1. Introduction

In this chapter we introduce some absolute properties of schemes. A foundational reference is [DG67].
2. Constructible sets

Lemma 2.1. Let X be a scheme. A subset E of X is locally constructible in X if and only if $E \cap U$ is constructible in U for every affine open U of X.

Proof. Assume E is locally constructible. Then there exists an open covering $X = \bigcup U_i$ such that $E \cap U_i$ is constructible in U_i for each i. Let $V \subset X$ be any affine open. We can find a finite open affine covering $V = V_1 \cup \ldots \cup V_m$ such that for each j we have $V_j \subset U_i$ for some $i = i(j)$. By Topology, Lemma 15.4 we see that each $E \cap V_j$ is constructible in V_j. Since the inclusions $V_j \to V$ are quasi-compact (see Schemes, Lemma 19.2) we conclude that $E \cap V$ is constructible in V by Topology, Lemma 15.6. The converse implication is immediate. □

Lemma 2.2. Let X be a scheme and let $E \subset X$ be a locally constructible subset. Let $\xi \in X$ be a generic point of an irreducible component of X.

1. If $\xi \in E$, then an open neighbourhood of ξ is contained in E.
2. If $\xi \notin E$, then an open neighbourhood of ξ is disjoint from E.

Proof. As the complement of a locally constructible subset is locally constructible it suffices to show (2). We may assume X is affine and hence E constructible (Lemma 2.1). In this case X is a spectral space (Algebra, Lemma 25.2). Then $\xi \notin E$ implies $\xi \notin E$ by Topology, Lemma 23.5 and the fact that there are no points of X different from ξ which specialize to ξ. □

Lemma 2.3. Let X be a quasi-separated scheme. The intersection of any two quasi-compact opens of X is a quasi-compact open of X. Every quasi-compact open of X is retrocompact in X.

Proof. If U and V are quasi-compact open then $U \cap V = \Delta^{-1}(U \times V)$, where $\Delta : X \to X \times X$ is the diagonal. As X is quasi-separated we see that Δ is quasi-compact. Hence we see that $U \cap V$ is quasi-compact as $U \times V$ is quasi-compact (details omitted; use Schemes, Lemma 17.4 to see $U \times V$ is a finite union of affines). The other assertions follow from the first and Topology, Lemma 27.1. □

Lemma 2.4. Let X be a quasi-compact and quasi-separated scheme. Then the underlying topological space of X is a spectral space.

Proof. By Topology, Definition 23.1 we have to check that X is sober, quasi-compact, has a basis of quasi-compact opens, and the intersection of any two quasi-compact opens is quasi-compact. This follows from Schemes, Lemma 11.1 and 11.2 and Lemma 2.3 above. □

Lemma 2.5. Let X be a quasi-compact and quasi-separated scheme. Any locally constructible subset of X is constructible.

Proof. As X is quasi-compact we can choose a finite affine open covering $X = V_1 \cup \ldots \cup V_m$. As X is quasi-separated each V_i is retrocompact in X by Lemma 2.3. Hence by Topology, Lemma 15.6 we see that $E \subset X$ is constructible in X if and only if $E \cap V_j$ is constructible in V_j. Thus we win by Lemma 2.1. □

Lemma 2.6. Let X be a scheme. A subset E of X is retrocompact in X if and only if $E \cap U$ is quasi-compact for every affine open U of X.

We may characterize locally constructible subsets of schemes as follows.
Proof. Immediate from the fact that every quasi-compact open of X is a finite union of affine opens. □

Lemma 2.7. A partition $X = \coprod_{i \in I} X_i$ of a scheme X with retrocompact parts is locally finite if and only if the parts are locally constructible.

Proof. See Topology, Definitions 12.1, 28.1 and 28.4 for the definitions of retrocompact, partition, and locally finite.

If the partition is locally finite and $U \subset X$ is an affine open, then we see that $U = \coprod_{i \in I} U \cap X_i$ is a finite partition (more precisely, all but a finite number of its parts are empty). Hence $U \cap X_i$ is quasi-compact and its complement is retrocompact in U as a finite union of retrocompact parts. Thus $U \cap X_i$ is constructible by Topology, Lemma 15.13. It follows that X_i is locally constructible by Lemma 2.1.

Assume the parts are locally constructible. Then for any affine open $U \subset X$ we obtain a covering $U = \coprod X_i \cap U$ by constructible subsets. Since the constructible topology is quasi-compact, see Topology, Lemma 23.2, this covering has a finite refinement, i.e., the partition is locally finite. □

3. Integral, irreducible, and reduced schemes

Definition 3.1. Let X be a scheme. We say X is integral if it is nonempty and for every nonempty affine open $\text{Spec}(R) = U \subset X$ the ring R is an integral domain.

Lemma 3.2. Let X be a scheme. The following are equivalent.

1. The scheme X is reduced, see Schemes, Definition 12.1.
2. There exists an affine open covering $X = \bigcup U_i$ such that each $\Gamma(U_i, \mathcal{O}_X)$ is reduced.
3. For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$ is reduced.
4. For every open $U \subset X$ the ring $\mathcal{O}_X(U)$ is reduced.

Proof. See Schemes, Lemmas 12.2 and 12.3. □

Lemma 3.3. Let X be a scheme. The following are equivalent.

1. The scheme X is irreducible.
2. There exists an affine open covering $X = \bigcup_{i \in I} U_i$ such that I is not empty, U_i is irreducible for all $i \in I$, and $U_i \cap U_j \neq \emptyset$ for all $i, j \in I$.
3. The scheme X is nonempty and every nonempty affine open $U \subset X$ is irreducible.

Proof. Assume (1). By Schemes, Lemma 11.1 we see that X has a unique generic point η. Then $X = \overline{\{\eta\}}$. Hence η is an element of every nonempty affine open $U \subset X$. This implies that $U = \overline{\{\eta\}}$ and that any two nonempty affines meet. Thus (1) implies both (2) and (3).

Assume (2). Suppose $X = Z_1 \cup Z_2$ is a union of two closed subsets. For every i we see that either $U_i \subset Z_1$ or $U_i \subset Z_2$. Pick some $i \in I$ and assume $U_i \subset Z_1$ (possibly after renumbering Z_1, Z_2). For any $j \in I$ the open subset $U_i \cap U_j$ is dense in U_j and contained in the closed subset $Z_1 \cap U_j$. We conclude that also $U_j \subset Z_1$. Thus $X = Z_1$ as desired.
Assume (3). Choose an affine open covering \(X = \bigcup_{i \in I} U_i \). We may assume that each \(U_i \) is nonempty. Since \(X \) is nonempty we see that \(I \) is not empty. By assumption each \(U_i \) is irreducible. Suppose \(U_i \cap U_j = \emptyset \) for some pair \(i, j \in I \). Then the open \(U_i \cup U_j \) is affine, see Schemes, Lemma 6.8. Hence it is irreducible by assumption which is absurd. We conclude that (3) implies (2). The lemma is proved. \(\square \)

Lemma 3.4. A scheme \(X \) is integral if and only if it is reduced and irreducible.

Proof. If \(X \) is irreducible, then every affine open \(\text{Spec}(R) = U \subset X \) is irreducible. If \(X \) is reduced, then \(R \) is reduced, by Lemma 3.2 above. Hence \(R \) is reduced and \((0) \) is a prime ideal, i.e., \(R \) is an integral domain.

If \(X \) is integral, then for every nonempty affine open \(\text{Spec}(R) = U \subset X \) the ring \(R \) is reduced and hence \(X \) is reduced by Lemma 3.2. Moreover, every nonempty affine open is irreducible. Hence \(X \) is irreducible, see Lemma 3.3. \(\square \)

In Examples, Section 5 we construct a connected affine scheme all of whose local rings are domains, but which is not integral.

4. Types of schemes defined by properties of rings

In this section we study what properties of rings allow one to define local properties of schemes.

Definition 4.1. Let \(P \) be a property of rings. We say that \(P \) is **local** if the following hold:

1. For any ring \(R \) and any \(f \in R \) we have \(P(R) \Rightarrow P(R_f) \).
2. For any ring \(R \) and \(f_i \in R \) such that \((f_1, \ldots, f_n) = R \) then \(\forall i, P(R_{f_i}) \Rightarrow P(R) \).

Definition 4.2. Let \(P \) be a property of rings. Let \(X \) be a scheme. We say \(X \) is **locally \(P \)** if for any \(x \in X \) there exists an affine open neighbourhood \(U \) of \(x \) in \(X \) such that \(\mathcal{O}_X(U) \) has property \(P \).

This is only a good notion if the property is local. Even if \(P \) is a local property we will not automatically use this definition to say that a scheme is “locally \(P \)” unless we also explicitly state the definition elsewhere.

Lemma 4.3. Let \(X \) be a scheme. Let \(P \) be a local property of rings. The following are equivalent:

1. The scheme \(X \) is locally \(P \).
2. For every affine open \(U \subset X \) the property \(P(\mathcal{O}_X(U)) \) holds.
3. There exists an affine open covering \(X = \bigcup U_i \) such that each \(\mathcal{O}_X(U_i) \) satisfies \(P \).
4. There exists an open covering \(X = \bigcup X_j \) such that each open subscheme \(X_j \) is locally \(P \).

Moreover, if \(X \) is locally \(P \) then every open subscheme is locally \(P \).

Proof. Of course (1) \(\iff \) (3) and (2) \(\Rightarrow \) (1). If (3) \(\Rightarrow \) (2), then the final statement of the lemma holds and it follows easily that (4) is also equivalent to (1). Thus we show (3) \(\Rightarrow \) (2).
Let $X = \bigcup U_i$ be an affine open covering, say $U_i = \text{Spec}(R_i)$. Assume $P(R_i)$. Let $\text{Spec}(R) = U \subset X$ be an arbitrary affine open. By Schemes, Lemma 11.6 there exists a standard covering of $U = \text{Spec}(R)$ by standard opens $D(f_j)$ such that each ring R_{f_j} is a principal localization of one of the rings R_i. By Definition 4.1 (1) we get $P(R_{f_j})$. Whereupon $P(R)$ by Definition 4.1 (2). □

Here is a sample application.

Lemma 4.4. Let X be a scheme. Then X is reduced if and only if X is “locally reduced” in the sense of Definition 4.2.

Proof. This is clear from Lemma 3.2. □

Lemma 4.5. The following properties of a ring R are local.

1. (Cohen-Macaulay.) The ring R is Noetherian and CM, see Algebra, Definition 103.7.
2. (Regular.) The ring R is Noetherian and regular, see Algebra, Definition 109.7.
3. (Absolutely Noetherian.) The ring R is of finite type over \mathbb{Z}.
4. Add more here as needed.1

Proof. Omitted. □

5. Noetherian schemes

Recall that a ring R is Noetherian if it satisfies the ascending chain condition of ideals. Equivalently every ideal of R is finitely generated.

Definition 5.1. Let X be a scheme.

1. We say X is locally Noetherian if every $x \in X$ has an affine open neighbourhood $\text{Spec}(R) = U \subset X$ such that the ring R is Noetherian.
2. We say X is Noetherian if X is locally Noetherian and quasi-compact.

Here is the standard result characterizing locally Noetherian schemes.

Lemma 5.2. Let X be a scheme. The following are equivalent:

1. The scheme X is locally Noetherian.
2. For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$ is Noetherian.
3. There exists an affine open covering $X = \bigcup U_i$ such that each $\mathcal{O}_X(U_i)$ is Noetherian.
4. There exists an open covering $X = \bigcup X_j$ such that each open subscheme X_j is locally Noetherian.

Moreover, if X is locally Noetherian then every open subscheme is locally Noetherian.

Proof. To show this it suffices to show that being Noetherian is a local property of rings, see Lemma 4.3. Any localization of a Noetherian ring is Noetherian, see Algebra, Lemma 30.1. By Algebra, Lemma 22.2 we see the second property to Definition 4.1 □

Lemma 5.3. Any immersion $Z \rightarrow X$ with X locally Noetherian is quasi-compact.

1But we only list those properties here which we have not already dealt with separately somewhere else.
Proof. A closed immersion is clearly quasi-compact. A composition of quasi-compact morphisms is quasi-compact, see Topology, Lemma 12.2. Hence it suffices to show that an open immersion into a locally Noetherian scheme is quasi-compact. Using Schemes, Lemma 19.2 we reduce to the case where \(X \) is affine. Any open subset of the spectrum of a Noetherian ring is quasi-compact (for example combine Algebra, Lemma 30.5 and Topology, Lemmas 9.2 and 12.13). □

Lemma 5.4. A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 21.6 we have to show that the intersection \(U \cap V \) of two affine opens of \(X \) is quasi-compact. This follows from Lemma 5.3 above on considering the open immersion \(U \cap V \to U \) for example. (But really it is just because any open of the spectrum of a Noetherian ring is quasi-compact.) □

Lemma 5.5. A (locally) Noetherian scheme has a (locally) Noetherian underlying topological space, see Topology, Definition 9.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noetherian rings and Algebra, Lemma 30.5 and Topology, Lemma 9.4. □

Lemma 5.6. Any locally closed subscheme of a (locally) Noetherian scheme is (locally) Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring is Noetherian. For the Noetherian case use again that any subset of a Noetherian space is a Noetherian space (with induced topology). □

Lemma 5.7. A Noetherian scheme has a finite number of irreducible components.

Proof. The underlying topological space of a Noetherian scheme is Noetherian (Lemma 5.5) and we conclude because a Noetherian topological space has only finitely many irreducible components (Topology, Lemma 9.2). □

Lemma 5.8. Any morphism of schemes \(f : X \to Y \) with \(X \) Noetherian is quasi-compact.

Proof. Use Lemma 5.5 and use that any subset of a Noetherian topological space is quasi-compact (see Topology, Lemmas 9.2 and 12.13). □

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of closed points (at least one in every closed subset).

Lemma 5.9. Any nonempty locally Noetherian scheme has a closed point. Any nonempty closed subset of a locally Noetherian scheme has a closed point. Equivalently, any point of a locally Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 12.4 and Lemma 5.6). Consider any nonempty affine open \(U \subset X \). Let \(x \in U \) be a closed point. If \(x \) is a closed point of \(X \) then we are done. If not, let \(X_0 \subset X \) be the reduced induced closed subscheme structure on \(\{ x \} \). Then \(U_0 = U \cap X_0 \) is an affine open of \(X_0 \) by Schemes, Lemma 10.1 and \(U_0 = \{ x \} \). Let \(y \in X_0 \), \(y \neq x \) be a specialization of \(x \). Consider the local ring \(R = \mathcal{O}_{X_0, y} \). This is a Noetherian local ring as \(X_0 \) is Noetherian by Lemma 5.6. Denote \(V \subset \text{Spec}(R) \) the inverse image of \(U_0 \) in \(\text{Spec}(R) \) by the canonical morphism \(\text{Spec}(R) \to X_0 \) (see Schemes, Section 13). By construction \(V \) is a singleton with unique point corresponding to
Let \(x \) (use Schemes, Lemma \[13.2\]). By Algebra, Lemma \[60.1\] we see that \(\dim(R) = 1 \). In other words, we see that \(y \) is an immediate specialization of \(x \) (see Topology, Definition \[20.1\]). In other words, any point \(y \neq x \) such that \(x \leadsto y \) is an immediate specialization of \(x \). Clearly each of these points is a closed point as desired. \(\square \)

Lemma 5.10. Let \(X \) be a locally Noetherian scheme. Let \(x' \leadsto x \) be a specialization of points of \(X \). Then

1. there exists a discrete valuation ring \(R \) and a morphism \(f : \text{Spec}(R) \to X \) such that the generic point \(\eta \) of \(\text{Spec}(R) \) maps to \(x' \) and the special point maps to \(x \), and
2. given a finitely generated field extension \(\kappa(x') \subset K \) we may arrange it so that the extension \(\kappa(x') \subset \kappa(\eta) \) induced by \(f \) is isomorphic to the given one.

Proof. Let \(x' \leadsto x \) be a specialization in \(X \), and let \(\kappa(x') \subset K \) be a finitely generated extension of fields. By Schemes, Lemma \[13.2\] and the discussion following Schemes, Lemma \[13.3\] this leads to ring maps \(\mathcal{O}_{X,x} \to \kappa(x') \to K \). Let \(R \subset K \) be any discrete valuation ring whose field of fractions is \(K \) and which dominates the image of \(\mathcal{O}_{X,x} \to K \), see Algebra, Lemma \[18.13\]. The ring map \(\mathcal{O}_{X,x} \to R \) induces the morphism \(f : \text{Spec}(R) \to X \), see Schemes, Lemma \[13.1\]. This morphism has all the desired properties by construction. \(\square \)

Lemma 5.11. Let \(S \) be a Noetherian scheme. Let \(T \subset S \) be an infinite subset. Then there exists an infinite subset \(T' \subset T \) such that there are no nontrivial specializations among the points \(T' \).

Proof. Let \(T_0 \subset T \) be the set of \(t \in T \) which do not specialize to another point of \(T \). If \(T_0 \) is infinite, then \(T' = T_0 \) works. Hence we may and do assume \(T_0 \) is finite. Inductively, for \(i > 0 \), consider the set \(T_i \subset T \) of \(t \in T \) such that

1. \(t \notin T_{i-1} \cup T_{i-2} \cup \ldots \cup T_0 \),
2. there exist a nontrivial specialization \(t \leadsto t' \) with \(t' \in T_{i-1} \), and
3. for any nontrivial specialization \(t \leadsto t' \) with \(t' \in T \) we have \(t' \in T_{i-1} \cup T_{i-2} \cup \ldots \cup T_0 \).

Again, if \(T_i \) is infinite, then \(T' = T_i \) works. Let \(d \) be the maximum of the dimensions of the local rings \(\mathcal{O}_{S,t} \) for \(t \in T_0 \); then \(d \) is an integer because \(T_0 \) is finite and the dimensions of the local rings are finite by Algebra, Proposition \[59.8\]. Then \(T_i = \emptyset \) for \(i > d \). Namely, if \(t \in T_i \) then we can find a sequence of nontrivial specializations \(t = t_i \leadsto t_{i-1} \leadsto \ldots \leadsto t_0 \) with \(t_0 \in T_0 \). As the points \(t = t_i, t_{i-1}, \ldots, t_0 \) are in \(\text{Spec}(\mathcal{O}_{S,t_0}) \) (Schemes, Lemma \[13.2\]), we see that \(i \leq d \). Thus \(\bigcup T_i = T_d \cup \ldots \cup T_0 \) is a finite subset of \(T \).

Suppose \(t \in T \) is not in \(\bigcup T_i \). Then there must be a specialization \(t \leadsto t' \) with \(t' \in T \) and \(t' \notin \bigcup T_i \). (Namely, if every specialization of \(t \) is in the finite set \(T_d \cup \ldots \cup T_0 \), then there is a maximum \(i \) such that there is some specialization \(t \leadsto t' \) with \(t' \in T_i \) and then \(t \in T_{i+1} \) by construction.) Hence we get an infinite sequence

\[
t \leadsto t' \leadsto t'' \leadsto \ldots
\]

of nontrivial specializations between points of \(T \setminus \bigcup T_i \). This is impossible because the underlying topological space of \(S \) is Noetherian by Lemma \[5.4\] \(\square \).
6. Jacobson schemes

01P1 Recall that a space is said to be Jacobson if the closed points are dense in every closed subset, see Topology, Section \[18\].

01P2 **Definition 6.1.** A scheme \(S \) is said to be Jacobson if its underlying topological space is Jacobson.

Recall that a ring \(R \) is Jacobson if every radical ideal of \(R \) is the intersection of maximal ideals, see Algebra, Definition \[34.1\].

01P3 **Lemma 6.2.** An affine scheme \(\text{Spec}(R) \) is Jacobson if and only if the ring \(R \) is Jacobson.

Proof. This is Algebra, Lemma \[34.4\]. \(\square \)

Here is the standard result characterizing Jacobson schemes. Intuitively it claims that Jacobson \(\Leftrightarrow \) locally Jacobson.

01P4 **Lemma 6.3.** Let \(X \) be a scheme. The following are equivalent:

1. The scheme \(X \) is Jacobson.
2. The scheme \(X \) is “locally Jacobson” in the sense of Definition \[4.2\].
3. For every affine open \(U \subset X \) the ring \(\mathcal{O}_X(U) \) is Jacobson.
4. There exists an affine open covering \(X = \bigcup U_i \) such that each \(\mathcal{O}_X(U_i) \) is Jacobson.
5. There exists an open covering \(X = \bigcup X_j \) such that each open subscheme \(X_j \) is Jacobson.

Moreover, if \(X \) is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma \[18.5\]. The equivalence of (5) and (1) is Topology, Lemma \[18.4\]. Hence, using Lemma \[6.2\] we see that (1) \(\Leftrightarrow \) (2). To finish proving the lemma it suffices to show that “Jacobson” is a local property of rings, see Lemma \[4.3\]. Any localization of a Jacobson ring at an element is Jacobson, see Algebra, Lemma \[34.14\]. Suppose \(R \) is a ring, \(f_1, \ldots, f_n \in R \) generate the unit ideal and each \(R_{f_i} \) is Jacobson. Then we see that \(\text{Spec}(R) = \bigcup D(f_i) \) is a union of open subsets which are all Jacobson, and hence \(\text{Spec}(R) \) is Jacobson by Topology, Lemma \[18.4\] again. This proves the second property of Definition \[4.1\]. \(\square \)

Many schemes used commonly in algebraic geometry are Jacobson, see Morphisms, Lemma \[15.10\]. We mention here the following interesting case.

02IM **Lemma 6.4.** Let \(R \) be a Noetherian local ring with maximal ideal \(m \). In this case the scheme \(S = \text{Spec}(R) \setminus \{m\} \) is Jacobson.

Proof. Since \(\text{Spec}(R) \) is a Noetherian scheme, \(S \) is a Noetherian scheme (Lemma \[5.6\]). Hence \(S \) is a sober, Noetherian topological space (use Schemes, Lemma \[11.1\]). Assume \(S \) is not Jacobson to get a contradiction. By Topology, Lemma \[18.3\] there exists some non-closed point \(\xi \in S \) such that \(\{\xi\} \) is locally closed. This corresponds to a prime \(p \subset R \) such that (1) there exists a prime \(q \subset p \subset m \) with both inclusions strict, and (2) \(\{p\} \) is open in \(\text{Spec}(R/p) \). This is impossible by Algebra, Lemma \[60.1\]. \(\square \)
Recall that a ring \(R \) is said to be normal if all its local rings are normal domains, see Algebra, Definition 36.11. A normal domain is a domain which is integrally closed in its field of fractions, see Algebra, Definition 36.1. Thus it makes sense to define a normal scheme as follows.

