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1. Introduction

As initially conceived, the purpose of this chapter was to write about Quot and
Hilbert functors and to prove that these are algebraic spaces provided certain tech-
nical conditions are satisfied. This material, in the setting of schemes, is covered in

Grothendieck’s lectures in the séminair Bourbaki, see [Gro95a), [Gro95b], [Gro95€],
[Gro95f], [Gro95d], and [Gro95d]. For projective schemes the Quot and Hilbert

schemes live inside Grassmannians of spaces of sections of suitable very ample in-
vertible sheaves, and this provides a method of construction for these schemes. Our
approach is different: we use Artin’s axioms to prove Quot and Hilb are algebraic
spaces.

Upon further consideration, it turned out to be more convenient for the development
of theory in the Stacks project, to start the discussion with the stack Cohx/p of
coherent sheaves (with proper support over the base) as introduced in [LieQ6b].
For us f : X — B is a morphism of algebraic spaces satisfying suitable technical
conditions, although this can be generalized (see below). Given modules F and

G on X, under suitably hypotheses, the functor T/B — Homx, (Fr,Gr) is an

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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algebraic space Hom(F,G) over B. See Section |3l The subfunctor Isom(F,G) of
isomorphisms is shown to be an algebraic space in Section [d] This is used in the
next sections to show the diagonal of the stack Cohx,p is representable. We prove

Cohx/p is an algebraic stack in Section [5(when X — B is flat and in Section |§| in
general. Please see the introduction of this section for pointers to the literature.

Having proved this, it is rather straightforward to prove that Quotz, x /B> Hilbx, s,
and Picy,/p are algebraic spaces and that Picx,p is an algebraic stack. See Sections

B [0} [L1} and [L0}

In the usual manner we deduce that the functor Morg(Z, X) of relative morphisms
is an algebraic space (under suitable hypotheses) in Section

In Section [I3] we prove that the stack in groupoids

Spaces't,, t1at proper
parametrizing flat families of proper algebraic spaces satisfies all of Artin’s axioms
(including openness of versality) except for formal effectiveness. We’ve chosen the
very awkward notation for this stack intentionally, because the reader should be
carefull in using its properties.

In Section [14] we prove that the stack Polarized parametrizing flat families of po-
larized proper algebraic spaces is an algebraic stack. Because of our work on flat
families of proper algebraic spaces, this comes down to proving formal effective-
ness for polarized schemes which is often known as Grothendieck’s algebraization
theorem.

In Section [I5] we prove that the stack Curves parametrizing families of curves is
algebraic.

In Section [16] we study moduli of complexes on a proper morphism and we obtain
an algebraic stack Complezes /B Theidea of the statement and the proof are taken
from [LieOGal.

What is not in this chapter? There is almost no discussion of the properties the
resulting moduli spaces and moduli stacks possess (beyond their algebraicity); to
read about this we refer to Moduli Stacks, Section [I] In most of the results dis-
cussed, we can generalize the constructions by considering a morphism X — B of
algebraic stacks instead of a morphism X — B of algebraic space. We will discuss
this (insert future reference here). In the case of Hilbert spaces there is a more
general notion of “Hilbert stacks” which we will discuss in a separate chapter, see
(insert future reference here).

2. Conventions

We have intentionally placed this chapter, as well as the chapters “Examples of
Stacks”, “Sheaves on Algebraic Stacks”, “Criteria for Representability”, and “Artin’s
Axioms” before the general development of the theory of algebraic stacks. The rea-
son for this is that starting with the next chapter (see Properties of Stacks, Section
2) we will no longer distinguish between a scheme and the algebraic stack it gives
rise to. Thus our language will become more flexible and easier for a human to
parse, but also less precise. These first few chapters, including the initial chap-
ter “Algebraic Stacks”, lay the groundwork that later allow us to ignore some of
the very technical distinctions between different ways of thinking about algebraic
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stacks. But especially in the chapters “Artin’s Axioms” and “Criteria of Repre-
sentability” we need to be very precise about what objects exactly we are working
with, as we are trying to show that certain constructions produce algebraic stacks
or algebraic spaces.

Unfortunately, this means that some of the notation, conventions and terminology
is awkward and may seem backwards to the more experienced reader. We hope the
reader will forgive us!

The standing assumption is that all schemes are contained in a big fppf site Schtpp .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X x g X for the product of X with itself (in the category of
algebraic spaces over 5), instead of X x X.

3. The Hom functor

In this section we study the functor of homomorphisms defined below.

Situation| 3.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Let F, G be quasi-coherent Ox-modules. For any scheme T over
B we will denote Fr and Gr the base changes of F and G to T, in other words,
the pullbacks via the projection morphism X = X xg T — X. We consider the
functor

(3.1.1) Hom(F,G) : (Sch/B)"" — Sets, T — Homo,_(Fr,Gr)

In Situation [3.1] we sometimes think of Hom(F,§) as a functor (Sch/S)?PP — Sets
endowed with a morphism Hom(F,G) — B. Namely, if T is a scheme over S,
then an element of Hom(F,G)(T) consists of a pair (h,u), where h is a morphism
h:T — Band u: Fr — Gr is an Ox,-module map where X7 =1 x; p X and
Fr and Gr are the pullbacks to Xp. In particular, when we say that Hom(F,G) is
an algebraic space, we mean that the corresponding functor (Sch/S)°PP — Sets is
an algebraic space.

Lemmal 3.2. In Situation the functor Hom(F,G) satisfies the sheaf property
for the fpgc topology.

Proof. Let {T; — T}icr be an fpqe covering of schemes over B. Set X; = Xp, =
X xgT; and F; = ug, and G; = Gr,. Note that {X; — Xr};cr is an fpqc covering
of Xr, see Topologies on Spaces, Lemma Thus a family of maps u; : F; = G;
such that u; and w; restrict to the same map on Xr, ., 1, comes from a unique map
u : Fr — Gr by descent (Descent on Spaces, Proposition . ([l

Sanity check: Hom sheaf plays the same role among algebraic spaces over S.
Lemmal 3.3. In Situation , Let T be an algebraic space over S. We have
Morsp((sch/s) 1ppr) (Ts Hom(F,G)) = {(h,u) | h: T = B,u: Fr — Gr}

where Fr,Gr denote the pullbacks of F and G to the algebraic space X xpp T.
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Proof. Choose a scheme U and a surjective étale morphism p : U — T. Let
R =U xp U with projections t,s : R — U.

Let v : T — Hom(F,G) be a natural transformation. Then v(p) corresponds to a
pair (hy,uy) over U. As v is a transformation of functors we see that the pullbacks
of (hy,uy) by s and ¢ agree. Since T' = U/R (Spaces, Lemma , we obtain a
morphism h : T'— B such that hy = hop. Then Fy is the pullback of Fr to Xy
and similarly for Gy;. Hence uy descends to a Ox,-module map u : Fr — Gr by
Descent on Spaces, Proposition

Conversely, let (h,u) be a pair over T. Then we get a natural transformation
v: T — Hom(F,G) by sending a morphism a : 77 — T where T” is a scheme to
(hoa,a*u). We omit the verification that the construction of this and the previous
paragraph are mutually inverse. ([

Remark 3.4. In Situation let B — B be a morphism of algebraic spaces over
S. Set X' = X xg B’ and denote F', G’ the pullback of F, G to X’'. Then we
obtain a functor Hom(F',G’) : (Sch/B’)°PP — Sets associated to the base change
f': X' — B’. For a scheme T over B’ it is clear that we have

Hom(F',G")(T) = Hom(F,G)(T)

where on the right hand side we think of 7" as a scheme over B via the composition
T — B’ — B. This trivial remark will occasionally be useful to change the base
algebraic space.

Lemmal 3.5. In Situation let {X; = X}ier be an fppf covering and for each
1,7 € I let {Xijx = X; xx X;} be an fppf covering. Denote F;, resp. Fiji the
pullback of F to X;, resp. Xyji. Stmilarly define G; and Gij,. For every scheme T
over B the diagram
pTYH
Hom(F,G)(T) —— 1, Hom(F;, G:)(T) ___I1; ; x» Hom(Fijk, Giji)(T)
pri

presents the first arrow as the equalizer of the other two.

Proof. Let u; : 7;7 — G; r be an element in the equalizer of prj and prj. Since
the base change of an fppf covering is an fppf covering (Topologies on Spaces,
Lemma we see that {X; 7 — Xr}icr and { X, — Xi1 Xx, Xj 1} are fppf
coverings. Applying Descent on Spaces, Proposition we first conclude that wu;
and u; restrict to the same morphism over X; r X x, X;r, whereupon a second
application shows that there is a unique morphism u : Fr — Gp restricting to wu;
for each 4. This finishes the proof. [

Lemma/3.6. In Situation. If F is of finite presentation and f is quasi-compact
and quasi-separated, then Hom(F,G) is limit preserving.

Proof. Let T = lim;c; T; be a directed limit of affine B-schemes. We have to show
that

Hom(F,G)(T) = colim Hom(F,G)(T;)
Pick 0 € I. We may replace B by Ty, X by Xr,, F by Fr,, G by Gr,, and I by
{i€I|i>0}. See Remark[3.4] Thus we may assume B = Spec(R) is affine.

When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective
étale morphism U — X where U is an affine scheme (Properties of Spaces, Lemma
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6.3). Since X is quasi-separated, the scheme U X x U is quasi-compact and we may
choose a surjective étale morphism V' — U xx U where V is an affine scheme.
Applying Lemma we see that Hom(F,G) is the equalizer of two maps between

Hom(f|U, Q|U) and Hom(]:|v, g|v)
This reduces us to the case that X is affine.

In the affine case the statement of the lemma reduces to the following problem:
Given a ring map R — A, two A-modules M, N and a directed system of R-
algebras C' = colim C;. When is it true that the map

colim Hom g ,c; (M ®r C;, N ®p C;) — Homug,c(M @r C,N ®@r C)

is bijective? By Algebra, Lemma [127.5] this holds if M ® g C' is of finite presentation
over A®pg C, i.e., when M is of finite presentation over A. O

Lemmal 3.7. Let S be a scheme. Let B be an algebraic space over S. Leti: X' —
X be a closed immersion of algebraic spaces over B. Let F be a quasi-coherent
Ox-module and let G’ be a quasi-coherent Ox:-module. Then

Hom(F,i.G") = Hom(i*F,G")
as functors on (Sch/B).

Proof. Let g : T — B be a morphism where T is a scheme. Denote it : X}, — X
the base change of i. Denote h : Xy — X and A’ : X} — X’ the projections.
Observe that (h’)* i*F = i%h*F. As a closed immersion is affine (Morphisms of
Spaces Lemma [20.6) we have h*i.G = iz .(h')*G by Cohomology of Spaces, Lemma
Thus we have

Hom(F,i,.G')(T) = Homo, (h*F,h"i i.G)

= Homo, (" F,ir«(h *G)
, (Gph"F, (W)"G)

= HomoX,T ((h')*i*F,(h')*G)

= Hom(i*F,G")(T)

as desired. The middle equality follows from the adjointness of the functors iz .
and 7. O

= HOHl(g

Lemma 3.8. Let S be a scheme. Let B be an algebraic space over S. Let K be a
pseudo-coherent object of D(Op).

1 orallg:T — B in (Sc the cohomology sheaf H™*(Lg 1s zero,
If forallg: T — B Sch/B) the coh l heaf H-(Lg*K
then the functor
(Sch/B)°PP — Sets, (g:T — B) — H°(T,H(Lg*K))

s an algebraic space affine and of finite presentation over B.

(2) If forallg: T — B in (Sch/B) the cohomology sheaves H'(Lg*K) are zero
fori < 0, then K is perfect, K locally has tor amplitude in [0,b], and the
functor

(Sch/B)°PP — Sets, (g:T — B) — H(T,Lg*K)

s an algebraic space affine and of finite presentation over B.
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Proof. Under the assumptions of (2) we have H(T, Lg*K) = H*(T, H’(Lg*K)).
Let us prove that the rule T+ HO(T, H°(Lg*K)) satisfies the sheaf property for
the fppf topology. To do this assume we have an fppf covering {h; : T; — T} of
a scheme g : T — B over B. Set g; = g o h;. Note that since h; is flat, we have
Lh? = h} and h] commutes with taking cohomology. Hence

H(T;, H(Lg; K)) = H*(T;, H*(h; Lg*K)) = H(T, h H*(Lg*K))

Similarly for the pullback to T; X1 T;. Since Lg*K is a pseudo-coherent complex
on T (Cohomology on Sites, Lemma the cohomology sheaf F = H(Lg*K) is
quasi-coherent (Derived Categories of Spaces, Lemma . Hence by Descent on
Spaces, Proposition we see that

HY(T, F) = Ker([ [ H(T3, h; F) = [ [ HY(T: %0 Ty, (Ti x1 Ty = T)* F))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf
coverings. This means we may apply Bootstrap, Lemma to see it suffices to
prove the representability étale locally on B. Moreover, we may check whether the
end result is affine and of finite presentation étale locally on B, see Morphisms of
Spaces, Lemmas and Hence we may assume that B is an affine scheme.

Assume B = Spec(A) is an affine scheme. By the results of Derived Categories of
Spaces, Lemmas and we deduce that in the rest of the proof we may
think of K as a perfect object of the derived category of complexes of modules on
B in the Zariski topology. By Derived Categories of Schemes, Lemmas
and we can find a pseudo-coherent complex M® of A-modules such that K
is the corresponding object of D(Opg). Our assumption on pullbacks implies that
M* @% k(p) has vanishing H~! for all primes p C A. By More on Algebra, Lemma
[[6.4] we can write
M*® = TZ()M. @TgflM.

with 75>0M*® perfect with Tor amplitude in [0,b] for some b > 0 (here we also have
used More on Algebra, Lemmas and . Note that in case (2) we also see
that 7<_1M*® = 0 in D(A) whence M*® and K are perfect with tor amplitude in
[0,b]. For any B-scheme g : T — B we have

H(T,H°(Lg"K)) = H(T, H°(Lg*7>0K))

(by the dual of Derived Categories, Lemma [16.1)) hence we may replace K by 750K
and correspondingly M*® by 7>¢M?®. In other words, we may assume M*® has tor
amplitude in [0, b].

Assume M*® has tor amplitude in [0,b]. We may assume M* is a bounded above
complex of finite free A-modules (by our definition of pseudo-coherent complexes,
see More on Algebra, Definition and the discussion following the definition).
By More on Algebra, Lemma @/e see that M = Coker(M ! — M?) is flat.
By Algebra, Lemma we see that M is finite locally free. Hence M*® is quasi-
isomorphic to

MM - M?>— ... M*=0...

Note that this is a K-flat complex (Cohomology, Lemma [26.9)), hence derived pull-
back of K via a morphism T'— B is computed by the complex

g*]f\\j%g*ﬁ%...
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Thus it suffices to show that the functor

(g:T — B) — Ker(I(T, g* M) — T(T, g* (M%)
is representable by an affine scheme of finite presentation over B.
We may still replace B by the members of an affine open covering in order to prove
this last statement. Hence we may assume that M is finite free (recall that M! is
finite free to begin with). Write M = A®™ and M = A9™. Let the map M — M*
be given by the m x n matrix (a;;) with coefficients in A. Then M = O%" and
M = O%m. Thus the functor above is equal to the functor

(g:T*}B)}—){(flw-'afn) GF(Tv(QT) ‘ Zgﬁ(aij)fi:()’ j:l,...,m}

Clearly this is representable by the affine scheme

Spec (A[xl, . 7xn]/(X: ai;xi;j=1,..., m))
and the lemma has been proved. ([

The functor Hom(F, G) is representable in a number of situations. All of our results
will be based on the following basic case. The proof of this lemma as given below
is in some sense the natural generalization to the proof of [DGGT, III, Cor 7.7.8].

Lemma 3.9. In Situation assume that

(1) B is a Noetherian algebraic space,

(2) f is locally of finite type and quasi-separated,

(3) F is a finite type Ox-module, and

(4) G is a finite type Ox-module, flat over B, with support proper over B.
Then the functor Hom(F,G) is an algebraic space affine and of finite presentation
over B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P — F by a perfect complex P of
the triple (X, F, —1), see Derived Categories of Spaces, Deﬁnitionand Theorem
14.7). Then the induced map

HOHl(QX (f7 g) — HomD(Ox)(Pa g)

is an isomorphism because P — F induces an isomorphism H°(P) — F and
HY(P) = 0 for i > 0. Moreover, for any morphism g : T — B denote h : X1 =
T xp X — X the projection and set Pr = Lh*P. Then it is equally true that

HOIHOXT (fT, QT) — HOIHD(OXT) (PT, QT)

is an isomorphism, as Pp = Lh*P — Lh*F — JFr induces an isomorphism
H°(Pr) — Fr (because h* is right exact and H(P) = 0 for i > 0). Thus it
suffices to prove the result for the functor

T+— HomD(OXT)(PT7 QT)
By the Leray spectral sequence (see Cohomology on Sites, Remark [14.4]) we have
HOHID(@XT)(PT, QT) = HO(XT, RHom(PT, QT)) = HO(T, RfT,*R'Hom(PT, QT))
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where fr : Xp — T is the base change of f. By Derived Categories of Spaces,
Lemma 21.5] we have

Rfr..RHom(Pr,Gr) = Lg*Rf.R Hom(P,G).

By Derived Categories of Spaces, Lemma the object K = Rf.RHom(P,G)
of D(Op) is perfect. This means we can apply Lemma as long as we can
prove that the cohomology sheaf H'(Lg*K) is 0 for all i < 0 and g : T —
B as above. This is clear from the last displayed formula as the cohomology
sheaves of Rfr .RHom(Pr,Gr) are zero in negative degrees due to the fact that
R Hom(Pr,Gr) has vanishing cohomology sheaves in negative degrees as Pr is per-
fect with vanishing cohomology sheaves in positive degrees. O

Here is a cheap consequence of Lemma [3.9

Proposition 3.10. In Situation assume that

(1) f is of finite presentation, and
(2) G is a finitely presented Ox-module, flat over B, with support proper over
B.

Then the functor Hom(F,G) is an algebraic space affine over B. If F is of finite
presentation, then Hom(F,G) is of finite presentation over B.

Proof. By Lemma the functor Hom(F,G) satisfies the sheaf property for fppf
coverings. This mean we mayE| apply Bootstrap, Lemma to check the repre-
sentability étale locally on B. Moreover, we may check whether the end result is

affine or of finite presentation étale locally on B, see Morphisms of Spaces, Lemmas
20.3 and Hence we may assume that B is an affine scheme.

