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1. Introduction

0AM8 The title of this chapter is a bit misleading because the most basic material on
restricted power series is in the chapter on formal algebraic spaces. For example
Formal Spaces, Section 21 defines the restricted power series ring A{x1, . . . , xn}
given a linearly topologized ring A. In Formal Spaces, Section 22 we discuss the
relationship between these restricted power series rings and morphisms of finite
type between locally countably indexed formal algebraic spaces.

Let A be a Noetherian ring and let I ⊂ A be an ideal. In the first part of this
chapter (Sections 2 – 8) we discuss the category of I-adically complete algebras
B topologically of finite type over a Noetherian ring A. It is shown that B =
A{x1, . . . , xn}/J for some (closed) ideal J in the restricted power series ring (where
A is endowed with the I-adic topology). We show there is a good notion of a naive
cotangent complex NL∧B/A. If some power of I annihilates NL∧B/A, then we think
of Spf(B) as a rig-étale formal algebraic space over A. This leads to a definition of
rig-étale morphisms of Noetherian formal algebraic spaces. After a certain amount
of work we are able to prove the main result of the first part: if Spf(B) is rig-
étale over A as above, then there exists a finite type A-algebra C such that B is
isomorphic to the I-adic completion of C, see Lemma 7.4. One thing to note here
is that we prove this without assuming the ring A is excellent or even a G-ring. In
the last section of the first part we show that under the assumption that A is a
G-ring there is a straightforward proof of the lemma based on Popescu’s theorem.

This is a chapter of the Stacks Project, version 401dc384, compiled on Dec 16, 2018.
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Many of the results discussed in the first part can be found in the paper [Elk73].
Other general references for this part are [DG67], [Abb10], and [FK].

In the second part of this chapter we use the main result of the first part to prove
Artin’s result on dilatations from [Art70]. The result on contractions will be the
subject of a later chapter (insert future reference here). The main existence theorem
is the equivalence of categories in Theorem 10.9. It is more general than Artin’s
result in that it shows that any rig-étale morphism f : W → Spec(A)/V (I) is the
completion of a morphism Y → Spec(A) of algebraic spaces X which is locally of
finite type and isomorphism away from V (I). In Artin’s work the morphism f is
assumed proper and rig-surjective. A special case of this is the main lemma men-
tioned above and the general case follows from this by a straightforward (somewhat
lengthy) glueing procedure. There are several lemmas modifying the main theo-
rem the final one of which is (almost) exactly the statement in Artin’s paper. In
the last section we apply the results to modifications of Spec(A) before and after
completion.

2. Two categories

0AL2 Let A be a ring and let I ⊂ A be an ideal. In this section ∧ will mean I-adic
completion. Set An = A/In so that the I-adic completion of A is A∧ = limAn.
Let C be the category

(2.0.1)0AL3 C =


systems (Bn, Bn+1 → Bn)n∈N where

Bn is a finite type An-algebra,
Bn+1 → Bn is an An+1-algebra map
which induces Bn+1/I

nBn+1
∼= Bn


Morphisms in C are given by systems of homomorphisms. Let C′ be the category

(2.0.2)0AL4 C′ =

{
A-algebras B which are I-adically complete
such that B/IB is of finite type over A/I

}
Morphisms in C′ are A-algebra maps. There is a functor

(2.0.3)0AJN C′ −→ C, B 7−→ (B/InB)

Indeed, since B/IB is of finite type over A/I the ring maps An = A/In → B/InB
are of finite type (apply Algebra, Lemma 19.1 to a ring map A/In[x1, . . . , xr] →
B/InB such that the images of x1, . . . , xr generate B/IB over A/I).

Lemma 2.1.0AJP Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor

C −→ C′, (Bn) 7−→ B = limBn

is a quasi-inverse to (2.0.3). The completions A[x1, . . . , xr]
∧ are in C′ and any

object of C′ is of the form
B = A[x1, . . . , xr]

∧/J

for some ideal J ⊂ A[x1, . . . , xr]
∧.

Proof. Let (Bn) be an object of C. By Algebra, Lemma 97.1 we see that B =
limBn is I-adically complete and B/InB = Bn. Hence we see that B is an object
of C′ and that we can recover the object (Bn) by taking the quotients. Conversely,
if B is an object of C′, then B = limB/InB by assumption. Thus B 7→ (B/InB)
is a quasi-inverse to the functor of the lemma.

https://stacks.math.columbia.edu/tag/0AJP
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Since A[x1, . . . , xr]
∧ = limAn[x1, . . . , xr] it is an object of C′ by the first statement

of the lemma. Finally, let B be an object of C′. Choose b1, . . . , br ∈ B whose
images in B/IB generate B/IB as an algebra over A/I. Since B is I-adically
complete, the A-algebra map A[x1, . . . , xr] → B, xi 7→ bi extends to an A-algebra
map A[x1, . . . , xr]

∧ → B. To finish the proof we have to show this map is surjective
which follows from Algebra, Lemma 95.1 as our map A[x1, . . . , xr]→ B is surjective
modulo I and as B = B∧. �

We warn the reader that, in case A is not Noetherian, the quotient of an object of
C′ may not be an object of C′. See Examples, Lemma 7.1. Next we show this does
not happen when A is Noetherian.

Lemma 2.2.0AJQ [GD60, Proposition
7.5.5]

Let A be a Noetherian ring and let I ⊂ A be an ideal. Then
(1) every object of the category C′, in particular the completion A[x1, . . . , xr]

∧,
is Noetherian,

(2) if B is an object of C′ and J ⊂ B is an ideal, then B/J is an object of C′.

Proof. To see (1) by Lemma 2.1 we reduce to the case of the completion of the
polynomial ring. This case follows from Algebra, Lemma 96.6 as A[x1, . . . , xr] is
Noetherian (Algebra, Lemma 30.1). Part (2) follows from Algebra, Lemma 96.1
which tells us that ever finite B-module is IB-adically complete. �

Remark 2.3 (Base change).0AL5 Let ϕ : A1 → A2 be a ring map and let Ii ⊂ Ai
be ideals such that ϕ(Ic1) ⊂ I2 for some c ≥ 1. This induces ring maps A1,cn =
A1/I

cn
1 → A2/I

n
2 = A2,n for all n ≥ 1. Let Ci be the category (2.0.1) for (Ai, Ii).

There is a base change functor

(2.3.1)0AJZ C1 −→ C2, (Bn) 7−→ (Bcn ⊗A1,cn
A2,n)

Let C′i be the category (2.0.2) for (Ai, Ii). If I2 is finitely generated, then there is
a base change functor

(2.3.2)0AK0 C′1 −→ C′2, B 7−→ (B ⊗A1
A2)∧

because in this case the completion is complete (Algebra, Lemma 95.3). If both
I1 and I2 are finitely generated, then the two base change functors agree via the
functors (2.0.3) which are equivalences by Lemma 2.1.

Remark 2.4 (Base change by closed immersion).0AL6 Let A be a Noetherian ring and
I ⊂ A an ideal. Let a ⊂ A be an ideal. Denote Ā = A/a. Let Ī ⊂ Ā be an ideal
such that IcĀ ⊂ Ī and Īd ⊂ IĀ for some c, d ≥ 1. In this case the base change
functor (2.3.2) for (A, I) to (Ā, Ī) is given by B 7→ B̄ = B/aB. Namely, we have

(2.4.1)0AK1 B̄ = (B ⊗A Ā)∧ = (B/aB)∧ = B/aB

the last equality because any finite B-module is I-adically complete by Algebra,
Lemma 96.1 and if annihilated by a also Ī-adically complete by Algebra, Lemma
95.9.

3. A naive cotangent complex

0AJL Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an A-algebra which
is I-adically complete such that A/I → B/IB is of finite type, i.e., an object of
(2.0.2). By Lemma 2.2 we can write

B = A[x1, . . . , xr]
∧/J

https://stacks.math.columbia.edu/tag/0AJQ
https://stacks.math.columbia.edu/tag/0AL5
https://stacks.math.columbia.edu/tag/0AL6
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for some finitely generated ideal J . For a choice of presentation as above we define
the naive cotangent complex in this setting by the formula

(3.0.1)0AJR NL∧B/A = (J/J2 −→
⊕

Bdxi)

with terms sitting in degrees −1 and 0 where the map sends the residue class of
g ∈ J to the differential dg =

∑
(∂g/∂xi)dxi. Here the partial derivative is taken

by thinking of g as a power series. The following lemma shows that NL∧B/A is well
defined in D(B), i.e., independent of the chosen presentation, although this could
be shown directly by comparing presentations as in Algebra, Section 132.

Lemma 3.1.0AJS Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an
object of (2.0.2). Then NL∧B/A = R limNLBn/An

in D(B).

