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1. Introduction

01OI In this chapter we introduce some absolute properties of schemes. A foundational
reference is [DG67].

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Constructible sets

054B Constructible and locally constructible sets are introduced in Topology, Section 15.
We may characterize locally constructible subsets of schemes as follows.
Lemma 2.1.054C Let X be a scheme. A subset E of X is locally constructible in X if
and only if E ∩ U is constructible in U for every affine open U of X.
Proof. Assume E is locally constructible. Then there exists an open covering
X =

⋃
Ui such that E ∩ Ui is constructible in Ui for each i. Let V ⊂ X be any

affine open. We can find a finite open affine covering V = V1 ∪ . . . ∪ Vm such that
for each j we have Vj ⊂ Ui for some i = i(j). By Topology, Lemma 15.4 we see
that each E ∩ Vj is constructible in Vj . Since the inclusions Vj → V are quasi-
compact (see Schemes, Lemma 19.2) we conclude that E ∩ V is constructible in V
by Topology, Lemma 15.6. The converse implication is immediate. □

Lemma 2.2.0AAW Let X be a scheme and let E ⊂ X be a locally constructible subset.
Let ξ ∈ X be a generic point of an irreducible component of X.

(1) If ξ ∈ E, then an open neighbourhood of ξ is contained in E.
(2) If ξ ̸∈ E, then an open neighbourhood of ξ is disjoint from E.

Proof. As the complement of a locally constructible subset is locally constructible
it suffices to show (2). We may assume X is affine and hence E constructible
(Lemma 2.1). In this case X is a spectral space (Algebra, Lemma 26.2). Then
ξ ̸∈ E implies ξ ̸∈ E by Topology, Lemma 23.6 and the fact that there are no
points of X different from ξ which specialize to ξ. □

Lemma 2.3.054D Let X be a quasi-separated scheme. The intersection of any two
quasi-compact opens of X is a quasi-compact open of X. Every quasi-compact open
of X is retrocompact in X.
Proof. If U and V are quasi-compact open then U ∩ V = ∆−1(U × V ), where
∆ : X → X × X is the diagonal. As X is quasi-separated we see that ∆ is quasi-
compact. Hence we see that U ∩ V is quasi-compact as U × V is quasi-compact
(details omitted; use Schemes, Lemma 17.4 to see U×V is a finite union of affines).
The other assertions follow from the first and Topology, Lemma 27.1. □

Lemma 2.4.094L Let X be a quasi-compact and quasi-separated scheme. Then the
underlying topological space of X is a spectral space.
Proof. By Topology, Definition 23.1 we have to check that X is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. This follows from Schemes, Lemma 11.1 and 11.2
and Lemma 2.3 above. □

Lemma 2.5.054E Let X be a quasi-compact and quasi-separated scheme. Any locally
constructible subset of X is constructible.
Proof. As X is quasi-compact we can choose a finite affine open covering X =
V1 ∪ . . . ∪ Vm. As X is quasi-separated each Vi is retrocompact in X by Lemma
2.3. Hence by Topology, Lemma 15.6 we see that E ⊂ X is constructible in X if
and only if E ∩ Vj is constructible in Vj . Thus we win by Lemma 2.1. □

Lemma 2.6.07ZL Let X be a scheme. A subset E of X is retrocompact in X if and
only if E ∩ U is quasi-compact for every affine open U of X.

https://stacks.math.columbia.edu/tag/054C
https://stacks.math.columbia.edu/tag/0AAW
https://stacks.math.columbia.edu/tag/054D
https://stacks.math.columbia.edu/tag/094L
https://stacks.math.columbia.edu/tag/054E
https://stacks.math.columbia.edu/tag/07ZL
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Proof. Immediate from the fact that every quasi-compact open of X is a finite
union of affine opens. □

Lemma 2.7.0F2M A partition X =
∐
i∈I Xi of a scheme X with retrocompact parts is

locally finite if and only if the parts are locally constructible.

Proof. See Topology, Definitions 12.1, 28.1, and 28.4 for the definitions of retro-
compact, partition, and locally finite.

If the partition is locally finite and U ⊂ X is an affine open, then we see that U =∐
i∈I U ∩Xi is a finite partition (more precisely, all but a finite number of its parts

are empty). Hence U ∩Xi is quasi-compact and its complement is retrocompact in
U as a finite union of retrocompact parts. Thus U∩Xi is constructible by Topology,
Lemma 15.13. It follows that Xi is locally constructible by Lemma 2.1.

Assume the parts are locally constructible. Then for any affine open U ⊂ X we
obtain a covering U =

∐
Xi ∩ U by constructible subsets. Since the constructible

topology is quasi-compact, see Topology, Lemma 23.2, this covering has a finite
refinement, i.e., the partition is locally finite. □

3. Integral, irreducible, and reduced schemes

01OJ
Definition 3.1.01OK Let X be a scheme. We say X is integral if it is nonempty and
for every nonempty affine open Spec(R) = U ⊂ X the ring R is an integral domain.

Lemma 3.2.01OL Let X be a scheme. The following are equivalent.
(1) The scheme X is reduced, see Schemes, Definition 12.1.
(2) There exists an affine open covering X =

⋃
Ui such that each Γ(Ui,OX) is

reduced.
(3) For every affine open U ⊂ X the ring OX(U) is reduced.
(4) For every open U ⊂ X the ring OX(U) is reduced.

Proof. See Schemes, Lemmas 12.2 and 12.3. □

Lemma 3.3.01OM Let X be a scheme. The following are equivalent.
(1) The scheme X is irreducible.
(2) There exists an affine open covering X =

⋃
i∈I Ui such that I is not empty,

Ui is irreducible for all i ∈ I, and Ui ∩ Uj ̸= ∅ for all i, j ∈ I.
(3) The scheme X is nonempty and every nonempty affine open U ⊂ X is

irreducible.

Proof. Assume (1). By Schemes, Lemma 11.1 we see that X has a unique generic
point η. Then X = {η}. Hence η is an element of every nonempty affine open
U ⊂ X. This implies that η ∈ U is dense hence U is irreducible. It also implies any
two nonempty affines meet. Thus (1) implies both (2) and (3).

Assume (2). Suppose X = Z1 ∪Z2 is a union of two closed subsets. For every i we
see that either Ui ⊂ Z1 or Ui ⊂ Z2. Pick some i ∈ I and assume Ui ⊂ Z1 (possibly
after renumbering Z1, Z2). For any j ∈ I the open subset Ui ∩ Uj is dense in Uj
and contained in the closed subset Z1 ∩ Uj . We conclude that also Uj ⊂ Z1. Thus
X = Z1 as desired.

https://stacks.math.columbia.edu/tag/0F2M
https://stacks.math.columbia.edu/tag/01OK
https://stacks.math.columbia.edu/tag/01OL
https://stacks.math.columbia.edu/tag/01OM
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Assume (3). Choose an affine open covering X =
⋃
i∈I Ui. We may assume that

each Ui is nonempty. Since X is nonempty we see that I is not empty. By assump-
tion each Ui is irreducible. Suppose Ui ∩ Uj = ∅ for some pair i, j ∈ I. Then the
open Ui ⨿ Uj = Ui ∪ Uj is affine, see Schemes, Lemma 6.8. Hence it is irreducible
by assumption which is absurd. We conclude that (3) implies (2). The lemma is
proved. □

Lemma 3.4.01ON A scheme X is integral if and only if it is reduced and irreducible.

Proof. If X is irreducible, then every affine open Spec(R) = U ⊂ X is irreducible.
If X is reduced, then R is reduced, by Lemma 3.2 above. Hence R is reduced and
(0) is a prime ideal, i.e., R is an integral domain.

If X is integral, then for every nonempty affine open Spec(R) = U ⊂ X the ring
R is reduced and hence X is reduced by Lemma 3.2. Moreover, every nonempty
affine open is irreducible. Hence X is irreducible, see Lemma 3.3. □

In Examples, Section 6 we construct a connected affine scheme all of whose local
rings are domains, but which is not integral.

4. Types of schemes defined by properties of rings

01OO In this section we study what properties of rings allow one to define local properties
of schemes.

Definition 4.1.01OP Let P be a property of rings. We say that P is local if the
following hold:

(1) For any ring R, and any f ∈ R we have P (R) ⇒ P (Rf ).
(2) For any ring R, and fi ∈ R such that (f1, . . . , fn) = R then ∀i, P (Rfi

) ⇒
P (R).

Definition 4.2.01OQ Let P be a property of rings. Let X be a scheme. We say X is
locally P if for any x ∈ X there exists an affine open neighbourhood U of x in X
such that OX(U) has property P .

This is only a good notion if the property is local. Even if P is a local property we
will not automatically use this definition to say that a scheme is “locally P” unless
we also explicitly state the definition elsewhere.

Lemma 4.3.01OR Let X be a scheme. Let P be a local property of rings. The following
are equivalent:

(1) The scheme X is locally P .
(2) For every affine open U ⊂ X the property P (OX(U)) holds.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui)

satisfies P .
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is locally P .
Moreover, if X is locally P then every open subscheme is locally P .

Proof. Of course (1) ⇔ (3) and (2) ⇒ (1). If (3) ⇒ (2), then the final statement
of the lemma holds and it follows easily that (4) is also equivalent to (1). Thus we
show (3) ⇒ (2).

https://stacks.math.columbia.edu/tag/01ON
https://stacks.math.columbia.edu/tag/01OP
https://stacks.math.columbia.edu/tag/01OQ
https://stacks.math.columbia.edu/tag/01OR
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Let X =
⋃
Ui be an affine open covering, say Ui = Spec(Ri). Assume P (Ri). Let

Spec(R) = U ⊂ X be an arbitrary affine open. By Schemes, Lemma 11.6 there
exists a standard covering of U = Spec(R) by standard opens D(fj) such that each
ring Rfj

is a principal localization of one of the rings Ri. By Definition 4.1 (1) we
get P (Rfj

). Whereupon P (R) by Definition 4.1 (2). □

Here is a sample application.

Lemma 4.4.01OS Let X be a scheme. Then X is reduced if and only if X is “locally
reduced” in the sense of Definition 4.2.

Proof. This is clear from Lemma 3.2. □

Lemma 4.5.01OT The following properties of a ring R are local.
(1) (Cohen-Macaulay.) The ring R is Noetherian and CM, see Algebra, Defi-

nition 104.6.
(2) (Regular.) The ring R is Noetherian and regular, see Algebra, Definition

110.7.
(3) (Absolutely Noetherian.) The ring R is of finite type over Z.
(4) Add more here as needed.1

Proof. Omitted. □

5. Noetherian schemes

01OU Recall that a ring R is Noetherian if it satisfies the ascending chain condition of
ideals. Equivalently every ideal of R is finitely generated.

Definition 5.1.01OV Let X be a scheme.
(1) We say X is locally Noetherian if every x ∈ X has an affine open neigh-

bourhood Spec(R) = U ⊂ X such that the ring R is Noetherian.
(2) We say X is Noetherian if X is locally Noetherian and quasi-compact.

Here is the standard result characterizing locally Noetherian schemes.

Lemma 5.2.01OW Let X be a scheme. The following are equivalent:
(1) The scheme X is locally Noetherian.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is locally Noetherian.
Moreover, if X is locally Noetherian then every open subscheme is locally Noether-
ian.

Proof. To show this it suffices to show that being Noetherian is a local property
of rings, see Lemma 4.3. Any localization of a Noetherian ring is Noetherian, see
Algebra, Lemma 31.1. By Algebra, Lemma 23.2 we see the second property to
Definition 4.1. □

Lemma 5.3.01OX Any immersion Z → X with X locally Noetherian is quasi-compact.
1But we only list those properties here which we have not already dealt with separately some-

where else.

https://stacks.math.columbia.edu/tag/01OS
https://stacks.math.columbia.edu/tag/01OT
https://stacks.math.columbia.edu/tag/01OV
https://stacks.math.columbia.edu/tag/01OW
https://stacks.math.columbia.edu/tag/01OX
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Proof. A closed immersion is clearly quasi-compact. A composition of quasi-
compact morphisms is quasi-compact, see Topology, Lemma 12.2. Hence it suffices
to show that an open immersion into a locally Noetherian scheme is quasi-compact.
Using Schemes, Lemma 19.2 we reduce to the case where X is affine. Any open
subset of the spectrum of a Noetherian ring is quasi-compact (for example combine
Algebra, Lemma 31.5 and Topology, Lemmas 9.2 and 12.13). □

Lemma 5.4.01OY A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 21.6 we have to show that the intersection U ∩ V of
two affine opens of X is quasi-compact. This follows from Lemma 5.3 above on
considering the open immersion U ∩ V → U for example. (But really it is just
because any open of the spectrum of a Noetherian ring is quasi-compact.) □

Lemma 5.5.01OZ A (locally) Noetherian scheme has a (locally) Noetherian underlying
topological space, see Topology, Definition 9.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noe-
therian rings and Algebra, Lemma 31.5 and Topology, Lemma 9.4. □

Lemma 5.6.02IK Any locally closed subscheme of a (locally) Noetherian scheme is
(locally) Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring
is Noetherian. For the Noetherian case use again that any subset of a Noetherian
space is a Noetherian space (with induced topology). □

Lemma 5.7.0BA8 A Noetherian scheme has a finite number of irreducible components.

Proof. The underlying topological space of a Noetherian scheme is Noetherian
(Lemma 5.5) and we conclude because a Noetherian topological space has only
finitely many irreducible components (Topology, Lemma 9.2). □

Lemma 5.8.01P0 Any morphism of schemes f : X → Y with X Noetherian is quasi-
compact.

Proof. Use Lemma 5.5 and use that any subset of a Noetherian topological space
is quasi-compact (see Topology, Lemmas 9.2 and 12.13). □

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of
closed points (at least one in every closed subset).

Lemma 5.9.02IL Any nonempty locally Noetherian scheme has a closed point. Any
nonempty closed subset of a locally Noetherian scheme has a closed point. Equiva-
lently, any point of a locally Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 12.4
and Lemma 5.6). Consider any nonempty affine open U ⊂ X. Let x ∈ U be a
closed point. If x is a closed point of X then we are done. If not, let X0 ⊂ X
be the reduced induced closed subscheme structure on {x}. Then U0 = U ∩ X0 is
an affine open of X0 by Schemes, Lemma 10.1 and U0 = {x}. Let y ∈ X0, y ̸= x
be a specialization of x. Consider the local ring R = OX0,y. This is a Noetherian
local ring as X0 is Noetherian by Lemma 5.6. Denote V ⊂ Spec(R) the inverse
image of U0 in Spec(R) by the canonical morphism Spec(R) → X0 (see Schemes,
Section 13.) By construction V is a singleton with unique point corresponding to

https://stacks.math.columbia.edu/tag/01OY
https://stacks.math.columbia.edu/tag/01OZ
https://stacks.math.columbia.edu/tag/02IK
https://stacks.math.columbia.edu/tag/0BA8
https://stacks.math.columbia.edu/tag/01P0
https://stacks.math.columbia.edu/tag/02IL
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x (use Schemes, Lemma 13.2). By Algebra, Lemma 61.1 we see that dim(R) = 1.
In other words, we see that y is an immediate specialization of x (see Topology,
Definition 20.1). In other words, any point y ̸= x such that x⇝ y is an immediate
specialization of x. Clearly each of these points is a closed point as desired. □

Lemma 5.10.054F Let X be a locally Noetherian scheme. Let x′ ⇝ x be a specialization
of points of X. Then

(1) there exists a discrete valuation ring R and a morphism f : Spec(R) → X
such that the generic point η of Spec(R) maps to x′ and the special point
maps to x, and

(2) given a finitely generated field extension K/κ(x′) we may arrange it so that
the extension κ(η)/κ(x′) induced by f is isomorphic to the given one.

Proof. Let x′ ⇝ x be a specialization in X, and let K/κ(x′) be a finitely generated
extension of fields. By Schemes, Lemma 13.2 and the discussion following Schemes,
Lemma 13.3 this leads to ring maps OX,x → κ(x′) → K. Let R ⊂ K be any
discrete valuation ring whose field of fractions is K and which dominates the image
of OX,x → K, see Algebra, Lemma 119.13. The ring map OX,x → R induces the
morphism f : Spec(R) → X, see Schemes, Lemma 13.1. This morphism has all the
desired properties by construction. □

Lemma 5.11.0CXG Let S be a Noetherian scheme. Let T ⊂ S be an infinite sub-
set. Then there exists an infinite subset T ′ ⊂ T such that there are no nontrivial
specializations among the points T ′.

Proof. Let T0 ⊂ T be the set of t ∈ T which do not specialize to another point of
T . If T0 is infinite, then T ′ = T0 works. Hence we may and do assume T0 is finite.
Inductively, for i > 0, consider the set Ti ⊂ T of t ∈ T such that

(1) t ̸∈ Ti−1 ∪ Ti−2 ∪ . . . ∪ T0,
(2) there exist a nontrivial specialization t⇝ t′ with t′ ∈ Ti−1, and
(3) for any nontrivial specialization t ⇝ t′ with t′ ∈ T we have t′ ∈ Ti−1 ∪

Ti−2 ∪ . . . ∪ T0.
Again, if Ti is infinite, then T ′ = Ti works. Let d be the maximum of the dimensions
of the local rings OS,t for t ∈ T0; then d is an integer because T0 is finite and the
dimensions of the local rings are finite by Algebra, Proposition 60.9. Then Ti = ∅
for i > d. Namely, if t ∈ Ti then we can find a sequence of nontrivial specializations
t = ti ⇝ ti−1 ⇝ . . . ⇝ t0 with t0 ∈ T0. As the points t = ti, ti−1, . . . , t0 are in
Spec(OS,t0) (Schemes, Lemma 13.2), we see that i ≤ d. Thus

⋃
Ti = Td ∪ . . . ∪ T0

is a finite subset of T .
Suppose t ∈ T is not in

⋃
Ti. Then there must be a specialization t⇝ t′ with t′ ∈ T

and t′ ̸∈
⋃
Ti. (Namely, if every specialization of t is in the finite set Td ∪ . . . ∪ T0,

then there is a maximum i such that there is some specialization t⇝ t′ with t′ ∈ Ti
and then t ∈ Ti+1 by construction.) Hence we get an infinite sequence

t⇝ t′ ⇝ t′′ ⇝ . . .

of nontrivial specializations between points of T \
⋃
Ti. This is impossible because

the underlying topological space of S is Noetherian by Lemma 5.4. □

Lemma 5.12.0G2R Let S be a Noetherian scheme. Let T ⊂ S be a subset. Let T0 ⊂ T
be the set of t ∈ T such that there is no nontrivial specialization t′ ⇝ t with t′ ∈ T ′.

https://stacks.math.columbia.edu/tag/054F
https://stacks.math.columbia.edu/tag/0CXG
https://stacks.math.columbia.edu/tag/0G2R
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Then (a) there are no specializations among the points of T0, (b) every point of T
is a specialization of a point of T0, and (c) the closures of T and T0 are the same.

