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1. Introduction

0H4C A foundational reference is [SV00].

In this chapter we only define what are called the universally integral relative cycles
in [SV00]. This choice makes the theory somewhat simpler to develop than in the
original, but of course we also lose something.

Fix a morphism X → S of finite type between Noetherian schemes. A family α of
r-cycles on fibres of X/S is simply a collection α = (αs)s∈S where αs ∈ Zr(Xs). It
is immediately clear how to base change g∗α of α along any morphism g : S′ → S.
Then we say α is a relative r-cycle on X/S if α is compatible with specializations,
i.e., for any morphism g : S′ → S where S′ is the spectrum of a discrete valuation
ring, we require the generic fibre of g∗α to specialize to the closed fibre of g∗α. See
Section 6.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Conventions and notation

0H4D Please consult the chapter on Chow Homology and Chern Classes for our conven-
tions and notation regarding cycles on schemes locally of finite type over a fixed
Noetherian base, see Chow Homology, Section 7 ff.

In particular, if X is locally of finite type over a field k, then Zr(X) denotes the
group of cycles of dimension r, see Chow Homology, Example 7.2 and Section 8.
Given an integral closed subscheme Z ⊂ X with dim(Z) = r we have [Z] ∈ Zr(X)
and if X is quasi-compact, then Zr(X) is free abelian on these classes.

3. Cycles relative to fields

0H4E Let k be a field. Let X be a locally algebraic scheme over k. Let r ≥ 0 be an
integer. In this setting we have the group Zr(X) of r-cycles on X, see Section 2.

Base change. For any field extension k′/k there is a base change map Zr(X) →
Zr(Xk′), see Chow Homology, Section 67. Namely, given an integral closed sub-
scheme Z ⊂ X of dimension r we send [Z] ∈ Zr(X) to the r-cycle [Zk′ ]r ∈ Zr(Xk′)
associated to the closed subscheme Zk′ ⊂ Xk′ (of course in general Zk′ is nei-
ther irreducible nor reduced). The base change map Zr(X) → Zr(Xk′) is always
injective.

Lemma 3.1.0H4F Let K/k be a field extension. Let Z be an integral locally algebraic
scheme over k. The multiplicity mZ′,ZK

of an irreducible component Z ′ ⊂ ZK is 1
or a power of the characteristic of k.

Proof. If the characteristic of k is zero, then k is perfect and the multiplicity is
always 1 since XK is reduced by Varieties, Lemma 6.4. Assume the characteristic
of k is p > 0. Let L be the function field of Z. Since Z is locally algebraic over
k, the field extension L/k is finitely generated. The ring K ⊗k L is Noetherian
(Algebra, Lemma 31.8). Translated into algebra, we have to show that the length
of the artinian local ring (K ⊗k L)q is a power of p for every minimal prime ideal q.

Let L′/L be a finite purely inseparable extension, say of degree pn. Then K ⊗k L ⊂
K ⊗k L′ is a finite free ring map of degree pn which induces a homeomorphism on
spectra and purely inseparable residue field extensions. Hence for every minimal
prime q as above there is a unique minimal prime q′ ⊂ K ⊗k L′ lying over it and

pnlength((K ⊗k L)q) = [κ(q′) : κ(q)]length((K ⊗k L′)q′)

by Algebra, Lemma 52.12 applied to M = (K ⊗k L′)q′ ∼= (K ⊗k L)⊕pn

q . Since
[κ(q′) : κ(q)] is a power of p we conclude that it suffices to prove the statement for
L′ and q′.

By the previous paragraph and Algebra, Lemma 45.3 we may assume that we have
a subfield L/k′/k such that L/k′ is separable and k′/k is finite purely inseparable.
Then K ⊗k k′ is an Artinian local ring. The argument of the preceding paragraph
(applied to L = k and L′ = k′) shows that length(K ⊗k k′) is a power of p.
Since L/k′ is the localization of a smooth k′-algebra (Algebra, Lemma 158.10).
Hence S = (K ⊗k L)q is the localization of a smooth R = K ⊗k k′-algebra at a
minimal prime. Thus R → S is a flat local homomorphism of Artinian local rings
and mRS = mS . It follows from Algebra, Lemma 52.13 that length(K ⊗k k′) =
length(R) = length(S) = length((K ⊗k L)q) and the proof is finished. □

https://stacks.math.columbia.edu/tag/0H4F
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Lemma 3.2.0H4G Let k be a field of characteristic p > 0 with perfect closure kperf .
Let X be an algebraic scheme over k. Let r ≥ 0 be an integer. The cokernel of the
injective map Zr(X) → Zr(Xkperf ) is a p-power torsion module (More on Algebra,
Definition 88.1).

Proof. Since X is quasi-compact, the abelian group Zr(X) is free with basis given
by the integral closed subschemes of dimension r. Similarly for Zr(Xkperf ). Since
Xkperf → X is a homeomorphism, it follows that Zr(X) → Zr(Xkperf ) is injective
with torsion cokernel. Every element in the cokernel is p-power torsion by Lemma
3.1. □

4. Specialization of cycles

0H4H Let R be a discrete valuation ring with fraction field K and residue field κ. Let X
be a scheme locally of finite type over R. Let r ≥ 0. There is a specialization map

spX/R : Zr(XK) −→ Zr(Xκ)
defined as follows. For an integral closed subscheme Z ⊂ XK of dimension r we
denote Z the scheme theoretic image of Z → X. Then we let spX/R be the unique
Z-linear map such that

spX/R([Z]) = [Zκ]r
We briefly discuss why this is well defined. First, observe that the morphism XK →
X is quasi-compact and hence the morphism Z → X is quasi-compact. Thus
taking the scheme theoretic image of Z → X commutes with flat base change by
Morphisms, Lemma 25.16. In particular, base changing back to XK we see that
Z = ZK . Since Z is integral, of course Z is integral too and in fact is equal to the
unique integral closed subscheme whose generic point is the (image of the) generic
point of Z. It follows from Varieties, Lemma 19.2 that Zκ is equidimensional of
dimension r.

Lemma 4.1.0H4I Let R be a discrete valuation ring with fraction field K and residue
field κ. Let X be a scheme locally of finite type over R. Let r ≥ 0. Let F be a coher-
ent OX-module flat over R. Assume dim(Supp(FK)) ≤ r. Then dim(Supp(Fκ)) ≤ r
and

spX/R([FK ]r) = [Fκ]r
Proof. The statement on dimension follows from More on Morphisms, Lemma
18.4. Let x be a generic point of an integral closed subscheme Z ⊂ Xκ of dimension
r. To finish the proof we wil show that the coefficient of [Z] in the left (L) and
right hand side (R) of equality are the same.
Let A = OX,x and M = Fx. Observe that M is a finite A-module flat over R. Let
π ∈ R be a uniformizer so that A/πA = OXκ,x. By Chow Homology, Lemma 3.2
we have ∑

i
lengthA(A/(π, qi))lengthAqi

(Mqi) = lengthA(M/πM)

where the sum is over the minimal primes qi in the support of M . Since π is a
nonzerodivisor on M we see that π ̸∈ qi and hence these primes correspond to those
generic points yi ∈ XK of the support of FK which specialize to our chosen x ∈ Xκ.
Thus the left hand side is the coefficient of [Z] in (L). Of course lengthA(M/πM)
is the coefficient of [Z] in (R). This finishes the proof. □

https://stacks.math.columbia.edu/tag/0H4G
https://stacks.math.columbia.edu/tag/0H4I
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Lemma 4.2.0H4J Let R be a discrete valuation ring with fraction field K and residue
field κ. Let X be a scheme locally of finite type over R. Let r ≥ 0. Let W ⊂ X be
a closed subscheme flat over R. Assume dim(WK) ≤ r. Then dim(Wκ) ≤ r and

spX/R([WK ]r) = [Wκ]r

Proof. Taking F = OW this is a special case of Lemma 4.1. See Chow Homology,
Lemma 10.3. □

Lemma 4.3.0H4K Let R′/R be an extension of discrete valuation rings inducing fraction
field extension K ′/K and residue field extension κ′/κ (More on Algebra, Definition
111.1). Let X be locally of finite type over R. Denote X ′ = XR′ . Then the diagram

Zr(X ′
K′) spX′/R′

// Zr(X ′
κ′)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are base change maps.

Proof. Observe that X ′
K′ = XK′ = XK ×Spec(K) Spec(K ′) and similarly for closed

fibres, so that the vertical arrows indeed make sense (see Section 3). Now if Z ⊂ XK

is an integral closed subscheme with scheme theoretic image Z ⊂ X, then we see
that ZK′ ⊂ XK′ is a closed subscheme with scheme theoretic image ZR′ ⊂ XR′ .
The base change of [Z] is [ZK′ ]r = [ZK′ ]r by definition. We have

spX/R([Z]) = [Zκ]r and spX′/R′([ZK′ ]r) = [(ZR′)κ′ ]r

by Lemma 4.1. Since (ZR′)κ′ = (Zκ)κ′ we conclude. □

Lemma 4.4.0H4L Let R be a discrete valuation ring with fraction field K and residue
field κ. Let X be a scheme locally of finite type over R. Let f : X ′ → X be a
morphism which is locally of finite type, flat, and of relative dimension e. Then the
diagram

Zr+e(X ′
K)

spX′/R

// Zr+e(X ′
κ)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are given by flat pullback.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f−1(Z) = X ′ ×X Z. Since R is a valuation ring, Z is flat over R.
Hence Z ′ is flat over R and spX′/R([Z ′

K ]r+e) = [Z ′
κ]r+e by Lemma 4.2. Since by

Chow Homology, Lemma 14.4 we have f∗
K [ZK ] = [Z ′

K ]r+e and f∗
κ [Zκ]r = [Z ′

κ]r+e

we win. □

Lemma 4.5.0H4M Let R be a discrete valuation ring with fraction field K and residue
field κ. Let f : X → Y be a proper morphism of schemes locally of finite type over

https://stacks.math.columbia.edu/tag/0H4J
https://stacks.math.columbia.edu/tag/0H4K
https://stacks.math.columbia.edu/tag/0H4L
https://stacks.math.columbia.edu/tag/0H4M
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R. Then the diagram

Zr(XK)
spX/R

//

��

Zr(Xκ)

��
Zr(YK)

spY/R // Zr(Yκ)

commutes where r ≥ 0 and the vertical arrows are given by proper pushforward.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f(Z) ⊂ Y . Then Z ′ is an integral closed subscheme of Y dominating
R. Thus spY/R([Z ′

K ]) = [Z ′
κ]r.

