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1. Introduction

05X5 As initially conceived, the purpose of this chapter was to write about Quot and
Hilbert functors and to prove that these are algebraic spaces provided certain tech-
nical conditions are satisfied. This material, in the setting of schemes, is covered in
Grothendieck’s lectures in the séminair Bourbaki, see [Gro95a], [Gro95b], [Gro95e],
[Gro95f], [Gro95c], and [Gro95d]. For projective schemes the Quot and Hilbert
schemes live inside Grassmannians of spaces of sections of suitable very ample in-
vertible sheaves, and this provides a method of construction for these schemes. Our
approach is different: we use Artin’s axioms to prove Quot and Hilb are algebraic
spaces.
Upon further consideration, it turned out to be more convenient for the development
of theory in the Stacks project, to start the discussion with the stack CohX/B of
coherent sheaves (with proper support over the base) as introduced in [Lie06b].
For us f : X → B is a morphism of algebraic spaces satisfying suitable technical
conditions, although this can be generalized (see below). Given modules F and
G on X, under suitably hypotheses, the functor T/B 7→ HomXT

(FT ,GT ) is an
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algebraic space Hom(F ,G) over B. See Section 3. The subfunctor Isom(F ,G) of
isomorphisms is shown to be an algebraic space in Section 4. This is used in the
next sections to show the diagonal of the stack CohX/B is representable. We prove
CohX/B is an algebraic stack in Section 5 when X → B is flat and in Section 6 in
general. Please see the introduction of this section for pointers to the literature.
Having proved this, it is rather straightforward to prove that QuotF/X/B , HilbX/B ,
and PicX/B are algebraic spaces and that PicX/B is an algebraic stack. See Sections
8, 9, 11, and 10.
In the usual manner we deduce that the functor MorB(Z,X) of relative morphisms
is an algebraic space (under suitable hypotheses) in Section 12.
In Section 13 we prove that the stack in groupoids

Spaces′
fp,flat,proper

parametrizing flat families of proper algebraic spaces satisfies all of Artin’s axioms
(including openness of versality) except for formal effectiveness. We’ve chosen the
very awkward notation for this stack intentionally, because the reader should be
carefull in using its properties.
In Section 14 we prove that the stack Polarized parametrizing flat families of po-
larized proper algebraic spaces is an algebraic stack. Because of our work on flat
families of proper algebraic spaces, this comes down to proving formal effective-
ness for polarized schemes which is often known as Grothendieck’s algebraization
theorem.
In Section 15 we prove that the stack Curves parametrizing families of curves is
algebraic.
In Section 16 we study moduli of complexes on a proper morphism and we obtain
an algebraic stack ComplexesX/B . The idea of the statement and the proof are taken
from [Lie06a].
What is not in this chapter? There is almost no discussion of the properties the
resulting moduli spaces and moduli stacks possess (beyond their algebraicity); to
read about this we refer to Moduli Stacks, Section 1. In most of the results dis-
cussed, we can generalize the constructions by considering a morphism X → B of
algebraic stacks instead of a morphism X → B of algebraic space. We will discuss
this (insert future reference here). In the case of Hilbert spaces there is a more
general notion of “Hilbert stacks” which we will discuss in a separate chapter, see
(insert future reference here).

2. Conventions

05X6 We have intentionally placed this chapter, as well as the chapters “Examples of
Stacks”, “Sheaves on Algebraic Stacks”, “Criteria for Representability”, and “Artin’s
Axioms” before the general development of the theory of algebraic stacks. The rea-
son for this is that starting with the next chapter (see Properties of Stacks, Section
2) we will no longer distinguish between a scheme and the algebraic stack it gives
rise to. Thus our language will become more flexible and easier for a human to
parse, but also less precise. These first few chapters, including the initial chap-
ter “Algebraic Stacks”, lay the groundwork that later allow us to ignore some of
the very technical distinctions between different ways of thinking about algebraic
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stacks. But especially in the chapters “Artin’s Axioms” and “Criteria of Repre-
sentability” we need to be very precise about what objects exactly we are working
with, as we are trying to show that certain constructions produce algebraic stacks
or algebraic spaces.

Unfortunately, this means that some of the notation, conventions and terminology
is awkward and may seem backwards to the more experienced reader. We hope the
reader will forgive us!

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. The Hom functor

08JS In this section we study the functor of homomorphisms defined below.

Situation 3.1.08JT Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F , G be quasi-coherent OX -modules. For any scheme T over
B we will denote FT and GT the base changes of F and G to T , in other words,
the pullbacks via the projection morphism XT = X ×B T → X. We consider the
functor

(3.1.1)08JU Hom(F ,G) : (Sch/B)opp −→ Sets, T −→ HomOXT
(FT ,GT )

In Situation 3.1 we sometimes think of Hom(F ,G) as a functor (Sch/S)opp → Sets
endowed with a morphism Hom(F ,G) → B. Namely, if T is a scheme over S,
then an element of Hom(F ,G)(T ) consists of a pair (h, u), where h is a morphism
h : T → B and u : FT → GT is an OXT

-module map where XT = T ×h,B X and
FT and GT are the pullbacks to XT . In particular, when we say that Hom(F ,G) is
an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is
an algebraic space.

Lemma 3.2.08JV In Situation 3.1 the functor Hom(F ,G) satisfies the sheaf property
for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and Fi = uTi

and Gi = GTi
. Note that {Xi → XT }i∈I is an fpqc covering

of XT , see Topologies on Spaces, Lemma 9.3. Thus a family of maps ui : Fi → Gi

such that ui and uj restrict to the same map on XTi×T Tj
comes from a unique map

u : FT → GT by descent (Descent on Spaces, Proposition 4.1). □

Sanity check: Hom sheaf plays the same role among algebraic spaces over S.

Lemma 3.3.0D3S In Situation 3.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,Hom(F ,G)) = {(h, u) | h : T → B, u : FT → GT }

where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

https://stacks.math.columbia.edu/tag/08JT
https://stacks.math.columbia.edu/tag/08JV
https://stacks.math.columbia.edu/tag/0D3S
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Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let
R = U ×T U with projections t, s : R→ U .
Let v : T → Hom(F ,G) be a natural transformation. Then v(p) corresponds to a
pair (hU , uU ) over U . As v is a transformation of functors we see that the pullbacks
of (hU , uU ) by s and t agree. Since T = U/R (Spaces, Lemma 9.1), we obtain a
morphism h : T → B such that hU = h ◦ p. Then FU is the pullback of FT to XU

and similarly for GU . Hence uU descends to a OXT
-module map u : FT → GT by

Descent on Spaces, Proposition 4.1.
Conversely, let (h, u) be a pair over T . Then we get a natural transformation
v : T → Hom(F ,G) by sending a morphism a : T ′ → T where T ′ is a scheme to
(h ◦a, a∗u). We omit the verification that the construction of this and the previous
paragraph are mutually inverse. □

Remark 3.4.08JW In Situation 3.1 let B′ → B be a morphism of algebraic spaces over
S. Set X ′ = X ×B B′ and denote F ′, G′ the pullback of F , G to X ′. Then we
obtain a functor Hom(F ′,G′) : (Sch/B′)opp → Sets associated to the base change
f ′ : X ′ → B′. For a scheme T over B′ it is clear that we have

Hom(F ′,G′)(T ) = Hom(F ,G)(T )
where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.

Lemma 3.5.08K3 In Situation 3.1 let {Xi → X}i∈I be an fppf covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. Similarly define Gi and Gijk. For every scheme T
over B the diagram

Hom(F ,G)(T ) // ∏
i Hom(Fi,Gi)(T )

pr∗
0 //

pr∗
1

//
∏

i,j,k Hom(Fijk,Gijk)(T )

presents the first arrow as the equalizer of the other two.

Proof. Let ui : Fi,T → Gi,T be an element in the equalizer of pr∗
0 and pr∗

1. Since
the base change of an fppf covering is an fppf covering (Topologies on Spaces,
Lemma 7.3) we see that {Xi,T → XT }i∈I and {Xijk,T → Xi,T ×XT

Xj,T } are fppf
coverings. Applying Descent on Spaces, Proposition 4.1 we first conclude that ui

and uj restrict to the same morphism over Xi,T ×XT
Xj,T , whereupon a second

application shows that there is a unique morphism u : FT → GT restricting to ui

for each i. This finishes the proof. □

Lemma 3.6.08K4 In Situation 3.1. If F is of finite presentation and f is quasi-compact
and quasi-separated, then Hom(F ,G) is limit preserving.

Proof. Let T = limi∈I Ti be a directed limit of affine B-schemes. We have to show
that

Hom(F ,G)(T ) = colim Hom(F ,G)(Ti)
Pick 0 ∈ I. We may replace B by T0, X by XT0 , F by FT0 , G by GT0 , and I by
{i ∈ I | i ≥ 0}. See Remark 3.4. Thus we may assume B = Spec(R) is affine.
When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective
étale morphism U → X where U is an affine scheme (Properties of Spaces, Lemma

https://stacks.math.columbia.edu/tag/08JW
https://stacks.math.columbia.edu/tag/08K3
https://stacks.math.columbia.edu/tag/08K4
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6.3). Since X is quasi-separated, the scheme U ×X U is quasi-compact and we may
choose a surjective étale morphism V → U ×X U where V is an affine scheme.
Applying Lemma 3.5 we see that Hom(F ,G) is the equalizer of two maps between

Hom(F|U ,G|U ) and Hom(F|V ,G|V )

This reduces us to the case that X is affine.

In the affine case the statement of the lemma reduces to the following problem:
Given a ring map R → A, two A-modules M , N and a directed system of R-
algebras C = colimCi. When is it true that the map

colim HomA⊗RCi
(M ⊗R Ci, N ⊗R Ci) −→ HomA⊗RC(M ⊗R C,N ⊗R C)

is bijective? By Algebra, Lemma 127.5 this holds if M⊗RC is of finite presentation
over A⊗R C, i.e., when M is of finite presentation over A. □

Lemma 3.7.08K5 Let S be a scheme. Let B be an algebraic space over S. Let i : X ′ →
X be a closed immersion of algebraic spaces over B. Let F be a quasi-coherent
OX-module and let G′ be a quasi-coherent OX′-module. Then

Hom(F , i∗G′) = Hom(i∗F ,G′)

as functors on (Sch/B).

Proof. Let g : T → B be a morphism where T is a scheme. Denote iT : X ′
T → XT

the base change of i. Denote h : XT → X and h′ : X ′
T → X ′ the projections.

Observe that (h′)∗i∗F = i∗Th
∗F . As a closed immersion is affine (Morphisms of

Spaces, Lemma 20.6) we have h∗i∗G = iT,∗(h′)∗G by Cohomology of Spaces, Lemma
11.1. Thus we have

Hom(F , i∗G′)(T ) = HomOXT
(h∗F , h∗i∗G′)

= HomOXT
(h∗F , iT,∗(h′)∗G)

= HomOX′
T

(i∗Th∗F , (h′)∗G)

= HomOX′
T

((h′)∗i∗F , (h′)∗G)

= Hom(i∗F ,G′)(T )

as desired. The middle equality follows from the adjointness of the functors iT,∗
and i∗T . □

Lemma 3.8.08JX Let S be a scheme. Let B be an algebraic space over S. Let K be a
pseudo-coherent object of D(OB).

(1) If for all g : T → B in (Sch/B) the cohomology sheaf H−1(Lg∗K) is zero,
then the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T,H0(Lg∗K))

is an algebraic space affine and of finite presentation over B.
(2) If for all g : T → B in (Sch/B) the cohomology sheaves Hi(Lg∗K) are zero

for i < 0, then K is perfect, K locally has tor amplitude in [0, b], and the
functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T, Lg∗K)

is an algebraic space affine and of finite presentation over B.

https://stacks.math.columbia.edu/tag/08K5
https://stacks.math.columbia.edu/tag/08JX
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Proof. Under the assumptions of (2) we have H0(T, Lg∗K) = H0(T,H0(Lg∗K)).
Let us prove that the rule T 7→ H0(T,H0(Lg∗K)) satisfies the sheaf property for
the fppf topology. To do this assume we have an fppf covering {hi : Ti → T} of
a scheme g : T → B over B. Set gi = g ◦ hi. Note that since hi is flat, we have
Lh∗

i = h∗
i and h∗

i commutes with taking cohomology. Hence

H0(Ti, H
0(Lg∗

i K)) = H0(Ti, H
0(h∗

iLg
∗K)) = H0(T, h∗

iH
0(Lg∗K))

Similarly for the pullback to Ti ×T Tj . Since Lg∗K is a pseudo-coherent complex
on T (Cohomology on Sites, Lemma 45.3) the cohomology sheaf F = H0(Lg∗K) is
quasi-coherent (Derived Categories of Spaces, Lemma 13.6). Hence by Descent on
Spaces, Proposition 4.1 we see that

H0(T,F) = Ker(
∏

H0(Ti, h
∗
iF)→

∏
H0(Ti ×T Tj , (Ti ×T Tj → T )∗F))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf
coverings. This means we may apply Bootstrap, Lemma 11.2 to see it suffices to
prove the representability étale locally on B. Moreover, we may check whether the
end result is affine and of finite presentation étale locally on B, see Morphisms of
Spaces, Lemmas 20.3 and 28.4. Hence we may assume that B is an affine scheme.

Assume B = Spec(A) is an affine scheme. By the results of Derived Categories of
Spaces, Lemmas 13.6, 4.2, and 13.2 we deduce that in the rest of the proof we may
think of K as a perfect object of the derived category of complexes of modules on
B in the Zariski topology. By Derived Categories of Schemes, Lemmas 10.1, 3.5,
and 10.2 we can find a pseudo-coherent complex M• of A-modules such that K
is the corresponding object of D(OB). Our assumption on pullbacks implies that
M•⊗L

A κ(p) has vanishing H−1 for all primes p ⊂ A. By More on Algebra, Lemma
76.4 we can write

M• = τ≥0M
• ⊕ τ≤−1M

•

with τ≥0M
• perfect with Tor amplitude in [0, b] for some b ≥ 0 (here we also have

used More on Algebra, Lemmas 74.12 and 66.16). Note that in case (2) we also see
that τ≤−1M

• = 0 in D(A) whence M• and K are perfect with tor amplitude in
[0, b]. For any B-scheme g : T → B we have

H0(T,H0(Lg∗K)) = H0(T,H0(Lg∗τ≥0K))

(by the dual of Derived Categories, Lemma 16.1) hence we may replace K by τ≥0K
and correspondingly M• by τ≥0M

•. In other words, we may assume M• has tor
amplitude in [0, b].

Assume M• has tor amplitude in [0, b]. We may assume M• is a bounded above
complex of finite free A-modules (by our definition of pseudo-coherent complexes,
see More on Algebra, Definition 64.1 and the discussion following the definition).
By More on Algebra, Lemma 66.2 we see that M = Coker(M−1 → M0) is flat.
By Algebra, Lemma 78.2 we see that M is finite locally free. Hence M• is quasi-
isomorphic to

M →M1 →M2 → . . .→Md → 0 . . .
Note that this is a K-flat complex (Cohomology, Lemma 26.9), hence derived pull-
back of K via a morphism T → B is computed by the complex

g∗M̃ → g∗M̃1 → . . .
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Thus it suffices to show that the functor

(g : T → B) 7−→ Ker(Γ(T, g∗M̃)→ Γ(T, g∗(M̃1))

is representable by an affine scheme of finite presentation over B.

We may still replace B by the members of an affine open covering in order to prove
this last statement. Hence we may assume that M is finite free (recall that M1 is
finite free to begin with). Write M = A⊕n and M1 = A⊕m. Let the map M →M1

be given by the m × n matrix (aij) with coefficients in A. Then M̃ = O⊕n
B and

M̃1 = O⊕m
B . Thus the functor above is equal to the functor

(g : T → B) 7−→ {(f1, . . . , fn) ∈ Γ(T,OT ) |
∑

g♯(aij)fi = 0, j = 1, . . . ,m}

Clearly this is representable by the affine scheme

Spec
(
A[x1, . . . , xn]/(

∑
aijxi; j = 1, . . . ,m)

)
and the lemma has been proved. □

The functor Hom(F ,G) is representable in a number of situations. All of our results
will be based on the following basic case. The proof of this lemma as given below
is in some sense the natural generalization to the proof of [DG67, III, Cor 7.7.8].

Lemma 3.9.08JY In Situation 3.1 assume that
(1) B is a Noetherian algebraic space,
(2) f is locally of finite type and quasi-separated,
(3) F is a finite type OX-module, and
(4) G is a finite type OX-module, flat over B, with support proper over B.

Then the functor Hom(F ,G) is an algebraic space affine and of finite presentation
over B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → F by a perfect complex P of
the triple (X,F ,−1), see Derived Categories of Spaces, Definition 14.1 and Theorem
14.7). Then the induced map

HomOX
(F ,G) −→ HomD(OX )(P,G)

is an isomorphism because P → F induces an isomorphism H0(P ) → F and
Hi(P ) = 0 for i > 0. Moreover, for any morphism g : T → B denote h : XT =
T ×B X → X the projection and set PT = Lh∗P . Then it is equally true that

HomOXT
(FT ,GT ) −→ HomD(OXT

)(PT ,GT )

is an isomorphism, as PT = Lh∗P → Lh∗F → FT induces an isomorphism
H0(PT ) → FT (because h∗ is right exact and Hi(P ) = 0 for i > 0). Thus it
suffices to prove the result for the functor

T 7−→ HomD(OXT
)(PT ,GT ).

By the Leray spectral sequence (see Cohomology on Sites, Remark 14.4) we have

HomD(OXT
)(PT ,GT ) = H0(XT , RHom(PT ,GT )) = H0(T,RfT,∗RHom(PT ,GT ))

https://stacks.math.columbia.edu/tag/08JY
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where fT : XT → T is the base change of f . By Derived Categories of Spaces,
Lemma 21.5 we have

RfT,∗RHom(PT ,GT ) = Lg∗Rf∗RHom(P,G).

By Derived Categories of Spaces, Lemma 22.3 the object K = Rf∗RHom(P,G)
of D(OB) is perfect. This means we can apply Lemma 3.8 as long as we can
prove that the cohomology sheaf Hi(Lg∗K) is 0 for all i < 0 and g : T →
B as above. This is clear from the last displayed formula as the cohomology
sheaves of RfT,∗RHom(PT ,GT ) are zero in negative degrees due to the fact that
RHom(PT ,GT ) has vanishing cohomology sheaves in negative degrees as PT is per-
fect with vanishing cohomology sheaves in positive degrees. □

Here is a cheap consequence of Lemma 3.9.

Proposition 3.10.08K6 In Situation 3.1 assume that
(1) f is of finite presentation, and
(2) G is a finitely presented OX-module, flat over B, with support proper over

B.
Then the functor Hom(F ,G) is an algebraic space affine over B. If F is of finite
presentation, then Hom(F ,G) is of finite presentation over B.