Definition 7.1. A scheme \(X \) is normal if and only if for all \(x \in X \) the local ring \(\mathcal{O}_{X, x} \) is a normal domain.

This seems to be the definition used in EGA, see [DG67, 0, 4.1.4]. Suppose \(X = \text{Spec}(A) \), and \(A \) is reduced. Then saying that \(X \) is normal is not equivalent to saying that \(A \) is integrally closed in its total ring of fractions. However, if \(A \) is Noetherian then this is the case (see Algebra, Lemma 36.16).

Lemma 7.2. Let \(X \) be a scheme. The following are equivalent:

1. The scheme \(X \) is normal.
2. For every affine open \(U \subset X \) the ring \(\mathcal{O}_X(U) \) is normal.
3. There exists an affine open covering \(X = \bigcup U_i \) such that each \(\mathcal{O}_X(U_i) \) is normal.
4. There exists an open covering \(X = \bigcup X_j \) such that each open subscheme \(X_j \) is normal.

Moreover, if \(X \) is normal then every open subscheme is normal.

Proof. This is clear from the definitions.

Lemma 7.3. A normal scheme is reduced.

Proof. Immediate from the definitions.

Lemma 7.4. Let \(X \) be an integral scheme. Then \(X \) is normal if and only if for every affine open \(U \subset X \) the ring \(\mathcal{O}_X(U) \) is a normal domain.

Proof. This follows from Algebra, Lemma 36.10.

Lemma 7.5. Let \(X \) be a scheme such that any quasi-compact open has a finite number of irreducible components. The following are equivalent:

1. \(X \) is normal, and
2. \(X \) is a disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let \(X \) be a normal scheme such that every quasi-compact open has a finite number of irreducible components. If \(X \) is affine then \(X \) satisfies (2) by Algebra, Lemma 36.16. For a general \(X \), let \(X = \bigcup X_i \) be an affine open covering. Note that also each \(X_i \) has a finite number of irreducible components, and the lemma holds for each \(X_i \). Let \(T \subset X \) be an irreducible component. By the affine case each intersection \(T \cap X_i \) is open in \(X_i \) and an integral normal scheme. Hence \(T \subset X \) is open, and an integral normal scheme. This proves that \(X \) is the disjoint union of its irreducible components, which are integral normal schemes.

Lemma 7.6. Let \(X \) be a Noetherian scheme. The following are equivalent:

1. \(X \) is normal, and
2. \(X \) is a finite disjoint union of normal integral schemes.
Proof. This is a special case of Lemma 7.5 because a Noetherian scheme has a Noetherian underlying topological space (Lemma 5.5 and Topology, Lemma 9.2). □

Lemma 7.7. Let X be a locally Noetherian scheme. The following are equivalent:

1. X is normal, and
2. X is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 7.6. □

Remark 7.8. Let X be a normal scheme. If X is locally Noetherian then we see that X is integral if and only if X is connected, see Lemma 7.7. But there exists a connected affine scheme X such that $\mathcal{O}_{X,x}$ is a domain for all $x \in X$, but X is not irreducible, see Examples, Section 5. This example is even a normal scheme (proof omitted), so beware!

Lemma 7.9. Let X be an integral normal scheme. Then $\Gamma(X, \mathcal{O}_X)$ is a normal domain.

Proof. Set $R = \Gamma(X, \mathcal{O}_X)$. It is clear that R is a domain. Suppose $f = a/b$ is an element of its fraction field which is integral over R. Say we have $f^d + \sum_{i=0}^{d-1} a_i f^i = 0$ with $a_i \in R$. Let $U \subset X$ be affine open. Since $b \in R$ is not zero and since X is integral we see that also $b|_U \in \mathcal{O}_X(U)$ is not zero. Hence a/b is an element of the fraction field of $\mathcal{O}_X(U)$ which is integral over $\mathcal{O}_X(U)$ (because we can use the same polynomial $f^d + \sum_{i=0}^{d-1} a_i|_U f^i = 0$ on U). Since $\mathcal{O}_X(U)$ is a normal domain (Lemma 7.2), we see that $f_U = (a|_U)/(b|_U) \in \mathcal{O}_X(U)$. It is easy to see that $f_U|_V = f_V$ whenever $V \subset U \subset X$ are affine open. Hence the local sections f_U glue to a global section f as desired. □

8. Cohen-Macaulay schemes

Definition 8.1. Let X be a scheme. We say X is Cohen-Macaulay if for every $x \in X$ there exists an affine open neighbourhood $U \subset X$ of x such that the ring $\mathcal{O}_X(U)$ is Noetherian and Cohen-Macaulay.

Lemma 8.2. Let X be a scheme. The following are equivalent:

1. X is Cohen-Macaulay,
2. X is locally Noetherian and all of its local rings are Cohen-Macaulay, and
3. X is locally Noetherian and for any closed point $x \in X$ the local ring $\mathcal{O}_{X,x}$ is Cohen-Macaulay.

Proof. Algebra, Lemma 103.5 says that the localization of a Cohen-Macaulay local ring is Cohen-Macaulay. The lemma follows by combining this with Lemma 5.2 with the existence of closed points on locally Noetherian schemes (Lemma 5.9), and the definitions. □

Lemma 8.3. Let X be a scheme. The following are equivalent:

1. The scheme X is Cohen-Macaulay,
For every affine open \(U \subset X \) the ring \(\mathcal{O}_X(U) \) is Noetherian and Cohen-Macaulay.

(3) There exists an affine open covering \(X = \bigcup U_i \) such that each \(\mathcal{O}_X(U_i) \) is Noetherian and Cohen-Macaulay.

(4) There exists an open covering \(X = \bigcup X_j \) such that each open subscheme \(X_j \) is Cohen-Macaulay.

Moreover, if \(X \) is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 5.2 and 8.2

More information on Cohen-Macaulay schemes and depth can be found in Cohomology of Schemes, Section 11.

9. Regular schemes

Recall, see Algebra, Definition 59.9, that a local Noetherian ring \((R, \mathfrak{m})\) is said to be regular if \(\mathfrak{m}\) can be generated by \(\dim(R)\) elements. Recall that a Noetherian ring \(R\) is said to be regular if every local ring \(R_p\) of \(R\) is regular, see Algebra, Definition 109.7.

Definition 9.1. Let \(X\) be a scheme. We say \(X\) is regular, or nonsingular if for every \(x \in X\) there exists an affine open neighbourhood \(U \subset X\) of \(x\) such that the ring \(\mathcal{O}_X(U)\) is Noetherian and regular.

Lemma 9.2. Let \(X\) be a scheme. The following are equivalent:

1. \(X\) is regular,
2. \(X\) is locally Noetherian and all of its local rings are regular, and
3. \(X\) is locally Noetherian and for any closed point \(x \in X\) the local ring \(\mathcal{O}_{X,x}\) is regular.

Proof. By the discussion in Algebra preceding Algebra, Definition 109.7 we know that the localization of a regular local ring is regular. The lemma follows by combining this with Lemma 5.2 with the existence of closed points on locally Noetherian schemes (Lemma 5.9), and the definitions.

Lemma 9.3. Let \(X\) be a scheme. The following are equivalent:

1. The scheme \(X\) is regular.
2. For every affine open \(U \subset X\) the ring \(\mathcal{O}_X(U)\) is Noetherian and regular.
3. There exists an affine open covering \(X = \bigcup U_i\) such that each \(\mathcal{O}_X(U_i)\) is Noetherian and regular.
4. There exists an open covering \(X = \bigcup X_j\) such that each open subscheme \(X_j\) is regular.

Moreover, if \(X\) is regular then every open subscheme is regular.

Proof. Combine Lemmas 5.2 and 9.2

Lemma 9.4. A regular scheme is normal.

Proof. See Algebra, Lemma 151.5
10. Dimension

04MS The dimension of a scheme is just the dimension of its underlying topological space.

04MT **Definition 10.1.** Let X be a scheme.

1. The **dimension** of X is just the dimension of X as a topological spaces, see Topology, Definition \([\ref{definition-topology-dimension}].\)
2. For $x \in X$ we denote $\dim_x(X)$ the dimension of the underlying topological space of X at x as in Topology, Definition \([\ref{definition-topology-dimension}].\) We say $\dim_x(X)$ is the **dimension** of X at x.

As a scheme has a sober underlying topological space (Schemes, Lemma \([\ref{lemma-scheme-sober}].\)) we may compute the dimension of X as the supremum of the lengths n of chains $T_0 \subset T_1 \subset \ldots \subset T_n$ of irreducible closed subsets of X, or as the supremum of the lengths n of chains of specializations $\xi_n \leadsto \xi_{n-1} \leadsto \ldots \leadsto \xi_0$ of points of X.

04MU **Lemma 10.2.** Let X be a scheme. The following are equal

1. The dimension of X.
2. The supremum of the dimensions of the local rings of X.
3. The supremum of $\dim_x(X)$ for $x \in X$.

Proof. Note that given a chain of specializations $\xi_n \leadsto \xi_{n-1} \leadsto \ldots \leadsto \xi_0$ of points of X all of the points ξ_i correspond to prime ideals of the local ring of X at ξ_0 by Schemes, Lemma \([\ref{lemma-scheme-irreducible-closed-ideal}].\) Hence we see that the dimension of X is the supremum of the dimensions of its local rings. In particular $\dim_x(X) \geq \dim(O_{X,x})$ as $\dim_x(X)$ is the minimum of the dimensions of open neighbourhoods of x. Thus $\sup_{x \in X} \dim_x(X) \geq \dim(X)$. On the other hand, it is clear that $\sup_{x \in X} \dim_x(X) \leq \dim(U) \leq \dim(X)$ for any open subset of X. \(\square\)

02IZ **Lemma 10.3.** Let X be a scheme. Let $Y \subset X$ be an irreducible closed subset. Let $\xi \in Y$ be the generic point. Then

$$\text{codim}(Y, X) = \dim(O_{X,\xi})$$

where the codimension is as defined in Topology, Definition \([\ref{definition-topology-codimension}].\)

Proof. By Topology, Lemma \([\ref{lemma-codimension-generic-point}].\) we may replace X by an affine open neighbourhood of ξ. In this case the result follows easily from Algebra, Lemma \([\ref{lemma-codimension-affine}].\) \(\square\)

0BA9 **Lemma 10.4.** Let X be a scheme. Let $x \in X$. Then x is a generic point of an irreducible component of X if and only if $\dim(O_{X,x}) = 0$.

Proof. This follows from Lemma \([\ref{lemma-generic-point-dimension}].\) for example. \(\square\)

0AAX **Lemma 10.5.** A locally Noetherian scheme of dimension 0 is a disjoint union of spectra of Artinian local rings.
Proof. A Noetherian ring of dimension 0 is a finite product of Artinian local rings, see Algebra, Proposition 59.6. Hence an affine open of a locally Noetherian scheme X of dimension 0 has discrete underlying topological space. This implies that the topology on X is discrete. The lemma follows easily from these remarks. \[\square\]

Lemma 10.6. Let X be a scheme of dimension zero. The following are equivalent

1. X is quasi-separated,
2. X is separated,
3. X is Hausdorff,
4. every affine open is closed.

In this case the connected components of X are points.

Proof. As the dimension of X is zero, we see that for any affine open $U \subset X$ the space U is profinite and satisfies a bunch of other properties which we will use freely below, see Algebra, Lemma 25.5. We choose an affine open covering $X = \bigcup U_i$.

If (4) holds, then $U_i \cap U_j$ is a closed subset of U_i, hence quasi-compact, hence X is quasi-separated, by Schemes, Lemma 21.6, hence (1) holds.

If (1) holds, then $U_i \cap U_j$ is a quasi-compact open of U_i hence closed in U_i. Then $U_i \cap U_j \to U_i$ is an open immersion whose image is closed, hence it is a closed immersion. In particular $U_i \cap U_j$ is affine and $\mathcal{O}(U_i) \to \mathcal{O}_X(U_i \cap U_j)$ is surjective. Thus X is separated by Schemes, Lemma 21.6 hence (2) holds.

Assume (2) and let $x, y \in X$. Say $x \in U_i$. If $y \in U_i$ too, then we can find disjoint open neighbourhoods of x and y because U_i is Hausdorff. Say $y \notin U_i$ and $y \in U_j$. Then $y \notin U_i \cap U_j$ which is an affine open of U_j and hence closed in U_j. Thus we can find an open neighbourhood of y not meeting U_i and we conclude that X is Hausdorff, hence (3) holds.

Assume (3). Let $U \subset X$ be affine open. Then U is closed in X by Topology, Lemma 12.4. This proves (4) holds.

We omit the proof of the final statement. \[\square\]

11. Catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible closed subsets $T \subset T'$ there exist a maximal chain of irreducible closed subsets

$$T = T_0 \subset T_1 \subset \ldots \subset T_e = T'$$

and every such chain has the same length. See Topology, Definition 11.4.

Definition 11.1. Let S be a scheme. We say S is catenary if the underlying topological space of S is catenary.

Recall that a ring A is called catenary if for any pair of prime ideals $p \subset q$ there exists a maximal chain of primes

$$p = p_0 \subset \ldots \subset p_e = q$$

and all of these have the same length. See Algebra, Definition 104.1.

Lemma 11.2. Let S be a scheme. The following are equivalent

1. S is catenary,
(2) there exists an open covering of S all of whose members are catenary schemes,

(3) for every affine open $\text{Spec}(R) = U \subset S$ the ring R is catenary, and

(4) there exists an affine open covering $S = \bigcup U_i$ such that each U_i is the spectrum of a catenary ring.

Moreover, in this case any locally closed subscheme of S is catenary as well.

Proof. Combine Topology, Lemma 11.5 and Algebra, Lemma 104.2

Lemma 11.3. Let S be a locally Noetherian scheme. The following are equivalent:

1. S is catenary, and
2. locally in the Zariski topology there exists a dimension function on S (see Topology, Definition 20.1).

Proof. This follows from Topology, Lemmas 11.5, 20.2, and 20.4, Schemes, Lemma 11.1 and finally Lemma 5.5.

It turns out that a scheme is catenary if and only if its local rings are catenary.

Lemma 11.4. Let X be a scheme. The following are equivalent

1. X is catenary, and
2. for any $x \in X$ the local ring $\mathcal{O}_{X,x}$ is catenary.

Proof. Assume X is catenary. Let $x \in X$. By Lemma 11.2 we may replace X by an affine open neighbourhood of x, and then $\Gamma(X, \mathcal{O}_X)$ is a catenary ring. By Algebra, Lemma 104.4 any localization of a catenary ring is catenary. Whence $\mathcal{O}_{X,x}$ is catenary.

Conversely assume all local rings of X are catenary. Let $Y \subset Y'$ be an inclusion of irreducible closed subsets of X. Let $\xi \in Y$ be the generic point. Let $p \subset \mathcal{O}_{X,\xi}$ be the prime corresponding to the generic point of Y', see Schemes, Lemma 13.2. By that same lemma the irreducible closed subsets of X in between Y and Y' correspond to primes $q \subset \mathcal{O}_{X,\xi}$ with $p \subset q \subset m_\xi$. Hence we see all maximal chains of these are finite and have the same length as $\mathcal{O}_{X,\xi}$ is a catenary ring.

12. Serre’s conditions

Here are two technical notions that are often useful. See also Cohomology of Schemes, Section 11.

Definition 12.1. Let X be a locally Noetherian scheme. Let $k \geq 0$.

1. We say X is regular in codimension k, or we say X has property (R_k) if for every $x \in X$ we have
 \[\dim(\mathcal{O}_{X,x}) \leq k \Rightarrow \mathcal{O}_{X,x} \text{ is regular} \]

2. We say X has property (S_k) if for every $x \in X$ we have
 \[\text{depth}(\mathcal{O}_{X,x}) \geq \min(k, \dim(\mathcal{O}_{X,x})) \]

The phrase “regular in codimension k” makes sense since we have seen in Section 11 that if $Y \subset X$ is irreducible closed with generic point x, then $\dim(\mathcal{O}_{X,x}) = \text{codim}(Y,X)$. For example condition (R_0) means that for every generic point $\eta \in X$ of an irreducible component of X the local ring $\mathcal{O}_{X,\eta}$ is a field. But for general Noetherian schemes it can happen that the regular locus of X is badly behaved, so care has to be taken.
Lemma 12.2. Let X be a locally Noetherian scheme. Then X is regular if and only if X has (R_k) for all $k \geq 0$.

Proof. Follows from Lemma 9.2 and the definitions. □

Lemma 12.3. Let X be a locally Noetherian scheme. Then X is Cohen-Macaulay if and only if X has (S_k) for all $k \geq 0$.

Proof. By Lemma 8.2 we reduce to looking at local rings. Hence the lemma is true because a Noetherian local ring is Cohen-Macaulay if and only if it has depth equal to its dimension. □

Lemma 12.4. Let X be a locally Noetherian scheme. Then X is reduced if and only if X has properties (S_1) and (R_0).

Proof. This is Algebra, Lemma 151.3 □

Lemma 12.5. Let X be a locally Noetherian scheme. Then X is normal if and only if X has properties (S_2) and (R_1).

Proof. This is Algebra, Lemma 151.4 □

Lemma 12.6. Let X be a locally Noetherian scheme which is normal and has dimension ≤ 1. Then X is regular.

Proof. This follows from Lemma 12.5 and the definitions. □

Lemma 12.7. Let X be a locally Noetherian scheme which is normal and has dimension ≤ 2. Then X is Cohen-Macaulay.

Proof. This follows from Lemma 12.5 and the definitions. □

13. Japanese and Nagata schemes

The notions considered in this section are not prominently defined in EGA. A “universally Japanese scheme” is mentioned and defined in [DG67, IV Corollary 5.11.4]. A “Japanese scheme” is mentioned in [DG67, IV Remark 10.4.14 (ii)] but no definition is given. A Nagata scheme (as given below) occurs in a few places in the literature (see for example [Liu02, Definition 8.2.30] and [Gre76, Page 142]).

We briefly recall that a domain R is called Japanese if the integral closure of R in any finite extension of its fraction field is finite over R. A ring R is called universally Japanese if for any finite type ring map $R \to S$ with S a domain S is Japanese. A ring R is called Nagata if it is Noetherian and R/\mathfrak{p} is Japanese for every prime \mathfrak{p} of R.

Definition 13.1. Let X be a scheme.

1. Assume X integral. We say X is Japanese if for every $x \in X$ there exists an affine open neighbourhood $x \in U \subset X$ such that the ring $\mathcal{O}_X(U)$ is Japanese (see Algebra, Definition 155.1).

2. We say X is universally Japanese if for every $x \in X$ there exists an affine open neighbourhood $x \in U \subset X$ such that the ring $\mathcal{O}_X(U)$ is universally Japanese (see Algebra, Definition 156.1).

3. We say X is Nagata if for every $x \in X$ there exists an affine open neighbourhood $x \in U \subset X$ such that the ring $\mathcal{O}_X(U)$ is Nagata (see Algebra, Definition 156.1).
Being Nagata is the same thing as being locally Noetherian and universally Japanese, see Lemma [13.8]

Remark 13.2. In [Hoc72] a (locally Noetherian) scheme X is called Japanese if for every $x \in X$ and every associated prime p of $\mathcal{O}_{X,x}$ the ring $\mathcal{O}_{X,x}/p$ is Japanese. We do not use this definition since there exists a one dimensional noetherian domain with excellent (in particular Japanese) local rings whose normalization is not finite. See [Hoc73, Example 1] or [HL07] or [ILO14, Exposé XIX]. On the other hand, we could circumvent this problem by calling a scheme X Japanese if for every affine open $\text{Spec}(A) \subset X$ the ring A/p is Japanese for every associated prime p of A.

Lemma 13.3. A Nagata scheme is locally Noetherian.

Proof. This is true because a Nagata ring is Noetherian by definition. □

Lemma 13.4. Let X be an integral scheme. The following are equivalent:

1. The scheme X is Japanese.
2. For every affine open $U \subset X$ the domain $\mathcal{O}_X(U)$ is Japanese.
3. There exists an affine open covering $X = \bigcup U_i$ such that each $\mathcal{O}_X(U_i)$ is Japanese.
4. There exists an open covering $X = \bigcup X_j$ such that each open subscheme X_j is Japanese.

Moreover, if X is Japanese then every open subscheme is Japanese.

Proof. This follows from Lemma [4.3] and Algebra, Lemmas [155.3] and [155.4]. □

Lemma 13.5. Let X be a scheme. The following are equivalent:

1. The scheme X is universally Japanese.
2. For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$ is universally Japanese.
3. There exists an affine open covering $X = \bigcup U_i$ such that each $\mathcal{O}_X(U_i)$ is universally Japanese.
4. There exists an open covering $X = \bigcup X_j$ such that each open subscheme X_j is universally Japanese.

Moreover, if X is universally Japanese then every open subscheme is universally Japanese.

Proof. This follows from Lemma [4.3] and Algebra, Lemmas [156.4] and [156.7]. □

Lemma 13.6. Let X be a scheme. The following are equivalent:

1. The scheme X is Nagata.
2. For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$ is Nagata.
3. There exists an affine open covering $X = \bigcup U_i$ such that each $\mathcal{O}_X(U_i)$ is Nagata.
4. There exists an open covering $X = \bigcup X_j$ such that each open subscheme X_j is Nagata.

Moreover, if X is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma [4.3] and Algebra, Lemmas [156.6] and [156.7]. □

Lemma 13.7. Let X be a locally Noetherian scheme. Then X is Nagata if and only if every integral closed subscheme $Z \subset X$ is Japanese.
Proof. Assume \(X \) is Nagata. Let \(Z \subset X \) be an integral closed subscheme. Let \(z \in Z \). Let \(\text{Spec}(A) = U \subset X \) be an affine open containing \(z \) such that \(A \) is Nagata. Then \(Z \cap U \cong \text{Spec}(A/p) \) for some prime \(p \), see Schemes, Lemma \[10.1\] (and Definition \[3.1\]). By Algebra, Definition \[156.1\] we see that \(A/p \) is Japanese. Hence \(Z \) is Japanese by definition.