Proof. Recall that dim(OS,s) < ∞ for any s ∈ S, see Algebra, Proposition 60.9.
Let t ∈ T . If t′ ⇝ t, then by dimension theory dim(OS,t′) ≤ dim(OS,t) with
equality if and only if t′ = t. Thus if we pick t′ ⇝ t with dim(OT,t′) minimal, then
t′ ∈ T0. In other words, every t ∈ T is the specialization of an element of T0. □

Lemma 5.13.0G2F Let S be a Noetherian scheme. Let T ⊂ S be an infinite dense
subset. Then there exist a countable subset E ⊂ T which is dense in S.

Proof. Let T ′ be the set of points s ∈ S such that {s} ∩ T contains a countable
subset whose closure is {s}. Since a finite set is countable we have T ⊂ T ′. For
s ∈ T ′ choose such a countable subset Es ⊂ {s} ∩ T . Let E′ = {s1, s2, s3, . . .} ⊂ T ′

be a countable subset. Then the closure of E′ in S is the closure of the countable
subset

⋃
nEsn of T . It follows that if Z is an irreducible component of the closure

of E′, then the generic point of Z is in T ′.

Denote T ′
0 ⊂ T ′ the subset of t ∈ T ′ such that there is no nontrivial specialization

t′ ⇝ t with t′ ∈ T ′ as in Lemma 5.12 whose results we will use without further
mention. If T ′

0 is infinite, then we choose a countable subset E′ ⊂ T ′
0. By the

argument in the first paragraph, the generic points of the irreducible components
of the closure of E′ are in T ′. However, since one of these points specializes to
infinitely many distinct elements of E′ ⊂ T ′

0 this is a contradiction. Thus T ′
0 is

finite, say T ′
0 = {s1, . . . , sm}. Then it follows that S, which is the closure of T , is

contained in the closure of {s1, . . . , sm}, which in turn is contained in the closure
of the countable subset Es1 ∪ . . . ∪ Esm ⊂ T as desired. □

6. Jacobson schemes

01P1 Recall that a space is said to be Jacobson if the closed points are dense in every
closed subset, see Topology, Section 18.

Definition 6.1.01P2 A scheme S is said to be Jacobson if its underlying topological
space is Jacobson.

Recall that a ring R is Jacobson if every radical ideal of R is the intersection of
maximal ideals, see Algebra, Definition 35.1.

Lemma 6.2.01P3 An affine scheme Spec(R) is Jacobson if and only if the ring R is
Jacobson.

Proof. This is Algebra, Lemma 35.4. □

Here is the standard result characterizing Jacobson schemes. Intuitively it claims
that Jacobson ⇔ locally Jacobson.

Lemma 6.3.01P4 Let X be a scheme. The following are equivalent:
(1) The scheme X is Jacobson.
(2) The scheme X is “locally Jacobson” in the sense of Definition 4.2.
(3) For every affine open U ⊂ X the ring OX(U) is Jacobson.
(4) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Jacobson.

https://stacks.math.columbia.edu/tag/0G2F
https://stacks.math.columbia.edu/tag/01P2
https://stacks.math.columbia.edu/tag/01P3
https://stacks.math.columbia.edu/tag/01P4
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(5) There exists an open covering X =
⋃
Xj such that each open subscheme

Xj is Jacobson.
Moreover, if X is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma 18.5. The
equivalence of (5) and (1) is Topology, Lemma 18.4. Hence, using Lemma 6.2, we
see that (1) ⇔ (2). To finish proving the lemma it suffices to show that “Jacobson”
is a local property of rings, see Lemma 4.3. Any localization of a Jacobson ring at an
element is Jacobson, see Algebra, Lemma 35.14. Suppose R is a ring, f1, . . . , fn ∈ R
generate the unit ideal and each Rfi

is Jacobson. Then we see that Spec(R) =⋃
D(fi) is a union of open subsets which are all Jacobson, and hence Spec(R)

is Jacobson by Topology, Lemma 18.4 again. This proves the second property of
Definition 4.1. □

Many schemes used commonly in algebraic geometry are Jacobson, see Morphisms,
Lemma 16.10. We mention here the following interesting case.

Lemma 6.4.02IM Examples of Noetherian Jacobson schemes.
(1) If (R,m) is a Noetherian local ring, then the punctured spectrum Spec(R) \

{m} is a Jacobson scheme.
(2) If R is a Noetherian ring with Jacobson radical rad(R) then Spec(R) \

V (rad(R)) is a Jacobson scheme.
(3) If (R, I) is a Zariski pair (More on Algebra, Definition 10.1) with R Noe-

therian, then Spec(R) \ V (I) is a Jacobson scheme.

Proof. Proof of (3). Observe that Spec(R) − V (I) has a covering by the affine
opens Spec(Rf ) for f ∈ I. The rings Rf are Jacobson by More on Algebra, Lemma
10.5. Hence Spec(R)\V (I) is Jacobson by Lemma 6.3. Parts (1) and (2) are special
cases of (3).

Direct proof of case (1). Since Spec(R) is a Noetherian scheme, S is a Noether-
ian scheme (Lemma 5.6). Hence S is a sober, Noetherian topological space (use
Schemes, Lemma 11.1). Assume S is not Jacobson to get a contradiction. By
Topology, Lemma 18.3 there exists some non-closed point ξ ∈ S such that {ξ} is
locally closed. This corresponds to a prime p ⊂ R such that (1) there exists a prime
q, p ⊂ q ⊂ m with both inclusions strict, and (2) {p} is open in Spec(R/p). This is
impossible by Algebra, Lemma 61.1. □

7. Normal schemes

033H Recall that a ring R is said to be normal if all its local rings are normal domains,
see Algebra, Definition 37.11. A normal domain is a domain which is integrally
closed in its field of fractions, see Algebra, Definition 37.1. Thus it makes sense to
define a normal scheme as follows.

Definition 7.1.033I A scheme X is normal if and only if for all x ∈ X the local ring
OX,x is a normal domain.

This seems to be the definition used in EGA, see [DG67, 0, 4.1.4]. Suppose X =
Spec(A), and A is reduced. Then saying that X is normal is not equivalent to
saying that A is integrally closed in its total ring of fractions. However, if A is
Noetherian then this is the case (see Algebra, Lemma 37.16).

https://stacks.math.columbia.edu/tag/02IM
https://stacks.math.columbia.edu/tag/033I
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Lemma 7.2.033J Let X be a scheme. The following are equivalent:
(1) The scheme X is normal.
(2) For every affine open U ⊂ X the ring OX(U) is normal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

normal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is normal.
Moreover, if X is normal then every open subscheme is normal.

Proof. This is clear from the definitions. □

Lemma 7.3.033K A normal scheme is reduced.

Proof. Immediate from the definitions. □

Lemma 7.4.033L Let X be an integral scheme. Then X is normal if and only if for
every affine open U ⊂ X the ring OX(U) is a normal domain.

Proof. This follows from Algebra, Lemma 37.10. □

Lemma 7.5.0357 Let X be a scheme such that any quasi-compact open has a finite
number of irreducible components. The following are equivalent:

(1) X is normal, and
(2) X is a disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let X be a nor-
mal scheme such that every quasi-compact open has a finite number of irreducible
components. If X is affine then X satisfies (2) by Algebra, Lemma 37.16. For
a general X, let X =

⋃
Xi be an affine open covering. Note that also each Xi

has but a finite number of irreducible components, and the lemma holds for each
Xi. Let T ⊂ X be an irreducible component. By the affine case each intersection
T ∩Xi is open in Xi and an integral normal scheme. Hence T ⊂ X is open, and an
integral normal scheme. This proves that X is the disjoint union of its irreducible
components, which are integral normal schemes. □

Lemma 7.6.033M Let X be a Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a finite disjoint union of normal integral schemes.

Proof. This is a special case of Lemma 7.5 because a Noetherian scheme has a
Noetherian underlying topological space (Lemma 5.5 and Topology, Lemma 9.2).

□

Lemma 7.7.033N Let X be a locally Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 7.6. □

Remark 7.8.033O Let X be a normal scheme. If X is locally Noetherian then we see
that X is integral if and only if X is connected, see Lemma 7.7. But there exists a
connected affine scheme X such that OX,x is a domain for all x ∈ X, but X is not
irreducible, see Examples, Section 6. This example is even a normal scheme (proof
omitted), so beware!

https://stacks.math.columbia.edu/tag/033J
https://stacks.math.columbia.edu/tag/033K
https://stacks.math.columbia.edu/tag/033L
https://stacks.math.columbia.edu/tag/0357
https://stacks.math.columbia.edu/tag/033M
https://stacks.math.columbia.edu/tag/033N
https://stacks.math.columbia.edu/tag/033O
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Lemma 7.9.0358 Let X be an integral normal scheme. Then Γ(X,OX) is a normal
domain.

Proof. Set R = Γ(X,OX). It is clear that R is a domain. Suppose f = a/b
is an element of its fraction field which is integral over R. Say we have fd +∑
i=0,...,d−1 aif

i = 0 with ai ∈ R. Let U ⊂ X be a nonempty affine open. Since
b ∈ R is not zero and since X is integral we see that also b|U ∈ OX(U) is not zero.
Hence a/b is an element of the fraction field of OX(U) which is integral over OX(U)
(because we can use the same polynomial fd+

∑
i=0,...,d−1 ai|Uf i = 0 on U). Since

OX(U) is a normal domain (Lemma 7.2), we see that fU = (a|U )/(b|U ) ∈ OX(U).
It is clear that fU |V = fV whenever V ⊂ U ⊂ X are nonempty affine open. Hence
the local sections fU glue to an element g ∈ R = Γ(X,OX). Then bg and a restrict
to the same element of OX(U) for all U as above, hence bg = a, in other words, g
maps to f in the fraction field of R. □

8. Cohen-Macaulay schemes

02IN Recall, see Algebra, Definition 104.1, that a local Noetherian ring (R,m) is said
to be Cohen-Macaulay if depthm(R) = dim(R). Recall that a Noetherian ring R
is said to be Cohen-Macaulay if every local ring Rp of R is Cohen-Macaulay, see
Algebra, Definition 104.6.

Definition 8.1.02IO Let X be a scheme. We say X is Cohen-Macaulay if for every
x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the ring
OX(U) is Noetherian and Cohen-Macaulay.

Lemma 8.2.02IP Let X be a scheme. The following are equivalent:
(1) X is Cohen-Macaulay,
(2) X is locally Noetherian and all of its local rings are Cohen-Macaulay, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x

is Cohen-Macaulay.

Proof. Algebra, Lemma 104.5 says that the localization of a Cohen-Macaulay local
ring is Cohen-Macaulay. The lemma follows by combining this with Lemma 5.2,
with the existence of closed points on locally Noetherian schemes (Lemma 5.9), and
the definitions. □

Lemma 8.3.02IQ Let X be a scheme. The following are equivalent:
(1) The scheme X is Cohen-Macaulay.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and Cohen-

Macaulay.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and Cohen-Macaulay.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Cohen-Macaulay.
Moreover, if X is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 5.2 and 8.2. □

More information on Cohen-Macaulay schemes and depth can be found in Coho-
mology of Schemes, Section 11.

https://stacks.math.columbia.edu/tag/0358
https://stacks.math.columbia.edu/tag/02IO
https://stacks.math.columbia.edu/tag/02IP
https://stacks.math.columbia.edu/tag/02IQ
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9. Regular schemes

02IR Recall, see Algebra, Definition 60.10, that a local Noetherian ring (R,m) is said to
be regular if m can be generated by dim(R) elements. Recall that a Noetherian ring
R is said to be regular if every local ring Rp of R is regular, see Algebra, Definition
110.7.
Definition 9.1.02IS Let X be a scheme. We say X is regular, or nonsingular if for
every x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the
ring OX(U) is Noetherian and regular.
Lemma 9.2.02IT Let X be a scheme. The following are equivalent:

(1) X is regular,
(2) X is locally Noetherian and all of its local rings are regular, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x

is regular.
Proof. By the discussion in Algebra preceding Algebra, Definition 110.7 we know
that the localization of a regular local ring is regular. The lemma follows by combin-
ing this with Lemma 5.2, with the existence of closed points on locally Noetherian
schemes (Lemma 5.9), and the definitions. □

Lemma 9.3.02IU Let X be a scheme. The following are equivalent:
(1) The scheme X is regular.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and regular.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and regular.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is regular.
Moreover, if X is regular then every open subscheme is regular.
Proof. Combine Lemmas 5.2 and 9.2. □

Lemma 9.4.0569 A regular scheme is normal.
Proof. See Algebra, Lemma 157.5. □

10. Dimension

04MS The dimension of a scheme is just the dimension of its underlying topological space.
Definition 10.1.04MT Let X be a scheme.

(1) The dimension of X is just the dimension of X as a topological spaces, see
Topology, Definition 10.1.

(2) For x ∈ X we denote dimx(X) the dimension of the underlying topological
space of X at x as in Topology, Definition 10.1. We say dimx(X) is the
dimension of X at x.

As a scheme has a sober underlying topological space (Schemes, Lemma 11.1) we
may compute the dimension of X as the supremum of the lengths n of chains

T0 ⊂ T1 ⊂ . . . ⊂ Tn

of irreducible closed subsets of X, or as the supremum of the lengths n of chains of
specializations

ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0

https://stacks.math.columbia.edu/tag/02IS
https://stacks.math.columbia.edu/tag/02IT
https://stacks.math.columbia.edu/tag/02IU
https://stacks.math.columbia.edu/tag/0569
https://stacks.math.columbia.edu/tag/04MT
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of points of X.

Lemma 10.2.04MU Let X be a scheme. The following are equal
(1) The dimension of X.
(2) The supremum of the dimensions of the local rings of X.
(3) The supremum of dimx(X) for x ∈ X.

Proof. Note that given a chain of specializations

ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0

of points of X all of the points ξi correspond to prime ideals of the local ring of
X at ξ0 by Schemes, Lemma 13.2. Hence we see that the dimension of X is the
supremum of the dimensions of its local rings. In particular dimx(X) ≥ dim(OX,x)
as dimx(X) is the minimum of the dimensions of open neighbourhoods of x. Thus
supx∈X dimx(X) ≥ dim(X). On the other hand, it is clear that supx∈X dimx(X) ≤
dim(X) as dim(U) ≤ dim(X) for any open subset of X. □

Lemma 10.3.02IZ Let X be a scheme. Let Y ⊂ X be an irreducible closed subset. Let
ξ ∈ Y be the generic point. Then

codim(Y,X) = dim(OX,ξ)

where the codimension is as defined in Topology, Definition 11.1.

Proof. By Topology, Lemma 11.2 we may replace X by an affine open neighbour-
hood of ξ. In this case the result follows easily from Algebra, Lemma 26.3. □

Lemma 10.4.0BA9 Let X be a scheme. Let x ∈ X. Then x is a generic point of an
irreducible component of X if and only if dim(OX,x) = 0.

Proof. This follows from Lemma 10.3 for example. □

Lemma 10.5.0AAX A locally Noetherian scheme of dimension 0 is a disjoint union of
spectra of Artinian local rings.

Proof. A Noetherian ring of dimension 0 is a finite product of Artinian local rings,
see Algebra, Proposition 60.7. Hence an affine open of a locally Noetherian scheme
X of dimension 0 has discrete underlying topological space. This implies that the
topology on X is discrete. The lemma follows easily from these remarks. □

Lemma 10.6.0CKV Email from Ofer
Gabber dated June
4, 2016

Let X be a scheme of dimension zero. The following are equivalent
(1) X is quasi-separated,
(2) X is separated,
(3) X is Hausdorff,
(4) every affine open is closed.

In this case the connected components of X are points and every quasi-compact
open of X is affine. In particular, if X is quasi-compact, then X is affine.

Proof. As the dimension of X is zero, we see that for any affine open U ⊂ X the
space U is profinite and satisfies a bunch of other properties which we will use freely
below, see Algebra, Lemma 26.5. We choose an affine open covering X =

⋃
Ui.

If (4) holds, then Ui ∩Uj is a closed subset of Ui, hence quasi-compact, hence X is
quasi-separated, by Schemes, Lemma 21.6, hence (1) holds.

https://stacks.math.columbia.edu/tag/04MU
https://stacks.math.columbia.edu/tag/02IZ
https://stacks.math.columbia.edu/tag/0BA9
https://stacks.math.columbia.edu/tag/0AAX
https://stacks.math.columbia.edu/tag/0CKV
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If (1) holds, then Ui ∩ Uj is a quasi-compact open of Ui hence closed in Ui. Then
Ui ∩ Uj → Ui is an open immersion whose image is closed, hence it is a closed
immersion. In particular Ui ∩ Uj is affine and O(Ui) → OX(Ui ∩ Uj) is surjective.
Thus X is separated by Schemes, Lemma 21.7, hence (2) holds.
Assume (2) and let x, y ∈ X. Say x ∈ Ui. If y ∈ Ui too, then we can find disjoint
open neighbourhoods of x and y because Ui is Hausdorff. Say y ̸∈ Ui and y ∈ Uj .
Then y ̸∈ Ui ∩ Uj which is an affine open of Uj and hence closed in Uj . Thus we
can find an open neighbourhood of y not meeting Ui and we conclude that X is
Hausdorff, hence (3) holds.
Assume (3). Let U ⊂ X be affine open. Then U is closed in X by Topology, Lemma
12.4. This proves (4) holds.
Assume X satisfies the equivalent conditions (1) – (4). We prove the final state-
ments of the lemma. Say x, y ∈ X with x ̸= y. Since y does not specialize to
x we can choose U ⊂ X affine open with x ∈ U and y ̸∈ U . Then we see that
X = U ⨿ (X \ U) is a decomposistion into open and closed subsets which shows
that x and y do not belong to the same connected component of X. Next, assume
U ⊂ X is a quasi-compact open. Write U = U1 ∪ . . .∪Un as a union of affine opens.
We will prove by induction on n that U is affine. This immediately reduces us to
the case n = 2. In this case we have U = (U1 \U2) ⨿ (U1 ∩U2) ⨿ (U2 \U1) and the
arguments above show that each of the pieces is affine. □

11. Catenary schemes

02IV Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 11.4.

Definition 11.1.02IW Let S be a scheme. We say S is catenary if the underlying
topological space of S is catenary.

Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 105.1.

