for i ̸∈ [a, b],
(2) each Kn has tor amplitude in [a, b],
(3) each Kn has constructible cohomology sheaves,
(4) each Kn = ϵ−1Ln for some Ln ∈ Dctf (Xétale, Λ/In) (Étale Cohomology,

Definition 77.1).

Proof. By definition of local having finite tor dimension, we can find a, b such that
K1 has tor amplitude in [a, b]. Part (2) follows from Cohomology on Sites, Lemma
46.9. Then (1) follows as K is derived complete by the description of limits in
Cohomology on Sites, Proposition 51.2 and the fact that Hb(Kn+1) → Hb(Kn) is
surjective as Kn = Kn+1 ⊗L

Λ Λ/In. Part (3) follows from Lemma 27.6, Part (4)
follows from Lemma 27.4 and the fact that Ln has finite tor dimension because Kn

does (small argument omitted). □
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Lemma 29.3.09C3 Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X, Λ) such that the
cohomology sheaves of K ⊗L

Λ Λ/I are locally constant. Then there exists a finite
disjoint open covering X =

∐
Ui and for each i a finite collection of finite projective

Λ∧-modules Ma, . . . , Mb such that K|Ui
is represented by a complex

(Ma)∧ → . . .→ (M b)∧

in D(Ui,pro-étale, Λ) for some maps of sheaves of Λ-modules (M i)∧ → (M i+1)∧.

Proof. We freely use the results of Lemma 29.2. Choose a, b as in that lemma.
We will prove the lemma by induction on b − a. Let F = Hb(K). Note that F is
a derived complete sheaf of Λ-modules by Proposition 21.1. Moreover F/IF is a
locally constant sheaf of Λ/I-modules of finite type. Apply Lemma 28.7 to get a
surjection ρ : (Λ∧)⊕t → F .

If a = b, then K = F [−b]. In this case we see that

F ⊗L
Λ Λ/I = F/IF

As X is weakly contractible and F/IF locally constant, we can find a finite disjoint
union decomposition X =

∐
Ui by affine opens Ui and Λ/I-modules M i such that

F/IF restricts to M i on Ui. After refining the covering we may assume the map

ρ|Ui mod I : Λ/I
⊕t −→M i

is equal to αi for some surjective module map αi : Λ/I⊕t → M i, see Modules on
Sites, Lemma 43.3. Note that each M i is a finite Λ/I-module. Since F/IF has tor
amplitude in [0, 0] we conclude that M i is a flat Λ/I-module. Hence M i is finite
projective (Algebra, Lemma 78.2). Hence we can find a projector pi : (Λ/I)⊕t →
(Λ/I)⊕t whose image maps isomorphically to M i under the map αi. We can lift
pi to a projector pi : (Λ∧)⊕t → (Λ∧)⊕t7. Then Mi = Im(pi) is a finite I-adically
complete Λ∧-module with Mi/IMi = M i. Over Ui consider the maps

Mi
∧ → (Λ∧)⊕t → F|Ui

By construction the composition induces an isomorphism modulo I. The source
and target are derived complete, hence so are the cokernel Q and the kernel K. We
have Q/IQ = 0 by construction hence Q is zero by Lemma 28.6. Then

0→ K/IK →M i → F/IF → 0

is exact by the vanishing of Tor1 see at the start of this paragraph; also use that
Λ∧/IΛ∧ by Modules on Sites, Lemma 42.4 to see that Mi

∧/IMi
∧ = M i. Hence

K/IK = 0 by construction and we conclude that K = 0 as before. This proves the
result in case a = b.

If b > a, then we lift the map ρ to a map

ρ̃ : (Λ∧)⊕t[−b] −→ K

in D(Xpro-étale, Λ). This is possible as we can think of K as a complex of Λ∧-
modules by discussion in the introduction to Section 20 and because Xpro-étale is

7Proof: by Algebra, Lemma 32.7 we can lift pi to a compatible system of projectors pi,n :
(Λ/In)⊕t → (Λ/In)⊕t and then we set pi = lim pi,n which works because Λ∧ = lim Λ/In.
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weakly contractible hence there is no obstruction to lifting the elements ρ(es) ∈
H0(X,F) to elements of Hb(X, K). Fitting ρ̃ into a distinguished triangle

(Λ∧)⊕t[−b]→ K → L→ (Λ∧)⊕t[−b + 1]
we see that L is an object of Dcons(X, Λ) such that L ⊗L

Λ Λ/I has tor amplitude
contained in [a, b− 1] (details omitted). By induction we can describe L locally as
stated in the lemma, say L is isomorphic to

(Ma)∧ → . . .→ (M b−1)∧

The map L → (Λ∧)⊕t[−b + 1] corresponds to a map (M b−1)∧ → (Λ∧)⊕t which
allows us to extend the complex by one. The corresponding complex is isomorphic
to K in the derived category by the properties of triangulated categories. This
finishes the proof. □

Motivated by what happens for constructible Λ-sheaves we introduce the following
notion.