Proof. In fact, the presentation B = A[x1, . . . , xr]
∧/J defines presentations

Bn = B/InB = An[x1, . . . , xr]/Jn

where
Jn = JAn[x1, . . . , xr] = J/(J ∩ InA[x1, . . . , xr]

∧)

By Artin-Rees (Algebra, Lemma 50.2) in the Noetherian ringA[x1, . . . , xr]
∧ (Lemma

2.2) we see that we have canonical surjections

J/InJ → Jn → J/In−cJ, n ≥ c
for some c ≥ 0. It follows that lim Jn/J

2
n = J/J2 as any finite A[x1, . . . , xr]

∧-
module is I-adically complete (Algebra, Lemma 96.1). Thus

NL∧B/A = lim(Jn/J
2
n −→

⊕
Bndxi)

(termwise limit) and the transition maps in the system are termwise surjective. The
two term complex Jn/J

2
n −→

⊕
Bndxi represents NLBn/An

by Algebra, Section
132. It follows that NL∧B/A represents R limNLBn/An

in the derived category by
More on Algebra, Lemma 78.1. �

Lemma 3.2.0ALM Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B → C be
morphism of (2.0.2). Then there is an exact sequence

C ⊗B H0(NL∧B/A) // H0(NL∧C/A) // H0(NL∧C/B) // 0

H−1(NL∧B/A⊗BC) // H−1(NL∧C/A) // H−1(NL∧C/B)

kk

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Note that (B, IB) is a pair

consisting of a Noetherian ring and an ideal, and C is in the corresponding category
(2.0.2) for this pair. Hence we can choose a presentation C = B[y1, . . . , ys]

∧/J ′.
Combinging these presentations gives a presentation

C = A[x1, . . . , xr, y1, . . . , ys]
∧/K

Then the reader verifies that we obtain a commutative diagram

0 //⊕Cdxi //⊕Cdxi ⊕
⊕
Cdyj //⊕Cdyj // 0

J/J2 ⊗B C //

OO

K/K2 //

OO

J ′/(J ′)2 //

OO

0

https://stacks.math.columbia.edu/tag/0AJS
https://stacks.math.columbia.edu/tag/0ALM
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with exact rows. Note that the vertical arrow on the left hand side is the tensor
product of the arrow defining NL∧B/A with idC . The lemma follows by applying the
snake lemma (Algebra, Lemma 4.1). �

Lemma 3.3.0AQJ With assumptions as in Lemma 3.2 assume that B/InB → C/InC is
a local complete intersection homomorphism for all n. Then H−1(NL∧B/A⊗BC)→
H−1(NL∧C/A) is injective.

Proof. By More on Algebra, Lemma 32.6 we see that this holds for the map
between naive cotangent complexes of the situation modulo In for all n. In other
words, we obtain a distinguished triangle in D(C/InC) for every n. Using Lemma
3.1 this implies the lemma; details omitted. �

Maps in the derived category out of a complex such as (3.0.1) are easy to understand
by the result of the following lemma.

Lemma 3.4.0ALN Let R be a ring. Let M• be a complex of modules over R with
M i = 0 for i > 0 and M0 a projective R-module. Let K• be a second complex.

(1) If Ki = 0 for i ≤ −2, then HomD(R)(M
•,K•) = HomK(R)(M

•,K•),
(2) If Ki = 0 for i ≤ −3 and α ∈ HomD(R)(M

•,K•) composed with K• →
K−2[2] comes from an R-module map a : M−2 → K−2 with a ◦ d−3M = 0,
then α can be represented by a map of complexes a• : M• → K• with
a−2 = a.

(3) In (2) for any second map of complexes (a′)• : M• → K• representing α
with a = (a′)−2 there exist h′ : M0 → K−1 and h : M−1 → K−2 such that

h ◦ d−2M = 0, (a′)−1 = a−1 + d−2K ◦ h+ h′ ◦ d−1M , (a′)0 = a0 + d−1K ◦ h
′

Proof. Set F 0 = M0. Choose a free R-module F−1 and a surjection F−1 →
M−1. Choose a free R-module F−2 and a surjection F−2 → M−2 ×M−1 F−1.
Continuing in this way we obtain a quasi-isomorphism p• : F • → M• which is
termwise surjective and with F i free for all i.

Proof of (1). By Derived Categories, Lemma 19.8 we have

HomD(R)(M
•,K•) = HomK(R)(F

•,K•)

If Ki = 0 for i ≤ −2, then any morphism of complexes F • → K• factors through
p•. Similarly, any homotopy {hi : F i → Ki−1} factors through p•. Thus (1) holds.
Proof of (2). Choose b• : F • → K• representing α. The composition of α with
K• → K−2[2] is represented by b−2 : F−2 → K−2. As this is homotopic to
a ◦ p−2 : F−2 → M−2 → K−2, there is a map h : F−1 → K−2 such that b−2 =
a ◦ p−2 + h ◦ d−2F . Adjusting b• by h viewed as a homotopy from F • to K•, we find
that b−2 = a ◦ p−2. Hence b−2 factors through p−2. Since F 0 = M0 the kernel
of p−2 surjects onto the kernel of p−1 (for example because the kernel of p• is an
acyclic complex or by a diagram chase). Hence b−1 necessarily factors through p−1
as well and we see that (2) holds for these factorizations and a0 = b0.

Proof of (3) is omitted. Hint: There is a homotopy between a• ◦ p• and (a′)• ◦ p•
and we argue as before that this homotopy factors through p•. �

Lemma 3.5.0AJT Let R be a ring. Let M• be a two term complex M−1 → M0 over
R. If ϕ,ψ ∈ EndD(R)(M

•) are zero on Hi(M•), then ϕ ◦ ψ = 0.

https://stacks.math.columbia.edu/tag/0AQJ
https://stacks.math.columbia.edu/tag/0ALN
https://stacks.math.columbia.edu/tag/0AJT
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Proof. Apply Derived Categories, Lemma 12.5 to see that ϕ ◦ ψ factors through
τ≤−2M

• = 0. �

4. Rig-étale homomorphisms

0ALP In this and some of the later sections we will study ring maps as in Lemma 4.1.
Condition (4) is one of the conditions used in [Art70] to define modifications. Ring
maps like this are sometimes called rig-étale or rigid-étale ring maps in the liter-
ature. These and the analogously defined rig-smooth ring maps were studied in
[Elk73]. A detailed exposition can also be found in [Abb10]. Our main goal will
be to show that rig-étale ring maps are completions of finite type algebras, a result
very similar to results found in Elkik’s paper [Elk73].

Lemma 4.1.0AJU Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be an
object of (2.0.2). The following are equivalent

(1)0AJV there exists a c ≥ 0 such that multiplication by a on NL∧B/A is zero in D(B)
for all a ∈ Ic,

(2)0AJW there exits a c ≥ 0 such that Hi(NL∧B/A), i = −1, 0 is annihilated by Ic,
(3)0AJX there exists a c ≥ 0 such that Hi(NLBn/An

), i = −1, 0 is annihilated by Ic
for all n ≥ 1,

(4)0AJY B = A[x1, . . . , xr]
∧/J and for every a ∈ I there exists a c ≥ 0 such that

(a) ac annihilates H0(NL∧B/A), and
(b) there exist f1, . . . , fr ∈ J such that acJ ⊂ (f1, . . . , fr) + J2.

Proof. The equivalence of (1) and (2) follows from Lemma 3.5. The equivalence
of (1) + (2) and (3) follows from Lemma 3.1. Some details omitted.

Assume the equivalent conditions (1), (2), (3) holds and let B = A[x1, . . . , xr]
∧/J

be a presentation (see Lemma 2.1). Let a ∈ I. Let c be such that multiplication
by ac is zero on NL∧B/A which exists by (1). By Lemma 3.4 there exists a map
α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication by ac. Let

fi ∈ J be an element whose class modulo J2 is equal to α(dxi). Then we see that
(4)(a), (b) hold.

Assume (4) holds. Say I = (a1, . . . , at). Let ci ≥ 0 be the integer such that
(4)(a), (b) hold for acii . Then we see that I

∑
ci annihilates H0(NL∧B/A). Let

fi,1, . . . , fi,r ∈ J be as in (4)(b) for ai. Consider the composition

B⊕r → J/J2 →
⊕

Bdxi

where the jth basis vector is mapped to the class of fi,j in J/J2. By (4)(a) and (b)
the cokernel of the composition is annihilated by a2cii . Thus this map is surjective
after inverting acii , and hence an isomorphism (Algebra, Lemma 15.4). Thus the ker-
nel of B⊕r →

⊕
Bdxi is ai-power torsion, and hence H−1(NL∧B/A) = Ker(J/J2 →⊕

Bdxi) is ai-power torsion. Since B is Noetherian (Lemma 2.2), all modules in-
cluding H−1(NL∧B/A) are finite. Thus adii annihilates H−1(NL∧B/A) for some di ≥ 0.
It follows that I

∑
di annihilates H−1(NL∧B/A) and we see that (2) holds. �

Lemma 4.2.0ALQ Let A be a Noetherian ring and let I be an ideal. Let B be a finite
type A-algebra.