We can think of [Z] as an element of Zr+1(X). By definition we have f∗[Z] = 0 if
dim(Z ′) < r + 1 and f∗[Z] = d[Z ′] if Z → Z ′ is generically finite of degree d. Since
proper pushforward commutes with flat pullback by YK → Y (Chow Homology,
Lemma 15.1) we see that correspondingly fK,∗[ZK ] = 0 or fK,∗[ZK ] = d[Z ′

K ]. Let
us apply Chow Homology, Lemma 29.8 to the commutative diagram

Xκ

��

i
// X

��
Yκ

j // Y

We obtain that fκ,∗[Zκ]r = 0 or fκ,∗[Zκ] = d[Z ′
κ]r because clearly i∗[Z] = [Zk]r

and j∗[Z ′] = [Z ′
κ]r. Putting everything together we conclude. □

5. Families of cycles on fibres

0H4N Let f : X → S be a morphism of schemes which is locally of finite type. Let r ≥ 0
be an integer. A family α of r-cycles on fibres of X/S is a family

α = (αs)s∈S

indexed by the points s of the scheme S where αs ∈ Zr(Xs) is an r cycle on the
scheme theoretic fibre Xs of f at s. There are various constructions we can perform
on families of r-cycles on fibres.
Base change. Let

X ′ //

��

X

f

��
S′ g // S

be a catesian square of morphisms of schemes with f locally of finite type. Let
r ≥ 0 be an integer. Given a family α of r-cycles on fibres of X/S we define the
base change g∗α of α to be the family

g∗α = (α′
s′)s′∈S′

where α′
s′ ∈ Zr(X ′

s′) is the base change of the cycle αs with s′ = g(s) as in Section
3 via the identitification X ′

s′ = Xs ×Spec(κ(s)) Spec(κ(s′)) of scheme theoretic fibres.
Restriction. Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let U ⊂ X and V ⊂ S be open subschemes
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with f(U) ⊂ V . Given a family α of r-cycles on fibres of X/S we can define the
restriction α|U of α to be the family of r-cycles on fibres of U/V

α|U = (αs|Us
)s∈V

of restrictions to scheme theoretic fibres.
Flat pullback. Let X → S be a morphism of schemes which is locally of finite
type. Let r, e ≥ 0 be integers. Let f : X ′ → X be a flat morphism, locally of finite
type, and of relative dimension e. Given a family α of r-cycles on fibres of X/S we
define the flat pullback f∗α of α to be the family of (r + e)-cycles on fibres

f∗α = (f∗
s αs)s∈S

where f∗
s αs ∈ Zr+e(X ′

s) is the flat pullback of the cycle αs in Zr(Xs) by the flat
morphism fs : X ′

s → Xs of relative dimension e of scheme theoretic fibres.
Proper pushforward. Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes with X and Y locally of finite
type over S and f proper. Let r ≥ 0 be an integer. Given a family α of r-cycles on
fibres of X/S we define the proper pushforward f∗α of α to be the family of r-cycles
on fibres of Y/S by

f∗α = (fs,∗αs)s∈S

where fs,∗αs ∈ Zr(Ys) is the proper pushforward of the cycle αs in Zr(Xs) by the
proper morphism fs : Xs → Ys of scheme theoretic fibres.

Lemma 5.1.0H4P We have the following compatibilities between the operations above:
(1) base change is functorial, (2) restriction is a combination of base change and
(a special case of) flat pullback, (3) flat pullback commutes with base change, (4)
flat pullback is functorial, (5) proper pushforward commutes with base change, (6)
proper pushforward is functorial, and (7) proper pushforward commutes with flat
pullback.

Proof. Each of these compatibilities follows directly from the corresponding results
proved in the chapter on Chow homology applied to the fibres over S of the schemes
in question. We omit the precise statements and the detailed proofs. Here are some
references. Part (1): Chow Homology, Lemma 67.9. Part (2): Obvious. Part (3):
Chow Homology, Lemma 67.5. Part (4): Chow Homology, Lemma 14.3. Part (5):
Chow Homology, Lemma 67.6. Part (6): Chow Homology, Lemma 12.2. Part (7):
Chow Homology, Lemma 15.1. □

Example 5.2.0H4Q Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let F be a quasi-coherent OX -module of finite type.
For s ∈ S denote Fs the pullback of F to Xs. Assume dim(Supp(Fs)) ≤ r for all
s ∈ S. Then we can associate to F the family [F/X/S]r of r-cycles on fibres of
X/S defined by the formula

[F/X/S]r = ([Fs]r)s∈S

where [Fs]r is given by Chow Homology, Definition 10.2.

https://stacks.math.columbia.edu/tag/0H4P
https://stacks.math.columbia.edu/tag/0H4Q
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Lemma 5.3.0H4R The construction in Example 5.2 is compatible with base change,
restriction, and flat pullback.

Proof. See Chow Homology, Lemmas 67.3 and 14.4. □

Example 5.4.0H4S Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let Z ⊂ X be a closed subscheme. For s ∈ S denote
Zs the inverse image of Z in Xs or equivalently the scheme theoretic fibre of Z at
s viewed as a closed subscheme of Xs. Assume dim(Zs) ≤ r for all s ∈ S. Then we
can associate to Z the family [Z/X/S]r of r-cycles on fibres of X/S defined by the
formula

[Z/X/S]r = ([Zs]r)s∈S

where [Zs]r is given by Chow Homology, Definition 9.2.

Lemma 5.5.0H4T The construction in Example 5.4 is compatible with base change,
restriction, and flat pullback.

Proof. Taking F = (Z → X)∗OZ this is a special case of Lemma 5.3. See Chow
Homology, Lemma 10.3. □

Remark 5.6 (Support).0H4U Let f : X → S be a morphism of schemes which is locally
of finite type. Let r ≥ 0 be an integer. Let α be a family of r-cycles on fibres of
X/S. We define the support of α to be

Supp(α) =
⋃

s∈S
Supp(αs) ⊂ X

Here Supp(αs) ⊂ Xs is the support of the cycle αs, see Chow Homology, Definition
8.3. The support Supp(α) is rarely a closed subset of X.

Lemma 5.7.0H4V Taking the support as in Remark 5.6 is compatible with base change,
restriction, and flat pullback.

Proof. Omitted. □

Lemma 5.8.0H4W Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let g : S′ → S be a surjective morphism of schemes.
Set S′′ = S′ ×S S′ and let f ′ : X ′ → S′ and f ′′ : X ′′ → S′′ be the base changes of
f . Let x ∈ X with trdegκ(f(x))(κ(x)) = r.

(1) There exists an x′ ∈ X ′ mapping to x with trdegκ(f ′(x′))(κ(x′)) = r.
(2) If x′

1, x′
2 ∈ X ′ are both as in (1), then there exists an x′′ ∈ X ′′ with

trdegκ(f ′′(x′′))(κ(x′′)) = r and pri(x′′) = x′
i.

Proof. Part (1) is Morphisms, Lemma 28.3. Let x′
1, x′

2 be as in (2). Then since
X ′′ = X ′ ×X X ′ we see that there exists a x′′ ∈ X ′′ mapping to both x′

1 and x′
2 (see

for example Descent, Lemma 13.1). Denote s′′ ∈ S′′, s′
i ∈ S′, and s ∈ S the images

of x′′, x′
i, and x. Denote k = κ(s) and let Z ⊂ Xk be the integral closed subscheme

whose generic point is x. Then x′
i is a generic point of an irreducible component

of Zκ(s′
i
). Let Z ′′ ⊂ Zκ(s′′) be an irreducible component containing x′′. Denote

ξ′′ ∈ Z ′′ the generic point. Since ξ′′ ⇝ x′′ we see that ξ′′ must also map to x′
i under

the two projections. On the other hand, we see that trdegκ(s′′)(κ(ξ′′)) = r because
it is a generic point of an irreducible component of the base change of Z. □

https://stacks.math.columbia.edu/tag/0H4R
https://stacks.math.columbia.edu/tag/0H4S
https://stacks.math.columbia.edu/tag/0H4T
https://stacks.math.columbia.edu/tag/0H4U
https://stacks.math.columbia.edu/tag/0H4V
https://stacks.math.columbia.edu/tag/0H4W
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Lemma 5.9.0H4X Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let g : S′ → S be a morphism of schemes and
X ′ = S′ ×S X. Assume that for every s ∈ S there exists a point s′ ∈ S′ with
g(s′) = s and such that κ(s′)/κ(s) is a separable extension of fields. Then

(1) For families α1 and α2 of r-cycles on fibres of X/S if g∗α1 = g∗α2, then
α1 = α2.

(2) Given a family α′ of r-cycles on fibres of X ′/S′ if pr∗
1α′ = pr∗

2α′ as families
of r-cycles on fibres of (S′ ×S S′) ×S X/(S′ ×S S′), then there is a unique
family α of r-cycles on fibres of X/S such that g∗α = α′.

Proof. Part (1) follows from the injectivity of the base change map discussed in
Section 3. (This argument works as long as S′ → S is surjective.)
Let α′ be as in (2). Denote α′′ = pr∗

1α′ = pr∗
2α′ the common value.

Let (X/S)(r) be the set of x ∈ X with trdegκ(f(x))(κ(x)) = r and similarly de-
fine (X ′/S′)(r) and (X ′′/S′′)(r) Taking coefficients, we may think of α′ and α′′ as
functions α′ : (X ′/S′)(r) → Z and α′′ : (X ′′/S′′)(r) → Z. Given a function

φ : (X/S)(r) → Z
we define g∗φ : (X ′/S′)(r) → Z by analogy with our base change operation. Namely,
say x′ ∈ (X ′/S′)(r) maps to x ∈ X, s′ ∈ S′, and s ∈ Z. Denote Z ′ ⊂ X ′

s′ and
Z ⊂ Xs the integral closed subschemes with generic points x′ and x. Note that
dim(Z ′) = r. If dim(Z) < r, then we set (g∗φ)(x′) = 0. If dim(Z) = r, then Z ′

is an irreducible component of Zs′ and hence has a multiplicity mZ′,Zs′ . Call this
m(x′, g). Then we define

(g∗φ)(x′) = m(x′, g)φ(x)
Note that the coefficients m(x′, g) are always positive integers (see for example
Lemma 3.1). We similarly have base change maps

pr∗
1, pr∗

2 : Map((X ′/S′)(r), Z) −→ Map((X ′′/S′′)(r), Z)
It follows from the associativity of base change that we have pr∗

1 ◦ g∗ = pr∗
2 ◦ g∗

(small detail omitted). To be explicity, in terms of the maps of sets this equality
just means that for x′′ ∈ (X ′′/S′′)(r) we have

m(x′′, pr1)m(pr1(x′′), g) = m(x′′, pr2)m(pr2(x′′), g)
provided that pr1(x′′) and pr2(x′′) are in (X ′′/S′′)(r). By Lemma 5.8 and an el-
ementary argument1 using the previous displayed equation, it follows that there
exists a unique map

α : (X/S)(r) → Q
such that g∗α = α′. To finish the proof it suffices to show that α has integer
values (small detail omitted: one needs to see that α determines a locally finite
sum on each fibre which follows from the corresponding fact for α′). Given any
x ∈ (X/S)(r) with image s ∈ S we can pick a point s′ ∈ S′ such that κ(s′)/κ(s)
is separable. Then we may choose x′ ∈ (X ′/S′)(r) mapping to s and x and we see
that m(x′, g) = 1 because Zs′ is reduced in this case. Whence α(x) = α′(x′) is an
integer. □

1Given x ∈ (X/S)(r) pick x′ ∈ (X′/S′)(r) mapping to x and set α(x) = α′(x′)/m(x′, g). This
is well defined by the formula and the lemma.

https://stacks.math.columbia.edu/tag/0H4X
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Lemma 5.10.0H4Y Let g : S′ → S be a bijective morphism of schemes which induces
isomorphisms of residue fields. Let f : X → S be locally of finite type. Set X ′ =
S′ ×S X. Let r ≥ 0. Then base change by g determines a bijection between the
group of families of r-cycles on fibres of X/S and the group of families of r-cycles
on fibres of X ′/S′.

Proof. Omitted. □

6. Relative cycles

0H4Z Here is the definition we will work with; see Section 15 for a comparison with the
definitions in [SV00].

Definition 6.1.0H50 Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of schemes which is locally of finite type. Let r ≥ 0 be an integer. A
relative r-cycle on X/S is a family α of r-cycles on fibres of X/S such that for every
morphism g : S′ → S where S′ is the spectrum of a discrete valuation ring we have

spX′/S′(αη) = α0

where spX′/S′ is as in Section 4 and αη (resp. α0) is the value of the base change
g∗α of α at the generic (resp. closed) point of S′. The group of all relative r-cycles
on X/S is denoted z(X/S, r).

Lemma 6.2.0H51 Let α be a relative r-cycle on X/S as in Definition 6.1. Then
any restriction, base change, flat pullback, or proper pushforward of α is a relative
r-cycle.

Proof. For flat pullback use Lemma 4.4. Restriction is a special case of flat pull-
back. To see it holds for base change use that base change is transitive. For proper
pushforward use Lemma 4.5. □

Lemma 6.3.0H52 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a family
of r-cycles on fibres of X/S. Let {gi : Si → S} be a h covering (More on Flatness,
Definition 34.2). Then α is a relative r-cycle if and only if each base change g∗

i α
is a relative r-cycle.