Assume B is an affine scheme. As f is of finite presentation, it follows X is quasi-
compact and quasi-separated. Thus we can write F = colim F; as a filtered colimit
of Ox-modules of finite presentation (Limits of Spaces, Lemma(9.1)). It is clear that

Hom(F,G) = lim Hom(F;,G)

Hence if we can show that each Hom(F;,G) is representable by an affine scheme,
then we see that the same thing holds for Hom(F,G). Use the material in Limits,
Section [2] and Limits of Spaces, Section 4, Thus we may assume that F is of finite
presentation.

Say B = Spec(R). Write R = colim R; with each R; a finite type Z-algebra. Set
B; = Spec(R;). By the results of Limits of Spaces, Lemmas andwe can find
an ¢, a morphism of algebraic spaces X; — B;, and finitely presented Ox,-modules
F; and G, such that the base change of (X;, F;,G;) to B recovers (X, F,G). By
Limits of Spaces, Lemma [6.12] we may, after increasing ¢, assume that G, is flat
over B;. By Limits of Spaces, Lemma we may similarly assume the scheme
theoretic support of G; is proper over B;. At this point we can apply Lemma [3.9]
to see that H; = Hom(F;,G;) is an algebraic space affine of finite presentation over
B;. Pulling back to B (using Remark we see that H; xp, B = Hom(F,G) and
we win. (I

IWe omit the verification of the set theoretical condition (3) of the referenced lemma.
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4. The Isom functor

In Situation 3.1l we can consider the subfunctor
Isom(F,G) C Hom(F,G)

whose value on a scheme T over B is the set of invertible Ox,-homomorphisms
u: Fr — Gp.

We sometimes think of Isom(F,G) as a functor (Sch/S)°PP — Sets endowed with
a morphism Isom(F,G) — B. Namely, if T is a scheme over S, then an element
of Isom(F,G)(T) consists of a pair (h,u), where h is a morphism h : T — B and
u: Fr — Gr is an Ox-module isomorphism where X7 = T xj; g X and Fr and
Gr are the pullbacks to Xp. In particular, when we say that Isom(F,G) is an
algebraic space, we mean that the corresponding functor (Sch/S)°PP — Sets is an
algebraic space.

Lemma 4.1. In Situation the functor Isom(F,G) satisfies the sheaf property
for the fpgc topology.

Proof. We have already seen that Hom(F,G) satisfies the sheaf property. Hence
it remains to show the following: Given an fpqc covering {T; — T'};cr of schemes
over B and an Ox,-linear map w : Fr — Gr such that ug, is an isomorphism for
all 4, then v is an isomorphism. Since {X; — X7 }iecr is an fpqe covering of X, see
Topologies on Spaces, Lemma[9.3] this follows from Descent on Spaces, Proposition
41l O

Sanity check: Isom sheaf plays the same role among algebraic spaces over S.

Lemmal 4.2. In Situation , Let T be an algebraic space over S. We have
Morsp((sch/s) ;o) (Ts Isom(F,G)) = {(h,u) | h: T'— B,u : Fr — Gr isomorphism}
where Fr,Gr denote the pullbacks of F and G to the algebraic space X xpp T.

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the equality in Lemma [3.3] We omit the verification
that these subsets correspond under the identification given in the proof of that
lemma. (I

Proposition| 4.3. In Situation assume that

(1) f is of finite presentation, and
(2) F and G are finitely presented O x -modules, flat over B, with support proper
over B.

Then the functor Isom(F,G) is an algebraic space affine of finite presentation over
B.

Proof. We will use the abbreviations H = Hom(F,G), I = Hom(F,F), H =
Hom(G,F), and I' = Hom(G,G). By Proposition the functors H, I, H', I’
are algebraic spaces and the morphisms H —+ B, I — B, H' — B, and I’ — B are
affine and of finite presentation. The composition of maps gives a morphism

c:H xgH—1Ixgl', (u,u)— (uou',u ou)

of algebraic spaces over B. Since I xg I’ — B is separated, the section o : B —
I xp I’ corresponding to (idr,idg) is a closed immersion (Morphisms of Spaces,
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Lemma [4.7). Moreover, o is of finite presentation (Morphisms of Spaces, Lemma
28.9). Hence

Isom(F,G) = (H' xg H) X¢.1xp1'.0 B

is an algebraic space affine of finite presentation over B as well. Some details
omitted. (]

5. The stack of coherent sheaves

In this section we prove that the stack of coherent sheaves on X/B is algebraic
under suitable hypotheses. This is a special case of [Lie06bl Theorem 2.1.1] which
treats the case of the stack of coherent sheaves on an Artin stack over a base.

Situation 5.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. We denote Cohx,p the
category whose objects are triples (7', g, F) where
(1) T is a scheme over S,
(2) g:T — B is a morphism over S, and setting Xp =T x4, 5 X
(3) F is a quasi-coherent O -module of finite presentation, flat over T, with
support proper over T
A morphism (T, g, F) — (T',¢’, F') is given by a pair (h, ¢) where
(1) h: T — T' is a morphism of schemes over B (i.e., ¢’ o h = g), and
(2) ¢: (W)*F — F is an isomorphism of Ox,-modules where b’ : X7 — X
is the base change of h.

Thus Cohx/p is a category and the rule
p:Cohx/p — (Sch/S)sppy, (T,9,F)+—T

is a functor. For a scheme T over S we denote Cohy,p r the fibre category of p
over T'. These fibre categories are groupoids.

Lemmal 5.2. In Situatz'on the functor p : Cohx g — (Sch/S) gppy is fibred in
groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition Given an object (1", g’, ') of Cohx,p and a morphism
h : T — T of schemes over S we can set ¢ = hog and F = (h/)*F’ where
h' : Xp — X7 is the base change of h. Then it is clear that we obtain a morphism
(T,g,F) = (T",9', F") of Cohx,p lying over h. This proves (1). For (2) suppose we
are given morphisms

(h1,01) : (T, 91, F1) = (T, 9,F) and  (ha,p2) : (T2, g2, F2) — (T, 9,F)

of Cohx/p and a morphism h : T3 — T3 such that hy o h = h;. Then we can let ¢
be the composition

W) Fy L2 () (o) F = ()" F 5 F

to obtain the morphism (h, ) : (T1,91,F1) = (To, g2, F2) that witnesses the truth
of condition (2). O

Lemma 5.3. In Situation . Denote X = Cohx,p. Then A : X — X X X is
representable by algebraic spaces.
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Proof. Consider two objects x = (T, g, F) and y = (T, h,G) of X over a scheme
T. We have to show that Isomx(z,y) is an algebraic space over T, see Algebraic
Stacks, Lemmal[10.11} If for a : 7" — T the restrictions z|7v and y|+ are isomorphic
in the fibre category X7, then g o a = h o a. Hence there is a transformation of
presheaves

Isomx (z,y) — Equalizer(g, h)

Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T by this equalizer and the sheaves F and G by their pullbacks.
Thus we may assume g = h. In this case we have Isomy(z,y) = Isom(F,G) and
the result follows from Proposition [4.3] [

Lemma 5.4. In Situation the functor p : Cohx,p — (Sch/S)spps is a stack
i groupoids.

Proof. To prove that Cohx,p is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on
Isom follows from Lemma see Algebraic Stacks, Lemma Let us prove
the statement on descent data. Suppose that {a; : T; — T} is an fppf covering
of schemes over S. Let (&, ;;) be a descent datum for {T; — T} with values in
Cohx,p. For each i we can write § = (T}, g, F;). Denote prg : T; xp Tj — T;
and pry : T; x7 T; — Tj the projections. The condition that &7, x,1; = &1 x+1;
implies in particular that g; o pry = g; o pr;. Thus there exists a unique morphism
g : T — B such that g; = g o a;, see Descent on Spaces, Lemma Denote
XT =T Xg,B X. Set Xz = XTi = E Xg:,B X = Tz Xa;, T XT and

Xij = XTi XX XTj :Xl XXr Xj

with projections pr; and pr; to X; and X;. Observe that the pullback of (T3, 9i, Fi)
by pry : T; x 7 T; — T; is given by (T; x1 T}, g; opry, pri F;). Hence a descent datum
for {T; — T'} in Cohx/p is given by the objects (T3, g o a;, F;) and for each pair i, j
an isomorphism of Oy, -modules

@ij : pr; Fi — prjF;

satisfying the cocycle condition over (the pullback of X to) T; xr T} x7 Tj. Ok,
and now we simply use that {X; — Xr} is an fppf covering so that we can view
(Fi, ¢ij) as a descent datum for this covering. By Descent on Spaces, Proposition
this descent datum is effective and we obtain a quasi-coherent sheaf F over
Xr restricting to F; on X;. By Morphisms of Spaces, Lemma we see that
F is flat over T' and Descent on Spaces, Lemma guarantees that Q is of finite
presentation as an Ox,-module. Finally, by Descent on Spaces, Lemma we
see that the scheme theoretic support of F is proper over T as we’ve assumed the
scheme theoretic support of F; is proper over T; (note that taking scheme theoretic
support commutes with flat base change by Morphisms of Spaces, Lemma [30.10)).
In this way we obtain our desired object over T. O

Remark| 5.5. In Situation the rule (T, g, F) — (T, g) defines a 1-morphism
COhX/B — SB

of stacks in groupoids (see Lemma Algebraic Stacks, Section [7} and Examples
of Stacks, Section . Let B’ — B be a morphism of algebraic spaces over S. Let
Sp — Sp be the associated 1-morphism of stacks fibred in sets. Set X’ = X x g B'.
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We obtain a stack in groupoids Cohx g — (Sch/S)pps associated to the base
change f’: X’ — B’. In this situation the diagram

COhX//B/HCOhX/B . COhX//B/ HCOhX/B
or 1n

i l another J{ i
notation

Sp —Sp Sch/B’ Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemmal 5.6. [In Situation assume that B — S is locally of finite presentation.
Then p : Cohx/p — (Sch/S)pps is limit preserving (Artin’s Awioms, Definition
11.1).

Proof. Write B(T') for the discrete category whose objects are the S-morphisms
T — B. Let T = lim T; be a filtered limit of affine schemes over S. Assigning to an
object (T, h, F) of Cohx,p 1 the object h of B(T') gives us a commutative diagram
of fibre categories

colim Cohx /g 1, — CohxB,T

l |

colim B(T;) ——— B(T)
We have to show the top horizontal arrow is an equivalence. Since we have assumed
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
that the bottom horizontal arrow is an equivalence. This means that we may
assume T = lim T; be a filtered limit of affine schemes over B. Denote g; : T; — B
and g : T — B the corresponding morphisms. Set X; = T; X4, 5 X and X7 =
T x4, X. Observe that X7 = colim X; and that the algebraic spaces X; and Xp

are quasi-separated and quasi-compact (as they are of finite presentation over the
affines T; and T'). By Limits of Spaces, Lemma we see that

colim FP(X;) = FP(Xr).

where FP(W) is short hand for the category of finitely presented Oy -modules. The
results of Limits of Spaces, Lemmas and tell us the same thing is true if
we replace FP(X;) and FP(Xr) by the full subcategory of objects flat over T; and
T with scheme theoretic support proper over T; and T'. This proves the lemma. [J

Lemma 5.7. In Situation , Let

Z——=7

)

Y —Y'

be a pushout in the category of schemes over S where Z — Z' is a thickening and
Z —'Y is affine, see More on Morphisms, Lemma[L{.5. Then the functor on fibre
categories

Cohx/py' — Cohx By Xcohy s, Cohx/B 7'
is an equivalence.
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Proof. Observe that the corresponding map

B(Y') — B(Y) xp(z) B(Z')
is a bijection, see Pushouts of Spaces, Lemma [6.1] Thus using the commutative
diagram

Cohx/py —=Cohx/By Xcohx, ., CONX/B 2/

l |

B(Y’) B(Y) xp(z) B(Z')

we see that we may assume that Y’ is a scheme over B’. By Remark [5.5| we may
replace B by Y/ and X by X xgY’. Thus we may assume B = Y’. In this case
the statement follows from Pushouts of Spaces, Lemma O

Lemma 5.8. Let
X H‘ X/
T——T'

be a cartesian square of algebraic spaces where T — T is a first order thickening.
Let F' be an Ox/-module flat over T'. Set F = i*F'. The following are equivalent

(1) F' is a quasi-coherent Ox/-module of finite presentation,
(2) F' is an Ox:-module of finite presentation,

(3) F is a quasi-coherent Ox-module of finite presentation,
(4) F is an Ox-module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiv-
alence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special
case of Deformation Theory, Lemma [11.3 O

Lemma 5.9. In Situation assume that S is a locally Noetherian scheme and
B — S is locally of finite presentation. Let k be a finite type field over S and
let o = (Spec(k), go,Go) be an object of X = Cohx,p over k. Then the spaces
TFx ko ond IN(Fx i,z,) (Artin’s Azioms, Section@ are finite dimensional.

Proof. Observe that by Lemma [5.7] our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section In particular X satisfies (RS). Hence
all associated predeformation categories are deformation categories (Artin’s Ax-
ioms, Lemma and the statement makes sense.

In this paragraph we show that we can reduce to the case B = Spec(k). Set
Xo = Spec(k) xg4,,5 X and denote Xy = Cohx, /. In Remark [5.5 we have seen that
Xy is the 2-fibre product of X with Spec(k) over B as categories fibred in groupoids
over (Sch/S)pps- Thus by Artin’s Axioms, Lemma [8.2) we reduce to proving that
B, Spec(k), and X have finite dimensional tangent spaces and infinitesimal auto-
morphism spaces. The tangent space of B and Spec(k) are finite dimensional by
Artin’s Axioms, Lemma [8.T] and of course these have vanishing Inf. Thus it suffices
to deal with Aj.

Let k[e] be the dual numbers over k. Let Spec(k[e]) — B be the composition of go :
Spec(k) — B and the morphism Spec(k[e]) — Spec(k) coming from the inclusion
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k — k[e]. Set Xo = Spec(k) xp X and X, = Spec(k[e]) x5 X. Observe that X, is a
first order thickening of X flat over the first order thickening Spec(k) — Spec(kle]).
Unwinding the definitions and using Lemma [5.§ we see that T'Fx, iz, is the set
of lifts of Gy to a flat module on X.. By Deformation Theory, Lemma [12.1| we
conclude that

TFxy k00 = Exto,, (Go, o)

Here we have used the identification ek[e] = k of k[e]-modules. Using Deformation
Theory, Lemma [12.1] once more we see that

Inf(Fx ,z0) = Exto, (Go,Go)

These spaces are finite dimensional over k as Gy has support proper over Spec(k).
Namely, X is of finite presentation over Spec(k), hence Noetherian. Since Gy is
of finite presentation it is a coherent Ox,-module. Thus we may apply Derived
Categories of Spaces, Lemma to conclude the desired finiteness. (Il

Lemmal 5.10. In Situatz’on assume that S is a locally Noetherian scheme and
that f : X — B is separated. Let X = Cohx,p. Then the functor Artin’s Axioms,
FEquation M s an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with
maximal ideal m whose residue field k is of finite type over S. We have to show
that the category of objects over A is equivalent to the category of formal objects
over A. Since we know this holds for the category Sp fibred in sets associated to B
by Artin’s Axioms, Lemma[9.5] it suffices to prove this for those objects lying over
a given morphism Spec(A) — B.

Set X4 = Spec(A) x pX and X,, = Spec(A/m™) x g X. By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem we see that the category
of coherent modules F on X 4 with support proper over Spec(A) is equivalent to the
category of systems (F,) of coherent modules F,, on X,, with support proper over
Spec(A/m™). The equivalence sends F to the system (F @4 A/m™). See discussion
in More on Morphisms of Spaces, Remark To finish the proof of the lemma,
it suffices to show that F is flat over A if and only if all F ® 4 A/m™ are flat over
A/m™. This follows from More on Morphisms of Spaces, Lemma m ]

Lemmal 5.11. In Situation assume that S is a locally Noetherian scheme,
S =B,and f : X — B is flat. Let X = Cohx,g. Then we have openness of
versality for X (see Artin’s Axioms, Definition .

First proof. This proof is based on the criterion of Artin’s Axioms, Lemma [24.4
Let U — S be of finite type morphism of schemes, x an object of X over U and
ug € U a finite type point such that x is versal at ug. After shrinking U we may
assume that ug is a closed point (Morphisms, Lemma and U = Spec(A) with
U — S mapping into an affine open Spec(A) of S. Let F be the coherent module
on X4 = Spec(4) xg X flat over A corresponding to the given object x.

According to Deformation Theory, Lemma we have an isomorphism of functors
T,(M) = Exty ,(F,F ®4 M)

and given any surjection A’ — A of A-algebras with square zero kernel I we have
an obstruction class
2
§ar € Exty (F,F®al)
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This uses that for any A’ — A as above the base change X4 = Spec(A’) xp X
is flat over A’. Moreover, the construction of the obstruction class is functorial in
the surjection A’ — A (for fixed A) by Deformation Theory, Lemma Apply
Derived Categories of Spaces, Lemma to the computation of the Ext groups
Ext , (F, F ®a M) for i <m with m = 2. We find a perfect object K € D(A) and
functorial isomorphisms

HY (K @% M) — Exty (F,F @4 M)

for 4+ < m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
Finally, condition (iv) of Artin’s Axioms, Lemma holds by Deformation
Theory, Lemma Thus Artin’s Axioms, Lemma does indeed apply and
the lemma is proved. (Il

Second proof. This proof is based on Artin’s Axioms, Lemma Conditions
(1), (2), and (3) of that lemma correspond to Lemmas and

We have constructed an obstruction theory in the chapter on deformation theory.
Namely, given an S-algebra A and an object x of Cohx/p over Spec(A) given by
F on X4 we set Oy (M) = Ext?XA (F,F®a M) and if A’ — A is a surjection with
kernel I, then as obstruction element we take the element

0:(A") =0o(F,F®al,1)e O,(I) :EXt?)(A(fu]_—@@A I)

of Deformation Theory, Lemma All properties of an obstruction theory as
defined in Artin’s Axioms, Definition follow from this lemma except for func-
toriality of obstruction classes as formulated in condition (ii) of the definition. But
as stated in the footnote to assumption (4) of Artin’s Axioms, Lemma it suf-
fices to check functoriality of obstruction classes for a fixed A which follows from
Deformation Theory, Lemma Deformation Theory, Lemma also tells us
that T, (M) = Ext&A (F,F ®4 M) for any A-module M.