Proof. By Lemma 3.2 the functor Hom(F ,G) satisfies the sheaf property for fppf
coverings. This mean we may1 apply Bootstrap, Lemma 11.1 to check the repre-
sentability étale locally on B. Moreover, we may check whether the end result is
affine or of finite presentation étale locally on B, see Morphisms of Spaces, Lemmas
20.3 and 28.4. Hence we may assume that B is an affine scheme.

Assume B is an affine scheme. As f is of finite presentation, it follows X is quasi-
compact and quasi-separated. Thus we can write F = colimFi as a filtered colimit
of OX -modules of finite presentation (Limits of Spaces, Lemma 9.1). It is clear that

Hom(F ,G) = lim Hom(Fi,G)

Hence if we can show that each Hom(Fi,G) is representable by an affine scheme,
then we see that the same thing holds for Hom(F ,G). Use the material in Limits,
Section 2 and Limits of Spaces, Section 4. Thus we may assume that F is of finite
presentation.

Say B = Spec(R). Write R = colimRi with each Ri a finite type Z-algebra. Set
Bi = Spec(Ri). By the results of Limits of Spaces, Lemmas 7.1 and 7.2 we can find
an i, a morphism of algebraic spaces Xi → Bi, and finitely presented OXi-modules
Fi and Gi such that the base change of (Xi,Fi,Gi) to B recovers (X,F ,G). By
Limits of Spaces, Lemma 6.12 we may, after increasing i, assume that Gi is flat
over Bi. By Limits of Spaces, Lemma 12.3 we may similarly assume the scheme
theoretic support of Gi is proper over Bi. At this point we can apply Lemma 3.9
to see that Hi = Hom(Fi,Gi) is an algebraic space affine of finite presentation over
Bi. Pulling back to B (using Remark 3.4) we see that Hi ×Bi B = Hom(F ,G) and
we win. □

1We omit the verification of the set theoretical condition (3) of the referenced lemma.

https://stacks.math.columbia.edu/tag/08K6
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4. The Isom functor

08K7 In Situation 3.1 we can consider the subfunctor
Isom(F ,G) ⊂ Hom(F ,G)

whose value on a scheme T over B is the set of invertible OXT
-homomorphisms

u : FT → GT .
We sometimes think of Isom(F ,G) as a functor (Sch/S)opp → Sets endowed with
a morphism Isom(F ,G) → B. Namely, if T is a scheme over S, then an element
of Isom(F ,G)(T ) consists of a pair (h, u), where h is a morphism h : T → B and
u : FT → GT is an OXT

-module isomorphism where XT = T ×h,B X and FT and
GT are the pullbacks to XT . In particular, when we say that Isom(F ,G) is an
algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is an
algebraic space.

Lemma 4.1.08K8 In Situation 3.1 the functor Isom(F ,G) satisfies the sheaf property
for the fpqc topology.

Proof. We have already seen that Hom(F ,G) satisfies the sheaf property. Hence
it remains to show the following: Given an fpqc covering {Ti → T}i∈I of schemes
over B and an OXT

-linear map u : FT → GT such that uTi
is an isomorphism for

all i, then u is an isomorphism. Since {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 9.3, this follows from Descent on Spaces, Proposition
4.1. □

Sanity check: Isom sheaf plays the same role among algebraic spaces over S.

Lemma 4.2.0D3T In Situation 3.1. Let T be an algebraic space over S. We have
MorSh((Sch/S)fppf )(T, Isom(F ,G)) = {(h, u) | h : T → B, u : FT → GT isomorphism}
where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the equality in Lemma 3.3. We omit the verification
that these subsets correspond under the identification given in the proof of that
lemma. □

Proposition 4.3.08K9 In Situation 3.1 assume that
(1) f is of finite presentation, and
(2) F and G are finitely presented OX-modules, flat over B, with support proper

over B.
Then the functor Isom(F ,G) is an algebraic space affine of finite presentation over
B.

Proof. We will use the abbreviations H = Hom(F ,G), I = Hom(F ,F), H ′ =
Hom(G,F), and I ′ = Hom(G,G). By Proposition 3.10 the functors H, I, H ′, I ′

are algebraic spaces and the morphisms H → B, I → B, H ′ → B, and I ′ → B are
affine and of finite presentation. The composition of maps gives a morphism

c : H ′ ×B H −→ I ×B I ′, (u′, u) 7−→ (u ◦ u′, u′ ◦ u)
of algebraic spaces over B. Since I ×B I ′ → B is separated, the section σ : B →
I ×B I ′ corresponding to (idF , idG) is a closed immersion (Morphisms of Spaces,

https://stacks.math.columbia.edu/tag/08K8
https://stacks.math.columbia.edu/tag/0D3T
https://stacks.math.columbia.edu/tag/08K9
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Lemma 4.7). Moreover, σ is of finite presentation (Morphisms of Spaces, Lemma
28.9). Hence

Isom(F ,G) = (H ′ ×B H)×c,I×BI′,σ B

is an algebraic space affine of finite presentation over B as well. Some details
omitted. □

5. The stack of coherent sheaves

08KA In this section we prove that the stack of coherent sheaves on X/B is algebraic
under suitable hypotheses. This is a special case of [Lie06b, Theorem 2.1.1] which
treats the case of the stack of coherent sheaves on an Artin stack over a base.

Situation 5.1.08KB Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. We denote CohX/B the
category whose objects are triples (T, g,F) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X
(3) F is a quasi-coherent OXT

-module of finite presentation, flat over T , with
support proper over T .

A morphism (T, g,F)→ (T ′, g′,F ′) is given by a pair (h, φ) where
(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) φ : (h′)∗F ′ → F is an isomorphism of OXT

-modules where h′ : XT → XT ′

is the base change of h.

Thus CohX/B is a category and the rule

p : CohX/B −→ (Sch/S)fppf , (T, g,F) 7−→ T

is a functor. For a scheme T over S we denote CohX/B,T the fibre category of p
over T . These fibre categories are groupoids.

Lemma 5.2.08W5 In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is fibred in
groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 35.1. Given an object (T ′, g′,F ′) of CohX/B and a morphism
h : T → T ′ of schemes over S we can set g = h ◦ g′ and F = (h′)∗F ′ where
h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a morphism
(T, g,F)→ (T ′, g′,F ′) of CohX/B lying over h. This proves (1). For (2) suppose we
are given morphisms

(h1, φ1) : (T1, g1,F1)→ (T, g,F) and (h2, φ2) : (T2, g2,F2)→ (T, g,F)

of CohX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let φ
be the composition

(h′)∗F2
(h′)∗φ−1

2−−−−−−→ (h′)∗(h2)∗F = (h1)∗F φ1−→ F1

to obtain the morphism (h, φ) : (T1, g1,F1)→ (T2, g2,F2) that witnesses the truth
of condition (2). □

Lemma 5.3.08W6 In Situation 5.1. Denote X = CohX/B. Then ∆ : X → X × X is
representable by algebraic spaces.

https://stacks.math.columbia.edu/tag/08KB
https://stacks.math.columbia.edu/tag/08W5
https://stacks.math.columbia.edu/tag/08W6
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Proof. Consider two objects x = (T, g,F) and y = (T, h,G) of X over a scheme
T . We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic
Stacks, Lemma 10.11. If for a : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic
in the fibre category XT ′ , then g ◦ a = h ◦ a. Hence there is a transformation of
presheaves

IsomX (x, y) −→ Equalizer(g, h)
Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T by this equalizer and the sheaves F and G by their pullbacks.
Thus we may assume g = h. In this case we have IsomX (x, y) = Isom(F ,G) and
the result follows from Proposition 4.3. □

Lemma 5.4.08KC In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is a stack
in groupoids.

Proof. To prove that CohX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on
Isom follows from Lemma 5.3, see Algebraic Stacks, Lemma 10.11. Let us prove
the statement on descent data. Suppose that {ai : Ti → T} is an fppf covering
of schemes over S. Let (ξi, φij) be a descent datum for {Ti → T} with values in
CohX/B . For each i we can write ξi = (Ti, gi,Fi). Denote pr0 : Ti ×T Tj → Ti

and pr1 : Ti ×T Tj → Tj the projections. The condition that ξi|Ti×T Tj
= ξj |Ti×T Tj

implies in particular that gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism
g : T → B such that gi = g ◦ ai, see Descent on Spaces, Lemma 7.2. Denote
XT = T ×g,B X. Set Xi = XTi

= Ti ×gi,B X = Ti ×ai,T XT and

Xij = XTi
×XT

XTj
= Xi ×XT

Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi,Fi)
by pr0 : Ti×T Tj → Ti is given by (Ti×T Tj , gi ◦pr0,pr∗

iFi). Hence a descent datum
for {Ti → T} in CohX/B is given by the objects (Ti, g ◦ ai,Fi) and for each pair i, j
an isomorphism of OXij

-modules

φij : pr∗
iFi −→ pr∗

jFj

satisfying the cocycle condition over (the pullback of X to) Ti ×T Tj ×T Tk. Ok,
and now we simply use that {Xi → XT } is an fppf covering so that we can view
(Fi, φij) as a descent datum for this covering. By Descent on Spaces, Proposition
4.1 this descent datum is effective and we obtain a quasi-coherent sheaf F over
XT restricting to Fi on Xi. By Morphisms of Spaces, Lemma 31.5 we see that
F is flat over T and Descent on Spaces, Lemma 6.2 guarantees that Q is of finite
presentation as an OXT

-module. Finally, by Descent on Spaces, Lemma 11.19 we
see that the scheme theoretic support of F is proper over T as we’ve assumed the
scheme theoretic support of Fi is proper over Ti (note that taking scheme theoretic
support commutes with flat base change by Morphisms of Spaces, Lemma 30.10).
In this way we obtain our desired object over T . □

Remark 5.5.08LP In Situation 5.1 the rule (T, g,F) 7→ (T, g) defines a 1-morphism

CohX/B −→ SB

of stacks in groupoids (see Lemma 5.4, Algebraic Stacks, Section 7, and Examples
of Stacks, Section 10). Let B′ → B be a morphism of algebraic spaces over S. Let
SB′ → SB be the associated 1-morphism of stacks fibred in sets. Set X ′ = X×BB

′.

https://stacks.math.columbia.edu/tag/08KC
https://stacks.math.columbia.edu/tag/08LP
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We obtain a stack in groupoids CohX′/B′ → (Sch/S)fppf associated to the base
change f ′ : X ′ → B′. In this situation the diagram

CohX′/B′ //

��

CohX/B

��
SB′ // SB

or in
another
notation

CohX′/B′ //

��

CohX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 5.6.08KD In Situation 5.1 assume that B → S is locally of finite presentation.
Then p : CohX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms, Definition
11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an
object (T, h,F) of CohX/B,T the object h of B(T ) gives us a commutative diagram
of fibre categories

colim CohX/B,Ti
//

��

CohX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assumed
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
3.11 that the bottom horizontal arrow is an equivalence. This means that we may
assume T = limTi be a filtered limit of affine schemes over B. Denote gi : Ti → B
and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X and XT =
T ×g,B X. Observe that XT = colimXi and that the algebraic spaces Xi and XT

are quasi-separated and quasi-compact (as they are of finite presentation over the
affines Ti and T ). By Limits of Spaces, Lemma 7.2 we see that

colim FP(Xi) = FP(XT ).

where FP(W ) is short hand for the category of finitely presented OW -modules. The
results of Limits of Spaces, Lemmas 6.12 and 12.3 tell us the same thing is true if
we replace FP(Xi) and FP(XT ) by the full subcategory of objects flat over Ti and
T with scheme theoretic support proper over Ti and T . This proves the lemma. □

Lemma 5.7.08LQ In Situation 5.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre
categories

CohX/B,Y ′ −→ CohX/B,Y ×CohX/B,Z
CohX/B,Z′

is an equivalence.

https://stacks.math.columbia.edu/tag/08KD
https://stacks.math.columbia.edu/tag/08LQ
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Proof. Observe that the corresponding map
B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 6.1. Thus using the commutative
diagram

CohX/B,Y ′ //

��

CohX/B,Y ×CohX/B,Z
CohX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 5.5 we may
replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′. In this case
the statement follows from Pushouts of Spaces, Lemma 6.6. □

Lemma 5.8.08W7 Let
X

��

i
// X ′

��
T // T ′

be a cartesian square of algebraic spaces where T → T ′ is a first order thickening.
Let F ′ be an OX′-module flat over T ′. Set F = i∗F ′. The following are equivalent

(1) F ′ is a quasi-coherent OX′-module of finite presentation,
(2) F ′ is an OX′-module of finite presentation,
(3) F is a quasi-coherent OX-module of finite presentation,
(4) F is an OX-module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiv-
alence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special
case of Deformation Theory, Lemma 11.3. □

Lemma 5.9.08W8 In Situation 5.1 assume that S is a locally Noetherian scheme and
B → S is locally of finite presentation. Let k be a finite type field over S and
let x0 = (Spec(k), g0,G0) be an object of X = CohX/B over k. Then the spaces
TFX ,k,x0 and Inf(FX ,k,x0) (Artin’s Axioms, Section 8) are finite dimensional.

Proof. Observe that by Lemma 5.7 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 21. In particular X satisfies (RS). Hence
all associated predeformation categories are deformation categories (Artin’s Ax-
ioms, Lemma 6.1) and the statement makes sense.
In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k)×g0,B X and denote X0 = CohX0/k. In Remark 5.5 we have seen that
X0 is the 2-fibre product of X with Spec(k) over B as categories fibred in groupoids
over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 8.2 we reduce to proving that
B, Spec(k), and X0 have finite dimensional tangent spaces and infinitesimal auto-
morphism spaces. The tangent space of B and Spec(k) are finite dimensional by
Artin’s Axioms, Lemma 8.1 and of course these have vanishing Inf. Thus it suffices
to deal with X0.
Let k[ϵ] be the dual numbers over k. Let Spec(k[ϵ])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ϵ]) → Spec(k) coming from the inclusion

https://stacks.math.columbia.edu/tag/08W7
https://stacks.math.columbia.edu/tag/08W8
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k → k[ϵ]. Set X0 = Spec(k)×B X and Xϵ = Spec(k[ϵ])×B X. Observe that Xϵ is a
first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ϵ]).
Unwinding the definitions and using Lemma 5.8 we see that TFX0,k,x0 is the set
of lifts of G0 to a flat module on Xϵ. By Deformation Theory, Lemma 12.1 we
conclude that

TFX0,k,x0 = Ext1
OX0

(G0,G0)
Here we have used the identification ϵk[ϵ] ∼= k of k[ϵ]-modules. Using Deformation
Theory, Lemma 12.1 once more we see that

Inf(FX ,k,x0) = Ext0
OX0

(G0,G0)

These spaces are finite dimensional over k as G0 has support proper over Spec(k).
Namely, X0 is of finite presentation over Spec(k), hence Noetherian. Since G0 is
of finite presentation it is a coherent OX0 -module. Thus we may apply Derived
Categories of Spaces, Lemma 8.4 to conclude the desired finiteness. □

Lemma 5.10.08W9 In Situation 5.1 assume that S is a locally Noetherian scheme and
that f : X → B is separated. Let X = CohX/B. Then the functor Artin’s Axioms,
Equation (9.3.1) is an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with
maximal ideal m whose residue field k is of finite type over S. We have to show
that the category of objects over A is equivalent to the category of formal objects
over A. Since we know this holds for the category SB fibred in sets associated to B
by Artin’s Axioms, Lemma 9.5, it suffices to prove this for those objects lying over
a given morphism Spec(A)→ B.
Set XA = Spec(A)×BX and Xn = Spec(A/mn)×BX. By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem 42.11) we see that the category
of coherent modules F on XA with support proper over Spec(A) is equivalent to the
category of systems (Fn) of coherent modules Fn on Xn with support proper over
Spec(A/mn). The equivalence sends F to the system (F ⊗AA/m

n). See discussion
in More on Morphisms of Spaces, Remark 42.12. To finish the proof of the lemma,
it suffices to show that F is flat over A if and only if all F ⊗A A/mn are flat over
A/mn. This follows from More on Morphisms of Spaces, Lemma 24.3. □

Lemma 5.11.08WA In Situation 5.1 assume that S is a locally Noetherian scheme,
S = B, and f : X → B is flat. Let X = CohX/B. Then we have openness of
versality for X (see Artin’s Axioms, Definition 13.1).

First proof. This proof is based on the criterion of Artin’s Axioms, Lemma 24.4.
Let U → S be of finite type morphism of schemes, x an object of X over U and
u0 ∈ U a finite type point such that x is versal at u0. After shrinking U we may
assume that u0 is a closed point (Morphisms, Lemma 16.1) and U = Spec(A) with
U → S mapping into an affine open Spec(Λ) of S. Let F be the coherent module
on XA = Spec(A)×S X flat over A corresponding to the given object x.
According to Deformation Theory, Lemma 12.1 we have an isomorphism of functors

Tx(M) = Ext1
XA

(F ,F ⊗A M)
and given any surjection A′ → A of Λ-algebras with square zero kernel I we have
an obstruction class

ξA′ ∈ Ext2
XA

(F ,F ⊗A I)

https://stacks.math.columbia.edu/tag/08W9
https://stacks.math.columbia.edu/tag/08WA
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This uses that for any A′ → A as above the base change XA′ = Spec(A′) ×B X
is flat over A′. Moreover, the construction of the obstruction class is functorial in
the surjection A′ → A (for fixed A) by Deformation Theory, Lemma 12.3. Apply
Derived Categories of Spaces, Lemma 23.3 to the computation of the Ext groups
Exti

XA
(F ,F ⊗AM) for i ≤ m with m = 2. We find a perfect object K ∈ D(A) and

functorial isomorphisms

Hi(K ⊗L
A M) −→ Exti

XA
(F ,F ⊗A M)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
24.2. Finally, condition (iv) of Artin’s Axioms, Lemma 24.3 holds by Deformation
Theory, Lemma 12.5. Thus Artin’s Axioms, Lemma 24.4 does indeed apply and
the lemma is proved. □

Second proof. This proof is based on Artin’s Axioms, Lemma 22.2. Conditions
(1), (2), and (3) of that lemma correspond to Lemmas 5.3, 5.7, and 5.6.

We have constructed an obstruction theory in the chapter on deformation theory.
Namely, given an S-algebra A and an object x of CohX/B over Spec(A) given by
F on XA we set Ox(M) = Ext2

XA
(F ,F ⊗A M) and if A′ → A is a surjection with

kernel I, then as obstruction element we take the element

ox(A′) = o(F ,F ⊗A I, 1) ∈ Ox(I) = Ext2
XA

(F ,F ⊗A I)

of Deformation Theory, Lemma 12.1. All properties of an obstruction theory as
defined in Artin’s Axioms, Definition 22.1 follow from this lemma except for func-
toriality of obstruction classes as formulated in condition (ii) of the definition. But
as stated in the footnote to assumption (4) of Artin’s Axioms, Lemma 22.2 it suf-
fices to check functoriality of obstruction classes for a fixed A which follows from
Deformation Theory, Lemma 12.3. Deformation Theory, Lemma 12.1 also tells us
that Tx(M) = Ext1

XA
(F ,F ⊗A M) for any A-module M .