Proof. If α is a relative r-cycle, then each base change g∗
i α is a relative r-cycle by

Lemma 6.2. Assume each g∗
i α is a relative r-cycle. Let g : S′ → S be a morphism

where S′ is the spectrum of a discrete valuation ring. After replacing S by S′, X by
X ′ = X ×S S′, and α by α′ = g∗α and using that the base change of a h covering
is a h covering (More on Flatness, Lemma 34.9) we reduce to the problem studied
in the next paragraph.
Assume S is the spectrum of a discrete valuation ring with closed point 0 and
generic point η. We have to show that spX/S(αη) = α0. Since a h covering is a V
covering (by definition), there is an i and a specialization s′ ⇝ s of points of Si with
gi(s′) = η and gi(s) = 0, see Topologies, Lemma 10.13. By Properties, Lemma 5.10
we can find a morphism h : S′ → Si from the spectrum S′ of a discrete valuation
ring which maps the generic point η′ to s′ and maps the closed point 0′ to s. Denote
α′ = h∗g∗

i α. By assumption we have spX′/S′(α′
η′) = α′

0′ . Since g = gi ◦ h : S′ → S
is the morphism of schemes induced by an extension of discrete valuation rings we
conclude that spX/S and spX′/S′ are compatible with base change maps on the

https://stacks.math.columbia.edu/tag/0H4Y
https://stacks.math.columbia.edu/tag/0H50
https://stacks.math.columbia.edu/tag/0H51
https://stacks.math.columbia.edu/tag/0H52
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fibres, see Lemma 4.3. We conclude that spX/S(αη) = α0 because the base change
map Zr(X0) → Zr(X ′

0′) is injective as discussed in Section 3. □

Lemma 6.4.0H53 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a family
of r-cycles on fibres of X/S. Let {fi : Xi → X} be a jointly surjective family of flat
morphisms, locally of finite type, and of relative dimension e. Then α is a relative
r-cycle if and only if each flat pullback f∗

i α is a relative r-cycle.
Proof. If α is a relative r-cycle, then each pull back f∗

i α is a relative r-cycle by
Lemma 6.2. Assume each f∗

i α is a relative r-cycle. Let g : S′ → S be a morphism
where S′ is the spectrum of a discrete valuation ring. After replacing S by S′, X
by X ′ = X ×S S′, and α by α′ = g∗α we reduce to the problem studied in the next
paragraph.
Assume S is the spectrum of a discrete valuation ring with closed point 0 and
generic point η. We have to show that spX/S(αη) = α0. Denote fi,0 : Xi,0 → X0
the base change of fi to the closed point of S. Similarly for fi,η. Observe that

f∗
i,0spX/S(αη) = spXi/S(f∗

i,ηαη) = f∗
i,0α0

Namely, the first equality holds by Lemma 4.4 and the second by assumption. Since
the family of maps f∗

i,0 : Zr(X0) → Zr(Xi,0) is jointly injective (due to the fact
that fi,0 is jointly surjective), we conclude what we want. □

Lemma 6.5.0H54 Let S be a locally Noetherian scheme. Let i : X → Y be a closed
immersion of schemes locally of finite type over S. Let r ≥ 0. Let α be a family of
r-cycles on fibres of X/S. Then α is a relative r-cycle on X/S if and only if i∗α
is a relative r-cycle on Y/S.
Proof. Since base change commutes with i∗ (Lemma 5.1) it suffices to prove the
following: if S is the spectrum of a discrete valuation ring with generic point η and
closed point 0, then spX/S(αη) = α0 if and only if spY/S(iη,∗αη) = i0,∗α0. This
is true because i0,∗ : Zr(X0) → Zr(Y0) is injective and because i0,∗spX/S(αη) =
spY/S(iη,∗αη) by Lemma 4.5. □

The following lemma will be strengthened in Lemma 6.12.
Lemma 6.6.0H55 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f locally of finite type. Let r ≥ 0. Let α and β be relative r-cycles
on X/S. The following are equivalent

(1) α = β, and
(2) αη = βη for any generic point η ∈ S of an irreducible component of S.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). For every s ∈ S
we can find an η as in (2) which specializes to s. By Properties, Lemma 5.10 we
can find a morphism g : S′ → S from the spectrum S′ of a discrete valuation ring
which maps the generic point η′ to η and maps the closed point 0 to s. Then αs

and βs are elements of Zr(Xs) which base change to the same element of Zr(X0′),
namely spXS′ /S′(αη′) where αη′ is the base change of αη. Since the base change map
Zr(Xs) → Zr(X0′) is injective as discussed in Section 3 we conclude αs = βs. □

Lemma 6.7.0H56 In the situation of Example 5.2 assume S is locally Noetherian and
F is flat over S in dimensions ≥ r (More on Flatness, Definition 20.10). Then
[F/X/S]r is a relative r-cycle on X/S.

https://stacks.math.columbia.edu/tag/0H53
https://stacks.math.columbia.edu/tag/0H54
https://stacks.math.columbia.edu/tag/0H55
https://stacks.math.columbia.edu/tag/0H56
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Proof. By More on Flatness, Lemma 20.9 the hypothesis on F is preserved by
any base change. Also, formation of [F/X/S]r is compatible with any base change
by Lemma 5.3. Since the condition of being compatible with specializations is
checked after base change to the spectrum of a discrete valuation ring, this reduces
us to the case where S is the spectrum of a valuation ring. In this case the set
U = {x ∈ X | F flat at x over S} is open in X by More on Flatness, Lemma 13.11.
Since the complement of U in X has fibres of dimension < r over S by assumption,
we see that restriction along the inclusion U ⊂ X induces an isomorphism on the
groups of r-cycles on fibres after any base change, compatible with specialization
maps and with formation of the relative cycle associated to F . Thus it suffices to
show compability with specializations for [F|U /U/S]r. Since F|U is flat over S,
this follows from Lemma 4.1 and the definitions. □

Lemma 6.8.0H57 In the situation of Example 5.4 assume S is locally Noetherian and
Z is flat over S in dimensions ≥ r. Then [Z/X/S]r is a relative r-cycle on X/S.

Proof. The assumption means that OZ is flat over S in dimensions ≥ r. Thus
applying Lemma 6.7 with F = (Z → X)∗OZ we conclude. □

Let S be a locally Noetherian scheme. Let f : X → S be a morphism which is of
finite type. Let r ≥ 0. Denote Hilb(X/S, r) the set of closed subschemes Z ⊂ X
such that Z → S is flat and of relative dimension ≤ r. By Lemma 6.8 for each
Z ∈ Hilb(X/S, r) we have an element [Z/X/S]r ∈ z(X/S, r). Thus we obtain a
group homomorphism
(6.8.1)0H58 free abelian group on Hilb(X/S, r) −→ z(X/S, r)
sending

∑
ni[Zi] to

∑
ni[Zi/X/S]r. A key feature of relative r-cycles is that they

are locally (on X and S in suitable topologies) in the image of this map.

Lemma 6.9.0H59 Let f : X → S be a finite type morphism of schemes with S Noe-
therian. Let r ≥ 0. Let α be a relative r-cycle on X/S. Then there is a proper,
completely decomposed (More on Morphisms, Definition 78.1) morphism g : S′ → S
such that g∗α is in the image of (6.8.1).

Proof. By Noetherian induction, we may assume the result holds for the pullback
of α by any closed immersion g : S′ → S which is not an isomorphism.
Let S1 ⊂ S be an irreducible component (viewed as an integral closed subscheme).
Let S2 ⊂ S be the closure of the complement of S′ (viewed as a reduced closed
subscheme). If S2 ̸= ∅, then the result holds for the pullback of α by S1 → S
and S2 → S. If g1 : S′

1 → S1 and g2 : S′
2 → S2 are the corresponding completely

decomposed proper morphisms, then S′ = S′
1 ⨿S′

2 → S is a completely decomposed
proper morphism and we see the result holds for S2 . Thus we may assume S′ → S
is bijective and we reduce to the case described in the next paragraph.
Assume S is integral. Let η ∈ S be the generic point and let K = κ(η) be the
function field of S. Then αη is an r-cycle on XK . Write αη =

∑
ni[Yi]. Taking

the closure of Yi we obtain integral closed subschemes Zi ⊂ X whose base change
to η is Yi. By generic flatness (for example Morphisms, Proposition 27.1), we see
that Zi is flat over a nonempty open U of S for each i. Applying More on Flatness,

2Namely, any closed subscheme of S′
1 ×S X flat and of relative dimension ≤ r over S′

1 may be
viewed as a closed subscheme of S′ ×S X flat and of relative dimension ≤ r over S′.

https://stacks.math.columbia.edu/tag/0H57
https://stacks.math.columbia.edu/tag/0H59
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Lemma 31.1 we can find a U -admissible blowing up g : S′ → S such that the strict
transform Z ′

i ⊂ XS′ of Zi is flat over S′. Then β =
∑

ni[Z ′
i/XS′/S′]r is in the

image of (6.8.1) and β = g∗α by Lemma 6.6.
However, this does not finish the proof as S′ → S may not be completely decom-
posed. This is easily fixed: denoting T ⊂ S the complement of U (viewed as a
closed subscheme), by Noetherian induction we can find a completely decomposed
proper morphism T ′ → T such that (T ′ → S)∗α is in the image of (6.8.1). Then
S′ ⨿ T ′ → S does the job. □

Lemma 6.10.0H5A Let f : X → S be a finite type morphism of schemes with S the
spectrum of a discrete valuation ring. Let r ≥ 0. Then (6.8.1) is surjective.

Proof. This of course follows from Lemma 6.9 but we can also see it directly as
follows. Say α is a relative r-cycle on X/S. Write αη =

∑
ni[Zi] (the sum is finite).

Denote Zi ⊂ X the closure of Zi as in Section 4. Then α =
∑

ni[Zi/X/S]. □

Lemma 6.11.0H5B Let f : X → S be a morphism of schemes. Let r ≥ 0. Assume S
locally Noetherian and f smooth of relative dimension r. Let α ∈ z(X/S, r). Then
the support of α is open and closed in X (see proof for a more precise result).

Proof. Let x ∈ X with image s ∈ S. Since f is smooth, there is a unique irreducible
component Z(x) of Xs which contains x. Then dim(Z(x)) = r. Let nx be the
coefficient of Z(x) in the cycle αs. We will show the function x 7→ nx is locally
constant on X.
Let g : S′ → S be a morphism of locally Noetherian schemes. Let X ′ be the base
change of X and let α′ = g∗α be the base change of α. Let x′ ∈ X ′ map to s′ ∈ S′,
x ∈ X, and s ∈ S. We claim nx′ = nx. Namely, since Z(x) is smooth over κ(s)
we see that Z(x) ×Spec(κ(s)) Spec(κ(s′)) is reduced. Since Z(x′) is an irreducible
component of this scheme, we see that the coefficient nx′ of Z(x′) in α′

s′ is the same
as the coefficient nx of Z(x) in αs by the definition of base change in Section 3
thereby proving the claim.
Since X is locally Noetherian, to show that x 7→ nx is locally constant, it suffices
to show: if x′ ⇝ x is a specialization in X, then nx′ = nx. Choose a morphism
S′ → X where S′ is the spectrum of a discrete valuation ring mapping the generic
point η to x′ and the closed point 0 to x. See Properties, Lemma 5.10. Then
the base change X ′ → S′ of f by S′ → S has a section σ : S′ → X ′ such that
σ(η) ⇝ σ(0) is a specialization of points of X ′ mapping to x′ ⇝ x in X. Thus we
reduce to the claim in the next paragraph.
Let S be the spectrum of a discrete valuation ring with generic point η and closed
point 0 and we have a section σ : S → X. Claim: nσ(η) = nσ(0). By the discussion
in More on Morphisms, Section 29 and especially More on Morphisms, Lemma 29.6
after replacing X by an open subscheme, we may assume the fibres of X → S are
connected. Since these fibres are smooth, they are irreducible. Then we see that
αη = n[Xη] with n = nσ(η) and the relation spX/S(αη) = α0 implies α0 = n[X0],
i.e., nσ(0) = n as desired. □