Assume every integral closed subscheme of \(X \) is Japanese. Let \(\text{Spec}(A) = U \subset X \) be any affine open. As \(X \) is locally Noetherian we see that \(A \) is Noetherian (Lemma \[5.2\]). Let \(p \subset A \) be a prime ideal. We have to show that \(A/p \) is Japanese. Let \(T \subset U \) be the closed subset \(V(p) \subset \text{Spec}(A) \). Let \(\overline{T} \subset X \) be the closure. Then \(\overline{T} \) is irreducible as the closure of an irreducible subset. Hence the reduced closed subscheme defined by \(\overline{T} \) is an integral closed subscheme (called \(\overline{T} \) again), see Schemes, Lemma \[12.4\]. In other words, \(\text{Spec}(A/p) \) is an affine open of an integral closed subscheme of \(X \). This subscheme is Japanese by assumption and by Lemma \[13.4\] we see that \(A/p \) is Japanese.

\[\square \]

Lemma 13.8. Let \(X \) be a scheme. The following are equivalent:

1. \(X \) is Nagata, and
2. \(X \) is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition \[156.15\].

This discussion will be continued in Morphisms, Section \[17\].

14. The singular locus

Definition 14.1. Let \(X \) be a locally Noetherian scheme. The regular locus \(\text{Reg}(X) \) of \(X \) is the set of \(x \in X \) such that \(O_{X,x} \) is a regular local ring. The singular locus \(\text{Sing}(X) \) is the complement \(X \setminus \text{Reg}(X) \), i.e., the set of points \(x \in X \) such that \(O_{X,x} \) is not a regular local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations, see the discussion preceding Algebra, Definition \[109.7\]. However, for general locally Noetherian schemes the regular locus need not be open. In More on Algebra, Section \[16\] the reader can find some criteria for when this is the case. We will discuss this further in Morphisms, Section \[18\].

15. Local irreducibility

Definition 15.1. Let \(X \) be a scheme. Let \(x \in X \). We say \(X \) is unibranch at \(x \) if the local ring \(O_{X,x} \) is unibranch. We say \(X \) is geometrically unibranch at \(x \) if the local ring \(O_{X,x} \) is geometrically unibranch. We say \(X \) is unibranch if \(X \) is unibranch at all of its points. We say \(X \) is geometrically unibranch if \(X \) is geometrically unibranch at all of its points.

To be sure, it can happen that a local ring \(A \) is geometrically unibranch (in the sense of More on Algebra, Definition \[95.1\]) but the scheme \(\text{Spec}(A) \) is not geometrically unibranch in the sense of Definition \[15.1\]. For example this happens if \(A \) is the local ring at the vertex of the cone over an irreducible plane curve which has ordinary double point singularity (a node).
Lemma 15.2. A normal scheme is geometrically unibranch.

Proof. This follows from the definitions. Namely, a scheme is normal if the local rings are normal domains. It is immediate from the More on Algebra, Definition 95.1 that a local normal domain is geometrically unibranch. □

Lemma 15.3. Let X be a Noetherian scheme. The following are equivalent

1. X is geometrically unibranch (Definition 15.1),
2. for every point $x \in X$ which is not the generic point of an irreducible component of X, the punctured spectrum of the strict henselization $\mathcal{O}_{X,x}^{sh}$ is connected.

Proof. More on Algebra, Lemma 95.5 shows that (1) implies that the punctured spectra in (2) are irreducible and in particular connected.

Assume (2). Let $x \in X$. We have to show that $\mathcal{O}_{X,x}$ is geometrically unibranch. By induction on $\dim(\mathcal{O}_{X,x})$ we may assume that the result holds for every nontrivial generalization of x. We may replace X by $\text{Spec}(\mathcal{O}_{X,x})$. In other words, we may assume that $X = \text{Spec}(A)$ with A local and that A_p is geometrically unibranch for each nonmaximal prime $p \subset A$.

Let A^{sh} be the strict henselization of A. If $q \subset A^{sh}$ is a prime lying over $p \subset A$, then $A_p \to A_q^{sh}$ is a filtered colimit of étale algebras. Hence the strict henselizations of A_p and A_q^{sh} are isomorphic. Thus by More on Algebra, Lemma 95.5 we conclude that A_q^{sh} has a unique minimal prime ideal for every nonmaximal prime q of A^{sh}.

Let q_1, \ldots, q_r be the minimal primes of A^{sh}. We have to show that $r = 1$. By the above we see that $V(q_1) \cap V(q_j) = \{m^{sh}\}$ for $j = 2, \ldots, r$. Hence $V(q_1) \setminus \{m^{sh}\}$ is an open and closed subset of the punctured spectrum of A^{sh} which is a contradiction with the assumption that this punctured spectrum is connected unless $r = 1$. □

Definition 15.4. Let X be a scheme. Let $x \in X$. The number of branches of X at x is the number of branches of the local ring $\mathcal{O}_{X,x}$ as defined in More on Algebra, Definition 95.6. The number of geometric branches of X at x is the number of geometric branches of the local ring $\mathcal{O}_{X,x}$ as defined in More on Algebra, Definition 95.6.

Often we want to compare this with the branches of the complete local ring, but the comparison is not straightforward in general; some information on this topic can be found in More on Algebra, Section 96.

Lemma 15.5. Let X be a scheme and $x \in X$. Let X_i, $i \in I$ be the irreducible components of X passing through x. Then the number of (geometric) branches of X at x is the sum over $i \in I$ of the number of (geometric) branches of X_i at x.

Proof. We view the X_i as integral closed subschemes of X, see Schemes, Definition 12.5 and Lemma 3.4. Observe that the number of (geometric) branches of X_i at x is at least 1 for all i (essentially by definition). Recall that the X_i correspond 1-to-1 with the minimal prime ideals $p_i \subset \mathcal{O}_{X,x}$, see Algebra, Lemma 25.3. Thus, if I is infinite, then $\mathcal{O}_{X,x}$ has infinitely many minimal primes, whence both $\mathcal{O}_{X,x}^h$ and $\mathcal{O}_{X,x}^{sh}$ have infinitely many minimal primes (combine Algebra, Lemmas 29.5 and 29.7 and the injectivity of the maps $\mathcal{O}_{X,x} \to \mathcal{O}_{X,x}^h \to \mathcal{O}_{X,x}^{sh}$). In this case the number of (geometric) branches of X at x is defined to be ∞ which is also true.
for the sum. Thus we may assume I is finite. Let A' be the integral closure of $\mathcal{O}_{X,x}$ in the total ring of fractions Q of $(\mathcal{O}_{X,x})_{\text{red}}$. Let A'_i be the integral closure of $\mathcal{O}_{X,x}/p_i$ in the total ring of fractions Q_i of $\mathcal{O}_{X,x}/p_i$. By Algebra, Lemma 24.4 we have $Q = \prod_{i \in I} Q_i$. Thus $A' = \prod A'_i$. Then the equality of the lemma follows from More on Algebra, Lemma 95.7 which expresses the number of (geometric) branches in terms of the maximal ideals of A'.

□

Lemma 15.6. Let X be a scheme. Let $x \in X$.

(1) The number of branches of X at x is 1 if and only if X is unibranch at x.
(2) The number of geometric branches of X at x is 1 if and only if X is geometrically unibranch at x.

Proof. This lemma follows immediately from the definitions and the corresponding result for rings, see More on Algebra, Lemma 95.7.

□

16. Characterizing modules of finite type and finite presentation

Let X be a scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. The following lemma implies that \mathcal{F} is of finite type (see Modules, Definition 9.1) if and only if \mathcal{F} is on each open affine $\text{Spec}(A) = U \subset X$ of the form \mathcal{M} for some finite type A-module M. Similarly, \mathcal{F} is of finite presentation (see Modules, Definition 11.1) if and only if \mathcal{F} is on each open affine $\text{Spec}(A) = U \subset X$ of the form \mathcal{M} for some finitely presented A-module M.

Lemma 16.1. Let $X = \text{Spec}(R)$ be an affine scheme. The quasi-coherent sheaf of \mathcal{O}_X-modules \tilde{M} is a finite type \mathcal{O}_X-module if and only if M is a finite R-module.

Proof. Assume \tilde{M} is a finite type \mathcal{O}_X-module. This means there exists an open covering of X such that \tilde{M} restricted to the members of this covering is globally generated by finitely many sections. Thus there also exists a standard open covering $X = \bigcup_{i=1,...,n} D(f_i)$ such that $\tilde{M}|_{D(f_i)}$ is generated by finitely many sections. Thus M_{f_i} is finitely generated for each i. Hence we conclude by Algebra, Lemma 22.2.

□

Lemma 16.2. Let $X = \text{Spec}(R)$ be an affine scheme. The quasi-coherent sheaf of \mathcal{O}_X-modules \tilde{M} is an \mathcal{O}_X-module of finite presentation if and only if M is an R-module of finite presentation.

Proof. Assume \tilde{M} is an \mathcal{O}_X-module of finite presentation. By Lemma 16.1 we see that M is a finite R-module. Choose a surjection $R^n \to M$ with kernel K. By Schemes, Lemma 5.4 there is a short exact sequence

$$0 \to \tilde{K} \to \bigoplus \mathcal{O}_X^\oplus \to \tilde{M} \to 0$$

By Modules, Lemma 11.3 we see that \tilde{K} is a finite type \mathcal{O}_X-module. Hence by Lemma 16.1 again we see that K is a finite R-module. Hence M is an R-module of finite presentation.

□

17. Sections over principal opens

Here is a typical result of this kind. We will use a more naive but more direct method of proof in later lemmas.
Lemma 17.1. Let X be a scheme. Let $f \in \Gamma(X, \mathcal{O}_X)$. Denote $X_f \subset X$ the open where f is invertible, see Schemes, Lemma 6.2. If X is quasi-compact and quasi-separated, the canonical map

$$\Gamma(X, \mathcal{O}_X) \rightarrow \Gamma(X_f, \mathcal{O}_X)$$

is an isomorphism. Moreover, if \mathcal{F} is a quasi-coherent sheaf of \mathcal{O}_X-modules the map

$$\Gamma(X, \mathcal{F}) \rightarrow \Gamma(X_f, \mathcal{F})$$

is an isomorphism.

Proof. Write $R = \Gamma(X, \mathcal{O}_X)$. Consider the canonical morphism

$$\varphi : X \rightarrow \text{Spec}(R)$$

of schemes, see Schemes, Lemma 6.4. Then the inverse image of the standard open $D(f)$ on the right hand side is X_f on the left hand side. Moreover, since X is assumed quasi-compact and quasi-separated the morphism φ is quasi-compact and quasi-separated, see Schemes, Lemma 19.2 and 21.13. Hence by Schemes, Lemma 24.1 we see that $\varphi_* \mathcal{F}$ is quasi-coherent. Hence we see that $\varphi_* \mathcal{F} = \mathcal{M}$ with $M = \Gamma(X, \mathcal{F})$ as an R-module. Thus we see that

$$\Gamma(X, \mathcal{F}) = \Gamma(D(f), \varphi_* \mathcal{F}) = \Gamma(D(f), \mathcal{M}) = M_f$$

which is exactly the content of the lemma. The first displayed isomorphism of the lemma follows by taking $\mathcal{F} = \mathcal{O}_X$.

Recall that given a scheme X, an invertible sheaf \mathcal{L} on X, and a sheaf of \mathcal{O}_X-modules \mathcal{F} we get a graded ring $\Gamma_*(X, \mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X, \mathcal{L}^{\otimes n})$ and a graded $\Gamma_*(X, \mathcal{L})$-module $\Gamma_*(X, \mathcal{L}, \mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$ see Modules, Definition 22.7. If we have moreover a section $s \in \Gamma(X, \mathcal{L})$, then we obtain a map

$$\Gamma_*(X, \mathcal{L}, \mathcal{F})_{(s)} \rightarrow \Gamma(X, \mathcal{F}|_X)$$

which sends t/s^n where $t \in \Gamma(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$ to $t|_{X_s} \otimes s_{X_s}^{-n}$. This makes sense because $X_s \subset X$ is by definition the open over which s has an inverse, see Modules, Lemma 22.10.

Lemma 17.2. Let X be a scheme. Let \mathcal{L} be an invertible sheaf on X. Let $s \in \Gamma(X, \mathcal{L})$. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module.

1. If X is quasi-compact, then $\Gamma_*(X, \mathcal{L})_{(s)}$ is injective, and
2. if X is quasi-compact and quasi-separated, then $\Gamma_*(X, \mathcal{L})_{(s)}$ is an isomorphism.

In particular, the canonical map

$$\Gamma_*(X, \mathcal{L})_{(s)} \rightarrow \Gamma(X_s, \mathcal{O}_X), \quad a/s^n \mapsto a \otimes s^{-n}$$

is an isomorphism if X is quasi-compact and quasi-separated.

Proof. Assume X is quasi-compact. Choose a finite affine open covering $X = U_1 \cup \ldots \cup U_m$ with U_j affine and $\mathcal{L}|_{U_j} \cong \mathcal{O}_{U_j}$. Via this isomorphism, the image $s|_{U_j}$ corresponds to some $f_j \in \Gamma(U_j, \mathcal{O}_{U_j})$. Then $X_s \cap U_j = D(f_j)$.

Proof of (1). Let t/s^n be an element in the kernel of $\Gamma_*(X, \mathcal{L})_{(s)}$. Then $t|_{X_s} = 0$. Hence $(t|_{U_j})|_{D(f_j)} = 0$. By Lemma 17.1 we conclude that $f_j^e t|_{U_j} = 0$ for some $e_j \geq 0$. Let $e = \max(e_j)$. Then we see that $t \otimes s^e$ restricts to zero on U_j for all j, hence is zero. Since t/s^n is equal to $t \otimes s^e/s^{n+e}$ in $\Gamma_*(X, \mathcal{L})_{(s)}$ we conclude that $t/s^n = 0$ as desired.
Proof of (2). Assume X is quasi-compact and quasi-separated. Then $U_j \cap U_{j'}$ is quasi-compact for all pairs j, j', see Schemes, Lemma \ref{lemmamore-quasi-compact}. By part (1) we know \eqref{equation-morphism=0} is injective. Let $t' \in \Gamma(U_j, \mathcal{F}|_{U_j})$. For every j', there exist an integer $n_j \geq 0$ and $t'_j \in \Gamma(U_j, \mathcal{F}|_{U_j})$ such that $t'|_{D(f_j)}$ corresponds to $t'_j/f_j^{n_j}$ via the isomorphism of Lemma \ref{lemmamore-quasi-compact}. Set $e = \max(e_j)$ and

$$t_j = t'_j \otimes s_{U_j}^e \in \Gamma(U_j, (\mathcal{F} \otimes \mathcal{O}_X \mathcal{L}^{\otimes e})|_{U_j})$$

Then we see that $t_j|_{U_j \cap U_{j'}}$ and $t'_j|_{U_j \cap U_{j'}}$ map to the same section of \mathcal{F} over $U_j \cap U_{j'} \cap X_s$. By quasi-compactness of $U_j \cap U_{j'}$ and part (1) there exists an integer $e' \geq 0$ such that

$$t_j|_{U_j \cap U_{j'}} \otimes s^{e'}|_{U_j \cap U_{j'}} = t'_j|_{U_j \cap U_{j'}} \otimes s^{e'}|_{U_j \cap U_{j'}}$$

as sections of $\mathcal{F} \otimes \mathcal{L}^{\otimes e+e'}$ over $U_j \cap U_{j'}$. We may choose the same e' to work for all pairs j, j'. Then the sheaf conditions implies there is a section $t \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^{\otimes e+e'})$ whose restriction to U_j is $t_j \otimes s^{e'}|_{U_j}$. A simple computation shows that $t/s^{e+e'}$ maps to t' as desired. \hfill \qed

Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. Let \mathcal{F} and \mathcal{G} be quasi-coherent \mathcal{O}_X-modules. Consider the graded $\Gamma_s(X, \mathcal{L})$-module

$$M = \bigoplus_{n \in \mathbb{Z}} \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G} \otimes \mathcal{O}_X \mathcal{L}^{\otimes n})$$

Next, let $s \in \Gamma(X, \mathcal{L})$ be a section. Then there is a canonical map

0B5M \quad (17.2.1) \quad $M(s) \longrightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}|_{X_s}, \mathcal{G}|_{X_s})$

which sends α/s^n to the map $\alpha|_{X_s} \otimes s^{-n}|_{X_s}$. The following lemma, combined with Lemma \ref{lemmamore-quasi-compact} says roughly that, if X is quasi-compact and quasi-separated, the category of finitely presented \mathcal{O}_X-modules is the category of finitely presented \mathcal{O}_X-modules with the multiplicative system of maps $s^n : \mathcal{F} \to \mathcal{F} \otimes \mathcal{O}_X \mathcal{L}^{\otimes n}$ inverted.

01XQ \quad Lemma 17.3. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. Let $s \in \Gamma(X, \mathcal{L})$ be a section. Let \mathcal{F}, \mathcal{G} be quasi-coherent \mathcal{O}_X-modules.

\begin{enumerate}
 \item If X is quasi-compact and \mathcal{F} is of finite type, then \eqref{equation-morphism=0} is injective, and
 \item if X is quasi-compact and quasi-separated and \mathcal{F} is of finite presentation, then \eqref{equation-morphism=0} is bijective.
\end{enumerate}

Proof. We first prove the lemma in case $X = \text{Spec}(A)$ is affine and $\mathcal{L} = \mathcal{O}_X$. In this case s corresponds to an element $f \in A$. Say $\mathcal{F} = \mathcal{M}$ and $\mathcal{G} = \mathcal{N}$ for some A-modules M and N. Then the lemma translates (via Lemmas \ref{lemmamore-quasi-compact} and \ref{lemmamore-quasi-compact}) into the following algebra statements

\begin{enumerate}
 \item If M is a finite A-module and $\varphi : M \to N$ is an A-module map such that the induced map $M_f \to N_f$ is zero, then $f^n\varphi = 0$ for some n.
 \item If M is a finitely presented A-module, then $\text{Hom}_A(M, N_f) = \text{Hom}_A(M_f, N_f)$.
\end{enumerate}

The second statement is Algebra, Lemma \ref{lemmamore-quasi-compact} and we omit the proof of the first statement.

Next, we prove (1) for general X. Assume X is quasi-compact and choose a finite affine open covering $X = U_1 \cup \ldots \cup U_m$ with U_j affine and $\mathcal{L}|_{U_j} \cong \mathcal{O}_{U_j}$. Via this isomorphism, the image $s|_{U_j}$ corresponds to some $f_j \in \Gamma(U_j, \mathcal{O}_{U_j})$. Then $X_s \cap U_j = D(f_j)$. Let α/s^n be an element in the kernel of \eqref{equation-morphism=0}. Then $\alpha|_{X_s} = 0$. Hence $(\alpha|_{U_j})|_{D(f_j)} = 0$. By the affine case treated above we conclude that $f_j^{n_e} \alpha|_{U_j} = 0$ for
some $e_j \geq 0$. Let $e = \max(e_j)$. Then we see that $\alpha \otimes s^e$ restricts to zero on U_j for all j, hence is zero. Since α/s^n is equal to $\alpha \otimes s^e/s^{n+e}$ in $M(e)$ we conclude that $\alpha/s^n = 0$ as desired.

Proof of (2). Since \mathcal{F} is of finite presentation, the sheaf $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is quasi-coherent, see Schemes, Section 24. Moreover, it is clear that

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G} \otimes \mathcal{O}_X \mathcal{L}^n) = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) \otimes \mathcal{O}_X \mathcal{L}^n$$

for all n. Hence in this case the statement follows from Lemma [17.2] applied to $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$.

18. Quasi-affine schemes

Definition 18.1. A scheme X is called quasi-affine if it is quasi-compact and isomorphic to an open subscheme of an affine scheme.

Lemma 18.2. Let A be a ring and let $U \subset \text{Spec}(A)$ be a quasi-compact open subscheme. For \mathcal{F} quasi-coherent on U the canonical map

$$H^0(U, \mathcal{F})|_U \to \mathcal{F}$$

is an isomorphism.

Proof. Denote $j : U \to \text{Spec}(A)$ the inclusion morphism. Then $H^0(U, \mathcal{F}) = H^0(\text{Spec}(A), j_*\mathcal{F})$ and $j_*\mathcal{F}$ is quasi-coherent by Schemes, Lemma 24.1 Hence $j_*\mathcal{F} = H^0(U, \mathcal{F})$ by Schemes, Lemma 7.5. Restricting back to U we get the lemma.

Lemma 18.3. Let X be a scheme. Assume X is quasi-compact and quasi-separated and assume that X_f is affine. Then the canonical morphism

$$j : X \to \text{Spec}(\Gamma(X, \mathcal{O}_X))$$

from Schemes, Lemma 6.4 induces an isomorphism of $X_f = j^{-1}(D(f))$ onto the standard affine open $D(f) \subset \text{Spec}(\Gamma(X, \mathcal{O}_X))$.

Proof. This is clear as j induces an isomorphism of rings $\Gamma(X, \mathcal{O}_X)_f \to \mathcal{O}_X(X_f)$ by Lemma 17.1 above.

Lemma 18.4. Let X be a scheme. Then X is quasi-affine if and only if the canonical morphism

$$X \to \text{Spec}(\Gamma(X, \mathcal{O}_X))$$

from Schemes, Lemma 6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then X is isomorphic to a quasi-compact open subscheme of $\text{Spec}(\Gamma(X, \mathcal{O}_X))$ and clearly X is quasi-affine.

Assume X is quasi-affine, say $X \subset \text{Spec}(R)$ is quasi-compact open. This in particular implies that X is separated, see Schemes, Lemma 23.9. Let $A = \Gamma(X, \mathcal{O}_X)$. Consider the ring map $R \to A$ coming from $R = \Gamma(\text{Spec}(R), \mathcal{O}_{\text{Spec}(R)})$ and the restriction mapping of the sheaf $\mathcal{O}_{\text{Spec}(R)}$. By Schemes, Lemma 6.4 we obtain a factorization:

$$X \to \text{Spec}(A) \to \text{Spec}(R)$$
of the inclusion morphism. Let \(x \in X \). Choose \(r \in R \) such that \(x \in D(r) \) and \(D(r) \subset X \). Denote \(f \in A \) the image of \(r \) in \(A \). The open \(X_f \) of Lemma 17.1 above is equal to \(D(r) \subset X \) and hence \(A_f \cong R_r \) by the conclusion of that lemma. Hence \(D(r) \to \text{Spec}(A) \) is an isomorphism onto the standard affine open \(D(f) \) of \(\text{Spec}(A) \). Since \(X \) can be covered by such affine opens \(D(f) \) we win. \(\square \)

Lemma 18.5. Let \(U \to V \) be an open immersion of quasi-affine schemes. Then

\[
\begin{array}{ccc}
U & \xrightarrow{j} & \text{Spec}(\Gamma(U,\mathcal{O}_U)) \\
\downarrow & & \downarrow \\
U & \xrightarrow{j'} & \text{Spec}(\Gamma(V,\mathcal{O}_V))
\end{array}
\]

is cartesian.