To finish the proof it suffices to show that Tx(
∏
Mn) =

∏
Tx(Mn) andOx(

∏
Mn) =∏

Ox(M). Apply Derived Categories of Spaces, Lemma 23.3 to the computation
of the Ext groups Exti

XA
(F ,F ⊗A M) for i ≤ m with m = 2. We find a perfect

object K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
A M) −→ Exti

XA
(F ,F ⊗A M)

for i = 1, 2. A straightforward argument shows that

Hi(K ⊗L
A

∏
Mn) =

∏
Hi(K ⊗L

A Mn)

whenever K is a pseudo-coherent object of D(A). In fact, this property (for all i)
characterizes pseudo-coherent complexes, see More on Algebra, Lemma 65.5. □

Theorem 5.12 (Algebraicity of the stack of coherent sheaves; flat case).08WC Let S be
a scheme. Let f : X → B be a morphism of algebraic spaces over S. Assume that
f is of finite presentation, separated, and flat2. Then CohX/B is an algebraic stack
over S.

2This assumption is not necessary. See Section 6.

https://stacks.math.columbia.edu/tag/08WC
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Proof. Set X = CohX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 5.4 and 5.3).
Hence it suffices to find a schemeW and a surjective and smooth morphismW → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal to
the 2-fibre product of X with the category fibred in sets associated to B′ over the
category fibred in sets associated to B (Remark 5.5). By the material in Algebraic
Stacks, Section 10 the morphism X ′ → X is surjective and étale. Hence it suffices
to prove the result for X ′. In other words, we may assume B is a scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is of finite presentation, separated, and flat and whose
base change to Λ is X. See Limits of Spaces, Lemmas 7.1, 6.9, and 6.12. If we show
that CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark
5.5 and Algebraic Stacks, Section 19) that X is an algebraic stack. Thus we may
assume that Λ is a finite type Z-algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that
X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition
50.12. Hence all local rings of S are G-rings. Thus (5) holds. By Lemma 5.11 we
have that X satisfies openness of versality, hence (4) holds. To check (2) we have to
verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section 14. We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas
5.4, 5.6, 5.7, 5.9. Condition (3) follows from Lemma 5.10. Finally, condition (1) is
Lemma 5.3. This finishes the proof of the theorem. □

6. The stack of coherent sheaves in the non-flat case

08WB In Theorem 5.12 the assumption that f : X → B is flat is not necessary. In this
section we give a different proof which avoids the flatness assumption and avoids
checking openness of versality by using the results in Flatness on Spaces, Section
12 and Artin’s Axioms, Section 20.
For a different approach to this problem the reader may wish to consult [Art69]
and follow the method discussed in the papers [OS03], [Lie06b], [Ols05], [HR13],
[HR10], [Ryd11]. Some of these papers deal with the more general case of the stack
of coherent sheaves on an algebraic stack over an algebraic stack and others deal
with similar problems in the case of Hilbert stacks or Quot functors. Our strategy
will be to show algebraicity of some cases of Hilbert stacks and Quot functors as a
consequence of the algebraicity of the stack of coherent sheaves.

Theorem 6.1 (Algebraicity of the stack of coherent sheaves; general case).09DS Let S
be a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume that

https://stacks.math.columbia.edu/tag/09DS
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f is of finite presentation and separated. Then CohX/B is an algebraic stack over
S.

Proof. Only the last step of the proof is different from the proof in the flat case,
but we repeat all the arguments here to make sure everything works.

Set X = CohX/B . We have seen that X is a stack in groupoids over (Sch/S)fppf

with diagonal representable by algebraic spaces (Lemmas 5.4 and 5.3). Hence it
suffices to find a scheme W and a surjective and smooth morphism W → X .

Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal to
the 2-fibre product of X with the category fibred in sets associated to B′ over the
category fibred in sets associated to B (Remark 5.5). By the material in Algebraic
Stacks, Section 10 the morphism X ′ → X is surjective and étale. Hence it suffices
to prove the result for X ′. In other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 19. Thus we may assume S = B.

Assume S = B. Choose an affine open covering S =
⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is separated and of finite presentation and whose
base change to Λ is X. See Limits of Spaces, Lemmas 7.1 and 6.9. If we show
that CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark
5.5 and Algebraic Stacks, Section 19) that X is an algebraic stack. Thus we may
assume that Λ is a finite type Z-algebra.

Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that
X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition
50.12. Hence all local rings of S are G-rings. Thus (5) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section 14. We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas
5.4, 5.6, 5.7, 5.9. Condition (3) is Lemma 5.10. Condition (1) is Lemma 5.3.

It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma 20.3. We have already seen that X has diagonal rep-
resentable by algebraic spaces, has (RS*), and is limit preserving (see lemmas used
above). Hence we only need to see that X satisfies the strong formal effectiveness
formulated in Artin’s Axioms, Lemma 20.3. This is Flatness on Spaces, Theorem
12.8 and the proof is complete. □

7. The functor of quotients

082L In this section we discuss some generalities regarding the functor QF/X/B defined
below. The notation QuotF/X/B is reserved for a subfunctor of QF/X/B . We urge
the reader to skip this section on a first reading.
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Situation 7.1.082M Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×B T → X. Given such a T we set

QF/X/B(T ) =
{

quotients FT → Q where Q is a
quasi-coherent OXT

-module flat over T

}
We identify quotients if they have the same kernel. Suppose that T ′ → T is a
morphism of schemes over B and FT → Q is an element of QF/X/B(T ). Then the
pullback Q′ = (XT ′ → XT )∗Q is a quasi-coherent OXT ′ -module flat over T ′ by
Morphisms of Spaces, Lemma 31.3. Thus we obtain a functor
(7.1.1)082N QF/X/B : (Sch/B)opp −→ Sets

This is the functor of quotients of F/X/B. We define a subfunctor

(7.1.2)0CZL Qfp
F/X/B : (Sch/B)opp −→ Sets

which assigns to T the subset of QF/X/B(T ) consisting of those quotients FT → Q
such that Q is of finite presentation as an OXT

-module. This is a subfunctor by
Properties of Spaces, Section 30.

In Situation 7.1 we sometimes think of QF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QF/X/S → B. Namely, if T is a scheme over S, then an
element of QF/X/B(T ) is a pair (h,Q) where h a morphism h : T → B and Q is a
T -flat quotient FT → Q of finite presentation on XT = X ×B,h T . In particular,
when we say that QF/X/S is an algebraic space, we mean that the corresponding
functor (Sch/S)opp → Sets is an algebraic space. Similar remarks apply to Qfp

F/X/B .

Remark 7.2.08IT In Situation 7.1 let B′ → B be a morphism of algebraic spaces over
S. Set X ′ = X ×B B′ and denote F ′ the pullback of F to X ′. Thus we have the
functor QF ′/X′/B′ on the category of schemes over B′. For a scheme T over B′ it
is clear that we have

QF ′/X′/B′(T ) = QF/X/B(T )
where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. Similar remarks apply to Qfp

F/X/B . These trivial remarks will
occasionally be useful to change the base algebraic space.

Remark 7.3.08IU Let S be a scheme, X an algebraic space over S, and F a quasi-
coherent OX -module. Suppose that {fi : Xi → X}i∈I is an fpqc covering and for
each i, j ∈ I we are given an fpqc covering {Xijk → Xi ×X Xj}. In this situation
we have a bijection{

quotients F → Q where
Q is a quasi-coherent

}
−→

families of quotients f∗
i F → Qi where

Qi is quasi-coherent and Qi and Qj

restrict to the same quotient on Xijk


Namely, let (f∗

i F → Qi)i∈I be an element of the right hand side. Then since
{Xijk → Xi ×X Xj} is an fpqc covering we see that the pullbacks of Qi and Qj

restrict to the same quotient of the pullback of F to Xi×X Xj (by fully faithfulness
in Descent on Spaces, Proposition 4.1). Hence we obtain a descent datum for quasi-
coherent modules with respect to {Xi → X}i∈I . By Descent on Spaces, Proposition
4.1 we find a map of quasi-coherent OX -modules F → Q whose restriction to Xi
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recovers the given maps f∗
i F → Qi. Since the family of morphisms {Xi → X} is

jointly surjective and flat, for every point x ∈ |X| there exists an i and a point
xi ∈ |Xi| mapping to x. Note that the induced map on local rings OX,x → OXi,xi

is faithfully flat, see Morphisms of Spaces, Section 30. Thus we see that F → Q is
surjective.

Lemma 7.4.082P In Situation 7.1. The functors QF/X/B and Qfp
F/X/B satisfy the

sheaf property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and Fi = FTi . Note that {Xi → XT }i∈I is an fpqc covering of XT

(Topologies on Spaces, Lemma 9.3) and that XTi×T Ti′ = Xi ×XT
Xi′ . Suppose

that Fi → Qi is a collection of elements of QF/X/B(Ti) such that Qi and Qi′

restrict to the same element of QF/X/B(Ti ×T Ti′). By Remark 7.3 we obtain a
surjective map of quasi-coherent OXT

-modules FT → Q whose restriction to Xi

recovers the given quotients. By Morphisms of Spaces, Lemma 31.5 we see that Q
is flat over T . Finally, in the case of Qfp

F/X/B , i.e., if Qi are of finite presentation,
then Descent on Spaces, Lemma 6.2 guarantees that Q is of finite presentation as
an OXT

-module. □

Sanity check: QF/X/B , Qfp
F/X/B play the same role among algebraic spaces over S.

Lemma 7.5.0D3U In Situation 7.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QF/X/B) =
{

(h,FT → Q) where h : T → B and
Q is quasi-coherent and flat over T

}
where FT denotes the pullback of F to the algebraic space X ×B,h T . Similarly, we
have

MorSh((Sch/S)fppf )(T,Qfp
F/X/B) =

{
(h,FT → Q) where h : T → B and

Q is of finite presentation and flat over T

}
Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let
R = U ×T U with projections t, s : R→ U .

Let v : T → QF/X/B be a natural transformation. Then v(p) corresponds to a
pair (hU ,FU → QU ) over U . As v is a transformation of functors we see that the
pullbacks of (hU ,FU → QU ) by s and t agree. Since T = U/R (Spaces, Lemma
9.1), we obtain a morphism h : T → B such that hU = h◦p. By Descent on Spaces,
Proposition 4.1 the quotient QU descends to a quotient FT → Q over XT . Since
U → T is surjective and flat, it follows from Morphisms of Spaces, Lemma 31.5
that Q is flat over T .

Conversely, let (h,FT → Q) be a pair over T . Then we get a natural transformation
v : T → QF/X/B by sending a morphism a : T ′ → T where T ′ is a scheme to
(h ◦ a,FT ′ → a∗Q). We omit the verification that the construction of this and the
previous paragraph are mutually inverse.

In the case of Qfp
F/X/B we add: given a morphism h : T → B, a quasi-coherent

sheaf on XT is of finite presentation as an OXT
-module if and only if the pullback

to XU is of finite presentation as an OXU
-module. This follows from the fact that

XU → XT is surjective and étale and Descent on Spaces, Lemma 6.2. □
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Lemma 7.6.08IV In Situation 7.1 let {Xi → X}i∈I be an fpqc covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fpqc covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. For every scheme T over B the diagram

QF/X/B(T ) // ∏
i QFi/Xi/B(T )

pr∗
0 //

pr∗
1

//
∏

i,j,k QFijk/Xijk/B(T )

presents the first arrow as the equalizer of the other two. The same is true for the
functor Qfp

F/X/B.

Proof. Let Fi,T → Qi be an element in the equalizer of pr∗
0 and pr∗

1. By Remark 7.3
we obtain a surjection FT → Q of quasi-coherent OXT

-modules whose restriction
to Xi,T recovers Fi → Qi. By Morphisms of Spaces, Lemma 31.5 we see that Q
is flat over T as desired. In the case of the functor Qfp

F/X/B , i.e., if Qi is of finite
presentation, then Q is of finite presentation too by Descent on Spaces, Lemma
6.2. □

Lemma 7.7.082Q In Situation 7.1 assume also that (a) f is quasi-compact and quasi-
separated and (b) F is of finite presentation. Then the functor Qfp

F/X/B is limit
preserving in the following sense: If T = limTi is a directed limit of affine schemes
over B, then Qfp

F/X/B(T ) = colim Qfp
F/X/B(Ti).

Proof. Let T = limTi be as in the statement of the lemma. Choose i0 ∈ I and
replace I by {i ∈ I | i ≥ i0}. We may set B = S = Ti0 and we may replace X by XT0

and F by the pullback to XT0 . Then XT = limXTi , see Limits of Spaces, Lemma
4.1. Let FT → Q be an element of Qfp

F/X/B(T ). By Limits of Spaces, Lemma 7.2
there exists an i and a map FTi → Qi of OXTi

-modules of finite presentation whose
pullback to XT is the given quotient map.

We still have to check that, after possibly increasing i, the map FTi
→ Qi is

surjective and Qi is flat over Ti. To do this, choose an affine scheme U and a
surjective étale morphism U → X (see Properties of Spaces, Lemma 6.3). We
may check surjectivity and flatness over Ti after pulling back to the étale cover
UTi → XTi (by definition). This reduces us to the case where X = Spec(B0) is
an affine scheme of finite presentation over B = S = T0 = Spec(A0). Writing
Ti = Spec(Ai), then T = Spec(A) with A = colimAi we have reached the following
algebra problem. Let Mi → Ni be a map of finitely presented B0 ⊗A0 Ai-modules
such that Mi ⊗Ai

A → Ni ⊗Ai
A is surjective and Ni ⊗Ai

A is flat over A. Show
that for some i′ ≥ i Mi ⊗Ai Ai′ → Ni ⊗Ai Ai′ is surjective and Ni ⊗Ai Ai′ is flat
over A. The first follows from Algebra, Lemma 127.5 and the second from Algebra,
Lemma 168.1. □

Lemma 7.8.08IW In Situation 7.1. Let

Z //

��

Z ′

��
Y // Y ′
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be a pushout in the category of schemes over B where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 14.3. Then the natural map

QF/X/B(Y ′) −→ QF/X/B(Y )×QF/X/B(Z) QF/X/B(Z ′)
is bijective. If X → B is locally of finite presentation, then the same thing is true
for Qfp

F/X/B.

Proof. Let us construct an inverse map. Namely, suppose we have FY → A, FZ′ →
B′, and an isomorphismA|XZ

→ B′|XZ
compatible with the given surjections. Then

we apply Pushouts of Spaces, Lemma 6.6 to get a quasi-coherent module A′ on XY ′

flat over Y ′. Since this sheaf is constructed as a fibre product (see proof of cited
lemma) there is a canonical map FY ′ → A′. That this map is surjective can be
seen because it factors as

FY ′

↓
(XY → XY ′)∗FY ×(XZ →XY ′ )∗FZ

(XZ′ → XY ′)∗FZ′

↓
A′ = (XY → XY ′)∗A×(XZ →XY ′ )∗A|XZ

(XZ′ → XY ′)∗B′

and the first arrow is surjective by More on Algebra, Lemma 6.5 and the second by
More on Algebra, Lemma 6.6.
In the case of Qfp

F/X/B all we have to show is that the construction above produces
a finitely presented module. This is explained in More on Algebra, Remark 7.8 in
the commutative algebra setting. The current case of modules over algebraic spaces
follows from this by étale localization. □

Remark 7.9 (Obstructions for quotients).0CZU In Situation 7.1 assume that F is flat
over B. Let T ⊂ T ′ be an first order thickening of schemes over B with ideal sheaf
J . Then XT ⊂ XT ′ is a first order thickening of algebraic spaces whose ideal sheaf
I is a quotient of f∗

TJ . We will think of sheaves on XT ′ , resp. T ′ as sheaves on
XT , resp. T using the fundamental equivalence described in More on Morphisms of
Spaces, Section 9. Let

0→ K → FT → Q→ 0
define an element x of QF/X/B(T ). Since FT ′ is flat over T ′ we have a short exact
sequence

0→ f∗
TJ ⊗OXT

FT
i−→ FT ′

π−→ FT → 0
and we have f∗

TJ ⊗OXT
FT = I ⊗OXT

FT , see Deformation Theory, Lemma 11.2.
Let us use the abbreviation f∗

TJ ⊗OXT
G = G ⊗OT

J for an OXT
-module G. Since

Q is flat over T , we obtain a short exact sequence
0→ K⊗OT

J → FT ⊗OT
J → Q⊗OT

J →→ 0
Combining the above we obtain an canonical extension

0→ Q⊗OT
J → π−1(K)/i(K ⊗OT

J )→ K → 0
of OXT

-modules. This defines a canonical class
ox(T ′) ∈ Ext1

OXT
(K,Q⊗OT

J )

If ox(T ′) is zero, then we obtain a splitting of the short exact sequence defining it,
in other words, we obtain a OXT ′ -submodule K′ ⊂ π−1(K) sitting in a short exact
sequence 0→ K⊗OT

J → K′ → K → 0. Then it follows from the lemma reference

https://stacks.math.columbia.edu/tag/0CZU
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above that Q′ = FT ′/K′ is a lift of x to an element of QF/X/B(T ′). Conversely,
the reader sees that the existence of a lift implies that ox(T ′) is zero. Moreover,
if x ∈ Qfp

F/X/B(T ), then automatically x′ ∈ Qfp
F/X/B(T ′) by Deformation Theory,

Lemma 11.3. If we ever need this remark we will turn this remark into a lemma,
precisely formulate the result and give a detailed proof (in fact, all of the above
works in the setting of arbitrary ringed topoi).

Remark 7.10 (Deformations of quotients).0CZV In Situation 7.1 assume that F is
flat over B. We continue the discussion of Remark 7.9. Assume ox(T ′) = 0. Then
we claim that the set of lifts x′ ∈ QF/X/B(T ′) is a principal homogeneous space
under the group

HomOXT
(K,Q⊗OT

J )
Namely, given any FT ′ → Q′ flat over T ′ lifting the quotient Q we obtain a com-
mutative diagram with exact rows and columns

0

��

0

��

0

��
0 // K ⊗ J //

��

FT ⊗ J //

��

Q⊗ J //

��

0

0 // K′ //

��

FT ′ //

��

Q′ //

��

0

0 // K

��

// FT

��

// Q

��

// 0

0 0 0
(to see this use the observations made in the previous remark). Given a map
φ : K → Q ⊗ J we can consider the subsheaf K′

φ ⊂ FT ′ consisting of those local
sections s whose image in FT is a local section k of K and whose image in Q′ is the
local section φ(k) of Q⊗ J . Then set Q′

φ = FT ′/K′
φ. Conversely, any second lift

of x corresponds to one of the qotients constructed in this manner. If we ever need
this remark we will turn this remark into a lemma, precisely formulate the result
and give a detailed proof (in fact, all of the above works in the setting of arbitrary
ringed topoi).

8. The Quot functor

09TQ In this section we prove the Quot functor is an algebraic space.