To finish the proof it suffices to show that T, ([ My) = [[Tx(My,) and O, (][] M) =
[1O.(M). Apply Derived Categories of Spaces, Lemma to the computation
of the Ext groups Exté(A (F,F ®a M) for i < m with m = 2. We find a perfect
object K € D(A) and functorial isomorphisms

HY (K @5 M) — Exty  (F,F ®4 M)
for i = 1,2. A straightforward argument shows that
HY(K @4 [[ M) =[] H (K &% M,)

whenever K is a pseudo-coherent object of D(A). In fact, this property (for all 4)
characterizes pseudo-coherent complexes, see More on Algebra, Lemma [65.5 O

Theorem 5.12 (Algebraicity of the stack of coherent sheaves; flat case). Let S be
a scheme. Let f : X — B be a morphism of algebraic spaces over S. Assume that
f is of finite presentation, separated, and ﬂaﬂ. Then Cohx,p is an algebraic stack
over S.

2This assumption is not necessary. See Section El
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Proof. Set X = Cohx;p. We have seen that X is a stack in groupoids over
(Sch/S) gpps with diagonal representable by algebraic spaces (Lemmas|[5.4/and [5.3)).
Hence it suffices to find a scheme W and a surjective and smooth morphism W — X.

Let B’ be a scheme and let B’ — B be a surjective étale morphism. Set X' =
B’ xp X and denote f': X' — B’ the projection. Then X" = Cohx,p: is equal to
the 2-fibre product of X’ with the category fibred in sets associated to B’ over the
category fibred in sets associated to B (Remark . By the material in Algebraic
Stacks, Section [L0| the morphism X’ — X is surjective and étale. Hence it suffices
to prove the result for X’. In other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section Thus we may assume S = B.

Assume S = B. Choose an affine open covering S = |JU;. Denote X; the restriction
of X to (Sch/U;)pps. If we can find schemes W; over U; and surjective smooth
morphisms W; — &;, then we set W = [[W; and we obtain a surjective smooth
morphism W — X. Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(A). Write A = colim A; as a filtered colimit
with each A; of finite type over Z. For some i we can find a morphism of algebraic
spaces X; — Spec(A;) which is of finite presentation, separated, and flat and whose
base change to A is X. See Limits of Spaces, Lemmas|[7.1] and[6.12] If we show
that Cohx,/spec(a,) 15 an algebraic stack, then it follows by base change (Remark
and Algebraic Stacks, Section that X is an algebraic stack. Thus we may
assume that A is a finite type Z-algebra.

Assume S = B = Spec(A) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma[17.1]to conclude that
X is an algebraic stack. Note that A is a G-ring, see More on Algebra, Proposition
Hence all local rings of S are G-rings. Thus (5) holds. By Lemma we
have that X satisfies openness of versality, hence (4) holds. To check (2) we have to
verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section [14 We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas

Condition (3) follows from Lemma Finally, condition (1) is
Lemma [5.3] This finishes the proof of the theorem. O

6. The stack of coherent sheaves in the non-flat case

In Theorem the assumption that f : X — B is flat is not necessary. In this
section we give a different proof which avoids the flatness assumption and avoids
checking openness of versality by using the results in Flatness on Spaces, Section
and Artin’s Axioms, Section

For a different approach to this problem the reader may wish to consult [Art69]
and follow the method discussed in the papers [OS03], [Lie06D], [OIs05], [HRI3],
[HR10], [Ryd11]. Some of these papers deal with the more general case of the stack
of coherent sheaves on an algebraic stack over an algebraic stack and others deal
with similar problems in the case of Hilbert stacks or Quot functors. Our strategy
will be to show algebraicity of some cases of Hilbert stacks and Quot functors as a
consequence of the algebraicity of the stack of coherent sheaves.

Theorem 6.1 (Algebraicity of the stack of coherent sheaves; general case). Let S
be a scheme. Let f: X — B be morphism of algebraic spaces over S. Assume that
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[ is of finite presentation and separated. Then Cohx,p is an algebraic stack over

S.

Proof. Only the last step of the proof is different from the proof in the flat case,
but we repeat all the arguments here to make sure everything works.

Set X = Cohx/p. We have seen that X’ is a stack in groupoids over (Sch/S) spps
with diagonal representable by algebraic spaces (Lemmas and . Hence it
suffices to find a scheme W and a surjective and smooth morphism W — X.

Let B’ be a scheme and let B’ — B be a surjective étale morphism. Set X' =
B’ xp X and denote f': X' — B’ the projection. Then " = Cohx,p: is equal to
the 2-fibre product of X’ with the category fibred in sets associated to B’ over the
category fibred in sets associated to B (Remark . By the material in Algebraic
Stacks, Section [L0| the morphism X’ — X is surjective and étale. Hence it suffices
to prove the result for X’. In other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section [I9] Thus we may assume S = B.

Assume S = B. Choose an affine open covering S = |J U;. Denote X; the restriction
of X to (Sch/U;)fpps. If we can find schemes W; over U; and surjective smooth
morphisms W; — X;, then we set W = [[W; and we obtain a surjective smooth
morphism W — X. Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(A). Write A = colim A; as a filtered colimit
with each A; of finite type over Z. For some ¢ we can find a morphism of algebraic
spaces X; — Spec(A;) which is separated and of finite presentation and whose
base change to A is X. See Limits of Spaces, Lemmas and If we show
that Cohx,/spec(a,) is an algebraic stack, then it follows by base change (Remark
and Algebraic Stacks, Section that X is an algebraic stack. Thus we may
assume that A is a finite type Z-algebra.

Assume S = B = Spec(A) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma[17.1|to conclude that
X is an algebraic stack. Note that A is a G-ring, see More on Algebra, Proposition
Hence all local rings of S are G-rings. Thus (5) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section[14] We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas

Condition (3) is Lemma Condition (1) is Lemma

It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma We have already seen that X has diagonal rep-
resentable by algebraic spaces, has (RS*), and is limit preserving (see lemmas used
above). Hence we only need to see that X’ satisfies the strong formal effectiveness
formulated in Artin’s Axioms, Lemma This is Flatness on Spaces, Theorem
and the proof is complete. ([

7. The functor of quotients

In this section we discuss some generalities regarding the functor Q 7, x,p defined
below. The notation Quotz,x,p is reserved for a subfunctor of Qz,x,/5. We urge
the reader to skip this section on a first reading.
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Situation 7.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent Ox-module. For any scheme T over B
we will denote X7 the base change of X to T" and Fp the pullback of F via the
projection morphism X = X xg T — X. Given such a T we set

uotients Fr — Q where Q is a
Qr/x/(T) = { d p }

quasi-coherent Ox,-module flat over T’
We identify quotients if they have the same kernel. Suppose that 77 — T is a
morphism of schemes over B and Fr — Q is an element of Qz,x,5(7). Then the
pullback Q" = (X7v — Xr7)*Q is a quasi-coherent Ox,_,-module flat over 7" by
Morphisms of Spaces, Lemma Thus we obtain a functor

(7.1.1) Qr/x/p : (Sch/B)* — Sets
This is the functor of quotients of F/X/B. We define a subfunctor
(7.1.2) fop/X/B : (Sch/B)°PP — Sets

which assigns to T the subset of Qz,x,5(T') consisting of those quotients Fr — Q
such that Q is of finite presentation as an Ox,-module. This is a subfunctor by
Properties of Spaces, Section

In Situation we sometimes think of Qz, x,p as a functor (Sch/S)PP — Sets
endowed with a morphism Qz,x,¢ — B. Namely, if T' is a scheme over .S, then an
element of Qr/x,p(T) is a pair (h, Q) where h a morphism h: T — B and Q is a
T-flat quotient Fr — Q of finite presentation on X = X xpj T. In particular,
when we say that Qr /x/s 1s an algebraic space, we mean that the corresponding

functor (Sch/S)°PP — Sets is an algebraic space. Similar remarks apply to Q;”/ X/B"

Remark 7.2. In Situation let B — B be a morphism of algebraic spaces over
S. Set X/ = X xp B’ and denote F’ the pullback of F to X’. Thus we have the
functor Q#//x//p on the category of schemes over B’. For a scheme T' over B’ it
is clear that we have
Qrxp(T) = Qr/x/B(T)

where on the right hand side we think of 7" as a scheme over B via the composition
T — B’ — B. Similar remarks apply to Q;T’/X/B. These trivial remarks will
occasionally be useful to change the base algebraic space.

Remark| 7.3. Let S be a scheme, X an algebraic space over S, and F a quasi-
coherent Ox-module. Suppose that {f; : X; — X}ies is an fpqc covering and for
each i,j € I we are given an fpqc covering {X;;rz — X; xx X;}. In this situation
we have a bijection

families of quotients fF — Q; where
Q; is quasi-coherent and Q; and Q;

{quotients F — Q where }
restrict to the same quotient on Xj;,

Q is a quasi-coherent

Namely, let (ffF — Q;)icr be an element of the right hand side. Then since
{Xijr = X; xx X;} is an fpqgc covering we see that the pullbacks of Q; and Q,
restrict to the same quotient of the pullback of F to X; x x X; (by fully faithfulness
in Descent on Spaces, Proposition . Hence we obtain a descent datum for quasi-
coherent modules with respect to {X; — X };c;. By Descent on Spaces, Proposition
we find a map of quasi-coherent Ox-modules F — Q whose restriction to X;
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recovers the given maps fF — Q;. Since the family of morphisms {X; — X} is
jointly surjective and flat, for every point z € |X| there exists an ¢ and a point
x; € |X;| mapping to x. Note that the induced map on local rings Ox z — Ox, z;
is faithfully flat, see Morphisms of Spaces, Section Thus we see that F — Q is
surjective.

Lemmal 7.4. In Situation . The functors Qr,x,p and Q;_-p/X/B satisfy the
sheaf property for the fpqc topology.

Proof. Let {T; — T}ier be an fpqce covering of schemes over S. Set X; = Xp, =
X xg T; and F; = Fr,. Note that {X; — Xr}ics is an fpqc covering of X
(Topologies on Spaces, Lemma and that Xr1,x,7, = X; Xx, Xi. Suppose
that F; — Q,; is a collection of elements of Q}-/X/B(Ti) such that Q; and 9y
restrict to the same element of Qz,x,5(Ti xr Ti7). By Remark we obtain a
surjective map of quasi-coherent Ox,-modules Fr — Q whose restriction to X;
recovers the given quotients. By Morphisms of Spaces, Lemma we see that Q
is flat over T'. Finally, in the case of Q;Z’/X/B, i.e., if Q; are of finite presentation,
then Descent on Spaces, Lemma guarantees that Q is of finite presentation as
an Ox,-module. ]

Sanity check: Qz,/x/p, Qé.p/ X/B play the same role among algebraic spaces over S.

Lemmal 7.5. In Situation , Let T be an algebraic space over S. We have

(h, Fr — Q) where h: T — B and}

Morsp((sch/8) fpps) (T QF/X/B) - {Q is quasi-coherent and flat over T

where Fr denotes the pullback of F to the algebraic space X xp pT. Similarly, we
have

(h, Fr — Q) where h: T — B and }

Jp _
Morsi((sen/$) o) (1) QF ) x/8) = {Q is of finite presentation and flat over T

Proof. Choose a scheme U and a surjective étale morphism p : U — T. Let
R =U xp U with projections t,s : R — U.

Let v : T — Qg x/p be a natural transformation. Then v(p) corresponds to a
pair (hy, Fu — Qu) over U. As v is a transformation of functors we see that the
pullbacks of (hy,Fy — Qu) by s and ¢ agree. Since T' = U/R (Spaces, Lemma
, we obtain a morphism h : T' — B such that hy = hop. By Descent on Spaces,
Proposition the quotient Qp descends to a quotient Fr — Q over Xr. Since
U — T is surjective and flat, it follows from Morphisms of Spaces, Lemma [31.5
that Q is flat over T'.

Conversely, let (h, Fr — Q) be a pair over T'. Then we get a natural transformation
v:T — Qg/x/p by sending a morphism a : T’ — T where T" is a scheme to
(hoa, Frr — a*Q). We omit the verification that the construction of this and the
previous paragraph are mutually inverse.

In the case of QJ;_.p/X/B we add: given a morphism h : T' — B, a quasi-coherent
sheaf on X is of finite presentation as an Ox,-module if and only if the pullback
to Xy is of finite presentation as an Ox,-module. This follows from the fact that
Xy — X is surjective and étale and Descent on Spaces, Lemma [6.2 (]
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08IV Lemma 7.6. In Sz’tuation let {X; = X}ier be an fpge covering and for each
i,j € I let {X;j5 — Xi xx X;} be an fpge covering. Denote F;, resp. Fiji the
pullback of F to X;, resp. X;;,. For every scheme T over B the diagram

*
pTy

QJ—'/X/B(T) - Hz Q]—'i/Xi/B(T) - s Hi,j,k Q]:q‘,jk/Xijk/B(T)

pry

presents the first arrow as the equalizer of the other two. The same is true for the
functor Q;]?X/B.

Proof. Let F; 7 — Q; be an element in the equalizer of pr§y and pri. By Remark
we obtain a surjection Fpr — Q of quasi-coherent Ox,.-modules whose restriction
to X; 1 recovers F; — Q;. By Morphisms of Spaces, Lemma we see that 9
is flat over T as desired. In the case of the functor Q;_?/X/B, i.e., if Q; is of finite
presentation, then Q is of finite presentation too by Descent on Spaces, Lemma

6.2 O

082Q |Lemmal 7.7. In Situation assume also that (a) f is quasi-compact and quasi-
separated and (b) F is of finite presentation. Then the functor Q;”/X/B is limit
preserving in the following sense: If T = limT; is a directed limit of affine schemes
over B, then fop/X/B(T) = colim Q;_.p/X/B(Ti).

Proof. Let T' = lim T; be as in the statement of the lemma. Choose ig € I and
replace I by {i € I | i > ip}. We may set B = S = T}, and we may replace X by Xr,
and F by the pullback to X7,. Then X7 = lim X7, see Limits of Spaces, Lemma
Let Fr — Q be an element of Q;’}X/B(T). By Limits of Spaces, Lemma
there exists an ¢ and a map Fr, = Q; of O X, -modules of finite presentation whose
pullback to X7 is the given quotient map.

We still have to check that, after possibly increasing ¢, the map Fr, — Q; is
surjective and Q; is flat over T;. To do this, choose an affine scheme U and a
surjective étale morphism U — X (see Properties of Spaces, Lemma . We
may check surjectivity and flatness over T; after pulling back to the étale cover
Ur, — X, (by definition). This reduces us to the case where X = Spec(By) is
an affine scheme of finite presentation over B = S = Ty = Spec(Ag). Writing
T; = Spec(4;), then T' = Spec(A) with A = colim A; we have reached the following
algebra problem. Let M; — N, be a map of finitely presented By ® 4, A;-modules
such that M; ®4, A = N; ®4, A is surjective and N; ® 4, A is flat over A. Show
that for some i’ > i M; ®4, Ay — N; ®4, Ay is surjective and N; ® 4, A is flat
over A. The first follows from Algebra, Lemma[127.5 and the second from Algebra,
Lemma, [I68.1] O

08IW |Lemma 7.8. In Situation . Let
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be a pushout in the category of schemes over B where Z — 7' is a thickening and
Z —'Y is affine, see More on Morphisms, Lemmall4.5 Then the natural map

Qr/x/B(Y') — Qr/x/B(Y) XQr,x,5(2) Qr/x/B(Z')
is bijective. If X — B is locally of finite presentation, then the same thing is true
for Q;”/X/B.

Proof. Let us construct an inverse map. Namely, suppose we have Fy — A, Fz: —
B’, and an isomorphism A|x, — B’|x, compatible with the given surjections. Then
we apply Pushouts of Spaces, Lemmal6.6]to get a quasi-coherent module A’ on Xy~
flat over Y. Since this sheaf is constructed as a fibre product (see proof of cited
lemma) there is a canonical map Fy» — A’. That this map is surjective can be
seen because it factors as
Fyr
+

(XY - XY/)*‘FY X(XZ—>XY/)>«]'-Z (XZ’ — XY’)*IZ’

A = (Xy = Xy )W A X (x,05x,0.A1x, (X270 = Xy1). B

and the first arrow is surjective by More on Algebra, Lemma [6.5] and the second by
More on Algebra, Lemma

In the case of Q;p/ X/B all we have to show is that the construction above produces

a finitely presented module. This is explained in More on Algebra, Remark in
the commutative algebra setting. The current case of modules over algebraic spaces
follows from this by étale localization. O

Remark 7.9 (Obstructions for quotients). In Situation|[7.1jassume that F is flat
over B. Let T C T’ be an first order thickening of schemes over B with ideal sheaf
J. Then Xp C X7 is a first order thickening of algebraic spaces whose ideal sheaf
7 is a quotient of f3J. We will think of sheaves on Xy, resp. T” as sheaves on
X7, resp. T using the fundamental equivalence described in More on Morphisms of
Spaces, Section [9] Let
0=>K—=>Fr—-Q—=0

define an element x of Q,x,p(T). Since Fr is flat over T" we have a short exact
sequence

0= f+J @0y, Fr = Fri = Fr =0
and we have f7.J Rox,, Fr=1 Rox,, Fr, see Deformation Theory, Lemma
Let us use the abbreviation 7.7 ®oy, . G =0 ®o, J for an Ox,-module G. Since
Q is flat over T, we obtain a short exact sequence

0->K®0o, T = FrRo,J = QR0 J —— 0
Combining the above we obtain an canonical extension
0= Q®o, J =7 HK)/i(K®o, T)—=K—0
of Ox,-modules. This defines a canonical class
0,(T") € Exto,_(K,Q®o0, J)

If 0,(T") is zero, then we obtain a splitting of the short exact sequence defining it,
in other words, we obtain a Ox,_,-submodule K’ C 7! (K) sitting in a short exact
sequence 0 — K ®o, J — K’ — K — 0. Then it follows from the lemma reference
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above that Q' = Fp//K' is a lift of = to an element of Qr/x,p(T"). Conversely,
the reader sees that the existence of a lift implies that o,(7”) is zero. Moreover,
ifx e Q;p x/p(T), then automatically =’ € Q;p/X/B(T’) by Deformation Theory,
Lemma m If we ever need this remark we will turn this remark into a lemma,
precisely formulate the result and give a detailed proof (in fact, all of the above

works in the setting of arbitrary ringed topoi).

Remark 7.10 (Deformations of quotients). In Situation assume that F is
flat over B. We continue the discussion of Remark Assume 0,(T") = 0. Then
we claim that the set of lifts 2’ € Qz/x,p(T") is a principal homogeneous space
under the group

HomOxT (IC, Q Ror j)

Namely, given any Fp» — Q' flat over T” lifting the quotient @ we obtain a com-
mutative diagram with exact rows and columns

0 0 0
0 KeJ Fro —=Q®J ——=0
0 K’ Fri Q' 0
0 K Fr Q 0
0 0 0

(to see this use the observations made in the previous remark). Given a map
p: K — Q®J we can consider the subsheaf IC; C Fr consisting of those local
sections s whose image in Fr is a local section k of K and whose image in Q' is the
local section ¢(k) of Q ® J. Then set Q:a = ]-"T//ICZP. Conversely, any second lift
of x corresponds to one of the qotients constructed in this manner. If we ever need
this remark we will turn this remark into a lemma, precisely formulate the result
and give a detailed proof (in fact, all of the above works in the setting of arbitrary
ringed topoi).