Proof. The diagram is commutative by Schemes, Lemma 6.4. Write \(A = \Gamma(U,\mathcal{O}_U) \) and \(B = \Gamma(V,\mathcal{O}_V) \). Let \(g \in B \) be such that \(V_g \) is affine and contained in \(U \). This means that if \(f \) is the image of \(g \) in \(A \), then \(U_f = V_g \). By Lemma 18.3 we see that \(j' \) induces an isomorphism of \(V_g \) with the standard open \(D(g) \) of \(\text{Spec}(B) \).

Thus \(V_g \times_{\text{Spec}(B)} \text{Spec}(A) \to \text{Spec}(A) \) is an isomorphism onto \(D(f) \subset \text{Spec}(A) \).

By Lemma 18.3 again \(j \) maps \(U_f \) isomorphically to \(D(f) \). Thus we see that \(U_f = U_f \times_{\text{Spec}(B)} \text{Spec}(A) \). Since by Lemma 18.4 we can cover \(U \) by \(V_g = U_f \) as above, we see that \(U \to U \times_{\text{Spec}(B)} \text{Spec}(A) \) is an isomorphism. \(\square \)

Lemma 18.6. Let \(X \) be a quasi-affine scheme. There exists an integer \(n \geq 0 \), an affine scheme \(T \), and a morphism \(T \to X \) such that for every morphism \(X' \to X \) with \(X' \) affine the fibre product \(X' \times_X T \) is isomorphic to \(\mathbb{A}^N_X \) over \(X' \).

Proof. By definition, there exists a ring \(A \) such that \(X \) is isomorphic to a quasi-compact open subscheme \(U \subset \text{Spec}(A) \). Recall that the standard opens \(D(f) \subset \text{Spec}(A) \) form a basis for the topology, see Algebra, Section 16. Since \(U \) is quasi-compact we can choose \(f_1, \ldots, f_n \in A \) such that \(U = D(f_1) \cup \cdots \cup D(f_n) \). Thus we may assume \(X = \text{Spec}(A) \) \(\setminus V(I) \) where \(I = (f_1, \ldots, f_n) \). We set

\[
T = \text{Spec}(A[t, x_1, \ldots, x_n]/(f_1 t x_1 + \cdots + f_n x_n - 1))
\]

The structure morphism \(T \to \text{Spec}(A) \) factors through the open \(X \) to give the morphism \(T \to X \). If \(X' = \text{Spec}(A') \) and the morphism \(X' \to X \) corresponds to the ring map \(A \to A' \), then the images \(f_1', \ldots, f_n' \in A' \) of \(f_1, \ldots, f_n \) generate the unit ideal in \(A' \). Say \(1 = f_1' a_1' + \cdots + f_n' a_n' \). The base change \(X' \times_X T \) is the spectrum of \(A'[t, x_1, \ldots, x_n]/(f_1' x_1 + \cdots + f_n' x_n - 1) \). We claim the \(A' \)-algebra homomorphism

\[
\varphi : A'[y_1, \ldots, y_n] \to A'[t, x_1, \ldots, x_n, x_{n+1}]/(f_1' x_1 + \cdots + f_n' x_n - 1)
\]

sending \(y_i \) to \(a_i t + x_i \) is an isomorphism. The claim finishes the proof of the lemma.

The inverse of \(\varphi \) is given by the \(A' \)-algebra homomorphism

\[
\psi : A'[t, x_1, \ldots, x_n, x_{n+1}]/(f_1' x_1 + \cdots + f_n' x_n - 1) \to A'[y_1, \ldots, y_n]
\]

sending \(t \) to \(-1 + f_1' y_1 + \ldots + f_n' y_n \) and \(x_i \) to \(y_i + a_i - a_i (f_1' y_1 + \ldots + f_n' y_n) \) for \(i = 1, \ldots, n \). This makes sense because \(\sum f_i' x_i \) is mapped to

\[
\sum (y_i + a_i - a_i (f_j' y_j)) = (\sum f_i' y_i) + 1 - (\sum f_j' y_j) = 1.
\]
To see the maps are mutually inverse one computes as follows:

\[\varphi(\psi(t)) = \varphi(-1 + \sum f'_i y_i) = -1 + \sum f'_i (a'_i t + x_i) = t \]
\[\varphi(\psi(x_i)) = \varphi(y_i + a'_i - a'_i(\sum f'_i y_j)) = a'_i t + x_i + a'_i - a'_i(\sum f'_i a'_i t + f'_i x_j) = x_i \]
\[\psi(\varphi(y_i)) = \psi(a'_i t + x_i) = a'_i(-1 + \sum f'_i y_j) + y_i + a'_i - a'_i(\sum f'_i y_j) = y_i \]

This finishes the proof. \(\square \)

19. Flat modules

05NZ On any ringed space \((X, \mathcal{O}_X)\) we know what it means for an \(\mathcal{O}_X\)-module to be flat (at a point), see Modules, Definition 16.1 (Definition 16.3). For quasi-coherent sheaves on an affine scheme this matches the notion defined in the algebra chapter.

Lemma 19.1. Let \(X = \text{Spec}(R)\) be an affine scheme. Let \(\mathcal{F} = \mathcal{M}\) for some \(R\)-module \(M\). The quasi-coherent sheaf \(\mathcal{F}\) is a flat \(\mathcal{O}_X\)-module if and only if \(M\) is a flat \(R\)-module.

Proof. Flatness of \(\mathcal{F}\) may be checked on the stalks, see Modules, Lemma 16.2. The same is true in the case of modules over a ring, see Algebra, Lemma 38.19. And since \(\mathcal{F}_x = M_p\) if \(x\) corresponds to \(p\) the lemma is true. \(\square \)

20. Locally free modules

05P1 On any ringed space we know what it means for an \(\mathcal{O}_X\)-module to be (finite) locally free. On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 20.1. Let \(X = \text{Spec}(R)\) be an affine scheme. Let \(\mathcal{F} = \mathcal{M}\) for some \(R\)-module \(M\). The quasi-coherent sheaf \(\mathcal{F}\) is a (finite) locally free \(\mathcal{O}_X\)-module if and only if \(M\) is a (finite) locally free \(R\)-module.

Proof. Follows from the definitions, see Modules, Definition 14.1 and Algebra, Definition 77.1. \(\square \)

We can characterize finite locally free modules in many different ways.

Lemma 20.2. Let \(X\) be a scheme. Let \(\mathcal{F}\) be a quasi-coherent \(\mathcal{O}_X\)-module. The following are equivalent:

1. \(\mathcal{F}\) is a flat \(\mathcal{O}_X\)-module of finite presentation,
2. \(\mathcal{F}\) is an \(\mathcal{O}_X\)-module of finite presentation and for all \(x \in X\) the stalk \(\mathcal{F}_x\) is a free \(\mathcal{O}_{X,x}\)-module,
3. \(\mathcal{F}\) is a locally free, finite type \(\mathcal{O}_X\)-module,
4. \(\mathcal{F}\) is a finite locally free \(\mathcal{O}_X\)-module, and
5. \(\mathcal{F}\) is an \(\mathcal{O}_X\)-module of finite type, for every \(x \in X\) the stalk \(\mathcal{F}_x\) is a free \(\mathcal{O}_{X,x}\)-module, and the function

\[\rho_\mathcal{F} : X \to \mathbb{Z}, \quad x \mapsto \dim_{\kappa(x)} \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x) \]

is locally constant in the Zariski topology on \(X\).

Proof. This lemma immediately reduces to the affine case. In this case the lemma is a reformulation of Algebra, Lemma 77.2. The translation uses Lemmas 16.1, 16.2, 19.1 and 20.1. \(\square \)
21. Locally projective modules

A consequence of the work done in the algebra chapter is that it makes sense to define a locally projective module as follows.

Definition 21.1. Let X be a scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. We say \mathcal{F} is locally projective if for every affine open $U \subset X$ the $\mathcal{O}_X(U)$-module $\mathcal{F}(U)$ is projective.

Lemma 21.2. Let X be a scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. The following are equivalent

1. \mathcal{F} is locally projective, and
2. there exists an affine open covering $X = \bigcup U_i$ such that the $\mathcal{O}_X(U_i)$-module $\mathcal{F}(U_i)$ is projective for every i.

In particular, if $X = \text{Spec}(A)$ and $\mathcal{F} = \widetilde{M}$ then \mathcal{F} is locally projective if and only if M is a projective A-module.

Proof. First, note that if M is a projective A-module and $A \to B$ is a ring map, then $M \otimes_A B$ is a projective B-module, see Algebra, Lemma 93.1. Hence if U is an affine open such that $\mathcal{F}(U)$ is a projective $\mathcal{O}_X(U)$-module, then the standard open $D(f)$ is an affine open such that $\mathcal{F}(D(f))$ is a projective $\mathcal{O}_X(D(f))$-module for all $f \in \mathcal{O}_X(U)$. Assume (2) holds. Let $U \subset X$ be an arbitrary affine open. We can find an open covering $U = \bigcup_{j=1,...,m} D(f_j)$ by finitely many standard opens $D(f_j)$ such that for each j the open $D(f_j)$ is a standard open of some U_i, see Schemes, Lemma 11.5. Hence, if we set $A = \mathcal{O}_X(U)$ and if M is an A-module such that $\mathcal{F}|_U$ corresponds to M, then we see that M_{f_j} is a projective A_{f_j}-module. It follows that $A \to B = \prod A_{f_j}$ is a faithfully flat ring map such that $M \times_A B$ is a projective B-module. Hence M is projective by Algebra, Theorem 94.5. □

Lemma 21.3. Let $f : X \to Y$ be a morphism of schemes. Let \mathcal{G} be a quasi-coherent \mathcal{O}_Y-module. If \mathcal{G} is locally projective on Y, then $f^* \mathcal{G}$ is locally projective on X.

Proof. See Algebra, Lemma 93.1. □

22. Extending quasi-coherent sheaves

It is sometimes useful to be able to show that a given quasi-coherent sheaf on an open subscheme extends to the whole scheme.

Lemma 22.1. Let $j : U \to X$ be a quasi-compact open immersion of schemes.

1. Any quasi-coherent sheaf on U extends to a quasi-coherent sheaf on X.
2. Let \mathcal{F} be a quasi-coherent sheaf on X. Let $\mathcal{G} \subset \mathcal{F}|_U$ be a quasi-coherent subsheaf. There exists a quasi-coherent subsheaf \mathcal{H} of \mathcal{F} such that $\mathcal{H}|_U = \mathcal{G}$ as subsheaves of $\mathcal{F}|_U$.
3. Let \mathcal{F} be a quasi-coherent sheaf on X. Let \mathcal{G} be a quasi-coherent sheaf on U. Let $\varphi : \mathcal{G} \to \mathcal{F}|_U$ be a morphism of \mathcal{O}_U-modules. There exists a quasi-coherent sheaf \mathcal{H} of \mathcal{O}_X-modules and a map $\psi : \mathcal{H} \to \mathcal{F}$ such that $\mathcal{H}|_U = \mathcal{G}$ and that $\psi|_U = \varphi$.

Proof. An immersion is separated (see Schemes, Lemma 23.8) and j is quasi-compact by assumption. Hence for any quasi-coherent sheaf \mathcal{G} on U the sheaf $j_* \mathcal{G}$ is an extension to X. See Schemes, Lemma 24.1 and Sheaves, Section 31.
Assume \mathcal{F}, \mathcal{G} are as in (2). Then $j_*\mathcal{G}$ is a quasi-coherent sheaf on X (see above). It is a subsheaf of $j_*\mathcal{F}$. Hence the kernel

$$\mathcal{H} = \text{Ker}(\mathcal{F} \oplus j_*\mathcal{G} \to j_*\mathcal{F})$$

is quasi-coherent as well, see Schemes, Section \[\text{24}\] It is formal to check that $\mathcal{H} \subset \mathcal{F}$ and that $\mathcal{H}|_U = \mathcal{G}$ (using the material in Sheaves, Section \[\text{31}\] again).

The same proof as above works. Just take $\mathcal{H} = \text{Ker}(\mathcal{F} \oplus j_*\mathcal{G} \to j_*\mathcal{F})$ with its obvious map to \mathcal{F} and its obvious identification with \mathcal{G} over U.

Lemma 22.2. Let X be a quasi-compact and quasi-separated scheme. Let $U \subset X$ be a quasi-compact open. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. Let $\mathcal{G} \subset \mathcal{F}|_U$ be a quasi-coherent \mathcal{O}_U-submodule which is of finite type. Then there exists a quasi-coherent submodule $\mathcal{G}' \subset \mathcal{F}$ which is of finite type such that $\mathcal{G}'|_U = \mathcal{G}$.

Proof. Let n be the minimal number of affine opens $U_i \subset X$, $i = 1, \ldots, n$ such that $X = U \cup \bigcup U_i$. (Here we use that X is quasi-compact.) Suppose we can prove the lemma for the case $n = 1$. Then we can successively extend \mathcal{G} to G_1 over $U \cup U_1$ to a G_2 over $U \cup U_1 \cup U_2$ to a G_3 over $U \cup U_1 \cup U_2 \cup U_3$, and so on. Thus we reduce to the case $n = 1$.

Thus we may assume that $X = U \cup V$ with V affine. Since X is quasi-separated and U, V are quasi-compact open, we see that $U \cap V$ is a quasi-compact open. It suffices to prove the lemma for the system $(V, U \cap V, \mathcal{F}|_V, \mathcal{G}|_{U \cap V})$ since we can glue the resulting sheaf \mathcal{G}' over V to the given sheaf G over U along the common value over $U \cap V$. Thus we reduce to the case where X is affine.

Assume $X = \text{Spec}(R)$. Write $\mathcal{F} = \tilde{M}$ for some R-module M. By Lemma \[\text{22.1}\] above we may find a quasi-coherent subsheaf $\mathcal{H} \subset \mathcal{F}$ which restricts to \mathcal{G} over U. Write $\mathcal{H} = \tilde{N}$ for some R-module N. For every $u \in U$ there exists an $f \in R$ such that $u \in D(f) \subset U$ and such that N_f is finitely generated, see Lemma \[\text{16.1}\]. Since U is quasi-compact we can cover it by finitely many $D(f_i)$ such that N_{f_i} is generated by finitely many elements, say $x_{i,1}/f_i^N, \ldots, x_{i,r_i}/f_i^N$. Let $N' \subset N$ be the submodule generated by the elements $x_{i,j}$. Then the subsheaf $\mathcal{G} := \tilde{N'} \subset \mathcal{H} \subset \mathcal{F}$ works.

Lemma 22.3. Let X be a quasi-compact and quasi-separated scheme. Any quasi-coherent sheaf of \mathcal{O}_X-modules is the directed colimit of its quasi-coherent \mathcal{O}_X-submodules which are of finite type.

Proof. The colimit is directed because if \mathcal{G}_1, \mathcal{G}_2 are quasi-coherent subsheaves of finite type, then $\mathcal{G}_1 + \mathcal{G}_2 \subset \mathcal{F}$ is a quasi-coherent subsheaf of finite type. Let $U \subset X$ be any affine open, and let $s \in \Gamma(U, \mathcal{F})$ be any section. Let $\mathcal{G} \subset \mathcal{F}|_U$ be the subsheaf generated by s. Then clearly \mathcal{G} is quasi-coherent and has finite type as an \mathcal{O}_U-module. By Lemma \[\text{22.2}\] we see that \mathcal{G} is the restriction of a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{F}$ which has finite type. Since X has a basis for the topology consisting of affine opens we conclude that every local section of \mathcal{F} is locally contained in a quasi-coherent submodule of finite type. Thus we win.

Lemma 22.4. (Variant of Lemma \[\text{22.2}\] dealing with modules of finite presentation.) Let X be a quasi-compact and quasi-separated scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. Let $U \subset X$ be a quasi-compact open. Let \mathcal{G} be an \mathcal{O}_U-module which is of finite presentation. Let $\varphi : \mathcal{G} \to \mathcal{F}|_U$ be a morphism of \mathcal{O}_U-modules.
Then there exists an \mathcal{O}_X-module \mathcal{G}' of finite presentation, and a morphism of \mathcal{O}_X-modules $\varphi' : \mathcal{G}' \to \mathcal{F}$ such that $\mathcal{G}'|_U = \mathcal{G}$ and such that $\varphi'|_U = \varphi$.

Proof. The beginning of the proof is a repeat of the beginning of the proof of Lemma 22.2. We write it out carefully anyway.

Let n be the minimal number of affine opens $U_i \subset X$, $i = 1, \ldots, n$ such that $X = U \cup \bigcup U_i$. (Here we use that X is quasi-compact.) Suppose we can prove the lemma for the case $n = 1$. Then we can successively extend the pair (\mathcal{G}, φ) to a pair $(\mathcal{G}_1, \varphi_1)$ over $U \cup U_1$ to a pair $(\mathcal{G}_2, \varphi_2)$ over $U \cup U_1 \cup U_2$ to a pair $(\mathcal{G}_3, \varphi_3)$ over $U \cup U_1 \cup U_2 \cup U_3$, and so on. Thus we reduce to the case $n = 1$.

Thus we may assume that $X = U \cup V$ with V affine. Since X is quasi-separated and U quasi-compact, we see that $U \cap V \subset V$ is quasi-compact. Suppose we prove the lemma for the system $(V, U \cap V, \mathcal{F}|_V, \mathcal{G}|_{U \cap V}, \varphi|_{U \cap V})$ thereby producing (\mathcal{G}', φ') over V. Then we can glue \mathcal{G}' over V to the given sheaf \mathcal{G} over U along the common value over $U \cap V$, and similarly we can glue the map φ' to the map φ along the common value over $U \cap V$. Thus we reduce to the case where X is affine.

Assume $X = \text{Spec}(R)$. By Lemma 22.1 above we may find a quasi-coherent sheaf \mathcal{H} with a map $\psi : \mathcal{H} \to \mathcal{F}$ over X which restricts to \mathcal{G} and φ over U. By Lemma 22.2 we can find a finite type quasi-coherent \mathcal{O}_X-submodule $\mathcal{H}' \subset \mathcal{H}$ such that $\mathcal{H}'|_U = \mathcal{G}$. Thus after replacing \mathcal{H} by \mathcal{H}' and ψ by the restriction of ψ to \mathcal{H}' we may assume that \mathcal{H} is of finite type. By Lemma 16.2 we conclude that $\mathcal{H} = \mathcal{N}$ with \mathcal{N} a finitely generated R-module. Hence there exists a surjection as in the following short exact sequence of quasi-coherent \mathcal{O}_X-modules

$$0 \to \mathcal{K} \to \mathcal{O}_X^\oplus n \to \mathcal{H} \to 0,$$

where \mathcal{K} is defined as the kernel. Since \mathcal{G} is of finite presentation and $\mathcal{H}|_U = \mathcal{G}$ by Modules, Lemma 11.3 the restriction $\mathcal{K}|_U$ is an \mathcal{O}_U-module of finite type. Hence by Lemma 22.2 again we see that there exists a finite type quasi-coherent \mathcal{O}_X-submodule $\mathcal{K}' \subset \mathcal{K}$ such that $\mathcal{K}'|_U = \mathcal{K}|_U$. The solution to the problem posed in the lemma is to set

$$\mathcal{G}' = \mathcal{O}_X^\oplus n/\mathcal{K}'$$

which is clearly of finite presentation and restricts to give \mathcal{G} on U with φ' equal to the composition

$$\mathcal{G}' = \mathcal{O}_X^\oplus n/\mathcal{K}' \to \mathcal{O}_X^\oplus n/\mathcal{K} = \mathcal{H} \xrightarrow{\psi} \mathcal{F}.$$

This finishes the proof of the lemma. \(\square\)

The following lemma says that every quasi-coherent sheaf on a quasi-compact and quasi-separated scheme is a filtered colimit of \mathcal{O}-modules of finite presentation. Actually, we reformulate this in (perhaps more familiar) terms of directed colimits over directed sets in the next lemma.

Lemma 22.5. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. There exist

1. a filtered index category \mathcal{I} (see Categories, Definition 19.1),
2. a diagram $\mathcal{I} \to \text{Mod}(\mathcal{O}_X)$ (see Categories, Section 14), $i \to \mathcal{F}_i$,
3. morphisms of \mathcal{O}_X-modules $\varphi_i : \mathcal{F}_i \to \mathcal{F}$.
such that each \mathcal{F}_i is of finite presentation and such that the morphisms φ_i induce an isomorphism

$$\text{colim}_i \mathcal{F}_i = \mathcal{F}.$$

Proof. Choose a set I and for each $i \in I$ an \mathcal{O}_X-module of finite presentation and a homomorphism of \mathcal{O}_X-modules $\varphi_i : \mathcal{F}_i \to \mathcal{F}$ with the following property: For any $\psi : \mathcal{G} \to \mathcal{F}$ with \mathcal{G} of finite presentation there is an $i \in I$ such that there exists an isomorphism $\alpha : \mathcal{F}_i \to \mathcal{G}$ with $\varphi_i = \psi \circ \alpha$. It is clear from Modules, Lemma 9.8 that such a set exists (see also its proof). We denote \mathcal{I} the category with $\text{Ob}(\mathcal{I}) = I$ and given $i,i' \in I$ we set

$$\text{Mor}_\mathcal{I}(i,i') = \{\alpha : \mathcal{F}_i \to \mathcal{F}_{i'} \mid \alpha \circ \varphi_{i'} = \varphi_i\}.$$

We claim that \mathcal{I} is a filtered category and that $\mathcal{F} = \text{colim}_i \mathcal{F}_i$.