Situation 8.1.09TR Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. Let F be a quasi-coherent
OX -module. For any scheme T over B we will denote XT the base change of X
to T and FT the pullback of F via the projection morphism XT = X ×S T → X.
Given such a T we set

QuotF/X/B(T ) =

quotients FT → Q where Q is a quasi-coherent
OXT

-module of finite presentation, flat over T
with support proper over T
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By Derived Categories of Spaces, Lemma 7.8 this is a subfunctor of the functor
Qfp

F/X/B we discussed in Section 7. Thus we obtain a functor

(8.1.1)09TS QuotF/X/B : (Sch/B)opp −→ Sets

This is the Quot functor associated to F/X/B.

In Situation 8.1 we sometimes think of QuotF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QuotF/X/B → B. Namely, if T is a scheme over S, then
an element of QuotF/X/B(T ) is a pair (h,Q) where h is a morphism h : T → B and
Q is a finitely presented, T -flat quotient FT → Q on XT = X ×B,h T with support
proper over T . In particular, when we say that QuotF/X/B is an algebraic space,
we mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 8.2.09TT In Situation 8.1. The functor QuotF/X/B satisfies the sheaf property
for the fpqc topology.

Proof. In Lemma 7.4 we have seen that the functor Qfp
F/X/S is a sheaf. Recall

that for a scheme T over S the subset QuotF/X/S(T ) ⊂ QF/X/S(T ) picks out those
quotients whose support is proper over T . This defines a subsheaf by the result
of Descent on Spaces, Lemma 11.19 combined with Morphisms of Spaces, Lemma
30.10 which shows that taking scheme theoretic support commutes with flat base
change. □

Sanity check: QuotF/X/B plays the same role among algebraic spaces over S.

Lemma 8.3.0D3V In Situation 8.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QuotF/X/B) =

 (h,FT → Q) where h : T → B and
Q is of finite presentation and

flat over T with support proper over T


where FT denotes the pullback of F to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the second equality in Lemma 7.5. To see that these
subsets correspond under the identification given in the proof of that lemma it
suffices to show: given h : T → B, a surjective étale morphism U → T , a finite
type quasi-coherent OXT

-module Q the following are equivalent
(1) the scheme theoretic support of Q is proper over T , and
(2) the scheme theoretic support of (XU → XT )∗Q is proper over U .

This follows from Descent on Spaces, Lemma 11.19 combined with Morphisms of
Spaces, Lemma 30.10 which shows that taking scheme theoretic support commutes
with flat base change. □

Proposition 8.4.09TU Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. If f is of finite presentation
and separated, then QuotF/X/B is an algebraic space. If F is of finite presentation,
then QuotF/X/B → B is locally of finite presentation.

Proof. By Lemma 8.2 we have that QuotF/X/B is a sheaf in the fppf topology. Let
QuotF/X/B be the stack in groupoids corresponding to QuotF/X/S , see Algebraic
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Stacks, Section 7. By Algebraic Stacks, Proposition 13.3 it suffices to show that
QuotF/X/B is an algebraic stack. Consider the 1-morphism of stacks in groupoids

QuotF/X/S −→ CohX/B

on (Sch/S)fppf which associates to the quotient FT → Q the module Q. By
Theorem 6.1 we know that CohX/B is an algebraic stack. By Algebraic Stacks,
Lemma 15.4 it suffices to show that this 1-morphism is representable by algebraic
spaces.

Let T be a scheme over S and let the object (h,G) of CohX/B over T correspond to
a 1-morphism ξ : (Sch/T )fppf → CohX/B . The 2-fibre product

Z = (Sch/T )fppf ×ξ,CohX/B
QuotF/X/S

is a stack in setoids, see Stacks, Lemma 6.7. The corresponding sheaf of sets (i.e.,
functor, see Stacks, Lemmas 6.7 and 6.2) assigns to a scheme T ′/T the set of
surjections u : FT ′ → GT ′ of quasi-coherent modules on XT ′ . Thus we see that Z
is representable by an open subspace (by Flatness on Spaces, Lemma 9.3) of the
algebraic space Hom(FT ,G) from Proposition 3.10. □

Remark 8.5 (Quot via Artin’s axioms).0CZW Let S be a Noetherian scheme all of
whose local rings are G-rings. Let X be an algebraic space over S whose structure
morphism f : X → S is of finite presentation and separated. Let F be a finitely
presented quasi-coherent sheaf on X flat over S. In this remark we sketch how one
can use Artin’s axioms to prove that QuotF/X/S is an algebraic space locally of
finite presentation over S and avoid using the algebraicity of the stack of coherent
sheaves as was done in the proof of Proposition 8.4.

We check the conditions listed in Artin’s Axioms, Proposition 16.1. Representabil-
ity of the diagonal of QuotF/X/S can be seen as follows: suppose we have two
quotients FT → Qi, i = 1, 2. Denote K1 the kernel of the first one. Then we have
to show that the locus of T over which u : K1 → Q2 becomes zero is representable.
This follows for example from Flatness on Spaces, Lemma 8.6 or from a discussion
of the Hom sheaf earlier in this chapter. Axioms [0] (sheaf), [1] (limits), [2] (Rim-
Schlessinger) follow from Lemmas 8.2, 7.7, and 7.8 (plus some extra work to deal
with the properness condition). Axiom [3] (finite dimensionality of tangent spaces)
follows from the description of the infinitesimal deformations in Remark 7.10 and
finiteness of cohomology of coherent sheaves on proper algebraic spaces over fields
(Cohomology of Spaces, Lemma 20.2). Axiom [4] (effectiveness of formal objects)
follows from Grothendieck’s existence theorem (More on Morphisms of Spaces, The-
orem 42.11). As usual, the trickiest to verify is axiom [5] (openness of versality).
One can for example use the obstruction theory described in Remark 7.9 and the
description of deformations in Remark 7.10 to do this using the criterion in Artin’s
Axioms, Lemma 22.2. Please compare with the second proof of Lemma 5.11.

9. The Hilbert functor

0CZX In this section we prove the Hilb functor is an algebraic space.

Situation 9.1.0CZY Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. For any scheme T over B
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we will denote XT the base change of X to T . Given such a T we set

HilbX/B(T ) =
{

closed subspaces Z ⊂ XT such that Z → T
is of finite presentation, flat, and proper

}
Since base change preserves the required properties (Spaces, Lemma 12.3 and Mor-
phisms of Spaces, Lemmas 28.3, 30.4, and 40.3) we obtain a functor

(9.1.1)0CZZ HilbX/B : (Sch/B)opp −→ Sets

This is the Hilbert functor associated to X/B.

In Situation 9.1 we sometimes think of HilbX/B as a functor (Sch/S)opp → Sets
endowed with a morphism HilbX/S → B. Namely, if T is a scheme over S, then
an element of HilbX/B(T ) is a pair (h, Z) where h is a morphism h : T → B and
Z ⊂ XT = X ×B,h T is a closed subscheme, flat, proper, and of finite presentation
over T . In particular, when we say that HilbX/B is an algebraic space, we mean
that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Of course the Hilbert functor is just a special case of the Quot functor.

Lemma 9.2.0D00 In Situation 9.1 we have HilbX/B = QuotOX /X/B.

Proof. Let T be a scheme over B. Given an element Z ∈ HilbX/B(T ) we can con-
sider the quotient OXT

→ i∗OZ where i : Z → XT is the inclusion morphism. Note
that i∗OZ is quasi-coherent. Since Z → T and XT → T are of finite presentation,
we see that i is of finite presentation (Morphisms of Spaces, Lemma 28.9), hence
i∗OZ is an OXT

-module of finite presentation (Descent on Spaces, Lemma 6.7).
Since Z → T is proper we see that i∗OZ has support proper over T (as defined in
Derived Categories of Spaces, Section 7). Since OZ is flat over T and i is affine, we
see that i∗OZ is flat over T (small argument omitted). Hence OXT

→ i∗OZ is an
element of QuotOX /X/B(T ).

Conversely, given an element OXT
→ Q of QuotOX /X/B(T ), we can consider the

closed immersion i : Z → XT corresponding to the quasi-coherent ideal sheaf
I = Ker(OXT

→ Q) (Morphisms of Spaces, Lemma 13.1). By construction of Z we
see that Q = i∗OZ . Then we can read the arguments given above backwards to see
that Z defines an element of HilbX/B(T ). For example, I is quasi-coherent of finite
type (Modules on Sites, Lemma 24.1) hence i : Z → XT is of finite presentation
(Morphisms of Spaces, Lemma 28.12) hence Z → T is of finite presentation (Mor-
phisms of Spaces, Lemma 28.2). Properness of Z → T follows from the discussion
in Derived Categories of Spaces, Section 7. Flatness of Z → T follows from flatness
of Q over T .

We omit the (immediate) verification that the two constructions given above are
mutually inverse. □

Sanity check: HilbX/B sheaf plays the same role among algebraic spaces over S.

Lemma 9.3.0D3W In Situation 9.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,HilbX/B) =
{

(h, Z) where h : T → B, Z ⊂ XT

finite presentation, flat, proper over T

}
where XT = X ×B,h T .
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Proof. By Lemma 9.2 we have HilbX/B = QuotOX /X/B . Thus we can apply
Lemma 8.3 to see that the left hand side is bijective with the set of surjections
OXT

→ Q which are finitely presented, flat over T , and have support proper over T .
Arguing exactly as in the proof of Lemma 9.2 we see that such quotients correspond
exactly to the closed immersions Z → XT such that Z → T is proper, flat, and of
finite presentation. □

Proposition 9.4.0D01 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is of finite presentation and separated, then HilbX/B is an
algebraic space locally of finite presentation over B.

Proof. Immediate consequence of Lemma 9.2 and Proposition 8.4. □

10. The Picard stack

0D02 The Picard stack for a morphism of algebraic spaces was introduced in Examples of
Stacks, Section 16. We will deduce it is an open substack of the stack of coherent
sheaves (in good cases) from the following lemma.

Lemma 10.1.0D03 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S which is flat, of finite presentation, and proper. The natural map

PicX/B −→ CohX/B

is representable by open immersions.

Proof. Observe that the map simply sends a triple (T, g,L) as in Examples of
Stacks, Section 16 to the same triple (T, g,L) but where now we view this as a
triple of the kind described in Situation 5.1. This works because the invertible OXT

-
module L is certainly a finitely presented OXT

-module, it is flat over T because
XT → T is flat, and the support is proper over T as XT → T is proper (Morphisms
of Spaces, Lemmas 30.4 and 40.3). Thus the statement makes sense.
Having said this, it is clear that the content of the lemma is the following: given
an object (T, g,F) of CohX/B there is an open subscheme U ⊂ T such that for a
morphism of schemes T ′ → T the following are equivalent

(a) T ′ → T factors through U ,
(b) the pullback FT ′ of F by XT ′ → XT is invertible.

Let W ⊂ |XT | be the set of points x ∈ |XT | such that F is locally free in a
neighbourhood of x. By More on Morphisms of Spaces, Lemma 23.8. W is open
and formation of W commutes with arbitrary base change. Clearly, if T ′ → T
satisfies (b), then |XT ′ | → |XT | maps into W . Hence we may replace T by the open
T \ fT (|XT | \W ) in order to construct U . After doing so we reach the situation
where F is finite locally free. In this case we get a disjoint union decomposition
XT = X0 ⨿X1 ⨿X2 ⨿ . . . into open and closed subspaces such that the restriction
of F is locally free of rank i on Xi. Then clearly

U = T \ fT (|X0| ∪ |X2| ∪ |X3| ∪ . . .)
works. (Note that if we assume that T is quasi-compact, then XT is quasi-compact
hence only a finite number of Xi are nonempty and so U is indeed open.) □

Proposition 10.2.0D04 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is flat, of finite presentation, and proper, then PicX/B is an
algebraic stack.
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Proof. Immediate consequence of Lemma 10.1, Algebraic Stacks, Lemma 15.4 and
either Theorem 5.12 or Theorem 6.1 □

11. The Picard functor

0D24 In this section we revisit the Picard functor discussed in Picard Schemes of Curves,
Section 4. The discussion will be more general as we want to study the Picard
functor of a morphism of algebraic spaces as in the section on the Picard stack, see
Section 10.

Let S be a scheme and let X be an algebraic space over S. An invertible sheaf
on X is an invertible OX -module on Xétale, see Modules on Sites, Definition 32.1.
The group of isomorphism classes of invertible modules is denoted Pic(X), see
Modules on Sites, Definition 32.6. Given a morphism f : X → Y of algebraic
spaces over S pullback defines a group homomorphism Pic(Y ) → Pic(X). The
assignment X ⇝ Pic(X) is a contravariant functor from the category of schemes to
the category of abelian groups. This functor is not representable, but it turns out
that a relative variant of this construction sometimes is representable.

Situation 11.1.0D25 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. We define

PicX/B : (Sch/B)opp −→ Sets

as the fppf sheafification of the functor which to a scheme T over B associates the
group Pic(XT ).

In Situation 11.1 we sometimes think of PicX/B as a functor (Sch/S)opp → Sets
endowed with a morphism PicX/B → B. In this point of view, we define PicX/B to
be the fppf sheafification of the functor

T/S 7−→ {(h,L) | h : T → B, L ∈ Pic(X ×B,h T )}

In particular, when we say that PicX/B is an algebraic space, we mean that the
corresponding functor (Sch/S)opp → Sets is an algebraic space.

An often used remark is that if T is a scheme over B, then PicXT /T is the restriction
of PicX/B to (Sch/T )fppf .

Lemma 11.2.0D26 In Situation 11.1 the functor PicX/B is the sheafification of the
functor T 7→ Ob(PicX/B,T )/ ∼=.

Proof. Since the fibre category PicX/B,T of the Picard stack PicX/B over T is
the category of invertible sheaves on XT (see Section 10 and Examples of Stacks,
Section 16) this is immediate from the definitions. □

It turns out to be nontrivial to see what the value of PicX/B is on schemes T over
B. Here is a lemma that helps with this task.

Lemma 11.3.0D27 In Situation 11.1. If OT → fT,∗OXT
is an isomorphism for all

schemes T over B, then

0→ Pic(T )→ Pic(XT )→ PicX/B(T )

is an exact sequence for all T .
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Proof. We may replace B by T and X by XT and assume that B = T to simplify
the notation. Let N be an invertible OB-module. If f∗N ∼= OX , then we see that
f∗f

∗N ∼= f∗OX
∼= OB by assumption. Since N is locally trivial, we see that the

canonical map N → f∗f
∗N is locally an isomorphism (because OB → f∗f

∗OB is
an isomorphism by assumption). Hence we conclude that N → f∗f

∗N → OB is an
isomorphism and we see that N is trivial. This proves the first arrow is injective.
Let L be an invertible OX -module which is in the kernel of Pic(X)→ PicX/B(B).
Then there exists an fppf covering {Bi → B} such that L pulls back to the trivial
invertible sheaf on XBi

. Choose a trivializing section si. Then pr∗
0si and pr∗

1sj are
both trivialising sections of L over XBi×BBj

and hence differ by a multiplicative
unit

fij ∈ Γ(XSi×BBj
,O∗

XBi×B Bj
) = Γ(Bi ×B Bj ,O∗

Bi×N Bj
)

(equality by our assumption on pushforward of structure sheaves). Of course these
elements satisfy the cocycle condition on Bi ×B Bj ×B Bk, hence they define a
descent datum on invertible sheaves for the fppf covering {Bi → B}. By Descent,
Proposition 5.2 there is an invertible OB-module N with trivializations over Bi

whose associated descent datum is {fij}. (The proposition applies because B is a
scheme by the replacement performed at the start of the proof.) Then f∗N ∼= L as
the functor from descent data to modules is fully faithful. □

Lemma 11.4.0D28 In Situation 11.1 let σ : B → X be a section. Assume that
OT → fT,∗OXT

is an isomorphism for all T over B. Then
0→ Pic(T )→ Pic(XT )→ PicX/B(T )→ 0

is a split exact sequence with splitting given by σ∗
T : Pic(XT )→ Pic(T ).

Proof. Denote K(T ) = Ker(σ∗
T : Pic(XT )→ Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 11.3 we
see that K(T ) ⊂ PicX/B(T ) for all T . Moreover, it is clear from the construction
that PicX/B is the sheafification of the presheaf K. To finish the proof it suffices
to show that K satisfies the sheaf condition for fppf coverings which we do in the
next paragraph.
Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the
same elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi

→
σ∗

Ti
Li for all i. Choose an isomorphism

φij : Li|XTi×T Tj
−→ Lj |XTi×T Tj

If the map
αj |Ti×T Tj

◦ σ∗
Ti×T Tj

φij ◦ αi|Ti×T Tj
: OTi×T Tj

→ OTi×T Tj

is not equal to multiplication by 1 but some uij , then we can scale φij by u−1
ij to

correct this. Having done this, consider the self map
φki|XTi×T Tj ×T Tk

◦ φjk|XTi×T Tj ×T Tk
◦ φij |XTi×T Tj ×T Tk

on Li|XTi×T Tj ×T Tk

which is given by multiplication by some section fijk of the structure sheaf of
XTi×T Tj×T Tk

. By our choice of φij we see that the pullback of this map by σ is
equal to multiplication by 1. By our assumption on functions on X, we see that
fijk = 1. Thus we obtain a descent datum for the fppf covering {XTi

→ X}. By
Descent on Spaces, Proposition 4.1 there is an invertible OXT

-module L and an
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isomorphism α : OT → σ∗
TL whose pullback to XTi

recovers (Li, αi) (small detail
omitted). Thus L defines an object of K(T ) as desired. □

In Situation 11.1 let σ : B → X be a section. We denote PicX/B,σ the category
defined as follows:

(1) An object is a quadruple (T, h,L, α), where (T, h,L) is an object of PicX/B

over T and α : OT → σ∗
TL is an isomorphism.

(2) A morphism (g, φ) : (T, h,L, α)→ (T ′, h′,L′, α′) is given by a morphism of
schemes g : T → T ′ with h = h′ ◦ g and an isomorphism φ : (g′)∗L′ → L
such that σ∗

Tφ ◦ g∗α′ = α. Here g′ : XT ′ → XT is the base change of g.
There is a natural faithful forgetful functor

PicX/B,σ −→ PicX/B

In this way we view PicX/B,σ as a category over (Sch/S)fppf .

Lemma 11.5.0D29 In Situation 11.1 let σ : B → X be a section. Then PicX/B,σ as
defined above is a stack in groupoids over (Sch/S)fppf .

Proof. We already know that PicX/B is a stack in groupoids over (Sch/S)fppf by
Examples of Stacks, Lemma 16.1. Let us show descent for objects for PicX/B,σ. Let
{Ti → T} be an fppf covering and let ξi = (Ti, hi,Li, αi) be an object of PicX/B,σ

lying over Ti, and let φij : pr∗
0ξi → pr∗

1ξj be a descent datum. Applying the result
for PicX/B we see that we may assume we have an object (T, h,L) of PicX/B over
T which pulls back to ξi for all i. Then we get

αi : OTi
→ σ∗

Ti
Li = (Ti → T )∗σ∗

TL

Since the maps φij are compatible with the αi we see that αi and αj pullback to the
same map on Ti×T Tj . By descent of quasi-coherent sheaves (Descent, Proposition
5.2, we see that the αi are the restriction of a single map α : OT → σ∗

TL as desired.
We omit the proof of descent for morphisms. □

Lemma 11.6.0D2A In Situation 11.1 let σ : B → X be a section. The morphism
PicX/B,σ → PicX/B is representable, surjective, and smooth.