(1) If Spec(B) → Spec(A) is étale over Spec(A) \ V (I), then B∧ satisfies the
equivalent conditions of Lemma 4.1.

https://stacks.math.columbia.edu/tag/0AJU
https://stacks.math.columbia.edu/tag/0ALQ
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(2) If B∧ satisfies the equivalent conditions of Lemma 4.1, then there exists
g ∈ 1 + IB such that Spec(Bg) is étale over Spec(A) \ V (I).

Proof. Assume B∧ satisfies the equivalent conditions of Lemma 4.1. The naive
cotangent complex NLB/A is a complex of finite type B-modules and hence H−1

and H0 are finite B-modules. Completion is an exact functor on finite B-modules
(Algebra, Lemma 96.2) and NL∧B∧/A is the completion of the complex NLB/A (this
is easy to see by choosing presentations). Hence the assumption implies there exists
a c ≥ 0 such that H−1/InH−1 and H0/InH0 are annihilated by Ic for all n. By
Nakayama’s lemma (Algebra, Lemma 19.1) this means that IcH−1 and IcH0 are
annihilated by an element of the form g = 1 + x with x ∈ IB. After inverting g
(which does not change the quotients B/InB) we see that NLB/A has cohomology
annihilated by Ic. Thus A→ B is étale at any prime of B not lying over V (I) by
the definition of étale ring maps, see Algebra, Definition 141.1.

Conversely, assume that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Then
for every a ∈ I there exists a c ≥ 0 such that multiplication by ac is zero NLB/A.
Since NL∧B∧/A is the derived completion of NLB/A (see Lemma 3.1) it follows that
B∧ satisfies the equivalent conditions of Lemma 4.1. �

Lemma 4.3.0AK2 Assume the map (A1, I1) → (A2, I2) is as in Remark 2.3 with A1

and A2 Noetherian. Let B1 be in (2.0.2) for (A1, I1). Let B2 be the base change of
B1. If multiplication by f1 ∈ B1 on NL∧B1/A1

is zero in D(B1), then multiplication
by the image f2 ∈ B2 on NL∧B2/A2

is zero in D(B2).

Proof. Choose a presentation B1 = A1[x1, . . . , xr]
∧/J1. Since A2/I

n
2 [x1, . . . , xr] =

A1/I
cn
1 [x1, . . . , xr]⊗A1/Icn1

A2/I
n
2 we have

A2[x1, . . . , xr]
∧ = (A1[x1, . . . , xr]

∧ ⊗A1
A2)∧

where we use I2-adic completion on both sides (but of course I1-adic completion
for A1[x1, . . . , xr]

∧). Set J2 = J1A2[x1, . . . , xr]
∧. Arguing similarly we get the

presentation

B2 = (B1 ⊗A1 A2)∧

= lim
A1/I

cn
1 [x1, . . . , xr]

J1(A1/Icn1 [x1, . . . , xr])
⊗A1/Icn1

A2/I
n
2

= lim
A2/I

n
2 [x1, . . . , xr]

J2(A2/In2 [x1, . . . , xr])

= A2[x1, . . . , xr]
∧/J2

for B2 over A2. Consider the commutative diagram

NL∧B1/A1
:

��

J1/J
2
1 d

//

��

⊕
B1dxi

��
NL∧B2/A2

: J2/J
2
2

//⊕B2dxi

The induced arrow J1/J
2
1 ⊗B1

B2 → J2/J
2
2 is surjective because J2 is generated by

the image of J1. By Lemma 3.4 there is a map α1 :
⊕
Bdxi → J1/J

2
1 such that

f1id⊕B1dxi
= d ◦ α1 and f1idJ1/J2

1
= α1 ◦ d. We define α2 :

⊕
B1dxi → J2/J

2
2 by

mapping dxi to the image of α1(dxi) in J2/J2
2 . Because the image of the vertical

https://stacks.math.columbia.edu/tag/0AK2
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arrows contains generators of the modules J2/J2
2 and

⊕
B2dxi it follows that α2

also defines a homotopy between multiplication by f2 and the zero map. �

Lemma 4.4.0AKJ Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be a finite
type A-algebra such that Spec(B)→ Spec(A) is étale over Spec(A)\V (I). Let C be
a Noetherian A-algebra. Then any A-algebra map B∧ → C∧ of I-adic completions
comes from a unique A-algebra map

B −→ Ch

where Ch is the henselization of the pair (C, IC) as in More on Algebra, Lemma
12.1. Moreover, any A-algebra homomorphism B → Ch factors through some étale
C-algebra C ′ such that C/IC → C ′/IC ′ is an isomorphism.

Proof. Uniqueness follows from the fact that Ch is a subring of C∧, see for example
More on Algebra, Lemma 12.4. The final assertion follows from the fact that Ch is
the filtered colimit of these C-algebras C ′, see proof of More on Algebra, Lemma
12.1. Having said this we now turn to the proof of existence.

Let ϕ : B∧ → C∧ be the given map. This defines a section

σ : (B ⊗A C)∧ −→ C∧

of the completion of the map C → B ⊗A C. We may replace (A, I,B,C, ϕ) by
(C, IC,B ⊗A C,C, σ). In this way we see that we may assume that A = C.

Proof of existence in the case A = C. In this case the map ϕ : B∧ → A∧ is
necessarily surjective. By Lemmas 4.2 and 3.2 we see that the cohomology groups
of NL∧A∧/ϕB∧ are annihilated by a power of I. Since ϕ is surjective, this implies
that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of I. Hence ϕ : B∧ → A∧ is
the completion of a finite type B-algebra B → D, see More on Algebra, Lemma
94.4. Hence A → D is a finite type algebra map which induces an isomorphism
A∧ → D∧. By Lemma 4.2 we may replace D by a localization and assume that
A → D is étale away from V (I). Since A∧ → D∧ is an isomorphism, we see that
Spec(D) → Spec(A) is also étale in a neighbourhood of V (ID) (for example by
More on Morphisms, Lemma 12.3). Thus Spec(D) → Spec(A) is étale. Therefore
D maps to Ah and the lemma is proved. �

5. Rig-étale morphisms

0AQK We can use the notion introduced in the previous section to define a new type of
morphism of locally Noetherian formal algebraic spaces. Before we do so, we have
to check it is a local property.

Lemma 5.1.0AQL For morphisms A→ B of the category WAdmNoeth (Formal Spaces,
Section 16) consider the condition P =“for some ideal of definition I of A the
topology on B is the I-adic topology, the ring map A/I → B/IB is of finite type
and A → B satisfies the equivalent conditions of Lemma 4.1”. Then P is a local
property, see Formal Spaces, Remark 16.5.

Proof. We have to show that Formal Spaces, Axioms (1), (2), and (3) hold for
maps between Noetherian adic rings. For a Noetherian adic ring A with ideal of
definition I we have A{x1, . . . , xr} = A[x1, . . . , xr]

∧ as topological A-algebras (see
Formal Spaces, Remark 21.2). We will use without further mention that we know

https://stacks.math.columbia.edu/tag/0AKJ
https://stacks.math.columbia.edu/tag/0AQL
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the axioms hold for the property “B is a quotient of A[x1, . . . , xr]
∧”, see Formal

Spaces, Lemma 22.6.

Let a diagram as in Formal Spaces, Diagram (16.2.1) be given with A and B in
the category WAdmNoeth. Pick an ideal of definition I ⊂ A. By the remarks above
the topology on each ring in the diagram is the I-adic topology. Since A→ A′ and
B → B′ are étale we see that NL∧(A′)∧/A and NL∧(B′)∧/B are zero. By Lemmas 3.2
and 3.3 we get

Hi(NL∧(B′)∧/(A′)∧) ∼= Hi(NL∧(B′)∧/A) and Hi(NL∧B/A⊗B(B′)∧) ∼= Hi(NL∧(B′)∧/A)

for i = −1, 0. Since B is Noetherian the ring map B → B′ → (B′)∧ is flat
(Algebra, Lemma 96.2) hence the tensor product comes out. Moreover, as B is
I-adically complete, then if B → B′ is faithfully flat, so is B → (B′)∧. From these
observations Formal Spaces, Axioms (1) and (2) follow immediately.

We omit the proof of Formal Spaces, Axiom (3). �

Definition 5.2.0AQM Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-étale if f satisfies the
equivalent conditions of Formal Spaces, Lemma 16.3 (in the setting of locally Noe-
therian formal algebraic spaces, see Formal Spaces, Remark 16.4) for the property
P of Lemma 5.1.

To be sure, a rig-étale morphism is locally of finite type.

Lemma 5.3.0AQN A rig-étale morphism of locally Noetherian formal algebraic spaces
is locally of finite type.