8. The Quot functor
In this section we prove the Quot functor is an algebraic space.

Situation 8.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. Let F be a quasi-coherent
Ox-module. For any scheme T over B we will denote X7 the base change of X
to T and Fr the pullback of F via the projection morphism Xp = X xgT — X.
Given such a T we set

quotients Fr — Q where Q is a quasi-coherent

Quotz, x,5(T) = § Ox,-module of finite presentation, flat over T
with support proper over T'
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By Derived Categories of Spaces, Lemma this is a subfunctor of the functor
fop/ x/p We discussed in Section Thus we obtain a functor

(8.1.1) Quotz,x/p : (Sch/B)°"" — Sets
This is the Quot functor associated to F/X/B.

In Situation [8.1{ we sometimes think of Quotz, x5 as a functor (Sch/S)? — Sets
endowed with a morphism Quotz,x,p — B. Namely, if T" is a scheme over S, then
an element of Quotz, x5 (7T) is a pair (h, @) where h is a morphism h : T — B and
Q is a finitely presented, T-flat quotient F7 — Q on X7 = X xp 5 T with support
proper over T'. In particular, when we say that Quotz,x,p is an algebraic space,
we mean that the corresponding functor (Sch/S)°PP — Sets is an algebraic space.

Lemmal8.2. In Situation . The functor Quot z,x g satisfies the sheaf property
for the fpqc topology.

Proof. In Lemma we have seen that the functor Q’;_.p/ X/s is a sheaf. Recall
that for a scheme 7" over S the subset Quot ,x,5(1) C Qz,x/s(T') picks out those
quotients whose support is proper over 1. This defines a subsheaf by the result
of Descent on Spaces, Lemma [11.19] combined with Morphisms of Spaces, Lemma
which shows that taking scheme theoretic support commutes with flat base
change. O

Sanity check: Quotr, x,p plays the same role among algebraic spaces over .

Lemma 8.3. In Situation , Let T be an algebraic space over S. We have

(h, Fr — Q) where h: T — B and

Morsp((Sch/s) sppp) (T QuotF/X/B) = Q is of finite presentation and
flat over T with support proper over T

where Fr denotes the pullback of F to the algebraic space X xppT.

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the second equality in Lemma To see that these
subsets correspond under the identification given in the proof of that lemma it
suffices to show: given h : T — B, a surjective étale morphism U — T, a finite
type quasi-coherent Ox,-module Q the following are equivalent

(1) the scheme theoretic support of Q is proper over T, and
(2) the scheme theoretic support of (Xy — X71)*Q is proper over U.

This follows from Descent on Spaces, Lemma [[1.19] combined with Morphisms of
Spaces, Lemma [30.10| which shows that taking scheme theoretic support commutes
with flat base change. O

Proposition 8.4. Let S be a scheme. Let f: X — B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. If f is of finite presentation
and separated, then Quotrz,x g is an algebraic space. If F is of finite presentation,
then Quotz,x,p — B is locally of finite presentation.

Proof. By Lemmawe have that Quotz,y,p is a sheaf in the fppf topology. Let
Quotr,x,p be the stack in groupoids corresponding to Quotz,y g, see Algebraic
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Stacks, Section By Algebraic Stacks, Proposition it suffices to show that
Quotr,x,p is an algebraic stack. Consider the 1-morphism of stacks in groupoids

Quoty,x ;s — Cohx/p

on (Sch/S)spps which associates to the quotient Fp — Q the module Q. By
Theorem we know that Cohx,p is an algebraic stack. By Algebraic Stacks,
Lemma it suffices to show that this 1-morphism is representable by algebraic
spaces.

Let T be a scheme over S and let the object (h,G) of Cohx/p over T' correspond to
a 1-morphism & : (Sch/T)fpps — Cohx/p. The 2-fibre product

Z = (5ch/T) ppps X¢,conx,n QUotr)x/s

is a stack in setoids, see Stacks, Lemma The corresponding sheaf of sets (i.e.,
functor, see Stacks, Lemmas and assigns to a scheme T’/T the set of
surjections u : Fp — Gpv of quasi-coherent modules on Xp/. Thus we see that Z
is representable by an open subspace (by Flatness on Spaces, Lemma of the
algebraic space Hom(Fr,G) from Proposition O

Remark 8.5 (Quot via Artin’s axioms). Let S be a Noetherian scheme all of
whose local rings are G-rings. Let X be an algebraic space over S whose structure
morphism f : X — S is of finite presentation and separated. Let F be a finitely
presented quasi-coherent sheaf on X flat over S. In this remark we sketch how one
can use Artin’s axioms to prove that Quot /x/s is an algebraic space locally of
finite presentation over S and avoid using the algebraicity of the stack of coherent
sheaves as was done in the proof of Proposition

We check the conditions listed in Artin’s Axioms, Proposition Representabil-
ity of the diagonal of Quotr,y, g can be seen as follows: suppose we have two
quotients Fp — Q;, i = 1,2. Denote K1 the kernel of the first one. Then we have
to show that the locus of T' over which u : K; — Qs becomes zero is representable.
This follows for example from Flatness on Spaces, Lemma or from a discussion
of the Hom sheaf earlier in this chapter. Axioms [0] (sheaf), [1] (limits), [2] (Rim-
Schlessinger) follow from Lemmas and (plus some extra work to deal
with the properness condition). Axiom [3] (finite dimensionality of tangent spaces)
follows from the description of the infinitesimal deformations in Remark and
finiteness of cohomology of coherent sheaves on proper algebraic spaces over fields
(Cohomology of Spaces, Lemma [20.2). Axiom [4] (effectiveness of formal objects)
follows from Grothendieck’s existence theorem (More on Morphisms of Spaces, The-
orem [42.11). As usual, the trickiest to verify is axiom [5] (openness of versality).
One can for example use the obstruction theory described in Remark and the
description of deformations in Remark to do this using the criterion in Artin’s
Axioms, Lemma Please compare with the second proof of Lemma [5.11

9. The Hilbert functor

In this section we prove the Hilb functor is an algebraic space.

Situation| 9.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. For any scheme T over B
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we will denote X the base change of X to T'. Given such a T we set

closed subspaces Z C Xt such that Z — T}

Hilbx/5(T) = { is of finite presentation, flat, and proper

Since base change preserves the required properties (Spaces, Lemma and Mor-
phisms of Spaces, Lemmas [28.3] [30.4} and [40.3) we obtain a functor

(9.1.1) Hilbx,p : (Sch/B)°P? —; Sets

This is the Hilbert functor associated to X/B.

In Situation we sometimes think of Hilbx,p as a functor (Sch/S)°PP — Sets
endowed with a morphism Hilbx,g — B. Namely, if T' is a scheme over S, then
an element of Hilbx,p(T) is a pair (h,Z) where h is a morphism h : T — B and
Z C Xp =X xppT is a closed subscheme, flat, proper, and of finite presentation
over T. In particular, when we say that Hilby,p is an algebraic space, we mean
that the corresponding functor (Sch/S)°PP — Sets is an algebraic space.

Of course the Hilbert functor is just a special case of the Quot functor.

Lemma 9.2. In Situatz’on we have Hilbx,p = QUOtOX/X/B'

Proof. Let T be a scheme over B. Given an element Z € Hilby,5(T") we can con-
sider the quotient Ox, — .0z where i : Z — X7 is the inclusion morphism. Note
that 7,Oyz is quasi-coherent. Since Z — T and X1 — T are of finite presentation,
we see that ¢ is of finite presentation (Morphisms of Spaces, Lemma , hence
.0z is an Ox,-module of finite presentation (Descent on Spaces, Lemma [6.7).
Since Z — T is proper we see that 4,0z has support proper over T' (as defined in
Derived Categories of Spaces, Section . Since Oy is flat over T and 1 is affine, we
see that i,Oyz is flat over T (small argument omitted). Hence Ox, — i,.Oz is an
element of Quote  /x,5(T).

Conversely, given an element Ox, — Q of Quoty, ,x/p(T), we can consider the
closed immersion ¢ : Z — Xp corresponding to the quasi-coherent ideal sheaf
7 = Ker(Ox, — Q) (Morphisms of Spaces, Lemma [13.1]). By construction of Z we
see that @ = i,0z. Then we can read the arguments given above backwards to see
that Z defines an element of Hilbx,5(T’). For example, 7 is quasi-coherent of finite
type (Modules on Sites, Lemma hence i : Z — Xr is of finite presentation
(Morphisms of Spaces, Lemma, hence Z — T is of finite presentation (Mor-
phisms of Spaces, Lemma . Properness of Z — T follows from the discussion
in Derived Categories of Spaces, Section[7] Flatness of Z — T follows from flatness
of Qover T.

We omit the (immediate) verification that the two constructions given above are
mutually inverse. O

Sanity check: Hilbx,p sheaf plays the same role among algebraic spaces over S.

Lemma 9.3. In Situation . Let T be an algebraic space over S. We have
(h,Z) where h: T — B, Z C Xr }

finite presentation, flat, proper over T'

Morsp((sch/s) ppp) (15 Hilbx /) = {

where X7 =X xpp T.
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Proof. By Lemma we have Hilbx,p = Quoty, /x,p. Thus we can apply
Lemma to see that the left hand side is bijective with the set of surjections
Ox, — Q which are finitely presented, flat over 7', and have support proper over 7.
Arguing exactly as in the proof of Lemma[0.2) we see that such quotients correspond
exactly to the closed immersions Z — X7 such that Z — T is proper, flat, and of
finite presentation. O

Proposition| 9.4. Let S be a scheme. Let f: X — B be a morphism of algebraic
spaces over S. If f is of finite presentation and separated, then Hilbx,p is an
algebraic space locally of finite presentation over B.

Proof. Immediate consequence of Lemma [9.2| and Proposition (8.4 (]

10. The Picard stack

The Picard stack for a morphism of algebraic spaces was introduced in Examples of
Stacks, Section We will deduce it is an open substack of the stack of coherent
sheaves (in good cases) from the following lemma.

Lemmal 10.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S which is flat, of finite presentation, and proper. The natural map

PiCX/B — Cth/B
is representable by open immersions.

Proof. Observe that the map simply sends a triple (T, g,£L) as in Examples of
Stacks, Section to the same triple (7, g, L) but where now we view this as a
triple of the kind described in Situation[5.1} This works because the invertible Ox.-
module £ is certainly a finitely presented Ox,-module, it is flat over T" because
X — T is flat, and the support is proper over T' as X1 — T is proper (Morphisms
of Spaces, Lemmas and . Thus the statement makes sense.

Having said this, it is clear that the content of the lemma is the following: given
an object (T, g,F) of Cohx/p there is an open subscheme U C T such that for a
morphism of schemes T’ — T the following are equivalent

(a) T" — T factors through U,

(b) the pullback Fp+ of F by X1 — Xp is invertible.

Let W C |Xp| be the set of points z € |Xp| such that F is locally free in a
neighbourhood of z. By More on Morphisms of Spaces, Lemma [23.8 W is open
and formation of W commutes with arbitrary base change. Clearly, if TV — T
satisfies (b), then |X7/| — | X 7| maps into W. Hence we may replace T by the open
T\ fr(|Xr| \ W) in order to construct U. After doing so we reach the situation
where F is finite locally free. In this case we get a disjoint union decomposition
Xr=XoIIX;IIX,1II... into open and closed subspaces such that the restriction
of F is locally free of rank ¢ on X;. Then clearly

U =T\ fo(|Xo] U X UIX5]U...)
works. (Note that if we assume that T is quasi-compact, then X is quasi-compact

hence only a finite number of X; are nonempty and so U is indeed open.) [

Proposition|10.2. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. If f is flat, of finite presentation, and proper, then Picx,p is an
algebraic stack.
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Proof. Immediate consequence of Lemma Algebraic Stacks, Lemma and
either Theorem [5.12] or Theorem O

11. The Picard functor

In this section we revisit the Picard functor discussed in Picard Schemes of Curves,
Section [ The discussion will be more general as we want to study the Picard
functor of a morphism of algebraic spaces as in the section on the Picard stack, see

Section [I0l

Let S be a scheme and let X be an algebraic space over S. An invertible sheaf
on X is an invertible O x-module on X4, see Modules on Sites, Definition
The group of isomorphism classes of invertible modules is denoted Pic(X), see
Modules on Sites, Definition Given a morphism f : X — Y of algebraic
spaces over S pullback defines a group homomorphism Pic(Y) — Pic(X). The
assignment X ~» Pic(X) is a contravariant functor from the category of schemes to
the category of abelian groups. This functor is not representable, but it turns out
that a relative variant of this construction sometimes is representable.

Situation| 11.1. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. We define

Picx/p : (Sch/B)°"? — Sets

as the fppf sheafification of the functor which to a scheme T over B associates the
group Pic(Xr).

In Situation we sometimes think of Picx,p as a functor (Sch/S)P? — Sets
endowed with a morphism Picx,p — B. In this point of view, we define Picx,p to
be the fppf sheafification of the functor

T/S+—{(h,L) | h:T — B, LePic(X xp,T)}

In particular, when we say that Picx,p is an algebraic space, we mean that the
corresponding functor (Sch/S)°PP — Sets is an algebraic space.

An often used remark is that if 7' is a scheme over B, then Picx..,r is the restriction
of Picx,p to (Sch/T)sppys-

Lemma 11.2. [In Situation the functor Picx,p is the sheafification of the
functor T — Ob(Picx,p,r)/ =.

Proof. Since the fibre category Picx,p,r of the Picard stack Picx,p over T is
the category of invertible sheaves on Xt (see Section [10]and Examples of Stacks,
Section this is immediate from the definitions. ([

It turns out to be nontrivial to see what the value of Picx,p is on schemes T' over
B. Here is a lemma that helps with this task.

Lemma 11.3. In Situation . If Or = fr.«Ox, is an isomorphism for all
schemes T over B, then

0 — Pic(T) — Pic(Xr) — Picy,5(T)

is an exact sequence for all T.
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Proof. We may replace B by T and X by X7 and assume that B = T to simplify
the notation. Let N be an invertible Og-module. If f*N = Ox, then we see that
fof*N =2 f.Ox = Op by assumption. Since N is locally trivial, we see that the
canonical map N — f, f*N is locally an isomorphism (because Op — f.f*Op is
an isomorphism by assumption). Hence we conclude that N' — f. f*N — Op is an
isomorphism and we see that N is trivial. This proves the first arrow is injective.

Let £ be an invertible Ox-module which is in the kernel of Pic(X) — Picx,g(B).
Then there exists an fppf covering {B; — B} such that £ pulls back to the trivial
invertible sheaf on Xp,. Choose a trivializing section s;. Then prjs; and pris; are
both trivialising sections of £ over Xp, x5, and hence differ by a multiplicative
unit

fij € T(Xsixp;, O;(BiXBBj) =D(Bi x5 Bj7OEi><NBJ')

(equality by our assumption on pushforward of structure sheaves). Of course these
elements satisfy the cocycle condition on B; xp Bj xp By, hence they define a
descent datum on invertible sheaves for the fppf covering {B; — B}. By Descent,
Proposition there is an invertible Og-module N with trivializations over B;
whose associated descent datum is {f;;}. (The proposition applies because B is a
scheme by the replacement performed at the start of the proof.) Then f*N = L as
the functor from descent data to modules is fully faithful. O

Lemma 11.4. In Situation let 0 : B — X be a section. Assume that
Or = fr«Ox, s an isomorphism for all T over B. Then

is a split exact sequence with splitting given by o} : Pic(X1) — Pic(T).

Proof. Denote K(T') = Ker(o}. : Pic(X7) — Pic(T')). Since o is a section of f we
see that Pic(Xr) is the direct sum of Pic(T) and K(T). Thus by Lemma we
see that K(T') C Picx,/p(T) for all T. Moreover, it is clear from the construction
that Picx,p is the sheafification of the presheaf K. To finish the proof it suffices

to show that K satisfies the sheaf condition for fppf coverings which we do in the
next paragraph.

Let {T; — T} be an fppf covering. Let £; be elements of K(T;) which map to the
same elements of K (T; xr Tj) for all ¢ and j. Choose an isomorphism «; : O, —
o1 L; for all i. Choose an isomorphism

Pij : Lilxr, e, — Ljl X,

If the map

* .
aj|TiXTTj © UTiXTTjQOij O Q4| T; x Ty OTiXTTj - OTiXTTj

is not equal to multiplication by 1 but some u;;, then we can scale ¢;; by ui_jl to
correct this. Having done this, consider the self map

<pk’i|XTixTTj><TTk 0 <pjk|XTi><TTj %1y, © (pij|XTi><TTj xpr, On ‘Ci|XTi><TTJ- X T
which is given by multiplication by some section f;;; of the structure sheaf of
XT,x+T;x+T,- By our choice of ¢;; we see that the pullback of this map by o is
equal to multiplication by 1. By our assumption on functions on X, we see that
fijt = 1. Thus we obtain a descent datum for the fppf covering {Xr, — X}. By
Descent on Spaces, Proposition there is an invertible Ox,-module £ and an
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isomorphism « : Oy — o4.L whose pullback to X, recovers (£;, ;) (small detail
omitted). Thus £ defines an object of K(T') as desired. O

In Situation E let 0 : B = X be a section. We denote Picx,p , the category
defined as follows:
(1) An object is a quadruple (7', h, L, o), where (T, h, L) is an object of Picx,/p
over T'and o : O — oL is an isomorphism.
(2) A morphism (g,¢) : (T, h,L,a) = (T", 1/, L', &) is given by a morphism of
schemes g : T — T’ with h = b/ o g and an isomorphism ¢ : (¢')*L" — L
such that ok o g*a’ = a. Here ¢’ : Xpv — X is the base change of g.

There is a natural faithful forgetful functor
PiCX/B7O' — ’PZ'CX/B
In this way we view Picx/p,, as a category over (Sch/S)sppy-

Lemma 11.5. In Situation let 0 : B — X be a section. Then Picx;p . as
defined above is a stack in groupoids over (Sch/S)fppt-

Proof. We already know that Picy,p is a stack in groupoids over (Sch/S)spps by
Examples of Stacks, Lemma Let us show descent for objects for Picx,p .. Let
{T; — T} be an fppf covering and let & = (T3, hi, Ls, ;) be an object of Picx/p
lying over T;, and let ¢;; : pry& — pri€; be a descent datum. Applying the result
for Picx,p we see that we may assume we have an object (7', h, L) of Picx,p over
T which pulls back to &; for all i. Then we get

a;: O, = op.Li = (T; = T)*opL

Since the maps ;; are compatible with the o; we see that a; and a; pullback to the
same map on T; x1 T;. By descent of quasi-coherent sheaves (Descent, Proposition
5.2, we see that the o; are the restriction of a single map o : O — 0}.L as desired.
We omit the proof of descent for morphisms. ([l

Lemma 11.6. In Situation let 0 : B — X be a section. The morphism
Picxp,o — Picx,p is representable, surjective, and smooth.