Lemma 6.12.0H5C Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 and α, β ∈ z(X/S, r). The set
E = {s ∈ S : αs = βs} is closed in S.

https://stacks.math.columbia.edu/tag/0H5A
https://stacks.math.columbia.edu/tag/0H5B
https://stacks.math.columbia.edu/tag/0H5C


RELATIVE CYCLES 13

Proof. The question is local on S, thus we may assume S is affine. Let X =
⋃

Ui

be an affine open covering. Let Ei = {s ∈ S : αs|Ui,s = βs|Ui,s}. Then E =
⋂

Ei.
Hence it suffices to prove the lemma for Ui → S and the restriction of α and β to
Ui. This reduces us to the case discussed in the next paragraph.
Assume X and S are quasi-compact. Set γ = α − β. Then E = {s ∈ S : γs = 0}.
By Lemma 6.8 there exists a jointly surjective finite family of proper morphisms
{gi : Si → S} such that g∗

i γ is in the image of (6.8.1). Observe that Ei = g−1
i (E)

is the set of point t ∈ Si such that (g∗
i γ)t = 0. If Ei is closed for all i, then

E =
⋃

gi(Ei) is closed as well. This reduces us to the case discussed in the next
paragraph.
Assume X and S are quasi-compact and γ =

∑
ni[Zi/X/S]r for a finite number

of closed subschemes Zi ⊂ X flat and of relative dimension ≤ r over S. Set
X ′ =

⋃
Zi (scheme theoretic union). Then i : X ′ → X is a closed immersion and

X ′ has relative dimension ≤ r over S. Also γ = i∗γ′ where γ′ =
∑

ni[Zi/X ′/S]r.
Since clearly E = E′ = {s ∈ S : γ′

s = 0} we reduce to the case discussed in the
next paragraph.
Assume X has relative dimension ≤ r over S. Let s ∈ S, s ̸∈ E. We will show
that there exists an open neighbourhood V ⊂ S of s such that E ∩ V is empty.
The assumption s ̸∈ E means there exists an integral closed subscheme Z ⊂ Xs of
dimension r such that the coefficient n of [Z] in γs is nonzero. Let x ∈ Z be the
generic point. Since dim(Z) = r we see that x is a generic point of an irreducible
component (namely Z) of Xs. Thus after replacing X by an open neighbourhood
of x, we may assume that Z is the only irreducible component of Xs. In particular,
we have γs = n[Z].
At this point we apply More on Morphisms, Lemma 47.1 and we obtain a diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

with all the properties listed there. Let γ′ = g∗γ be the flat pullback. Note that
E ⊂ E′ = {s ∈ S : γ′

s = 0} and that s ̸∈ E′ because the coefficient of Z ′ in γ′
s is

nonzero, where Z ′ ⊂ X ′
s is the closure of x′. Similarly, set γ′′ = π∗γ′. Then we

have E′ ⊂ E′′ = {s ∈ S : γ′′
s = 0} and s ̸∈ E′′ because the coefficient of Z ′′ in

γ′′
s is nonzero, where Z ′′ ⊂ Ys is the closure of y. By Lemma 6.11 and openess of

Y → S we see that an open neighbourhood of s is disjoint from E′′ and the proof
is complete. □

Lemma 6.13.0H5D Let S = limi∈I Si be the limit of a directed inverse system of
Noetherian schemes with affine transition morphisms. Let 0 ∈ I and let X0 → S0
be a finite type morphism of schemes. For i ≥ 0 set Xi = Si ×S0 X0 and set
X = S ×S0 X0. If S is Noetherian too, then

z(X/S, r) = colimi≥0 z(Xi/Si, r)
where the transition maps are given by base change of relative r-cycles.

https://stacks.math.columbia.edu/tag/0H5D
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Proof. Suppose that i ≥ 0 and αi, βi ∈ z(Xi/Si, r) map to the same element of
z(X/S, r). Then S → Si maps into the closed subset E ⊂ Si of Lemma 6.12. Hence
for some j ≥ i the morphism Sj → Si maps into E, see Limits, Lemma 4.10. It
follows that the base change of αi and βi to Sj agree. Thus the map is injective.
Let α ∈ z(X/S, r). Applying Lemma 6.9 a completely decomposed proper mor-
phism g : S′ → S such that g∗α is in the image of (6.8.1). Set X ′ = S′ ×S X.
We write g∗α =

∑
na[Za/X ′/S′]r for some Za ⊂ X ′ closed subscheme flat and of

relative dimension ≤ r over S′.
Now we bring the machinery of Limits, Section 10 ff to bear. We can find an i ≥ 0
such that there exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base change

to S is g : S′ → S,
(2) setting X ′

i = S′
i ×Si

Xi closed subschemes Zai ⊂ X ′
i flat and of relative

dimension ≤ r over S′
i whose base change to S′ is Za.

To do this one uses Limits, Lemmas 10.1, 8.5, 8.7, 13.1, and 18.1 and More on
Morphisms, Lemma 78.5. Consider α′

i =
∑

na[Zai/X ′
i/S′

i]r ∈ z(X ′
i/S′

i, r). The
image of α′

i in z(X ′/S′, r) agrees with the base change g∗α by construction.
Set S′′

i = S′
i ×Si S′

i and X ′′
i = S′′

i ×Si Xi and set S′′ = S′ ×S S′ and X ′′ = S′′ ×S X.
We denote pr1, pr2 : S′′ → S′ and pr1, pr2 : S′′

i → S′
i the projections. The two base

changes pr∗
1α′

i and pr∗
1α′

i map to the same element of z(X ′′/S′′, r) because pr∗
1g∗α =

pr∗
1g∗α. Hence after increasing i we may assume that pr∗

1α′
i = pr∗

1α′
i by the first

paragraph of the proof. By Lemma 5.9 we obtain a unique family αi of r-cycles on
fibres of Xi/Si with g∗

i αi = α′
i (this uses that S′

i → Si is completely decomposed).
By Lemma 6.3 we see that αi ∈ z(Xi/Si, r). The uniqueness in Lemma 5.9 implies
that the image of αi in z(X/S, r) is α and the proof is complete. □

Lemma 6.14.0H5E Let S be a locally Noetherian scheme. Let i : X → X ′ be a
thickening of schemes locally of finite type over S. Let r ≥ 0. Then i∗ : z(X/S, r) →
z(X ′/S, r) is a bijection.

Proof. Since is : Xs → X ′
s is a thickening it is clear that i∗ induces a bijection

between families of r-cycles on the fibres of X/S and families of r-cycles on the fibres
of X ′/S. Also, given a family α of r-cycles on the fibres of X/S α ∈ z(X/S, r) ⇔
i∗α ∈ z(X ′/S, r) by Lemma 6.5. The lemma follows. □

Lemma 6.15.0H5F Let S be a locally Noetherian scheme. Let X be a scheme locally
of finite type over S. Let r ≥ 0. Let U ⊂ X be an open such that X \ U has relative
dimension < r over S, i.e., dim(Xs \Us) < r for all s ∈ S. Then restriction defines
a bijection z(X/S, r) → z(U/S, r).

Proof. Since Zr(Xs) → Zr(Us) is a bijection by the dimension assumption, we see
that restriction induces a bijection between families of r-cycles on the fibres of X/S
and families of r-cycles on the fibres of U/S. These restriction maps Zr(Xs) →
Zr(Us) are compatible with base change and with specializations, see Lemma 5.1
and 4.4. The lemma follows easily from this; details omitted. □

Lemma 6.16.0H5G Let g : S′ → S be a universal homeomorphism of locally Noetherian
schemes which induces isomorphisms of residue fields. Let f : X → S be locally of
finite type. Set X ′ = S′ ×S X. Let r ≥ 0. Then base change by g determines a
bijection z(X/S, r) → z(X ′/S′, r).

https://stacks.math.columbia.edu/tag/0H5E
https://stacks.math.columbia.edu/tag/0H5F
https://stacks.math.columbia.edu/tag/0H5G
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Proof. By Lemma 5.10 we have a bijection between the group of families of r-
cycles on fibres of X/S and the group of families of r-cycles on fibres of X ′/S′.
Say α is a families of r-cycles on fibres of X/S and α′ = g∗α is the base change.
If R is a discrete valuation ring, then any morphism h : Spec(R) → S factors
as g ◦ h′ for some unique morphism h′ : Spec(R) → S′. Namely, the morphism
S′ ×S Spec(R) → Spec(R) is a univeral homomorphism inducing bijections on
residue fields, and hence has a section (for example because R is a seminormal
ring, see Morphisms, Section 47). Thus the condition that α is compatible with
specializations (i.e., is a relative r-cycle) is equivalent to the condition that α′ is
compatible with specializations. □

7. Equidimensional relative cycles

0H5H Here is the definition.

Definition 7.1.0H5I Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S equidimensional if the support of α (Remark 5.6) is contained in
a closed subset W ⊂ X whose relative dimension over S is ≤ r. The group of all
equidimensional relative r-cycles on X/S is denoted zequi(X/S, r).

Example 7.2.0H5J [SV00, Example
3.1.9]

There exist relative r-cycles which are not equidimensional. Namely,
let k be a field and let X = Spec(k[x, y, t]) over S = Spec(k[x, y]). Let s be a point
of S and denote a, b ∈ κ(s) the images of x and y. Consider the family α of 0-cycles
on X/S defined by

(1) αs = 0 if b = 0 and otherwise
(2) αs = [p] − [q] where p, resp. q is the κ(s)-rational point of Spec(κ(s)[t])

with t = a/b, resp. t = (a + b2)/b.
We leave it to the reader to show that this is compatible with specializations; the
idea is that a/b and (a + b2)/b = a/b + b limit to the same point in P1 over the
residue field of any valuation v on κ(s) with v(b) > 0. On the other hand, the
closure of the support of α containes the whole fibre over (0, 0).

Lemma 7.3.0H5K Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is equidimensional, then any restriction, base change,
or flat pullback of α is equidimensional.

Proof. Omitted. □

Lemma 7.4.0H5L Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Then to check that α is equidimensional we may work Zariski
locally on X and S.

Proof. Namely, the condition that α is equidimensional just means that the closure
of the support of α has relative dimension ≤ r over S. Since taking closures
commutes with restriction to opens, the lemma follows (small detail omitted). □

Lemma 7.5.0H5M Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let {gi : Si → S} be an fppf covering. Then α is equidimensional
if and only if each base change g∗

i α is equidimensional.

https://stacks.math.columbia.edu/tag/0H5I
https://stacks.math.columbia.edu/tag/0H5J
https://stacks.math.columbia.edu/tag/0H5K
https://stacks.math.columbia.edu/tag/0H5L
https://stacks.math.columbia.edu/tag/0H5M
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Proof. If α is equidimensional, then each g∗
i α is too by Lemma 7.3. Assume each

g∗
i α is equidimensional. Denote W the closure of Supp(α) in X. Since gi : Si → S

is universally open (being flat and locally of finite presentation), so is the morphism
fi : Xi = Si ×S X → X. Denote αi = g∗

i α. We have Supp(αi) = f−1
i (Supp(α)) by

Lemma 5.7. Since fi is open, we see that Wi = f−1
i (W ) is the closure of Supp(αi).

Hence by assumption the morphism Wi → Si has relative dimension ≤ r. By
Morphisms, Lemma 28.3 (and the fact that the morphisms Si → S are jointly
surjective) we conclude that W → S has relative dimension ≤ r. □

Lemma 7.6.0H5N Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. Let {fi : Xi → X} be a jointly surjective family of flat morphisms,
locally of finite type, and of relative dimension e. Then α is equidimensional if and
only if each flat pullback f∗

i α is equidimensional.