Let $i,i' \in I$. Then we can consider the morphism

$$\mathcal{F}_i \oplus \mathcal{F}_{i'} \to \mathcal{F}$$

which is the direct sum of φ_i and $\varphi_{i'}$. Since a direct sum of finitely presented \mathcal{O}_X-modules is finitely presented we see that there exists some $i'' \in I$ such that $\varphi_{i''} : \mathcal{F}_{i''} \to \mathcal{F}$ is isomorphic to the displayed arrow towards \mathcal{F} above. Since there are commutative diagrams

$$\begin{array}{ccc}
\mathcal{F}_i & \rightarrow & \mathcal{F} \\
\downarrow & & \downarrow \\
\mathcal{F}_i \oplus \mathcal{F}_{i'} & \rightarrow & \mathcal{F}
\end{array} \quad \text{and} \quad \begin{array}{ccc}
\mathcal{F}_{i'} & \rightarrow & \mathcal{F} \\
\downarrow & & \downarrow \\
\mathcal{F}_i \oplus \mathcal{F}_{i'} & \rightarrow & \mathcal{F}
\end{array}
$$

we see that there are morphisms $i \to i''$ and $i' \to i''$ in \mathcal{I}. Next, suppose that we have $i,i' \in I$ and morphisms $\alpha,\beta : i \to i'$ (corresponding to \mathcal{O}_X-module maps $\alpha,\beta : \mathcal{F}_i \to \mathcal{F}_{i'}$). In this case consider the coequalizer

$$\mathcal{G} = \text{Coker}(\mathcal{F}_i \xrightarrow{\alpha-\beta} \mathcal{F}_{i'}).$$

Note that \mathcal{G} is an \mathcal{O}_X-module of finite presentation. Since by definition of morphisms in the category \mathcal{I} we have $\varphi_{i''} \circ \alpha = \varphi_{i''} \circ \beta$ we see that we get an induced map $\psi : \mathcal{G} \to \mathcal{F}$. Hence again the pair (\mathcal{G},ψ) is isomorphic to the pair $(\mathcal{F}_{i''},\varphi_{i''})$ for some i''. Hence we see that there exists a morphism $i'' \to i''$ in \mathcal{I} which equalizes α and β. Thus we have shown that the category \mathcal{I} is filtered.

We still have to show that the colimit of the diagram is \mathcal{F}. By definition of the colimit, and by our definition of the category \mathcal{I} there is a canonical map

$$\varphi : \text{colim}_i \mathcal{F}_i \to \mathcal{F}.$$

Pick $x \in X$. Let us show that φ_x is an isomorphism. Recall that

$$(\text{colim}_i \mathcal{F}_i)_x = \text{colim}_i \mathcal{F}_{i,x},$$

see Sheaves, Section 29. First we show that the map φ_x is injective. Suppose that $s \in \mathcal{F}_{i,x}$ is an element such that s maps to zero in \mathcal{F}_x. Then there exists a quasi-compact open U such that s comes from $s \in \mathcal{F}_i(U)$ and such that $\varphi_i(s) = 0$ in $\mathcal{F}(U)$. By Lemma 22.2 we can find a finite type quasi-coherent subsheaf $\mathcal{K} \subset \mathcal{F}_i$ which restricts to the quasi-coherent \mathcal{O}_U-submodule of \mathcal{F}_i generated by s; $\mathcal{K}|_U = \mathcal{O}_U \cdot s \subset \mathcal{F}_i|_U$. Clearly, $\mathcal{F}_i/\mathcal{K}$ is of finite presentation and the map φ_i factors through the quotient map $\mathcal{F}_i \to \mathcal{F}_i/\mathcal{K}$. Hence we can find an $i' \in I$ and a morphism $\alpha : \mathcal{F}_i \to \mathcal{F}_{i'}$.
in I which can be identified with the quotient map $F_i \to F_i/K$. Then it follows that the section s maps to zero in $F_i(U)$ and in particular in $(\text{colim}_i F_i)_x = \text{colim}_i F_i,x$. The injectivity follows. Finally, we show that the map φ_x is surjective. Pick $s \in F_x$. Choose a quasi-compact open neighbourhood $U \subset X$ of x such that s corresponds to a section $s \in F(U)$. Consider the map $s : \mathcal O_U \to F$ (multiplication by s). By Lemma \ref{lemma-prop-sheaves} there exists an $\mathcal O_X$-module G of finite presentation and an $\mathcal O_X$-module map $G \to F$ such that $G|_U \to F|_U$ is identified with $s : \mathcal O_U \to F$. Again by definition of I there exists an $i \in I$ such that $G \to F$ is isomorphic to $\varphi_i : F_i \to F$. Clearly there exists a section $s' \in F_i(U)$ mapping to $s \in F(U)$. This proves surjectivity and the proof of the lemma is complete. \hfill \blacksquare

\begin{lemma}
Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let F be a quasi-coherent $\mathcal O_X$-module. There exist
\begin{enumerate}
\item a directed set I (see Categories, Definition \ref{defn-directed-set}),
\item a system $(F_i, \varphi_{i'})$ over I in $\text{Mod}(\mathcal O_X)$ (see Categories, Definition \ref{defn-directed-system}),
\item morphisms of $\mathcal O_X$-modules $\varphi_i : F_i \to F$
\end{enumerate}
such that each F_i is of finite presentation and such that the morphisms φ_i induce an isomorphism
\[\text{colim}_i F_i = F. \]
\end{lemma}

\begin{proof}
This is a direct consequence of Lemma \ref{lemma-prod-prop-sheaves} and Categories, Lemma \ref{lemma-directed-set-prod} (combined with the fact that colimits exist in the category of sheaves of $\mathcal O_X$-modules, see Sheaves, Section \ref{section-cohomology}). \hfill \blacksquare
\end{proof}

\begin{lemma}
Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let F be a quasi-coherent $\mathcal O_X$-module. Then F is the directed colimit of its finite type quasi-coherent submodules.
\end{lemma}

\begin{proof}
If $G, H \subset F$ are finite type quasi-coherent $\mathcal O_X$-submodules then the image of $G \oplus H \to F$ is another finite type quasi-coherent $\mathcal O_X$-submodule which contains both of them. In this way we see that the system is directed. To show that F is the colimit of this system, write $F = \text{colim}_i F_i$ as a directed colimit of finitely presented quasi-coherent sheaves as in Lemma \ref{lemma-prop-sheaves}. Then the images $G_i = \text{Im}(F_i \to F)$ are finite type quasi-coherent subsheaves of F. Since F is the colimit of these the result follows. \hfill \blacksquare
\end{proof}

\begin{lemma}
Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let F be a finite type quasi-coherent $\mathcal O_X$-module. Then we can write $F = \text{colim}_i F_i$ with F_i of finite presentation and all transition maps $F_i \to F_i'$ surjective.
\end{lemma}

\begin{proof}
Write $F = \text{colim}_i G_i$ as a filtered colimit of finitely presented $\mathcal O_X$-modules (Lemma \ref{lemma-prop-sheaves}). We claim that $G_i \to F$ is surjective for some i. Namely, choose a finite affine open covering $X = U_1 \cup \ldots \cup U_m$. Choose sections $s_{ij} \in F(U_j)$ generating $F|_{U_j}$, see Lemma \ref{lemma-sheaf}. By Sheaves, Lemma \ref{lemma-cohomology} we see that s_{ij} is in the image of $G_i \to F$ for i large enough. Hence $G_i \to F$ is surjective for i large enough. Choose such an i and let $\mathcal K \subset G_i$ be the kernel of the map $G_i \to F$. Write $\mathcal K = \text{colim}_\alpha \mathcal K_\alpha$ as the filtered colimit of its finite type quasi-coherent submodules (Lemma \ref{lemma-prop-sheaves}). Then $F = \text{colim}_i G_i/\mathcal K_\alpha$ is a solution to the problem posed by the lemma. \hfill \blacksquare
\end{proof}
Lemma 22.9. Let X be a quasi-compact and quasi-separated scheme. Let F be a finite type quasi-coherent \mathcal{O}_X-module. Let $U \subset X$ be a quasi-compact open such that $F|_U$ is of finite presentation. Then there exists a map of \mathcal{O}_X-modules $\varphi : G \to F$ with (a) G of finite presentation, (b) φ is surjective, and (c) $\varphi|_U$ is an isomorphism.

Proof. Write $F = \operatorname{colim} F_i$ as a directed colimit with each F_i of finite presentation, see Lemma 22.6. Choose a finite affine open covering $X = \bigcup V_j$ and choose finitely many sections $s_{ij} \in F(V_j)$ generating $F|_{V_j}$, see Lemma [16.1]. By Sheaves, Lemma 29.1, we see that s_{ij} is in the image of $F_i \to F$ for i large enough. Hence $F_i \to F$ must be surjective for i large enough. Choose such an i and let $K \subset F_i$ be the kernel of the map $F_i \to F$. Since F_i is of finite presentation, we see that $K|_U$ is of finite type, see Modules, Lemma [11.3]. Hence we can find a finite type quasi-coherent submodule $K' \subset K$ with $K'|_U = K|_U$, see Lemma 22.2. Then $G = F_i/K'$ with the given map $G \to F$ is a solution. \qed

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent \mathcal{O}_X-algebra A of finite presentation. This means that for every affine open $\text{Spec}(R) \subset X$ we have $A = \bar{A}$ where A is a (commutative) R-algebra which is of finite presentation as an R-algebra.

Lemma 22.10. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let A be a quasi-coherent \mathcal{O}_X-algebra. There exist

1. a directed set I (see Categories, Definition 21.1),
2. a system $(A_i, \varphi_{i'})$ over I in the category of \mathcal{O}_X-algebras,
3. morphisms of \mathcal{O}_X-algebras $\varphi_i : A_i \to A$

such that each A_i is a quasi-coherent \mathcal{O}_X-algebra of finite presentation and such that the morphisms φ_i induce an isomorphism

$$\operatorname{colim}_i A_i = A.$$

Proof. First we write $A = \operatorname{colim}_i F_i$ as a directed colimit of finitely presented quasi-coherent sheaves as in Lemma 22.6. For each i let $B_i = \operatorname{Sym}(F_i)$ be the symmetric algebra on F_i over \mathcal{O}_X. Write $I_i = \ker(B_i \to A)$. Write $I_i = \operatorname{colim}_j F_{i,j}$ where $F_{i,j}$ is a finite type quasi-coherent submodule of I_i, see Lemma 22.7. Set $I_{i,j} \subset I_i$ equal to the B_i-ideal generated by $F_{i,j}$. Set $A_{i,j} = B_i/I_{i,j}$. Then $A_{i,j}$ is a quasi-coherent finitely presented \mathcal{O}_X-algebra. Define $(i,j) \leq (i',j')$ if $i \leq i'$ and the map $B_i \to B_{i'}$ maps the ideal $I_{i,j}$ into the ideal $I_{i',j'}$. Then it is clear that $A = \operatorname{colim}_{i,j} A_{i,j}$. \qed

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent \mathcal{O}_X-algebra A of finite type. This means that for every affine open $\text{Spec}(R) \subset X$ we have $A = \bar{A}$ where A is a (commutative) R-algebra which is of finite type as an R-algebra.

Lemma 22.11. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let A be a quasi-coherent \mathcal{O}_X-algebra. Then A is the directed colimit of its finite type quasi-coherent \mathcal{O}_X-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 22.7. \qed

Let X be a scheme. In the following lemma we use the notion of a finite (resp. integral) quasi-coherent \mathcal{O}_X-algebra A. This means that for every affine open...
Spec($R \subset X$) we have $\mathcal{A} = \tilde{A}$ where A is a (commutative) R-algebra which is finite (resp. integral) as an R-algebra.

Lemma 22.12. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let \mathcal{A} be a finite quasi-coherent \mathcal{O}_X-algebra. Then $\mathcal{A} = \text{colim} \mathcal{A}_i$ is a directed colimit of finite and finitely presented quasi-coherent \mathcal{O}_X-algebras such that all transition maps $\mathcal{A}_{i'} \to \mathcal{A}_i$ are surjective.

Proof. By Lemma 22.8 there exists a finitely presented \mathcal{O}_X-module \mathcal{F} and a surjection $\mathcal{F} \to \mathcal{A}$. Using the algebra structure we obtain a surjection

$$\text{Sym}^*_\mathcal{O}_X(\mathcal{F}) \to \mathcal{A}$$

Denote \mathcal{J} the kernel. Write $\mathcal{J} = \text{colim} \mathcal{E}_i$ as a directed colimit of finite type \mathcal{O}_X-submodules \mathcal{E}_i (Lemma 22.7). Set

$$\mathcal{A}_i = \text{Sym}^*_\mathcal{O}_X(\mathcal{F})/(\mathcal{E}_i)$$

where (\mathcal{E}_i) indicates the ideal sheaf generated by the image of $\mathcal{E}_i \to \text{Sym}^*_\mathcal{O}_X(\mathcal{F})$. Then each \mathcal{A}_i is a finitely presented \mathcal{O}_X-algebra, the transition maps are surjections, and $\mathcal{A} = \text{colim} \mathcal{A}_i$. To finish the proof we still have to show that \mathcal{A}_i is a finite \mathcal{O}_X-algebra for i sufficiently large. To do this we choose an affine open covering $X = U_1 \cup \ldots \cup U_m$. Take generators $f_{j,1}, \ldots, f_{j,N_j} \in \Gamma(U_i, \mathcal{F})$. As $\mathcal{A}(U_j)$ is a finite $\mathcal{O}_X(U_j)$-algebra we see that for each k there exists a monic polynomial $P_{j,k} \in \mathcal{O}(U_j)[T]$ such that $P_{j,k}(f_{j,k})$ is zero in $\mathcal{A}(U_j)$. Since $\mathcal{A} = \text{colim} \mathcal{A}_i$ by construction, we have $P_{j,k}(f_{j,k}) = 0$ in $\mathcal{A}_i(U_j)$ for all sufficiently large i. For such i the algebras \mathcal{A}_i are finite.

Lemma 22.13. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let \mathcal{A} be an integral quasi-coherent \mathcal{O}_X-algebra. Then

1. \mathcal{A} is the directed colimit of its finite quasi-coherent \mathcal{O}_X-subalgebras, and
2. \mathcal{A} is a direct colimit of finite and finitely presented quasi-coherent \mathcal{O}_X-algebras.

Proof. By Lemma 22.11 we have $\mathcal{A} = \text{colim} \mathcal{A}_i$ where $\mathcal{A}_i \subset \mathcal{A}$ runs through the quasi-coherent \mathcal{O}_X-algebras of finite type. Any finite type quasi-coherent \mathcal{O}_X-subalgebra of \mathcal{A} is finite (apply Algebra, Lemma 35.5 to $\mathcal{A}_i(U) \subset \mathcal{A}(U)$ for affine opens U in X). This proves (1).

To prove (2), write $\mathcal{A} = \text{colim} \mathcal{F}_i$ as a colimit of finitely presented \mathcal{O}_X-modules using Lemma 22.6. For each i, let \mathcal{J}_i be the kernel of the map

$$\text{Sym}^*_\mathcal{O}_X(\mathcal{F}_i) \to \mathcal{A}$$

For $i' \geq i$ there is an induced map $\mathcal{J}_i \to \mathcal{J}_{i'}$ and we have $\mathcal{A} = \text{colim} \text{Sym}^*_\mathcal{O}_X(\mathcal{F}_i)/\mathcal{J}_i$. Moreover, the quasi-coherent \mathcal{O}_X-algebras $\text{Sym}^*_\mathcal{O}_X(\mathcal{F}_i)/\mathcal{J}_i$ are finite (see above). Write $\mathcal{J}_i = \text{colim} \mathcal{E}_{ik}$ as a colimit of finitely presented \mathcal{O}_X-modules. Given $i' \geq i$ and k there exists a k' such that we have a map $\mathcal{E}_{ik} \to \mathcal{E}_{i'k'}$ making

$$\mathcal{J}_i \longrightarrow \mathcal{J}_{i'}$$

$$\mathcal{E}_{ik} \longrightarrow \mathcal{E}_{i'k'}$$

commute. This follows from Modules, Lemma 11.6. This induces a map

$$\mathcal{A}_{ik} = \text{Sym}^*_\mathcal{O}_X(\mathcal{F}_i)/(\mathcal{E}_{ik}) \to \text{Sym}^*_\mathcal{O}_X(\mathcal{F}_{i'k'}) = \mathcal{A}_{i'k'}$$
where \((E_{ik})\) denotes the ideal generated by \(E_{ik}\). The quasi-coherent \(O_X\)-algebras \(A_{ki}\) are of finite presentation and finite for \(k\) large enough (see proof of Lemma 22.12). Finally, we have
\[
colim A_{ik} = \colim A_i = A
\]
Namely, the first equality was shown in the proof of Lemma 22.12 and the second equality because \(A\) is the colimit of the modules \(F_i\).

23. Gabber’s result

077K In this section we prove a result of Gabber which guarantees that on every scheme there exists a cardinal \(\kappa\) such that every quasi-coherent module \(F\) is the union of its quasi-coherent \(\kappa\)-generated subsheaves. It follows that the category of quasi-coherent sheaves on a scheme is a Grothendieck abelian category having limits and enough injectives.

Definition 23.1. Let \((X, O_X)\) be a ringed space. Let \(\kappa\) be an infinite cardinal. We say a sheaf of \(O_X\)-modules \(F\) is \(\kappa\)-generated if there exists an open covering \(X = \bigcup U_i\) such that \(F|_{U_i}\) is generated by a subset \(R_i \subset F(U_i)\) whose cardinality is at most \(\kappa\).

Note that a direct sum of at most \(\kappa\) \(\kappa\)-generated modules is again \(\kappa\)-generated because \(\kappa \otimes \kappa = \kappa\), see Sets, Section 6. In particular this holds for the direct sum of two \(\kappa\)-generated modules. Moreover, a quotient of a \(\kappa\)-generated sheaf is \(\kappa\)-generated. (But the same needn’t be true for submodules.)

Lemma 23.2. Let \((X, O_X)\) be a ringed space. Let \(\kappa\) be a cardinal. There exists a set \(T\) and a family \((F_t)_{t \in T}\) of \(\kappa\)-generated \(O_X\)-modules such that every \(\kappa\)-generated \(O_X\)-module is isomorphic to one of the \(F_t\).

Proof. There is a set of coverings of \(X\) (provided we disallow repeats). Suppose \(X = \bigcup U_i\) is a covering and suppose \(F_i\) is an \(O_{U_i}\)-module. Then there is a set of isomorphism classes of \(O_X\)-modules \(\mathcal{F}\) with the property that \(\mathcal{F}|_{U_i} \cong F_i\) since there is a set of glueing maps. This reduces us to proving there is a set of (isomorphism classes of) quotients \(\oplus_{k \in \kappa} O_X \to F\) for any ringed space \(X\). This is clear.

Here is the result the title of this section refers to.

Lemma 23.3. Let \(X\) be a scheme. There exists a cardinal \(\kappa\) such that every quasi-coherent module \(F\) is the directed colimit of its quasi-coherent \(\kappa\)-generated quasi-coherent subsheaves.

Proof. Choose an affine open covering \(X = \bigcup_{i \in I} U_i\). For each pair \(i, j\) choose an affine open covering \(U_i \cap U_j = \bigcup_{k \in I_{ij}} U_{ijk}\). Write \(U_i = \text{Spec}(A_i)\) and \(U_{ijk} = \text{Spec}(A_{ijk})\). Let \(\kappa\) be any infinite cardinal \(\geq\) than the cardinality of any of the sets \(I, I_{ij}\).

Let \(F\) be a quasi-coherent sheaf. Set \(M_i = F(U_i)\) and \(M_{ijk} = F(U_{ijk})\). Note that
\[
M_i \otimes_{A_i} A_{ijk} = M_{ijk} = M_j \otimes_{A_j} A_{ijk}.
\]
see Schemes, Lemma 7.3 Using the axiom of choice we choose a map
\[
(i, j, k, m) \mapsto S(i, j, k, m)
\]

\[^{2}\text{Nicely explained in a blog post by Akhil Mathew.}\]
which associates to every \(i, j \in I, k \in I_{ij} \) and \(m \in M_i \) a finite subset \(S(i, j, k, m) \subset M_j \) such that we have

\[
m \otimes 1 = \sum_{m' \in S(i, j, k, m)} m' \otimes a_{m'}
\]

in \(M_{ijk} \) for some \(a_{m'} \in A_{ijk} \). Moreover, let’s agree that \(S(i, i, k, m) = \{ m \} \) for all \(i, j = i, k, m \) as above. Fix such a map.

Given a family \(S = (S_i)_{i \in I} \) of subsets \(S_i \subset M_i \) of cardinality at most \(\kappa \) we set \(\mathcal{S}' = (S'_i) \) where

\[
S'_i = \bigcup_{(i, j, k, m) \in S_i} S(i, j, k, m)
\]

Note that \(S_i \subset S'_i \). Note that \(S'_i \) has cardinality at most \(\kappa \) because it is a union over a set of cardinality at most \(\kappa \) of finite sets. Set \(S^{(0)} = S, S^{(1)} = S' \) and by induction \(S^{(n+1)} = (S^{(n)})' \). Then set \(S^{(\infty)} = \bigcup_{n \geq 0} S^{(n)} \). Writing \(S^{(\infty)} = (S'_i) \) we see that for any element \(m \in S^{(\infty)}_i \) the image of \(m \) in \(M_{ijk} \) can be written as a finite sum \(\sum m' \otimes a_{m'} \) with \(m' \in S^{(\infty)}_j \). In this way we see that setting

\[
N_i = A_i \text{-submodule of } M_i \text{ generated by } S^{(\infty)}_i
\]

we have

\[
N_i \otimes_{A_i} A_{ijk} = N_j \otimes_{A_j} A_{ijk},
\]

as submodules of \(M_{ijk} \). Thus there exists a quasi-coherent subsheaf \(\mathcal{G} \subset \mathcal{F} \) with \(\mathcal{G}(U_i) = N_i \). Moreover, by construction the sheaf \(\mathcal{G} \) is \(\kappa \)-generated.

Let \(\{ \mathcal{G}_t \}_{t \in T} \) be the set of \(\kappa \)-generated quasi-coherent subsheaves. If \(t, t' \in T \) then \(\mathcal{G}_t + \mathcal{G}_{t'} \) is also a \(\kappa \)-generated quasi-coherent subsheaf as it is the image of the map \(\mathcal{G}_t \otimes \mathcal{G}_{t'} \to \mathcal{F} \). Hence the system (ordered by inclusion) is directed. The arguments above show that every section of \(\mathcal{F} \) over \(U_i \) is in one of the \(\mathcal{G}_t \) (because we can start with \(S \) such that the given section is an element of \(S_i \)). Hence \(\text{colim}_t \mathcal{G}_t \to \mathcal{F} \) is both injective and surjective as desired.

077P

Proposition 23.4. Let \(X \) be a scheme.

1. The category \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \) is a Grothendieck abelian category. Consequently, \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \) has enough injectives and all limits.
2. The inclusion functor \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X) \) has a right adjoint \(Q : \text{Mod}(\mathcal{O}_X) \to \text{QCo} \)\(\text{h}(\mathcal{O}_X) \)

such that for every quasi-coherent sheaf \(\mathcal{F} \) the adjunction mapping \(Q(\mathcal{F}) \to \mathcal{F} \) is an isomorphism.