Proof. Let T be a scheme and let (Sch/T )fppf → PicX/B be given by the object
ξ = (T, h,L) of PicX/B over T . We have to show that

(Sch/T )fppf ×ξ,PicX/B
PicX/B,σ

is representable by a scheme V and that the corresponding morphism V → T is
surjective and smooth. See Algebraic Stacks, Sections 6, 9, and 10. The forgetful
functor PicX/B,σ → PicX/B is faithful on fibre categories and for T ′/T the set of
isomorphism classes is the set of isomorphisms

α′ : OT ′ −→ (T ′ → T )∗σ∗
TL

See Algebraic Stacks, Lemma 9.2. We know this functor is representable by an affine
scheme U of finite presentation over T by Proposition 4.3 (applied to id : T → T and
OT and σ∗L). Working Zariski locally on T we may assume that σ∗

TL is isomorphic
to OT and then we see that our functor is representable by Gm× T over T . Hence
U → T Zariski locally on T looks like the projection Gm × T → T which is indeed
smooth and surjective. □
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Lemma 11.7.0D2B In Situation 11.1 let σ : B → X be a section. If OT → fT,∗OXT
is

an isomorphism for all T over B, then PicX/B,σ → (Sch/S)fppf is fibred in setoids
with set of isomorphism classes over T given by∐

h:T →B
Ker(σ∗

T : Pic(X ×B,h T )→ Pic(T ))

Proof. If ξ = (T, h,L, α) is an object of PicX/B,σ over T , then an automorphism
φ of ξ is given by multiplication with an invertible global section u of the structure
sheaf of XT such that moreover σ∗

Tu = 1. Then u = 1 by our assumption thatOT →
fT,∗OXT

is an isomorphism. Hence PicX/B,σ is fibred in setoids over (Sch/S)fppf .
Given T and h : T → B the set of isomorphism classes of pairs (L, α) is the same
as the set of isomorphism classes of L with σ∗

TL ∼= OT (isomorphism not specified).
This is clear because any two choices of α differ by a global unit on T and this is
the same thing as a global unit on XT . □

Proposition 11.8.0D2C Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that

(1) f is flat, of finite presentation, and proper, and
(2) OT → fT,∗OXT

is an isomorphism for all schemes T over B.
Then PicX/B is an algebraic space.

In the situation of the proposition the algebraic stack PicX/B is a gerbe over the
algebraic space PicX/B . After developing the general theory of gerbes, this provides
a shorter proof of the proposition (but using more general theory).

Proof. There exists a surjective, flat, finitely presented morphism B′ → B of
algebraic spaces such that the base change X ′ = X ×B B′ over B′ has a section:
namely, we can take B′ = X. Observe that PicX′/B′ = B′ ×B PicX/B . Hence
PicX′/B′ → PicX/B is representable by algebraic spaces, surjective, flat, and finitely
presented. Hence, if we can show that PicX′/B′ is an algebraic space, then it follows
that PicX/B is an algebraic space by Bootstrap, Theorem 10.1. In this way we
reduce to the case described in the next paragraph.
In addition to the assumptions of the proposition, assume that we have a section
σ : B → X. By Proposition 10.2 we see that PicX/B is an algebraic stack. By
Lemma 11.6 and Algebraic Stacks, Lemma 15.4 we see that PicX/B,σ is an algebraic
stack. By Lemma 11.7 and Algebraic Stacks, Lemma 8.2 we see that T 7→ Ker(σ∗

T :
Pic(XT )→ Pic(T )) is an algebraic space. By Lemma 11.4 this functor is the same
as PicX/B . □

Lemma 11.9.0D2D With assumptions and notation as in Proposition 11.8. Then the
diagonal PicX/B → PicX/B ×B PicX/B is representable by immersions. In other
words, PicX/B → B is locally separated.

Proof. Let T be a scheme over B and let s, t ∈ PicX/B(T ). We want to show that
there exists a locally closed subscheme Z ⊂ T such that s|Z = t|Z and such that a
morphism T ′ → T factors through Z if and only if s|T ′ = t|T ′ .
We first reduce the general problem to the case where s and t come from invertible
modules on XT . We suggest the reader skip this step. Choose an fppf covering
{Ti → T}i∈I such that s|Ti

and t|Ti
come from Pic(XTi

) for all i. Suppose that
we can show the result for all the pairs s|Ti

, t|Ti
. Then we obtain locally closed

subschemes Zi ⊂ Ti with the desired universal property. It follows that Zi and
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Zj have the same scheme theoretic inverse image in Ti ×T Tj . This determines a
descend datum on Zi/Ti. Since Zi → Ti is locally quasi-finite, it follows from More
on Morphisms, Lemma 57.1 that we obtain a locally quasi-finite morphism Z → T
recovering Zi → Ti by base change. Then Z → T is an immersion by Descent,
Lemma 24.1. Finally, because PicX/B is an fppf sheaf, we conclude that s|Z = t|Z
and that Z satisfies the universal property mentioned above.
Assume s and t come from invertible modules V, W on XT . Set L = V ⊗W⊗−1

We are looking for a locally closed subscheme Z of T such that T ′ → T factors
through Z if and only if LXT ′ is the pullback of an invertible sheaf on T ′, see
Lemma 11.3. Hence the existence of Z follows from More on Morphisms of Spaces,
Lemma 53.1. □

12. Relative morphisms

0D19 We continue the discussion from Criteria for Representability, Section 10. In that
section, starting with a scheme S and morphisms of algebraic spaces Z → B and
X → B over S we constructed a functor

MorB(Z,X) : (Sch/B)opp −→ Sets, T 7−→ {f : ZT → XT }

We sometimes think of MorB(Z,X) as a functor (Sch/S)opp → Sets endowed with
a morphism MorB(Z,X)→ B. Namely, if T is a scheme over S, then an element of
MorB(Z,X)(T ) is a pair (f, h) where h is a morphism h : T → B and f : Z×B,hT →
X ×B,h T is a morphism of algebraic spaces over T . In particular, when we say
that MorB(Z,X) is an algebraic space, we mean that the corresponding functor
(Sch/S)opp → Sets is an algebraic space.

Lemma 12.1.0D1A Let S be a scheme. Consider morphisms of algebraic spaces Z → B
and X → B over S. If X → B is separated and Z → B is of finite presentation,
flat, and proper, then there is a natural injective transformation of functors

MorB(Z,X) −→ HilbZ×BX/B

which maps a morphism f : ZT → XT to its graph.

Proof. Given a scheme T over B and a morphism fT : ZT → XT over T , the graph
of f is the morphism Γf = (id, f) : ZT → ZT ×T XT = (Z ×B X)T . Recall that
being separated, flat, proper, or finite presentation are properties of morphisms of
algebraic spaces which are stable under base change (Morphisms of Spaces, Lemmas
4.4, 30.4, 40.3, and 28.3). Hence Γf is a closed immersion by Morphisms of Spaces,
Lemma 4.6. Moreover, Γf (ZT ) is flat, proper, and of finite presentation over T .
Thus Γf (ZT ) defines an element of HilbZ×BX/B(T ). To show the transformation is
injective it suffices to show that two morphisms with the same graph are the same.
This is true because if Y ⊂ (Z ×B X)T is the graph of a morphism f , then we can
recover f by using the inverse of pr1|Y : Y → ZT composed with pr2|Y . □

Lemma 12.2.0D1B Assumption and notation as in Lemma 12.1. The transformation
MorB(Z,X) −→ HilbZ×BX/B is representable by open immersions.

Proof. Let T be a scheme over B and let Y ⊂ (Z ×B X)T be an element of
HilbZ×BX/B(T ). Then we see that Y is the graph of a morphism ZT → XT over
T if and only if k = pr1|Y : Y → ZT is an isomorphism. By More on Morphisms
of Spaces, Lemma 49.6 there exists an open subscheme V ⊂ T such that for any
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morphism of schemes T ′ → T we have kT ′ : YT ′ → ZT ′ is an isomorphism if and
only if T ′ → T factors through V . This proves the lemma. □

Proposition 12.3.0D1C Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. Assume X → B is of finite presentation and separated and
Z → B is of finite presentation, flat, and proper. Then MorB(Z,X) is an algebraic
space locally of finite presentation over B.
Proof. Immediate consequence of Lemma 12.2 and Proposition 9.4. □

13. The stack of algebraic spaces

0D1D This section continuous the discussion started in Examples of Stacks, Sections 7,
8, and 12. Working over Z, the discussion therein shows that we have a stack in
groupoids

p′
ft : Spaces′

ft −→ Schfppf

parametrizing (nonflat) families of finite type algebraic spaces. More precisely, an
object3 of Spaces′

ft is a finite type morphism X → S from an algebraic space X to
a scheme S and a morphism (X ′ → S′)→ (X → S) is given by a pair (f, g) where
f : X ′ → X is a morphism of algebraic spaces and g : S′ → S is a morphism of
schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian
in the category of algebraic spaces. The functor p′

ft sends (X → S) to S and sends
(f, g) to g. We define a full subcategory

Spaces′
fp,flat,proper ⊂ Spaces′

ft

consisting of objects X → S of Spaces′
ft such that X → S is of finite presentation,

flat, and proper. We denote
p′

fp,flat,proper : Spaces′
fp,flat,proper −→ Schfppf

the restriction of the functor p′
ft to the indicated subcategory. We first review the

results already obtained in the references listed above, and then we start adding
further results.
Lemma 13.1.0D1E The category Spaces′

ft is fibred in groupoids over Schfppf . The
same is true for Spaces′

fp,flat,proper.

Proof. We have seen this in Examples of Stacks, Section 12 for the case of Spaces′
ft

and this easily implies the result for the other case. However, let us also prove this
directly by checking conditions (1) and (2) of Categories, Definition 35.1.
Condition (1). Let X → S be an object of Spaces′

ft and let S′ → S be a morphism
of schemes. Then we set X ′ = S′ ×S X. Note that X ′ → S′ is of finite type by
Morphisms of Spaces, Lemma 23.3. to obtain a morphism (X ′ → S′) → (X → S)
lying over S′ → S. Argue similarly for the other case using Morphisms of Spaces,
Lemmas 28.3, 30.4, and 40.3.

3We always perform a replacement as in Examples of Stacks, Lemma 8.2.
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Condition (2). Consider morphisms (f, g) : (X ′ → S′) → (X → S) and (a, b) :
(Y → T )→ (X → S) of Spaces′

ft. Given a morphism h : T → S′ with g ◦ h = b we
have to show there is a unique morphism (k, h) : (Y → T )→ (X ′ → S′) of Spaces′

ft

such that (f, g)◦ (k, h) = (a, b). This is clear from the fact that X ′ = S′×S X. The
same therefore works for any full subcategory of Spaces′

ft satisfying (1). □

Lemma 13.2.0D1F The diagonal
∆ : Spaces′

fp,flat,proper −→ Spaces′
fp,flat,proper × Spaces′

fp,flat,proper

is representable by algebraic spaces.

Proof. We will use criterion (2) of Algebraic Stacks, Lemma 10.11. Let S be a
scheme and let X and Y be algebraic spaces of finite presentation over S, flat over
S, and proper over S. We have to show that the functor

IsomS(X,Y ) : (Sch/S)fppf −→ Sets, T 7−→ {f : XT → YT isomorphism}
is an algebraic space. An elementary argument shows that IsomS(X,Y ) sits in a
fibre product

IsomS(X,Y ) //

��

S

(id,id)
��

MorS(X,Y )×MorS(Y,X) // MorS(X,X)×MorS(Y, Y )

The bottom arrow sends (φ,ψ) to (ψ ◦ φ,φ ◦ ψ). By Proposition 12.3 the functors
on the bottom row are algebraic spaces over S. Hence the result follows from the
fact that the category of algebraic spaces over S has fibre products. □

Lemma 13.3.0D1G The category Spaces′
ft is a stack in groupoids over Schfppf . The

same is true for Spaces′
fp,flat,proper.

Proof. The reason this lemma holds is the slogan: any fppf descent datum for
algebraic spaces is effective, see Bootstrap, Section 11. More precisely, the lemma
for Spaces′

ft follows from Examples of Stacks, Lemma 8.1 as we saw in Examples of
Stacks, Section 12. However, let us review the proof. We need to check conditions
(1), (2), and (3) of Stacks, Definition 5.1.
Property (1) we have seen in Lemma 13.1.
Property (2) follows from Lemma 13.2 in the case of Spaces′

fp,flat,proper. In the
case of Spaces′

ft it follows from Examples of Stacks, Lemma 7.2 (and this is really
the “correct” reference).
Condition (3) for Spaces′

ft is checked as follows. Suppose given
(1) an fppf covering {Ui → U}i∈I in Schfppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj ×U Uk.
We have to show there exists an algebraic space X of finite type over U and iso-
morphisms XUi

∼= Xi over Ui recovering the isomorphisms φij . This follows from
Bootstrap, Lemma 11.3 part (2). By Descent on Spaces, Lemma 11.11 we see that
X → U is of finite type. In the case of Spaces′

fp,flat,proper one additionally uses
Descent on Spaces, Lemma 11.12, 11.13, and 11.19 in the last step. □
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Sanity check: the stacks Spaces′
ft and Spaces′

fp,flat,proper play the same role among
algebraic spaces.
Lemma 13.4.0E93 Let T be an algebraic space over Z. Let ST denote the corresponding
algebraic stack (Algebraic Stacks, Sections 7, 8, and 13). We have an equivalence
of categories{

morphisms of algebraic spaces
X → T of finite type

}
−→ MorCat/Schfppf

(ST ,Spaces′
ft)

and an equivalence of categories{
morphisms of algebraic spaces X → T
of finite presentation, flat, and proper

}
−→ MorCat/Schfppf

(ST ,Spaces′
fp,flat,proper)

Proof. We are going to deduce this lemma from the fact that it holds for schemes
(essentially by construction of the stacks) and the fact that fppf descent data for
algebraic spaces over algerbaic spaces are effective. We strongly encourage the
reader to skip the proof.
The construction from left to right in either arrow is straightforward: given X → T
of finite type the functor ST → Spaces′

ft assigns to U/T the base change XU → U .
We will explain how to construct a quasi-inverse.
If T is a scheme, then there is a quasi-inverse by the 2-Yoneda lemma, see Cate-
gories, Lemma 41.2. Let p : U → T be a surjective étale morphism where U is a
scheme. Let R = U ×T U with projections s, t : R → U . Observe that we obtain
morphisms

SU×T U×T U

//
//
//
SR

//
// SU

// ST

satisfying various compatibilities (on the nose).
Let G : ST → Spaces′

ft be a functor over Schfppf . The restriction of G to SU

via the map displayed above corresponds to a finite type morphism XU → U of
algebraic spaces via the 2-Yoneda lemma. Since p ◦ s = p ◦ t we see that R×s,U XU

and R ×t,U XU both correspond to the restriction of G to SR. Thus we obtain a
canonical isomorphism φ : XU ×U,t R → R ×s,U XU over R. This isomorphism
satisfies the cocycle condition by the various compatibilities of the diagram given
above. Thus a descent datum which is effective by Bootstrap, Lemma 11.3 part
(2). In other words, we obtain an object X → T of the right hand side category.
We omit checking the construction G⇝ X is functorial and that it is quasi-inverse
to the other construction. In the case of Spaces′

fp,flat,proper one additionally uses
Descent on Spaces, Lemma 11.12, 11.13, and 11.19 in the last step to see that
X → T is of finite presentation, flat, and proper. □

Remark 13.5.0D1H Let B be an algebraic space over Spec(Z). Let B-Spaces′
ft be the

category consisting of pairs (X → S, h : S → B) where X → S is an object of
Spaces′

ft and h : S → B is a morphism. A morphism (X ′ → S′, h′) → (X → S, h)
in B-Spaces′

ft is a morphism (f, g) in Spaces′
ft such that h◦g = h′. In this situation

the diagram
B-Spaces′

ft
//

��

Spaces′
ft

��
(Sch/B)fppf

// Schfppf
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is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Spaces′

ft to the case of families over a given base
algebraic space. Of course, a similar construction works for B-Spaces′

fp,flat,proper

Lemma 13.6.0D1I The stack p′
fp,flat,proper : Spaces′

fp,flat,proper → Schfppf is limit
preserving (Artin’s Axioms, Definition 11.1).

Proof. Let T = limTi be the limits of a directed inverse system of affine schemes.
By Limits of Spaces, Lemma 7.1 the category of algebraic spaces of finite presenta-
tion over T is the colimit of the categories of algebraic spaces of finite presentation
over Ti. To finish the proof use that flatness and properness descends through the
limit, see Limits of Spaces, Lemmas 6.12 and 6.13. □

Lemma 13.7.0D1J Let
T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

Spaces′
fp,flat,proper,S′

↓
Spaces′

fp,flat,proper,S ×Spaces′
fp,flat,proper,T

Spaces′
fp,flat,proper,T ′

is an equivalence.

Proof. The functor is an equivalence if we drop “proper” from the list of conditions
and replace “of finite presentation” by “locally of finite presentation”, see Pushouts
of Spaces, Lemma 6.7. Thus it suffices to show that given a morphism X ′ → S′

of an algebraic space to S′ which is flat and locally of finite presentation, then
X ′ → S′ is proper if and only if S×S′ X ′ → S and T ′×S′ X ′ → T ′ are proper. One
implication follows from the fact that properness is preserved under base change
(Morphisms of Spaces, Lemma 40.3) and the other from the fact that properness
of S ×S′ X ′ → S implies properness of X ′ → S′ by More on Morphisms of Spaces,
Lemma 10.2. □

Lemma 13.8.0D1K Let k be a field and let x = (X → Spec(k)) be an object of X =
Spaces′

fp,flat,proper over Spec(k).
(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)

(see Artin’s Axioms, Section 8) are finite dimensional, and
(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section

21) are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 13.7 and
we may apply Artin’s Axioms, Lemma 21.2 to get the vector spaces Tx(k) and
Infx(k) mentioned in (2). Moreover, in the finite type case these spaces agree with
the ones mentioned in (1) by Artin’s Axioms, Remark 21.7. With this out of the
way we can start the proof. Observe that the first order thickening Spec(k) →
Spec(k[ϵ]) = Spec(k[k]) has conormal module k. Hence the formula in Deformation

https://stacks.math.columbia.edu/tag/0D1I
https://stacks.math.columbia.edu/tag/0D1J
https://stacks.math.columbia.edu/tag/0D1K


QUOT AND HILBERT SPACES 36

Theory, Lemma 14.2 describing infinitesimal deformations of X and infinitesimal
automorphisms of X become

Tx(k) = Ext1
OX

(NLX/k,OX) and Infx(k) = Ext0
OX

(NLX/k,OX)
By More on Morphisms of Spaces, Lemma 21.5 and the fact that X is Noetherian,
we see that NLX/k has coherent cohomology sheaves zero except in degrees 0 and
−1. By Derived Categories of Spaces, Lemma 8.4 the displayed Ext-groups are
finite k-vector spaces and the proof is complete. □

Beware that openness of versality (as proved in the next lemma) is a bit strange
because our stack does not satisfy formal effectiveness, see Examples, Section 70.
Later we will apply the openness of versality to suitable substacks of Spaces′

fp,flat,proper

which do satisfy formal effectiveness to conclude that these stacks are algebraic.