Definition 29.4.09C4 Let X be a scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. Let K ∈ D(Xpro-étale, Λ).

(1) We say K is adic lisse8 if there exists a finite complex of finite projective
Λ∧-modules M• such that K is locally isomorphic to

Ma∧ → . . .→M b∧

(2) We say K is adic constructible9 if for every affine open U ⊂ X there exists a
decomposition U =

∐
Ui into constructible locally closed subschemes such

that K|Ui
is adic lisse.

The difference between the local structure obtained in Lemma 29.3 and the struc-
ture of an adic lisse complex is that the maps M i∧ →M i+1∧ in Lemma 29.3 need
not be constant, whereas in the definition above they are required to be constant.

Lemma 29.5.09C5 Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X, Λ) such that
K ⊗L

Λ Λ/In is isomorphic in D(Xpro-étale, Λ/In) to a complex of constant sheaves
of Λ/In-modules. Then

H0(X, K ⊗L
Λ Λ/In)

has the Mittag-Leffler condition.

Proof. Say K ⊗L
Λ Λ/In is isomorphic to En for some object En of D(Λ/In). Since

K ⊗L
Λ Λ/I has finite tor dimension and has finite type cohomology sheaves we see

that E1 is perfect (see More on Algebra, Lemma 74.2). The transition maps
K ⊗L

Λ Λ/In+1 → K ⊗L
Λ Λ/In

locally come from (possibly many distinct) maps of complexes En+1 → En in
D(Λ/In+1) see Cohomology on Sites, Lemma 53.3. For each n choose one such
map and observe that it induces an isomorphism En+1 ⊗L

Λ/In+1 Λ/In → En in
D(Λ/In). By More on Algebra, Lemma 97.4 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → En in D(Λ/In)
compatible with the transition maps.

8This may be nonstandard notation
9This may be nonstandard notation.
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Now observe that for each finite collection of indices n > m > k the triple of maps

H0(X, K ⊗L
Λ Λ/In)→ H0(X, K ⊗L

Λ Λ/Im)→ H0(X, K ⊗L
Λ Λ/Ik)

is isomorphic to

H0(X, M•/InM•)→ H0(X, M•/ImM•)→ H0(X, M•/IkM•)

Namely, choose any isomorphism

M•/InM• → K ⊗L
Λ Λ/In

induces similar isomorphisms module Im and Ik and we see that the assertion is
true. Thus to prove the lemma it suffices to show that the system H0(X, M•/InM•)
has Mittag-Leffler. Since taking sections over X is exact, it suffices to prove that
the system of Λ-modules

H0(M•/InM•)

has Mittag-Leffler. Set A = Λ∧ and consider the spectral sequence

TorA
−p(Hq(M•), A/InA)⇒ Hp+q(M•/InM•)

By More on Algebra, Lemma 27.3 the pro-systems {TorA
−p(Hq(M•), A/InA)} are

zero for p > 0. Thus the pro-system {H0(M•/InM•)} is equal to the pro-system
{H0(M•)/InH0(M•)} and the lemma is proved. □

Lemma 29.6.09C6 Let X be a connected scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. If K is in Dcons(X, Λ) such that K ⊗Λ Λ/I has locally constant
cohomology sheaves, then K is adic lisse (Definition 29.4).

Proof. Write Kn = K ⊗L
Λ Λ/In. We will use the results of Lemma 29.2 with-

out further mention. By Cohomology on Sites, Lemma 53.5 we see that Kn has
locally constant cohomology sheaves for all n. We have Kn = ϵ−1Ln some Ln

in Dctf (Xétale, Λ/In) with locally constant cohomology sheaves. By Étale Co-
homology, Lemma 77.7 there exist perfect Mn ∈ D(Λ/In) such that Ln is étale
locally isomorphic to Mn. The maps Ln+1 → Ln corresponding to Kn+1 → Kn

induces isomorphisms Ln+1 ⊗L
Λ/In+1 Λ/In → Ln. Looking locally on X we con-

clude that there exist maps Mn+1 → Mn in D(Λ/In+1) inducing isomorphisms
Mn+1 ⊗Λ/In+1 Λ/In → Mn, see Cohomology on Sites, Lemma 53.3. Fix a choice
of such maps. By More on Algebra, Lemma 97.4 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → Mn in D(Λ/In)
compatible with the transition maps. To finish the proof we will show that K is
locally isomorphic to

M•∧ = lim M•/InM• = R lim M•/InM•

Let E• be the dual complex to M•, see More on Algebra, Lemma 74.15 and its
proof. Consider the objects