Lemma 11.2.02IX Let S be a scheme. The following are equivalent
(1) S is catenary,
(2) there exists an open covering of S all of whose members are catenary

schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is catenary, and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the

spectrum of a catenary ring.
Moreover, in this case any locally closed subscheme of S is catenary as well.

Proof. Combine Topology, Lemma 11.5, and Algebra, Lemma 105.2. □

Lemma 11.3.02IY Let S be a locally Noetherian scheme. The following are equivalent:
(1) S is catenary, and

https://stacks.math.columbia.edu/tag/02IW
https://stacks.math.columbia.edu/tag/02IX
https://stacks.math.columbia.edu/tag/02IY
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(2) locally in the Zariski topology there exists a dimension function on S (see
Topology, Definition 20.1).

Proof. This follows from Topology, Lemmas 11.5, 20.2, and 20.4, Schemes, Lemma
11.1 and finally Lemma 5.5. □

It turns out that a scheme is catenary if and only if its local rings are catenary.

Lemma 11.4.02J0 Let X be a scheme. The following are equivalent
(1) X is catenary, and
(2) for any x ∈ X the local ring OX,x is catenary.

Proof. Assume X is catenary. Let x ∈ X. By Lemma 11.2 we may replace X
by an affine open neighbourhood of x, and then Γ(X,OX) is a catenary ring. By
Algebra, Lemma 105.4 any localization of a catenary ring is catenary. Whence
OX,x is catenary.
Conversely assume all local rings of X are catenary. Let Y ⊂ Y ′ be an inclusion of
irreducible closed subsets of X. Let ξ ∈ Y be the generic point. Let p ⊂ OX,ξ be the
prime corresponding to the generic point of Y ′, see Schemes, Lemma 13.2. By that
same lemma the irreducible closed subsets of X in between Y and Y ′ correspond
to primes q ⊂ OX,ξ with p ⊂ q ⊂ mξ. Hence we see all maximal chains of these are
finite and have the same length as OX,ξ is a catenary ring. □

12. Serre’s conditions

033P Here are two technical notions that are often useful. See also Cohomology of
Schemes, Section 11.

Definition 12.1.033Q Let X be a locally Noetherian scheme. Let k ≥ 0.
(1) We say X is regular in codimension k, or we say X has property (Rk) if for

every x ∈ X we have
dim(OX,x) ≤ k ⇒ OX,x is regular

(2) We say X has property (Sk) if for every x ∈ X we have depth(OX,x) ≥
min(k, dim(OX,x)).

The phrase “regular in codimension k” makes sense since we have seen in Section
11 that if Y ⊂ X is irreducible closed with generic point x, then dim(OX,x) =
codim(Y,X). For example condition (R0) means that for every generic point η ∈ X
of an irreducible component of X the local ring OX,η is a field. But for general
Noetherian schemes it can happen that the regular locus of X is badly behaved, so
care has to be taken.

Lemma 12.2.0B3C Let X be a locally Noetherian scheme. Then X is regular if and
only if X has (Rk) for all k ≥ 0.

Proof. Follows from Lemma 9.2 and the definitions. □

Lemma 12.3.0342 Let X be a locally Noetherian scheme. Then X is Cohen-Macaulay
if and only if X has (Sk) for all k ≥ 0.

Proof. By Lemma 8.2 we reduce to looking at local rings. Hence the lemma is
true because a Noetherian local ring is Cohen-Macaulay if and only if it has depth
equal to its dimension. □

https://stacks.math.columbia.edu/tag/02J0
https://stacks.math.columbia.edu/tag/033Q
https://stacks.math.columbia.edu/tag/0B3C
https://stacks.math.columbia.edu/tag/0342
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Lemma 12.4.0344 Let X be a locally Noetherian scheme. Then X is reduced if and
only if X has properties (S1) and (R0).

Proof. This is Algebra, Lemma 157.3. □

Lemma 12.5.0345 Let X be a locally Noetherian scheme. Then X is normal if and
only if X has properties (S2) and (R1).

Proof. This is Algebra, Lemma 157.4. □

Lemma 12.6.0BX2 Let X be a locally Noetherian scheme which is normal and has
dimension ≤ 1. Then X is regular.

Proof. This follows from Lemma 12.5 and the definitions. □

Lemma 12.7.0B3D Let X be a locally Noetherian scheme which is normal and has
dimension ≤ 2. Then X is Cohen-Macaulay.

Proof. This follows from Lemma 12.5 and the definitions. □

13. Japanese and Nagata schemes

033R The notions considered in this section are not prominently defined in EGA. A
“universally Japanese scheme” is mentioned and defined in [DG67, IV Corollary
5.11.4]. A “Japanese scheme” is mentioned in [DG67, IV Remark 10.4.14 (ii)] but
no definition is given. A Nagata scheme (as given below) occurs in a few places in
the literature (see for example [Liu02, Definition 8.2.30] and [Gre76, Page 142]).
We briefly recall that a domain R is called Japanese if the integral closure of R in
any finite extension of its fraction field is finite over R. A ring R is called universally
Japanese if for any finite type ring map R → S with S a domain S is Japanese. A
ring R is called Nagata if it is Noetherian and R/p is Japanese for every prime p of
R.

Definition 13.1.033S Let X be a scheme.
(1) Assume X integral. We say X is Japanese if for every x ∈ X there exists

an affine open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is
Japanese (see Algebra, Definition 161.1).

(2) We say X is universally Japanese if for every x ∈ X there exists an affine
open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is universally
Japanese (see Algebra, Definition 162.1).

(3) We say X is Nagata if for every x ∈ X there exists an affine open neigh-
bourhood x ∈ U ⊂ X such that the ring OX(U) is Nagata (see Algebra,
Definition 162.1).

Being Nagata is the same thing as being locally Noetherian and universally Japan-
ese, see Lemma 13.8.

Remark 13.2.033T In [Hoo72] a (locally Noetherian) scheme X is called Japanese if for
every x ∈ X and every associated prime p of OX,x the ring OX,x/p is Japanese. We
do not use this definition since there exists a one dimensional Noetherian domain
with excellent (in particular Japanese) local rings whose normalization is not finite.
See [Hoc73, Example 1] or [HL07] or [ILO14, Exposé XIX]. On the other hand, we
could circumvent this problem by calling a scheme X Japanese if for every affine
open Spec(A) ⊂ X the ring A/p is Japanese for every associated prime p of A.

https://stacks.math.columbia.edu/tag/0344
https://stacks.math.columbia.edu/tag/0345
https://stacks.math.columbia.edu/tag/0BX2
https://stacks.math.columbia.edu/tag/0B3D
https://stacks.math.columbia.edu/tag/033S
https://stacks.math.columbia.edu/tag/033T
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Lemma 13.3.033U A Nagata scheme is locally Noetherian.

Proof. This is true because a Nagata ring is Noetherian by definition. □

Lemma 13.4.033V Let X be an integral scheme. The following are equivalent:
(1) The scheme X is Japanese.
(2) For every affine open U ⊂ X the domain OX(U) is Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Japanese.
Moreover, if X is Japanese then every open subscheme is Japanese.

Proof. This follows from Lemma 4.3 and Algebra, Lemmas 161.3 and 161.4. □

Lemma 13.5.033W Let X be a scheme. The following are equivalent:
(1) The scheme X is universally Japanese.
(2) For every affine open U ⊂ X the ring OX(U) is universally Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

universally Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is universally Japanese.
Moreover, if X is universally Japanese then every open subscheme is universally
Japanese.

Proof. This follows from Lemma 4.3 and Algebra, Lemmas 162.4 and 162.7. □

Lemma 13.6.033X Let X be a scheme. The following are equivalent:
(1) The scheme X is Nagata.
(2) For every affine open U ⊂ X the ring OX(U) is Nagata.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Nagata.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Nagata.
Moreover, if X is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma 4.3 and Algebra, Lemmas 162.6 and 162.7. □

Lemma 13.7.033Y Let X be a locally Noetherian scheme. Then X is Nagata if and
only if every integral closed subscheme Z ⊂ X is Japanese.

Proof. Assume X is Nagata. Let Z ⊂ X be an integral closed subscheme. Let
z ∈ Z. Let Spec(A) = U ⊂ X be an affine open containing z such that A is
Nagata. Then Z ∩ U ∼= Spec(A/p) for some prime p, see Schemes, Lemma 10.1
(and Definition 3.1). By Algebra, Definition 162.1 we see that A/p is Japanese.
Hence Z is Japanese by definition.
Assume every integral closed subscheme of X is Japanese. Let Spec(A) = U ⊂
X be any affine open. As X is locally Noetherian we see that A is Noetherian
(Lemma 5.2). Let p ⊂ A be a prime ideal. We have to show that A/p is Japanese.
Let T ⊂ U be the closed subset V (p) ⊂ Spec(A). Let T ⊂ X be the closure.
Then T is irreducible as the closure of an irreducible subset. Hence the reduced
closed subscheme defined by T is an integral closed subscheme (called T again), see

https://stacks.math.columbia.edu/tag/033U
https://stacks.math.columbia.edu/tag/033V
https://stacks.math.columbia.edu/tag/033W
https://stacks.math.columbia.edu/tag/033X
https://stacks.math.columbia.edu/tag/033Y
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Schemes, Lemma 12.4. In other words, Spec(A/p) is an affine open of an integral
closed subscheme of X. This subscheme is Japanese by assumption and by Lemma
13.4 we see that A/p is Japanese. □

Lemma 13.8.033Z Let X be a scheme. The following are equivalent:
(1) X is Nagata, and
(2) X is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition 162.15. □

This discussion will be continued in Morphisms, Section 18.

14. The singular locus

07R0 Here is the definition.

Definition 14.1.07R1 Let X be a locally Noetherian scheme. The regular locus Reg(X)
of X is the set of x ∈ X such that OX,x is a regular local ring. The singular locus
Sing(X) is the complement X \ Reg(X), i.e., the set of points x ∈ X such that
OX,x is not a regular local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations,
see the discussion preceding Algebra, Definition 110.7. However, for general locally
Noetherian schemes the regular locus need not be open. In More on Algebra,
Section 47 the reader can find some criteria for when this is the case. We will
discuss this further in Morphisms, Section 19.

15. Local irreducibility

0BQ1 Recall that in More on Algebra, Section 106 we introduced the notion of a (geo-
metrically) unibranch local ring.

Definition 15.1.0BQ2 [GD67, Chapter IV
(6.15.1)]

Let X be a scheme. Let x ∈ X. We say X is unibranch at x if the
local ring OX,x is unibranch. We say X is geometrically unibranch at x if the local
ring OX,x is geometrically unibranch. We say X is unibranch if X is unibranch at all
of its points. We say X is geometrically unibranch if X is geometrically unibranch
at all of its points.

To be sure, it can happen that a local ring A is geometrically unibranch (in the sense
of More on Algebra, Definition 106.1) but the scheme Spec(A) is not geometrically
unibranch in the sense of Definition 15.1. For example this happens if A is the local
ring at the vertex of the cone over an irreducible plane curve which has ordinary
double point singularity (a node).

Lemma 15.2.0BQ3 A normal scheme is geometrically unibranch.

Proof. This follows from the definitions. Namely, a scheme is normal if the local
rings are normal domains. It is immediate from the More on Algebra, Definition
106.1 that a local normal domain is geometrically unibranch. □

Lemma 15.3.0BQ4 Compare with
[Art66, Proposition
2.3]

Let X be a Noetherian scheme. The following are equivalent
(1) X is geometrically unibranch (Definition 15.1),
(2) for every point x ∈ X which is not the generic point of an irreducible

component of X, the punctured spectrum of the strict henselization Osh
X,x is

connected.

https://stacks.math.columbia.edu/tag/033Z
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Proof. More on Algebra, Lemma 106.5 shows that (1) implies that the punctured
spectra in (2) are irreducible and in particular connected.
Assume (2). Let x ∈ X. We have to show that OX,x is geometrically unibranch. By
induction on dim(OX,x) we may assume that the result holds for every nontrivial
generalization of x. We may replace X by Spec(OX,x). In other words, we may
assume that X = Spec(A) with A local and that Ap is geometrically unibranch for
each nonmaximal prime p ⊂ A.
Let Ash be the strict henselization of A. If q ⊂ Ash is a prime lying over p ⊂ A, then
Ap → Ashq is a filtered colimit of étale algebras. Hence the strict henselizations of
Ap and Ashq are isomorphic. Thus by More on Algebra, Lemma 106.5 we conclude
that Ashq has a unique minimal prime ideal for every nonmaximal prime q of Ash.

Let q1, . . . , qr be the minimal primes of Ash. We have to show that r = 1. By the
above we see that V (q1)∩V (qj) = {msh} for j = 2, . . . , r. Hence V (q1)\{msh} is an
open and closed subset of the punctured spectrum of Ash which is a contradiction
with the assumption that this punctured spectrum is connected unless r = 1. □

Definition 15.4.0C38 Let X be a scheme. Let x ∈ X. The number of branches of X
at x is the number of branches of the local ring OX,x as defined in More on Algebra,
Definition 106.6. The number of geometric branches of X at x is the number of
geometric branches of the local ring OX,x as defined in More on Algebra, Definition
106.6.

Often we want to compare this with the branches of the complete local ring, but
the comparison is not straightforward in general; some information on this topic
can be found in More on Algebra, Section 108.

Lemma 15.5.0E20 Let X be a scheme and x ∈ X. Let Xi, i ∈ I be the irreducible
components of X passing through x. Then the number of (geometric) branches of
X at x is the sum over i ∈ I of the number of (geometric) branches of Xi at x.

Proof. We view the Xi as integral closed subschemes of X, see Schemes, Definition
12.5 and Lemma 3.4. Observe that the number of (geometric) branches of Xi at
x is at least 1 for all i (essentially by definition). Recall that the Xi correspond
1-to-1 with the minimal prime ideals pi ⊂ OX,x, see Algebra, Lemma 26.3. Thus,
if I is infinite, then OX,x has infinitely many minimal primes, whence both Oh

X,x

and Osh
X,x have infinitely many minimal primes (combine Algebra, Lemmas 30.5

and 30.7 and the injectivity of the maps OX,x → Oh
X,x → Osh

X,x). In this case the
number of (geometric) branches of X at x is defined to be ∞ which is also true
for the sum. Thus we may assume I is finite. Let A′ be the integral closure of
OX,x in the total ring of fractions Q of (OX,x)red. Let A′

i be the integral closure
of OX,x/pi in the total ring of fractions Qi of OX,x/pi. By Algebra, Lemma 25.4
we have Q =

∏
i∈I Qi. Thus A′ =

∏
A′
i. Then the equality of the lemma follows

from More on Algebra, Lemma 106.7 which expresses the number of (geometric)
branches in terms of the maximal ideals of A′. □

Lemma 15.6.0C39 Let X be a scheme. Let x ∈ X.
(1) The number of branches of X at x is 1 if and only if X is unibranch at x.
(2) The number of geometric branches of X at x is 1 if and only if X is geo-

metrically unibranch at x.

https://stacks.math.columbia.edu/tag/0C38
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Proof. This lemma follows immediately from the definitions and the corresponding
result for rings, see More on Algebra, Lemma 106.7. □

16. Characterizing modules of finite type and finite presentation

01PA Let X be a scheme. Let F be a quasi-coherent OX -module. The following lemma
implies that F is of finite type (see Modules, Definition 9.1) if and only if F is on
each open affine Spec(A) = U ⊂ X of the form M̃ for some finite type A-module
M . Similarly, F is of finite presentation (see Modules, Definition 11.1) if and only
if F is on each open affine Spec(A) = U ⊂ X of the form M̃ for some finitely
presented A-module M .

Lemma 16.1.01PB Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf of
OX-modules M̃ is a finite type OX-module if and only if M is a finite R-module.

Proof. Assume M̃ is a finite type OX -module. This means there exists an open
covering of X such that M̃ restricted to the members of this covering is globally
generated by finitely many sections. Thus there also exists a standard open covering
X =

⋃
i=1,...,nD(fi) such that M̃ |D(fi) is generated by finitely many sections. Thus

Mfi
is finitely generated for each i. Hence we conclude by Algebra, Lemma 23.2. □

Lemma 16.2.01PC Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf
of OX-modules M̃ is an OX-module of finite presentation if and only if M is an
R-module of finite presentation.

Proof. Assume M̃ is an OX -module of finite presentation. By Lemma 16.1 we see
that M is a finite R-module. Choose a surjection Rn → M with kernel K. By
Schemes, Lemma 5.4 there is a short exact sequence

0 → K̃ →
⊕

O⊕n
X → M̃ → 0

By Modules, Lemma 11.3 we see that K̃ is a finite type OX -module. Hence by
Lemma 16.1 again we see that K is a finite R-module. Hence M is an R-module
of finite presentation. □

17. Sections over principal opens

0B5K Here is a typical result of this kind. We will use a more naive but more direct
method of proof in later lemmas.

Lemma 17.1.01P7 Let X be a scheme. Let f ∈ Γ(X,OX). Denote Xf ⊂ X the
open where f is invertible, see Schemes, Lemma 6.2. If X is quasi-compact and
quasi-separated, the canonical map

Γ(X,OX)f −→ Γ(Xf ,OX)

is an isomorphism. Moreover, if F is a quasi-coherent sheaf of OX-modules the
map

Γ(X,F)f −→ Γ(Xf ,F)
is an isomorphism.

https://stacks.math.columbia.edu/tag/01PB
https://stacks.math.columbia.edu/tag/01PC
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Proof. Write R = Γ(X,OX). Consider the canonical morphism
φ : X −→ Spec(R)

of schemes, see Schemes, Lemma 6.4. Then the inverse image of the standard
open D(f) on the right hand side is Xf on the left hand side. Moreover, since X
is assumed quasi-compact and quasi-separated the morphism φ is quasi-compact
and quasi-separated, see Schemes, Lemma 19.2 and 21.13. Hence by Schemes,
Lemma 24.1 we see that φ∗F is quasi-coherent. Hence we see that φ∗F = M̃ with
M = Γ(X,F) as an R-module. Thus we see that

Γ(Xf ,F) = Γ(D(f), φ∗F) = Γ(D(f), M̃) = Mf

which is exactly the content of the lemma. The first displayed isomorphism of the
lemma follows by taking F = OX . □

Recall that given a scheme X, an invertible sheaf L on X, and a sheaf of OX -
modules F we get a graded ring Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n) and a graded Γ∗(X,L)-

module Γ∗(X,L,F) =
⊕

n∈Z Γ(X,F ⊗OX
L⊗n) see Modules, Definition 25.7. If we

have moreover a section s ∈ Γ(X,L), then we obtain a map
(17.1.1)0B5L Γ∗(X,L,F)(s) −→ Γ(Xs,F|Xs

)

which sends t/sn where t ∈ Γ(X,F ⊗OX
L⊗n) to t|Xs

⊗ s|−nXs
. This makes sense

because Xs ⊂ X is by definition the open over which s has an inverse, see Modules,
Lemma 25.10.