Lemma 13.9.0D3X The stack in groupoids X = Spaces′
fp,flat,proper satisfies openness

of versality over Spec(Z). Similarly, after base change (Remark 13.5) openness of
versality holds over any Noetherian base scheme S.

Proof. For the “usual” proof of this fact, please see the discussion in the remark
following this proof. We will prove this using Artin’s Axioms, Lemma 20.3. We
have already seen that X has diagonal representable by algebraic spaces, has (RS*),
and is limit preserving, see Lemmas 13.2, 13.7, and 13.6. Hence we only need to
see that X satisfies the strong formal effectiveness formulated in Artin’s Axioms,
Lemma 20.3.
Let (Rn) be an inverse system of rings such that Rn → Rm is surjective with square
zero kernel for all n ≥ m. Let Xn → Spec(Rn) be a finitely presented, flat, proper
morphism where Xn is an algebraic space and let Xn+1 → Xn be a morphism over
Spec(Rn+1) inducing an isomorphism Xn = Xn+1 ×Spec(Rn+1) Spec(Rn). We have
to find a flat, proper, finitely presented morphism X → Spec(limRn) whose source
is an algebraic space such that Xn is the base change of X for all n.
Let In = Ker(Rn → R1). We may think of (X1 ⊂ Xn) → (Spec(R1) ⊂ Spec(Rn))
as a morphism of first order thickenings. (Please read some of the material on
thickenings of algebraic spaces in More on Morphisms of Spaces, Section 9 before
continuing.) The structure sheaf of Xn is an extension

0→ OX1 ⊗R1 In → OXn → OX1 → 0
over 0 → In → Rn → R1, see More on Morphisms of Spaces, Lemma 18.1. Let’s
consider the extension

0→ limOX1 ⊗R1 In → limOXn
→ OX1 → 0

over 0 → lim In → limRn → R1 → 0. The displayed sequence is exact as the
R1 lim of the system of kernels is zero by Derived Categories of Spaces, Lemma 5.4.
Observe that the map

OX1 ⊗R1 lim In −→ limOX1 ⊗R1 In

induces an isomorphism upon applying the functor DQX , see Derived Categories
of Spaces, Lemma 25.6. Hence we obtain a unique extension

0→ OX1 ⊗R1 lim In → O′ → OX1 → 0
over 0 → lim In → limRn → R1 → 0 by the equivalence of categories of Defor-
mation Theory, Lemma 14.4. The sheaf O′ determines a first order thickening of
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algebraic spaces X1 ⊂ X over Spec(R1) ⊂ Spec(limRn) by More on Morphisms of
Spaces, Lemma 9.7. Observe that X → Spec(limRn) is flat by the already used
More on Morphisms of Spaces, Lemma 18.1. By More on Morphisms of Spaces,
Lemma 18.3 we see that X → Spec(limRn) is proper and of finite presentation.
This finishes the proof. □

Remark 13.10.0D1P Lemma 13.9 can also be shown using either Artin’s Axioms,
Lemma 24.4 (as in the first proof of Lemma 5.11), or using an obstruction theory
as in Artin’s Axioms, Lemma 22.2 (as in the second proof of Lemma 5.11). In both
cases one uses the deformation and obstruction theory developed in Cotangent,
Section 23 to translate the needed properties of deformations and obstructions into
Ext-groups to which Derived Categories of Spaces, Lemma 23.3 can be applied. The
second method (using an obstruction theory and therefore using the full cotangent
complex) is perhaps the “standard” method used in most references.

14. The stack of polarized proper schemes

0D1L To study the stack of polarized proper schemes it suffices to work over Z as we can
later pullback to any scheme or algebraic space we want (see Remark 14.5).

Situation 14.1.0D1M We define a category Polarized as follows. Objects are pairs
(X → S,L) where

(1) X → S is a morphism of schemes which is proper, flat, and of finite pre-
sentation, and

(2) L is an invertibleOX -module which is relatively ample onX/S (Morphisms,
Definition 37.1).

A morphism (X ′ → S′,L′) → (X → S,L) between objects is given by a triple
(f, g, φ) where f : X ′ → X and g : S′ → S are morphisms of schemes which fit into
a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian,
and φ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner
(see Examples of Stacks, Sections 7 and 4). The forgetful functor

p : Polarized −→ Schfppf , (X → S,L) 7−→ S

is how we view Polarized as a category over Schfppf (see Section 2 for notation).

In the previous section we have done a substantial amount of work on the stack
Spaces′

fp,flat,proper of finitely presented, flat, proper algebraic spaces. To use this
material we consider the forgetful functor

(14.1.1)0D3Y Polarized −→ Spaces′
fp,flat,proper, (X → S,L) 7−→ (X → S)

This functor will be a useful tool in what follows. Observe that if (X → S) is in
the essential image of (14.1.1), then X and S are schemes.

Lemma 14.2.0D3Z The category Polarized is fibred in groupoids over Spaces′
fp,flat,proper.

The category Polarized is fibred in groupoids over Schfppf .
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Proof. We check conditions (1) and (2) of Categories, Definition 35.1.
Condition (1). Let (X → S,L) be an object of Polarized and let (X ′ → S′) →
(X → S) be a morphism of Spaces′

fp,flat,proper. Then we let L′ be the pullback
of L to X ′. Observe that X,S, S′ are schemes, hence X ′ is a scheme as well (as
the fibre product of schemes). Then L′ is ample on X ′/S′ by Morphisms, Lemma
37.9. In this way we obtain a morphism (X ′ → S′,L′) → (X → S,L) lying over
(X ′ → S′)→ (X → S).
Condition (2). Consider morphisms (f, g, φ) : (X ′ → S′,L′) → (X → S,L) and
(a, b, ψ) : (Y → T,N )→ (X → S,L) of Polarized. Given a morphism (k, h) : (Y →
T )→ (X ′ → S′) of Spaces′

fp,flat,proper with (f, g) ◦ (k, h) = (a, b) we have to show
there is a unique morphism (k, h, χ) : (Y → T,N ) → (X ′ → S′,L′) of Polarized
such that (f, g, φ) ◦ (k, h, χ) = (a, b, ψ). We can just take

χ = ψ ◦ (k∗φ)−1

This proves condition (2). A composition of functors defining fibred categories
defines a fibred category, see Categories, Lemma 33.12. This we see that Polarized
is fibred in groupoids over Schfppf (strictly speaking we should check the fibre
categories are groupoids and apply Categories, Lemma 35.2). □

Lemma 14.3.0D40 The category Polarized is a stack in groupoids over Spaces′
fp,flat,proper

(endowed with the inherited topology, see Stacks, Definition 10.2). The category
Polarized is a stack in groupoids over Schfppf .

Proof. We prove Polarized is a stack in groupoids over Spaces′
fp,flat,proper by check-

ing conditions (1), (2), and (3) of Stacks, Definition 5.1. We have already seen (1)
in Lemma 14.2.
A covering of Spaces′

fp,flat,proper comes about in the following manner: Let X → S

be an object of Spaces′
fp,flat,proper. Suppose that {Si → S}i∈I is a covering of

Schfppf . Set Xi = Si ×S X. Then {(Xi → Si) → (X → S)}i∈I is a covering
of Spaces′

fp,flat,proper and every covering of Spaces′
fp,flat,proper is isomorphic to

one of these. Set Sij = Si ×S Sj and Xij = Sij ×S X so that (Xij → Sij) =
(Xi → Si) ×(X→S) (Xj → Sj). Next, suppose that L,N are ample invertible
sheaves on X/S so that (X → S,L) and (X → S,N ) are two objects of Polarized
over the object (X → S). To check descent for morphisms, we assume we have
morphisms (id, id, φi) from (Xi → Si,L|Xi

) to (Xi → Si,N|Xi
) whose base changes

to morphisms from (Xij → Sij ,L|Xij
) to (Xij → Sij ,N|Xij

) agree. Then φi :
L|Xi → N|Xi are isomorphisms of invertible modules over Xi such that φi and φj

restrict to the same isomorphisms over Xij . By descent for quasi-coherent sheaves
(Descent on Spaces, Proposition 4.1) we obtain a unique isomorphism φ : L → N
whose restriction to Xi recovers φi.
Decent for objects is proved in exactly the same manner. Namely, suppose that
{(Xi → Si)→ (X → S)}i∈I is a covering of Spaces′

fp,flat,proper as above. Suppose
we have objects (Xi → Si,Li) of Polarized lying over (Xi → Si) and a descent
datum

(id, id, φij) : (Xij → Sij ,Li|Xij
)→ (Xij → Sij ,Lj |Xij

)
satisfying the obvious cocycle condition over (Xijk → Sijk) for every triple of
indices. Then by descent for quasi-coherent sheaves (Descent on Spaces, Proposition
4.1) we obtain a unique invertible OX -module L and isomorphisms L|Xi

→ Li
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recovering the descent datum φij . To show that (X → S,L) is an object of Polarized
we have to prove that L is ample. This follows from Descent on Spaces, Lemma
13.1.
Since we already have seen that Spaces′

fp,flat,proper is a stack in groupoids over
Schfppf (Lemma 13.3) it now follows formally that Polarized is a stack in groupoids
over Schfppf . See Stacks, Lemma 10.6. □

Sanity check: the stack Polarized plays the same role among algebraic spaces.

Lemma 14.4.0E94 Let T be an algebraic space over Z. Let ST denote the corresponding
algebraic stack (Algebraic Stacks, Sections 7, 8, and 13). We have an equivalence
of categories(X → T,L) where X → T is a morphism

of algebraic spaces, is proper, flat, and of
finite presentation and L ample on X/T

 −→ MorCat/Schfppf
(ST ,Polarized)

Proof. Omitted. Hints: Argue exactly as in the proof of Lemma 13.4 and use De-
scent on Spaces, Proposition 4.1 to descent the invertible sheaf in the construction
of the quasi-inverse functor. The relative ampleness property descends by Descent
on Spaces, Lemma 13.1. □

Remark 14.5.0D1N Let B be an algebraic space over Spec(Z). Let B-Polarized be the
category consisting of triples (X → S,L, h : S → B) where (X → S,L) is an object
of Polarized and h : S → B is a morphism. A morphism (X ′ → S′,L′, h′)→ (X →
S,L, h) in B-Polarized is a morphism (f, g, φ) in Polarized such that h ◦ g = h′. In
this situation the diagram

B-Polarized //

��

Polarized

��
(Sch/B)fppf

// Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Polarized to the case of families over a given base
algebraic space.

Lemma 14.6.0D41 The functor (14.1.1) defines a 1-morphism
Polarized → Spaces′

fp,flat,proper

of stacks in groupoids over Schfppf which is algebraic in the sense of Criteria for
Representability, Definition 8.1.

Proof. By Lemmas 13.3 and 14.3 the statement makes sense. To prove it, we
choose a scheme S and an object ξ = (X → S) of Spaces′

fp,flat,proper over S. We
have to show that

X = (Sch/S)fppf ×ξ,Spaces′
fp,flat,proper

Polarized

is an algebraic stack over S. Observe that an object of X is given by a pair
(T/S,L) where T is a scheme over S and L is an invertible OXT

-module which is
ample on XT /T . Morphisms are defined in the obvious manner. In particular, we
see immediately that we have an inclusion

X ⊂ PicX/S
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of categories over (Sch/S)fppf , inducing equality on morphism sets. Since PicX/S

is an algebraic stack by Proposition 10.2 it suffices to show that the inclusion above
is representable by open immersions. This is exactly the content of Descent on
Spaces, Lemma 13.2. □

Lemma 14.7.0D42 The diagonal

∆ : Polarized −→ Polarized × Polarized

is representable by algebraic spaces.

Proof. This is a formal consequence of Lemmas 14.6 and 13.2. See Criteria for
Representability, Lemma 8.4. □

Lemma 14.8.0D43 The stack in groupoids Polarized is limit preserving (Artin’s Ax-
ioms, Definition 11.1).

Proof. Let I be a directed set and let (Ai, φii′) be a system of rings over I. Set
S = Spec(A) and Si = Spec(Ai). We have to show that on fibre categories we have

PolarizedS = colimPolarizedSi

We know that the category of schemes of finite presentation over S is the colimit
of the category of schemes of finite presentation over Si, see Limits, Lemma 10.1.
Moreover, givenXi → Si of finite presentation, with limitX → S, then the category
of invertibleOX -modules L is the colimit of the categories of invertibleOXi

-modules
Li, see Limits, Lemma 10.2 and 10.3. If X → S is proper and flat, then for
sufficiently large i the morphism Xi → Si is proper and flat too, see Limits, Lemmas
13.1 and 8.7. Finally, if L is ample on X then Li is ample on Xi for i sufficiently
large, see Limits, Lemma 4.15. Putting everything together finishes the proof. □

Lemma 14.9.0D44 In Situation 5.1. Let

T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

PolarizedS′ −→ PolarizedS ×PolarizedT
PolarizedT ′

is an equivalence.

Proof. By More on Morphisms, Lemma 14.6 there is an equivalence

flat-lfpS′ −→ flat-lfpS ×flat-lfpT
flat-lfpT ′

where flat-lfpS signifies the category of schemes flat and locally of finite presentation
over S. Let X ′/S′ on the left hand side correspond to the triple (X/S, Y ′/T ′, φ)
on the right hand side. Set Y = T ×T ′ Y ′ which is isomorphic with T ×S X via φ.
Then More on Morphisms, Lemma 14.5 shows that we have an equivalence

QCoh-flatX′/S′ −→ QCoh-flatX/S ×QCoh-flatY/T
QCoh-flatY ′/T ′
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where QCoh-flatX/S signifies the category of quasi-coherent OX -modules flat over
S. Since X → S, Y → T , X ′ → S′, Y ′ → T ′ are flat, this will in particular apply
to invertible modules to give an equivalence of categories

Pic(X ′) −→ Pic(X)×Pic(Y ) Pic(Y ′)

where Pic(X) signifies the category of invertible OX -modules. There is a small
point here: one has to show that if an object F ′ of QCoh-flatX′/S′ pulls back to
invertible modules on X and Y ′, then F ′ is an invertible OX′ -module. It follows
from the cited lemma that F ′ is an OX′ -module of finite presentation. By More
on Morphisms, Lemma 16.7 it suffices to check the restriction of F ′ to fibres of
X ′ → S′ is invertible. But the fibres of X ′ → S′ are the same as the fibres of
X → S and hence these restrictions are invertible.

Having said the above we obtain an equivalence of categories if we drop the assump-
tion (for the category of objects over S) that X → S be proper and the assumption
that L be ample. Now it is clear that if X ′ → S′ is proper, then X → S and
Y ′ → T ′ are proper (Morphisms, Lemma 41.5). Conversely, if X → S and Y ′ → T ′

are proper, then X ′ → S′ is proper by More on Morphisms, Lemma 3.3. Similarly,
if L′ is ample on X ′/S′, then L′|X is ample on X/S and L′|Y ′ is ample on Y ′/T ′

(Morphisms, Lemma 37.9). Finally, if L′|X is ample on X/S and L′|Y ′ is ample on
Y ′/T ′, then L′ is ample on X ′/S′ by More on Morphisms, Lemma 3.2. □

Lemma 14.10.0D4S Let k be a field and let x = (X → Spec(k),L) be an object of
X = Polarized over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)
(see Artin’s Axioms, Section 8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section
21) are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 14.9 and
we may apply Artin’s Axioms, Lemma 21.2 to get the vector spaces Tx(k) and
Infx(k) mentioned in (2). Moreover, in the finite type case these spaces agree with
the ones mentioned in part (1) by Artin’s Axioms, Remark 21.7. With this out of
the way we can start the proof.

One proof is to use an argument as in the proof of Lemma 13.8; this would re-
quire us to develop a deformation theory for pairs consisting of a scheme and a
quasi-coherent module. Another proof would be the use the result from Lemma
13.8, the algebraicity of Polarized → Spaces′

fp,flat,proper, and a computation of the
deformation space of an invertible module. However, what we will do instead is to
translate the question into a deformation question on graded k-algebras and deduce
the result that way.

Let Ck be the category of Artinian local k-algebras A with residue field k. We
get a predeformation category p : F → Ck from our object x of X over k, see
Artin’s Axioms, Section 3. Thus F(A) is the category of triples (XA,LA, α), where
(XA,LA) is an object of Polarized over A and α is an isomorphism (XA,LA)×Spec(A)
Spec(k) ∼= (X,L). On the other hand, let q : G → Ck be the category cofibred in
groupoids defined in Deformation Problems, Example 7.1. Choose d0 ≫ 0 (we’ll
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see below how large). Let P be the graded k-algebra

P = k ⊕
⊕

d≥d0
H0(X,L⊗d)

Then y = (k, P ) is an object of G(k). Let Gy be the predeformation category of
Formal Deformation Theory, Remark 6.4. Given (XA,FA, α) as above we set

Q = A⊕
⊕

d≥d0
H0(XA,L⊗d

A )

The isomorphism α induces a map β : Q→ P . By deformation theory of projective
schemes (More on Morphisms, Lemma 10.6) we obtain a 1-morphism

F −→ Gy, (XA,FA, α) 7−→ (Q, β : Q→ P )

of categories cofibred in groupoids over Ck. In fact, this functor is an equivalence
with quasi-inverse given by Q 7→ Proj

A
(Q). Namely, the scheme XA = Proj

A
(Q)

is flat over A by Divisors, Lemma 30.6. Set LA = OXA
(1); this is flat over A by

the same lemma. We get an isomorphism (XA,LA)×Spec(A) Spec(k) = (X,L) from
β. Then we can deduce all the desired properties of the pair (XA,LA) from the
corresponding properties of (X,L) using the techniques in More on Morphisms,
Sections 3 and 10. Some details omitted.

In conclusion, we see that TF = TGy = TyG and Inf(F) = Infy(G). These vector
spaces are finite dimensional by Deformation Problems, Lemma 7.3 and the proof
is complete. □

Lemma 14.11 (Strong formal effectiveness for polarized schemes).0D4T Let (Rn) be
an inverse system of rings with surjective transition maps whose kernels are locally
nilpotent. Set R = limRn. Set Sn = Spec(Rn) and S = Spec(R). Consider a
commutative diagram

X1
i1

//

��

X2
i2

//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of schemes with cartesian squares. Suppose given (Ln, φn) where each Ln is an
invertible sheaf on Xn and φn : i∗nLn+1 → Ln is an isomorphism. If

(1) Xn → Sn is proper, flat, of finite presentation, and
(2) L1 is ample on X1

then there exists a morphism of schemes X → S proper, flat, and of finite presen-
tation and an ample invertible OX-module L and isomorphisms Xn

∼= X×S Sn and
Ln
∼= L|Xn

compatible with the morphisms in and φn.