Proof. Let T' be a scheme and let (Sch/T)sppr — Picx,p be given by the object
§=(T,h,L) of Picx,p over T. We have to show that

(Sch/T) pppf X ¢, Picx, s Picx/B.o

is representable by a scheme V' and that the corresponding morphism V — T is
surjective and smooth. See Algebraic Stacks, Sections [6] [9] and The forgetful
functor Picx,p . — Picx/p is faithful on fibre categories and for T"/T the set of
isomorphism classes is the set of isomorphisms

o OT/ — (T/ — T)*O';,C

See Algebraic Stacks, Lemmal[9.2] We know this functor is representable by an affine
scheme U of finite presentation over T by Proposition (applied toid : T'— T and
Or and 0*L£). Working Zariski locally on T we may assume that o;.£ is isomorphic
to Or and then we see that our functor is representable by G,, x T over T'. Hence
U — T Zariski locally on T looks like the projection G, x T'— T" which is indeed
smooth and surjective. ([
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Lemma 11.7. In Situation let 0 : B — X be a section. If Or = fr.Ox, is
an isomorphism for all T over B, then Picx g o — (Sch/S)spps is fibred in setoids
with set of isomorphism classes over T given by

Hh:T—>B Ker(op : Pic(X xp s T) = Pic(T))

Proof. If £ = (T, h, L, ) is an object of Picx,p,, over T, then an automorphism
@ of £ is given by multiplication with an invertible global section u of the structure
sheaf of X7 such that moreover 074 = 1. Then v = 1 by our assumption that Or —
J1,+Ox, is an isomorphism. Hence Picx/p . is fibred in setoids over (Sch/S)spps-
Given T and h : T — B the set of isomorphism classes of pairs (£, «) is the same
as the set of isomorphism classes of £ with ¢.£ = Op (isomorphism not specified).
This is clear because any two choices of « differ by a global unit on 7" and this is
the same thing as a global unit on Xp. O

Proposition 11.8. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Assume that

(1) f is flat, of finite presentation, and proper, and

(2) Or — fr«Ox, is an isomorphism for all schemes T over B.
Then Picx,p is an algebraic space.

In the situation of the proposition the algebraic stack Picx,p is a gerbe over the
algebraic space Picx,p. After developing the general theory of gerbes, this provides
a shorter proof of the proposition (but using more general theory).

Proof. There exists a surjective, flat, finitely presented morphism B’ — B of
algebraic spaces such that the base change X’ = X xp B’ over B’ has a section:
namely, we can take B’ = X. Observe that Picx/,p = B’ xp Picx,p. Hence
Picx//p — Picx,p is representable by algebraic spaces, surjective, flat, and finitely
presented. Hence, if we can show that Picy/p/ is an algebraic space, then it follows
that Picx,p is an algebraic space by Bootstrap, Theorem In this way we
reduce to the case described in the next paragraph.

In addition to the assumptions of the proposition, assume that we have a section
o : B — X. By Proposition [10.2] we see that Picx,p is an algebraic stack. By
Lemma and Algebraic Stacks, Lemmawe see that Picx/p , is an algebraic
stack. By Lemmaand Algebraic Stacks, Lemma we see that T' — Ker (o}, :
Pic(X1) — Pic(T)) is an algebraic space. By Lemma this functor is the same
as Picx/p- O

Lemma 11.9. With assumptions and notation as in Proposition . Then the
diagonal Picx,p — Picx,p xp Picx,p is representable by immersions. In other
words, Picx,p — B is locally separated.

Proof. Let T be a scheme over B and let s,t € PicX/B(T). We want to show that
there exists a locally closed subscheme Z C T such that s|z = t|z and such that a
morphism 7" — T factors through Z if and only if s|7v = t|7.

We first reduce the general problem to the case where s and ¢ come from invertible
modules on X7. We suggest the reader skip this step. Choose an fppf covering
{T; — T}ier such that s|p, and |7, come from Pic(Xr,) for all i. Suppose that
we can show the result for all the pairs s|z;,t|r,. Then we obtain locally closed
subschemes Z; C T; with the desired universal property. It follows that Z; and
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Z; have the same scheme theoretic inverse image in 7; x¢ T;. This determines a
descend datum on Z;/T;. Since Z; — T; is locally quasi-finite, it follows from More
on Morphisms, Lemma that we obtain a locally quasi-finite morphism Z — T
recovering Z; — T; by base change. Then Z — T is an immersion by Descent,
Lemma Finally, because Picy,p is an fppf sheaf, we conclude that s|z = t|z
and that Z satisfies the universal property mentioned above.

Assume s and ¢ come from invertible modules V, W on X7. Set £ =V @ W®~1
We are looking for a locally closed subscheme Z of T such that 7' — T factors
through Z if and only if Lx,, is the pullback of an invertible sheaf on 71", see
Lemma [TT.3] Hence the existence of Z follows from More on Morphisms of Spaces,
Lemma 5371 O

12. Relative morphisms

We continue the discussion from Criteria for Representability, Section In that
section, starting with a scheme S and morphisms of algebraic spaces Z — B and
X — B over S we constructed a functor

Morp(Z,X) : (Sch/B)°P? — Sets, T —— {f:Zr — X1}

We sometimes think of Morg(Z, X) as a functor (Sch/S)°PP — Sets endowed with
a morphism Morg(Z, X) — B. Namely, if T is a scheme over S, then an element of
Morp(Z,X)(T) is a pair (f, h) where hisamorphismh : T — Band f : Zxp T —
X xp,p T is a morphism of algebraic spaces over 7. In particular, when we say
that Morp(Z,X) is an algebraic space, we mean that the corresponding functor
(Sch/S)°PP — Sets is an algebraic space.

Lemma 12.1. Let S be a scheme. Consider morphisms of algebraic spaces Z — B
and X — B over S. If X — B is separated and Z — B is of finite presentation,
flat, and proper, then there is a natural injective transformation of functors

]‘407"3(27 X) — HileXBX/B
which maps a morphism f : Zp — Xp to its graph.

Proof. Given a scheme T over B and a morphism fr : Zp — X over T, the graph
of f is the morphism I'y = (id, f) : Zr — Zp x¢ X7 = (Z xp X)7. Recall that
being separated, flat, proper, or finite presentation are properties of morphisms of
algebraic spaces which are stable under base change (Morphisms of Spaces, Lemmas
30.4} 140.3, and M Hence I'f is a closed immersion by Morphisms of Spaces,
Lemma Moreover, I'y(Zr) is flat, proper, and of finite presentation over T.
Thus I'y(Zr) defines an element of Hilb, , x,5(T"). To show the transformation is
injective it suffices to show that two morphisms with the same graph are the same.
This is true because if Y C (Z x g X)r is the graph of a morphism f, then we can
recover f by using the inverse of pry|y : Y — Zr composed with pry|y. O

Lemma 12.2. Assumption and notation as in Lemma m The transformation
Morg(Z,X) — Hilbg, ,x/p is representable by open immersions.

Proof. Let T be a scheme over B and let Y C (Z xp X)r be an element of
Hilby ,x/B(T). Then we see that Y is the graph of a morphism Z7 — Xt over
T if and only if &k = pry|y : Y — Zr is an isomorphism. By More on Morphisms
of Spaces, Lemma there exists an open subscheme V' C T such that for any
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morphism of schemes T” — T we have kr/ : Y — Zp/ is an isomorphism if and
only if 7" — T factors through V. This proves the lemma. (]

Proposition 12.3. Let S be a scheme. Let Z — B and X — B be morphisms of
algebraic spaces over S. Assume X — B is of finite presentation and separated and
Z — B is of finite presentation, flat, and proper. Then Morg(Z, X) is an algebraic
space locally of finite presentation over B.

Proof. Immediate consequence of Lemma and Proposition (|

13. The stack of algebraic spaces

This section continuous the discussion started in Examples of Stacks, Sections
and Working over Z, the discussion therein shows that we have a stack in
groupoids
P'pe - Spaces's, — Schyppy

parametrizing (nonflat) families of finite type algebraic spaces. More precisely, an
objectﬂ of Spaces}t is a finite type morphism X — S from an algebraic space X to
a scheme S and a morphism (X’ — 5’) — (X — 5) is given by a pair (f, g) where
f : X’ — X is a morphism of algebraic spaces and g : S’ — S is a morphism of
schemes which fit into a commutative diagram

X —X
l f J/
S~
inducing an isomorphism X’ — S’ xg X, in other words, the diagram is cartesian

in the category of algebraic spaces. The functor p}t sends (X — S) to S and sends
(f,g) to g. We define a full subcategory

/ /
Spacest,, tiat proper C Spacesy;

consisting of objects X — S of Spaces’ft such that X — S is of finite presentation,
flat, and proper. We denote

plfp,flat,proper : Spa‘ces/fp,flat,proper — SChfppf
the restriction of the functor p’ft to the indicated subcategory. We first review the
results already obtained in the references listed above, and then we start adding
further results.

Lemma 13.1. The category Spaces;, is fibred in groupoids over Schyppp. The

. /
same is true for Spacest, t1qt proper-

Proof. We have seen this in Examples of Stacks, Section|12|for the case of Spaces}t
and this easily implies the result for the other case. However, let us also prove this
directly by checking conditions (1) and (2) of Categories, Definition

Condition (1). Let X — S be an object of Spaces’s;, and let S" — S be a morphism
of schemes. Then we set X' = 5’ xg X. Note that X’ — S’ is of finite type by
Morphisms of Spaces, Lemma to obtain a morphism (X' — 5") —» (X — 5)
lying over S — S. Argue similarly for the other case using Morphisms of Spaces,

Lemmas [28.3] [30.4], and [40.3]

3We always perform a replacement as in Examples of Stacks, Lemma
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Condition (2). Consider morphisms (f,g) : (X’ — 5’) - (X — S) and (a,bd) :
(Y = T) = (X — 5) of Spaces’;,. Given a morphism h : T — S’ with goh = b we
have to show there is a unique morphism (k, ) : (Y — T') — (X" — S') of Spaces’;,
such that (f, g)o (k,h) = (a,b). This is clear from the fact that X' = S’ xg X. The
same therefore works for any full subcategory of Spaces}t satisfying (1). O

Lemma 13.2. The diagonal

A Spaces}p,ﬂat,proper — Spaces}p,flat,proper X Spaces}p,flat,proper
is representable by algebraic spaces.
Proof. We will use criterion (2) of Algebraic Stacks, Lemma [10.11] Let S be a

scheme and let X and Y be algebraic spaces of finite presentation over .S, flat over
S, and proper over S. We have to show that the functor

Isomg(X,Y) : (Sch/S)fppr — Sets, T +— {f : Xr — Y isomorphism}

is an algebraic space. An elementary argument shows that Isomg(X,Y) sits in a
fibre product

Isomg(X,Y) S

i (id,id)

Morg(X,Y) x Morg(Y,X) —— Morg(X,X) x Morg(Y,Y)

The bottom arrow sends (@, ) to (1) o ¢, p o 1)). By Proposition the functors
on the bottom row are algebraic spaces over S. Hence the result follows from the
fact that the category of algebraic spaces over S has fibre products. O

Lemma 13.3. The category Spaces’ft is a stack in groupoids over Schyppr. The
same is true for Spaces's, t14t proper-

Proof. The reason this lemma holds is the slogan: any fppf descent datum for
algebraic spaces is effective, see Bootstrap, Section More precisely, the lemma
for Spaces'ft follows from Examples of Stacks, Lemma as we saw in Examples of
Stacks, Section However, let us review the proof. We need to check conditions
(1), (2), and (3) of Stacks, Definition [5.1]

Property (1) we have seen in Lemma [13.1]

Property (2) follows from Lemma in the case of Spacest, t141 proper- 10 the
case of Spaces}t it follows from Examples of Stacks, Lemma (and this is really
the “correct” reference).

Condition (3) for Spaces, is checked as follows. Suppose given

(1) an fppf covering {U; — U }icr in Schyppy,
(2) for each i € I an algebraic space X; of finite type over U;, and
(3) for each 4,5 € I an isomorphism ¢;; : X; xy U; = U; xy X of algebraic
spaces over U; xy Uj satisfying the cocycle condition over U; xy U; Xy Uy.
We have to show there exists an algebraic space X of finite type over U and iso-
morphisms Xy, = X; over U; recovering the isomorphisms ¢;;. This follows from
Bootstrap, Lemma m part (2). By Descent on Spaces, Lemma we see that
X — U is of finite type. In the case of (S'paces’E . one additionally uses

p, flat,proper

Descent on Spaces, Lemma [T1.12] [T1.13] and [T1.19]in the last step. (]
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Sanity check: the stacks Spaces’;, and Spaces’;,, 14 play the same role among

algebraic spaces.

,proper

0E93 Lemma 13.4. LetT be an algebraic space over Z. Let St denote the corresponding
algebraic stack (Algebraic Stacks, Sections @ @ and . We have an equivalence
of categories

morphisms of algebraic spaces
X — T of finite type

and an equivalence of categories

} — Mor cat/schy,, ; (ST, Spaces,)

{morphz’sms of algebraic spaces X — T

/
of finite presentation, flat, and proper} — Morcatsehy,, (51, Spacespy, fiat proper)

Proof. We are going to deduce this lemma from the fact that it holds for schemes
(essentially by construction of the stacks) and the fact that fppf descent data for
algebraic spaces over algerbaic spaces are effective. We strongly encourage the
reader to skip the proof.

The construction from left to right in either arrow is straightforward: given X — T
of finite type the functor Sp — Spaces}t assigns to U/T the base change Xy — U.
We will explain how to construct a quasi-inverse.

If T is a scheme, then there is a quasi-inverse by the 2-Yoneda lemma, see Cate-
gories, Lemma Let p : U — T be a surjective étale morphism where U is a
scheme. Let R = U xp U with projections s,t : R — U. Observe that we obtain

morphisms
—_—

Suxruxsu —>8r ___ Sy —=Sr
—_—
satisfying various compatibilities (on the nose).

Let G : Sy — Spaces}t be a functor over Schyp,,r. The restriction of G' to Sy
via the map displayed above corresponds to a finite type morphism Xy — U of
algebraic spaces via the 2-Yoneda lemma. Since pos = pot we see that R x,y Xy
and R x;y Xy both correspond to the restriction of G to Sg. Thus we obtain a
canonical isomorphism ¢ : Xy Xy R — R X4,y Xy over R. This isomorphism
satisfies the cocycle condition by the various compatibilities of the diagram given
above. Thus a descent datum which is effective by Bootstrap, Lemma [11.3] part
(2). In other words, we obtain an object X — T of the right hand side category.
We omit checking the construction G ~ X is functorial and that it is quasi-inverse
to the other construction. In the case of Spaces’s, 11,4 broper On€ additionally uses
Descent on Spaces, Lemma [11.12] [11.13] and |_1L1&{_9| in the last step to see that
X — T is of finite presentation, flat, and proper. O

0D1H Remark|/13.5. Let B be an algebraic space over Spec(Z). Let B—Spaces}t be the
category consisting of pairs (X — S,h : S — B) where X — S is an object of
Spaces’y; and h : S — B is a morphism. A morphism (X' — S',h/) — (X — S,h)
in B—Spaces}-t is a morphism (f,g) in Spaces}t such that hog = h'/. In this situation
the diagram
B —Spaces’ft —_— Spaces}t

| |

(Sch/B) pppy ——= Schyppy
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is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Spaces}t to the case of families over a given base

. .. . 12
algebraic space. Of course, a similar construction works for B-Spacesy, fiat proper

Lemma 13.6. The stack P, 110t proper * SPACESt, 10t proper — SChypppy is limit
preserving (Artin’s Axioms, Definition .

Proof. Let T'=lim T; be the limits of a directed inverse system of affine schemes.
By Limits of Spaces, Lemma [7.1] the category of algebraic spaces of finite presenta-
tion over T is the colimit of the categories of algebraic spaces of finite presentation
over T;. To finish the proof use that flatness and properness descends through the
limit, see Limits of Spaces, Lemmas and O

Lemma 13.7. Let

T ——1T

L

S —=9

be a pushout in the category of schemes where T — T' is a thickening and T — S is
affine, see More on Morphisms, Lemma[I4.5 Then the functor on fibre categories

/
Spacesfnflat:pmpens’

’ /
Spacesyy, fiatproper,s X Spacesl, 1iu propere SPACESfp, flat proper,”

is an equivalence.

Proof. The functor is an equivalence if we drop “proper” from the list of conditions
and replace “of finite presentation” by “locally of finite presentation”, see Pushouts
of Spaces, Lemma Thus it suffices to show that given a morphism X’ — S’
of an algebraic space to S’ which is flat and locally of finite presentation, then
X' — S’ is proper if and only if S x5 X’ — S and T’ xg: X’ — T’ are proper. One
implication follows from the fact that properness is preserved under base change
(Morphisms of Spaces, Lemma and the other from the fact that properness
of S xg X’ — S implies properness of X’ — S’ by More on Morphisms of Spaces,
Lemma [10.21 O

Lemma 13.8. Let k be a field and let x = (X — Spec(k)) be an object of X =
Spaces}p,ﬂat’pmmr over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFx  » and Inf(Fx k)
(see Artin’s Axioms, Section@) are finite dimensional, and

(2) in general the vector spaces Ty (k) and Inf, (k) (see Artin’s Azioms, Section
are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section [§| only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma and
we may apply Artin’s Axioms, Lemma to get the vector spaces T, (k) and
Inf, (k) mentioned in (2). Moreover, in the finite type case these spaces agree with
the ones mentioned in (1) by Artin’s Axioms, Remark With this out of the
way we can start the proof. Observe that the first order thickening Spec(k) —
Spec(kle]) = Spec(k[k]) has conormal module k. Hence the formula in Deformation
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Theory, Lemma describing infinitesimal deformations of X and infinitesimal
automorphisms of X become

T,(k) = Extp, (NLx/k, Ox) and Inf,(k) = Extg, (NLx/y, Ox)

By More on Morphisms of Spaces, Lemma and the fact that X is Noetherian,
we see that NLx/, has coherent cohomology sheaves zero except in degrees 0 and
—1. By Derived Categories of Spaces, Lemma the displayed Ext-groups are
finite k-vector spaces and the proof is complete. O

Beware that openness of versality (as proved in the next lemma) is a bit strange
because our stack does not satisfy formal effectiveness, see Examples, Section
Later we will apply the openness of versality to suitable substacks of Spaces’fp7 Flat,proper
which do satisfy formal effectiveness to conclude that these stacks are algebraic.