Proof. Part (1) means \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \) (a) has all colimits, (b) filtered colimits are exact, and (c) has a generator, see Injectives, Section 10. By Schemes, Section 24 colimits in \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \) exist and agree with colimits in \(\text{Mod}(\mathcal{O}_X) \). By Modules, Lemma 3.3 filtered colimits are exact. Hence (a) and (b) hold. To construct a generator \(U \), pick a cardinal \(\kappa \) as in Lemma 23.3. Pick a collection \(\{ \mathcal{F}_i \}_{i \in T} \) of \(\kappa \)-generated quasi-coherent sheaves as in Lemma 23.2. Set \(U = \bigoplus_{i \in T} \mathcal{F}_i \). Since every object of \(\text{QCo} \)\(\text{h}(\mathcal{O}_X) \) is a filtered colimit of \(\kappa \)-generated quasi-coherent modules, i.e., of objects isomorphic to \(\mathcal{F}_i \), it is clear that \(U \) is a generator. The assertions on limits and injectives hold in any Grothendieck abelian category, see Injectives, Theorem 11.7 and Lemma 13.2.

This functor is sometimes called the "coherator."
Proof of (2). To construct Q we use the following general procedure. Given an object F of $\text{Mod}(\mathcal{O}_X)$ we consider the functor
\[
Q\text{Coh}(\mathcal{O}_X)^{\text{opp}} \to \text{Sets}, \quad \mathcal{G} \mapsto \text{Hom}_X(\mathcal{G}, F)
\]
This functor transforms colimits into limits, hence is representable, see Injectives, Lemma 13.1. Thus there exists a quasi-coherent sheaf $Q(F)$ and a functorial isomorphism $\text{Hom}_X(\mathcal{G}, F) = \text{Hom}_X(\mathcal{G}, Q(F))$ for \mathcal{G} in $\text{Qcoh}(\mathcal{O}_X)$. By the Yoneda lemma (Categories, Lemma 3.5) the construction $\mathcal{F} \mapsto Q(\mathcal{F})$ is functorial in \mathcal{F}. By construction Q is a right adjoint to the inclusion functor. The fact that $Q(F) \to F$ is an isomorphism when F is quasi-coherent is a formal consequence of the fact that the inclusion functor $\text{Qcoh}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_X)$ is fully faithful. □

24. Sections with support in a closed subset

07ZM Given any topological space X, a closed subset $Z \subset X$, and an abelian sheaf \mathcal{F} you can take the subsheaf of sections whose support is contained in Z. If X is a scheme, Z a closed subscheme, and \mathcal{F} a quasi-coherent module there is a variant where you take sections which are scheme theoretically supported on Z. However, in the scheme setting you have to be careful because the resulting \mathcal{O}_X-module may not be quasi-coherent.

01PH Lemma 24.1. Let X be a quasi-compact and quasi-separated scheme. Let $U \subset X$ be an open subscheme. The following are equivalent:
1. U is retrocompact in X,
2. U is quasi-compact,
3. U is a finite union of affine opens, and
4. there exists a finite type quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$ such that $X \setminus U = V(\mathcal{I})$ (set theoretically).

Proof. The equivalence of (1), (2), and (3) follows from Lemma 2.3. Assume (1), (2), (3). Let $T = X \setminus U$. By Schemes, Lemma 12.4 there exists a unique quasi-coherent sheaf of ideals \mathcal{J} cutting out the reduced induced closed subscheme structure on T. Note that $\mathcal{J}|_U = \mathcal{O}_U$ which is an \mathcal{O}_U-modules of finite type. By Lemma 22.2 there exists a quasi-coherent subsheaf $\mathcal{I} \subset \mathcal{J}$ which is of finite type and has the property that $\mathcal{I}|_U = \mathcal{J}|_U$. Then $X \setminus U = V(\mathcal{I})$ and we obtain (4). Conversely, if \mathcal{I} is as in (4) and $W = \text{Spec}(R) \subset X$ is an affine open, then $\mathcal{I}|_W = \mathcal{I}$ for some finitely generated ideal $I \subset R$, see Lemma 16.1. It follows that $U \cap W = \text{Spec}(R) \setminus V(I)$ is quasi-compact, see Algebra, Lemma 28.1. Hence $U \subset X$ is retrocompact by Lemma 2.6. □

01PH Lemma 24.2. Let X be a scheme. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X-module. Consider the sheaf of \mathcal{O}_X-modules \mathcal{F}' which associates to every open $U \subset X$
\[
\mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid \mathcal{I}s = 0 \}
\]
Assume \mathcal{I} is of finite type. Then
1. \mathcal{F}' is a quasi-coherent sheaf of \mathcal{O}_X-modules,
2. on any affine open $U \subset X$ we have $\mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid I(U)s = 0 \}$, and
3. $\mathcal{F}'_x = \{ s \in \mathcal{F}_x \mid I_xs = 0 \}$.

Proof. It is clear that the rule defining F' gives a subsheaf of F (the sheaf condition is easy to verify). Hence we may work locally on X to verify the other statements. In other words we may assume that $X = \text{Spec}(A), F = \mathcal{M}$ and $\mathcal{I} = I$. It is clear that in this case $F'(U) = \{x \in M \mid I_f x = 0\} =: M'$ because I is generated by its global sections I which proves (2). To show F' is quasi-coherent it suffices to show that for every $f \in A$ we have $\{x \in M_f \mid I_f x = 0\} = (M')_f$. Write $I = (g_1, \ldots, g_t)$, which is possible because I is of finite type, see Lemma 16.1. If $x = y/f^n$ and $I_f x = 0$, then that means that for every i there exists an $m \geq 0$ such that $f^m g_i x = 0$. We may choose one m which works for all i (and this is where we use that I is finitely generated). Then we see that $f^m x \in M'$ and $x/f^n = f^m x/f^n+m$ in $(M')_f$ as desired. The proof of (3) is similar and omitted. □

Definition 24.3. Let X be a scheme. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-coherent \mathcal{O}_X-module. The subsheaf $F' \subset F$ defined in Lemma 24.2 above is called the subsheaf of sections annihilated by \mathcal{I}.

Lemma 24.4. Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{I} \subset \mathcal{O}_Y$ be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-coherent \mathcal{O}_X-module. Let $F' \subset F$ be the subsheaf of sections annihilated by $f^{-1}I\mathcal{O}_X$. Then $f_*F' \subset f_*F$ is the subsheaf of sections annihilated by \mathcal{I}.

Proof. Omitted. (Hint: The assumption that f is quasi-compact and quasi-separated implies that f_*F is quasi-coherent so that Lemma 24.2 applies to \mathcal{I} and f_*F.) □

For an abelian sheaf on a topological space we have discussed the subsheaf of sections with support in a closed subset in Modules, Lemma 6.2. For quasi-coherent modules this submodule isn’t always a quasi-coherent module, but if the closed subset has a retrocompact complement, then it is.

Lemma 24.5. Let X be a scheme. Let $Z \subset X$ be a closed subset. Let F be a quasi-coherent \mathcal{O}_X-module. Consider the sheaf of \mathcal{O}_X-modules F' which associates to every open $U \subset X$

$$F'(U) = \{s \in F(U) \mid \text{the support of } s \text{ is contained in } Z \cap U\}$$

If $X \setminus Z$ is a retrocompact open in X, then

1. for an affine open $U \subset X$ there exist a finitely generated ideal $I \subset \mathcal{O}_X(U)$ such that $Z \cap U = V(I)$,
2. for U and I as in (1) we have $F'(U) = \{x \in F(U) \mid I^n x = 0 \text{ for some } n\}$,
3. F' is a quasi-coherent sheaf of \mathcal{O}_X-modules.

Proof. Part (1) is Algebra, Lemma 28.1. Let $U = \text{Spec}(A)$ and I be as in (1). Then $F|_U$ is the quasi-coherent sheaf associated to some A-module M. We have

$$F'(U) = \{x \in M \mid x = 0 \text{ in } M_p \text{ for all } p \notin Z\}.$$

by Modules, Definition 5.1. Thus $x \in F'(U)$ if and only if $V(\text{Ann}(x)) \subset V(I)$, see Algebra, Lemma 39.7. Since I is finitely generated this is equivalent to $I^n x = 0$ for some n. This proves (2).

Proof of (3). Observe that given $U \subset X$ open there is an exact sequence

$$0 \to F'(U) \to F(U) \to F(U \setminus Z)$$
If we denote \(j : X \setminus Z \to X \) the inclusion morphism, then we observe that \(F(U \setminus Z) \) is the sections of the module \(j_*(\mathcal{F}|_{X \setminus Z}) \) over \(U \). Thus we have an exact sequence

\[0 \to \mathcal{F}' \to \mathcal{F} \to j_*(\mathcal{F}|_{X \setminus Z}) \]

The restriction \(\mathcal{F}|_{X \setminus Z} \) is quasi-coherent. Hence \(j_*(\mathcal{F}|_{X \setminus Z}) \) is quasi-coherent by Schemes, Lemma 24.1 and our assumption that \(j \) is quasi-compact (any open immersion is separated). Hence \(\mathcal{F}' \) is quasi-coherent as a kernel of a map of quasi-coherent modules, see Schemes, Section 24. □

084L **Definition 24.6.** Let \(X \) be a scheme. Let \(T \subset X \) be a closed subset whose complement is retrocompact in \(X \). Let \(\mathcal{F} \) be a quasi-coherent \(\mathcal{O}_X \)-module. The quasi-coherent subsheaf \(\mathcal{F}' \subset \mathcal{F} \) defined in Lemma 24.5 is called the **subsheaf of sections supported on \(T \)**.

07ZQ **Lemma 24.7.** Let \(f : X \to Y \) be a quasi-compact and quasi-separated morphism of schemes. Let \(Z \subset Y \) be a closed subset such that \(Y \setminus Z \) is retrocompact in \(Y \). Let \(\mathcal{F} \) be a quasi-coherent \(\mathcal{O}_X \)-module. Let \(\mathcal{F}' \subset \mathcal{F} \) be the subsheaf of sections supported in \(f^{-1}Z \). Then \(f_*\mathcal{F}' \subset f_*\mathcal{F} \) is the subsheaf of sections supported in \(Z \).

Proof. Omitted. (Hint: First show that \(X \setminus f^{-1}Z \) is retrocompact in \(X \) as \(Y \setminus Z \) is retrocompact in \(Y \). Hence Lemma 24.5 applies to \(f^{-1}Z \) and \(\mathcal{F} \). As \(f \) is quasi-compact and quasi-separated we see that \(f_*\mathcal{F} \) is quasi-coherent. Hence Lemma 24.5 applies to \(Z \) and \(f_*\mathcal{F} \). Finally, match the sheaves directly.)

25. Sections of quasi-coherent sheaves

01PL Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open of an affine spectrum.

01PM **Lemma 25.1.** Let \(A \) be a ring. Let \(I \subset A \) be a finitely generated ideal. Let \(M \) be an \(A \)-module. Then there is a canonical map

\[\mathrm{colim}_n \text{Hom}_A(I^n, M) \to \Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M}). \]

This map is always injective. If for all \(x \in M \) we have \(Ix = 0 \Rightarrow x = 0 \) then this map is an isomorphism. In general, set \(M_n = \{ x \in M \mid I^n x = 0 \} \), then there is an isomorphism

\[\mathrm{colim}_n \text{Hom}_A(I^n, M/M_n) \to \Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M}). \]

Proof. Since \(I^n \subset I^{n+1} \) and \(M_n \subset M_{n+1} \) we can use composition via these maps to get canonical maps of \(A \)-modules

\[\text{Hom}_A(I^n, M) \to \text{Hom}_A(I^{n+1}, M) \]

and

\[\text{Hom}_A(I^n, M/M_n) \to \text{Hom}_A(I^{n+1}, M/M_{n+1}) \]

which we will use as the transition maps in the systems. Given an \(A \)-module map \(\varphi : I^n \to M \), then we get a map of sheaves \(\widetilde{\varphi} : I^n \to \widetilde{M} \) which we can restrict to the open \(\text{Spec}(A) \setminus V(I) \). Since \(I^n \) restricted to this open gives the structure sheaf we get an element of \(\Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M}) \). We omit the verification that this is compatible with the transition maps in the system \(\text{Hom}_A(I^n, M) \). This gives the first arrow. To get the second arrow we note that \(\widetilde{M} \) and \(\widetilde{M}/M_n \) agree over the
open \(\text{Spec}(A) \setminus V(I)\) since the sheaf \(\widetilde{M}_n\) is clearly supported on \(V(I)\). Hence we can use the same mechanism as before.

Next, we work out how to define this arrow in terms of algebra. Say \(I = (f_1, \ldots, f_t)\). Then \(\text{Spec}(A) \setminus V(I) = \bigcup_{i=1}^t D(f_i)\). Hence

\[
0 \to \Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M}) \to \bigoplus_i M_{f_i} \to \bigoplus_{i,j} M_{f_i f_j}
\]

is exact. Suppose that \(\varphi : I^n \to M\) is an \(A\)-module map. Consider the vector of elements \(\varphi(f^n_i)/f^n_i \in M_{f_i}\). It is easy to see that this vector maps to zero in the second direct sum of the exact sequence above. Whence an element of \(\Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M})\). We omit the verification that this description agrees with the one given above.

Let us show that the first arrow is injective using this description. Namely, if \(\varphi\) maps to zero, then for each \(i\) the element \(\varphi(f^n_i)/f^n_i\) is zero in \(M_{f_i}\). In other words we see that for each \(i\) we have \(f^n_i \varphi(f^n_i) = 0\) for some \(m \geq 0\). We may choose a single \(m\) which works for all \(i\). Then we see that \(\varphi(f^{n+m}_i) = 0\) for all \(i\). It is easy to see that this means that \(\varphi|_{f_t^{1(n+m-1)+1}} = 0\) in other words that \(\varphi\) maps to zero in the \(t(n + m - 1) + 1\) term of the colimit. Hence injectivity follows.

Note that each \(M_n = 0\) in case we have \(I x = 0 \Rightarrow x = 0\) for \(x \in M\). Thus to finish the proof of the lemma it suffices to show that the second arrow is an isomorphism.

Let us attempt to construct an inverse of the second map of the lemma. Let \(s \in \Gamma(\text{Spec}(A) \setminus V(I), \widetilde{M})\). This corresponds to a vector \(x_i/f^n_i\) with \(x_i \in M\) of the first direct sum of the exact sequence above. Hence for each \(i, j\) there exists \(m \geq 0\) such that \(f^m_i f^m_j (f^n_i x_i - f^n_j x_j) = 0\) in \(M\). We may choose a single \(m\) which works for all pairs \(i, j\). After replacing \(x_i\) by \(f^m_i x_i\) and \(n\) by \(n + m\) we see that we get \(f^n_i x_i = f^n_j x_j\) in \(M\) for all \(i, j\). Let us introduce

\[
K_n = \{x \in M \mid f^n_1 x = \ldots = f^n_t x = 0\}
\]

We claim there is an \(A\)-module map

\[
\varphi : I^{t(n-1)+1} \longrightarrow M/K_n
\]

which maps the monomial \(f_1^{e_1} \ldots f_t^{e_t}\) with \(\sum e_i = t(n - 1) + 1\) to the class modulo \(K_n\) of the expression \(f_1^{e_1} \ldots f_t^{e_t} x_i\) where \(i\) is chosen such that \(e_i \geq n\) (note that there is at least one such \(i\)). To see that this is indeed the case suppose that

\[
\sum_{E=(e_1,\ldots,e_t), |E|=t(n-1)+1} a_E f_1^{e_1} \ldots f_t^{e_t} = 0
\]

is a relation between the monomials with coefficients \(a_E\) in \(A\). Then we would map this to

\[
z = \sum_{E=(e_1,\ldots,e_t), |E|=t(n-1)+1} a_E f_1^{e_1} \ldots f_t^{e_t} x_i(E)
\]

where for each multiindex \(E\) we have chosen a particular \(i(E)\) such that \(e_i(E) \geq n\). Note that if we multiply this by \(f_j^n\) for any \(j\), then we get zero, since by the relations \(f^n_j x_i = f^n_j x_j\) above we get

\[
f^n_j z = \sum_{E=(e_1,\ldots,e_t), |E|=t(n-1)+1} a_E f_1^{e_1} \ldots f_j^{e_j+n} \ldots f_t^{e_t} x_i(E) = \sum_{E=(e_1,\ldots,e_t), |E|=t(n-1)+1} a_E f_1^{e_1} \ldots f_t^{e_t} x_j = 0.
\]
Let \(z \in K_n \) and we see that every relation gets mapped to zero in \(M/K_n \). This proves the claim.

Note that \(K_n \subset M_{l(n-1)+1} \). Hence the map \(\varphi \) in particular gives rise to a \(A \)-module map \(I^{l(n-1)+1} \to M/M_{l(n-1)+1} \). This proves the second arrow of the lemma is surjective. We omit the proof of injectivity. \(\square \)

Example 25.2. We will give two examples showing that the first displayed map of Lemma 25.1 is not an isomorphism.

Let \(k \) be a field. Consider the ring

\[
A = k[x, y, z_1, z_2, \ldots]/(x^n z_n).
\]

Set \(I = (x) \) and let \(M = A \). Then the element \(y/x \) defines a section of the structure sheaf of \(\text{Spec}(A) \) over \(D(x) = \text{Spec}(A) \setminus V(I) \). We claim that \(y/x \) is not in the image of the canonical map \(\text{colim} \text{Hom}_A(I^n, A) \to A_x = \mathcal{O}(D(x)) \). Namely, if so it would come from a homomorphism \(\varphi : I^n \to A \) for some \(n \). Set \(a = \varphi(x^n) \). Then we would have \(x^m(xa - x^n y) = 0 \) for some \(m > 0 \). This would mean that \(x^{m+n}a = x^{m+n}y \). This would mean that \(\varphi(x^{n+m+1}) = x^{m+n}y \). This leads to a contradiction because it would imply that

\[
0 = \varphi(0) = \varphi(x^{n+m+1}) = x^{m+n}yz_{n+m+1}
\]

which is not true in the ring \(A \).

Let \(k \) be a field. Consider the ring

\[
A = k[f, g, x, y, \{a_n, b_n\}_{n \geq 1}]/(fy - gx, \{a_n f^n + b_n g^n\}_{n \geq 1}).
\]

Set \(I = (f, g) \) and let \(M = A \). Then \(x/f \in A_f \) and \(y/g \in A_g \) map to the same element of \(A_{fg} \). Hence these define a section \(s \) of the structure sheaf of \(\text{Spec}(A) \) over \(D(f) \cup D(g) = \text{Spec}(A) \setminus V(I) \). However, there is no \(n \geq 0 \) such that \(s \) comes from an \(A \)-module map \(\varphi : I^n \to A \) as in the source of the first displayed arrow of Lemma 25.1. Namely, given such a module map set \(x_n = \varphi(f^n) \) and \(y_n = \varphi(g^n) \). Then \(f^n x_n = f^{n+m-1}x \) and \(g^n y_n = g^{n+m-1}y \) for some \(m \geq 0 \) (see proof of the lemma). But then we would have \(0 = \varphi(0) = \varphi(a_n f^{n+m} + b_n g^{n+m}) = a_n x_n f^{n+m-1} + b_n y_n g^{n+m-1} \) which is not the case in the ring \(A \).

We will improve on the following lemma in the Noetherian case, see Cohomology of Schemes, Lemma 10.4.

Lemma 25.3. Let \(X \) be a quasi-compact scheme. Let \(\mathcal{I} \subset \mathcal{O}_X \) be a quasi-coherent sheaf of ideals of finite type. Let \(Z \subset X \) be the closed subscheme defined by \(\mathcal{I} \) and set \(U = X \setminus Z \). Let \(\mathcal{F} \) be a quasi-coherent \(\mathcal{O}_X \)-module. The canonical map

\[
\text{colim}_n \text{Hom}_{\mathcal{O}_X}(\mathcal{I}^n, \mathcal{F}) \to \Gamma(U, \mathcal{F})
\]

is injective. Assume further that \(X \) is quasi-separated. Let \(\mathcal{F}_n \subset \mathcal{F} \) be subsheaf of sections annihilated by \(\mathcal{I}^n \). The canonical map

\[
\text{colim}_n \text{Hom}_{\mathcal{O}_X}(\mathcal{I}^n, \mathcal{F}/\mathcal{F}_n) \to \Gamma(U, \mathcal{F})
\]

is an isomorphism.

Proof. Let \(\text{Spec}(A) = W \subset X \) be an affine open. Write \(\mathcal{F}|_W = \mathcal{M} \) for some \(A \)-module \(M \) and \(\mathcal{I}|_W = \mathcal{I} \) for some finite type ideal \(I \subset A \). Restricting the first displayed map of the lemma to \(W \) we obtain the first displayed map of Lemma
01PV Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. We say \mathcal{L} is ample if

1. X is quasi-compact, and
2. for every $x \in X$ there exists an $n \geq 1$ and $s \in \Gamma(X, \mathcal{L}^\otimes n)$ such that $x \in X_s$ and X_s is affine.

01PT Recall from Modules, Lemma 22.10 that given an invertible sheaf \mathcal{L} on a locally ringed space X, and given a global section s of \mathcal{L} the set $X_s = \{x \in X \mid s \not\in \mathfrak{m}_x \mathcal{L}_x\}$ is open. A general remark is that any closed subscheme $Z \subset X$ of X is affine (see Schemes, Lemma 8.2).

01PS Definition 26.1. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. We say \mathcal{L} is ample if

1. X is quasi-compact, and
2. for every $x \in X$ there exists an $n \geq 1$ and $s \in \Gamma(X, \mathcal{L}^\otimes n)$ such that $x \in X_s$ and X_s is affine.

01PT Lemma 26.2. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. Let $n \geq 1$. Then \mathcal{L} is ample if and only if $\mathcal{L}^\otimes n$ is ample.

Proof. This follows from the fact that $X_{ss} = X_s$. □

01PU Lemma 26.3. Let X be a scheme. Let \mathcal{L} be an ample invertible \mathcal{O}_X-module. For any closed subscheme $Z \subset X$ the restriction of \mathcal{L} to Z is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact and a closed subscheme of an affine scheme is affine (see Schemes, Lemma 8.2). □

01PV Lemma 26.4. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. Let $s \in \Gamma(X, \mathcal{L})$. For any affine $U \subset X$ the intersection $U \cap X_s$ is affine.