Lemma 17.2.01PW Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). Let F be a quasi-coherent OX-module.

(1) If X is quasi-compact, then (17.1.1) is injective, and
(2) if X is quasi-compact and quasi-separated, then (17.1.1) is an isomorphism.

In particular, the canonical map
Γ∗(X,L)(s) −→ Γ(Xs,OX), a/sn 7−→ a⊗ s−n

is an isomorphism if X is quasi-compact and quasi-separated.

Proof. Assume X is quasi-compact. Choose a finite affine open covering X =
U1 ∪ . . .∪Um with Uj affine and L|Uj

∼= OUj
. Via this isomorphism, the image s|Uj

corresponds to some fj ∈ Γ(Uj ,OUj ). Then Xs ∩ Uj = D(fj).
Proof of (1). Let t/sn be an element in the kernel of (17.1.1). Then t|Xs

= 0. Hence
(t|Uj

)|D(fj) = 0. By Lemma 17.1 we conclude that fej

j t|Uj
= 0 for some ej ≥ 0. Let

e = max(ej). Then we see that t⊗ se restricts to zero on Uj for all j, hence is zero.
Since t/sn is equal to t ⊗ se/sn+e in Γ∗(X,L,F)(s) we conclude that t/sn = 0 as
desired.
Proof of (2). Assume X is quasi-compact and quasi-separated. Then Uj ∩ Uj′ is
quasi-compact for all pairs j, j′, see Schemes, Lemma 21.6. By part (1) we know
(17.1.1) is injective. Let t′ ∈ Γ(Xs,F|Xs

). For every j, there exist an integer ej ≥ 0
and t′j ∈ Γ(Uj ,F|Uj

) such that t′|D(fj) corresponds to t′j/f
ej

j via the isomorphism
of Lemma 17.1. Set e = max(ej) and

tj = f
e−ej

j t′j ⊗ qej ∈ Γ(Uj , (F ⊗OX
L⊗e)|Uj )

where qj ∈ Γ(Uj ,L|Uj
) is the trivializing section coming from the isomorphism

L|Uj
∼= OUj

. In particular we have s|Uj
= fjqj . Using this a calculation shows

https://stacks.math.columbia.edu/tag/01PW
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that tj |Uj∩Uj′ and tj′ |Uj∩Uj′ map to the same section of F over Uj ∩ Uj′ ∩Xs. By
quasi-compactness of Uj ∩Uj′ and part (1) there exists an integer e′ ≥ 0 such that

tj |Uj∩Uj′ ⊗ se
′
|Uj∩Uj′ = tj′ |Uj∩Uj′ ⊗ se

′
|Uj∩Uj′

as sections of F ⊗ L⊗e+e′ over Uj ∩Uj′ . We may choose the same e′ to work for all
pairs j, j′. Then the sheaf conditions implies there is a section t ∈ Γ(X,F ⊗L⊗e+e′)
whose restriction to Uj is tj⊗se

′ |Uj
. A simple computation shows that t/se+e′ maps

to t′ as desired. □

Let X be a scheme. Let L be an invertible OX -module. Let F and G be quasi-
coherent OX -modules. Consider the graded Γ∗(X,L)-module

M =
⊕

n∈Z
HomOX

(F ,G ⊗OX
L⊗n)

Next, let s ∈ Γ(X,L) be a section. Then there is a canonical map

(17.2.1)0B5M M(s) −→ HomOXs
(F|Xs

,G|Xs
)

which sends α/sn to the map α|Xs ⊗ s|−nXs
. The following lemma, combined with

Lemma 22.4, says roughly that, if X is quasi-compact and quasi-separated, the
category of finitely presented OXs

-modules is the category of finitely presented
OX -modules with the multiplicative system of maps sn : F → F ⊗OX

L⊗n inverted.

Lemma 17.3.01XQ Let X be a scheme. Let L be an invertible OX-module. Let s ∈
Γ(X,L) be a section. Let F , G be quasi-coherent OX-modules.

(1) If X is quasi-compact and F is of finite type, then (17.2.1) is injective, and
(2) if X is quasi-compact and quasi-separated and F is of finite presentation,

then (17.2.1) is bijective.

Proof. We first prove the lemma in case X = Spec(A) is affine and L = OX . In
this case s corresponds to an element f ∈ A. Say F = M̃ and G = Ñ for some
A-modules M and N . Then the lemma translates (via Lemmas 16.1 and 16.2) into
the following algebra statements

(1) If M is a finite A-module and φ : M → N is an A-module map such that
the induced map Mf → Nf is zero, then fnφ = 0 for some n.

(2) IfM is a finitely presentedA-module, then HomA(M,N)f = HomAf
(Mf , Nf ).

The second statement is Algebra, Lemma 10.2 and we omit the proof of the first
statement.

Next, we prove (1) for general X. Assume X is quasi-compact and hoose a finite
affine open covering X = U1 ∪ . . . ∪ Um with Uj affine and L|Uj

∼= OUj
. Via this

isomorphism, the image s|Uj
corresponds to some fj ∈ Γ(Uj ,OUj

). Then Xs∩Uj =
D(fj). Let α/sn be an element in the kernel of (17.2.1). Then α|Xs = 0. Hence
(α|Uj

)|D(fj) = 0. By the affine case treated above we conclude that fej

j α|Uj
= 0 for

some ej ≥ 0. Let e = max(ej). Then we see that α⊗ se restricts to zero on Uj for
all j, hence is zero. Since α/sn is equal to α ⊗ se/sn+e in M(s) we conclude that
α/sn = 0 as desired.

Proof of (2). Since F is of finite presentation, the sheaf HomOX
(F ,G) is quasi-

coherent, see Schemes, Section 24. Moreover, it is clear that

HomOX
(F ,G ⊗OX

L⊗n) = HomOX
(F ,G) ⊗OX

L⊗n

https://stacks.math.columbia.edu/tag/01XQ
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for all n. Hence in this case the statement follows from Lemma 17.2 applied to
HomOX

(F ,G). □

18. Quasi-affine schemes

01P5
Definition 18.1.01P6 A scheme X is called quasi-affine if it is quasi-compact and
isomorphic to an open subscheme of an affine scheme.

Lemma 18.2.0EHM Let A be a ring and let U ⊂ Spec(A) be a quasi-compact open
subscheme. For F quasi-coherent on U the canonical map

˜H0(U,F)|U → F

is an isomorphism.

Proof. Denote j : U → Spec(A) the inclusion morphism. Then H0(U,F) =
H0(Spec(A), j∗F) and j∗F is quasi-coherent by Schemes, Lemma 24.1. Hence
j∗F = ˜H0(U,F) by Schemes, Lemma 7.5. Restricting back to U we get the
lemma. □

Lemma 18.3.01P8 Let X be a scheme. Let f ∈ Γ(X,OX). Assume X is quasi-compact
and quasi-separated and assume that Xf is affine. Then the canonical morphism

j : X −→ Spec(Γ(X,OX))

from Schemes, Lemma 6.4 induces an isomorphism of Xf = j−1(D(f)) onto the
standard affine open D(f) ⊂ Spec(Γ(X,OX)).

Proof. This is clear as j induces an isomorphism of rings Γ(X,OX)f → OX(Xf )
by Lemma 17.1 above. □

Lemma 18.4.01P9 Let X be a scheme. Then X is quasi-affine if and only if the
canonical morphism

X −→ Spec(Γ(X,OX))
from Schemes, Lemma 6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then X is
isomorphic to a quasi-compact open subscheme of Spec(Γ(X,OX)) and clearly X
is quasi-affine.

Assume X is quasi-affine, say X ⊂ Spec(R) is quasi-compact open. This in partic-
ular implies that X is separated, see Schemes, Lemma 23.9. Let A = Γ(X,OX).
Consider the ring map R → A coming from R = Γ(Spec(R),OSpec(R)) and the
restriction mapping of the sheaf OSpec(R). By Schemes, Lemma 6.4 we obtain a
factorization:

X −→ Spec(A) −→ Spec(R)
of the inclusion morphism. Let x ∈ X. Choose r ∈ R such that x ∈ D(r) and
D(r) ⊂ X. Denote f ∈ A the image of r in A. The open Xf of Lemma 17.1 above
is equal to D(r) ⊂ X and hence Af ∼= Rr by the conclusion of that lemma. Hence
D(r) → Spec(A) is an isomorphism onto the standard affine open D(f) of Spec(A).
Since X can be covered by such affine opens D(f) we win. □

https://stacks.math.columbia.edu/tag/01P6
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Lemma 18.5.0ARY Let U → V be an open immersion of quasi-affine schemes. Then

U

��

j
// Spec(Γ(U,OU ))

��
U // V

j′
// Spec(Γ(V,OV ))

is cartesian.

Proof. The diagram is commutative by Schemes, Lemma 6.4. Write A = Γ(U,OU )
and B = Γ(V,OV ). Let g ∈ B be such that Vg is affine and contained in U . This
means that if f is the image of g in A, then Uf = Vg. By Lemma 18.3 we see
that j′ induces an isomorphism of Vg with the standard open D(g) of Spec(B).
Thus Vg ×Spec(B) Spec(A) → Spec(A) is an isomorphism onto D(f) ⊂ Spec(A).
By Lemma 18.3 again j maps Uf isomorphically to D(f). Thus we see that Uf =
Uf ×Spec(B) Spec(A). Since by Lemma 18.4 we can cover U by Vg = Uf as above,
we see that U → U ×Spec(B) Spec(A) is an isomorphism. □

Lemma 18.6.0F82 Let X be a quasi-affine scheme. There exists an integer n ≥ 0, an
affine scheme T , and a morphism T → X such that for every morphism X ′ → X
with X ′ affine the fibre product X ′ ×X T is isomorphic to An

X′ over X ′.

Proof. By definition, there exists a ring A such that X is isomorphic to a quasi-
compact open subscheme U ⊂ Spec(A). Recall that the standard opens D(f) ⊂
Spec(A) form a basis for the topology, see Algebra, Section 17. Since U is quasi-
compact we can choose f1, . . . , fn ∈ A such that U = D(f1) ∪ . . . ∪ D(fn). Thus
we may assume X = Spec(A) \ V (I) where I = (f1, . . . , fn). We set

T = Spec(A[t, x1, . . . , xn]/(f1x1 + . . .+ fnxn − 1))

The structure morphism T → Spec(A) factors through the open X to give the
morphism T → X. If X ′ = Spec(A′) and the morphism X ′ → X corresponds
to the ring map A → A′, then the images f ′

1, . . . , f
′
n ∈ A′ of f1, . . . , fn generate

the unit ideal in A′. Say 1 = f ′
1a

′
1 + . . . + f ′

na
′
n. The base change X ′ ×X T is

the spectrum of A′[t, x1, . . . , xn]/(f ′
1x1 + . . .+ f ′

nxn − 1). We claim the A′-algebra
homomorphism

φ : A′[y1, . . . , yn] −→ A′[t, x1, . . . , xn, xn+1]/(f ′
1x1 + . . .+ f ′

nxn − 1)

sending yi to a′
it+xi is an isomorphism. The claim finishes the proof of the lemma.

The inverse of φ is given by the A′-algebra homomorphism

ψ : A′[t, x1, . . . , xn, xn+1]/(f ′
1x1 + . . .+ f ′

nxn − 1) −→ A′[y1, . . . , yn]

sending t to −1 + f ′
1y1 + . . . + f ′

nyn and xi to yi + a′
i − a′

i(f ′
1y1 + . . . + f ′

nyn) for
i = 1, . . . , n. This makes sense because

∑
f ′
ixi is mapped to∑

f ′
i(yi + a′

i − a′
i(

∑
f ′
jyj)) = (

∑
f ′
iyi) + 1 − (

∑
f ′
jyj) = 1

To see the maps are mutually inverse one computes as follows:
φ(ψ(t) = φ(−1 +

∑
f ′
iyi) = −1 +

∑
f ′
i(a′

it+ xi) = t
φ(ψ(xi)) = φ(yi + a′

i − a′
i(

∑
f ′
jyj)) = a′

it+ xi + a′
i − a′

i(
∑
f ′
ja

′
jt+ f ′

jxj) = xi
ψ(φ(yi)) = ψ(a′

it+ xi) = a′
i(−1 +

∑
f ′
jyj) + yi + a′

i − a′
i(

∑
f ′
jyj) = yi

This finishes the proof. □
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19. Flat modules

05NZ On any ringed space (X,OX) we know what it means for an OX -module to be
flat (at a point), see Modules, Definition 17.1 (Definition 17.3). For quasi-coherent
sheaves on an affine scheme this matches the notion defined in the algebra chapter.

Lemma 19.1.05P0 Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a flat OX-module if and only if M is
a flat R-module.

Proof. Flatness of F may be checked on the stalks, see Modules, Lemma 17.2.
The same is true in the case of modules over a ring, see Algebra, Lemma 39.18.
And since Fx = Mp if x corresponds to p the lemma is true. □

20. Locally free modules

05P1 On any ringed space we know what it means for an OX -module to be (finite) locally
free. On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 20.1.05JM Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a (finite) locally free OX-module of if
and only if M is a (finite) locally free R-module.

Proof. Follows from the definitions, see Modules, Definition 14.1 and Algebra,
Definition 78.1. □

We can characterize finite locally free modules in many different ways.

Lemma 20.2.05P2 Let X be a scheme. Let F be a quasi-coherent OX-module. The
following are equivalent:

(1) F is a flat OX-module of finite presentation,
(2) F is OX-module of finite presentation and for all x ∈ X the stalk Fx is a

free OX,x-module,
(3) F is a locally free, finite type OX-module,
(4) F is a finite locally free OX-module, and
(5) F is an OX-module of finite type, for every x ∈ X the stalk Fx is a free

OX,x-module, and the function
ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x

κ(x)
is locally constant in the Zariski topology on X.

Proof. This lemma immediately reduces to the affine case. In this case the lemma
is a reformulation of Algebra, Lemma 78.2. The translation uses Lemmas 16.1,
16.2, 19.1, and 20.1. □

Lemma 20.3.0FWH Let X be a reduced scheme. Let F be a quasi-coherent OX-module.
Then the equivalent conditions of Lemma 20.2 are also equivalent to

(6) F is an OX-module of finite type and the function
ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x

κ(x)
is locally constant in the Zariski topology on X.

Proof. This lemma immediately reduces to the affine case. In this case the lemma
is a reformulation of Algebra, Lemma 78.3. □
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21. Locally projective modules

05JN A consequence of the work done in the algebra chapter is that it makes sense to
define a locally projective module as follows.

Definition 21.1.05JP Let X be a scheme. Let F be a quasi-coherent OX -module. We
say F is locally projective if for every affine open U ⊂ X the OX(U)-module F(U)
is projective.

Lemma 21.2.05JQ Let X be a scheme. Let F be a quasi-coherent OX-module. The
following are equivalent

(1) F is locally projective, and
(2) there exists an affine open covering X =

⋃
Ui such that the OX(Ui)-module

F(Ui) is projective for every i.
In particular, if X = Spec(A) and F = M̃ then F is locally projective if and only
if M is a projective A-module.

Proof. First, note that if M is a projective A-module and A → B is a ring map,
then M ⊗AB is a projective B-module, see Algebra, Lemma 94.1. Hence if U is an
affine open such that F(U) is a projective OX(U)-module, then the standard open
D(f) is an affine open such that F(D(f)) is a projective OX(D(f))-module for all
f ∈ OX(U). Assume (2) holds. Let U ⊂ X be an arbitrary affine open. We can
find an open covering U =

⋃
j=1,...,mD(fj) by finitely many standard opens D(fj)

such that for each j the open D(fj) is a standard open of some Ui, see Schemes,
Lemma 11.5. Hence, if we set A = OX(U) and if M is an A-module such that F|U
corresponds to M , then we see that Mfj

is a projective Afj
-module. It follows that

A → B =
∏
Afj

is a faithfully flat ring map such that M ⊗A B is a projective
B-module. Hence M is projective by Algebra, Theorem 95.6. □

Lemma 21.3.060M Let f : X → Y be a morphism of schemes. Let G be a quasi-
coherent OY -module. If G is locally projective on Y , then f∗G is locally projective
on X.

Proof. See Algebra, Lemma 94.1. □

22. Extending quasi-coherent sheaves

01PD It is sometimes useful to be able to show that a given quasi-coherent sheaf on an
open subscheme extends to the whole scheme.

Lemma 22.1.01PE Let j : U → X be a quasi-compact open immersion of schemes.
(1) Any quasi-coherent sheaf on U extends to a quasi-coherent sheaf on X.
(2) Let F be a quasi-coherent sheaf on X. Let G ⊂ F|U be a quasi-coherent

subsheaf. There exists a quasi-coherent subsheaf H of F such that H|U = G
as subsheaves of F|U .

(3) Let F be a quasi-coherent sheaf on X. Let G be a quasi-coherent sheaf on
U . Let φ : G → F|U be a morphism of OU -modules. There exists a quasi-
coherent sheaf H of OX-modules and a map ψ : H → F such that H|U = G
and that ψ|U = φ.

Proof. An immersion is separated (see Schemes, Lemma 23.8) and j is quasi-
compact by assumption. Hence for any quasi-coherent sheaf G on U the sheaf j∗G
is an extension to X. See Schemes, Lemma 24.1 and Sheaves, Section 31.
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Assume F , G are as in (2). Then j∗G is a quasi-coherent sheaf on X (see above).
It is a subsheaf of j∗j

∗F . Hence the kernel
H = Ker(F ⊕ j∗G −→ j∗j

∗F)
is quasi-coherent as well, see Schemes, Section 24. It is formal to check that H ⊂ F
and that H|U = G (using the material in Sheaves, Section 31 again).
Part (3) is proved in the same manner as (2). Just take H = Ker(F ⊕j∗G → j∗j

∗F)
with its obvious map to F and its obvious identification with G over U . □

Lemma 22.2.01PF Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let F be a quasi-coherent OX-module. Let G ⊂ F|U be
a quasi-coherent OU -submodule which is of finite type. Then there exists a quasi-
coherent submodule G′ ⊂ F which is of finite type such that G′|U = G.