Proof. The property P in Lemma 5.1 implies the equivalent conditions (a), (b),
(c), and (d) in Formal Spaces, Lemma 22.6. Hence this follows from Formal Spaces,
Lemma 22.9. �

6. Glueing rings along a principal ideal

0AK5 In this situation we prove some results about the categories C and C′ of Section 2
in case A is a Noetherian ring and I = (a) is a principal ideal.

Remark 6.1 (Linear approximation).0AK3 Let A be a ring and I ⊂ A be a finitely gen-
erated ideal. Let C be an I-adically complete A-algebra. Let ψ : A[x1, . . . , xr]

∧ →
C be a continuous A-algebra map. Suppose given δi ∈ C, i = 1, . . . , r. Then we
can consider

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δi

see Formal Spaces, Remark 21.1. Then we have

ψ′(g) = ψ(g) +
∑

ψ(∂g/∂xi)δi + ξ

with error term ξ ∈ (δiδj). This follows by writing g as a power series and working
term by term. Convergence is automatic as the coefficients of g tend to zero. Details
omitted.

Lemma 6.2.0AK6 Let A be a Noetherian ring and I = (a) a principal ideal. Let B be an
objects of (2.0.2). Assume given an integer c ≥ 0 such that multiplication by ac on
NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra such that a is a
nonzerodivisor on C. Let n > 2c. For any An-algebra map ψn : B/anB → C/anC
there exists an A-algebra map ϕ : B → C such that ψn mod an−c = ϕ mod an−c.

https://stacks.math.columbia.edu/tag/0AQM
https://stacks.math.columbia.edu/tag/0AQN
https://stacks.math.columbia.edu/tag/0AK3
https://stacks.math.columbia.edu/tag/0AK6
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Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose a lift

ψ : A[x1, . . . , xr]
∧ → C

of ψn. Then ψ(J) ⊂ anC and ψ(J2) ⊂ a2nC which determines a linear map

J/J2 −→ anC/a2nC, g 7−→ ψ(g)

By assumption and Lemma 3.4 there is a B-module map
⊕
Bdxi → anC/a2nC,

dxi 7→ δi such that acψ(g) =
∑
ψ(∂g/∂xi)δi for all g ∈ J . Write δi = −acδ′i

for some δ′i ∈ an−cC. Since a is a nonzerodivisor on C we see that ψ(g) =
−
∑
ψ(∂g/∂xi)δ

′
i in C/a2n−cC. Then we look at the map

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δ′i

A computation with power series (see Remark 6.1) shows that ψ′(J) ⊂ a2n−2cC.
Since n > 2c we see that n′ = 2n − 2c = n + (n − 2c) > n. Thus we obtain a
morphism ψn′ : B/an

′
B → C/an

′
C agreeing with ψn modulo an−c. Continuing in

this fashion and taking the limit into C = limC/atC we obtain the lemma. �

Lemma 6.3.0AK7 Let A be a Noetherian ring and I = (a) a principal ideal. Let B be
an object of (2.0.2). Assume given an integer c ≥ 0 such that multiplication by ac
on NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra. Assume
given an integer d ≥ 0 such that C[a∞]∩adC = 0. Let n > max(2c, c+d). For any
An-algebra map ψn : B/anB → C/anC there exists an A-algebra map ϕ : B → C
such that ψn mod an−c = ϕ mod an−c.

If C is Noetherian we have C[a∞] = C[ae] for some e ≥ 0. By Artin-Rees (Algebra,
Lemma 50.2) there exists an integer f such that anC ∩C[a∞] ⊂ an−fC[a∞] for all
n ≥ f . Then d = e + f is an integer as in the lemma. This argument works in
particular if C is an object of (2.0.2) by Lemma 2.2.

Proof. Let C → C ′ be the quotient of C by C[a∞]. The A-algebra C ′ is I-adically
complete by Algebra, Lemma 95.10 and the fact that

⋂
(C[a∞] + anC) = C[a∞]

because for n ≥ d the sum C[a∞] + anC is direct. For m ≥ d the diagram

0 // C[a∞] //

��

C //

��

C ′ //

��

0

0 // C[a∞] // C/amC // C ′/amC ′ // 0

has exact rows. Thus C is the fibre product of C ′ and C/amC over C ′/amC ′. Thus
the lemma now follows formally from the lifting result of Lemma 6.2. �

Lemma 6.4.0ALS The rig-étale case of
[Elk73, III Theorem
7] which handles the
rig-smooth case.

Let A be a Noetherian ring and I = (a) a principal ideal. Let B
be an object of (2.0.2). Assume given an integer c ≥ 0 such that multiplication by
ac on NL∧B/A is zero in D(B). Then there exists a finite type A-algebra C and an
isomorphism B ∼= C∧.

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . By Lemma 3.4 we can find

a map α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication by

ac. Pick an element fi ∈ J whose class modulo J2 is equal to α(dxi). Then we see
that dfi = acdxi in

⊕
dxi. In particular we have a ring map

A[x1, . . . , xr]
∧/(f1, . . . , fr,∆(f1, . . . , fr)− arc) −→ B

https://stacks.math.columbia.edu/tag/0AK7
https://stacks.math.columbia.edu/tag/0ALS
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where ∆(f1, . . . , fr) ∈ A[x1, . . . , xr]
∧ is the determinant of the matrix of partial

derivatives of the fi.

Pick a large integer N . Pick F1, . . . , Fr ∈ A[x1, . . . , xr] such that Fi − fi ∈
INA[x1, . . . , xr]

∧. Set

C = A[x1, . . . , xr, z]/(F1, . . . , Fr, z∆(F1, . . . , Fr)− arc)
We claim that multiplication by a2rc is zero on NLC/A in D(C). Namely, the
determinant of the matrix of the partial derivatives of the r + 1 generators of the
ideal of C with respect to the variables x1, . . . , xr+1, z is ∆(F1, . . . , Fr)

2. Since
∆(F1, . . . , Fr) divides arc we in C the claim follows for example from Algebra,
Lemma 14.5. Let C∧ be the I-adic completion of C. Since NL∧C∧/A is the I-adic
completion of NLC/A we conclude that multiplication by a2rc is zero on NL∧C∧/A
as well.

By construction there is a (surjective) map ψN : C/INC → B/INB sending xi to
xi and z to 1. By Lemma 6.3 (with the roles of B and C reversed) for N large
enough we get a map ϕ : C∧ → B which agrees with ψN modulo IN−2rc.

Since ϕ : C∧ → B is surjective modulo I we see that it is surjective (for example
use Algebra, Lemma 95.1). By construction and assumption the naive cotangent
complexes NL∧C∧/A and NL∧B/A have cohomology annihilated by a fixed power of
a. Thus the same thing is true for NL∧B/C∧ by Lemma 3.2. Since ϕ is surjective
we conclude that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of a. The result of the
lemma now follows from More on Algebra, Lemma 94.4. �

7. Glueing rings along an ideal

0AK8 Let A be a Noetherian ring. Let I ⊂ A be an ideal. In this section we study
I-adically complete A-algebras which are, in some vague sense, étale over the com-
plement of V (I) in Spec(A).

Lemma 7.1.0AK9 Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the
minimal number of generators for I. Let C be a Noetherian I-adically complete
A-algebra. There exists an integer d ≥ 0 depending only on I ⊂ A → C with the
following property: given

(1) c ≥ 0 and B in (2.0.2) such that for a ∈ Ic multiplication by a on NL∧B/A
is zero in D(B),

(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC,

there exists a map ϕ : B → C of A-algebras such that ψn mod Im−c = ϕ mod Im−c

with m = bnt c.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
the lemma follows from Lemma 6.3 because 2 max(c, d) ≥ max(2c, c+ d). Assume
t > 1.

Set m = bnt c as in the lemma. Set Ā = A/(amt ). Consider the ideal Ī =

(ā1, . . . , āt−1) in Ā. Set C̄ = C/(amt ). Note that C̄ is a Ī-adically complete Noe-
therian Ā-algebra (use Algebra, Lemmas 96.1 and 95.9). Let d̄ be the integer for
Ī ⊂ Ā→ C̄ which exists by induction hypothesis.

https://stacks.math.columbia.edu/tag/0AK9
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Let d1 ≥ 0 be an integer such that C[a∞t ]∩ad1t C = 0 as in Lemma 6.3 (see discussion
following the lemma and before the proof).

We claim the lemma holds with d = max(d̄, d1). To see this, let c,B, n, ψn be as in
the lemma.