Proof. This translates into the following algebra problem. Let R be a ring. Let N be an invertible R-module (i.e., locally free of rank 1). Let $s \in N$ be an element. Then $U = \{p \mid s \not\in pN\}$ is an affine open subset of $\text{Spec}(R)$. This you can see as follows. Think of s as an R-module map $R \to N$. This gives rise to R-module maps $N^\otimes k \to N^\otimes k+1$. Consider

$$R' = \text{colim}_n N^\otimes n$$
Let $L \otimes M$ be an invertible O_X-module. Define an R-algebra structure on R' by the rule $x \cdot y = x \otimes y \in N_{n+m}$ if $x \in N_n$ and $y \in N_m$. We claim that $\text{Spec}(R') \to \text{Spec}(R)$ is an open immersion with image U.

To prove this is a local question on Spec(R). Let $p \in \text{Spec}(R)$. Pick $f \in R$, $f \notin p$ such that $N_f \cong R_f$ as a module. Replacing R by R_f, N by N_f and R' by $R'_f = \text{colim} N_{n+m}$ we may assume that $N \cong R$. Say $N = R$. In this case s is an element of R and it is easy to see that $R' \cong R_s$. Thus the lemma follows.

Lemma 26.5. Let X be a scheme. Let L and M be invertible O_X-modules. If $L \otimes M$ is ample, and

1. L is ample, and
2. the open sets X_t, where $t \in \Gamma(X, M_{\otimes m})$ for $m > 0$ cover X,

then $L \otimes M$ is ample.

Proof. We check the conditions of Definition 26.1. As L is ample we see that X is quasi-compact. Let $x \in X$. Choose $n \geq 1$, $m \geq 1$, $s \in \Gamma(X, M_{\otimes n})$, and $t \in \Gamma(X, M_{\otimes m})$ such that $x \in X_s$, $x \in X_t$ and X_s is affine. Then $s^m t^n \in \Gamma(X, (L \otimes M)_{\otimes m n})$, $x \in X_{s^m t^n}$, and $X_{s^m t^n}$ is affine by Lemma 26.4.

Lemma 26.6. Let X be a scheme. Let L be an invertible O_X-module. Assume the open sets X_s, where $s \in \Gamma(X, L_{\otimes n})$ and $n \geq 1$, form a basis for the topology on X. Then among those opens, the open sets X_s which are affine form a basis for the topology on X.

Proof. Let $x \in X$. Choose an affine open neighbourhood $\text{Spec}(R) = U \subset X$ of x. By assumption, there exists a $n \geq 1$ and a $s \in \Gamma(X, L_{\otimes n})$ such that $X_s \subset U$. By Lemma 26.4 above the intersection $X_s = U \cap X_s$ is affine. Since U can be chosen arbitrarily small we win.

Lemma 26.7. Let X be a scheme. Let L be an invertible O_X-module. Assume for every point x of X there exists $n \geq 1$ and $s \in \Gamma(X, L_{\otimes n})$ such that $x \in X_s$ and X_s is affine. Then X is separated.

Proof. By assumption we can find a covering of X by affine opens of the form X_s. To show that X is quasi-separated, by Schemes, Lemma 21.6 it suffices to show that $X_s \cap X_r$ is quasi-compact whenever X_s is affine. This is true by Lemma 26.4. Finally, to show that X is separated, we can use the valuative criterion, see Schemes, Lemma 22.2.

Thus, let A be a valuation ring with fraction field K and consider two morphisms $f, g : \text{Spec}(A) \to X$ such that the two compositions $\text{Spec}(K) \to \text{Spec}(A) \to X$ agree. Then $f^* L$ corresponds to an A-module M and $g^* L$ corresponds to an A-module N by our classification of quasi-coherent modules over affine schemes (Schemes, Lemma 7.4). The A-modules M and N are locally free of rank 1 (Lemma 20.1) and as A is local they are free of rank 1. We are given an isomorphism $N \otimes_A K \cong M \otimes_A K$ because $f|_{\text{Spec}(K)} = g|_{\text{Spec}(K)}$. We fix an isomorphism $M \otimes_A K \cong K \cong N \otimes_A K$ compatible with the given isomorphism above, so that we may think of M and N as A-submodules of K (free of rank 1 over A). Next, choose $s \in \Gamma(X, L_{\otimes n})$ such that $\text{Im}(f) \subset X_s$ and such that X_s is affine. This is possible by assumption and the fact that A is local, so it suffices to look at the image of the closed point of $\text{Spec}(A)$. Then s corresponds to an element $x \in M_{\otimes n}$ and $y \in N_{\otimes n}$ mapping to the same element of $K_{\otimes n}$ and moreover $x \notin m_A M_{\otimes n}$.
because \(f(\text{Spec}(A)) \subset X_s \). We conclude that \(N^n = Ax = Ag \subset M^n \) inside of \(K^n \). Thus \(N \subset M \). By symmetry we get \(M = N \). This in turn implies that \(g(\text{Spec}(A)) \subset X_s \). Then \(f = g \) because \(X_s \) is affine and hence separated, thereby finishing the proof.

Lemma 26.8. Let \(X \) be a scheme. If there exists an ample invertible sheaf on \(X \) then \(X \) is separated.

Proof. Follows immediately from Lemma 26.7 and Definition 26.1.

Lemma 26.9. Let \(X \) be a scheme. Let \(L \) be an invertible \(O_X \)-module. Set \(S = \Gamma_+(X,L) \) as a graded ring. If every point of \(X \) is contained in one of the open subschemes \(X_s \), for some \(s \in S_+ \) homogeneous, then there is a canonical morphism of schemes

\[
f : X \to Y = \text{Proj}(S),
\]

to the homogeneous spectrum of \(S \) (see Constructions, Section 19). This morphism has the following properties

1. \(f^{-1}(D_+(s)) = X_s \) for any \(s \in S_+ \) homogeneous,
2. there are \(O_X \)-module maps \(f^*O_Y(n) \to L^n \) compatible with multiplication maps, see Constructions, Equation \([10.1] \),
3. the composition \(S_+ \to \Gamma(Y,O_Y(n)) \to \Gamma(X,L^n) \) is the identity map, and
4. for every \(x \in X \) there is an integer \(d \geq 1 \) and an open neighbourhood \(U \subset X \) of \(x \) such that \(f^*O_Y(dn)|_U \to L^{dn}|_U \) is an isomorphism for all \(n \in \mathbb{Z} \).

Proof. Denote \(\psi : S \to \Gamma_+(X,L) \) the identity map. We are going to use the triple \((U(\psi), r_{L,\psi}, \theta)\) of Constructions, Lemma 14.1. By assumption the open subscheme \(U(\psi) \) of equals \(X \). Hence \(r_{L,\psi} : U(\psi) \to Y \) is defined on all of \(X \). We set \(f = r_{L,\psi} \).

The maps in part (2) are the components of \(\theta \). Part (3) follows from condition (2) in the lemma cited above. Part (1) follows from (3) combined with condition (1) in the lemma cited above. Part (4) follows from the last statement in Constructions, Lemma 14.1 since the map \(\alpha \) mentioned there is an isomorphism.

Lemma 26.10. Let \(X \) be a scheme. Let \(L \) be an invertible \(O_X \)-module. Set \(S = \Gamma_+(X,L) \). Assume (a) every point of \(X \) is contained in one of the open subschemes \(X_s \), for some \(s \in S_+ \) homogeneous, and (b) \(X \) is quasi-compact. Then the canonical morphism of schemes \(f : X \to \text{Proj}(S) \) of Lemma 26.9 above is quasi-compact with dense image.

Proof. To prove \(f \) is quasi-compact it suffices to show that \(f^{-1}(D_+(s)) \) is quasi-compact for any \(s \in S_+ \) homogeneous. Write \(X = \bigcup_{i=1,...,n} X_i \) as a finite union of affine opens. By Lemma 26.4 each intersection \(X_s \cap X_i \) is affine. Hence \(X_s = \bigcup_{i=1,...,n} X_s \cap X_i \) is quasi-compact. Assume that the image of \(f \) is not dense to get a contradiction. Then, since the opens \(D_+(s) \) with \(s \in S_+ \) homogeneous form a basis for the topology on \(\text{Proj}(S) \), we can find such an \(s \) with \(D_+(s) \neq \emptyset \) and \(f(X) \cap D_+(s) = \emptyset \). By Lemma 26.9 this means \(X_s = \emptyset \). By Lemma 17.2 this means that a power \(s^n \) is the zero section of \(L^{\deg(s)} \). This in turn means that \(D_+(s) = \emptyset \) which is the desired contradiction.

Lemma 26.11. Let \(X \) be a scheme. Let \(L \) be an invertible \(O_X \)-module. Set \(S = \Gamma_+(X,L) \). Assume \(L \) is ample. Then the canonical morphism of schemes \(f : X \to \text{Proj}(S) \) of Lemma 26.9 is an open immersion with dense image.
Proof. By Lemma 26.7 we see that X is quasi-separated. Choose finitely many $s_1, \ldots, s_n \in S_+$ homogeneous such that X_{s_i} are affine, and $X = \bigcup X_{s_i}$. Say s_i has degree d_i. The inverse image of $D_+(s_i)$ under f is X_{s_i}, see Lemma 26.9. By Lemma 17.2 the ring map

$$(S^{(d_i)})_{s_i} = \Gamma(D_+(s_i), \mathcal{O}_{\text{Proj}(S)}) \to \Gamma(X_{s_i}, \mathcal{O}_X)$$

is an isomorphism. Hence f induces an isomorphism $X_{s_i} \to D_+(s_i)$. Thus f is an isomorphism of X onto the open subscheme $\bigcup_{i=1, \ldots, n} D_+(s_i)$ of $\text{Proj}(S)$. The image is dense by Lemma 26.10.

\[\square \]

Lemma 26.12. Let X be a scheme. Let S be a graded ring. Assume X is quasi-compact, and assume there exists an open immersion $j : X \to Y = \text{Proj}(S)$. Then $j^* \mathcal{O}_Y(d)$ is an invertible ample sheaf for some $d > 0$.

Proof. This is Constructions, Lemma 10.6.

Proposition 26.13. Let X be a quasi-compact scheme. Let L be an invertible sheaf on X. Set $S = \Gamma^*(X, L)$. The following are equivalent:

1. L is ample,
2. the open sets X_s, with $s \in S_+$ homogeneous, cover X and the associated morphism $X \to \text{Proj}(S)$ is an open immersion,
3. the open sets X_s, with $s \in S_+$ homogeneous, form a basis for the topology of X,
4. the open sets X_s, with $s \in S_+$ homogeneous, which are affine form a basis for the topology of X,
5. for every quasi-coherent sheaf F on X the sum of the images of the canonical maps

$$\Gamma(X, F \otimes \mathcal{O}_X L \otimes -n) \otimes \mathbb{Z} L \otimes -n \to F$$

with $n \geq 1$ equals F,
6. same property as (5) with F ranging over all quasi-coherent sheaves of ideals,
7. X is quasi-separated and for every quasi-coherent sheaf F of finite type on X there exists an integer n_0 such that $F \otimes \mathcal{O}_X L \otimes n_0$ is globally generated for all $n \geq n_0$,
8. X is quasi-separated and for every quasi-coherent sheaf F of finite type on X there exist integers $n > 0$, $k \geq 0$ such that F is a quotient of a direct sum of k copies of $L \otimes -n$, and
9. same as in (8) with F ranging over all sheaves of ideals of finite type on X.

Proof. Lemma 26.11 is (1) \Rightarrow (2). Lemmas 26.2 and 26.12 provide the implication (1) \Leftarrow (2). The implications (2) \Rightarrow (4) \Rightarrow (3) are clear from Constructions, Section 8. Lemma 26.6 is (3) \Rightarrow (1). Thus we see that the first 4 conditions are all equivalent.

Assume the equivalent conditions (1) – (4). Note that in particular X is separated (as an open subscheme of the separated scheme $\text{Proj}(S)$). Let F be a quasi-coherent sheaf on X. Choose $s \in S_+$ homogeneous such that X_s is affine. We claim that any section $m \in \Gamma(X_s, F)$ is in the image of one of the maps displayed in (5) above. This will imply (5) since these affines X_s cover X. Namely, by Lemma 17.2 we may
write \(m \) as the image of \(m' \otimes s^{-n} \) for some \(n \geq 1 \), some \(m' \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n}) \). This proves the claim.

Clearly \([5] \Rightarrow [6]\). Let us assume \([6]\) and prove \(\mathcal{L} \) is ample. Pick \(x \in X \). Let \(U \subset X \) be an affine open which contains \(x \). Set \(Z = X \setminus U \). We may think of \(Z \) as a reduced closed subscheme, see Schemes, Section [12]. Let \(\mathcal{I} \subset \mathcal{O}_X \) be the quasi-coherent sheaf of ideals corresponding to the closed subscheme \(Z \). By assumption \([6]\), there exists an \(n \geq 1 \) and a section \(s \in \Gamma(X, \mathcal{I} \otimes \mathcal{L}^{\otimes n}) \) such that \(s \) does not vanish at \(x \) (more precisely such that \(s \notin \mathfrak{m}_x \mathcal{I}_x \otimes \mathcal{L}^{\otimes n} \)). We may think of \(s \) as a section of \(\mathcal{L}^{\otimes n} \). Since it clearly vanishes along \(Z \) we see that \(X_s \subset U \). Hence \(X_s \) is affine, see Lemma [26.3]. This proves that \(\mathcal{L} \) is ample. At this point we have proved that \((1) \Rightarrow (6)\) are equivalent.

Assume the equivalent conditions \((1) \Rightarrow (6)\). In the following we will use the fact that the tensor product of two sheaves of modules which are globally generated is globally generated without further mention (see Modules, Lemma [4.3]). By \((1)\) we can find elements \(s_i \in S_{d_i} \) with \(d_i \geq 1 \) such that \(X = \bigcup_{i=1,\ldots,n} X_{s_i} \). Set \(d = d_1 \ldots d_n \). It follows that \(\mathcal{L}^{\otimes d} \) is globally generated by

\[
\frac{s_1^{d/d_1}, \ldots, s_n^{d/d_n}}.
\]

This means that if \(\mathcal{L}^{\otimes j} \) is globally generated then so is \(\mathcal{L}^{\otimes j+dn} \) for all \(n \geq 0 \). Fix a \(j \in \{0, \ldots, d - 1\} \). For any point \(x \in X \) there exists an \(n \geq 1 \) and a global section \(s \) of \(\mathcal{L}^{\otimes j+dn} \) which does not vanish at \(x \), as follows from \([5]\) applied to \(\mathcal{F} = \mathcal{L}^{\otimes j} \) and ample invertible sheaf \(\mathcal{L}^{\otimes d} \). Since \(X \) is quasi-compact there we may find a finite list of integers \(n_i \) and global sections \(s_i \) of \(\mathcal{L}^{\otimes j+dn_i} \) which do not vanish at any point of \(X \). Since \(\mathcal{L}^{\otimes d} \) is globally generated this means that \(\mathcal{L}^{\otimes j+dn_i} \) is globally generated where \(n = \max\{n_i\} \). Since we proved this for every congruence class mod \(d \) we conclude that there exists an \(n_0 = n_0(\mathcal{L}) \) such that \(\mathcal{L}^{\otimes n} \) is globally generated for all \(n \geq n_0 \). At this point we see that if \(\mathcal{F} \) is globally generated then so is \(\mathcal{F} \otimes \mathcal{L}^{\otimes n} \) for all \(n \geq n_0 \).

We continue to assume the equivalent conditions \((1) \Rightarrow (6)\). Let \(\mathcal{F} \) be a quasi-coherent sheaf of \(\mathcal{O}_X \)-modules of finite type. Denote \(\mathcal{F}_n \subset \mathcal{F} \) the image of the canonical map of \([6]\). By construction \(\mathcal{F}_n \otimes \mathcal{L}^{\otimes n} \) is globally generated. By \([5]\) we see \(\mathcal{F} \) is the sum of the subsheaves \(\mathcal{F}_n \), \(n \geq 1 \). By Modules, Lemma [9.7] we see that \(\mathcal{F} = \sum_{n=1,\ldots,N} \mathcal{F}_n \) for some \(N \geq 1 \). It follows that \(\mathcal{F} \otimes \mathcal{L}^{\otimes n} \) is globally generated whenever \(n \geq N + n_0(\mathcal{L}) \) with \(n_0(\mathcal{L}) \) as above. We conclude that \((1) \Rightarrow (6)\) implies \([7]\).

Assume \([7]\). Let \(\mathcal{F} \) be a quasi-coherent sheaf of \(\mathcal{O}_X \)-modules of finite type. By \([7]\) there exists an integer \(n \geq 1 \) such that the canonical map

\[
\Gamma(X, \mathcal{F} \otimes \mathcal{O}_X \mathcal{L}^{\otimes n}) \otimes Z \mathcal{L}^{\otimes n-n} \to \mathcal{F}
\]

is surjective. Let \(I \) be the set of finite subsets of \(\Gamma(X, \mathcal{F} \otimes \mathcal{O}_X \mathcal{L}^{\otimes n}) \) partially ordered by inclusion. Then \(I \) is a directed partially ordered set. For \(i = \{s_1, \ldots, s_{r(i)}\} \) let \(\mathcal{F}_i \subset \mathcal{F} \) be the image of the map

\[
\bigoplus_{j=1,\ldots,r(i)} \mathcal{L}^{\otimes n-n} \to \mathcal{F}
\]

which is multiplication by \(s_j \) on the \(j \)th factor. The surjectivity above implies that \(\mathcal{F} = \colim_{i \in I} \mathcal{F}_i \). Hence Modules, Lemma [9.7] applies and we conclude that \(\mathcal{F} = \mathcal{F}_i \) for some \(i \). Hence we have proved \([8]\). In other words, \([7] \Rightarrow [8]\).
The implication \((8)\Rightarrow(9)\) is trivial.

Finally, assume \((9)\). Let \(\mathcal{I} \subset \mathcal{O}_X\) be a quasi-coherent sheaf of ideals. By Lemma 22.3 (this is where we use the condition that \(X\) be quasi-separated) we see that \(\mathcal{I} = \text{colim}_a I_a\) with each \(I_a\) quasi-coherent of finite type. Since by assumption each of the \(I_a\) is a quotient of negative tensor powers of \(\mathcal{L}\) we conclude the same for \(\mathcal{I}\) (but of course without the finiteness or boundedness of the powers). Hence we conclude that \((9)\) implies \((8)\). This ends the proof of the proposition. \(\square\)

Lemma 26.14. Let \(X\) be a scheme. Let \(\mathcal{L}\) be an ample invertible \(\mathcal{O}_X\)-module. For any quasi-compact immersion \(i : X' \to X\) the pullback \(i^*\mathcal{L}\) is ample on \(X'\).

Proof. For \(s \in \Gamma(X, \mathcal{L}^\otimes d)\) denote \(s' = i^*s\) the restriction to \(X'\). By Proposition 26.13 the opens \(X_s\), for \(s \in \Gamma(X, \mathcal{L}^\otimes d)\), form a basis for the topology on \(X\). Since \(X_s' = X' \cap X_s\) and since \(i(X') \subset X\) is locally closed, we conclude the same thing is true for the opens \(X_s'\). Hence the lemma is a consequence of Proposition 26.13. \(\square\)

Lemma 26.15. Let \(S\) be a quasi-separated scheme. Let \(X, Y\) be schemes over \(S\). Let \(\mathcal{L}\) be an ample invertible \(\mathcal{O}_X\)-module and let \(\mathcal{N}\) be an ample invertible \(\mathcal{O}_Y\)-module. Then \(\mathcal{M} = \text{pr}_1^*\mathcal{L} \otimes_{\mathcal{O}_{X \times_S Y}} \text{pr}_2^*\mathcal{N}\) is an ample invertible sheaf on \(X \times_S Y\).

Proof. The morphism \(i : X \times_S Y \to X \times Y\) is a quasi-compact immersion, see Schemes, Lemma 21.9. On the other hand, \(\mathcal{M}\) is the pullback by \(i\) of the corresponding invertible module on \(X \times Y\). By Lemma 26.14 it suffices to prove the lemma for \(X \times Y\). We check (1) and (2) of Definition 26.1 for \(\mathcal{M}\) on \(X \times Y\).

Since \(X\) and \(Y\) are quasi-compact, so is \(X \times Y\). Let \(z \in X \times Y\) be a point. Let \(x \in X\) and \(y \in Y\) be the projections. Choose \(n > 0\) and \(s \in \Gamma(X, \mathcal{L}^\otimes n)\) such that \(X_s\) is an affine open neighbourhood of \(x\). Choose \(m > 0\) and \(t \in \Gamma(Y, \mathcal{N}^\otimes m)\) such that \(Y_t\) is an affine open neighbourhood of \(y\). Then \(r = \text{pr}_1^*s \otimes \text{pr}_2^*t\) is a section of \(\mathcal{M}\) with \((X \times Y)_r = X_s \times Y_t\). This is an affine open neighbourhood of \(z\) and the proof is complete. \(\square\)

27. Affine and quasi-affine schemes

Lemma 27.1. Let \(X\) be a scheme. Then \(X\) is quasi-affine if and only if \(\mathcal{O}_X\) is ample.

Proof. Suppose that \(X\) is quasi-affine. Set \(A = \Gamma(X, \mathcal{O}_X)\). Consider the open immersion

\[j : X \to \text{Spec}(A) \]

from Lemma 18.4. Note that \(\text{Spec}(A) = \text{Proj}(A[T])\), see Constructions, Example 8.14. Hence we can apply Lemma 26.12 to deduce that \(\mathcal{O}_X\) is ample.

Suppose that \(\mathcal{O}_X\) is ample. Note that \(\Gamma_*(X, \mathcal{O}_X) \cong A[T]\) as graded rings. Hence the result follows from Lemmas 26.11 and 18.4 taking into account that \(\text{Spec}(A) = \text{Proj}(A[T])\) for any ring \(A\) as seen above. \(\square\)

Lemma 27.2. Let \(X\) be a quasi-affine scheme. For any quasi-compact immersion \(i : X' \to X\) the scheme \(X'\) is quasi-affine.
Proof. This can be proved directly without making use of the material on ample invertible sheaves; we urge the reader to do this on a napkin. Since X is quasi-affine, we have that \mathcal{O}_X is ample by Lemma 27.1. Then \mathcal{O}_X is ample by Lemma 26.14. Then X' is quasi-affine by Lemma 27.1. □

01QF Lemma 27.3. Let X be a scheme. Suppose that there exist finitely many elements $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X)$ such that

1. each X_{f_i} is an affine open of X, and
2. the ideal generated by f_1, \ldots, f_n in $\Gamma(X, \mathcal{O}_X)$ is equal to the unit ideal.