Proof. Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such
that X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove

the lemma for the case n = 1. Then we can successively extend G to a G1 over
U ∪ U1 to a G2 over U ∪ U1 ∪ U2 to a G3 over U ∪ U1 ∪ U2 ∪ U3, and so on. Thus
we reduce to the case n = 1.
Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U , V are quasi-compact open, we see that U ∩ V is a quasi-compact open. It
suffices to prove the lemma for the system (V,U ∩V,F|V ,G|U∩V ) since we can glue
the resulting sheaf G′ over V to the given sheaf G over U along the common value
over U ∩ V . Thus we reduce to the case where X is affine.
Assume X = Spec(R). Write F = M̃ for some R-module M . By Lemma 22.1 above
we may find a quasi-coherent subsheaf H ⊂ F which restricts to G over U . Write
H = Ñ for some R-module N . For every u ∈ U there exists an f ∈ R such that
u ∈ D(f) ⊂ U and such that Nf is finitely generated, see Lemma 16.1. Since U is
quasi-compact we can cover it by finitely many D(fi) such that Nfi

is generated by
finitely many elements, say xi,1/f

N
i , . . . , xi,ri/f

N
i . Let N ′ ⊂ N be the submodule

generated by the elements xi,j . Then the subsheaf G′ = Ñ ′ ⊂ H ⊂ F works. □

Lemma 22.3.01PG Let X be a quasi-compact and quasi-separated scheme. Any quasi-
coherent sheaf of OX-modules is the directed colimit of its quasi-coherent OX-
submodules which are of finite type.

Proof. The colimit is directed because if G1, G2 are quasi-coherent subsheaves of
finite type, then the image of G1 ⊕ G2 → F is a quasi-coherent submodule of finite
type. Let U ⊂ X be any affine open, and let s ∈ Γ(U,F) be any section. Let
G ⊂ F|U be the subsheaf generated by s. Then clearly G is quasi-coherent and has
finite type as an OU -module. By Lemma 22.2 we see that G is the restriction of
a quasi-coherent subsheaf G′ ⊂ F which has finite type. Since X has a basis for
the topology consisting of affine opens we conclude that every local section of F is
locally contained in a quasi-coherent submodule of finite type. Thus we win. □

Lemma 22.4.01PI Let X be a quasi-compact and quasi-separated scheme. Let F
be a quasi-coherent OX-module. Let U ⊂ X be a quasi-compact open. Let G be
an OU -module which is of finite presentation. Let φ : G → F|U be a morphism
of OU -modules. Then there exists an OX-module G′ of finite presentation, and a
morphism of OX-modules φ′ : G′ → F such that G′|U = G and such that φ′|U = φ.
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Proof. The beginning of the proof is a repeat of the beginning of the proof of
Lemma 22.2. We write it out carefuly anyway.
Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such that
X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the

lemma for the case n = 1. Then we can successively extend the pair (G, φ) to a
pair (G1, φ1) over U ∪U1 to a pair (G2, φ2) over U ∪U1 ∪U2 to a pair (G3, φ3) over
U ∪ U1 ∪ U2 ∪ U3, and so on. Thus we reduce to the case n = 1.
Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U quasi-compact, we see that U ∩ V ⊂ V is quasi-compact. Suppose we prove
the lemma for the system (V,U ∩V,F|V ,G|U∩V , φ|U∩V ) thereby producing (G′, φ′)
over V . Then we can glue G′ over V to the given sheaf G over U along the common
value over U ∩ V , and similarly we can glue the map φ′ to the map φ along the
common value over U ∩ V . Thus we reduce to the case where X is affine.
Assume X = Spec(R). By Lemma 22.1 above we may find a quasi-coherent sheaf
H with a map ψ : H → F over X which restricts to G and φ over U . By Lemma
22.2 we can find a finite type quasi-coherent OX -submodule H′ ⊂ H such that
H′|U = G. Thus after replacing H by H′ and ψ by the restriction of ψ to H′ we
may assume that H is of finite type. By Lemma 16.2 we conclude that H = Ñ
with N a finitely generated R-module. Hence there exists a surjection as in the
following short exact sequence of quasi-coherent OX -modules

0 → K → O⊕n
X → H → 0

where K is defined as the kernel. Since G is of finite presentation and H|U = G by
Modules, Lemma 11.3 the restriction K|U is an OU -module of finite type. Hence
by Lemma 22.2 again we see that there exists a finite type quasi-coherent OX -
submodule K′ ⊂ K such that K′|U = K|U . The solution to the problem posed in
the lemma is to set

G′ = O⊕n
X /K′

which is clearly of finite presentation and restricts to give G on U with φ′ equal to
the composition

G′ = O⊕n
X /K′ → O⊕n

X /K = H ψ−→ F .
This finishes the proof of the lemma. □

Lemma 22.5.0G41 Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let G be an OU -module.

(1) If G is quasi-coherent and of finite type, then there exists a quasi-coherent
OX-module G′ of finite type such that G′|U = G.

(2) If G is of finite presentation, then there exists an OX-module G′ of finite
presentation such that G′|U = G.

Proof. Part (2) is the special case of Lemma 22.4 where F = 0. For part (1) we
first write G = F|U for some quasi-coherent OX -module by Lemma 22.1 and then
we apply Lemma 22.2 with G = F|U . □

The following lemma says that every quasi-coherent sheaf on a quasi-compact and
quasi-separated scheme is a filtered colimit of O-modules of finite presentation.
Actually, we reformulate this in (perhaps more familiar) terms of directed colimits
over directed sets in the next lemma.

https://stacks.math.columbia.edu/tag/0G41
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Lemma 22.6.01PJ Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. There exist

(1) a filtered index category I (see Categories, Definition 19.1),
(2) a diagram I → Mod(OX) (see Categories, Section 14), i 7→ Fi,
(3) morphisms of OX-modules φi : Fi → F

such that each Fi is of finite presentation and such that the morphisms φi induce
an isomorphism

colimi Fi = F .

Proof. Choose a set I and for each i ∈ I an OX -module of finite presentation and
a homomorphism of OX -modules φi : Fi → F with the following property: For any
ψ : G → F with G of finite presentation there is an i ∈ I such that there exists an
isomorphism α : Fi → G with φi = ψ ◦α. It is clear from Modules, Lemma 9.8 that
such a set exists (see also its proof). We denote I the category with Ob(I) = I
and given i, i′ ∈ I we set

MorI(i, i′) = {α : Fi → Fi′ | α ◦ φi′ = φi}.

We claim that I is a filtered category and that F = colimi Fi.

Let i, i′ ∈ I. Then we can consider the morphism

Fi ⊕ Fi′ −→ F

which is the direct sum of φi and φi′ . Since a direct sum of finitely presented
OX -modules is finitely presented we see that there exists some i′′ ∈ I such that
φi′′ : Fi′′ → F is isomorphic to the displayed arrow towards F above. Since there
are commutative diagrams

Fi //

��

F

Fi ⊕ Fi′ // F

and Fi′ //

��

F

Fi ⊕ Fi′ // F

we see that there are morphisms i → i′′ and i′ → i′′ in I. Next, suppose that
we have i, i′ ∈ I and morphisms α, β : i → i′ (corresponding to OX -module maps
α, β : Fi → Fi′). In this case consider the coequalizer

G = Coker(Fi
α−β−−−→ Fi′)

Note that G is an OX -module of finite presentation. Since by definition of mor-
phisms in the category I we have φi′ ◦ α = φi′ ◦ β we see that we get an induced
map ψ : G → F . Hence again the pair (G, ψ) is isomorphic to the pair (Fi′′ , φi′′) for
some i′′. Hence we see that there exists a morphism i′ → i′′ in I which equalizes α
and β. Thus we have shown that the category I is filtered.

We still have to show that the colimit of the diagram is F . By definition of the
colimit, and by our definition of the category I there is a canonical map

φ : colimi Fi −→ F .

Pick x ∈ X. Let us show that φx is an isomorphism. Recall that

(colimi Fi)x = colimi Fi,x,

https://stacks.math.columbia.edu/tag/01PJ
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see Sheaves, Section 29. First we show that the map φx is injective. Suppose that
s ∈ Fi,x is an element such that s maps to zero in Fx. Then there exists a quasi-
compact open U such that s comes from s ∈ Fi(U) and such that φi(s) = 0 in F(U).
By Lemma 22.2 we can find a finite type quasi-coherent subsheaf K ⊂ Ker(φi) which
restricts to the quasi-coherent OU -submodule of Fi generated by s: K|U = OU ·s ⊂
Fi|U . Clearly, Fi/K is of finite presentation and the map φi factors through the
quotient map Fi → Fi/K. Hence we can find an i′ ∈ I and a morphism α : Fi → Fi′
in I which can be identified with the quotient map Fi → Fi/K. Then it follows that
the section s maps to zero in Fi′(U) and in particular in (colimi Fi)x = colimi Fi,x.
The injectivity follows. Finally, we show that the map φx is surjective. Pick
s ∈ Fx. Choose a quasi-compact open neighbourhood U ⊂ X of x such that s
corresponds to a section s ∈ F(U). Consider the map s : OU → F (multiplication
by s). By Lemma 22.4 there exists an OX -module G of finite presentation and an
OX -module map G → F such that G|U → F|U is identified with s : OU → F .
Again by definition of I there exists an i ∈ I such that G → F is isomorphic to
φi : Fi → F . Clearly there exists a section s′ ∈ Fi(U) mapping to s ∈ F(U). This
proves surjectivity and the proof of the lemma is complete. □

Lemma 22.7.01PK Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. There exist

(1) a directed set I (see Categories, Definition 21.1),
(2) a system (Fi, φii′) over I in Mod(OX) (see Categories, Definition 21.2)
(3) morphisms of OX-modules φi : Fi → F

such that each Fi is of finite presentation and such that the morphisms φi induce
an isomorphism

colimi Fi = F .

Proof. This is a direct consequence of Lemma 22.6 and Categories, Lemma 21.5
(combined with the fact that colimits exist in the category of sheaves of OX -
modules, see Sheaves, Section 29). □

Lemma 22.8.086M Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a finite type quasi-coherent OX-module. Then we can write
F = colim Fi with Fi of finite presentation and all transition maps Fi → Fi′
surjective.

Proof. Write F = colim Gi as a filtered colimit of finitely presented OX -modules
(Lemma 22.7). We claim that Gi → F is surjective for some i. Namely, choose
a finite affine open covering X = U1 ∪ . . . ∪ Um. Choose sections sjl ∈ F(Uj)
generating F|Uj

, see Lemma 16.1. By Sheaves, Lemma 29.1 we see that sjl is in
the image of Gi → F for i large enough. Hence Gi → F is surjective for i large
enough. Choose such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write
K = colim Ka as the filtered colimit of its finite type quasi-coherent submodules
(Lemma 22.3). Then F = colim Gi/Ka is a solution to the problem posed by the
lemma. □

Lemma 22.9.080V Let X be a quasi-compact and quasi-separated scheme. Let F be a
finite type quasi-coherent OX-module. Let U ⊂ X be a quasi-compact open such that
F|U is of finite presentation. Then there exists a map of OX-modules φ : G → F
with (a) G of finite presentation, (b) φ is surjective, and (c) φ|U is an isomorphism.
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Proof. Write F = colim Fi as a directed colimit with each Fi of finite presentation,
see Lemma 22.7. Choose a finite affine open covering X =

⋃
Vj and choose finitely

many sections sjl ∈ F(Vj) generating F|Vj , see Lemma 16.1. By Sheaves, Lemma
29.1 we see that sjl is in the image of Fi → F for i large enough. Hence Fi → F
is surjective for i large enough. Choose such an i and let K ⊂ Fi be the kernel of
the map Fi → F . Since FU is of finite presentation, we see that K|U is of finite
type, see Modules, Lemma 11.3. Hence we can find a finite type quasi-coherent
submodule K′ ⊂ K with K′|U = K|U , see Lemma 22.2. Then G = Fi/K′ with the
given map G → F is a solution. □

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX-algebra A of finite presentation. This means that for every affine open Spec(R) ⊂
X we have A = Ã where A is a (commutative) R-algebra which is of finite presen-
tation as an R-algebra.

Lemma 22.10.05JS Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX-algebra. There exist

(1) a directed set I (see Categories, Definition 21.1),
(2) a system (Ai, φii′) over I in the category of OX-algebras,
(3) morphisms of OX-algebras φi : Ai → A

such that each Ai is a quasi-coherent OX-algebra of finite presentation and such
that the morphisms φi induce an isomorphism

colimi Ai = A.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 22.7. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 22.3. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . □

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX-algebra A of finite type. This means that for every affine open Spec(R) ⊂ X

we have A = Ã where A is a (commutative) R-algebra which is of finite type as an
R-algebra.

Lemma 22.11.05JT Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX-algebra. Then A is the directed colimit of
its finite type quasi-coherent OX-subalgebras.

Proof. If A1,A2 ⊂ A are quasi-coherent OX -subalgebras of finite type, then the
image of A1 ⊗OX

A2 → A is also a quasi-coherent OX -subalgebra of finite type
(some details omitted) which contains both A1 and A2. In this way we see that the
system is directed. To show that A is the colimit of this system, write A = colimi Ai

as a directed colimit of finitely presented quasi-coherent OX -algebras as in Lemma
22.10. Then the images A′

i = Im(Ai → A) are quasi-coherent subalgebras of A of
finite type. Since A is the colimit of these the result follows. □
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Let X be a scheme. In the following lemma we use the notion of a finite (resp.
integral) quasi-coherent OX-algebra A. This means that for every affine open
Spec(R) ⊂ X we have A = Ã where A is a (commutative) R-algebra which is
finite (resp. integral) as an R-algebra.

Lemma 22.12.086N Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a finite quasi-coherent OX-algebra. Then A = colim Ai is a
directed colimit of finite and finitely presented quasi-coherent OX-algebras such that
all transition maps Ai′ → Ai are surjective.

Proof. By Lemma 22.8 there exists a finitely presented OX -module F and a sur-
jection F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A
Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 22.3). Set

Ai = Sym∗
OX

(F)/(Ei)
where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗

OX
(F).

Then each Ai is a finitely presented OX -algebra, the transition maps are surjections,
and A = colim Ai. To finish the proof we still have to show that Ai is a finite
OX -algebra for i sufficiently large. To do this we choose an affine open covering
X = U1 ∪ . . . ∪ Um. Take generators fj,1, . . . , fj,Nj ∈ Γ(Ui,F). As A(Uj) is
a finite OX(Uj)-algebra we see that for each k there exists a monic polynomial
Pj,k ∈ O(Uj)[T ] such that Pj,k(fj,k) is zero in A(Uj). Since A = colim Ai by
construction, we have Pj,k(fj,k) = 0 in Ai(Uj) for all sufficiently large i. For such
i the algebras Ai are finite. □

Lemma 22.13.0817 Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be an integral quasi-coherent OX-algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX-subalgebras, and
(2) A is a direct colimit of finite and finitely presented quasi-coherent OX-

algebras.

Proof. By Lemma 22.11 we have A = colim Ai where Ai ⊂ A runs through the
quasi-coherent OX -algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (apply Algebra, Lemma 36.5 to Ai(U) ⊂ A(U) for affine
opens U in X). This proves (1).
To prove (2), write A = colim Fi as a colimit of finitely presented OX -modules
using Lemma 22.7. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A
For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗

OX
(Fi)/Ji.

Moreover, the quasi-coherent OX -algebras Sym∗
OX

(Fi)/Ji are finite (see above).
Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO
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commute. This follows from Modules, Lemma 22.8. This induces a map
Aik = Sym∗

OX
(Fi)/(Eik) −→ Sym∗

OX
(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
22.12). Finally, we have

colim Aik = colim Ai = A
Namely, the first equality was shown in the proof of Lemma 22.12 and the second
equality because A is the colimit of the modules Fi. □

23. Gabber’s result

077K In this section we prove a result of Gabber which guarantees that on every scheme
there exists a cardinal κ such that every quasi-coherent module F is the union of
its quasi-coherent κ-generated subsheaves. It follows that the category of quasi-
coherent sheaves on a scheme is a Grothendieck abelian category having limits and
enough injectives2.

Definition 23.1.077L Let (X,OX) be a ringed space. Let κ be an infinite cardinal.
We say a sheaf of OX -modules F is κ-generated if there exists an open covering
X =

⋃
Ui such that F|Ui

is generated by a subset Ri ⊂ F(Ui) whose cardinality is
at most κ.

Note that a direct sum of at most κ κ-generated modules is again κ-generated
because κ ⊗ κ = κ, see Sets, Section 6. In particular this holds for the direct
sum of two κ-generated modules. Moreover, a quotient of a κ-generated sheaf is
κ-generated. (But the same needn’t be true for submodules.)

Lemma 23.2.077M Let (X,OX) be a ringed space. Let κ be a cardinal. There exists a
set T and a family (Ft)t∈T of κ-generated OX-modules such that every κ-generated
OX-module is isomorphic to one of the Ft.

Proof. There is a set of coverings of X (provided we disallow repeats). Suppose
X =

⋃
Ui is a covering and suppose Fi is an OUi

-module. Then there is a set of
isomorphism classes of OX -modules F with the property that F|Ui

∼= Fi since there
is a set of glueing maps. This reduces us to proving there is a set of (isomorphism
classes of) quotients ⊕k∈κOX → F for any ringed space X. This is clear. □

Here is the result the title of this section refers to.

Lemma 23.3.077N Let X be a scheme. There exists a cardinal κ such that every
quasi-coherent module F is the directed colimit of its quasi-coherent κ-generated
submodules.

Proof. Choose an affine open covering X =
⋃
i∈I Ui. For each pair i, j choose

an affine open covering Ui ∩ Uj =
⋃
k∈Iij

Uijk. Write Ui = Spec(Ai) and Uijk =
Spec(Aijk). Let κ be any infinite cardinal ≥ than the cardinality of any of the sets
I, Iij .
Let F be a quasi-coherent sheaf. Set Mi = F(Ui) and Mijk = F(Uijk). Note that

Mi ⊗Ai
Aijk = Mijk = Mj ⊗Aj

Aijk.