Lemma 13.9. The stack in groupoids X = Spaces}pﬂat,pmper satisfies openness
of versality over Spec(Z). Similarly, after base change (Remark openness of
versality holds over any Noetherian base scheme S.

Proof. For the “usual” proof of this fact, please see the discussion in the remark
following this proof. We will prove this using Artin’s Axioms, Lemma We
have already seen that X has diagonal representable by algebraic spaces, has (RS*),
and is limit preserving, see Lemmas [13.2] [13.7] and [13.6] Hence we only need to
see that X' satisfies the strong formal effectiveness formulated in Artin’s Axioms,

Lemma 20.3

Let (R,,) be an inverse system of rings such that R,, — R, is surjective with square
zero kernel for all n > m. Let X,, — Spec(R,,) be a finitely presented, flat, proper
morphism where X, is an algebraic space and let X,,11 — X,, be a morphism over
Spec(R,, 1) inducing an isomorphism X, = X, 11 Xgpec(Rny,) SPec(Ry,). We have
to find a flat, proper, finitely presented morphism X — Spec(lim R,,) whose source
is an algebraic space such that X, is the base change of X for all n.

Let I, = Ker(R, — R;). We may think of (X; C X,,) — (Spec(R;) C Spec(R,,))
as a morphism of first order thickenings. (Please read some of the material on
thickenings of algebraic spaces in More on Morphisms of Spaces, Section [9] before
continuing.) The structure sheaf of X, is an extension

0—>0X1®len—>(9xn—>0xl—>0

over 0 — I, - R, — Ry, see More on Morphisms of Spaces, Lemma Let’s
consider the extension

0— hIl’lOXl QR, I, — lim(’)xn — OXl —0

over 0 = limJ, — limR,, - R; — 0. The displayed sequence is exact as the
R'lim of the system of kernels is zero by Derived Categories of Spaces, Lemma,
Observe that the map

OXl QR lim I,, — limOxl QR, 1,

induces an isomorphism upon applying the functor DQx, see Derived Categories
of Spaces, Lemma [25.6] Hence we obtain a unique extension

0— Ox, ®g, limI, - 0" — Ox, =0

over 0 — lim /I, — lim R,, — R; — 0 by the equivalence of categories of Defor-
mation Theory, Lemma The sheaf O’ determines a first order thickening of
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algebraic spaces X; C X over Spec(Ry) C Spec(lim R,,) by More on Morphisms of
Spaces, Lemma Observe that X — Spec(lim R,,) is flat by the already used
More on Morphisms of Spaces, Lemma By More on Morphisms of Spaces,
Lemma we see that X — Spec(lim R,,) is proper and of finite presentation.
This finishes the proof. (I

Remark| 13.10. Lemma can also be shown using either Artin’s Axioms,
Lemma m (as in the first proof of Lemma , or using an obstruction theory
as in Artin’s Axioms, Lemma (as in the second proof of Lemma [5.11)). In both
cases one uses the deformation and obstruction theory developed in Cotangent,
Section [23] to translate the needed properties of deformations and obstructions into
Ext-groups to which Derived Categories of Spaces, Lemma [23.3|can be applied. The
second method (using an obstruction theory and therefore using the full cotangent
complex) is perhaps the “standard” method used in most references.

14. The stack of polarized proper schemes

To study the stack of polarized proper schemes it suffices to work over Z as we can
later pullback to any scheme or algebraic space we want (see Remark [14.5]).

Situation 14.1. We define a category Polarized as follows. Objects are pairs
(X — S, L) where

(1) X — S is a morphism of schemes which is proper, flat, and of finite pre-
sentation, and
(2) Lisan invertible O x-module which is relatively ample on X/S (Morphisms,

Definition [37.1)).
A morphism (X' — S, L") — (X — S,L) between objects is given by a triple
(f,g,%) where f : X’ — X and g : S’ — S are morphisms of schemes which fit into
a commutative diagram
X —X
| ]
g 7.9
inducing an isomorphism X’ — S’ x g X, in other words, the diagram is cartesian,

and ¢ : f*L£ — L is an isomorphism. Composition is defined in the obvious manner
(see Examples of Stacks, Sections |7| and . The forgetful functor

p : Polarized — Schyppr, (X — S, L) — S
is how we view Polarized as a category over Schypys (see Section [2| for notation).

In the previous section we have done a substantial amount of work on the stack
Spaces}p, Flat,proper of finitely presented, flat, proper algebraic spaces. To use this
material we consider the forgetful functor

(14.1.1) Polarized — Spaces's, t1at propers (X = S, L) — (X — 8)

This functor will be a useful tool in what follows. Observe that if (X — S) is in
the essential image of ((14.1.1]), then X and S are schemes.

Lemmal|14.2. The category Polarized is fibred in groupoids over Spaces}p,ﬂat’pmper.
The category Polarized is fibred in groupoids over Schyppy.
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Proof. We check conditions (1) and (2) of Categories, Definition [35.1]

Condition (1). Let (X — S,L) be an object of Polarized and let (X' — S') —
(X — S) be a morphism of Spaces’s, 141 proper- Then we let £ be the pullback
of L to X’. Observe that X, 5, 5" are schemes, hence X’ is a scheme as well (as
the fibre product of schemes). Then £’ is ample on X’/S” by Morphisms, Lemma
37.9. In this way we obtain a morphism (X’ — S, L") — (X — S, L) lying over
(X' = 8)—=(X—=09).

Condition (2). Consider morphisms (f,g,¢) : (X' = S, L) = (X — S,L) and
(a,b,9): (Y = T,N) = (X — S, L) of Polarized. Given a morphism (k,h) : (Y —
T) = (X' = 8') of Spaces’y, t1a1 proper With (f,g) o (k,h) = (a,b) we have to show
there is a unique morphism (k,h,x) : (Y = T,N) — (X' — S, L) of Polarized
such that (f,g,¢) o (k,h,x) = (a,b,%). We can just take

x=vo (k¢!

This proves condition (2). A composition of functors defining fibred categories
defines a fibred category, see Categories, Lemma This we see that Polarized

is fibred in groupoids over Schypy,r (strictly speaking we should check the fibre
categories are groupoids and apply Categories, Lemma |35.2)). 0

0D40 Lemma 14.3. The category Polarized is a stack in groupoids over Spaces’, 141 proper
(endowed with the inherited topology, see Stacks, Definition m The category
Polarized is a stack in groupoids over Schyppy.

Proof. We prove Polarized is a stack in groupoids over Spaces’f% Flat,proper DY check-
ing conditions (1), (2), and (3) of Stacks, Definition [5.1] We have already seen (1)
in Lemma [14.2)

A covering of Spaces’f% Flat,proper COMes about in the following manner: Let X — .5
be an object of Spaces’, 141 proper- Suppose that {S; — S}ier is a covering of
Schipps. Set X; = S; xg X. Then {(X; — S;) = (X — S)}ier is a covering
of Spaces}p’ Flat,proper and every covering of Spaces’fp’ Flat,proper 1S isomorphic to
one of these. Set S;; = S; xg S; and X;; = S;; xg X so that (X;; — Si5) =
(Xi — Si) x(x=s) (X5 = 55). Next, suppose that L,N are ample invertible
sheaves on X/S so that (X — S, £) and (X — S,N) are two objects of Polarized
over the object (X — S). To check descent for morphisms, we assume we have
morphisms (id, id, ¢;) from (X; — S;, L] x,) to (X; — S;, N|x,) whose base changes
to morphisms from (X;; — S, L|x,;) to (Xi; — Sij N x,;) agree. Then ¢; :
L|x, — N|x, are isomorphisms of invertible modules over X; such that o; and 0
restrict to the same isomorphisms over X;;. By descent for quasi-coherent sheaves
(Descent on Spaces, Proposition we obtain a unique isomorphism ¢ : £ — N
whose restriction to X; recovers ;.

Decent for objects is proved in exactly the same manner. Namely, suppose that
{(Xi = Si) = (X — S)}ier is a covering of Spaces’s, t14t proper @ above. Suppose
we have objects (X; — S;, L;) of Polarized lying over (X; — S;) and a descent
datum
(id,id, @i;) : (Xij = Sij, Lilx,;) = (Xij = Sij Lilx,;)

satisfying the obvious cocycle condition over (X — Sijx) for every triple of
indices. Then by descent for quasi-coherent sheaves (Descent on Spaces, Proposition
4.1) we obtain a unique invertible Ox-module £ and isomorphisms L|x, — £;
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recovering the descent datum ¢;;. To show that (X — S, £) is an object of Polarized
we have to prove that £ is ample. This follows from Descent on Spaces, Lemma

I3.1

Since we already have seen that Spaces}-% Flat,proper 1S @ stack in groupoids over
Schfpps (Lemma(13.3)) it now follows formally that Polarized is a stack in groupoids
over Schyppy. See Stacks, Lemma [10.6] O

Sanity check: the stack Polarized plays the same role among algebraic spaces.

Lemma 14.4. LetT be an algebraic space over Z. Let St denote the corresponding
algebraic stack (Algebraic Stacks, Sections @ @ and . We have an equivalence

of categories

(X = T,L) where X — T is a morphism
of algebraic spaces, is proper, flat, and of p — Mor cat/scn;,, (ST, Polarized)
finite presentation and L ample on X/T

Proof. Omitted. Hints: Argue exactly as in the proof of Lemma and use De-
scent on Spaces, Proposition to descent the invertible sheaf in the construction
of the quasi-inverse functor. The relative ampleness property descends by Descent
on Spaces, Lemma, [13.1 O

Remark 14.5. Let B be an algebraic space over Spec(Z). Let B-Polarized be the
category consisting of triples (X — S, L,h : S — B) where (X — S, L) is an object
of Polarized and h : S — B is a morphism. A morphism (X' — S, £/, h) = (X —
S, L,h) in B-Polarized is a morphism (f, g, ¢) in Polarized such that hog =h'. In
this situation the diagram

B-Polarized — Polarized

|

(Sch/B) tpps ——= Schppy

is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Polarized to the case of families over a given base
algebraic space.

Lemma 14.6. The functor (14.1.1) defines a 1-morphism

. /
Polarized — Spacesy,, tiat proper

of stacks in groupoids over Schyp, which is algebraic in the sense of Criteria for
Representability, Definition [8.1]

Proof. By Lemmas and the statement makes sense. To prove it, we
choose a scheme S and an object § = (X — 5) of Spaces’y, 14t proper OVer S. We
have to show that

X = (Sch/S) spps X¢.Spaces’ Polarized

fp.flat,proper
is an algebraic stack over S. Observe that an object of X is given by a pair
(T'/S, L) where T is a scheme over S and £ is an invertible Oy, -module which is
ample on X7 /T. Morphisms are defined in the obvious manner. In particular, we
see immediately that we have an inclusion

X C ’PZ'CX/S
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of categories over (Sch/S)pps, inducing equality on morphism sets. Since Picx,s
is an algebraic stack by Proposition [[0.2]it suffices to show that the inclusion above
is representable by open immersions. This is exactly the content of Descent on
Spaces, Lemma, [13.2 O

Lemma 14.7. The diagonal
A : Polarized — Polarized x Polarized
is representable by algebraic spaces.

Proof. This is a formal consequence of Lemmas and See Criteria for
Representability, Lemma, (8.4 O

Lemma 14.8. The stack in groupoids Polarized is limit preserving (Artin’s Az-
ioms, Definition .

Proof. Let I be a directed set and let (4;, ;i) be a system of rings over I. Set
S = Spec(A) and S; = Spec(A4;). We have to show that on fibre categories we have

‘Polarizeds = colim Polarizeds,

We know that the category of schemes of finite presentation over S is the colimit
of the category of schemes of finite presentation over S;, see Limits, Lemma [10.1
Moreover, given X; — S; of finite presentation, with limit X — .S, then the category
of invertible O x-modules L is the colimit of the categories of invertible Ox,-modules
L;, see Limits, Lemma and If X — S is proper and flat, then for
sufficiently large ¢ the morphism X; — S; is proper and flat too, see Limits, Lemmas
and Finally, if £ is ample on X then £; is ample on X; for ¢ sufficiently
large, see Limits, Lemma Putting everything together finishes the proof. O

Lemma 14.9. In Situation . Let

T ——1T
S ——9

be a pushout in the category of schemes where T — T is a thickening and T — S is
affine, see More on Morphisms, Lemma[I4.5. Then the functor on fibre categories

Polarizeds: — Polarizeds X poiarized, Polarizedr:
is an equivalence.
Proof. By More on Morphisms, Lemma there is an equivalence
flat-Ufps, — flat-lfps X piat-ifp. flat-Ufpy:

where flat-Ifpg signifies the category of schemes flat and locally of finite presentation
over S. Let X’/S" on the left hand side correspond to the triple (X/S,Y"/T", )
on the right hand side. Set Y = T X7+ Y’ which is isomorphic with T' xg X via ¢.
Then More on Morphisms, Lemma shows that we have an equivalence

QC’oh-ﬂatX,/S, — QC’oh-ﬂatX/S X QCoh-flaty 1 QCoh-ﬂaty,/T/
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where QCoh-flaty g signifies the category of quasi-coherent O x-modules flat over
S. Since X - S, Y - T, X - S5 Y’ — T’ are flat, this will in particular apply
to invertible modules to give an equivalence of categories

Pic(X'") — Pic(X) X pie(yy Pic(Y")

where Pic(X) signifies the category of invertible Ox-modules. There is a small
point here: one has to show that if an object F' of QCoh-flaty, ;s pulls back to
invertible modules on X and Y’, then F’ is an invertible Ox/-module. It follows
from the cited lemma that F’ is an Ox/-module of finite presentation. By More
on Morphisms, Lemma it suffices to check the restriction of F’ to fibres of
X' — S’ is invertible. But the fibres of X’ — S’ are the same as the fibres of
X — S and hence these restrictions are invertible.

Having said the above we obtain an equivalence of categories if we drop the assump-
tion (for the category of objects over S) that X — S be proper and the assumption
that £ be ample. Now it is clear that if X’ — S’ is proper, then X — S and
Y’ — T" are proper (Morphisms, Lemma. Conversely, if X — Sand Y’ — T’
are proper, then X’ — S’ is proper by More on Morphisms, Lemma Similarly,
if £ is ample on X'/S’, then £'|x is ample on X/S and L'|y- is ample on Y'/T’
(Morphisms, Lemma [37.9). Finally, if £’|x is ample on X/S and £'|y~ is ample on
Y'/T', then L' is ample on X’/S’ by More on Morphisms, Lemma O

Lemma 14.10. Let k be a field and let = (X — Spec(k), L) be an object of
X = Polarized over Spec(k).

(1) If k is of finite type over Z, then the vector spaces T Fyx . and Inf(Fx k)
(see Artin’s Axioms, Section@) are finite dimensional, and

(2) in general the vector spaces T,(k) and Inf, (k) (see Artin’s Azioms, Section
are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section [§] only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma and
we may apply Artin’s Axioms, Lemma to get the vector spaces T, (k) and
Inf, (k) mentioned in (2). Moreover, in the finite type case these spaces agree with
the ones mentioned in part (1) by Artin’s Axioms, Remark With this out of
the way we can start the proof.

One proof is to use an argument as in the proof of Lemma this would re-
quire us to develop a deformation theory for pairs consisting of a scheme and a
quasi-coherent module. Another proof would be the use the result from Lemma
the algebraicity of Polarized — Spaces'fpy Flat proper» @1d a computation of the
deformation space of an invertible module. However, what we will do instead is to
translate the question into a deformation question on graded k-algebras and deduce
the result that way.

Let Cr be the category of Artinian local k-algebras A with residue field k. We
get a predeformation category p : F — Ci from our object = of X over k, see
Artin’s Axioms, Section Thus F(A) is the category of triples (X 4, L4, @), where
(X4, L4)is an object of Polarized over A and « is an isomorphism (X, £4) Xgpec(A)
Spec(k) = (X, £). On the other hand, let ¢ : G — Cx be the category cofibred in
groupoids defined in Deformation Problems, Example Choose dy > 0 (we'll
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see below how large). Let P be the graded k:—algebra

P=kap, HX L

Then y = (k, P) is an object of G(k). Let Qy be the predeformation category of
Formal Deformation Theory, Remark [6.4 Given (X4, Fa,a) as above we set

Q=Ae,  H(Xa L3

The isomorphism « induces a map S : Q —> P. By deformation theory of projective
schemes (More on Morphisms, Lemma [10.6) we obtain a 1-morphism

]:_>gy7 (XA,IA,OJ)H(Q,B:Q%P)

of categories cofibred in groupoids over Ci. In fact, this functor is an equivalence
with quasi-inverse given by @ — Proj ,(Q). Namely, the scheme X4 = Proj ,(Q)
is flat over A by Divisors, Lemma Set L4 = Ox,(1); this is flat over A by
the same lemma. We get an isomorphism (X4, £4) Xgpec(a) Spec(k) = (X, £) from
B. Then we can deduce all the desired properties of the pair (X4,L4) from the
corresponding properties of (X, L) using the techniques in More on Morphisms,
Sections 3] and [I0l Some details omitted.