Note that Ī ⊂ IĀ. Hence by Lemma 4.3 multiplication by an element of Īc on the
cotangent complex of B̄ = B/(amt ) is zero in D(B̄). Also, we have

Īn−m+1 ⊃ InĀ

Thus ψn gives rise to a map

ψ̄n−m+1 : B̄/Īn−m+1B̄ −→ C̄/Īn−m+1C̄

Since n > 2tmax(c, d) and d ≥ d̄ we see that

n−m+ 1 ≥ (t− 1)n/t > 2(t− 1) max(c, d) ≥ 2(t− 1) max(c, d̄)

Hence we can find a morphism ϕm : B̄ → C̄ agreeing with ψ̄n−m+1 modulo the
ideal Īm

′−c where m′ = bn−m+1
t−1 c.

Sincem ≥ n/t > 2 max(c, d) ≥ 2 max(c, d1) ≥ max(2c, c+d1), we can apply Lemma
6.3 for the ring map A → B and the ideal (at) to find a morphism ϕ : B → C
agreeing modulo am−ct with ϕm.

All in all we find ϕ : B → C which agrees with ψn modulo

(am−ct ) + (a1, . . . , at−1)m
′−c ⊂ Imin(m−c,m′−c)

We leave it to the reader to see that min(m − c,m′ − c) = m − c. This concludes
the proof. �

Lemma 7.2.0ALT Let A be a Noetherian ring and I ⊂ A an ideal. Let J ⊂ A be a
nilpotent ideal. Consider a diagram

C // C/JC

B0

OO

A //

OO

A/J

OO

whose vertical arrows are of finite type such that

(1) Spec(C)→ Spec(A) is étale over Spec(A) \ V (I),
(2) Spec(B0)→ Spec(A/J) is étale over Spec(A/J) \ V ((I + J)/J), and
(3) B0 → C/JC is étale and induces an isomorphism B0/IB0 = C/(I + J)C.

https://stacks.math.columbia.edu/tag/0ALT
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Then we can fill in the diagram

C // C/JC

B

OO

// B0

OO

A //

OO

A/J

OO

with A → B of finite type, B/JB = B0, B → C étale, and Spec(B) → Spec(A)
étale over Spec(A) \ V (I).

First proof. This proof uses algebraic spaces to construct B. Set X = Spec(A),
X0 = Spec(A/J), Y0 = Spec(B0), Z = Spec(C), Z0 = Spec(C/JC). Furthermore,
denote U ⊂ X, U0 ⊂ X0, V0 ⊂ Y0, W ⊂ Z, W0 ⊂ Z0 the complement of the
vanishing set of I. The conditions in the lemma guarantee that

W0
//

��

Z0

��
V0 // Y0

is an elementary distinguished square. In addition we know that W0 → U0 and
V0 → U0 are étale. The morphism X0 ⊂ X is a finite order thickening. By the
topological invariance of the étale site we can find a unique étale morphism V → X
with V0 = V ×X X0 and we can lift the given morphism W0 → V0 to a unique
morphism W → V . See More on Morphisms of Spaces, Theorem 8.1. By Pushouts
of Spaces, Lemma 4.2 we can construct an elementary distinguished square

W //

��

Z

��
V // Y

in the category of algebraic spaces over X. Since the base change of an elemen-
tary distinguished square is an elementary distinguished square (Derived Categories
of Spaces, Lemma 9.2) and since elementary distinguished squares are pushouts
(Pushouts of Spaces, Lemma 4.1) we see that the base change of this diagram by
X0 → X gives the previous diagram. It follows that Y is affine by Limits of Spaces,
Proposition 15.2. Write Y = Spec(B). Then B fits into the desired diagram and
satisfies all the properties required of it. �

Second proof. This proof uses a little bit of deformation theory to construct B.
By induction on the smallest n such that Jn = 0 we reduce to the case J2 = 0.
Denote by a subscript zero the base change of objects to A0 = A/J . Since J2 = 0
we see that JC is a C0-module.

Consider the canonical map

γ : J ⊗A0
C0 −→ JC

Since Spec(C)→ Spec(A) is étale over the complement of V (I) (and hence flat) we
see that γ is an isomorphism away from V (IC0), see More on Morphisms, Lemma
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10.1. In particular, the kernel and cokernel of γ are annihilated by a power of I
(use that C0 is Noetherian and that the modules in question are finite). Observe
that J ⊗A0 C0 = (J ⊗A0 B0) ⊗B0 C0. Hence by More on Algebra, Lemma 80.16
there exists a unique B0-module homomorphism

c : J ⊗A0
B0 → N

with c⊗ idC0
= γ and Ker(γ) = Ker(c) and Coker(γ) = Coker(c). Moreover, N is

a finite B0-module, see More on Algebra, Remark 80.19.

Choose a presentation B0 = A[x1, . . . , xr]/K. To construct B we try to find the
dotted arrow m fitting into the following pushout diagram

0 // N // B // B0
// 0

0 // K/K2 //

m

OO

A[x1, . . . , xr]/K
2 //

OO

A[x1, . . . , xr]/K // 0

J ⊗A0
B0

OO

>>

where the curved arrow is the map c constructed above and the map J ⊗A0
B0 →

K/K2 is the obvious one.

As B0 → C0 is étale we can write C0 = B0[y1, . . . , yr]/(g0,1, . . . , g0,r) such that the
determinant of the partial derivatives of the g0,j is invertible in C0, see Algebra,
Lemma 141.2. We combine this with the chosen presentation of B0 to get a pre-
sentation C0 = A[x1, . . . , xr, y1, . . . , ys]/L. Choose a lift ψ : A[xi, yj ] → C of the
map to C0. Then it is the case that C fits into the diagram

0 // JC // C // C0
// 0

0 // L/L2 //

µ

OO

A[xi, yj ]/L
2 //

OO

A[xi, yj ]/L // 0

J ⊗A0 C0

OO

??

where the curved arrow is the map γ constructed above and the map J ⊗A0
C0 →

L/L2 is the obvious one. By our choice of presentations and the fact that C0 is a
complete intersection over B0 we have

L/L2 = K/K2 ⊗B0 C0 ⊕
⊕

C0gj

where gj ∈ L is any lift of g0,j , see More on Algebra, Lemma 32.6.

Consider the three term complex

K• : J ⊗A0 B0 → K/K2 →
⊕

B0dxi

where the second arrow is the differential in the naive cotangent complex of B0

over A for the given presentation and the last term is placed in degree 0. Since
Spec(B0) → Spec(A0) is étale away from V (I) the cohomology modules of this
complex are supported on V (IB0). Namely, for a ∈ I after inverting a we can
apply More on Algebra, Lemma 32.6 for the ring maps Aa → A0,a → B0,a and



RESTRICTED POWER SERIES 15

use that NLA0,a/Aa
= Ja and NLB0,a/A0,a

= 0 (some details omitted). Hence these
cohomology groups are annihilated by a power of I.

Similarly, consider the three term complex

L• : J ⊗A0 C0 → L/L2 →
⊕

C0dxi ⊕
⊕

C0dyj

By our direct sum decomposition of L/L2 above and the fact that the determinant
of the partial derivatives of the g0,j is invertible in C0 we see that the natural map
K• → L• induces a quasi-isomorphism

K• ⊗B0 C0 −→ L•

Applying Dualizing Complexes, Lemma 9.8 we find that

(7.2.1)0AM9 HomD(B0)(K
•, E) = HomD(C0)(L

•, E ⊗B0
C0)

for any object E ∈ D(B0).

The maps idJ⊗A0
C0

and µ define an element in

HomD(C0)(L
•, (J ⊗A0 C0 → JC))

(the target two term complex is placed in degree −2 and −1) such that the com-
position with the map to J ⊗A0

C0[2] is the element in HomD(C0)(L
•, J ⊗A0

C0[2])
corresponding to idJ⊗A0

C0
. Picture

J ⊗A0
C0

//

idJ⊗A0
C0

��

L/L2 //

µ

��

⊕
C0dxi ⊕

⊕
C0dyj

J ⊗A0
C0

γ // JC

Applying (7.2.1) we obtain a unique element

ξ ∈ HomD(B0)(K
•, (J ⊗A0

B0 → N))

Its composition with the map to J⊗A0B0[2] is the element in HomD(C0)(K
•, J⊗A0

B0[2]) corresponding to idJ⊗A0
B0

. By Lemma 3.4 we can find a map of complexes
K• → (J⊗A0

B0 → N) representing ξ and equal to idJ⊗A0
B0

in degree −2. Denote
m : K/K2 → N the degree −1 part of this map. Picture

J ⊗A0
B0

//

idJ⊗A0
B0

��

K/K2 //

m

��

⊕
B0dxi

J ⊗A0 B0
c // N

Thus we can usem to create an algebra B by push out as explained above. However,
we may still have to change m a bit to make sure that B maps to C in the correct
manner.