2Nicely explained in a blog post by Akhil Mathew.
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see Schemes, Lemma 7.3. Using the axiom of choice we choose a map
(i, j, k,m) 7→ S(i, j, k,m)

which associates to every i, j ∈ I, k ∈ Iij and m ∈ Mi a finite subset S(i, j, k,m) ⊂
Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′

in Mijk for some am′ ∈ Aijk. Moreover, let’s agree that S(i, i, k,m) = {m} for all
i, j = i, k,m as above. Fix such a map.
Given a family S = (Si)i∈I of subsets Si ⊂ Mi of cardinality at most κ we set
S ′ = (S′

i) where
S′
j =

⋃
(i,k,m) such that m∈Si

S(i, j, k,m)

Note that Si ⊂ S′
i. Note that S′

i has cardinality at most κ because it is a union
over a set of cardinality at most κ of finite sets. Set S(0) = S, S(1) = S ′ and by
induction S(n+1) = (S(n))′. Then set S(∞) =

⋃
n≥0 S(n). Writing S(∞) = (S(∞)

i )
we see that for any element m ∈ S

(∞)
i the image of m in Mijk can be written as a

finite sum
∑
m′ ⊗ am′ with m′ ∈ S

(∞)
j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S(∞)
i

we have
Ni ⊗Ai Aijk = Nj ⊗Aj Aijk.

as submodules of Mijk. Thus there exists a quasi-coherent subsheaf G ⊂ F with
G(Ui) = Ni. Moreover, by construction the sheaf G is κ-generated.
Let {Gt}t∈T be the set of κ-generated quasi-coherent subsheaves. If t, t′ ∈ T then
Gt + Gt′ is also a κ-generated quasi-coherent subsheaf as it is the image of the map
Gt ⊕ Gt′ → F . Hence the system (ordered by inclusion) is directed. The arguments
above show that every section of F over Ui is in one of the Gt (because we can start
with S such that the given section is an element of Si). Hence colimt Gt → F is
both injective and surjective as desired. □

Proposition 23.4.077P Let X be a scheme.
(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,

QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX) → Mod(OX) has a right adjoint3

Q : Mod(OX) −→ QCoh(OX)
such that for every quasi-coherent sheaf F the adjunction mapping Q(F) →
F is an isomorphism.

Proof. Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are
exact, and (c) has a generator, see Injectives, Section 10. By Schemes, Section 24
colimits in QCoh(OX) exist and agree with colimits in Mod(OX). By Modules,
Lemma 3.2 filtered colimits are exact. Hence (a) and (b) hold. To construct a
generator U , pick a cardinal κ as in Lemma 23.3. Pick a collection (Ft)t∈T of κ-
generated quasi-coherent sheaves as in Lemma 23.2. Set U =

⊕
t∈T Ft. Since every

object of QCoh(OX) is a filtered colimit of κ-generated quasi-coherent modules, i.e.,

3This functor is sometimes called the coherator.
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of objects isomorphic to Ft, it is clear that U is a generator. The assertions on limits
and injectives hold in any Grothendieck abelian category, see Injectives, Theorem
11.7 and Lemma 13.2.
Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)
This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial iso-
morphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 3.5) the construction F ⇝ Q(F) is functorial in F . By
construction Q is a right adjoint to the inclusion functor. The fact that Q(F) → F
is an isomorphism when F is quasi-coherent is a formal consequence of the fact
that the inclusion functor QCoh(OX) → Mod(OX) is fully faithful. □

24. Sections with support in a closed subset

07ZM Given any topological space X, a closed subset Z ⊂ X, and an abelian sheaf F
you can take the subsheaf of sections whose support is contained in Z. If X is a
scheme, Z a closed subscheme, and F a quasi-coherent module there is a variant
where you take sections which are scheme theoretically supported on Z. However,
in the scheme setting you have to be careful because the resulting OX -module may
not be quasi-coherent.

Lemma 24.1.01PH Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be an open subscheme. The following are equivalent:

(1) U is retrocompact in X,
(2) U is quasi-compact,
(3) U is a finite union of affine opens, and
(4) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that

X \ U = V (I) (set theoretically).

Proof. The equivalence of (1), (2), and (3) follows from Lemma 2.3. Assume
(1), (2), (3). Let T = X \ U . By Schemes, Lemma 12.4 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subscheme
structure on T . Note that J |U = OU which is an OU -modules of finite type.
By Lemma 22.2 there exists a quasi-coherent subsheaf I ⊂ J which is of finite
type and has the property that I|U = J |U . Then X \ U = V (I) and we obtain
(4). Conversely, if I is as in (4) and W = Spec(R) ⊂ X is an affine open, then
I|W = Ĩ for some finitely generated ideal I ⊂ R, see Lemma 16.1. It follows that
U ∩W = Spec(R)\V (I) is quasi-compact, see Algebra, Lemma 29.1. Hence U ⊂ X
is retrocompact by Lemma 2.6. □

Lemma 24.2.01PO Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
Let F be a quasi-coherent OX-module. Consider the sheaf of OX-modules F ′ which
associates to every open U ⊂ X

F ′(U) = {s ∈ F(U) | Is = 0}
Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf of OX-modules,
(2) on any affine open U ⊂ X we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
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(3) F ′
x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F (the sheaf condition
is easy to verify). Hence we may work locally onX to verify the other statements. In
other words we may assume that X = Spec(A), F = M̃ and I = Ĩ. It is clear that
in this case F ′(U) = {x ∈ M | Ix = 0} =: M ′ because Ĩ is generated by its global
sections I which proves (2). To show F ′ is quasi-coherent it suffices to show that for
every f ∈ A we have {x ∈ Mf | Ifx = 0} = (M ′)f . Write I = (g1, . . . , gt), which
is possible because I is of finite type, see Lemma 16.1. If x = y/fn and Ifx = 0,
then that means that for every i there exists an m ≥ 0 such that fmgix = 0. We
may choose one m which works for all i (and this is where we use that I is finitely
generated). Then we see that fmx ∈ M ′ and x/fn = fmx/fn+m in (M ′)f as
desired. The proof of (3) is similar and omitted. □

Definition 24.3.01PP Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals of finite type. Let F be a quasi-coherent OX -module. The subsheaf F ′ ⊂ F
defined in Lemma 24.2 above is called the subsheaf of sections annihilated by I.

Lemma 24.4.07ZN Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let I ⊂ OY be a quasi-coherent sheaf of ideals of finite type. Let F be
a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf of sections annihilated by
f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf of sections annihilated by I.

Proof. Omitted. (Hint: The assumption that f is quasi-compact and quasi-
separated implies that f∗F is quasi-coherent so that Lemma 24.2 applies to I and
f∗F .) □

For an abelian sheaf on a topological space we have discussed the subsheaf of
sections with support in a closed subset in Modules, Remark 6.2. For quasi-coherent
modules this submodule isn’t always a quasi-coherent module, but if the closed
subset has a retrocompact complement, then it is.

Lemma 24.5.07ZP Let X be a scheme. Let Z ⊂ X be a closed subset. Let F be a
quasi-coherent OX-module. Consider the sheaf of OX-modules F ′ which associates
to every open U ⊂ X

F ′(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}
If X \ Z is a retrocompact open of X, then

(1) for an affine open U ⊂ X there exist a finitely generated ideal I ⊂ OX(U)
such that Z ∩ U = V (I),

(2) for U and I as in (1) we have F ′(U) = {x ∈ F(U) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX-modules.

Proof. Part (1) is Algebra, Lemma 29.1. Let U = Spec(A) and I be as in (1).
Then F|U is the quasi-coherent sheaf associated to some A-module M . We have

F ′(U) = {x ∈ M | x = 0 in Mp for all p ̸∈ Z}.
by Modules, Definition 5.1. Thus x ∈ F ′(U) if and only if V (Ann(x)) ⊂ V (I), see
Algebra, Lemma 40.7. Since I is finitely generated this is equivalent to Inx = 0 for
some n. This proves (2).
Proof of (3). Observe that given U ⊂ X open there is an exact sequence

0 → F ′(U) → F(U) → F(U \ Z)
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If we denote j : X \Z → X the inclusion morphism, then we observe that F(U \Z)
is the sections of the module j∗(F|X\Z) over U . Thus we have an exact sequence

0 → F ′ → F → j∗(F|X\Z)

The restriction F|X\Z is quasi-coherent. Hence j∗(F|X\Z) is quasi-coherent by
Schemes, Lemma 24.1 and our assumption that j is quasi-compact (any open im-
mersion is separated). Hence F ′ is quasi-coherent as a kernel of a map of quasi-
coherent modules, see Schemes, Section 24. □

Definition 24.6.084L Let X be a scheme. Let T ⊂ X be a closed subset whose
complement is retrocompact in X. Let F be a quasi-coherent OX -module. The
quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 24.5 is called the subsheaf of
sections supported on T .

Lemma 24.7.07ZQ Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let Z ⊂ Y be a closed subset such that Y \Z is retrocompact in Y . Let
F be a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf of sections supported
in f−1Z. Then f∗F ′ ⊂ f∗F is the subsheaf of sections supported in Z.

Proof. Omitted. (Hint: First show that X \ f−1Z is retrocompact in X as Y \ Z
is retrocompact in Y . Hence Lemma 24.5 applies to f−1Z and F . As f is quasi-
compact and quasi-separated we see that f∗F is quasi-coherent. Hence Lemma 24.5
applies to Z and f∗F . Finally, match the sheaves directly.) □

25. Sections of quasi-coherent sheaves

01PL Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open
of an affine spectrum.

Lemma 25.1.01PM Let A be a ring. Let I ⊂ A be a finitely generated ideal. Let M be
an A-module. Then there is a canonical map

colimn HomA(In,M) −→ Γ(Spec(A) \ V (I), M̃).

This map is always injective. If for all x ∈ M we have Ix = 0 ⇒ x = 0 then this
map is an isomorphism. In general, set Mn = {x ∈ M | Inx = 0}, then there is an
isomorphism

colimn HomA(In,M/Mn) −→ Γ(Spec(A) \ V (I), M̃).

Proof. Since In+1 ⊂ In and Mn ⊂ Mn+1 we can use composition via these maps
to get canonical maps of A-modules

HomA(In,M) −→ HomA(In+1,M)

and
HomA(In,M/Mn) −→ HomA(In+1,M/Mn+1)

which we will use as the transition maps in the systems. Given an A-module map
φ : In → M , then we get a map of sheaves φ̃ : Ĩn → M̃ which we can restrict to
the open Spec(A) \ V (I). Since Ĩn restricted to this open gives the structure sheaf
we get an element of Γ(Spec(A) \ V (I), M̃). We omit the verification that this is
compatible with the transition maps in the system HomA(In,M). This gives the
first arrow. To get the second arrow we note that M̃ and M̃/Mn agree over the
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open Spec(A) \ V (I) since the sheaf M̃n is clearly supported on V (I). Hence we
can use the same mechanism as before.

Next, we work out how to define this arrow in terms of algebra. Say I = (f1, . . . , ft).
Then Spec(A) \ V (I) =

⋃
i=1,...,tD(fi). Hence

0 → Γ(Spec(A) \ V (I), M̃) →
⊕

i
Mfi →

⊕
i,j
Mfifj

is exact. Suppose that φ : In → M is an A-module map. Consider the vector
of elements φ(fni )/fni ∈ Mfi . It is easy to see that this vector maps to zero
in the second direct sum of the exact sequence above. Whence an element of
Γ(Spec(A) \ V (I), M̃). We omit the verification that this description agrees with
the one given above.

Let us show that the first arrow is injective using this description. Namely, if φ
maps to zero, then for each i the element φ(fni )/fni is zero in Mfi

. In other words
we see that for each i we have fmi φ(fni ) = 0 for some m ≥ 0. We may choose a
single m which works for all i. Then we see that φ(fn+m

i ) = 0 for all i. It is easy
to see that this means that φ|It(n+m−1)+1 = 0 in other words that φ maps to zero
in the t(n+m− 1) + 1st term of the colimit. Hence injectivity follows.

Note that each Mn = 0 in case we have Ix = 0 ⇒ x = 0 for x ∈ M . Thus to finish
the proof of the lemma it suffices to show that the second arrow is an isomorphism.

Let us attempt to construct an inverse of the second map of the lemma. Let
s ∈ Γ(Spec(A) \ V (I), M̃). This corresponds to a vector xi/fni with xi ∈ M of the
first direct sum of the exact sequence above. Hence for each i, j there exists m ≥ 0
such that fmi fmj (fnj xi − fni xj) = 0 in M . We may choose a single m which works
for all pairs i, j. After replacing xi by fmi xi and n by n + m we see that we get
fnj xi = fni xj in M for all i, j. Let us introduce

Kn = {x ∈ M | fn1 x = . . . = fnt x = 0}

We claim there is an A-module map

φ : It(n−1)+1 −→ M/Kn

which maps the monomial fe1
1 . . . fet

t with
∑
ei = t(n− 1) + 1 to the class modulo

Kn of the expression fe1
1 . . . fei−n

i . . . fet
t xi where i is chosen such that ei ≥ n (note

that there is at least one such i). To see that this is indeed the case suppose that∑
E=(e1,...,et),|E|=t(n−1)+1

aEf
e1
1 . . . fet

t = 0

is a relation between the monomials with coefficients aE in A. Then we would map
this to

z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ei(E)−n
i(E) . . . fet

t xi(E)

where for each multiindex E we have chosen a particular i(E) such that ei(E) ≥ n.
Note that if we multiply this by fnj for any j, then we get zero, since by the relations
fnj xi = fni xj above we get

fnj z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ej+n
j . . . f

ei(E)−n
i(E) . . . fet

t xi(E)

=
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . fet

t xj = 0.
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Hence z ∈ Kn and we see that every relation gets mapped to zero in M/Kn. This
proves the claim.
Note that Kn ⊂ Mt(n−1)+1. Hence the map φ in particular gives rise to an A-
module map It(n−1)+1 → M/Mt(n−1)+1. This proves the second arrow of the
lemma is surjective. We omit the proof of injectivity. □

Example 25.2.01PN We will give two examples showing that the first displayed map
of Lemma 25.1 is not an isomorphism.
Let k be a field. Consider the ring

A = k[x, y, z1, z2, . . .]/(xnzn).
Set I = (x) and let M = A. Then the element y/x defines a section of the structure
sheaf of Spec(A) over D(x) = Spec(A)\V (I). We claim that y/x is not in the image
of the canonical map colim HomA(In, A) → Ax = O(D(x)). Namely, if so it would
come from a homomorphism φ : In → A for some n. Set a = φ(xn). Then we would
have xm(xa − xny) = 0 for some m > 0. This would mean that xm+1a = xm+ny.
This would mean that φ(xn+m+1) = xm+ny. This leads to a contradiction because
it would imply that

0 = φ(0) = φ(zn+m+1x
n+m+1) = xm+nyzn+m+1

which is not true in the ring A.
Let k be a field. Consider the ring

A = k[f, g, x, y, {an, bn}n≥1]/(fy − gx, {anfn + bng
n}n≥1).

Set I = (f, g) and let M = A. Then x/f ∈ Af and y/g ∈ Ag map to the same
element of Afg. Hence these define a section s of the structure sheaf of Spec(A)
over D(f) ∪D(g) = Spec(A) \ V (I). However, there is no n ≥ 0 such that s comes
from an A-module map φ : In → A as in the source of the first displayed arrow of
Lemma 25.1. Namely, given such a module map set xn = φ(fn) and yn = φ(gn).
Then fmxn = fn+m−1x and gmyn = gn+m−1y for some m ≥ 0 (see proof of
the lemma). But then we would have 0 = φ(0) = φ(an+mf

n+m + bn+mg
n+m) =

an+mf
n+m−1x+ bn+mg

n+m−1y which is not the case in the ring A.

We will improve on the following lemma in the Noetherian case, see Cohomology
of Schemes, Lemma 10.5.

Lemma 25.3.01PQ Let X be a quasi-compact scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals of finite type. Let Z ⊂ X be the closed subscheme defined by I and
set U = X \ Z. Let F be a quasi-coherent OX-module. The canonical map

colimn HomOX
(In,F) −→ Γ(U,F)

is injective. Assume further that X is quasi-separated. Let Fn ⊂ F be subsheaf of
sections annihilated by In. The canonical map

colimn HomOX
(In,F/Fn) −→ Γ(U,F)

is an isomorphism.

Proof. Let Spec(A) = W ⊂ X be an affine open. Write F|W = M̃ for some
A-module M and I|W = Ĩ for some finite type ideal I ⊂ A. Restricting the first
displayed map of the lemma to W we obtain the first displayed map of Lemma
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25.1. Since we can cover X by a finite number of affine opens this proves the first
displayed map of the lemma is injective.

We have Fn|W = M̃n where Mn ⊂ M is defined as in Lemma 25.1 (details omitted).
The lemma guarantees that we have a bijection

colimn HomOW
(In|W , (F/Fn)|W ) −→ Γ(U ∩W,F)

for any such affine open W .
To see the second displayed arrow of the lemma is bijective, we choose a finite
affine open covering X =

⋃
j=1,...,mWj . The injectivity follows immediately from

the above and the finiteness of the covering. If X is quasi-separated, then for each
pair j, j′ we choose a finite affine open covering

Wj ∩Wj′ =
⋃

k=1,...,mjj′
Wjj′k.

Let s ∈ Γ(U,F). As seen above for each j there exists an nj and a map φj :
Inj |Wj

→ (F/Fnj
)|Wj

which corresponds to s|U∩Wj
. By the same token for each

triple (j, j′, k) there exists an integer njj′k such that the restriction of φj and φj′ as
maps Injj′k → F/Fnjj′k

agree over Wjj′k. Let n = max{nj , njj′k} and we see that
the φj glue as maps In → F/Fn over X. This proves surjectivity of the map. □

26. Ample invertible sheaves

01PR Recall from Modules, Lemma 25.10 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s ̸∈ mxLx}
is open. A general remark is that Xs ∩ Xs′ = Xss′ , where ss′ denote the section
s⊗ s′ ∈ Γ(X,L ⊗ L′).

Definition 26.1.01PS [DG67, II Definition
4.5.3]

Let X be a scheme. Let L be an invertible OX -module. We say
L is ample if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs

and Xs is affine.

Lemma 26.2.01PT [DG67, II
Proposition 4.5.6(i)]

Let X be a scheme. Let L be an invertible OX-module. Let n ≥ 1.
Then L is ample if and only if L⊗n is ample.

Proof. This follows from the fact that Xsn = Xs. □

Lemma 26.3.01PU Let X be a scheme. Let L be an ample invertible OX-module. For
any closed subscheme Z ⊂ X the restriction of L to Z is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact
and a closed subscheme of an affine scheme is affine (see Schemes, Lemma 8.2). □

Lemma 26.4.01PV Let X be a scheme. Let L be an invertible OX-module. Let s ∈
Γ(X,L). For any affine U ⊂ X the intersection U ∩Xs is affine.