Proof. Omitted. Hint: As in the proof of Lemma 7.5 one shows that the inverse
image by fi of the closure W of the support of α is the closure Wi of the support
of f∗

i α. Then W → S has relative dimension ≤ r holds if Wi → S has relative
dimension ≤ r + e for all i. □

Let S be a locally Noetherian scheme. Let f : X → S be a locally quasi-finite
morphism of schemes. Then we have z(X/S, 0) = zequi(X/S, 0) and z(X/S, r) = 0
for r > 0. Given α ∈ z(X/S, 0) let us define a map

wα : X −→ Z, x 7→ α(x)[κ(x) : κ(s)]i where s = f(x)
Here α(x) denotes the coefficient of x in the 0-cycle αs on the fibre Xs and [K : k]i
denotes the inseparable degree of a finite field extension. The following lemma
shows that this map is a weighting of f (More on Morphisms, Definition 75.2) and
that every weighting is of this form up to taking a multiple.

Lemma 7.7.0H5P Let S be a locally Noetherian scheme. Let f : X → S be a locally
quasi-finite morphism of schemes. Let α ∈ z(X/S, 0). The map wα : X → Z
constructed above is a weighting. Conversely, if X is quasi-compact, then given a
weighting w : X → Z there exists an integer n > 0 such that nw = wα for some
α ∈ z(X/S, 0). Finally, the integer n may be chosen to be a power of the prime p
if S is a scheme over Fp.

Proof. First, let us show that the construction is compatible with base change:
if g : S′ → S is a morphism of locally Noetherian schemes, then wg∗α = wα ◦ g′

where g′ : X ′ → X is the projection X ′ = S′ ×S X → X. Namely, let x′ ∈ X ′ with
images s′, s, x in S′, S, X. Then the coefficient of [x′] in the base change of [x] by
κ(s′)/κ(s) is the length of the local ring (κ(s′) ⊗κ(s) κ(x))q. Here q is the prime
ideal corresponding to x′. Thus compatibility with base change follows if

[κ(x) : κ(s)]i = length((κ(s′) ⊗κ(s) κ(x))q)[κ(x′) : κ(s′)]i
Let k/κ(s′) be an algebraically closure. Choose a prime p ⊂ k ⊗κ(s) κ(x) lying over
q. Suppose we can show that
[κ(x) : κ(s)]i = length((k⊗κ(s)κ(x))p) and [κ(x′) : κ(s′)]i = length((k⊗κ(s′)κ(x′))p)
Then we win because

length((κ(s′) ⊗κ(s) κ(x))q)length((k ⊗κ(s′) κ(x′))p) = length((k ⊗κ(s) κ(x))p)

https://stacks.math.columbia.edu/tag/0H5N
https://stacks.math.columbia.edu/tag/0H5P
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by Algebra, Lemma 52.13 and flatness of κ(s′) ⊗κ(s) κ(x) → k ⊗κ(s) κ(x). To show
the two equalities, it suffices to prove the first. Let κ(x)/κ/κ(s) be the subfield
constructed in Fields, Lemma 14.6. Then we see that

k ⊗κ(s) κ(x) =
∏

σ:κ→k
k ⊗σ,κ κ(x)

and each of the factors is local of degree [κ(x) : κ] = [κ(x) : κ(s)]i as desired.

Let α ∈ z(X/S, 0) and choose a diagram

X

f

��

U
h
oo

π

��
Y V

goo

as in More on Morphisms, Definition 75.2. Denote β ∈ z(U/V, 0) the restriction
of the base change g∗α. By the compatibility with base change above we have
wβ = wα ◦ h and it suffices to show that

∫
π

wβ is locally constant on V . Next, note
that (∫

π

wβ

)
(v) =

∑
u∈U,π(u)=v

β(u)[κ(u) : κ(v)]i[κ(u) : κ(v)]s

=
∑

u∈U,π(u)=v
β(u)[κ(u) : κ(v)]

This last expression is the coefficient of v in π∗β ∈ z(V/V, 0). By Lemma 6.11 this
function is locally constand on V .

Conversely, let w : X → S be a weighting and X quasi-compact. Choose a suffi-
ciently divisible integer n. Let α be the family of 0-cycles on fibres of X/S such
that for s ∈ S we have

αs =
∑

f(x)=s

nw(x)
[κ(x) : κ(s)]i

[x]

as a zero cycle on Xs. This makes sense since the fibres of f are universally bounded
(Morphisms, Lemma 57.9) hence we can find n such that the right hand side is an
integer for all s ∈ S. The final statement of the lemma also follows, provided we
show α is a relative 0-cycle. To do this we have to show that α is compatible
with specializations along discrete valuation rings. By the first paragraph of the
proof our construction is compatible with base change (small detail omitted; it
is the “inverse” construction we are discussing here). Also, the base change of a
weighting is a weighting, see More on Morphisms, Lemma 75.3. Thus we reduce to
the problem studied in the next paragraph.

Assume S is the spectrum of a discrete valuation ring with generic point η and
closed point 0. Let w : X → S be a weighting with X quasi-finite over S. Let α be
the family of 0-cycles on fibres of X/S constructed in the previous paragraph (for
a suitable n). We have to show that spX/S(αη) = α0. Let β ∈ z(X/S, 0) be the
relative 0-cycle on X/S with βη = αη and β0 = spX/S(αη). Then w′ = wβ − nw :
X → Z is a weighting (using the result above) and zero in the points of X which
map to η. Now it is easy to see that a weighting which is zero on all points of X
mapping to η has to be zero; details omitted. Hence w′ = 0, i.e., wβ = nw, hence
α = β as desired. □
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8. Effective relative cycles

0H5Q Here is the definition.

Definition 8.1.0H5R Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S effective if αs is an effective cycle (Chow Homology, Definition
8.4) for all s ∈ S. The monoid of all effective relative r-cycles on X/S is denoted
zeff (X/S, r).

Below we will show that an effective relative cycle is equidimensional, see Lemma
8.7.

Lemma 8.2.0H5S Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is effective, then any restriction, base change, flat
pullback, or proper pushforward of α is effective.

Proof. Omitted. □

Lemma 8.3.0H5T Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Then to check that α is effective we may work Zariski locally on
X and S.

Proof. Omitted. □

Lemma 8.4.0H5U Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let g : S′ → S be a surjective morphism. Then α is effective if
and only if the base change g∗α is effective.

Proof. Omitted. □

Lemma 8.5.0H5V Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. Let {fi : Xi → X} be a jointly surjective family of flat morphisms,
locally of finite type, and of relative dimension e. Then α is effective if and only if
each flat pullback f∗

i α is effective.

Proof. Omitted. □

Lemma 8.6.0H5W Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. If α is effective, then Supp(α) is closed in X.

Proof. Let g : S′ → S be the inclusion of an irreducible component viewed as
an integral closed subscheme. By Lemmas 8.2 and 5.7 it suffices to show that the
support of the base change g∗α is closed in S′ ×S S. Thus we may assume S is an
integral scheme with generic point η. We will show that Supp(α) is the closure of
Supp(αη). To do this, pick any s ∈ S. We can find a morphism g : S′ → S where
S′ is the spectrum of a discrete valuation ring mapping the generic point η′ ∈ S′ to
η and the closed point 0 ∈ S′ to s, see Properties, Lemma 5.10. Then it suffices to
prove that the support of g∗α is equal to the closure of Supp((gα)η′). This reduces
us to the case discussed in the next paragraph.

https://stacks.math.columbia.edu/tag/0H5R
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https://stacks.math.columbia.edu/tag/0H5U
https://stacks.math.columbia.edu/tag/0H5V
https://stacks.math.columbia.edu/tag/0H5W
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Here S is the spectrum of a discrete valuation ring with generic point η and closed
point 0. We have to show that Supp(α) is the closure of Supp(αη). Since α is
effective we may write αη =

∑
ni[Zi] with ni > 0 and Zi ⊂ Xη integral closed of

dimension r. Since α0 = spX/S(αη) we know that α0 =
∑

ni[Zi,0]r where Zi is
the closure of Zi. By Varieties, Lemma 19.2 we see that Zi,0 is equidimensional
of dimension r. Since ni > 0 we conclude that Supp(α0) is equal to the union of
the Zi,0 which is the fibre over 0 of

⋃
Zi which in turn is the closure of

⋃
Zi as

desired. □

Lemma 8.7.0H5X Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. If α is effective, then α is equidimensional.

Proof. Assume α is effective. By Lemma 8.6 the support Supp(α) is closed in X.
Thus α is equidimensional as the fibres of Supp(α) → S are the supports of the
cycles αs and hence have dimension r. □

Remark 8.8.0H5Y Let f : X → S be a morphism of schemes with S locally Noetherian
and f locally of finite type. We can ask if the contravariant functor

schemes S′ locally
of finite type over S

−→ zeff (X ′/S′, r) where X ′ = S′ ×S X

is representable. Since z(X ′/S′, r) = z(X ′
red/S′

red, r) this cannot be true (we leave it
to the reader to make an actual counter example). A better question would be if we
can find a subcategory of the left hand side on which the functor is representable.
Lemma 6.16 suggests we should restrict at least to the category of seminormal
schemes over S.

If S/ Spec(Q) is Nagata and f is a projective morphism, then it turns out that
S′ 7→ zeff (X ′/S′, r) is representable on the category of seminormal S′. Roughly
speaking this is the content of [Kol96, Theorem 3.21].

If S has points of positive characteristic, then this no longer works even if we replace
seminormality with weak normality; a locally Noetherian scheme T is weakly normal
if any birational universal homeomorphism T ′ → T has a section. An example is
to consider 0-cycles of degree 2 on X = A2

k over S = Spec(k) where k is a field of
characteristic 2. Namely, over W = X ×S X we have a canonical relative 0-cycle
α ∈ zeff (XW /W, 0): for w = (x1, x2) ∈ W = X2 we have the cycle αw = [x1]+[x2].
This cycle is invariant under the involution σ : W → W switching the factors. Since
W is smooth (hence normal, hence weakly normal), if z(−/−, r) was representable
by M on the category of weakly normal schemes of finite type over k we would get a
σ-invariant morphism from W to M . This in turn would define a morphism from the
quotient scheme Sym2

S(X) = W/⟨σ⟩ to M . Since Sym2
S(X) is normal, we would by

the moduli property of M obtain a relative 0-cycle β on X ×S Sym2
S(X)/Sym2

S(X)
whose pullback to W is α. However, there is no such cycle β. Namely, writing
X = Spec(k[u, v]) the scheme Sym2

S(X) is the spectrum of

k[u1 + u2, u1u2, v1 + v2, v1v2, u1v1 + u2v2] ⊂ k[u1, u2, v1, v2]

The image of the diagonal u1 = u2, v1 = v2 in Sym2
S(X) is the closed subscheme

V = Spec(k[u2
1, v2

1 ]); here we use that the characteristic of k is 2. Looking at the
generic point η of V , the cycle βη would be a zero cycle of degree 2 on A2

k(u2
1,v2

1)

https://stacks.math.columbia.edu/tag/0H5X
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whose pullback to A2
k(u1,u2) whould be 2[the point with coordinates(u1, v2)]. This

is clearly impossible.
The discussion above does not contradict [Kol96, Theorem 4.13] as the Chow variety
in that theorem only coarsely represents a functor (in fact 2 distinct functors,
only one of which agrees with ours for projective X as one can see with some
work). Similarly, in [SV00, Section 4.4] it is shown that for projective X/S the h-
sheafification of the presheaf S′ 7→ zeff (S′×SX/S′, r) is equal to the h-sheafification
of a representable functor.

Remark 8.9.0H5Z Let f : X → S be a morphism of schemes. Let r ≥ 0. Let Z ⊂ X
be a closed subscheme. Assume

(1) S is Noetherian and geometrically unibranch,
(2) f is of finite type, and
(3) Z → S has relative dimension ≤ r.