Then X is affine.

Proof. Assume we have f_1, \ldots, f_n as in the lemma. We may write $1 = \sum g_i f_i$ for some $g_i \in \Gamma(X, \mathcal{O}_X)$ and hence it is clear that $X = \bigcup X_{f_i}$. (The f_i's cannot all vanish at a point.) Since each X_{f_i} is quasi-compact (being affine) it follows that X is quasi-compact. Hence we see that X is quasi-affine by Lemma 27.1 above. Consider the open immersion

$$j : X \to \text{Spec}(\Gamma(X, \mathcal{O}_X)),$$

see Lemma 18.4. The inverse image of the standard open $D(f_i)$ on the right hand side is equal to X_{f_i} on the left hand side and the morphism j induces an isomorphism $X_{f_i} \cong D(f_i)$, see Lemma 18.3. Since the f_i generate the unit ideal we see that $\text{Spec}(\Gamma(X, \mathcal{O}_X)) = \bigcup_{i=1, \ldots, n} D(f_i)$. Thus j is an isomorphism. □

28. Quasi-coherent sheaves and ample invertible sheaves

01QG Theme of this section: in the presence of an ample invertible sheaf every quasi-coherent sheaf comes from a graded module.

01QH Situation 28.1. Let X be a scheme. Let \mathcal{L} be an ample invertible sheaf on X. Set $S = \Gamma_+(X, \mathcal{L})$ as a graded ring. Set $Y = \text{Proj}(S)$. Let $f : X \to Y$ be the canonical morphism of Lemma 26.9. It comes equipped with a \mathbb{Z}-graded \mathcal{O}_X-algebra map $\bigoplus f^* \mathcal{O}_Y(n) \to \bigoplus \mathcal{L}^\otimes n$.

The following lemma is really a special case of the next lemma but it seems like a good idea to point out its validity first.

01QI Lemma 28.2. In Situation 28.1, the canonical morphism $f : X \to Y$ maps X into the open subscheme $W = W_1 \subset Y$ where $\mathcal{O}_Y(1)$ is invertible and where all multiplication maps $\mathcal{O}_Y(n) \otimes \mathcal{O}_Y(m) \to \mathcal{O}_Y(n+m)$ are isomorphisms (see Constructions, Lemma 10.4). Moreover, the maps $f^* \mathcal{O}_Y(n) \to \mathcal{L}^\otimes n$ are all isomorphisms.

Proof. By Proposition 26.13 there exists an integer n_0 such that $\mathcal{L}^\otimes n_0$ is globally generated for all $n \geq n_0$. Let $x \in X$ be a point. By the above we can find $a \in S_{n_0}$ and $b \in S_{n_0+1}$ such that a and b do not vanish at x. Hence $f(x) \in D_+(a) \cap D_+(b) = D_+(ab)$. By Constructions, Lemma 10.4 we see that $f(x) \in W_1$ as desired. By Constructions, Lemma 14.1 which was used in the construction of the map f the maps $f^* \mathcal{O}_Y(n_0) \to \mathcal{L}^\otimes n_0$ and $f^* \mathcal{O}_Y(n_0+1) \to \mathcal{L}^\otimes n_0+1$ are isomorphisms in a neighbourhood of x. By compatibility with the algebra structure and the fact that f maps into W we conclude all the maps $f^* \mathcal{O}_Y(n) \to \mathcal{L}^\otimes n$ are isomorphisms in a neighbourhood of x. Hence we win. □
Recall from Modules, Definition 22.7 that given a locally ringed space X, an invertible sheaf L, and an O_X-module F we have the graded $\Gamma_*(X, L)$-module
$$\Gamma_*(X, L, F) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, F \otimes O_X \otimes L^n).$$

The following lemma says that, in Situation 28.1, we can recover a quasi-coherent O_X-module F from this graded module. Take a look also at Constructions, Lemma 13.8 where we prove this lemma in the special case $X = \mathbb{P}^n_{R}$.

Lemma 28.3. In Situation 28.1. Let F be a quasi-coherent sheaf on X. Set $M = \Gamma_*(X, L, F)$ as a graded S-module. There are isomorphisms
$$f^* \widetilde{M} \to F$$
functorial in F such that $M_0 \to \Gamma(\text{Proj}(S), \widetilde{M}) \to \Gamma(X, F)$ is the identity map.

Proof. Let $s \in S_+$ be homogeneous such that X_s is affine open in X. Recall that $\widetilde{M}|_{D_+(s)}$ corresponds to the $S(s)$-module $M(s)$, see Constructions, Lemma 8.4. Recall that $f^{-1}(D_+(s)) = X_s$. As X carries an ample invertible sheaf it is quasi-compact and quasi-separated, see Section 26. By Lemma 17.2 there is a canonical isomorphism $M(s) = \Gamma_*(X, L, F)(s) \to \Gamma(X_s, F)$. Since F is quasi-coherent this leads to a canonical isomorphism
$$f^* \widetilde{M}|_{X_s} \to F|_{X_s}$$
Since L is ample on X we know that X is covered by the affine opens of the form X_s. Hence it suffices to prove that the displayed maps glue on overlaps. Proof of this is omitted. \[\square\]

Remark 28.4. With assumptions and notation of Lemma 28.3. Denote the displayed map of the lemma by θ_F. Note that the isomorphism $f^* O_Y(n) \to L^\otimes n$ of Lemma 28.2 is just $\theta_L^\otimes n$. Consider the multiplication maps
$$\widetilde{M} \otimes O_Y(n) \to \widetilde{M}(n)$$
see Constructions, Equation (10.1.5). Pull this back to X and consider
$$f^* \widetilde{M} \otimes O_X \xrightarrow{f^* \theta_L^\otimes n} f^* \widetilde{M}(n)$$
Here we have used the obvious identification $M(n) = \Gamma_*(X, L, F \otimes L^\otimes n)$. This diagram commutes. Proof omitted.

It should be possible to deduce the following lemma from Lemma 28.3 (or conversely) but it seems simpler to just repeat the proof.

Lemma 28.5. Let S be a graded ring such that $X = \text{Proj}(S)$ is quasi-compact. Let F be a quasi-coherent O_X-module. Set $M = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, F(n))$ as a graded S-module, see Constructions, Section 10. The map
$$\widetilde{M} \to F$$
of Constructions, Lemma 10.4 is an isomorphism. If X is covered by standard opens $D_+(f)$ where f has degree 1, then the induced maps $M_n \to \Gamma(X, F(n))$ are the identity maps.
Proof. Since X is quasi-compact we can find homogeneous elements $f_1, \ldots, f_n \in S$ of positive degrees such that $X = D_+(f_1) \cup \ldots \cup D_+(f_n)$. Let d be the least common multiple of the degrees of f_1, \ldots, f_n. After replacing f_i by a power we may assume that each f_i has degree d. Then we see that $L = \mathcal{O}_X(d)$ is invertible, the multiplication maps $\mathcal{O}_X(ad) \otimes \mathcal{O}_X(bd) \to \mathcal{O}_X((a+b)d)$ are isomorphisms, and each f_i determines a global section s_i of L such that $X_{s_i} = D_+(f_i)$, see Constructions, Lemmas 10.4 and 10.5. Thus $\Gamma(X, F(ad)) = \Gamma(X, F \otimes L^\otimes n)$. Recall that $\bar{M}|_{D_+(f_i)}$ corresponds to the $S(f_i)$-module $M(f_i)$, see Constructions, Lemma 8.4. Since the degree of f_i is d, the isomorphism class of $M(f_i)$ depends only on the homogeneous summands of M of degree divisible by d. More precisely, the isomorphism class of $M(f_i)$ depends only on the graded $\Gamma_*(X, L)$-module $\Gamma_*(X, L, F)$ and the image s_i of f_i in $\Gamma_*(X, L)$. The scheme X is quasi-compact by assumption and separated by Constructions, Lemma 8.8. By Lemma 17.2 there is a canonical isomorphism

$$M(f_i) = \Gamma_*(X, L, F)(s_i) \to \Gamma(X_{s_i}, F).$$

The construction of the map in Constructions, Lemma 10.7 then shows that it is an isomorphism over $D_+(f_i)$ hence an isomorphism as X is covered by these opens. We omit the proof of the final statement. \qed

29. Finding suitable affine opens

Lemma 29.1. Let X be a quasi-separated scheme. Let Z_1, \ldots, Z_n be pairwise distinct irreducible components of X, see Topology, Section 8. Let $\eta_i \in Z_i$ be their generic points, see Schemes, Lemma 11.4. There exist affine open neighbourhoods $U_i \subset U_i$ such that $U_i \cap U_j = \emptyset$ for all $i \neq j$. In particular, $U = U_1 \cup \ldots \cup U_n$ is an affine open containing all of the points η_1, \ldots, η_n.

Proof. Let V_i be any affine open containing η_i and disjoint from the closed set $Z_1 \cup \ldots \cup Z_n$. Since X is quasi-separated for each i the union $W_i = \bigcup_{j \neq i} V_j \cap V_i$ is a quasi-compact open of V_i not containing η_i. We can find open neighbourhoods $U_i \subset V_i$ containing η_i and disjoint from W_i by Algebra, Lemma 25.4. Finally, U is affine since it is the spectrum of the ring $R_1 \times \ldots \times R_n$ where $R_i = \mathcal{O}_X(U_i)$, see Schemes, Lemma 6.8. \qed

Remark 29.2. Lemma 29.1 above is false if X is not quasi-separated. Here is an example. Take $R = Q[x, y_1, y_2, \ldots]/(x - i)y_i$. Consider the minimal prime ideal $p = (y_1, y_2, \ldots)$ of R. Glue two copies of $\text{Spec}(R)$ along the (not quasi-compact) open $\text{Spec}(R) \setminus V(p)$ to get a scheme X (glueing as in Schemes, Example 14.3). Then the two maximal points of X corresponding to p are not contained in a common affine open. The reason is that any open of $\text{Spec}(R)$ containing p contains infinitely many of the “lines” $x = i, y_j = 0, j \neq i$ with parameter y_i. Details omitted.

Notwithstanding the example above, for “most” finite sets of irreducible closed subsets one can apply Lemma 29.1 above, at least if X is quasi-compact. This is true because X contains a dense open which is separated.

Lemma 29.3. Let X be a quasi-compact scheme. There exists a dense open $V \subset X$ which is separated.
Proof. Say $X = \bigcup_{i=1}^{n} U_i$ is a union of n affine open subschemes. We will prove the lemma by induction on n. It is trivial for $n = 1$. Let $V' \subset \bigcup_{i=1}^{n-1} U_i$ be a separated dense open subscheme, which exists by induction hypothesis. Consider

$$V = V' \amalg (U_n \setminus V').$$

It is clear that V is separated and a dense open subscheme of X. \square

It turns out that, even if X is quasi-separated, there does not exist a separated, quasi-compact dense open, see Examples, Lemma 21.2. Here is a slight refinement of Lemma 29.1 above.

Lemma 29.4. Let X be a quasi-separated scheme. Let Z_1, \ldots, Z_n be pairwise distinct irreducible components of X. Let $\eta_i \in Z_i$ be their generic points. Let $x \in X$ be arbitrary. There exists an affine open $U \subset X$ containing x and all the η_i.

Proof. Suppose that $x \in Z_1 \cap \ldots \cap Z_r$ and $x \notin Z_{r+1}, \ldots, Z_n$. Then we may choose an affine open $W \subset X$ such that $x \in W$ and $W \cap Z_i = \emptyset$ for $i = r+1, \ldots, n$. Note that clearly $\eta_i \in W$ for $i = 1, \ldots, r$. By Lemma 29.1 we may choose affine opens $U_i \subset X$ which are pairwise disjoint such that $\eta_i \in U_i$ for $i = r+1, \ldots, n$. Since X is quasi-separated the opens $W \cap U_i$ are quasi-compact and do not contain η_i for $i = r+1, \ldots, n$. Hence by Algebra, Lemma 25.4 we may shrink U_i such that $W \cap U_i = \emptyset$ for $i = r+1, \ldots, n$. Then the union $U = W \cup \bigcup_{i=r+1}^{n} U_i$ is disjoint and hence (by Schemes, Lemma 6.8) a suitable affine open. \square

Lemma 29.5. Let X be a scheme. Assume either

1. The scheme X is quasi-affine.
2. The scheme X is isomorphic to a locally closed subscheme of an affine scheme.
3. There exists an ample invertible sheaf on X.
4. The scheme X is isomorphic to a locally closed subscheme of $\text{Proj}(S)$ for some graded ring S.

Then for any finite subset $E \subset X$ there exists an affine open $U \subset X$ with $E \subset U$.

Proof. By Properties, Definition 18.1 a quasi-affine scheme is a quasi-compact open subscheme of an affine scheme. Any affine scheme $\text{Spec}(R)$ is isomorphic to $\text{Proj}(R[X])$ where $R[X]$ is graded by setting $\deg(X) = 1$. By Proposition 26.13 if X has an ample invertible sheaf then X is isomorphic to an open subscheme of $\text{Proj}(S)$ for some graded ring S. Hence, it suffices to prove the lemma in case (4).

(We urge the reader to prove case (2) directly for themselves.)

Thus assume $X \subset \text{Proj}(S)$ is a locally closed subscheme where S is some graded ring. Let $T = X \setminus X$. Recall that the standard opens $D_+(f)$ form a basis of the topology on $\text{Proj}(S)$. Since E is finite we may choose finitely many homogeneous elements $f_i \in S_+$ such that $E \subset D_+(f_1) \cup \ldots \cup D_+(f_n) \subset \text{Proj}(S) \setminus T$.

Suppose that $E = \{p_1, \ldots, p_m\}$ as a subset of $\text{Proj}(S)$. Consider the ideal $I = (f_1, \ldots, f_n) \subset S$. Since $I \not\ni p_j$ for all $j = 1, \ldots, m$ we see from Algebra, Lemma 56.6 that there exists a homogeneous element $f \in I$, $f \notin p_j$ for all $j = 1, \ldots, m$. Then $E \subset D_+(f) \subset D_+(f_1) \cup \ldots \cup D_+(f_n)$. Since $D_+(f)$ does not meet T we see that $X \cap D_+(f)$ is a closed subscheme of the affine scheme $D_+(f)$, hence is an affine open of X as desired. \square
Lemma 29.6. Let X be a scheme. Let \mathcal{L} be an ample invertible sheaf on X. Let
$$E \subset W \subset X$$
with E finite and W open in X. Then there exists an $n > 0$ and a section $s \in \Gamma(X, \mathcal{L}^\otimes n)$ such that X_s is affine and $E \subset X_s \subset W$.

Proof. The reader can modify the proof of Lemma 29.5 to prove this lemma; we will instead deduce the lemma from it. By Lemma 29.5 we can choose an affine open $U \subset W$ such that $E \subset U$. Consider the graded ring $S = \Gamma_s(X, \mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X, \mathcal{L}^\otimes n)$. For each $x \in E$ let $p_x \subset S$ be the graded ideal of sections vanishing at x. It is clear that p_x is a prime ideal and since some power of \mathcal{L} is globally generated, it is clear that $S_+ \not\subset p_x$. Let $I \subset S$ be the graded ideal of sections vanishing on all points of $X \setminus U$. Since the sets X_s form a basis for the topology we see that $I \not\subset p_x$ for all $x \in E$. By (graded) prime avoidance (Algebra, Lemma 56.6) we can find $s \in I$ homogeneous with $s \not\in p_x$ for all $x \in E$. Then $E \subset X_s \subset U$ and X_s is affine by Lemma 26.4.

Lemma 29.7. Let X be a quasi-affine scheme. Let \mathcal{L} be an invertible \mathcal{O}_X-module. Let $E \subset W \subset X$ with E finite and W open. Then there exists an $s \in \Gamma(X, \mathcal{L})$ such that X_s is affine and $E \subset X_s \subset W$.

Proof. The proof of this lemma has a lot in common with the proof of Algebra, Lemma 14.2. Say $E = \{x_1, \ldots, x_n\}$. If $E = W = \emptyset$, then $s = 0$ works. If $W \neq \emptyset$, then we may assume $E \neq \emptyset$ by adding a point if necessary. Thus we may assume $n \geq 1$. We will prove the lemma by induction on n.

Base case: $n = 1$. After replacing W by an affine open neighbourhood of x_1 in W, we may assume W is affine. Combining Lemmas 27.1 and Proposition 26.13 we see that every quasi-coherent \mathcal{O}_X-module is globally generated. Hence there exists a global section s of \mathcal{L} which does not vanish at x_1. On the other hand, let $Z \subset X$ be the reduced induced closed subscheme on $X \setminus W$. Applying global generation to the quasi-coherent ideal sheaf \mathcal{I} of Z we find a global section f of \mathcal{I} which does not vanish at x_1. Then $s' = fs$ is a global section of \mathcal{L} which does not vanish at x_1 such that $X_{s'} \subset W$. Then $X_{s'}$ is affine by Lemma 26.4.

Induction step for $n > 1$. If there is a specialization $x_i \to x_j$ for $i \neq j$, then it suffices to prove the lemma for $\{x_1, \ldots, x_n\} \setminus \{x_i\}$ and we are done by induction. Thus we may assume there are no specializations among the x_i. By either Lemma 29.5 or Lemma 29.6 we may assume W is affine. By induction we can find a global section s of \mathcal{L} such that $X_s \subset W$ is affine and contains x_1, \ldots, x_{n-1}. If $x_n \in X_s$ then we are done. Assume s is zero at x_n. By the case $n = 1$ we can find a global section s' of \mathcal{L} with $\{x_n\} \subset X_{s'} \subset W \setminus \{x_1, \ldots, x_{n-1}\}$. Here we use that x_n is not a specialization of x_1, \ldots, x_{n-1}. Then $s + s'$ is a global section of \mathcal{L} which is nonvanishing at x_1, \ldots, x_n with $X_{s+s'} \subset W$ and we conclude as before.

Lemma 29.8. Let X be a scheme and $x \in X$ a point. There exists an affine open neighbourhood $U \subset X$ of x such that the canonical map $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ is injective in each of the following cases:

1. X is integral,
2. X is locally Noetherian,
3. X is reduced and has a finite number of irreducible components.
Proof. After translation into algebra, this follows from Algebra, Lemma \text{(30.9)} \qed
30. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields
(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes
(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Intersection Theory

(43) Picard Schemes of Curves
(44) Weil Cohomology Theories
(45) Adequate Modules
(46) Dualizing Complexes
(47) Duality for Schemes
(48) Discriminants and Differentials
(49) Local Cohomology
(50) Algebraic and Formal Geometry
(51) Algebraic Curves
(52) Resolution of Surfaces
(53) Semi-stable Reduction
(54) Fundamental Groups of Schemes
(55) Étale Cohomology
(56) Crystalline Cohomology
(57) Pro-étale Cohomology
(58) More Étale Cohomology
(59) The Trace Formula

Algebraic Spaces

(60) Algebraic Spaces
(61) Properties of Algebraic Spaces
(62) Morphisms of Algebraic Spaces
(63) Decent Algebraic Spaces
(64) Cohomology of Algebraic Spaces
(65) Limits of Algebraic Spaces
(66) Divisors on Algebraic Spaces
(67) Algebraic Spaces over Fields
(68) Topologies on Algebraic Spaces
(69) Descent and Algebraic Spaces
(70) Derived Categories of Spaces
(71) More on Morphisms of Spaces
(72) Flatness on Algebraic Spaces
(73) Groupoids in Algebraic Spaces
(74) More on Groupoids in Spaces
(75) Bootstrap
(76) Pushouts of Algebraic Spaces

Topics in Geometry

(77) Chow Groups of Spaces
(78) Quotients of Groupoids
(79) More on Cohomology of Spaces
(80) Simplicial Spaces
(81) Duality for Spaces
(82) Formal Algebraic Spaces
(83) Restricted Power Series
(84) Resolution of Surfaces Revisited

Deformation Theory
<table>
<thead>
<tr>
<th>(85)</th>
<th>Formal Deformation Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(86)</td>
<td>Deformation Theory</td>
</tr>
<tr>
<td>(87)</td>
<td>The Cotangent Complex</td>
</tr>
<tr>
<td>(88)</td>
<td>Deformation Problems</td>
</tr>
<tr>
<td>(89)</td>
<td>Algebraic Stacks</td>
</tr>
<tr>
<td>(90)</td>
<td>Examples of Stacks</td>
</tr>
<tr>
<td>(91)</td>
<td>Sheaves on Algebraic Stacks</td>
</tr>
<tr>
<td>(92)</td>
<td>Criteria for Representability</td>
</tr>
<tr>
<td>(93)</td>
<td>Artin’s Axioms</td>
</tr>
<tr>
<td>(94)</td>
<td>Quot and Hilbert Spaces</td>
</tr>
<tr>
<td>(95)</td>
<td>Properties of Algebraic Stacks</td>
</tr>
<tr>
<td>(96)</td>
<td>Morphisms of Algebraic Stacks</td>
</tr>
<tr>
<td>(97)</td>
<td>Limits of Algebraic Stacks</td>
</tr>
<tr>
<td>(98)</td>
<td>Cohomology of Algebraic Stacks</td>
</tr>
<tr>
<td>(99)</td>
<td>Derived Categories of Stacks</td>
</tr>
<tr>
<td>(100)</td>
<td>Introducing Algebraic Stacks</td>
</tr>
<tr>
<td>(101)</td>
<td>More on Morphisms of Stacks</td>
</tr>
<tr>
<td>(102)</td>
<td>The Geometry of Stacks</td>
</tr>
<tr>
<td>(103)</td>
<td>Topics in Moduli Theory</td>
</tr>
<tr>
<td>(104)</td>
<td>Moduli of Curves</td>
</tr>
<tr>
<td>(105)</td>
<td>Examples</td>
</tr>
<tr>
<td>(106)</td>
<td>Exercises</td>
</tr>
<tr>
<td>(107)</td>
<td>Guide to Literature</td>
</tr>
<tr>
<td>(108)</td>
<td>Desirables</td>
</tr>
<tr>
<td>(109)</td>
<td>Coding Style</td>
</tr>
<tr>
<td>(110)</td>
<td>Obsolete</td>
</tr>
<tr>
<td>(111)</td>
<td>GNU Free Documentation License</td>
</tr>
</tbody>
</table>

References