Hn = RHomΛ/In(M•/InM•, Kn) = E•/InE• ⊗L
Λ/In Kn

of D(Xpro-étale, Λ/In). Modding out by In defines a transition map Hn+1 → Hn.
Set H = R lim Hn. Then H is an object of Dcons(X, Λ) (details omitted) with
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H ⊗L
Λ Λ/In = Hn. Choose a covering {Wt → X}t∈T with each Wt affine and

weakly contractible. By our choice of M• we see that

Hn|Wt
∼= RHomΛ/In(M•/InM•, M•/InM•)
= Tot(E•/InE• ⊗Λ/In M•/InM•)

Thus we may apply Lemma 29.5 to H = R lim Hn. We conclude the system
H0(Wt, Hn) satisfies Mittag-Leffler. Since for all n ≫ 1 there is an element of
H0(Wt, Hn) which maps to an isomorphism in

H0(Wt, H1) = Hom(M•/IM•, K1)

we find an element (φt,n) in the inverse limit which produces an isomorphism mod
I. Then

R lim φt,n : M•∧|Wt
= R lim M•/InM•|Wt

−→ R lim Kn|Wt
= K|Wt

is an isomorphism. This finishes the proof. □

Proposition 29.7.09C7 Let X be a Noetherian scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X, Λ). Then K is adic
constructible (Definition 29.4).

Proof. This is a consequence of Lemma 29.6 and the fact that a Noetherian scheme
is locally connected (Topology, Lemma 9.6), and the definitions. □

30. Proper base change

09C8 In this section we explain how to prove the proper base change theorem for derived
complete objects on the pro-étale site using the proper base change theorem for
étale cohomology following the general theme that we use the pro-étale topology
only to deal with “limit issues” and we use results proved for the étale topology to
handle everything else.

Theorem 30.1.09C9 Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes giving rise to the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal such that Λ/I is torsion. Let
K be an object of D(Xpro-étale) such that

(1) K is derived complete, and
(2) K ⊗L

Λ Λ/In is bounded below with cohomology sheaves coming from Xétale,
(3) Λ/In is a perfect Λ-module10.

Then the base change map

Lg∗
compRf∗K −→ Rf ′

∗L(g′)∗
compK

is an isomorphism.

10This assumption can be removed if K is a constructible complex, see [BS13].
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Proof. We omit the construction of the base change map (this uses only formal
properties of derived pushforward and completed derived pullback, compare with
Cohomology on Sites, Remark 19.3). Write Kn = K ⊗L

Λ Λ/In. By Lemma 20.1 we
have K = R lim Kn because K is derived complete. By Lemmas 20.2 and 20.1 we
can unwind the left hand side

Lg∗
compRf∗K = R lim Lg∗(Rf∗K)⊗L

Λ Λ/In = R lim Lg∗Rf∗Kn

the last equality because Λ/In is a perfect module and the projection formula
(Cohomology on Sites, Lemma 50.1). Using Lemma 20.2 we can unwind the right
hand side

Rf ′
∗L(g′)∗

compK = Rf ′
∗R lim L(g′)∗Kn = R lim Rf ′

∗L(g′)∗Kn

the last equality because Rf ′
∗ commutes with R lim (Cohomology on Sites, Lemma

23.3). Thus it suffices to show the maps

Lg∗Rf∗Kn −→ Rf ′
∗L(g′)∗Kn

are isomorphisms. By Lemma 19.8 and our second condition we can write Kn =
ϵ−1Ln for some Ln ∈ D+(Xétale, Λ/In). By Lemma 23.1 and the fact that ϵ−1

commutes with pullbacks we obtain

Lg∗Rf∗Kn = Lg∗Rf∗ϵ∗Ln = Lg∗ϵ−1Rf∗Ln = ϵ−1Lg∗Rf∗Ln

and

Rf ′
∗L(g′)∗Kn = Rf ′

∗L(g′)∗ϵ−1Ln = Rf ′
∗ϵ−1L(g′)∗Ln = ϵ−1Rf ′

∗L(g′)∗Ln

(this also uses that Ln is bounded below). Finally, by the proper base change
theorem for étale cohomology (Étale Cohomology, Theorem 91.11) we have

Lg∗Rf∗Ln = Rf ′
∗L(g′)∗Ln

(again using that Ln is bounded below) and the theorem is proved. □

31. Change of partial universe

0F4R We advise the reader to skip this section: here we show that cohomology of sheaves
in the pro-étale topology is independent of the choice of partial universe. Namely,
the functor g∗ of Lemma 31.2 below is an embedding of small pro-étale topoi which
does not change cohomology. For big pro-étale sites we have Lemmas 31.3 and 31.4
saying essentially the same thing.