Then for all sufficiently divisible integers n ≥ 1 there exists a unique effective
relative r-cycle α on X/S such that αη = n[Zη]r for every generic point η of S.
This is a reformulation of [SV00, Theorem 3.4.2]. If we ever need this result, we
will precisely state and prove it here.

9. Proper relative cycles

0H60 In our setting, the following is probably the correct definition.

Definition 9.1.0H61 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S is a proper relative cycle if the support of α (Remark 5.6) is con-
tained in a closed subset W ⊂ X proper over S (Cohomology of Schemes, Definition
26.2). The group of all proper relative r-cycles on X/S is denoted c(X/S, r).

By Cohomology of Schemes, Lemma 26.3 this just means that the closure of the
support is proper over the base. To see that these form a group, use Cohomology
of Schemes, Lemma 26.6.

Lemma 9.2.0H62 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is proper, then any base change α is proper.

Proof. Omitted. □

Lemma 9.3.0H63 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let {gi : Si → S} be a h covering. Then α is proper if and only if
each base change g∗

i α is proper.

Proof. If α is proper, then each g∗
i α is too by Lemma 9.2. Assume each g∗

i α is
proper. To prove that α is proper, it clearly suffices to work affine locally on S.
Thus we may and do assume that S is affine. Then we can refine our covering
{Si → S} by a family {Tj → S} where g : T → S is a proper surjective morphism
and T =

⋃
Tj is an open covering. It follows that β = g∗α is proper on Y = T ×S X

over T . By Lemma 5.7 we find that the support of β is the inverse image of the
support of α by the morphism f : Y → X. Hence the closure W ⊂ Y of f−1Supp(α)
is proper over T . Since the morphism T → S is proper, it follows that W is proper

https://stacks.math.columbia.edu/tag/0H5Z
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over S. Then by Cohomology of Schemes, Lemma 26.5 the image f(W ) ⊂ X is
a closed subset proper over S. Since f(W ) contains Supp(α) we conclude α is
proper. □

10. Proper and equidimensional relative cycles

0H64 Let f : X → S be a morphism of schemes. Assume S is locally Noetherian and f is
locally of finite type. Let r ≥ 0 be an integer. We say a relative r-cycle α on X/S is
a proper and equidimensional relative cycle if α is both equidimensional (Definition
7.1) and proper (Definition 9.1). The group of all proper, equidimensional relative
r-cycles on X/S is denoted cequi(X/S, r).
Similarly we say a relative r-cycle α on X/S is a proper and effective relative cycle
if α is both effective (Definition 8.1) and proper (Definition 9.1). The monoid of
all proper, effective relative r-cycles on X/S is denoted ceff (X/S, r). Observe that
these are equidimensional by Lemma 8.7.
Thus we have the following diagram of inclusion maps

ceff (X/S, r) //

��

cequi(X/S, r) //

��

c(X/S, r)

��
zeff (X/S, r) // zequi(X/S, r) // z(X/S, r)

11. Action on cycles

0H65 Let S be a locally Noetherian, universally catenary scheme endowed with a dimen-
sion function δ, see Chow Homology, Section 7. Let X → Y be a morphism of
schemes over S, both locally of finite type over S. Let r ≥ 0. Finally, let α be a
family of r-cycles on fibres of X/Y . For e ∈ Z we will construct an operation

α ∩ − : Ze(Y ) −→ Zr+e(X)
Namely, given β ∈ Ze(Y ) write β =

∑
ni[Zi] where Zi ⊂ Y is an integral closed

subscheme of δ-dimension e and the family Zi is locally finite in the scheme Y . Let
yi ∈ Zi be the generic point. Write αyi

=
∑

mij [Vij ]. Thus Vij ⊂ Xyi
is an integral

closed subscheme of dimension r and the family Vij is locally finite in the scheme
Xyi . Then we set

α ∩ β =
∑

nimij [V ij ] ∈ Zr+e(X)

Here V ij ⊂ X is the scheme theoretic image of the morphism Vij → Xyi
→ X

or equivalently, V ij ⊂ X is an integral closed subscheme mapping dominantly to
Zi ⊂ Y whose generic fibre is Vij . It follows readily that dimδ(V ij) = r+e and that
the family of closed subschemes V ij ⊂ X is locally finite (we omit the verifications).
Hence α ∩ β is indeed an element of Zr+e(X).

Lemma 11.1.0H66 The construction above is bilinear, i.e., we have (α1 + α2) ∩ β =
α1 ∩ β + α2 ∩ β and α ∩ (β1 + β2) = α ∩ β1 + α ∩ β2.

Proof. Omitted. □

Lemma 11.2.0H67 If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ∩ β)|U is
equal to α|U ∩ β|V .

https://stacks.math.columbia.edu/tag/0H66
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Proof. Immediate from the explict description of α ∩ β given above. □

Lemma 11.3.0H68 Forming α ∩ β is compatible with flat base change and flat pullback
(see proof for elucidation).

Proof. Let (S, δ), (S′, δ′), g : S′ → S, and c ∈ Z be as in Chow Homology,
Situation 67.1. Let X → Y be a morphism of schemes locally of finite type over S.
Denote X ′ → Y ′ the base change of X → Y by g. Let α be a family of r-cycles on
the fibres of X/Y . Let β ∈ Ze(Y ). Denote α′ the base change of α by Y ′ → Y .
Denote β′ = g∗β ∈ Ze+c(Y ′) the pullback of β by g, see Chow Homology, Section
67. Compatibility with base change means α′ ∩ β′ is the base change of α ∩ β.

Proof of compatibility with base change. Since we are proving an equality of cycles
on X ′, we may work locally on Y , see Lemma 11.2. Thus we may assume Y is
affine. In particular β is a finite linear combination of prime cycles. Since − ∩ − is
linear in the second variable (Lemma 11.1), it suffices to prove the equality when
β = [Z] for some integral closed subscheme Z ⊂ Y of δ-dimension e.

Let y ∈ Z be the generic point. Write αy =
∑

mj [Vj ]. Let V j be the closure of Vj

in X. Then we have
α ∩ β =

∑
mj [V j ]

The base change of β is β′ =
∑

[Z ×S S′]e+c as a cycle on Y ′ = Y ×S S′. Let
Z ′

a ⊂ Z ×S S′ be the irreducible components, denote y′
a ∈ Z ′

a their generic points,
and denote na the multiplicity of Z ′

a in Z ×S S′. We have

β′ =
∑

[Z ×S S′]e+c =
∑

na[Z ′
a]

We have α′
y′

a
=

∑
mj [Vj,κ(y′

a)]r because α′ is the base change of α by Y ′ → Y . Let
V ′

jab ⊂ Vj,κ(y′
a) be the irreducible components and denote mjab the multiplicity of

V ′
jab in Vj,κ(y′

a). We have

α′
y′

a
=

∑
mj [Vj,κ(y′

a)]r =
∑

mjmjab[V ′
jab]

Thus we we have
α′ ∩ β′ =

∑
namjmjab[V ′

jab]

where V
′
jab is the closure of V ′

jab in X ′. Thus to prove the desired equality it suffices
to prove

(1) the irreducible components of V j ×S S′ are the schemes V
′
jab and

(2) the multiplicity of V
′
jab in V j ×S S′ is equal to namjab.

Note that Vj → V j is a birational morphism of integral schemes. The morphisms
Vj ×S S′ → Vj and V j ×S S′ → V j are flat and hence map generic points of
irreducible components to the (unique) generic points of Vj and V j . It follows
that Vj ×S S′ → V j ×S S′ is a birational morphisms hence induces a bijection
on irreducible components and identifies their multiplicities. This means that it
suffices to prove that the irreducible components of Vj ×S S′ are the schemes V ′

jab

and the multiplicity of V ′
jab in Vj ×S S′ is equal to namjab. However, then we are

https://stacks.math.columbia.edu/tag/0H68
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just saying that the diagram

Zr(Vj) // Zr+c(Vj ×S S′)

Z0(Spec(κ(y))) //

OO

Zc(Spec(κ(y)) ×S S′)

OO

is commutative where the horizontal arrows are base change by Spec(κ(y))×S S′ →
Spec(κ(y)) and the vertical arrows are flat pullback. This was shown in Chow
Homology, Lemma 67.5.

The statement in the lemma on flat pullback means the following. Let (S, δ),
X → Y , α, and β be as in the constuction of α ∩ β above. Let Y ′ → Y be a flat
morphism, locally of finite type, and of relative dimension c. Then we can let α′ be
the base change of α by Y ′ → Y and β′ the flat pullback of β. Compatibility with
flat pullback means α′ ∩ β′ is the flat pullback of α ∩ β by X ×Y Y ′ → Y . This is
actually a special case of the discussion above if we set S = Y and S′ = Y ′. □

Lemma 11.4.0H69 Let (S, δ) and f : X → Y be as above. Let F be a coherent OX-
module with dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a coherent OY -module
with dimδ(Supp(G)) ≤ e. Set α = [F/X/Y ]r (Example 5.2) and β = [G]e (Chow
Homology, Definition 10.2). If F is flat over Y , then α ∩ β = [F ⊗OX

f∗G]r+e.

Proof. Observe that

Supp(F ⊗OX
f∗G) = Supp(F) ∩ f−1Supp(G) =

⋃
y∈Supp(G)

Supp(Fy)

It follows that this is a closed subset of δ-dimension ≤ r+e. Whence the expression
[F ⊗OX

f∗G]r+e makes sense.

We will use the notation β =
∑

ni[Zi], yi ∈ Zi, αyi
=

∑
mij [Vij ], and V ij in-

troduced in the construction of α ∩ β. Since β = [G]e we see that the Zi are the
irreducible components of Supp(G) which have δ-dimension e. Similarly, the Vij are
the irreducible components of Supp(Fyi) having dimension r. It follows from this
and the equation in the first paragraph that V ij are the irreducible components
of Supp(F ⊗OX

f∗G) having δ-dimension r + e. Thus to prove the lemma it now
suffices to show that

lengthOX,ξij
((F ⊗OX

f∗G)ξij ) = lengthOXyi
,ξij

((Fyi)ξij ) · lengthOY,yi
(Gyi)

By the first paragraph of the proof the left hand side is equal to the lenth of the
B = OX,ξij

-module
Gyi ⊗OY,yi

Fξij = M ⊗A N

Here M = Gyi
is a finite length A = OY,yi

-module and N = Fξij
is a finite B-

module such that N/mAN has finite length. Since F is flat over Y the module N
is A-flat. The right hand side of the formula is equal to

lengthB(N/mAN) · lengthA(M)

Thus the right and left hand side of the formula are additive in M (use flatness of
N over A). Thus it suffices to prove the formula with M = κA is the residue field
in which case it is immediate. □
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Lemma 11.5.0H6A Let (S, δ) and f : X → Y be as above. Let Z ⊂ X be a closed
subscheme of relative dimension ≤ r over Y . Set α = [Z/X/Y ]r (Example 5.4). Let
W ⊂ Y be a closed subscheme of δ-dimension ≤ e. Set β = [W ]e (Chow Homology,
Definition 9.2). If Z is flat over Y , then α ∩ β = [Z ×Y W ]r+e.

Proof. This is a special case of Lemma 11.4 if we take F = OZ and F = OW . □

Lemma 11.6.0H6B Let (S, δ) be as above. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let
r, e ≥ 0. Let α be a family of r-cycles on the fibres of X/Y . Let β′ ∈ Ze(Y ′). Then
we have f∗(g∗α ∩ β′) = α ∩ g∗β′.

Proof. Since we are proving an equality of cycles on X, we may work locally on Y ,
see Lemma 11.2. Thus we may assume Y is affine. Thus Y ′ is quasi-compact. In
particular β′ is a finite linear combination of prime cycles. Since − ∩ − is linear in
the second variable (Lemma 11.1), it suffices to prove the equality when β′ = [Z ′]
for some integral closed subscheme Z ′ ⊂ Y ′ of δ-dimension e. Set Z = g(Z ′). This
is an integral closed subscheme of Y of δ-dimension ≤ e. For simplicity we are going
to assume Z has δ-dimension equal to e and leave the other case (which is easier)
to the reader. Let y ∈ Z and y′ ∈ Z ′ be the generic points. Write αy =

∑
mj [Vj ]

with Vj ⊂ Xy integral closed subschemes of dimension r.