Denote m ⊗ idC0
⊕ 0 : L/L2 → JC the map coming from the direct sum de-

composition of L/L2 (see above), using that N ⊗B0 C0 = JC, and using 0 on the
second factor. By our choice ofm above the maps of complexes (idJ⊗A0

C0 , µ, 0) and
(idJ⊗A0

C0 ,m⊗ idC0 ⊕ 0, 0) define the same element of HomD(C0)(L
•, (J ⊗A0 C0 →

JC)). By Lemma 3.4 there exist maps h : L−1 → J ⊗A0
C0 and h′ : L0 → JC
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which define a homotopy between (idJ⊗A0
C0
, µ, 0) and (idJ⊗A0

C0
,m⊗ idC0

⊕ 0, 0).
Picture

J ⊗A0
C0

//

idJ⊗A0
C0

��

K/K2 ⊗B0
C0 ⊕

⊕
C0gj

h

uu

//

µ

��
m⊗idC0

⊕0
��

⊕
C0dxi ⊕

⊕
C0dyj

h′

tt
J ⊗A0

C0
γ // JC

Since h precomposed with d−2L is zero it defines an element in HomD(C0)(L
•, J ⊗A0

C0[1]) which comes from a unique element χ of HomD(B0)(K
•, J ⊗A0 B0[1]) by

(7.2.1). Applying Lemma 3.4 again we represent χ by a map g : K/K2 → J⊗A0B0.
Then the base change g ⊗ idC0

and h differ by a homotopy h′′ : L0 → J ⊗A0
C.

Hence if we modify m into m + c ◦ g, then we find that m ⊗ idC0
⊕ 0 and µ just

differ by a map h′ : L0 → JC.

Changing our choice of the map ψ : A[xi, yj ]→ C by sending xi to ψ(xi) + h′(dxi)
and sending yj to ψ(yj) + h′(dyj), we find a commutative diagram

N // JC

K/K2 //

m

OO

L/L2

µ

OO

J ⊗A0
B0

OO
c

>>

// J ⊗A0
C0

OO
γ

``

At this point we can define B as the pushout in the first commutative diagram of
the proof. The commutativity of the diagram just displayed, shows that there is
an A-algebra map B → C compatible with the given map N = JB → JC. As
N ⊗B0 C0 = JC it follows from More on Morphisms, Lemma 10.1 that B → C
is flat. From this it easily follows that it is étale. We omit the proof of the other
properties as they are mostly self evident at this point. �

Lemma 7.3.0AKA Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be an object
of (2.0.2). Assume there is an integer c ≥ 0 such that for a ∈ Ic multiplication by
a on NL∧B/A is zero in D(B). Then there exists a finite type A-algebra C and an
isomorphism B ∼= C∧.

In Section 8 we will give a simpler proof of this result in case A is a G-ring.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
the lemma follows from Lemma 6.4. Assume t > 1.

For any m ≥ 1 set Ām = A/(amt ). Consider the ideal Īm = (ā1, . . . , āt−1) in Ām.
Let Bm = B/(amt ) be the base change of B for the map (A, I) → (Ām, Īm), see
(2.4.1). By Lemma 4.3 the assumption of the lemma holds for Īm ⊂ Ām → Bm.

By induction hypothesis (on t) we can find a finite type Ām-algebra Cm and a map
Cm → Bm which induces an isomorphism C∧m

∼= Bm where the completion is with
respect to Īm. By Lemma 4.2 we may assume that Spec(Cm)→ Spec(Ām) is étale
over Spec(Ām) \ V (Īm).

https://stacks.math.columbia.edu/tag/0AKA
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We claim that we may choose Am → Cm → Bm as in the previous paragraph such
that moreover there are isomorphisms Cm/(am−1t ) → Cm−1 compatible with the
given A-algebra structure and the maps to Bm−1 = Bm/(a

m−1
t ). Namely, first fix a

choice of A1 → C1 → B1. Suppose we have found Cm−1 → Cm−2 → . . .→ C1 with
the desired properties. Note that Cm/(am−1t ) is étale over Spec(Ām−1) \ V (Īm−1).
Hence by Lemma 4.4 there exists an étale extension Cm−1 → C ′m−1 which in-
duces an isomorphism modulo Īm−1 and an Ām−1-algebra map Cm/(a

m−1
t ) →

C ′m−1 inducing the isomorphism Bm/(a
m−1
t ) → Bm−1 on completions. Note that

Cm/(a
m−1
t ) → C ′m−1 is étale over the complement of V (Īm−1) by Morphisms,

Lemma 34.18 and over V (Īm−1) induces an isomorphism on completions hence is
étale there too (for example by More on Morphisms, Lemma 12.3). Thus Cm/(am−1t )→
C ′m−1 is étale. By the topological invariance of étale morphisms (Étale Morphisms,
Theorem 15.2) there exists an étale ring map Cm → C ′m such that Cm/(am−1t ) →
C ′m−1 is isomorphic to Cm/(am−1t )→ C ′m/(a

m−1
t ). Observe that the Īm-adic com-

pletion of C ′m is equal to the Īm-adic completion of Cm, i.e., to Bm (details omitted).
We apply Lemma 7.2 to the diagram

C ′m // C ′m/(a
m−1
t )

C ′′m

==

// Cm−1

OO

Ām //

OO

aa

Ām−1

OO

to see that there exists a “lift” of C ′′m of Cm−1 to an algebra over Ām with all the
desired properties.

By construction (Cm) is an object of the category (2.0.1) for the principal ideal
(at). Thus the inverse limit B′ = limCm is an (at)-adically complete A-algebra
such that B′/atB′ is of finite type over A/(at), see Lemma 2.1. By construction
the I-adic completion of B′ is isomorphic to B (details omitted). Consider the
complex NL∧B′/A constructed using the (at)-adic topology. Choosing a presentation
for B′ (which induces a similar presentation for B) the reader immediately sees that
NL∧B′/A⊗B′B = NL∧B/A. Since at ∈ I and since the cohomology modules of NL∧B′/A
are finite B′-modules (hence complete for the at-adic topology), we conclude that
act acts as zero on these cohomologies as the same thing is true by assumption for
NL∧B/A. Thus multiplication by a2ct is zero on NL∧B′/A by Lemma 3.5. Hence finally,
we may apply Lemma 6.4 to (at) ⊂ A→ B′ to finish the proof. �

Lemma 7.4.0AKG Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be
an I-adically complete A-algebra with A/I → B/IB of finite type. The equivalent
conditions of Lemma 4.1 are also equivalent to

(5)0AKH there exists a finite type A-algebra C with Spec(C)→ Spec(A) is étale over
Spec(A) \ V (I) such that B ∼= C∧.

Proof. First, assume conditions (1) – (4) hold. Then there exists a finite type
A-algebra C with such that B ∼= C∧ by Lemma 7.3. In other words, Bn = C/InC.
The naive cotangent complex NLC/A is a complex of finite type C-modules and

https://stacks.math.columbia.edu/tag/0AKG
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hence H−1 and H0 are finite C-modules. By assumption there exists a c ≥ 0 such
that H−1/InH−1 and H0/InH0 are annihilated by Ic for some n. By Nakayama’s
lemma this means that IcH−1 and IcH0 are annihilated by an element of the form
f = 1 + x with x ∈ IC. After inverting f (which does not change the quotients
Bn = C/InC) we see that NLC/A has cohomology annihilated by Ic. Thus A→ C
is étale at any prime of C not lying over V (I) by the definition of étale ring maps,
see Algebra, Definition 141.1.

Conversely, assume that A→ C of finite type is given such that Spec(C)→ Spec(A)
is étale over Spec(A) \ V (I). Then for every a ∈ I there exists an c ≥ 0 such that
multiplication by ac is zero NLC/A. Since NL∧C∧/A is the derived completion of
NLC/A (see Lemma 3.1) it follows that B = C∧ satisfies the equivalent conditions
of Lemma 4.1. �

8. In case the base ring is a G-ring

0ALU If the base ring A is a Noetherian G-ring, then some of the material above simplifies
somewhat and we obtain some additional results.

Proof of Lemma 7.3 in case A is a G-ring. This proof is easier in that it does
not depend on the somewhat delicate deformation theory argument given in the
proof of Lemma 7.2, but of course it requires a very strong assumption on the
Noetherian ring A.

Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose generators g1, . . . , gm ∈ J .