Proof. Choose d0 for X1 → S1 and L1 as in More on Morphisms, Lemma 10.6.
For any n ≥ 1 set

An = Rn ⊕
⊕

d≥d0
H0(Xn,L⊗d

n )

By the lemma each An is a finitely presented graded Rn-algebra whose homogeneous
parts (An)d are finite projective Rn-modules such that Xn = Proj(An) and Ln =
OProj(An)(1). The lemma also guarantees that the maps

A1 ← A2 ← A3 ← . . .

https://stacks.math.columbia.edu/tag/0D4T
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induce isomorphisms An = Am ⊗Rm
Rn for n ≤ m. We set

B =
⊕

d≥0
Bd with Bd = limn(An)d

By More on Algebra, Lemma 13.3 we see that Bd is a finite projective R-module
and that B ⊗R Rn = An. Thus the scheme

X = Proj(B) and L = OX(1)

is flat over S and L is a quasi-coherent OX -module flat over S, see Divisors,
Lemma 30.6. Because formation of Proj commutes with base change (Construc-
tions, Lemma 11.6) we obtain canonical isomorphisms

X ×S Sn = Xn and L|Xn
∼= Ln

compatible with the transition maps of the system. Thus we may think of X1 ⊂ X
as a closed subscheme. Below we will show that B is of finite presentation over R.
By Divisors, Lemmas 30.4 and 30.7 this implies that X → S is of finite presentation
and proper and that L = OX(1) is of finite presentation as an OX -module. Since
the restriction of L to the base change X1 → S1 is invertible, we see from More on
Morphisms, Lemma 16.8 that L is invertible on an open neighbourhood of X1 in
X. Since X → S is closed and since Ker(R → R1) is contained in the Jacobson
radical (More on Algebra, Lemma 11.3) we see that any open neighbourhood of X1
in X is equal to X. Thus L is invertible. Finally, the set of points in S where L is
ample on the fibre is open in S (More on Morphisms, Lemma 50.3) and contains
S1 hence equals S. Thus X → S and L have all the properties required of them in
the statement of the lemma.

We prove the claim above. Choose a presentation A1 = R1[X1, . . . , Xs]/(F1, . . . , Ft)
where Xi are variables having degrees di and Fj are homogeneous polynomials in
Xi of degree ej . Then we can choose a map

Ψ : R[X1, . . . , Xs] −→ B

lifting the map R1[X1, . . . , Xs] → A1. Since each Bd is finite projective over
R we conclude from Nakayama’s lemma (Algebra, Lemma 20.1 using again that
Ker(R→ R1) is contained in the Jacobson radical of R) that Ψ is surjective. Since
− ⊗R R1 is right exact we can find G1, . . . , Gt ∈ Ker(Ψ) mapping to F1, . . . , Ft

in R1[X1, . . . , Xs]. Observe that Ker(Ψ)d is a finite projective R-module for all
d ≥ 0 as the kernel of the surjection R[X1, . . . , Xs]d → Bd of finite projective R-
modules. We conclude from Nakayama’s lemma once more that Ker(Ψ) is generated
by G1, . . . , Gt. □

Lemma 14.12.0D4U Consider the stack Polarized over the base scheme Spec(Z). Then
every formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms,
Section 9. From the definitions we see the lemma follows immediately from the
more general Lemma 14.11. □

Lemma 14.13.0D4V The stack in groupoids Polarized satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark 14.5) openness of versality
holds over any Noetherian base scheme S.

https://stacks.math.columbia.edu/tag/0D4U
https://stacks.math.columbia.edu/tag/0D4V
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Proof. This follows from Artin’s Axioms, Lemma 20.3 and Lemmas 14.7, 14.9,
14.8, and 14.11. For the “usual” proof of this fact, please see the discussion in the
remark following this proof. □

Remark 14.14.0D4W Lemma 14.13 can also be shown using an obstruction theory as in
Artin’s Axioms, Lemma 22.2 (as in the second proof of Lemma 5.11). To do this one
has to generalize the deformation and obstruction theory developed in Cotangent,
Section 23 to the case of pairs of algebraic spaces and quasi-coherent modules.
Another possibility is to use that the 1-morphism Polarized → Spaces′

fp,flat,proper

is algebraic (Lemma 14.6) and the fact that we know openness of versality for the
target (Lemma 13.9 and Remark 13.10).

Theorem 14.15 (Algebraicity of the stack of polarized schemes).0D4X The stack
Polarized (Situation 14.1) is algebraic. In fact, for any algebraic space B the stack
B-Polarized (Remark 14.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 17.1 and Lemmas
14.7, 14.9, 14.8, 14.12, and 14.13. The case over B follows from this, the description
of B-Polarized as a 2-fibre product in Remark 14.5, and the fact that algebraic
stacks have 2-fibre products, see Algebraic Stacks, Lemma 14.3. □

15. The stack of curves

0D4Y In this section we prove the stack of curves is algebraic. For a further discussion of
moduli of curves, we refer the reader to Moduli of Curves, Section 1.
A curve in the Stacks project is a variety of dimension 1. However, when we speak
of families of curves, we often allow the fibres to be reducible and/or nonreduced.
In this section, the stack of curves will “parametrize proper schemes of dimension
≤ 1”. However, it turns out that in order to get the correct notion of a family we
need to allow the total space of our family to be an algebraic space. This leads to
the following definition.

Situation 15.1.0D4Z We define a category Curves as follows:
(1) Objects are families of curves. More precisely, an object is a morphism

f : X → S where the base S is a scheme, the total space X is an algebraic
space, and f is flat, proper, of finite presentation, and has relative dimension
≤ 1 (Morphisms of Spaces, Definition 33.2).

(2) A morphism (X ′ → S′) → (X → S) between objects is given by a pair
(f, g) where f : X ′ → X is a morphism of algebraic spaces and g : S′ → S
is a morphism of schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is
cartesian.

The forgetful functor
p : Curves −→ Schfppf , (X → S) 7−→ S

is how we view Curves as a category over Schfppf (see Section 2 for notation).

https://stacks.math.columbia.edu/tag/0D4W
https://stacks.math.columbia.edu/tag/0D4X
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It follows from Spaces over Fields, Lemma 9.3 and more generally More on Mor-
phisms of Spaces, Lemma 43.6 that if S is the spectrum of a field, or an Artinian
local ring, or a Noetherian complete local ring, then for any family of curves X → S
the total space X is a scheme. On the other hand, there are families of curves over
A1

k where the total space is not a scheme, see Examples, Section 66.
It is clear that
(15.1.1)0D50 Curves ⊂ Spaces′

fp,flat,proper

and that an object X → S of Spaces′
fp,flat,proper is in Curves if and only if X → S

has relative dimension ≤ 1. We will use this to verify Artin’s axioms for Curves.

Lemma 15.2.0D51 The category Curves is fibred in groupoids over Schfppf .

Proof. Using the embedding (15.1.1), the description of the image, and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.1) this reduces to the following
statement: Given a morphism

X ′ //

��

X

��
S′ // S

in Spaces′
fp,flat,proper (recall that this implies in particular the diagram is cartesian)

if X → S has relative dimension ≤ 1, then X ′ → S′ has relative dimension ≤ 1.
This follows from Morphisms of Spaces, Lemma 34.3. □

Lemma 15.3.0D52 The category Curves is a stack in groupoids over Schfppf .

Proof. Using the embedding (15.1.1), the description of the image, and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.3) this reduces to the following
statement: Given an object X → S of Spaces′

fp,flat,proper and an fppf covering
{Si → S}i∈I the following are equivalent:

(1) X → S has relative dimension ≤ 1, and
(2) for each i the base change Xi → Si has relative dimension ≤ 1.

This follows from Morphisms of Spaces, Lemma 34.3. □

Lemma 15.4.0D53 The diagonal
∆ : Curves −→ Curves × Curves

is representable by algebraic spaces.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.2). □

Remark 15.5.0D54 Let B be an algebraic space over Spec(Z). Let B-Curves be the
category consisting of pairs (X → S, h : S → B) where X → S is an object of
Curves and h : S → B is a morphism. A morphism (X ′ → S′, h′)→ (X → S, h) in
B-Curves is a morphism (f, g) in Curves such that h ◦ g = h′. In this situation the
diagram

B-Curves //

��

Curves

��
(Sch/B)fppf

// Schfppf

https://stacks.math.columbia.edu/tag/0D51
https://stacks.math.columbia.edu/tag/0D52
https://stacks.math.columbia.edu/tag/0D53
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is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Curves to the case of families of curves over a given
base algebraic space.

Lemma 15.6.0D55 The stack Curves → Schfppf is limit preserving (Artin’s Axioms,
Definition 11.1).

Proof. Using the embedding (15.1.1), the description of the image, and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.6) this reduces to the following
statement: Let T = limTi be the limits of a directed inverse system of affine
schemes. Let i ∈ I and let Xi → Ti be an object of Spaces′

fp,flat,proper over Ti.
Assume that T ×Ti

Xi → T has relative dimension ≤ 1. Then for some i′ ≥ i the
morphism Ti′ ×Ti Xi → Ti has relative dimension ≤ 1. This follows from Limits of
Spaces, Lemma 6.14. □

Lemma 15.7.0D56 Let

T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

CurvesS′ −→ CurvesS ×CurvesT
CurvesT ′

is an equivalence.

Proof. Using the embedding (15.1.1), the description of the image, and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.7) this reduces to the following
statement: given a morphism X ′ → S′ of an algebraic space to S′ which is of finite
presentation, flat, proper then X ′ → S′ has relative dimension ≤ 1 if and only if
S ×S′ X ′ → S and T ′ ×S′ X ′ → T ′ have relative dimension ≤ 1. One implication
follows from the fact that having relative dimension ≤ 1 is preserved under base
change (Morphisms of Spaces, Lemma 34.3). The other follows from the fact that
having relative dimension ≤ 1 is checked on the fibres and that the fibres of X ′ → S′

(over points of the scheme S′) are the same as the fibres of S ×S′ X ′ → S since
S → S′ is a thickening by More on Morphisms, Lemma 14.3. □

Lemma 15.8.0D57 Let k be a field and let x = (X → Spec(k)) be an object of X =
Curves over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)
(see Artin’s Axioms, Section 8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section
21) are finite dimensional.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.8). □

Lemma 15.9.0D58 Consider the stack Curves over the base scheme Spec(Z). Then
every formal object is effective.

https://stacks.math.columbia.edu/tag/0D55
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https://stacks.math.columbia.edu/tag/0D57
https://stacks.math.columbia.edu/tag/0D58


QUOT AND HILBERT SPACES 47

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms, Sec-
tion 9. Let (A,m, κ) be a Noetherian complete local ring. Let (Xn → Spec(A/mn))
be a formal object of Curves over A. By More on Morphisms of Spaces, Lemma
43.5 there exists a projective morphism X → Spec(A) and a compatible system of
ismomorphisms X ×Spec(A) Spec(A/mn) ∼= Xn. By More on Morphisms, Lemma
12.4 we see that X → Spec(A) is flat. By More on Morphisms, Lemma 30.6 we see
that X → Spec(A) has relative dimension ≤ 1. This proves the lemma. □

Lemma 15.10.0D59 The stack in groupoids X = Curves satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark 15.5) openness of versality
holds over any Noetherian base scheme S.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 13.9). □

Theorem 15.11 (Algebraicity of the stack of curves).0D5A See [dJHS11,
Proposition 3.3,
page 8] and [Smy13,
Appendix B by Jack
Hall, Theorem B.1].

The stack Curves (Situation
15.1) is algebraic. In fact, for any algebraic space B the stack B-Curves (Remark
15.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 17.1 and Lemmas
15.4, 15.7, 15.6, 15.9, and 15.10. The case over B follows from this, the description
of B-Curves as a 2-fibre product in Remark 15.5, and the fact that algebraic stacks
have 2-fibre products, see Algebraic Stacks, Lemma 14.3. □

Lemma 15.12.0D5B The 1-morphism (15.1.1)
Curves −→ Spaces′

fp,flat,proper

is representable by open and closed immersions.

Proof. Since (15.1.1) is a fully faithful embedding of categories it suffices to show
the following: given an object X → S of Spaces′

fp,flat,proper there exists an open
and closed subscheme U ⊂ S such that a morphism S′ → S factors through U if
and only if the base change X ′ → S′ of X → S has relative dimension ≤ 1. This
follows immediately from More on Morphisms of Spaces, Lemma 31.5. □

Remark 15.13.0D5C Consider the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

This fibre product parametrized polarized curves, i.e., families of curves endowed
with a relatively ample invertible sheaf. It turns out that the left vertical arrow

PolarizedCurves −→ Curves
is algebraic, smooth, and surjective. Namely, this 1-morphism is algebraic (as base
change of the arrow in Lemma 14.6), every point is in the image, and there are no
obstructions to deforming invertible sheaves on curves (see proof of Lemma 15.9).
This gives another approach to the algebraicity of Curves. Namely, by Lemma 15.12
we see that PolarizedCurves is an open and closed substack of the algebraic stack
Polarized and any stack in groupoids which is the target of a smooth algebraic
morphism from an algebraic stack is an algebraic stack.

https://stacks.math.columbia.edu/tag/0D59
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16. Moduli of complexes on a proper morphism

0DLB The title and the material of this section are taken from [Lie06a]. Let S be a scheme
and let f : X → B be a proper, flat, finitely presented morphism of algebraic spaces.
We will prove that there is an algebraic stack

ComplexesX/B

parametrizing “families” of objects of Db
Coh of the fibres with vanishing negative

self-exts. More precisely a family is given by a relatively perfect object of the
derived category of the total space; this somewhat technical notion is studied in
More on Morphisms of Spaces, Section 52.

Already if X is a proper algebraic space over a field k we obtain a very interesting
algebraic stack. Namely, there is an embedding

CohX/k −→ ComplexesX/k

since for any O-module F (on any ringed topos) we have Exti
O(F ,F) = 0 for

i < 0. Although this certainly shows our stack is nonempty, the true motivation for
the study of ComplexesX/k is that there are often objects of the derived category
Db

Coh(OX) with vanishing negative self-exts and nonvanishing cohomology sheaves
in more than one degree. For example, X could be derived equivalent to another
proper algebraic space Y over k, i.e., we have a k-linear equivalence

F : Db
Coh(OY ) −→ Db

Coh(OX)

There are cases where this happens and F is not given by an automorphism between
X and Y ; for example in the case of an abelian variety and its dual. In this situation
F induces an isomorphism of algebraic stacks

ComplexesY/k −→ ComplexesX/k

(insert future reference here) and in particular the stack of coherent sheaves on Y
maps into the stack of complexes on X. Turning this around, if we can understand
well enough the geometry of ComplexesX/k, then we can try to use this to study all
possible derived equivalent Y .

Lemma 16.1.0DLC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let K,E ∈
D(OX). Assume K is pseudo-coherent and E is Y -perfect (More on Morphisms of
Spaces, Definition 52.1). For a field k and a morphism y : Spec(k) → Y denote
Ky, Ey the pullback to the fibre Xy.

(1) There is an open W ⊂ Y characterized by the property

y ∈ |W | ⇔ Exti
OXy

(Ky, Ey) = 0 for i < 0.

(2) For any morphism V → Y factoring through W we have

Exti
OXV

(KV , EV ) = 0 for i < 0

where XV is the base change of X and KV and EV are the derived pullbacks
of K and E to XV .

(3) The functor V 7→ HomOXV
(KV , EV ) is a sheaf on (Spaces/W )fppf repre-

sentable by an algebraic space affine and of finite presentation over W .

https://stacks.math.columbia.edu/tag/0DLC
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Proof. For any morphism V → Y the complex KV is pseudo-coherent (Cohomol-
ogy on Sites, Lemma 45.3) and EV is V -perfect (More on Morphisms of Spaces,
Lemma 52.6). Another observation is that given y : Spec(k) → Y and a field
extension k′/k with y′ : Spec(k′)→ Y the induced morphism, we have

Exti
OX

y′
(Ky′ , Ey′) = Exti

OXy
(Ky, Ey)⊗k k

′

by Derived Categories of Schemes, Lemma 22.6. Thus the vanishing in (1) is really
a property of the induced point y ∈ |Y |. We will use these two observations without
further mention in the proof.

Assume first Y is an affine scheme. Then we may apply More on Morphisms of
Spaces, Lemma 52.11 and find a pseudo-coherent L ∈ D(OY ) which “universally
computes” Rf∗RHom(K,E) in the sense described in that lemma. Unwinding the
definitions, we obtain for a point y ∈ Y the equality

Exti
κ(y)(L⊗L

OY
κ(y), κ(y)) = Exti

OXy
(Ky, Ey)

We conclude that

Hi(L⊗L
OY

κ(y)) = 0 for i > 0⇔ Exti
OXy

(Ky, Ey) = 0 for i < 0.

By Derived Categories of Schemes, Lemma 31.1 the set W of y ∈ Y where this
happens defines an open of Y . This open W then satisfies the requirement in (1)
for all morphisms from spectra of fields, by the “universality” of L.

Let’s go back to Y a general algebraic space. Choose an étale covering {Vi → Y }
by affine schemes Vi. Then we see that the subset W ⊂ |Y | pulls back to the
corresponding subset Wi ⊂ |Vi| for XVi

, KVi
, EVi

. By the previous paragraph we
find that Wi is open, hence W is open. This proves (1) in general. Moreover,
parts (2) and (3) are entirely formulated in terms of the category Spaces/W and
the restrictions XW , KW , EW . This reduces us to the case W = Y .

Assume W = Y . We claim that for any algebraic space V over Y we have
RfV,∗RHom(KV , EV ) has vanishing cohomology sheaves in degrees < 0. This
will prove (2) because

Exti
OXV

(KV , EV ) = Hi(XV , RHom(KV , EV )) = Hi(V,RfV,∗RHom(KV , EV ))

by Cohomology on Sites, Lemmas 35.1 and 20.5 and the vanishing of the cohomology
sheaves implies the cohomology group Hi is zero for i < 0 by Derived Categories,
Lemma 16.1.