Assume first g is a closed immersion. Then g∗β′ = [Z] and (g∗α)y′ =
∑

nj [Vj ];
this makes sense because Vj is contained in the closed subscheme X ′

y′ of Xy. Thus
in this case the equality is obvious: in both cases we obtain

∑
mj [V j ] where V j is

the closure of Vj in the closed subscheme X ′ ⊂ X.

Back to the general case with β′ = [Z ′] as above. Set W = Z ×X Y and W ′ =
Z ′ ×X′ Y ′. Consider the cartesian squares

W //

��

X

��
Z // Y

W ′ //

��

X ′

��
Z ′ // Y ′

W ′ //

��

W

��
Z ′ // Z

Since we know the result for the first two squares with by the previous paragraph,
a formal argument shows that it suffices to prove the result for the last square and
the element β′ = [Z ′] ∈ Ze(Z ′). This reduces us to the case discussed in the next
paragraph.

Assume Y ′ → Y is a generically finite morphism of integral schemes of δ-dimension
e and β′ = [Y ′]. In this case both f∗(g∗α ∩ β′) and α ∩ g∗β′ are cycles which can
be written as a sum of prime cycles dominant over Y . Thus we may replace Y by a
nonempty open subscheme in order to check the equality. After such a replacement
we may assume g is finite and flat, say of degree d ≥ 1. Of course, this means that
g∗β′ = g∗[Y ′] = d[Y ]. Also β′ = [Y ′] = g∗[Y ]. Hence

f∗(g∗α ∩ β′) = f∗(g∗α ∩ g∗[Y ]) = f∗f∗(α ∩ [Y ]) = d(α ∩ [Y ]) = α ∩ g∗β′)
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as desired. The second equality is Lemma 11.3 and the third equality is Chow
Homology, Lemma 15.2. □

12. Action on chow groups

0H6C When α is a relative r-cycle, the operation α ∩ − of Section 11 factors through
rational equivalence and defines a bivariant class.

Lemma 12.1.0H6D Let (S, δ) be as in Section 11. Let f : X ′ → X be a proper
morphism of schemes locally of finite type over S. Let (L, s, i : D → X) be as in
Chow Homology, Definition 29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Chow Homology, Remark 29.7. If L|D ∼= OD, then i∗f∗α′ = g∗(i′)∗α′ in
Zk(D) for any α′ ∈ Zk+1(X ′).

Proof. The statement makes sense as all operations are defined on the level of
cycles, see Chow Homology, Remark 29.6 for the gysin maps. Suppose α = [W ′] for
some integral closed subscheme W ′ ⊂ X ′. Let W = f(W ′) ⊂ X. In case W ′ ̸⊂ D′,
then W ̸⊂ D and we see that

[W ′ ∩ D′]k = divL′|W ′ (s′|W ′) and [W ∩ D]k = divL|W
(s|W )

and hence f∗ of the first cycle equals the second cycle by Chow Homology, Lemma
26.3. Hence the equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and both
sides are zero by construction. □

Lemma 12.2.0H6E Let (S, δ) be as in Section 11. Let X → Y be a morphism of
schemes locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a relative
r-cycle on X/Y . Let (L, s, i : D → Y ) be as in Chow Homology, Definition 29.1.
Form the cartesian diagram

E

��

j
// X

��
D

i // Y

See Chow Homology, Remark 29.7. If L|D ∼= OD, then for e ∈ Z the diagram

Ze(D)
i∗α∩−

// Ze+r(E)

Ze+1(Y )

i∗

OO

α∩− // Zr+e+1(X)

j∗

OO

commutes where the vertical arrows i∗ and j∗ are the gysin maps on cycles as in
Chow Homology, Remark 29.6.

Proof. Preliminary remark. Suppose that g : Y ′ → Y is an envelope (Chow Ho-
mology, Definition 22.1). Denote D′, i′, E′, j′, X ′, α′ the base changes of D, i, E, j, X, α
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by g and denote f : X ′ → X the projection. Assume the lemma holds for
D′, i′, E′, j′, X ′, Y ′, α′. Then, if β′ ∈ Ze+1(Y ′), we have

i∗α ∩ i∗g∗β′ = i∗α ∩ f∗(i′)∗β′

= f∗(f∗i∗α ∩ (i′)∗β′)
= f∗((i′)∗α′ ∩ (i′)∗β′)
= f∗((j′)∗(α′ ∩ β′))
= j∗(f∗(f∗α ∩ β′))
= j∗(α ∩ g∗β′)

Here the first equality is Lemma 12.1, the second equality is Lemma 11.6, the
third equality is the definition of α′, the fourth equality is the assumption that
our lemma holds for D′, i′, E′, j′, X ′, α′, the fifth equality is Lemma 12.1, and the
sixth equality is Lemma 11.6. Thus we see that our lemma holds for the image of
g∗ : Ze+1(Y ′) → Ze(Y ). However, since g is completely decomposed this map is
surjective and we conclude the lemma holds for D, i, E, j, X, Y, α.

Let β ∈ Ze+1(Y ). We have to show that (D → Y )∗α ∩ i∗β = j∗(α ∩ β) as cycles on
E. This question is local on E hence we can replace X and Y by open subschemes.
(This uses that formation of the operators i∗, j∗, α ∩ − and (D → Y )∗α ∩ −
commute with localization. This is obvious for the gysin maps and follows from
Lemma 11.2 for the others.) Thus we may assume that X and Y are affine and we
reduce to the case discussed in the next paragraph.

Assume X and Y are quasi-compact. By the first paragraph of the proof and Lemma
6.9 we may in addition assume that α is in the image of (6.8.1). By linearity of
the operations in question, we may assume that α = [Z/X/Y ]r for some closed
subscheme Z ⊂ X which is flat and of relative dimension ≤ r over Y . Also, as Y is
quasi-compact, the cycle β is a finite linear combination of prime cycles. Since the
operations in question are linear, it suffices to prove the equality when β = [W ] for
some integral closed subscheme W ⊂ Y of δ-dimension e + 1.

If W ⊂ D, then on the one hand i∗[W ] = 0 and on the other hand α ∩ [W ] is
supported on E so also j∗(α ∩ [W ]) = 0. Thus the equality holds in this case.

Say W ̸⊂ D. Then i∗[W ] = [D ∩W ]e. Note that the pullback i∗α of α = [Z/X/Y ]r
by i is [(E ∩Z)/E/D]r and that (E ∩Z) = E ×Y Z = D ×Y Z is flat over D. Hence
by Lemma 11.5 used twice we have

i∗α ∩ i∗[W ] = [(E ∩ Z) ×D (D ∩ W )]r+e = [E ∩ (Z ×Y W )]r+e = j∗(α ∩ [W ])

as desired. □

Proposition 12.3.0H6F Let (S, δ) be as in Section 11. Let X → Y be a morphism of
schemes locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a relative
r-cycle on X/Y . The rule that to every morphism g : Y ′ → Y locally of finite type
and every e ∈ Z associates the operation

g∗α ∩ − : Ze(Y ′) → Zr+e(X ′)

where X ′ = Y ′ ×Y X factors through rational equivalence to define a bivariant class
c(α) ∈ A−r(X → Y ).

https://stacks.math.columbia.edu/tag/0H6F
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Proof. The operation factors through rational equivalence by Lemma 12.2 and
Chow Homology, Lemma 35.1. The resulting operation on chow groups is a bivari-
ant class by Chow Homology, Lemma 35.2 and Lemmas 11.6, 11.3, and 12.2. □

Remark 12.4.0H6G Let (S, δ) be as in Section 11. Let X → Y be a morphism of
schemes locally of finite type over S. Let r ≥ 0. Let c be a rule that to every
morphism g : Y ′ → Y locally of finite type and every e ∈ Z associates an operation

c ∩ − : Ze(Y ′) → Zr+e(X ′)

compatible with proper pushforward, flat pullback, and gysin maps as in Lemma
12.2. Then we claim there is a relative r-cycle α on X/Y such that c∩ = g∗α ∩ −
for every g as above. If we ever need this, we will carefully state and prove this
here.

13. Composition of families of cycles on fibres

0H6H Let X → Y → S be morphisms of schemes, both locally of finite type. Let r, e ≥ 0.
Let α be a family of r-cycles on fibres of X/Y and let β be a family of e-cycles on
fibres of Y/S. Then we obtain a family of of (r + e)-cycles α ◦ β on the fibres of
X/S by setting

(α ◦ β)s = (Ys → Y )∗α ∩ βs

More precisely, the expression (Ys → Y )∗α denotes the base change of α by Ys → Y
to a family of r-cycles on the fibres of Xs/Ys and the operation − ∩ − was defined
and studied in Section 113.

Lemma 13.1.0H6I The construction above is bilinear, i.e., we have (α1 + α2) ◦ βα1 ◦
β + α1 ◦ β and α ◦ (β1 + β2) = α ◦ β1 + α ◦ β2.

Proof. Omitted. Hint: on fibres the construction is bilinear by Lemma 11.1. □

Lemma 13.2.0H6J If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ◦ β)|U is
equal to α|U ◦ β|V .

Proof. Omitted. Hint: on fibres use Lemma 11.2. □

Lemma 13.3.0H6K The formation of α ◦ β is compatible with base change.

Proof. Let g : S′ → S be a morphism of schemes. Denote X ′ → Y ′ the base
change of X → Y by g. Denote α′ the base change of α with respect to Y ′ → Y .
Denote β′ the base change of β with respect to S′ → S. The assertion means that
α′ ◦ β′ is the base change of α ◦ β by g : S′ → S.

Let s′ ∈ S′ be a point with image s ∈ S. Then

(α′ ◦ β′)s′ = (Y ′
s′ → Y ′)∗α′ ∩ β′

s′

We observe that

(Y ′
s′ → Y ′)∗α′ = (Y ′

s′ → Y ′)∗(Y ′ → Y )∗α = (Y ′
s′ → Ys)∗(Ys → Y )∗α

and that β′
s′ is the base change of βs by s′ = Spec(κ(s′)) → Spec(κ(s)) = s. Hence

the result follows from Lemma 11.3 applied to (Ys → Y )∗α, βs, Xs → Ys → s, and
base change by s′ → s. □

3To be sure, we use s = Spec(κ(s)) as the base scheme with δ(s) = 0.
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Lemma 13.4.0H6L Let f : X → Y and Y → S be morphisms of schemes, both locally
of finite type. Let r, e ≥ 0. Let F be a quasi-coherent OX-module of finite type, with
dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a quasi-coherent OY -module of finite
type, with dim(Supp(Gs)) ≤ e for all s ∈ S. If α = [F/X/Y ]r and β = [G/Y/S]e
(Example 5.2) and F is flat over Y , then α ◦ β = [F ⊗OX

f∗G/X/S]r+e.

Proof. First we observe that F ⊗OX
f∗G is a quasi-coherent OX -module of finite

type. Let s ∈ S. Observe that
(F ⊗OX

f∗G)s = Fs ⊗OXs
f∗

s Gs

by right exactness of tensor products. Moreover Fs is flat over Ys as a base change
of a flat module. Thus the equality (α ◦ β)s = [(F ⊗OX

f∗G)s]r+e follows from
Lemma 11.4. □

Lemma 13.5.0H6M Let f : X → Y and Y → S be morphisms of schemes, both locally
of finite type. Let r, e ≥ 0. Let Z ⊂ X be a closed subscheme of relative dimension
≤ r over Y . Let W ⊂ Y be a closed subscheme of relative dimension ≤ e over S.
If α = [Z/X/Y ]r and β = [W/Y/S]e (Example 5.4) and Z is flat over Y , then
α ◦ β = [Z ×Y W/X/S]r+e.