Choose generators k1, . . . , kt of the module of relations between g1, . . . , gm, i.e.,
such that

(A[x1, . . . , xr]
∧)⊕t

k1,...,kt−−−−−→ (A[x1, . . . , xr]
∧)⊕m

g1,...,gm−−−−−→ A[x1, . . . , xr]
∧

is exact in the middle. Write ki = (ki1, . . . , kim) so that we have

(8.0.1)0AKB
∑

kijgj = 0

for i = 1, . . . , t. Let Ic = (a1, . . . , as). For each l ∈ {1, . . . , s} we know that
multiplication by al on NL∧B/A is zero in D(B). By Lemma 3.4 we can find a map
αl :

⊕
Bdxi → J/J2 such that d ◦αl and αl ◦d are both multiplication by al. Pick

an element fl,i ∈ J whose class modulo J2 is equal to αl(dxi). Then we have for
all l = 1, . . . , s and i = 1, . . . , r that

(8.0.2)0AKC
∑

i′
(∂fl,i/∂xi′)dxi′ = aldxi +

∑
hj
′,i′

l,i gj′dxi′

for some hj
′,i′

l,i ∈ A[x1, . . . , xr]
∧. We also have for j = 1, . . . ,m and l = 1, . . . , s

that

(8.0.3)0AKD algj =
∑

hil,jfl,i +
∑

hj
′,j′′

l,j gj′gj′′

for some hil,j and h
j′,j′′

l,j in A[x1, . . . , xr]
∧. Of course, since fl,i ∈ J we can write for

l = 1, . . . , s and i = 1, . . . , r

(8.0.4)0AKE fl,i =
∑

hjl,igj

for some hjl,i in A[x1, . . . , xr]
∧.

Let A[x1, . . . , xr]
h be the henselization of the pair (A[x1, . . . , xr], IA[x1, . . . , xr]), see

More on Algebra, Lemma 12.1. Since A is a Noetherian G-ring, so is A[x1, . . . , xr],
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see More on Algebra, Proposition 49.10. Hence we have approximation for the
map A[x1, . . . , xr]

h → A[x1, . . . , xr]
∧ with respect to the ideal generated by I, see

Smoothing Ring Maps, Lemma 14.1. Choose a large integer M . Choose

Gj ,Kij , Fl,i, H
i
l,j , H

j′,j′′

l,j , Hj
l,i ∈ A[x1, . . . , xr]

h

such that analogues of equations (8.0.1), (8.0.3), and (8.0.4) hold for these elements
in A[x1, . . . , xr]

h, i.e.,∑
KijGj = 0, alGj =

∑
Hi
l,jFl,i +

∑
Hj′,j′′

l,j Gj′Gj′′ , Fl,i =
∑

Hj
l,iGj

and such that we have

Gj−gj ,Kij−kij , Fl,i−fl,i, Hi
l,j−hil,j , H

j′,j′′

l,j −hj
′,j′′

l,j , Hj
l,i−h

j
l,i ∈ I

MA[x1, . . . , xr]
h

where we take liberty of thinking of A[x1, . . . , xr]
h as a subring of A[x1, . . . , xr]

∧.
Note that we cannot guarantee that the analogue of (8.0.2) holds in A[x1, . . . , xr]

h,
because it is not a polynomial equation. But since taking partial derivatives is
A-linear, we do get the analogue modulo IM . More precisely, we see that

(8.0.5)0AKF
∑

i′
(∂Fl,i/∂xi′)dxi′ − aldxi −

∑
hj
′,i′

l,i Gj′dxi′ ∈ IMA[x1, . . . , xr]
∧

for l = 1, . . . , s and i = 1, . . . , r.

With these choices, consider the ring

Ch = A[x1, . . . , xr]
h/(G1, . . . , Gr)

and denote C∧ its I-adic completion, namely

C∧ = A[x1, . . . , xr]
∧/J ′, J ′ = (G1, . . . , Gr)A[x1, . . . , xr]

∧

In the following paragraphs we establish the fact that C∧ is isomorphic to B. Then
in the final paragraph we deal with show that Ch comes from a finite type algebra
over A as in the statement of the lemma.

First consider the cokernel

Ω = Coker(J ′/(J ′)2 −→
⊕

C∧dxi)

This C∧ module is generated by the images of the elements dxi. Since Fl,i ∈ J ′ by
the analogue of (8.0.4) we see from (8.0.5) we see that aldxi ∈ IMΩ. As Ic = (al)
we see that IcΩ ⊂ IMΩ. Since M > c we conclude that IcΩ = 0 by Algebra,
Lemma 19.1.

Next, consider the kernel

H1 = Ker(J ′/(J ′)2 −→
⊕

C∧dxi)

By the analogue of (8.0.3) we see that alJ ′ ⊂ (Fl,i) + (J ′)2. On the other hand,
the determinant ∆l of the matrix (∂Fl,i/∂xi′) satisfies ∆l = arl mod IMC∧ by
(8.0.5). It follows that ar+1

l H1 ⊂ IMH1 (some details omitted; use Algebra, Lemma
14.5). Now (ar+1

1 , . . . , ar+1
s ) ⊃ I(sr+1)c. Hence I(sr+1)cH1 ⊂ IMH1 and since

M > (sr + 1)c we conclude that I(sr+1)cH1 = 0.

By Lemma 3.5 we conclude that multiplication by an element of I2(sr+1)c on
NL∧C∧/A is zero (note that the bound does not depend on M or the choice of
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the approximation, as long as M is large enough). Since Gj − gj is in the ideal
generated by IM we see that there is an isomorphism

ψM : C∧/IMC∧ → B/IMB

As M is large enough we can use Lemma 7.1 with d = d(I ⊂ A → B), with C∧

playing the role of B, with 2(rs+ 1)c instead of c, to find a morphism

ψ : C∧ −→ B

which agrees with ψM modulo Iq−2(rs+1)c where q is the quotient of M by the
number of generators of I. We claim ψ is an isomorphism. Since C∧ and B are
I-adically complete the map ψ is surjective because it is surjective modulo I (see
Algebra, Lemma 95.1). On the other hand, as M is large enough we see that

GrI(C∧) ∼= GrI(B)

as graded GrI(A[x1, . . . , xr]
∧)-modules by More on Algebra, Lemma 4.2. Since ψ

is compatible with this isomorphism as it agrees with ψM modulo I, this means
that GrI(ψ) is an isomorphism. As C∧ and B are I-adically complete, it follows
that ψ is an isomorphism.

This paragraph serves to deal with the issue that Ch is not of finite type over
A. Namely, the ring A[x1, . . . , xr]

h is a filtered colimit of étale A[x1, . . . , xr] alge-
bras A′ such that A/I[x1, . . . , xr] → A′/IA′ is an isomorphism (see proof of More
on Algebra, Lemma 12.1). Pick an A′ such that G1, . . . , Gm are the images of
G′1, . . . , G

′
m ∈ A′. Setting C = A′/(G′1, . . . , G

′
m) we get the finite type algebra we

were looking for. �

The following lemma isn’t true in general if A is not a G-ring but just Noetherian.
Namely, if (A,m) is local and I = m, then the lemma is equivalent to Artin approx-
imation for Ah (as in Smoothing Ring Maps, Theorem 13.1) which does not hold
for every Noetherian local ring.

Lemma 8.1.0AK4 Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let B,C be
finite type A-algebras. For any A-algebra map ϕ : B∧ → C∧ of I-adic completions
and any N ≥ 1 there exist

(1) an étale ring map C → C ′ which induces an isomorphism C/IC → C ′/IC ′,
(2) an A-algebra map ϕ : B → C ′

such that ϕ and ψ agree modulo IN into C∧ = (C ′)∧.

Proof. The statement of the lemma makes sense as C → C ′ is flat (Algebra,
Lemma 141.3) hence induces an isomorphism C/InC → C ′/InC ′ for all n (More
on Algebra, Lemma 80.2) and hence an isomorphism on completions. Let Ch be the
henselization of the pair (C, IC), see More on Algebra, Lemma 12.1. Then Ch is the
filtered colimit of the algebras C ′ and the maps C → C ′ → Ch induce isomorphism
on completions (More on Algebra, Lemma 12.4). Thus it suffices to prove there
exists an A-algebra map B → Ch which is congruent to ψ modulo IN . Write B =
A[x1, . . . , xn]/(f1, . . . , fm). The ring map ψ corresponds to elements ĉ1, . . . , ĉn ∈
C∧ with fj(ĉ1, . . . , ĉn) = 0 for j = 1, . . . ,m. Namely, as A is a Noetherian G-ring,
so is C, see More on Algebra, Proposition 49.10. Thus Smoothing Ring Maps,
Lemma 14.1 applies to give elements c1, . . . , cn ∈ Ch such that fj(c1, . . . , cn) = 0
for j = 1, . . . ,m and such that ĉi − ci ∈ INCh. This determines the map B → Ch

as desired. �

https://stacks.math.columbia.edu/tag/0AK4
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9. Rig-surjective morphisms

0AQP For morphisms locally of finite type between locally Noetherian formal algebraic
spaces a definition borrowed from [Art70] can be used. See Remark 9.10 for a
discussion of what to do in more general cases.

Definition 9.1.0AQQ Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume that X and Y are locally Noetherian and that f
is locally of finite type. We say f is rig-surjective if for every solid diagram

Spf(R′) //

��

X

f

��
Spf(R)

p // Y

where R is a complete discrete valuation ring and where p is an adic morphism there
exists an extension of complete discrete valuation rings R ⊂ R′ and a morphism
Spf(R′)→ X making the displayed diagram commute.

We prove a few lemmas to explain what this means.