In conclusion, we see that TF = TG, = T,,G and Inf(F) = Inf,(G). These vector
spaces are finite dimensional by Deformation Problems, Lemma and the proof
is complete. ([

Lemma 14.11 (Strong formal effectiveness for polarized schemes). Let (R,) be
an tnverse system of rings with surjective transition maps whose kernels are locally
nilpotent. Set R = lim R,,. Set S,, = Spec(R,) and S = Spec(R). Consider a
commutative diagram

X —> Xy — Xy
Si S> s

of schemes with cartesian squares. Suppose given (Ln,pn) where each L, is an
invertible sheaf on X, and @y, : 05 Lni1 — Ly is an isomorphism. If

(1) X,, — S, is proper, flat, of finite presentation, and

(2) Ly is ample on X,
then there exists a morphism of schemes X — S proper, flat, and of finite presen-
tation and an ample invertible O x -module L and isomorphisms X,, = X xXg S, and
L, = L]x, compatible with the morphisms i, and oy,

Proof. Choose dy for X; — S7 and £; as in More on Morphisms, Lemma [10.6
For any n > 1 set

— 0 ®d
Ap=Ro o@D, H (X, L7

By the lemma each A, is a finitely presented graded R,,-algebra whose homogeneous
parts (A, )q are finite projective R,-modules such that X,, = Proj(A,) and £,, =
Oproj(a,)(1). The lemma also guarantees that the maps

Al%Ag(*Ag(*...
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induce isomorphisms A, = A,, ®g, R, for n < m. We set
B= @dzo By with By = lim, (4n)q

By More on Algebra, Lemma we see that By is a finite projective R-module
and that B ®g R, = A,,. Thus the scheme

X =Proj(B) and L =0x(1)

is flat over S and L is a quasi-coherent Ox-module flat over S, see Divisors,
Lemma m Because formation of Proj commutes with base change (Construc-
tions, Lemma [11.6) we obtain canonical isomorphisms

XXS Sn :Xn and E‘X,L gﬁn

compatible with the transition maps of the system. Thus we may think of X; C X
as a closed subscheme. Below we will show that B is of finite presentation over R.
By Divisors, Lemmas [30.4] and [30.7] this implies that X — S is of finite presentation
and proper and that £ = Ox (1) is of finite presentation as an Ox-module. Since
the restriction of £ to the base change X; — S is invertible, we see from More on
Morphisms, Lemma that £ is invertible on an open neighbourhood of X; in
X. Since X — S is closed and since Ker(R — Rj) is contained in the Jacobson
radical (More on Algebra, Lemma we see that any open neighbourhood of X3
in X is equal to X. Thus L is invertible. Finally, the set of points in S where L is
ample on the fibre is open in S (More on Morphisms, Lemma and contains
S1 hence equals S. Thus X — S and £ have all the properties required of them in
the statement of the lemma.

We prove the claim above. Choose a presentation Ay = Ry[X1,..., Xs|/(F1,..., F})
where X; are variables having degrees d; and F); are homogeneous polynomials in
X; of degree e;. Then we can choose a map

U:R[Xy,....,X,|— B

lifting the map R;[Xi,...,Xs] — A;. Since each By is finite projective over
R we conclude from Nakayama’s lemma (Algebra, Lemma using again that
Ker(R — R;) is contained in the Jacobson radical of R) that ¥ is surjective. Since
— Qg Ry is right exact we can find Gy,...,G; € Ker(¥) mapping to Fi,..., F;
in R1[Xy,...,X;]. Observe that Ker(¥), is a finite projective R-module for all
d > 0 as the kernel of the surjection R[X7,..., X ]qs — By of finite projective R-
modules. We conclude from Nakayama’s lemma once more that Ker(¥) is generated
by Gi,...,Gs. O

Lemma 14.12. Consider the stack Polarized over the base scheme Spec(Z). Then
every formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms,
Section [0] From the definitions we see the lemma follows immediately from the
more general Lemma [14.11 ([l

Lemmal 14.13. The stack in groupoids Polarized satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark openness of versality
holds over any Noetherian base scheme S.
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Proof. This follows from Artin’s Axioms, Lemma and Lemmas
[[4.8] and [[4.11] For the “usual” proof of this fact, please see the discussion in the
remark following this proof. O

Remark|/14.14. Lemma can also be shown using an obstruction theory as in
Artin’s Axioms, Lemma as in the second proof of Lemmal[5.11)). To do this one
has to generalize the deformation and obstruction theory developed in Cotangent,
Section to the case of pairs of algebraic spaces and quasi-coherent modules.
Another possibility is to use that the 1-morphism Polarized — Spaces}n Flat.proper
is algebraic (Lemma and the fact that we know openness of versality for the

target (Lemma and Remark [13.10)).

Theorem 14.15 (Algebraicity of the stack of polarized schemes). The stack
Polarized (Situation is algebraic. In fact, for any algebraic space B the stack
B-Polarized (Remark is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma and Lemmas
[14.7 [14.9] [14.8] [[4.12] and [I4.13] The case over B follows from this, the description
of B-Polarized as a 2-fibre product in Remark and the fact that algebraic
stacks have 2-fibre products, see Algebraic Stacks, Lemma [14.3 O

15. The stack of curves

In this section we prove the stack of curves is algebraic. For a further discussion of
moduli of curves, we refer the reader to Moduli of Curves, Section

A curve in the Stacks project is a variety of dimension 1. However, when we speak
of families of curves, we often allow the fibres to be reducible and/or nonreduced.
In this section, the stack of curves will “parametrize proper schemes of dimension
< 1”. However, it turns out that in order to get the correct notion of a family we
need to allow the total space of our family to be an algebraic space. This leads to
the following definition.

Situation| 15.1. We define a category Curves as follows:

(1) Objects are families of curves. More precisely, an object is a morphism
f: X — S where the base S is a scheme, the total space X is an algebraic
space, and f is flat, proper, of finite presentation, and has relative dimension
< 1 (Morphisms of Spaces, Definition .

(2) A morphism (X’ — S’) — (X — S) between objects is given by a pair
(f,g) where f: X' — X is a morphism of algebraic spaces and g : S’ — S
is a morphism of schemes which fit into a commutative diagram

X —= X
|
s 2.9

inducing an isomorphism X’ — S’ xg X, in other words, the diagram is
cartesian.

The forgetful functor
p: Curves — Schypps, (X = 8)+— 8

is how we view Curves as a category over Schyp,,¢ (see Section |2 for notation).
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It follows from Spaces over Fields, Lemma and more generally More on Mor-
phisms of Spaces, Lemma that if S is the spectrum of a field, or an Artinian
local ring, or a Noetherian complete local ring, then for any family of curves X — S
the total space X is a scheme. On the other hand, there are families of curves over
A} where the total space is not a scheme, see Examples, Section

It is clear that
(15.1.1) Curves C Spaces's, fiat

,proper

and that an object X — S of Spaces}p’ﬂat’pmper is in Curves if and only if X — §
has relative dimension < 1. We will use this to verify Artin’s axioms for Curves.

Lemma 15.2. The category Curves is fibred in groupoids over Schyppy.

Proof. Using the embedding (15.1.1)), the description of the image, and the cor-
responding fact for Spaces’fp’ Flat proper (Lemma [13.1)) this reduces to the following
statement: Given a morphism

X ——X

|

S —S
in Spaces’fp’ Flat,proper (recall that this implies in particular the diagram is cartesian)

if X — S has relative dimension < 1, then X’ — S’ has relative dimension < 1.
This follows from Morphisms of Spaces, Lemma [34.3 (|

Lemma 15.3. The category Curves is a stack in groupoids over Schypyy.

Proof. Using the embedding , the description of the image, and the cor-
responding fact for Spaces’fp’ Flat proper (Lemma [13.3)) this reduces to the following
statement: Given an object X — S of Spacesy, r14s proper a0d an fppf covering
{S; — S}icr the following are equivalent:

(1) X — S has relative dimension < 1, and

(2) for each 4 the base change X; — S; has relative dimension < 1.

This follows from Morphisms of Spaces, Lemma, |34.3 (Il
Lemma 15.4. The diagonal

A : Curves — Curves x Curves

is representable by algebraic spaces.

Proof. This is immediate from the fully faithful embedding (15.1.1)) and the cor-
responding fact for Spaces}p, Flat proper (Lemma[13.2)). |

Remark 15.5. Let B be an algebraic space over Spec(Z). Let B-Curves be the
category consisting of pairs (X — S,h : S — B) where X — S is an object of
Curves and h : S — B is a morphism. A morphism (X’ — S’/ h') — (X — S,h) in
B-Curves is a morphism (f, g) in Curves such that h o g = h’. In this situation the
diagram

B-Curves —— Curves

| |

(Sch/B) ppps —= Schyppy
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is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Curves to the case of families of curves over a given
base algebraic space.

Lemma 15.6. The stack Curves — Schyp,y is limit preserving (Artin’s Azioms,

Definition[11.1)).

Proof. Using the embedding (15.1.1)), the description of the image, and the cor-
responding fact for Spaces’fp’ Flat proper (Lemma [13.6]) this reduces to the following
statement: Let T = lim7; be the limits of a directed inverse system of affine
schemes. Let ¢ € I and let X; — T; be an object of Spaces}%ﬂampmper over 1;.
Assume that T X7, X; — T has relative dimension < 1. Then for some i’ > i the
morphism T;» x7, X; — T; has relative dimension < 1. This follows from Limits of
Spaces, Lemma [6.14 O

Lemma 15.7. Let

T——T

L

S ——9

be a pushout in the category of schemes where T — T' is a thickening and T — S is
affine, see More on Morphisms, Lemma|14.5 Then the functor on fibre categories

Curvesg: — Curvess X curyesy Curvest
is an equivalence.

Proof. Using the embedding , the description of the image, and the cor-
responding fact for Spaces’fn Flat,proper (Lemma @ this reduces to the following
statement: given a morphism X’ — S’ of an algebraic space to S’ which is of finite
presentation, flat, proper then X’ — S’ has relative dimension < 1 if and only if
S xg X' — S and TV xg X’ — T’ have relative dimension < 1. One implication
follows from the fact that having relative dimension < 1 is preserved under base
change (Morphisms of Spaces, Lemma . The other follows from the fact that
having relative dimension < 1 is checked on the fibres and that the fibres of X’ — S’
(over points of the scheme S’) are the same as the fibres of S xg X’ — S since
S — S’ is a thickening by More on Morphisms, Lemma [14.3] O

Lemma 15.8. Let k be a field and let x = (X — Spec(k)) be an object of X =
Curves over Spec(k).

(1) If k is of finite type over Z, then the vector spaces T Fyx i and Inf(Fx )
(see Artin’s Axioms, Section@) are finite dimensional, and

(2) in general the vector spaces T, (k) and Inf, (k) (see Artin’s Azioms, Section
are finite dimensional.

Proof. This is immediate from the fully faithful embedding (15.1.1)) and the cor-
responding fact for Spaces}p, Flat proper (Lemma[13.8)). |

Lemma 15.9. Consider the stack Curves over the base scheme Spec(Z). Then
every formal object is effective.
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Proof. For definitions of the notions in the lemma, please see Artin’s Axioms, Sec-
tion@ Let (A, m, k) be a Noetherian complete local ring. Let (X,, — Spec(A/m"))
be a formal object of Curves over A. By More on Morphisms of Spaces, Lemma
there exists a projective morphism X — Spec(A) and a compatible system of
ismomorphisms X Xgpec(a) Spec(A/m™) = X,,. By More on Morphisms, Lemma
we see that X — Spec(A) is flat. By More on Morphisms, Lemma we see
that X — Spec(A) has relative dimension < 1. This proves the lemma. O

Lemma 15.10. The stack in groupoids X = Curves satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark openness of versality
holds over any Noetherian base scheme S.

Proof. This is immediate from the fully faithful embedding (15.1.1)) and the cor-
responding fact for Spaces}p,flat7pmper (Lemma (13.9)). O

Theorem 15.11 (Algebraicity of the stack of curves). The stack Curves (Situation
15.1) is algebraic. In fact, for any algebraic space B the stack B-Curves (Remark
15.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma and Lemmas
[15.4) [15.7], [15.6] [15.9] and [I5.10} The case over B follows from this, the description
of B-Curves as a 2-fibre product in Remark and the fact that algebraic stacks
have 2-fibre products, see Algebraic Stacks, Lemma [14.3 ([

Lemma 15.12. The 1-morphism (15.1.1

/
Curves — Spacesy,, fiat proper

is representable by open and closed immersions.

Proof. Since (|15.1.1)) is a fully faithful embedding of categories it suffices to show
the following: given an object X — S of Spaces}p, Flat,proper there exists an open
and closed subscheme U C S such that a morphism S’ — S factors through U if
and only if the base change X’ — S’ of X — S has relative dimension < 1. This
follows immediately from More on Morphisms of Spaces, Lemma [31.5 (]

Remark| 15.13. Consider the 2-fibre product

Polarized

Curves X Spaces, ;1urroper Polarized

/
Curves Spaces't, tiat proper

This fibre product parametrized polarized curves, i.e., families of curves endowed
with a relatively ample invertible sheaf. It turns out that the left vertical arrow

PolarizedCurves — Curves

is algebraic, smooth, and surjective. Namely, this 1-morphism is algebraic (as base
change of the arrow in Lemma , every point is in the image, and there are no
obstructions to deforming invertible sheaves on curves (see proof of Lemma .
This gives another approach to the algebraicity of Curves. Namely, by Lemma[15.12]
we see that PolarizedCurves is an open and closed substack of the algebraic stack
Polarized and any stack in groupoids which is the target of a smooth algebraic
morphism from an algebraic stack is an algebraic stack.

See [dJHS1I]
Proposition 3.3,
page 8] and [Smy13]
Appendix B by Jack
Hall, Theorem B.1].
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16. Moduli of complexes on a proper morphism

The title and the material of this section are taken from [Lie06a]. Let S be a scheme
and let f : X — B be a proper, flat, finitely presented morphism of algebraic spaces.
We will prove that there is an algebraic stack

Complezesx p

parametrizing “families” of objects of DZ’CO,L of the fibres with vanishing negative
self-exts. More precisely a family is given by a relatively perfect object of the
derived category of the total space; this somewhat technical notion is studied in
More on Morphisms of Spaces, Section

Already if X is a proper algebraic space over a field & we obtain a very interesting
algebraic stack. Namely, there is an embedding

Cohx i, — Complezesy

since for any O-module F (on any ringed topos) we have Exti,(F,F) = 0 for
1 < 0. Although this certainly shows our stack is nonempty, the true motivation for
the study of Complexesx ;. is that there are often objects of the derived category
DY, ,(Ox) with vanishing negative self-exts and nonvanishing cohomology sheaves
in more than one degree. For example, X could be derived equivalent to another
proper algebraic space Y over k, i.e., we have a k-linear equivalence

F: DbCoh(OY) — D%‘oh(ox)

There are cases where this happens and F' is not given by an automorphism between
X and Y; for example in the case of an abelian variety and its dual. In this situation
F induces an isomorphism of algebraic stacks

Complezesy , —» Complexesy y,

(insert future reference here) and in particular the stack of coherent sheaves on Y
maps into the stack of complexes on X. Turning this around, if we can understand
well enough the geometry of Complezesy ), then we can try to use this to study all
possible derived equivalent Y.

Lemmal 16.1. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let K, FE €
D(Ox). Assume K is pseudo-coherent and E is Y -perfect (More on Morphisms of
Spaces, Definition . For a field k and a morphism y : Spec(k) — Y denote

Ky, Ey the pullback to the fibre X,,.

(1) There is an open W C Y characterized by the property
ye|W| e Extgxy (K,,E,) =0 fori<D0.
(2) For any morphism V —'Y factoring through W we have
ExthV (Kv,Ey)=0 for i<0

where Xy is the base change of X and Ky and Ey are the derived pullbacks
of K and E to Xy .

(3) The functor V +— Homoy (Kv,Ev) is a sheaf on (Spaces/W)ppy repre-
sentable by an algebraic space affine and of finite presentation over W.
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Proof. For any morphism V' — Y the complex Ky is pseudo-coherent (Cohomol-
ogy on Sites, Lemma and Ey is V-perfect (More on Morphisms of Spaces,
Lemma . Another observation is that given y : Spec(k) — Y and a field
extension k’/k with y' : Spec(k’) — Y the induced morphism, we have

Exto, (Ky,Ey)= Extgxy (Ky,E,) @ k'

by Derived Categories of Schemes, Lemma Thus the vanishing in (1) is really
a property of the induced point y € |Y|. We will use these two observations without
further mention in the proof.

Assume first Y is an affine scheme. Then we may apply More on Morphisms of
Spaces, Lemma and find a pseudo-coherent L € D(Oy) which “universally
computes” Rf,RHom(K, E) in the sense described in that lemma. Unwinding the
definitions, we obtain for a point y € Y the equality

Exty.,) (L ©6, £(y),k(y)) = Exto (Ky, By)
We conclude that
HY (L ®g, k(y)) =0fori> 0« Extgxy (K,,E,) =0 for i< 0.

By Derived Categories of Schemes, Lemma the set W of y € Y where this
happens defines an open of Y. This open W then satisfies the requirement in (1)
for all morphisms from spectra of fields, by the “universality” of L.

Let’s go back to Y a general algebraic space. Choose an étale covering {V; — Y}
by affine schemes V;. Then we see that the subset W C |Y| pulls back to the
corresponding subset W; C |V;| for Xy,, Ky,, Ey,. By the previous paragraph we
find that W; is open, hence W is open. This proves (1) in general. Moreover,
parts (2) and (3) are entirely formulated in terms of the category Spaces/W and
the restrictions Xy, Ky, Ew. This reduces us to the case W =Y.

Assume W = Y. We claim that for any algebraic space V over Y we have
Rfy«RHom(Ky, Ey) has vanishing cohomology sheaves in degrees < 0. This
will prove (2) because

Exto, (Kv,Ev)=H'(Xy,RHom(Ky,Ev)) = H(V,Rfv,.RHom(Kv,Ev))

by Cohomology on Sites, Lemmas and and the vanishing of the cohomology
sheaves implies the cohomology group H' is zero for i < 0 by Derived Categories,

Lemma [16.11

To prove the claim, we may work étale locally on V. In particular, we may assume
Y is affine and W = Y. Let L € D(Oy) be as in the second paragraph of the
proof. For an algebraic space V over Y denote Ly the derived pullback of L to V.
(An important feature we will use is that L “works” for all algebraic spaces V over
Y and not just affine V.) As W =Y we have H*(L) = 0 for i > 0 (use More on
Algebra, Lemma to go from fibres to stalks). Hence H!(Ly) = 0 for i > 0.
The property defining L is that

Rfv)*R'HDm(Kv, Ev) = R'Hom(Lv, Ov)

Since Ly sits in degrees < 0, we conclude that R Hom(Ly, Oy ) sits in degrees > 0
thereby proving the claim. This finishes the proof of (2).
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Assume W = Y but make no assumptions on the algebraic space Y. Since we
have (2), we see from Simplicial Spaces, Lemma that the functor F' given by
F(V) =Homo,  (Kv,Ey) is a sheaiﬂ on (Spaces/Y ) ¢pps. Thus to prove that F is
an algebraic space and that I' — Y is affine and of finite presentation, we may work
étale locally on Y'; see Bootstrap, Lemma and Morphisms of Spaces, Lemmas
and We conclude that it suffices to prove F' is an affine algebraic space
of finite presentation over Y when Y is an affine scheme. In this case we go back
to our pseudo-coherent complex L € D(Oy). Since HY(L) = 0 for i > 0, we can
represent L by a complex of the form

dm1 ®mo
o= O™ 5 O™ = 00— L

with the last term in degree 0, see More on Algebra, Lemma Combining the
two displayed formulas earlier in the proof we find that

F(V) = Ker(Homy (02", Oy) — Homy (OF™, Oy))
In other words, there is a fibre product diagram
F Y

Lk

mo ma
AY AY

which proves what we want. O

Lemma 16.2. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let E € D(Ox).
Assume

(1) E is S-perfect (More on Morphisms of Spaces, Definition , and
(2) for every point s € S we have
Exto, (Es, Bs) =0 for i<0
where By is the pullback to the fibre Xs.
Then

(a) (1) and (2) are preserved by arbitrary base change V.—Y,
(b) EthbXV (Bv,Ev) =0 fori<0 and all V overY,
(¢c) Vi Homo, (Ev, Ev) is representable by an algebraic space affine and of
finite presentation over Y .
Here X is the base change of X and Ey is the derived pullback of E to Xy .