Proof. This is a special case of Lemma 13.4 if we take F = OZ and F = OW . □

Lemma 13.6.0H6N Let S be a scheme. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let
r, e ≥ 0. Let α be a family of r-cycles on the fibres of X/Y . Let β′ be a family of
e-cycles on the fibres of Y ′/S. Then we have f∗(g∗(α) ◦ β′) = α ◦ g∗β′.

Proof. Unwinding the definitions, this follows from Lemma 11.6. □

Lemma 13.7.0H6P Let (S, δ) be as in Chow Homology, Situation 7.1. Let X → Y → Z
be morphisms of schemes locally of finite type over S. Let r, s, e ≥ 0. Then

(α ◦ β) ∩ γ = α ∩ (β ∩ γ) in Zr+s+e(X)
where α is a family of r-cycles on fibres of X/Y , β is a family of s-cycles on fibres
of Y/Z, and γ ∈ Ze(Z).

Proof. Since we are proving an equality of cycles on X, we may work locally on
Z, see Lemma 11.2. Thus we may assume Z is affine. In particular γ is a finite
linear combination of prime cycles. Since − ∩ − is linear in the second variable
(Lemma 11.1), it suffices to prove the equality when γ = [W ] for some integral
closed subscheme W ⊂ Z of δ-dimension e.
Let z ∈ W be the generic point. Write βz =

∑
mj [Vj ] in Zs(Yz). Then β∩γ is equal

to
∑

mj [V j ] where V j ⊂ Y is an integral closed subscheme mapped by Y → Z
into W with generic fibre Vj . Let yj ∈ Vj be the generic point. We may and do
view also as the generic point of V j (mapping to z in W ). Write αyj =

∑
njk[Wjk]

in Zr(Xyj
). Then α ∩ (β ∩ γ) is equal to∑

mjnjk[W jk]
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where W jk ⊂ X is an integral closed subscheme mapped by X → Y into V j with
generic fibre Wjk.
On the other hand, let us consider

(α ◦ β)z = (Yz → Y )∗α ∩ βz = (Yz → Y )∗α ∩ (
∑

mj [Vj ])

By the construction of − ∩ − this is equal to the cycle∑
mjnjk[(W jk)z]

on Xz. Thus by definition we obtain

(α ◦ β) ∩ [W ] =
∑

mjnjk[W̃jk]

where W̃jk ⊂ X is an integral closed subscheme which is mapped by X → Z into
W with generic fibre (W jk)z. Clearly, we must have W̃jk = W jk and the proof is
complete. □

14. Composition of relative cycles

0H6Q Let S be a locally Noetherian scheme. Let X → Y be a morphism of schemes
locally of finite type over S. We are going to define a map

z(X/Y, r) ⊗Z z(Y/S, e) −→ z(X/S, r + e), α ⊗ β 7−→ α ◦ β

using the construction in Section 13. We already know the construction is bilinear
(Lemma 13.1) hence we obtain the displayed arrow once we show the following.

Lemma 14.1.0H6R If α and β are relative cycles, then so is α ◦ β.

Proof. The formation of α ◦ β is compatible with base change by Lemma 13.3.
Thus we may assume S is the spectrum of a discrete valuation ring with generic
point η and closed point 0 and we have to show that spX/S((α ◦ β)η) = (α ◦ β)0.
Since we are trying to prove an equality of cycles, we may work locally on Y and
X (this uses Lemmas 13.2 and 4.4 to see that the constructions commute with
restriction). Thus we may assume X and Y are affine. By Lemma 6.9 we can find a
completely decomposed proper morphism g : Y ′ → Y such that g∗α is in the image
of (6.8.1).
Since the family of morphisms gη : Y ′

η → Yη is completely decomposed, we can
find β′

η ∈ Ze(Y ′
η) such that βη =

∑
gη,∗β′

η, see Chow Homology, Lemma 22.4. Set
β′

0 = spY ′/S(β′
η) so that β′ = (β′

η, β′
0) is a relative e-cycle on Y ′/S. Then g∗β′ and

β are relative e-cycles on Y/S (Lemma 6.2) which have the same value at η and
hence are equal (Lemma 6.6). By linearity (Lemma 13.1) it suffices to show that
α ◦ g∗β′ is a relative (r + e)-cycle.
Set X ′ = X ×Y Y ′ and denote f : X ′ → X the projection. By Lemma 13.6 we see
that α ◦ g∗β′ = f∗(g∗α ◦ β′). By Lemma 6.2 it suffices to show that g∗α ◦ β′ is a
relative (r + e)-cycle. Using Lemma 6.10 and bilinearity this reduces us to the case
discussed in the next paragraph.
Assume α = [Z/X/Y ]r and β = [W/Y/S] where Z ⊂ X is a closed subscheme flat
and of relative dimension ≤ r over Y and W ⊂ Y is a closed subscheme flat and of
relative dimension ≤ e over S. By Lemma 13.5 we see that

α ◦ β = [Z ×X W/X/S]r+e
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and Z ×X W ⊂ X is a closed subscheme flat over S of relative dimension ≤ r + e.
This is a relative (r + e)-cycle by Lemma 6.8. □

Lemma 14.2.0H6S Let f : X → Y and g : Y → S be a morphisms of schemes.
Assume S locally Noetherian, g locally of finite type and flat of relative dimension
e ≥ 0, and f locally of finite type and flat of relative dimension r ≥ 0. Then
[X/X/Y ]r ◦ [Y/Y/S]e = [X/X/S]r+e in z(X/S, r + e).

Proof. Special case of Lemma 13.5. □

15. Comparison with Suslin and Voevodsky

0H6T We have tried to use the same notation as in [SV00], except that our notation for
cycles is taken from Chow Homology, Section 8 ff. Here is a comparison:

(1) In [SV00, Section 3.1] there is a notion of a “relative cycle”, of a “rel-
ative cycle of dimension r”, and of a “equidimensional relative cycle of
dimension r”. There is no corresponding notion in this chapter. Con-
sequently, the groups Cycl(X/S, r), Cyclequi(X/S, r), PropCycl(X/S, r),
and PropCyclequi(X/S, r), have no counter parts in this chapter.

(2) On the bottom of [SV00, page 36] the groups z(X/S, r), c(X/S, r), zequi(X/S, r),
cequi(X/S, r) are defined. These agree with our notions when S is separated
Noetherian and X → S is separated and of finite type.

(3) In [SV00] the symbol z(X/S, r) is sometimes used for the presheaf S′ 7→
z(S′ ×S X/S′, r) on the category of schemes of finite type over S. Similarly
for c(X/S, r), zequi(X/S, r), and cequi(X/S, r).

(4) Base change, flat pullback, and proper pushforward as defined in [SV00]
agrees with ours when both apply.

(5) For α ∈ z(X/S, r) the operation α ∩ − : Ze(S) → Ze+r(X) defined in
Section 11 agrees with the operation Cor(α, −) in [SV00, Section 3.7] when
both are defined.

(6) For X → Y → S the composition law z(X/Y, r)⊗Zz(Y/S, e) −→ z(X/S, r+
e) defined in Section 14 agrees with the opration CorX/Y (−, −) in [SV00,
Corollary 3.7.5].

16. Relative cycles in the non-Noetherian case

0H6U We urge the reader to skip this section.

Let f : X → S be a morphism of schemes of finite presentation. Let r ≥ 0. Denote
Hilb(X/S, r) the set of closed subschemes Z ⊂ X such that Z → S is flat, of finite
presentation, and of relative dimension ≤ r. We consider the group homomorphism

(16.0.1)0H6V free abelian group
on Hilb(X/S, r) −→ families of r-cycles

on fibres of X/S

sending
∑

ni[Zi] to
∑

ni[Zi/X/S]r.

Lemma 16.1.0H6W Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a morphism of finite presentation. Let r ≥ 0 and let α be a family of r-cycles
on fibres of X/S. The following are equivalent
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(1) there exists a cartesian diagram

X //

��

X0

��
S // S0

where X0 → S0 is a finite type morphism of Noetherian schemes and α0 ∈
z(X0/S0, r) such that α is the base change of α0 by S → S0

(2) there exists a completely decomposed proper morphism g : S′ → S of finite
presentation such that g∗α is in the image of (16.0.1).

Proof. Let a diagram and α0 ∈ z(X0/S0, r) as in (1) be given. By Lemma 6.9 there
exists a proper surjective morphism g0 : S′

0 → S0 such that g∗
0α0 is in the image

of (16.0.1). Namely, since S′
0 is Noetherian, every closed subscheme of S′

0 ×S0 X0
is of finite presentation over S′

0. Setting S′ = S ×S0 S′
0 and using base change by

S′ → S′
0 we see that (2) holds.

Conversely, assume that (2) holds. Choose a surjective proper morphism g : S′ → S
of finite presentation such that g∗α is in the image of (16.0.1). Set X ′ = S′ ×S X.
Write g∗α =

∑
na[Za/X ′/S′]r for some Za ⊂ X ′ closed subscheme flat, of finite

presentation, and of relative dimension ≤ r over S′.
Write S = lim Si as a directed limit with affine transition morphisms with Si of
finite type over Z, see Limits, Proposition 5.4. We can find an i large enough such
that there exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base change

to S is g : S′ → S,
(2) setting X ′

i = S′
i ×Si

Xi closed subschemes Zai ⊂ X ′
i flat and of relative

dimension ≤ r over S′
i whose base change to S′ is Za.

To do this one uses Limits, Lemmas 10.1, 8.5, 8.7, 8.15, 13.1, and 18.1 and and
More on Morphisms, Lemma 78.5. Consider α′

i =
∑

na[Zai/X ′
i/Si]r ∈ z(X ′

i/S′
i, r).

The base change of α′
i to a family of r-cycles on fibres of X ′/S′ agrees with the

base change g∗α by construction.
Set S′′

i = S′
i ×Si

S′
i and X ′′

i = S′′
i ×Si

Xi and set S′′ = S′ ×S S′ and X ′′ = S′′ ×S X.
We denote pr1, pr2 : S′′ → S′ and pr1, pr2 : S′′

i → S′
i the projections. The relative

r-cycles pr∗
1α′

i and pr∗
1α′

i on X ′′
i /S′′

i base change to the same family of r-cycles on
fibres of X ′′/S′′ because pr∗

1g∗α = pr∗
1g∗α. Hence the morphism S′′ → S′′

i maps
into E = {s ∈ S′′

i : (pr∗
1α′

i)s = (pr∗
1α′

i)s}. By Lemma 6.12 this is a closed subset.
Since S′′ = limi′≥i S′′

i′ we see from Limits, Lemma 4.10 that for some i′ ≥ i the
morphism S′′

i′ → S′′
i maps into E. Therefore, after replacing i by i′, we may assume

that pr∗
1α′

i = pr∗
1α′

i. By Lemma 5.9 we obtain a unique family αi of r-cycles on
fibres of Xi/Si with g∗

i αi = α′
i (this uses that S′

i → Si is completely decomposed).
By Lemma 6.3 we see that αi ∈ z(Xi/Si, r). The uniqueness in Lemma 5.9 implies
that the base change of αi is α and we see (1) holds. □

Discussion. If f : X → S, r, and α are as in Lemma 16.1, then it makes sense to
say that α is a relative r-cycle on X/S if the equivalent conditions (1) and (2) of
Lemma 16.1 hold. This definition has many good properties; for example it doesn’t
conflict with the earlier definition in case S is Noetherian and most of the results
of Section 6 generalize to this setting.
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We may still generalize further as follows. Assume S is arbitrary and f : X → S is
locally of finite presentation. Let r ≥ 0 and let α be a family of r-cycles α on fibres
of X/S. Then α is an relative r-cycle on X/S if for U ⊂ X and V ⊂ S affine open
with f(U) ⊂ V the restriction α|U is a relative r-cycle on U/V as defined in the
previous paragraph. Again many of the earlier results generalize to this setting.
If we ever need these generalizations we will carefully state and prove them here.
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