But first, as promised in Section 12 we prove that the topology on a big pro-étale
site Schpro-étale is in some sense induced from the pro-étale topology on the category
of all schemes.

Lemma 31.1.098J Let Schpro-étale be a big pro-étale site as in Definition 12.7. Let
T ∈ Ob(Schpro-étale). Let {Ti → T}i∈I be an arbitrary pro-étale covering of T .
There exists a covering {Uj → T}j∈J of T in the site Schpro-étale which refines
{Ti → T}i∈I .

Proof. Namely, we first let {Vk → T} be a covering as in Lemma 13.3. Then
the pro-étale coverings {Ti ×T Vk → Vk} can be refined by a finite disjoint open
covering Vk = Vk,1 ⨿ . . . ⨿ Vk,nk

, see Lemma 13.1. Then {Vk,i → T} is a covering
of Schpro-étale which refines {Ti → T}i∈I . □
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We first state and prove the comparison for the small pro-étale sites. Note that we
are not claiming that the small pro-étale topos of a scheme is independent of the
choice of partial universe; this isn’t true in contrast with the case of the small étale
topos (Étale Cohomology, Lemma 21.2).

Lemma 31.2.098Y Let S be a scheme. Let Spro-étale ⊂ S′
pro-étale be two small pro-étale

sites of S as constructed in Definition 12.8. Then the inclusion functor satisfies
the assumptions of Sites, Lemma 21.8. Hence there exist morphisms of topoi

Sh(Spro-étale) g // Sh(S′
pro-étale) f // Sh(Spro-étale)

whose composition is isomorphic to the identity and with f∗ = g−1. Moreover,
(1) for F ′ ∈ Ab(S′

pro-étale) we have Hp(S′
pro-étale,F ′) = Hp(Spro-étale, g−1F ′),

(2) for F ∈ Ab(Spro-étale) we have

Hp(Spro-étale,F) = Hp(S′
pro-étale, g∗F) = Hp(S′

pro-étale, f−1F).

Proof. The inclusion functor is fully faithful and continuous. We have seen that
Spro-étale and S′

pro-étale have fibre products and final objects and that our functor
commutes with these (Lemma 12.10). It follows from Lemma 31.1 that the inclusion
functor is cocontinuous. Hence the existence of f and g follows from Sites, Lemma
21.8. The equality in (1) is Cohomology on Sites, Lemma 7.2. Part (2) follows from
(1) as F = g−1g∗F = g−1f−1F . □

Next, we prove a corresponding result for the big pro-étale topoi.

Lemma 31.3.0F4S Suppose given big sites Schpro-étale and Sch′
pro-étale as in Definition

12.7. Assume that Schpro-étale is contained in Sch′
pro-étale. The inclusion functor

Schpro-étale → Sch′
pro-étale satisfies the assumptions of Sites, Lemma 21.8. There

are morphisms of topoi

g : Sh(Schpro-étale) −→ Sh(Sch′
pro-étale)

f : Sh(Sch′
pro-étale) −→ Sh(Schpro-étale)

such that f◦g ∼= id. For any object S of Schpro-étale the inclusion functor (Sch/S)pro-étale →
(Sch′/S)pro-étale satisfies the assumptions of Sites, Lemma 21.8 also. Hence simi-
larly we obtain morphisms

g : Sh((Sch/S)pro-étale) −→ Sh((Sch′/S)pro-étale)
f : Sh((Sch′/S)pro-étale) −→ Sh((Sch/S)pro-étale)

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 21.8 are immediate for
the functors Schpro-étale → Sch′

pro-étale and (Sch/S)pro-étale → (Sch′/S)pro-étale.
Property (a) holds by Lemma 31.1. Property (d) holds because fibre products in
the categories Schpro-étale, Sch′

pro-étale exist and are compatible with fibre products
in the category of schemes. □

Lemma 31.4.0F4T Let S be a scheme. Let (Sch/S)pro-étale and (Sch′/S)pro-étale be
two big pro-étale sites of S as in Definition 12.8. Assume that the first is contained
in the second. In this case
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(1) for any abelian sheaf F ′ defined on (Sch′/S)pro-étale and any object U of
(Sch/S)pro-étale we have

Hp(U,F ′|(Sch/S)pro-étale
) = Hp(U,F ′)

In words: the cohomology of F ′ over U computed in the bigger site agrees
with the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)pro-étale there is an abelian sheaf F ′ on
(Sch/S)′

pro-étale whose restriction to (Sch/S)pro-étale is isomorphic to F .

Proof. By Lemma 31.3 the inclusion functor (Sch/S)pro-étale → (Sch′/S)pro-étale

satisfies the assumptions of Sites, Lemma 21.8. This implies (2) and (1) follows
from Cohomology on Sites, Lemma 7.2. □
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