Proof. This translates into the following algebra problem. Let R be a ring. Let N
be an invertible R-module (i.e., locally free of rank 1). Let s ∈ N be an element.
Then U = {p | s ̸∈ pN} is an affine open subset of Spec(R).
Let A =

⊕
n≥0 An be the symmetric algebra of N (which is commutative) and

view s as an element of A1. Set B = A/(s − 1)A. This is an R-algebra whose
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construction commutes with any base change R → R′. Thus B′ = B ⊗R R
′ is the

zero ring if s maps to zero in N ′ = N⊗RR
′. It follows that if x ∈ Spec(R)\U , then

B ⊗R κ(x) = 0. We conclude that Spec(B) → Spec(R) factors through U as the
fibres over x ̸∈ U are empty. On the other hand, if Spec(R′) ⊂ U is an affine open,
then s maps to a basis element of N ′ and we see that B′ = R′[s]/(s − 1) ∼= R′. It
follows that Spec(B) → U is an isomorphism and U is indeed affine. □

Lemma 26.5.0890 [DG67, II
Proposition
4.5.6(ii)]

Let X be a scheme. Let L and M be invertible OX-modules. If
(1) L is ample, and
(2) the open sets Xt where t ∈ Γ(X,M⊗m) for m > 0 cover X,

then L ⊗ M is ample.

Proof. We check the conditions of Definition 26.1. As L is ample we see that
X is quasi-compact. Let x ∈ X. Choose n ≥ 1, m ≥ 1, s ∈ Γ(X,L⊗n), and
t ∈ Γ(X,M⊗m) such that x ∈ Xs, x ∈ Xt and Xs is affine. Then smtn ∈ Γ(X, (L⊗
M)⊗nm), x ∈ Xsmtn , and Xsmtn is affine by Lemma 26.4. □

Lemma 26.6.01PX Let X be a scheme. Let L be an invertible OX-module. Assume
the open sets Xs, where s ∈ Γ(X,L⊗n) and n ≥ 1, form a basis for the topology
on X. Then among those opens, the open sets Xs which are affine form a basis for
the topology on X.

Proof. Let x ∈ X. Choose an affine open neighbourhood Spec(R) = U ⊂ X of x.
By assumption, there exists a n ≥ 1 and a s ∈ Γ(X,L⊗n) such that Xs ⊂ U . By
Lemma 26.4 above the intersection Xs = U ∩ Xs is affine. Since U can be chosen
arbitrarily small we win. □

Lemma 26.7.01PY Let X be a scheme and L be an invertible OX-module. Assume for
every point x of X there exists n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs and Xs

is affine. Then X is separated.

Proof. We show first that X is quasi-separated. By assumption we can find a
covering of X by affine opens of the form Xs. By Lemma 26.4, the intersection
of any two such sets is affine, so Schemes, Lemma 21.6 implies that X is quasi-
separated.
To show that X is separated, we can use the valuative criterion, Schemes, Lemma
22.2. Thus, let A be a valuation ring with fraction field K and consider two mor-
phisms f, g : Spec(A) → X such that the two compositions Spec(K) → Spec(A) →
X agree. As A is local, there exists p, q ≥ 1, s ∈ Γ(X,L⊗p), and t ∈ Γ(X,L⊗q) such
that Xs and Xt are affine, f(SpecA) ⊆ Xs, and g(SpecA) ⊆ Xt. We now replace
s by sq, t by tp, and L by L⊗pq. This is harmless as Xs = Xsq and Xt = Xtp , and
now s and t are both sections of the same sheaf L.
The quasi-coherent module f∗L corresponds to an A-module M and g∗L corre-
sponds to an A-module N by our classification of quasi-coherent modules over
affine schemes (Schemes, Lemma 7.4). The A-modules M and N are locally free of
rank 1 (Lemma 20.1) and as A is local they are free (Algebra, Lemma 55.8). There-
fore we may identify M and N with A-submodules of M ⊗A K and N ⊗A K. The
equality f |Spec(K) = g|Spec(K) determines an isomorphism ϕ : M ⊗AK → N ⊗AK.
Let x ∈ M and y ∈ N be the elements corresponding to the pullback of s along f
and g, respectively. These satisfy ϕ(x⊗ 1) = y ⊗ 1. The image of f is contained in
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Xs, so x ̸∈ mAM , that is, x generates M . Hence ϕ determines an isomorphism of
M with the submodule of N generated by y. Arguing symmetrically using t, ϕ−1

determines an isomorphism of N with a submodule of M . Consequently ϕ restricts
to an isomorphism of M and N . Since x generates M , its image y generates
N , implying y ̸∈ mAN . Therefore g(Spec(A)) ⊆ Xs. Because Xs is affine, it is
separated by Schemes, Lemma 21.15, and we conclude f = g. □

Lemma 26.8.09MP Let X be a scheme. If there exists an ample invertible sheaf on X
then X is separated.

Proof. Follows immediately from Lemma 26.7 and Definition 26.1. □

Lemma 26.9.01PZ Let X be a scheme. Let L be an invertible OX-module. Set S =
Γ∗(X,L) as a graded ring. If every point of X is contained in one of the open
subschemes Xs, for some s ∈ S+ homogeneous, then there is a canonical morphism
of schemes

f : X −→ Y = Proj(S),

to the homogeneous spectrum of S (see Constructions, Section 8). This morphism
has the following properties

(1) f−1(D+(s)) = Xs for any s ∈ S+ homogeneous,
(2) there are OX-module maps f∗OY (n) → L⊗n compatible with multiplication

maps, see Constructions, Equation (10.1.1),
(3) the composition Sn → Γ(Y,OY (n)) → Γ(X,L⊗n) is the identity map, and
(4) for every x ∈ X there is an integer d ≥ 1 and an open neighbourhood U ⊂ X

of x such that f∗OY (dn)|U → L⊗dn|U is an isomorphism for all n ∈ Z.

Proof. Denote ψ : S → Γ∗(X,L) the identity map. We are going to use the triple
(U(ψ), rL,ψ, θ) of Constructions, Lemma 14.1. By assumption the open subscheme
U(ψ) of equals X. Hence rL,ψ : U(ψ) → Y is defined on all of X. We set f = rL,ψ.
The maps in part (2) are the components of θ. Part (3) follows from condition (2)
in the lemma cited above. Part (1) follows from (3) combined with condition (1) in
the lemma cited above. Part (4) follows from the last statement in Constructions,
Lemma 14.1 since the map α mentioned there is an isomorphism. □

Lemma 26.10.01Q0 Let X be a scheme. Let L be an invertible OX-module. Set S =
Γ∗(X,L). Assume (a) every point of X is contained in one of the open subschemes
Xs, for some s ∈ S+ homogeneous, and (b) X is quasi-compact. Then the canonical
morphism of schemes f : X −→ Proj(S) of Lemma 26.9 above is quasi-compact with
dense image.

Proof. To prove f is quasi-compact it suffices to show that f−1(D+(s)) is quasi-
compact for any s ∈ S+ homogeneous. Write X =

⋃
i=1,...,nXi as a finite union

of affine opens. By Lemma 26.4 each intersection Xs ∩ Xi is affine. Hence Xs =⋃
i=1,...,nXs ∩ Xi is quasi-compact. Assume that the image of f is not dense to

get a contradiction. Then, since the opens D+(s) with s ∈ S+ homogeneous form
a basis for the topology on Proj(S), we can find such an s with D+(s) ̸= ∅ and
f(X)∩D+(s) = ∅. By Lemma 26.9 this means Xs = ∅. By Lemma 17.2 this means
that a power sn is the zero section of L⊗n deg(s). This in turn means that D+(s) = ∅
which is the desired contradiction. □
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Lemma 26.11.01Q1 Let X be a scheme. Let L be an invertible OX-module. Set
S = Γ∗(X,L). Assume L is ample. Then the canonical morphism of schemes
f : X −→ Proj(S) of Lemma 26.9 is an open immersion with dense image.

Proof. By Lemma 26.7 we see that X is quasi-separated. Choose finitely many
s1, . . . , sn ∈ S+ homogeneous such that Xsi

are affine, and X =
⋃
Xsi

. Say si
has degree di. The inverse image of D+(si) under f is Xsi

, see Lemma 26.9. By
Lemma 17.2 the ring map

(S(di))(si) = Γ(D+(si),OProj(S)) −→ Γ(Xsi
,OX)

is an isomorphism. Hence f induces an isomorphism Xsi → D+(si). Thus f is
an isomorphism of X onto the open subscheme

⋃
i=1,...,nD+(si) of Proj(S). The

image is dense by Lemma 26.10. □

Lemma 26.12.01Q2 Let X be a scheme. Let S be a graded ring. Assume X is quasi-
compact, and assume there exists an open immersion

j : X −→ Y = Proj(S).
Then j∗OY (d) is an invertible ample sheaf for some d > 0.

Proof. This is Constructions, Lemma 10.6. □

Proposition 26.13.01Q3 Let X be a quasi-compact scheme. Let L be an invertible
sheaf on X. Set S = Γ∗(X,L). The following are equivalent:

(1)01Q4 L is ample,
(2)01Q5 the open sets Xs, with s ∈ S+ homogeneous, cover X and the associated

morphism X → Proj(S) is an open immersion,
(3)01Q6 the open sets Xs, with s ∈ S+ homogeneous, form a basis for the topology

of X,
(4)01Q7 the open sets Xs, with s ∈ S+ homogeneous, which are affine form a basis

for the topology of X,
(5)01Q8 for every quasi-coherent sheaf F on X the sum of the images of the canon-

ical maps
Γ(X,F ⊗OX

L⊗n) ⊗Z L⊗−n −→ F
with n ≥ 1 equals F ,

(6)01Q9 same property as (5) with F ranging over all quasi-coherent sheaves of
ideals,

(7)01QA X is quasi-separated and for every quasi-coherent sheaf F of finite type on
X there exists an integer n0 such that F ⊗OX

L⊗n is globally generated for
all n ≥ n0,

(8)01QB X is quasi-separated and for every quasi-coherent sheaf F of finite type on
X there exist integers n > 0, k ≥ 0 such that F is a quotient of a direct
sum of k copies of L⊗−n, and

(9)01QC same as in (8) with F ranging over all sheaves of ideals of finite type on
X.

Proof. Lemma 26.11 is (1) ⇒ (2). Lemmas 26.2 and 26.12 provide the implication
(1) ⇐ (2). The implications (2) ⇒ (4) ⇒ (3) are clear from Constructions, Section 8.
Lemma 26.6 is (3) ⇒ (1). Thus we see that the first 4 conditions are all equivalent.
Assume the equivalent conditions (1) – (4). Note that in particular X is separated
(as an open subscheme of the separated scheme Proj(S)). Let F be a quasi-coherent
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sheaf on X. Choose s ∈ S+ homogeneous such that Xs is affine. We claim that
any section m ∈ Γ(Xs,F) is in the image of one of the maps displayed in (5) above.
This will imply (5) since these affines Xs cover X. Namely, by Lemma 17.2 we may
write m as the image of m′ ⊗ s−n for some n ≥ 1, some m′ ∈ Γ(X,F ⊗ L⊗n). This
proves the claim.

Clearly (5) ⇒ (6). Let us assume (6) and prove L is ample. Pick x ∈ X. Let
U ⊂ X be an affine open which contains x. Set Z = X \ U . We may think of Z as
a reduced closed subscheme, see Schemes, Section 12. Let I ⊂ OX be the quasi-
coherent sheaf of ideals corresponding to the closed subscheme Z. By assumption
(6), there exists an n ≥ 1 and a section s ∈ Γ(X, I ⊗ L⊗n) such that s does not
vanish at x (more precisely such that s ̸∈ mxIx ⊗ L⊗n

x ). We may think of s as a
section of L⊗n. Since it clearly vanishes along Z we see that Xs ⊂ U . Hence Xs is
affine, see Lemma 26.4. This proves that L is ample. At this point we have proved
that (1) – (6) are equivalent.

Assume the equivalent conditions (1) – (6). In the following we will use the fact
that the tensor product of two sheaves of modules which are globally generated
is globally generated without further mention (see Modules, Lemma 4.3). By (1)
we can find elements si ∈ Sdi

with di ≥ 1 such that X =
⋃
i=1,...,nXsi

. Set
d = d1 . . . dn. It follows that L⊗d is globally generated by

s
d/d1
1 , . . . , sd/dn

n .

This means that if L⊗j is globally generated then so is L⊗j+dn for all n ≥ 0. Fix a
j ∈ {0, . . . , d− 1}. For any point x ∈ X there exists an n ≥ 1 and a global section
s of Lj+dn which does not vanish at x, as follows from (5) applied to F = L⊗j and
ample invertible sheaf L⊗d. Since X is quasi-compact there we may find a finite list
of integers ni and global sections si of L⊗j+dni which do not vanish at any point of
X. Since L⊗d is globally generated this means that L⊗j+dn is globally generated
where n = max{ni}. Since we proved this for every congruence class mod d we
conclude that there exists an n0 = n0(L) such that L⊗n is globally generated for
all n ≥ n0. At this point we see that if F is globally generated then so is F ⊗ L⊗n

for all n ≥ n0.

We continue to assume the equivalent conditions (1) – (6). Let F be a quasi-
coherent sheaf of OX -modules of finite type. Denote Fn ⊂ F the image of the
canonical map of (5). By construction Fn ⊗ L⊗n is globally generated. By (5) we
see F is the sum of the subsheaves Fn, n ≥ 1. By Modules, Lemma 9.7 we see that
F =

∑
n=1,...,N Fn for some N ≥ 1. It follows that F ⊗ L⊗n is globally generated

whenever n ≥ N + n0(L) with n0(L) as above. We conclude that (1) – (6) implies
(7).

Assume (7). Let F be a quasi-coherent sheaf of OX -modules of finite type. By (7)
there exists an integer n ≥ 1 such that the canonical map

Γ(X,F ⊗OX
L⊗n) ⊗Z L⊗−n −→ F

is surjective. Let I be the set of finite subsets of Γ(X,F ⊗OX
L⊗n) partially ordered

by inclusion. Then I is a directed partially ordered set. For i = {s1, . . . , sr(i)} let
Fi ⊂ F be the image of the map⊕

j=1,...,r(i)
L⊗−n −→ F
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which is multiplication by sj on the jth factor. The surjectivity above implies that
F = colimi∈I Fi. Hence Modules, Lemma 9.7 applies and we conclude that F = Fi
for some i. Hence we have proved (8). In other words, (7) ⇒ (8).
The implication (8) ⇒ (9) is trivial.
Finally, assume (9). Let I ⊂ OX be a quasi-coherent sheaf of ideals. By Lemma
22.3 (this is where we use the condition that X be quasi-separated) we see that
I = colimα Iα with each Iα quasi-coherent of finite type. Since by assumption each
of the Iα is a quotient of negative tensor powers of L we conclude the same for
I (but of course without the finiteness or boundedness of the powers). Hence we
conclude that (9) implies (6). This ends the proof of the proposition. □

Lemma 26.14.0B3E Let X be a scheme. Let L be an ample invertible OX-module.
Let i : X ′ → X be a morphism of schemes. Assume at least one of the following
conditions holds

(1) i is a quasi-compact immersion,
(2) X ′ is quasi-compact and i is an immersion,
(3) i is quasi-compact and induces a homeomorphism between X ′ and i(X ′),
(4) X ′ is quasi-compact and i induces a homeomorphism between X ′ and i(X ′).

Then i∗L is ample on X ′.

Proof. Observe that in cases (1) and (3) the scheme X ′ is quasi-compact as X is
quasi-compact by Definition 26.1. Thus it suffices to prove (2) and (4). Since (2)
is a special case of (4) it suffices to prove (4).
Assume condition (4) holds. For s ∈ Γ(X,L⊗d) denote s′ = i∗s the pullback of s
to X ′. Note that s′ is a section of (i∗L)⊗d. By Proposition 26.13 the opens Xs, for
s ∈ Γ(X,L⊗d), form a basis for the topology on X. Since X ′

s′ = i−1(Xs) and since
X ′ → i(X ′) is a homeomorphism, we conclude the opens X ′

s′ form a basis for the
topology of X ′. Hence i∗L is ample by Proposition 26.13. □

Lemma 26.15.0DNK Let S be a quasi-separated scheme. Let X, Y be schemes over
S. Let L be an ample invertible OX-module and let N be an ample invertible OY -
module. Then M = pr∗

1L ⊗OX×S Y
pr∗

2N is an ample invertible sheaf on X ×S Y .

Proof. The morphism i : X ×S Y → X × Y is a quasi-compact immersion, see
Schemes, Lemma 21.9. On the other hand, M is the pullback by i of the corre-
sponding invertible module on X × Y . By Lemma 26.14 it suffices to prove the
lemma for X × Y . We check (1) and (2) of Definition 26.1 for M on X × Y .
Since X and Y are quasi-compact, so is X × Y . Let z ∈ X × Y be a point. Let
x ∈ X and y ∈ Y be the projections. Choose n > 0 and s ∈ Γ(X,L⊗n) such that
Xs is an affine open neighbourhood of x. Choose m > 0 and t ∈ Γ(Y,N ⊗m) such
that Yt is an affine open neighbourhood of y. Then r = pr∗

1s⊗ pr∗
2t is a section of

M with (X × Y )r = Xs × Yt. This is an affine open neighbourhood of z and the
proof is complete. □

27. Affine and quasi-affine schemes

01QD
Lemma 27.1.01QE Let X be a scheme. Then X is quasi-affine if and only if OX is
ample.
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Proof. Suppose that X is quasi-affine. Set A = Γ(X,OX). Consider the open
immersion

j : X −→ Spec(A)
from Lemma 18.4. Note that Spec(A) = Proj(A[T ]), see Constructions, Example
8.14. Hence we can apply Lemma 26.12 to deduce that OX is ample.
Suppose that OX is ample. Note that Γ∗(X,OX) ∼= A[T ] as graded rings. Hence
the result follows from Lemmas 26.11 and 18.4 taking into account that Spec(A) =
Proj(A[T ]) for any ring A as seen above. □

Lemma 27.2.0BCK Let X be a quasi-affine scheme. For any quasi-compact immersion
i : X ′ → X the scheme X ′ is quasi-affine.
Proof. This can be proved directly without making use of the material on ample
invertible sheaves; we urge the reader to do this on a napkin. Since X is quasi-
affine, we have that OX is ample by Lemma 27.1. Then OX′ is ample by Lemma
26.14. Then X ′ is quasi-affine by Lemma 27.1. □

Lemma 27.3.01QF Let X be a scheme. Suppose that there exist finitely many elements
f1, . . . , fn ∈ Γ(X,OX) such that

(1) each Xfi
is an affine open of X, and

(2) the ideal generated by f1, . . . , fn in Γ(X,OX) is equal to the unit ideal.
Then X is affine.
Proof. Assume we have f1, . . . , fn as in the lemma. We may write 1 =

∑
gifi for

some gj ∈ Γ(X,OX) and hence it is clear that X =
⋃
Xfi

. (The fi’s cannot all
vanish at a point.) Since each Xfi

is quasi-compact (being affine) it follows that
X is quasi-compact. Hence we see that X is quasi-affine by Lemma 27.1 above.
Consider the open immersion

j : X → Spec(Γ(X,OX)),
see Lemma 18.4. The inverse image of the standard open D(fi) on the right hand
side is equal toXfi on the left hand side and the morphism j induces an isomorphism
Xfi

∼= D(fi), see Lemma 18.3. Since the fi generate the unit ideal we see that
Spec(Γ(X,OX)) =

⋃
i=1,...,nD(fi). Thus j is an isomorphism. □

28. Quasi-coherent sheaves and ample invertible sheaves

01QG Theme of this section: in the presence of an ample invertible sheaf every quasi-
coherent sheaf comes from a graded module.
Situation 28.1.01QH Let X be a scheme. Let L be an ample invertible sheaf on X. Set
S = Γ∗(X,L) as a graded ring. Set Y = Proj(S). Let f : X → Y be the canonical
morphism of Lemma 26.9. It comes equipped with a Z-graded OX -algebra map⊕
f∗OY (n) →

⊕
L⊗n.