Proof. Immediate consequence of Lemma [16.1} O

Situation| 16.3. Let S be a scheme. Let f : X — B be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. We denote
Complexesx /B the category whose objects are triples (T, g, E) where

(1) T is a scheme over S,

(2) g: T — B is a morphism over S, and setting Xp =T x4 5 X

(3) E is an object of D(Ox, ) satisfying conditions (1) and (2) of Lemma [16.2}

4To check the sheaf property for a covering {V; — V};¢; first consider the Cech fppf hyper-
covering a : Vo — V with V,, = ]'_L.Dmi Vip Xv ... xv V5, and then set Us = Vo X4, v Xy. Then

Ue — Xy is an fppf hypercovering to which we may apply Simplicial Spaces, Lemma m
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A morphism (T, g, F) — (T,¢', E') is given by a pair (h,¢) where
(1) h: T — T’ is a morphism of schemes over B (i.e., ¢’ o h = g), and
(2) ¢: L(W)*E' — E is an isomorphism of D(Ox,) where b/ : Xp — X is
the base change of h.

Thus Complexesx /B 1s a category and the rule
p: Complezesx g — (Sch/S) pps, (1,9, E) — T

is a functor. For a scheme T over S we denote Complezesx g  the fibre category
of p over T. These fibre categories are groupoids.

Lemma 16.4. In Situation the functor p : Complexesy ;g — (Sch/S) ppy is
fibred in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2)
of Categories, Definition Given an object (T”,¢’, E') of Complezesxp and a
morphism h : T — T" of schemes over S we can set ¢ = hog and E = L(W)*E’
where h' : X7 — Xpv is the base change of h. Then it is clear that we obtain a
morphism (T, g, E) — (T",¢', E") of Compleresy,p lying over h. This proves (1).
For (2) suppose we are given morphisms

(h1,¢1) : (T, g1, 1) — (T,9,E) and  (ho,p2) : (12,92, E2) — (T, g, E)
of ComplexesX/B and a morphism h : T} — T5 such that ho o h = hy. Then we can
let ¢ be the composition
L h/ * —1
L)Y Es 2% (WY L(he)*E = L(h)*E 25 Ey
to obtain the morphism (h, ) : (Th, g1, E1) — (T3, g2, E2) that witnesses the truth
of condition (2). O

Lemmal 16.5. In Situation . Denote X = Complezesy,p. Then A : X —
X X X is representable by algebraic spaces.

Proof. Consider two objects z = (T, ¢, E) and y = (T, ¢, E') of X over a scheme
T. We have to show that Isomx(x,y) is an algebraic space over T, see Algebraic
Stacks, Lemmal[10.11] If for h : T — T the restrictions x|+ and y|7+ are isomorphic
in the fibre category X7/, then go h = ¢’ o h. Hence there is a transformation of
presheaves

Isomx(x,y) — Equalizer(g,g’)

Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T' by this equalizer and E and E’ by their pullbacks. Thus
we may assume g = ¢'.

Assume g = ¢’. After replacing B by T and X by Xt we arrive at the following
problem. Given E,E’ € D(Ox) satisfying conditions (1), (2) of Lemma we
have to show that Isom(FE,E’) is an algebraic space. Here Isom(E,E’) is the
functor

(Sch/B)°P? — Sets, T+ {¢: Ex — E7. isomorphism in D(Ox,)}

where Ep and E’. are the derived pullbacks of E and E’ to Xp. Now, let W C B,
resp. W/ C B be the open subspace of B associated to F, E’, resp. to E', E by
Lemma Clearly, if there exists an isomorphism Ep — E/. as in the definition
of Isom(E, E"), then we see that T'— B factors into both W and W’ (because we
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have condition (1) for E and E’ and we’ll obviously have E; = E; so no nonzero
maps E[i| — E; or E}[i] — E; over the fibre X, for ¢ > 0. Thus we may replace B
by the open W N W’. In this case the functor H = Hom(E, E’)

(Sch/B)P? — Sets, T+ Homoy, (Er, Ey)

is an algebraic space affine and of finite presentation over B by Lemma The
same is true for H' = Hom(E', E), I = Hom(E, E), and I' = Hom(E', E"). There-
fore we can repeat the argument of the proof of Proposition [I.3] to see that

Isom(E,E") = (H' xg H) X¢.1xp1',0 B
for some morphisms ¢ and o. Thus Isom(FE, E’) is an algebraic space. [

Lemma 16.6. In Situation the functor p : Complezesy ;g — (Sch/S) ppy is
a stack in groupoids.

Proof. To prove that Complezesy g is a stack in groupoids, we have to show that
the presheaves Isom are sheaves and that descent data are effective. The statement
on Isom follows from Lemma [I6.5] see Algebraic Stacks, Lemma Let us
prove the statement on descent data.

Suppose that {a; : T; — T'} is an fppf covering of schemes over S. Let (&;, ¢;;) be
a descent datum for {7; — T'} with values in Complezesy,p. For each i we can
write & = (T}, i, E;). Denote pry : T; xp T; — T; and pry : T; xp T; — T the
projections. The condition that §i|TiXTTj = fj\TiXTTj implies in particular that
gi © prg = g; o pr;. Thus there exists a unique morphism g : T — B such that
g; = g o a;, see Descent on Spaces, Lemma Denote X7 = T x4p X. Set
Xi = XTi = Ti Xgi,B X = Tl Xa;, T XT and

Xij = X1, Xxp X1y = X3 Xx0 X

with projections pr; and pr; to X; and X;. Observe that the pullback of (T, 9i, E;)
by pry : T; x¢p T; — T; is given by (T; xr T}, g; o pry, Lpri E;). Hence a descent
datum for {T; — T'} in Complezesy p is given by the objects (13, g0 a;, E;) and for
each pair 4, j an isomorphism in DOx, )

©i; : Lprj E; — Lpr;Ej

satisfying the cocycle condition over the pullback of X to T; X1 T X7 T},. Using the
vanishing of negative Exts provided by (b) of Lemma we may apply Simplicial
Spaces, Lemmato obtain descen for these complexes. In other words, we find
there exists an object E in Dgcon(Ox,.) restricting to E; on X7, compatible with
¢i;. Recall that being T-perfect signifies being pseudo-coherent and having locally
finite tor dimension over f ~'Or. Thus E is T-perfect by an application of More on
Morphisms of Spaces, Lemmas and Finally, we have to check condition
(2) from Lemma [16.2] for E. This immediately follows from the description of the
open W in Lemmlg_lél_ll and the fact that (2) holds for E; on Xr, /T;. O

Remark 16.7. In Situationmthe rule (T, g, E) — (T, g) defines a 1-morphism

Complezesy g — Sp

5To check this, first consider the Cech fppf hypercovering a : Te — T with T}, = LL.O i TigXT
... X7 Tj, and then set Us = T Xo,7 X7. Then Us — X7 is an fppf hypercovering to which we
may apply Simplicial Spaces, Lemma m
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of stacks in groupoids (see Lemma Algebraic Stacks, Section [7] and Examples
of Stacks, Section . Let B’ — B be a morphism of algebraic spaces over S. Let
Sp’ — Sp be the associated 1-morphism of stacks fibred in sets. Set X’ = X x g B’.
We obtain a stack in groupoids Complezesx, ;g — (Sch/S)sppy associated to the
base change f’: X’ — B’. In this situation the diagram

Complezesy, g — Complezesx p ) Complezesy, g — Complezesx /g
or in

i i another l i
notation

Sp Sp Sch/B' ———— Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

0DLJ Lemmal 16.8. In Situation assume that B — S is locally of finite presenta-
tion. Then p : Complezesx g — (Sch/S)sppy is limit preserving (Artin’s Azioms,

Definition m)

Proof. Write B(T) for the discrete category whose objects are the S-morphisms
T — B. Let T'=1limT; be a filtered limit of affine schemes over S. Assigning to
an object (', h, E) of Complexesy, 7 the object h of B(T') gives us a commutative
diagram of fibre categories

colim Complezes 1, — Complexesx g 1

| l

colim B(T;) ——— = B(T)

We have to show the top horizontal arrow is an equivalence. Since we have assume
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
that the bottom horizontal arrow is an equivalence. This means that we
may assume 7" = limT; be a filtered limit of affine schemes over B. Denote g; :
T; — B and g : T — B the corresponding morphisms. Set X; = T; x4, B X
and X7 =T x4 p X. Observe that X7 = colim X;. By More on Morphisms of
Spaces, Lemma the category of T-perfect objects of D(Ox,.) is the colimit of
the categories of T;-perfect objects of D(OXTi ). Thus all we have to prove is that
given an T;-perfect object E; of D(Ox,. ) such that the derived pullback E of E;
to X satisfies condition (2) of Lemma then after increasing ¢ we have that
E; satisfies condition (2) of Lemma Let W C |T;| be the open constructed
in Lemma, for E; and E;. By assumption on E we find that T' — T; factors
through T'. Hence there is an i’ > i such that T;; — T; factors through W, see
Limits, Lemma Then i’ works by construction of W. O

ODLK Lemma 16.9. In Situation E Let
Z——=17

)

Y —Y'

be a pushout in the category of schemes over S where Z — Z' is a finite order
thickening and Z — 'Y 1is affine, see More on Morphisms, Lemma[1].5. Then the
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functor on fibre categories
ComplemesX/B’Y, — Complea:esX/B)Y X Compleesx .z ComplemesX/B’Z,
is an equivalence.
Proof. Observe that the corresponding map
B(Y') — B(Y) xp(z) B(Z')

is a bijection, see Pushouts of Spaces, Lemma Thus using the commutative
diagram

Complexesx gy — Complexesx gy Xcomplesesy, 5 , COMplezesx g 7

i |

B(Y’) B(Y) xp(z) B(Z")

we see that we may assume that Y’ is a scheme over B’. By Remark we may
replace B by Y/ and X by X xp Y’. Thus we may assume B =Y.

Assume B = Y’. We first prove fully faithfulness of our functor. To do this, let
€1, &2 be two objects of Complezesy g over Y’. Then we have to show that

Isom (&1, &) (Y") — Isom(&1,2)(Y) X rsom(ey,£2)(2) Lsom (&1, €2)(Z")

is bijective. However, we already know that Isom(&1,&2) is an algebraic space over
B = Y’. Thus this bijectivity follows from Artin’s Axioms, Lemma (or the
aforementioned Pushouts of Spaces, Lemma .

Essential surjectivity. Let (Fy, Ez/, «) be a triple, where Ey € D(Oy) and Ez €
D(Ox,,) are objects such that (Y,Y — B, Ey) is an object of Complezesy,p over
Y, such that (Z',Z" — B, Ez/) is an object of Compleresy,p over Z', and « :
L(Xz = Xy)*Ey — L(Xz = Xz/)*Ez is an isomorphism in D(Og). That is to
say

(Y,Y - B,Ey),(Z',Z' — B,Ez),q)

is an object of the target of the arrow of our lemma. Observe that the diagram

XZHXZI

L

Xy E—— Xy/

is a pushout with Xz — Xy affine and Xz — Xz a thickening (see Pushouts
of Spaces, Lemma [6.7). Hence by Pushouts of Spaces, Lemma we find an
object Ey: € D(Ox,,) together with isomorphisms L(Xy — Xy/)*Ey, — Ey and
L(Xz — Xy/)*Ey: — Ez compatible with a. Clearly, if we show that Ey/ is
Y’-perfect, then we are done, because property (2) of Lemma is a property on
points (and Y and Y’ have the same points). This follows from More on Morphisms
of Spaces, Lemma [54.4 O

Lemma 16.10. In Situation assume that S is a locally Noetherian scheme
and B — S is locally of finite presentation. Let k be a finite type field over S and let
zo = (Spec(k), go, Eo) be an object of X = Complevesy,p over k. Then the spaces
TFx bz, ond INfliFx i z,) (Artin's Azioms, Section@) are finite dimensional.
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Proof. Observe that by Lemma our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section In particular X satisfies (RS). Hence
all associated predeformation categories are deformation categories (Artin’s Ax-
ioms, Lemma and the statement makes sense.

In this paragraph we show that we can reduce to the case B = Spec(k). Set
Xo = Spec(k) x4,,5 X and denote Xy = Compleresy, - In Remark we have
seen that Aj is the 2-fibre product of X with Spec(k) over B as categories fibred
in groupoids over (Sch/S)¢pps. Thus by Artin’s Axioms, Lemma we reduce
to proving that B, Spec(k), and Xy have finite dimensional tangent spaces and
infinitesimal automorphism spaces. The tangent space of B and Spec(k) are finite
dimensional by Artin’s Axioms, Lemma [8.1]and of course these have vanishing Inf.
Thus it suffices to deal with Aj,.

Let k[e] be the dual numbers over k. Let Spec(k[e]) — B be the composition of go :
Spec(k) — B and the morphism Spec(k[e]) — Spec(k) coming from the inclusion
k — kle]. Set X = Spec(k) xp X and X. = Spec(k[e]) xp X. Observe that X, is a
first order thickening of X, flat over the first order thickening Spec(k) — Spec(kle]).
Observe that Xy and X, give rise to canonically equivalent small étale topoi, see
More on Morphisms of Spaces, Section[9} By More on Morphisms of Spaces, Lemma
we see that T'Fx, k.« is the set of isomorphism classes of lifts of Ey to X, in
the sense of Deformation Theory, Lemma We conclude that

TFxy kw0 = EXt}DXD (EOa EO)

Here we have used the identification ek[e] = k of k[e]-modules. Using Deformation
Theory, Lemma [16.7] once more we see that there is a surjection

Inf(Fa 00) < Exto, (Eo, Eo)

of k-vector spaces. As Ey is pseudo-coherent it lies in D, ,(Ox,) by Derived
Categories of Spaces, Lemma Since FEjy locally has finite tor dimension and
Xy is quasi-compact we see Fy € D%Oh((’)xo). Thus the Exts above are finite
dimensional k-vector spaces by Derived Categories of Spaces, Lemma 8.4 [

Lemma 16.11. In Situation E assume B = S is locally Noetherian. Then
strong formal effectiveness in the sense of Artin’s Azioms, Remark [20.3 holds for
p : Complezesy ;g — (Sch/S) ppy-

Proof. Let (R,) be an inverse system of S-algebras with surjective transition maps
whose kernels are locally nilpotent. Set R = lim R,,. Let (&,) be a system of objects
of Complezesy p lying over (Spec(Ry,)). We have to show () is effective, i.e., there
exists an object & of Complezesy,p lying over Spec(R).

Write Xp = Spec(R) xs X and X,, = Spec(R,) xs X. Of course X,, is the base
change of Xz by R — R,. Since S = B, we see that &, corresponds simply
to an R,-perfect object E,, € D(Ox, ) satisfying condition (2) of Lemma In
particular E), is pseudo-coherent. The isomorphisms &, 11|spec(r,) = &n correspond
to isomorphisms L(X,, = X,,+1)*En+1 — Ey,. Therefore by Flatness on Spaces,
Theorem [13.6] we find a pseudo-coherent object E of D(Ox,,) with E,, equal to the
derived pullback of E for all n compatible with the transition isomorphisms.
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Observe that (R,Ker(R — Ry)) is a henselian pair, see More on Algebra, Lemma
In particular, Ker(R — R;) is contained in the Jacobson radical of R. Then
we may apply More on Morphisms of Spaces, Lemma[54.5]to see that E is R-perfect.

Finally, we have to check condition (2) of Lemma [16.2} By Lemma the set of
points t of Spec(R) where the negative self-exts of E; vanish is an open. Since this
condition is true in V(Ker(R — R;)) and since Ker(R — R;) is contained in the
Jacobson radical of R we conclude it holds for all points. (I

Theorem 16.12 (Algebraicity of moduli of complexes on a proper morphism). Let
S be a scheme. Let f: X — B be morphism of algebraic spaces over S. Assume
that f is proper, flat, and of finite presentation. Then Complexesx g is an algebraic
stack over S.

Proof. Set X = Complezesy,p. We have seen that & is a stack in groupoids over
(Sch/S) ¢pps with diagonal representable by algebraic spaces (Lemmas and
16.5)). Hence it suffices to find a scheme W and a surjective and smooth morphism
W — X.

Let B’ be a scheme and let B’ — B be a surjective étale morphism. Set X' =
B’ xp X and denote f': X' — B’ the projection. Then X’ = Complezesy., g/ is
equal to the 2-fibre product of X with the category fibred in sets associated to B’
over the category fibred in sets associated to B (Remark [16.7). By the material in
Algebraic Stacks, Section [10] the morphism X’/ — X is surjective and étale. Hence
it suffices to prove the result for X’. In other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section Thus we may assume S = B.

Assume S = B. Choose an affine open covering S = |J U;. Denote X; the restriction
of X to (Sch/U;)spps. If we can find schemes W; over U; and surjective smooth
morphisms W; — X;, then we set W = [[W; and we obtain a surjective smooth
morphism W — X. Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(A). Write A = colim A; as a filtered colimit
with each A; of finite type over Z. For some i we can find a morphism of algebraic
spaces X; — Spec(A;) which is proper, flat, of finite presentation and whose base
change to A is X. See Limits of Spaces, Lemmas and[6.13] If we show that
Complezesx, /spec(a,) 15 an algebraic stack, then it follows by base change (Remark
and Algebraic Stacks, Section that X is an algebraic stack. Thus we may
assume that A is a finite type Z-algebra.

Assume S = B = Spec(A) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma[17.1]to conclude that
X is an algebraic stack. Note that A is a G-ring, see More on Algebra, Proposition
Hence all local rings of S are G-rings. Thus (5) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section[I4 We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas
[16.6] [16.8] [16.9] [16.10] Condition (3) follows from Lemma Condition (1) is
Lemma

It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma We have already seen that & has diagonal rep-
resentable by algebraic spaces, has (RS*), and is limit preserving (see lemmas used

[Lie06a]
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above). Hence we only need to see that X’ satisfies the strong formal effectiveness
formulated in Artin’s Axioms, Lemma [20.3] This follows from Lemma [16.11] and
the proof is complete.
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