To prove the claim, we may work étale locally on V . In particular, we may assume
Y is affine and W = Y . Let L ∈ D(OY ) be as in the second paragraph of the
proof. For an algebraic space V over Y denote LV the derived pullback of L to V .
(An important feature we will use is that L “works” for all algebraic spaces V over
Y and not just affine V .) As W = Y we have Hi(L) = 0 for i > 0 (use More on
Algebra, Lemma 75.5 to go from fibres to stalks). Hence Hi(LV ) = 0 for i > 0.
The property defining L is that

RfV,∗RHom(KV , EV ) = RHom(LV ,OV )

Since LV sits in degrees ≤ 0, we conclude that RHom(LV ,OV ) sits in degrees ≥ 0
thereby proving the claim. This finishes the proof of (2).
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Assume W = Y but make no assumptions on the algebraic space Y . Since we
have (2), we see from Simplicial Spaces, Lemma 35.1 that the functor F given by
F (V ) = HomOXV

(KV , EV ) is a sheaf4 on (Spaces/Y )fppf . Thus to prove that F is
an algebraic space and that F → Y is affine and of finite presentation, we may work
étale locally on Y ; see Bootstrap, Lemma 11.2 and Morphisms of Spaces, Lemmas
20.3 and 28.4. We conclude that it suffices to prove F is an affine algebraic space
of finite presentation over Y when Y is an affine scheme. In this case we go back
to our pseudo-coherent complex L ∈ D(OY ). Since Hi(L) = 0 for i > 0, we can
represent L by a complex of the form

. . .→ O⊕m1
Y → O⊕m0

Y → 0→ . . .

with the last term in degree 0, see More on Algebra, Lemma 64.5. Combining the
two displayed formulas earlier in the proof we find that

F (V ) = Ker(HomV (O⊕m0
V ,OV )→ HomV (O⊕m1

V ,OV ))
In other words, there is a fibre product diagram

F

��

// Y

0
��

Am0
Y

// Am1
Y

which proves what we want. □

Lemma 16.2.0DLD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let E ∈ D(OX).
Assume

(1) E is S-perfect (More on Morphisms of Spaces, Definition 52.1), and
(2) for every point s ∈ S we have

Exti
OXs

(Es, Es) = 0 for i < 0
where Es is the pullback to the fibre Xs.

Then
(a) (1) and (2) are preserved by arbitrary base change V → Y ,
(b) Exti

OXV
(EV , EV ) = 0 for i < 0 and all V over Y ,

(c) V 7→ HomOXV
(EV , EV ) is representable by an algebraic space affine and of

finite presentation over Y .
Here XV is the base change of X and EV is the derived pullback of E to XV .

Proof. Immediate consequence of Lemma 16.1. □

Situation 16.3.0DLE Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. We denote
ComplexesX/B the category whose objects are triples (T, g, E) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X
(3) E is an object of D(OXT

) satisfying conditions (1) and (2) of Lemma 16.2.

4To check the sheaf property for a covering {Vi → V }i∈I first consider the Čech fppf hyper-
covering a : V• → V with Vn =

∐
i0...in

Vi0 ×V . . . ×V Vin and then set U• = V• ×a,V XV . Then
U• → XV is an fppf hypercovering to which we may apply Simplicial Spaces, Lemma 35.1.

https://stacks.math.columbia.edu/tag/0DLD
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A morphism (T, g, E)→ (T ′, g′, E′) is given by a pair (h, φ) where
(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) φ : L(h′)∗E′ → E is an isomorphism of D(OXT

) where h′ : XT → XT ′ is
the base change of h.

Thus ComplexesX/B is a category and the rule
p : ComplexesX/B −→ (Sch/S)fppf , (T, g, E) 7−→ T

is a functor. For a scheme T over S we denote ComplexesX/B,T the fibre category
of p over T . These fibre categories are groupoids.

Lemma 16.4.0DLF In Situation 16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf is
fibred in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2)
of Categories, Definition 35.1. Given an object (T ′, g′, E′) of ComplexesX/B and a
morphism h : T → T ′ of schemes over S we can set g = h ◦ g′ and E = L(h′)∗E′

where h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a
morphism (T, g, E) → (T ′, g′, E′) of ComplexesX/B lying over h. This proves (1).
For (2) suppose we are given morphisms

(h1, φ1) : (T1, g1, E1)→ (T, g, E) and (h2, φ2) : (T2, g2, E2)→ (T, g, E)
of ComplexesX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can
let φ be the composition

L(h′)∗E2
L(h′)∗φ−1

2−−−−−−−→ L(h′)∗L(h2)∗E = L(h1)∗E
φ1−→ E1

to obtain the morphism (h, φ) : (T1, g1, E1)→ (T2, g2, E2) that witnesses the truth
of condition (2). □

Lemma 16.5.0DLG In Situation 16.3. Denote X = ComplexesX/B. Then ∆ : X →
X ×X is representable by algebraic spaces.

Proof. Consider two objects x = (T, g, E) and y = (T, g′, E′) of X over a scheme
T . We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic
Stacks, Lemma 10.11. If for h : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic
in the fibre category XT ′ , then g ◦ h = g′ ◦ h. Hence there is a transformation of
presheaves

IsomX (x, y) −→ Equalizer(g, g′)
Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T by this equalizer and E and E′ by their pullbacks. Thus
we may assume g = g′.
Assume g = g′. After replacing B by T and X by XT we arrive at the following
problem. Given E,E′ ∈ D(OX) satisfying conditions (1), (2) of Lemma 16.2 we
have to show that Isom(E,E′) is an algebraic space. Here Isom(E,E′) is the
functor

(Sch/B)opp → Sets, T 7→ {φ : ET → E′
T isomorphism in D(OXT

)}
where ET and E′

T are the derived pullbacks of E and E′ to XT . Now, let W ⊂ B,
resp. W ′ ⊂ B be the open subspace of B associated to E,E′, resp. to E′, E by
Lemma 16.1. Clearly, if there exists an isomorphism ET → E′

T as in the definition
of Isom(E,E′), then we see that T → B factors into both W and W ′ (because we
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have condition (1) for E and E′ and we’ll obviously have Et
∼= E′

t so no nonzero
maps Et[i]→ Et or E′

t[i]→ Et over the fibre Xt for i > 0. Thus we may replace B
by the open W ∩W ′. In this case the functor H = Hom(E,E′)

(Sch/B)opp → Sets, T 7→ HomOXT
(ET , E

′
T )

is an algebraic space affine and of finite presentation over B by Lemma 16.1. The
same is true for H ′ = Hom(E′, E), I = Hom(E,E), and I ′ = Hom(E′, E′). There-
fore we can repeat the argument of the proof of Proposition 4.3 to see that

Isom(E,E′) = (H ′ ×B H)×c,I×BI′,σ B

for some morphisms c and σ. Thus Isom(E,E′) is an algebraic space. □

Lemma 16.6.0DLH In Situation 16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf is
a stack in groupoids.

Proof. To prove that ComplexesX/B is a stack in groupoids, we have to show that
the presheaves Isom are sheaves and that descent data are effective. The statement
on Isom follows from Lemma 16.5, see Algebraic Stacks, Lemma 10.11. Let us
prove the statement on descent data.
Suppose that {ai : Ti → T} is an fppf covering of schemes over S. Let (ξi, φij) be
a descent datum for {Ti → T} with values in ComplexesX/B . For each i we can
write ξi = (Ti, gi, Ei). Denote pr0 : Ti ×T Tj → Ti and pr1 : Ti ×T Tj → Tj the
projections. The condition that ξi|Ti×T Tj

∼= ξj |Ti×T Tj implies in particular that
gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism g : T → B such that
gi = g ◦ ai, see Descent on Spaces, Lemma 7.2. Denote XT = T ×g,B X. Set
Xi = XTi

= Ti ×gi,B X = Ti ×ai,T XT and
Xij = XTi ×XT

XTj = Xi ×XT
Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi, Ei)
by pr0 : Ti ×T Tj → Ti is given by (Ti ×T Tj , gi ◦ pr0, Lpr∗

iEi). Hence a descent
datum for {Ti → T} in ComplexesX/B is given by the objects (Ti, g ◦ ai, Ei) and for
each pair i, j an isomorphism in DOXij )

φij : Lpr∗
iEi −→ Lpr∗

jEj

satisfying the cocycle condition over the pullback of X to Ti×T Tj×T Tk. Using the
vanishing of negative Exts provided by (b) of Lemma 16.2, we may apply Simplicial
Spaces, Lemma 35.2 to obtain descent5 for these complexes. In other words, we find
there exists an object E in DQCoh(OXT

) restricting to Ei on XTi compatible with
φij . Recall that being T -perfect signifies being pseudo-coherent and having locally
finite tor dimension over f−1OT . Thus E is T -perfect by an application of More on
Morphisms of Spaces, Lemmas 54.1 and 54.2. Finally, we have to check condition
(2) from Lemma 16.2 for E. This immediately follows from the description of the
open W in Lemma 16.1 and the fact that (2) holds for Ei on XTi/Ti. □

Remark 16.7.0DLI In Situation 16.3 the rule (T, g, E) 7→ (T, g) defines a 1-morphism
ComplexesX/B −→ SB

5To check this, first consider the Čech fppf hypercovering a : T• → T with Tn =
∐

i0...in
Ti0 ×T

. . . ×T Tin and then set U• = T• ×a,T XT . Then U• → XT is an fppf hypercovering to which we
may apply Simplicial Spaces, Lemma 35.2.
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of stacks in groupoids (see Lemma 16.6, Algebraic Stacks, Section 7, and Examples
of Stacks, Section 10). Let B′ → B be a morphism of algebraic spaces over S. Let
SB′ → SB be the associated 1-morphism of stacks fibred in sets. Set X ′ = X×BB

′.
We obtain a stack in groupoids ComplexesX′/B′ → (Sch/S)fppf associated to the
base change f ′ : X ′ → B′. In this situation the diagram

ComplexesX′/B′ //

��

ComplexesX/B

��
SB′ // SB

or in
another
notation

ComplexesX′/B′ //

��

ComplexesX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 16.8.0DLJ In Situation 16.3 assume that B → S is locally of finite presenta-
tion. Then p : ComplexesX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms,
Definition 11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to
an object (T, h,E) of ComplexesX/B,T the object h of B(T ) gives us a commutative
diagram of fibre categories

colim ComplexesX/B,Ti
//

��

ComplexesX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assume
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
3.11 that the bottom horizontal arrow is an equivalence. This means that we
may assume T = limTi be a filtered limit of affine schemes over B. Denote gi :
Ti → B and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X
and XT = T ×g,B X. Observe that XT = colimXi. By More on Morphisms of
Spaces, Lemma 52.9 the category of T -perfect objects of D(OXT

) is the colimit of
the categories of Ti-perfect objects of D(OXTi

). Thus all we have to prove is that
given an Ti-perfect object Ei of D(OXTi

) such that the derived pullback E of Ei

to XT satisfies condition (2) of Lemma 16.2, then after increasing i we have that
Ei satisfies condition (2) of Lemma 16.2. Let W ⊂ |Ti| be the open constructed
in Lemma 16.1 for Ei and Ei. By assumption on E we find that T → Ti factors
through T . Hence there is an i′ ≥ i such that Ti′ → Ti factors through W , see
Limits, Lemma 4.10 Then i′ works by construction of W . □

Lemma 16.9.0DLK In Situation 16.3. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a finite order
thickening and Z → Y is affine, see More on Morphisms, Lemma 14.3. Then the
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functor on fibre categories
ComplexesX/B,Y ′ −→ ComplexesX/B,Y ×ComplexesX/B,Z

ComplexesX/B,Z′

is an equivalence.

Proof. Observe that the corresponding map
B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 6.1. Thus using the commutative
diagram

ComplexesX/B,Y ′ //

��

ComplexesX/B,Y ×ComplexesX/B,Z
ComplexesX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 16.7 we may
replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′.
Assume B = Y ′. We first prove fully faithfulness of our functor. To do this, let
ξ1, ξ2 be two objects of ComplexesX/B over Y ′. Then we have to show that

Isom(ξ1, ξ2)(Y ′) −→ Isom(ξ1, ξ2)(Y )×Isom(ξ1,ξ2)(Z) Isom(ξ1, ξ2)(Z ′)
is bijective. However, we already know that Isom(ξ1, ξ2) is an algebraic space over
B = Y ′. Thus this bijectivity follows from Artin’s Axioms, Lemma 4.1 (or the
aforementioned Pushouts of Spaces, Lemma 6.1).
Essential surjectivity. Let (EY , EZ′ , α) be a triple, where EY ∈ D(OY ) and EZ′ ∈
D(OXZ′ ) are objects such that (Y, Y → B,EY ) is an object of ComplexesX/B over
Y , such that (Z ′, Z ′ → B,EZ′) is an object of ComplexesX/B over Z ′, and α :
L(XZ → XY )∗EY → L(XZ → XZ′)∗EZ′ is an isomorphism in D(OZ′). That is to
say

((Y, Y → B,EY ), (Z ′, Z ′ → B,EZ′), α)
is an object of the target of the arrow of our lemma. Observe that the diagram

XZ
//

��

XZ′

��
XY

// XY ′

is a pushout with XZ → XY affine and XZ → XZ′ a thickening (see Pushouts
of Spaces, Lemma 6.7). Hence by Pushouts of Spaces, Lemma 8.1 we find an
object EY ′ ∈ D(OXY ′ ) together with isomorphisms L(XY → XY ′)∗EY ′ → EY and
L(XZ′ → XY ′)∗EY ′ → EZ compatible with α. Clearly, if we show that EY ′ is
Y ′-perfect, then we are done, because property (2) of Lemma 16.2 is a property on
points (and Y and Y ′ have the same points). This follows from More on Morphisms
of Spaces, Lemma 54.4. □

Lemma 16.10.0DLL In Situation 16.3 assume that S is a locally Noetherian scheme
and B → S is locally of finite presentation. Let k be a finite type field over S and let
x0 = (Spec(k), g0, E0) be an object of X = ComplexesX/B over k. Then the spaces
TFX ,k,x0 and Inf(FX ,k,x0) (Artin’s Axioms, Section 8) are finite dimensional.
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Proof. Observe that by Lemma 16.9 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 18. In particular X satisfies (RS). Hence
all associated predeformation categories are deformation categories (Artin’s Ax-
ioms, Lemma 6.1) and the statement makes sense.

In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k) ×g0,B X and denote X0 = ComplexesX0/k. In Remark 16.7 we have
seen that X0 is the 2-fibre product of X with Spec(k) over B as categories fibred
in groupoids over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 8.2 we reduce
to proving that B, Spec(k), and X0 have finite dimensional tangent spaces and
infinitesimal automorphism spaces. The tangent space of B and Spec(k) are finite
dimensional by Artin’s Axioms, Lemma 8.1 and of course these have vanishing Inf.
Thus it suffices to deal with X0.

Let k[ϵ] be the dual numbers over k. Let Spec(k[ϵ])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ϵ]) → Spec(k) coming from the inclusion
k → k[ϵ]. Set X0 = Spec(k)×B X and Xϵ = Spec(k[ϵ])×B X. Observe that Xϵ is a
first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ϵ]).
Observe that X0 and Xϵ give rise to canonically equivalent small étale topoi, see
More on Morphisms of Spaces, Section 9. By More on Morphisms of Spaces, Lemma
54.4 we see that TFX0,k,x0 is the set of isomorphism classes of lifts of E0 to Xϵ in
the sense of Deformation Theory, Lemma 16.7. We conclude that

TFX0,k,x0 = Ext1
OX0

(E0, E0)

Here we have used the identification ϵk[ϵ] ∼= k of k[ϵ]-modules. Using Deformation
Theory, Lemma 16.7 once more we see that there is a surjection

Inf(FX ,k,x0)← Ext0
OX0

(E0, E0)

of k-vector spaces. As E0 is pseudo-coherent it lies in D−
Coh(OX0) by Derived

Categories of Spaces, Lemma 13.7. Since E0 locally has finite tor dimension and
X0 is quasi-compact we see E0 ∈ Db

Coh(OX0). Thus the Exts above are finite
dimensional k-vector spaces by Derived Categories of Spaces, Lemma 8.4. □

Lemma 16.11.0DLM In Situation 16.3 assume B = S is locally Noetherian. Then
strong formal effectiveness in the sense of Artin’s Axioms, Remark 20.2 holds for
p : ComplexesX/S → (Sch/S)fppf .

Proof. Let (Rn) be an inverse system of S-algebras with surjective transition maps
whose kernels are locally nilpotent. Set R = limRn. Let (ξn) be a system of objects
of ComplexesX/B lying over (Spec(Rn)). We have to show (ξn) is effective, i.e., there
exists an object ξ of ComplexesX/B lying over Spec(R).

Write XR = Spec(R) ×S X and Xn = Spec(Rn) ×S X. Of course Xn is the base
change of XR by R → Rn. Since S = B, we see that ξn corresponds simply
to an Rn-perfect object En ∈ D(OXn

) satisfying condition (2) of Lemma 16.2. In
particular En is pseudo-coherent. The isomorphisms ξn+1|Spec(Rn) ∼= ξn correspond
to isomorphisms L(Xn → Xn+1)∗En+1 → En. Therefore by Flatness on Spaces,
Theorem 13.6 we find a pseudo-coherent object E of D(OXR

) with En equal to the
derived pullback of E for all n compatible with the transition isomorphisms.
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Observe that (R,Ker(R → R1)) is a henselian pair, see More on Algebra, Lemma
11.3. In particular, Ker(R → R1) is contained in the Jacobson radical of R. Then
we may apply More on Morphisms of Spaces, Lemma 54.5 to see that E is R-perfect.
Finally, we have to check condition (2) of Lemma 16.2. By Lemma 16.1 the set of
points t of Spec(R) where the negative self-exts of Et vanish is an open. Since this
condition is true in V (Ker(R → R1)) and since Ker(R → R1) is contained in the
Jacobson radical of R we conclude it holds for all points. □

Theorem 16.12 (Algebraicity of moduli of complexes on a proper morphism).0DLN [Lie06a]Let
S be a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume
that f is proper, flat, and of finite presentation. Then ComplexesX/B is an algebraic
stack over S.

Proof. Set X = ComplexesX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 16.6 and
16.5). Hence it suffices to find a scheme W and a surjective and smooth morphism
W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = ComplexesX′/B′ is
equal to the 2-fibre product of X with the category fibred in sets associated to B′

over the category fibred in sets associated to B (Remark 16.7). By the material in
Algebraic Stacks, Section 10 the morphism X ′ → X is surjective and étale. Hence
it suffices to prove the result for X ′. In other words, we may assume B is a scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is proper, flat, of finite presentation and whose base
change to Λ is X. See Limits of Spaces, Lemmas 7.1, 6.12, and 6.13. If we show that
ComplexesXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark
16.7 and Algebraic Stacks, Section 19) that X is an algebraic stack. Thus we may
assume that Λ is a finite type Z-algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that
X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition
50.12. Hence all local rings of S are G-rings. Thus (5) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms, Section 14. We omit the
verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas
16.6, 16.8, 16.9, 16.10. Condition (3) follows from Lemma 16.11. Condition (1) is
Lemma 16.5.
It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma 20.3. We have already seen that X has diagonal rep-
resentable by algebraic spaces, has (RS*), and is limit preserving (see lemmas used
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above). Hence we only need to see that X satisfies the strong formal effectiveness
formulated in Artin’s Axioms, Lemma 20.3. This follows from Lemma 16.11 and
the proof is complete. □
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