The following lemma is really a special case of the next lemma but it seems like a
good idea to point out its validity first.
Lemma 28.2.01QI In Situation 28.1. The canonical morphism f : X → Y maps
X into the open subscheme W = W1 ⊂ Y where OY (1) is invertible and where
all multiplication maps OY (n) ⊗OY

OY (m) → OY (n + m) are isomorphisms (see
Constructions, Lemma 10.4). Moreover, the maps f∗OY (n) → L⊗n are all isomor-
phisms.
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Proof. By Proposition 26.13 there exists an integer n0 such that L⊗n is globally
generated for all n ≥ n0. Let x ∈ X be a point. By the above we can find a ∈ Sn0

and b ∈ Sn0+1 such that a and b do not vanish at x. Hence f(x) ∈ D+(a)∩D+(b) =
D+(ab). By Constructions, Lemma 10.4 we see that f(x) ∈ W1 as desired. By
Constructions, Lemma 14.1 which was used in the construction of the map f the
maps f∗OY (n0) → L⊗n0 and f∗OY (n0 + 1) → L⊗n0+1 are isomorphisms in a
neighbourhood of x. By compatibility with the algebra structure and the fact that
f maps into W we conclude all the maps f∗OY (n) → L⊗n are isomorphisms in a
neighbourhood of x. Hence we win. □

Recall from Modules, Definition 25.7 that given a locally ringed space X, an in-
vertible sheaf L, and a OX -module F we have the graded Γ∗(X,L)-module

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n).

The following lemma says that, in Situation 28.1, we can recover a quasi-coherent
OX -module F from this graded module. Take a look also at Constructions, Lemma
13.8 where we prove this lemma in the special case X = Pn

R.

Lemma 28.3.01QJ In Situation 28.1. Let F be a quasi-coherent sheaf on X. Set
M = Γ∗(X,L,F) as a graded S-module. There are isomorphisms

f∗M̃ −→ F

functorial in F such that M0 → Γ(Proj(S), M̃) → Γ(X,F) is the identity map.

Proof. Let s ∈ S+ be homogeneous such that Xs is affine open in X. Recall
that M̃ |D+(s) corresponds to the S(s)-module M(s), see Constructions, Lemma 8.4.
Recall that f−1(D+(s)) = Xs. As X carries an ample invertible sheaf it is quasi-
compact and quasi-separated, see Section 26. By Lemma 17.2 there is a canonical
isomorphism M(s) = Γ∗(X,L,F)(s) → Γ(Xs,F). Since F is quasi-coherent this
leads to a canonical isomorphism

f∗M̃ |Xs
→ F|Xs

Since L is ample on X we know that X is covered by the affine opens of the form
Xs. Hence it suffices to prove that the displayed maps glue on overlaps. Proof of
this is omitted. □

Remark 28.4.01QK With assumptions and notation of Lemma 28.3. Denote the dis-
played map of the lemma by θF . Note that the isomorphism f∗OY (n) → L⊗n of
Lemma 28.2 is just θL⊗n . Consider the multiplication maps

M̃ ⊗OY
OY (n) −→ M̃(n)

see Constructions, Equation (10.1.5). Pull this back to X and consider

f∗M̃ ⊗OX
f∗OY (n) //

θF ⊗θL⊗n

��

f∗M̃(n)

θF⊗L⊗n

��
F ⊗ L⊗n id // F ⊗ L⊗n

Here we have used the obvious identification M(n) = Γ∗(X,L,F ⊗ L⊗n). This
diagram commutes. Proof omitted.
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It should be possible to deduce the following lemma from Lemma 28.3 (or con-
versely) but it seems simpler to just repeat the proof.

Lemma 28.5.0AG5 Let S be a graded ring such that X = Proj(S) is quasi-compact.
Let F be a quasi-coherent OX-module. Set M =

⊕
n∈Z Γ(X,F(n)) as a graded

S-module, see Constructions, Section 10. The map

M̃ −→ F
of Constructions, Lemma 10.7 is an isomorphism. If X is covered by standard
opens D+(f) where f has degree 1, then the induced maps Mn → Γ(X,F(n)) are
the identity maps.

Proof. Since X is quasi-compact we can find homogeneous elements f1, . . . , fn ∈ S
of positive degrees such that X = D+(f1) ∪ . . . ∪ D+(fn). Let d be the least
common multiple of the degrees of f1, . . . , fn. After replacing fi by a power we may
assume that each fi has degree d. Then we see that L = OX(d) is invertible, the
multiplication maps OX(ad)⊗OX(bd) → OX((a+b)d) are isomorphisms, and each
fi determines a global section si of L such that Xsi

= D+(fi), see Constructions,
Lemmas 10.4 and 10.5. Thus Γ(X,F(ad)) = Γ(X,F ⊗ L⊗a). Recall that M̃ |D+(fi)
corresponds to the S(fi)-module M(fi), see Constructions, Lemma 8.4. Since the
degree of fi is d, the isomorphism class of M(fi) depends only on the homogeneous
summands of M of degree divisible by d. More precisely, the isomorphism class of
M(fi) depends only on the graded Γ∗(X,L)-module Γ∗(X,L,F) and the image si
of fi in Γ∗(X,L). The scheme X is quasi-compact by assumption and separated
by Constructions, Lemma 8.8. By Lemma 17.2 there is a canonical isomorphism

M(fi) = Γ∗(X,L,F)(si) → Γ(Xsi ,F).
The construction of the map in Constructions, Lemma 10.7 then shows that it is
an isomorphism over D+(fi) hence an isomorphism as X is covered by these opens.
We omit the proof of the final statement. □

29. Finding suitable affine opens

01ZU In this section we collect some results on the existence of affine opens in more and
less general situations.

Lemma 29.1.01ZV Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X, see Topology, Section 8. Let ηi ∈ Zi be their
generic points, see Schemes, Lemma 11.1. There exist affine open neighbourhoods
ηi ∈ Ui such that Ui ∩ Uj = ∅ for all i ̸= j. In particular, U = U1 ∪ . . . ∪ Un is an
affine open containing all of the points η1, . . . , ηn.

Proof. Let Vi be any affine open containing ηi and disjoint from the closed set Z1 ∪
. . . Ẑi . . . ∪Zn. Since X is quasi-separated for each i the union Wi =

⋃
j,j ̸=i Vi ∩ Vj

is a quasi-compact open of Vi not containing ηi. We can find open neighbourhoods
Ui ⊂ Vi containing ηi and disjoint from Wi by Algebra, Lemma 26.4. Finally, U is
affine since it is the spectrum of the ring R1 × . . . × Rn where Ri = OX(Ui), see
Schemes, Lemma 6.8. □

Remark 29.2.01ZW Lemma 29.1 above is false if X is not quasi-separated. Here is an
example. Take R = Q[x, y1, y2, . . .]/((x − i)yi). Consider the minimal prime ideal
p = (y1, y2, . . .) of R. Glue two copies of Spec(R) along the (not quasi-compact)
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open Spec(R)\V (p) to get a scheme X (glueing as in Schemes, Example 14.3). Then
the two maximal points of X corresponding to p are not contained in a common
affine open. The reason is that any open of Spec(R) containing p contains infinitely
many of the “lines” x = i, yj = 0, j ̸= i with parameter yi. Details omitted.

Notwithstanding the example above, for “most” finite sets of irreducible closed
subsets one can apply Lemma 29.1 above, at least if X is quasi-compact. This is
true because X contains a dense open which is separated.

Lemma 29.3.03J1 Let X be a quasi-compact scheme. There exists a dense open
V ⊂ X which is separated.

Proof. Say X =
⋃
i=1,...,n Ui is a union of n affine open subschemes. We will prove

the lemma by induction on n. It is trivial for n = 1. Let V ′ ⊂
⋃
i=1,...,n−1 Ui be a

separated dense open subscheme, which exists by induction hypothesis. Consider

V = V ′ ⨿ (Un \ V ′).

It is clear that V is separated and a dense open subscheme of X. □

It turns out that, even if X is quasi-separated as well as quasi-compact, there does
not exist a separated, quasi-compact dense open, see Examples, Lemma 26.2. Here
is a slight refinement of Lemma 29.1 above.

Lemma 29.4.01ZX Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X. Let ηi ∈ Zi be their generic points. Let
x ∈ X be arbitrary. There exists an affine open U ⊂ X containing x and all the ηi.

Proof. Suppose that x ∈ Z1 ∩ . . .∩Zr and x ̸∈ Zr+1, . . . , Zn. Then we may choose
an affine open W ⊂ X such that x ∈ W and W ∩ Zi = ∅ for i = r + 1, . . . , n. Note
that clearly ηi ∈ W for i = 1, . . . , r. By Lemma 29.1 we may choose affine opens
Ui ⊂ X which are pairwise disjoint such that ηi ∈ Ui for i = r + 1, . . . , n. Since
X is quasi-separated the opens W ∩ Ui are quasi-compact and do not contain ηi
for i = r + 1, . . . , n. Hence by Algebra, Lemma 26.4 we may shrink Ui such that
W ∩Ui = ∅ for i = r+ 1, . . . , n. Then the union U = W ∪

⋃
i=r+1,...,n Ui is disjoint

and hence (by Schemes, Lemma 6.8) a suitable affine open. □

Lemma 29.5.01ZY Let X be a scheme. Assume either
(1) The scheme X is quasi-affine.
(2) The scheme X is isomorphic to a locally closed subscheme of an affine

scheme.
(3) There exists an ample invertible sheaf on X.
(4) The scheme X is isomorphic to a locally closed subscheme of Proj(S) for

some graded ring S.
Then for any finite subset E ⊂ X there exists an affine open U ⊂ X with E ⊂ U .

Proof. By Properties, Definition 18.1 a quasi-affine scheme is a quasi-compact
open subscheme of an affine scheme. Any affine scheme Spec(R) is isomorphic to
Proj(R[X]) where R[X] is graded by setting deg(X) = 1. By Proposition 26.13
if X has an ample invertible sheaf then X is isomorphic to an open subscheme of
Proj(S) for some graded ring S. Hence, it suffices to prove the lemma in case (4).
(We urge the reader to prove case (2) directly for themselves.)

https://stacks.math.columbia.edu/tag/03J1
https://stacks.math.columbia.edu/tag/01ZX
https://stacks.math.columbia.edu/tag/01ZY
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Thus assume X ⊂ Proj(S) is a locally closed subscheme where S is some graded
ring. Let T = X \ X. Recall that the standard opens D+(f) form a basis of the
topology on Proj(S). Since E is finite we may choose finitely many homogeneous
elements fi ∈ S+ such that

E ⊂ D+(f1) ∪ . . . ∪D+(fn) ⊂ Proj(S) \ T
Suppose that E = {p1, . . . , pm} as a subset of Proj(S). Consider the ideal I =
(f1, . . . , fn) ⊂ S. Since I ̸⊂ pj for all j = 1, . . . ,m we see from Algebra, Lemma
57.6 that there exists a homogeneous element f ∈ I, f ̸∈ pj for all j = 1, . . . ,m.
Then E ⊂ D+(f) ⊂ D+(f1) ∪ . . . ∪ D+(fn). Since D+(f) does not meet T we see
that X∩D+(f) is a closed subscheme of the affine scheme D+(f), hence is an affine
open of X as desired. □

Lemma 29.6.09NV Let X be a scheme. Let L be an ample invertible sheaf on X. Let
E ⊂ W ⊂ X

with E finite and W open in X. Then there exists an n > 0 and a section s ∈
Γ(X,L⊗n) such that Xs is affine and E ⊂ Xs ⊂ W .

Proof. The reader can modify the proof of Lemma 29.5 to prove this lemma; we will
instead deduce the lemma from it. By Lemma 29.5 we can choose an affine open U ⊂
W such that E ⊂ U . Consider the graded ring S = Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n).

For each x ∈ E let px ⊂ S be the graded ideal of sections vanishing at x. It is clear
that px is a prime ideal and since some power of L is globally generated, it is clear
that S+ ̸⊂ px. Let I ⊂ S be the graded ideal of sections vanishing on all points
of X \ U . Since the sets Xs form a basis for the topology we see that I ̸⊂ px for
all x ∈ E. By (graded) prime avoidance (Algebra, Lemma 57.6) we can find s ∈ I
homogeneous with s ̸∈ px for all x ∈ E. Then E ⊂ Xs ⊂ U and Xs is affine by
Lemma 26.4. □

Lemma 29.7.0F20 Let X be a quasi-affine scheme. Let L be an invertible OX-module.
Let E ⊂ W ⊂ X with E finite and W open. Then there exists an s ∈ Γ(X,L) such
that Xs is affine and E ⊂ Xs ⊂ W .

Proof. The proof of this lemma has a lot in common with the proof of Algebra,
Lemma 15.2. Say E = {x1, . . . , xn}. If E = W = ∅, then s = 0 works. If W ̸= ∅,
then we may assume E ̸= ∅ by adding a point if necessary. Thus we may assume
n ≥ 1. We will prove the lemma by induction on n.
Base case: n = 1. After replacing W by an affine open neighbourhood of x1 in W ,
we may assume W is affine. Combining Lemmas 27.1 and Proposition 26.13 we see
that every quasi-coherent OX -module is globally generated. Hence there exists a
global section s of L which does not vanish at x1. On the other hand, let Z ⊂ X
be the reduced induced closed subscheme on X \ W . Applying global generation
to the quasi-coherent ideal sheaf I of Z we find a global section f of I which does
not vanish at x1. Then s′ = fs is a global section of L which does not vanish at x1
such that Xs′ ⊂ W . Then Xs′ is affine by Lemma 26.4.
Induction step for n > 1. If there is a specialization xi ⇝ xj for i ̸= j, then it
suffices to prove the lemma for {x1, . . . , xn} \ {xi} and we are done by induction.
Thus we may assume there are no specializations among the xi. By either Lemma
29.5 or Lemma 29.6 we may assume W is affine. By induction we can find a global

https://stacks.math.columbia.edu/tag/09NV
https://stacks.math.columbia.edu/tag/0F20


PROPERTIES OF SCHEMES 51

section s of L such that Xs ⊂ W is affine and contains x1, . . . , xn−1. If xn ∈ Xs

then we are done. Assume s is zero at xn. By the case n = 1 we can find a global
section s′ of L with {xn} ⊂ Xs′ ⊂ W \ {x1, . . . , xn−1}. Here we use that xn is
not a specialization of x1, . . . , xn−1. Then s + s′ is a global section of L which is
nonvanishing at x1, . . . , xn with Xs+s′ ⊂ W and we conclude as before. □

Lemma 29.8.0BX3 Let X be a scheme and x ∈ X a point. There exists an affine open
neighbourhood U ⊂ X of x such that the canonical map OX(U) → OX,x is injective
in each of the following cases:

(1) X is integral,
(2) X is locally Noetherian,
(3) X is reduced and has a finite number of irreducible components.

Proof. After translation into algebra, this follows from Algebra, Lemma 31.9. □

30. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes

(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology

https://stacks.math.columbia.edu/tag/0BX3


PROPERTIES OF SCHEMES 52

(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index

References
[Art66] Michael Artin, Etale coverings of schemes over hensel rings, American Journal of Math-

ematics 88 (1966), no. 4, 915–934.
[DG67] Jean Dieudonné and Alexander Grothendieck, Éléments de géométrie algébrique, Inst.

Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967).
[GD67] Alexander Grothendieck and Jean Dieudonné, Éléments de géométrie algébrique IV, Pub-

lications Mathématiques, vol. 20, 24, 28, 32, Institute des Hautes Études Scientifiques.,
1964-1967.

[Gre76] Silvio Greco, Two theorems on excellent rings, Nagoya Math. J. 60 (1976), 139–149.
[HL07] William J. Heinzer and Lawrence S. Levy, Domains of dimension 1 with infinitely many

singular maximal ideals, Rocky Mountain J. Math. 37 (2007), no. 1, 203–214.
[Hoc73] M. Hochster, Non-openness of loci in Noetherian rings, Duke Math. J. 40 (1973), 215–

219.
[Hoo72] Raymond Taylor Hoobler, Cohomology in the finite topology and Brauer groups, Pacific

J. Math. 42 (1972), 667–679.



PROPERTIES OF SCHEMES 53

[ILO14] Luc Illusie, Yves Laszlo, and Frabice Orgogozo, Travaux de gabber sur lúniformisation
locale et la cohomologie étale des schémas quasi-excellents, Astérisque 363-364, Publica-
tions de la SMF, 2014.

[Liu02] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math-
ematics, vol. 6, Oxford University Press, Oxford, 2002, Translated from the French by
Reinie Erné, Oxford Science Publications.


	1. Introduction
	2. Constructible sets
	3. Integral, irreducible, and reduced schemes
	4. Types of schemes defined by properties of rings
	5. Noetherian schemes
	6. Jacobson schemes
	7. Normal schemes
	8. Cohen-Macaulay schemes
	9. Regular schemes
	10. Dimension
	11. Catenary schemes
	12. Serre's conditions
	13. Japanese and Nagata schemes
	14. The singular locus
	15. Local irreducibility
	16. Characterizing modules of finite type and finite presentation
	17. Sections over principal opens
	18. Quasi-affine schemes
	19. Flat modules
	20. Locally free modules
	21. Locally projective modules
	22. Extending quasi-coherent sheaves
	23. Gabber's result
	24. Sections with support in a closed subset
	25. Sections of quasi-coherent sheaves
	26. Ample invertible sheaves
	27. Affine and quasi-affine schemes
	28. Quasi-coherent sheaves and ample invertible sheaves
	29. Finding suitable affine opens
	30. Other chapters
	References