Lemma 9.2.0AQR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f and
g locally of finite type. Then if f and g are rig-surjective, so is g ◦ f .
Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemma 18.3). �

Lemma 9.3.0AQS Let S be a scheme. Let f : X → Y and Z → Y be morphisms of
formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f and
g locally of finite type. If f is rig-surjective, then the base change Z ×Y X → Z is
too.

Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemmas 18.9 and 18.4). �

Lemma 9.4.0AQT Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
formal algebraic spaces over S. Assume X, Y , Z locally Noetherian and f and g
locally of finite type. If g ◦ f : X → Z is rig-surjective, so is g : Y → Z.

Proof. Immediate from the definition. �

Lemma 9.5.0AQU Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces which is representable by algebraic spaces, étale, and surjective. Assume X
and Y locally Noetherian. Then f is rig-surjective.

Proof. Let p : Spf(R) → Y be an adic morphism where R is a complete discrete
valuation ring. Let Z = Spf(R) ×Y X. Then Z → Spf(R) is representable by
algebraic spaces, étale, and surjective. Hence Z is nonempty. Pick a nonempty
affine formal algebraic space V and an étale morphism V → Z (possible by our
definitions). Then V → Spf(R) corresponds to R → A∧ where R → A is an étale
ring map, see Formal Spaces, Lemma 14.13. Since A∧ 6= 0 (as V 6= ∅) we can find
a maximal ideal m of A lying over mR. Then Am is a discrete valuation ring (More
on Algebra, Lemma 43.4). Then R′ = A∧m is a complete discrete valuation ring
(More on Algebra, Lemma 42.5). Applying Formal Spaces, Lemma 5.10. we find
the desired morphism Spf(R′)→ V → Z → X. �

https://stacks.math.columbia.edu/tag/0AQQ
https://stacks.math.columbia.edu/tag/0AQR
https://stacks.math.columbia.edu/tag/0AQS
https://stacks.math.columbia.edu/tag/0AQT
https://stacks.math.columbia.edu/tag/0AQU
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Remark 9.6.0AQV Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces which is locally of finite type. The upshot of
the lemmas above is that we may check whether f : X → Y is rig-surjective, étale
locally on Y . For example, suppose that {Yi → Y } is a covering as in Formal
Spaces, Definition 7.1. Then f is rig-surjective if and only if fi : X ×Y Yi → Yi
is rig-surjective. Namely, if f is rig-surjective, so is any base change (Lemma 9.3).
Conversely, if all fi are rig-surjective, so is

∐
fi :

∐
X×Y Yi →

∐
Yi. By Lemma 9.5

the morphism
∐
Yi → Y is rig-surjective. Hence

∐
X ×Y Yi → Y is rig-surjective

(Lemma 9.2). Since this morphism factors through X → Y we see that X → Y is
rig-surjective by Lemma 9.4.

Lemma 9.7.0AQW Let S be a scheme. Let f : X → Y be a proper surjective morphism
of locally Noetherian algebraic spaces over S. Let T ⊂ |Y | be a closed subset and
let T ′ = |f |−1(T ) ⊂ |X|. Then X/T ′ → Y/T is rig-surjective.

Proof. The statement makes sense by Formal Spaces, Lemmas 15.6 and 18.10.
Let Yj → Y be a jointly surjective family of étale morphism where Yj is an affine
scheme for each j. Denote Tj ⊂ Yj the inverse image of T . Then {(Yj)/Tj

→ Y/T }
is a covering as in Formal Spaces, Definition 7.1. Moreover, setting Xj = Yj ×Y X
and T ′j ⊂ |Xj | the inverse image of T , we have

(Xj)/T ′j = (Yj)/Tj
×(Y/T ) X/T ′

By the discussion in Remark 9.6 we reduce to the case where Y is an affine Noe-
therian scheme treated in the next paragraph.

Assume Y = Spec(A) where A is a Noetherian ring. This implies that Y/T =
Spf(A∧) where A∧ is the I-adic completion of A for some ideal I ⊂ A. Let p :
Spf(R) → Spf(A∧) be an adic morphism where R is a complete discrete valuation
ring. Let K be the field of fractions of R. Consider the composition A→ A∧ → R.
Since X → Y is surjective, the fibre XK = Spec(K) ×Y X is nonempty. Thus we
may choose an affine scheme U and an étale morphism U → X such that UK is
nonempty. Let u ∈ UK be a closed point (possible as UK is affine). By Morphisms,
Lemma 19.3 the residue field L = κ(u) is a finite extension of K. Let R′ ⊂ L
be the integral closure of R in L. By More on Algebra, Remark 97.6 we see that
R′ is a discrete valuation ring. Because X → Y is proper we see that the given
morphism Spec(L) = u→ UK → XK → X extends to a morphism Spec(R′)→ X
over the given morphism Spec(R) → Y (Morphisms of Spaces, Lemma 44.1). By
commutativity of the diagram the induced morphisms Spec(R′/mnR′) → X are
points of X/T ′ and we find

Spf((R′)∧) = colim Spec(R′/mnR′) −→ X/T ′

as desired (note that (R′)∧ is a complete discrete valuation ring by More on Algebra,
Lemma 42.5; in fact in the current situation R′ = (R′)∧ but we do not need
this). �

Lemma 9.8.0AQX Let A be a Noetherian ring complete with respect to an ideal I. Let
B be an I-adically complete A-algebra. If A/In → B/InB is of finite type and flat
for all n and faithfully flat for n = 1, then Spf(B)→ Spf(A) is rig-surjective.

Proof. We will use without further mention that morphisms between formal spec-
tra are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 5.10. Let ϕ : A→ R be a continuous map into a complete

https://stacks.math.columbia.edu/tag/0AQV
https://stacks.math.columbia.edu/tag/0AQW
https://stacks.math.columbia.edu/tag/0AQX
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discrete valuation ring A. This implies that ϕ(I) ⊂ mR. On the other hand, since
we only need to produce the lift ϕ′ : B′ → R′ in the case that ϕ corresponds to
an adic morphism, we may assume that ϕ(I) 6= 0. Thus we may consider the base
change C = B⊗̂AR, see Remark 2.3 for example. Then C is an mR-adically com-
plete R-algebra such that C/mnRC is of finite type and flat over R/mnR and such
that C/mRC is nonzero. Pick any maximal ideal m ⊂ C lying over mR. By flat-
ness (which implies going down) we see that Spec(Cm) \ V (mRCm) is a nonempty
open. Hence We can pick a prime q ⊂ m such that q defines a closed point of
Spec(Cm) \ {m} and such that q 6∈ V (ICm), see Properties, Lemma 6.4. Then C/q
is a dimension 1-local domain and we can find C/q ⊂ R′ with R′ a discrete valua-
tion ring (Algebra, Lemma 118.13). By construction mRR

′ ⊂ mR′ and we see that
C → R′ extends to a continuous map C → (R′)∧ (in fact we can pick R′ such that
R′ = (R′)∧ in our current situation but we do not need this). Since the completion
of a discrete valuation ring is a discrete valuation ring, we see that the assumption
gives a commutative diagram of rings

(R′)∧ Coo Boo

R

OO

Roo

OO

Aoo

OO

which gives the desired lift. �

Lemma 9.9.0AQY Let A be a Noetherian ring complete with respect to an ideal I. Let
B be an I-adically complete A-algebra. Assume that

(1) the I-torsion in A is 0,
(2) A/In → B/InB is flat and of finite type for all n.

Then Spf(B) → Spf(A) is rig-surjective if and only if A/I → B/IB is faithfully
flat.

Proof. Faithful flatness implies rig-surjectivity by Lemma 9.8. To prove the con-
verse we will use without further mention that the vanishing of I-torsion is equiv-
alent to the vanishing of I-power torsion (More on Algebra, Lemma 79.3). We
will also use without further mention that morphisms between formal spectra are
given by continuous maps between the corresponding topological rings, see Formal
Spaces, Lemma 5.10.

Assume Spf(B)→ Spf(A) is rig-surjective. Choose a maximal ideal I ⊂ m ⊂ A. The
open U = Spec(Am)\V (Im) of Spec(Am) is nonempty as the Im-torsion of Am is zero
(use Algebra, Lemma 61.4). Thus we can find a prime q ⊂ Am which defines a point
of U (i.e., IAm 6⊂ q) and which corresponds to a closed point of Spec(Am) \ {m},
see Properties, Lemma 6.4. Then Am/q is a dimension 1 local domain. Thus we
can find an injective local homomorphism of local rings Am/q ⊂ R where R is a
discrete valuation ring (Algebra, Lemma 118.13). By construction IR ⊂ mR and
we see that A → R extends to a continuous map A → R∧. Since the completion
of a discrete valuation ring is a discrete valuation ring, we see that the assumption

https://stacks.math.columbia.edu/tag/0AQY
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gives a commutative diagram of rings

R′ Boo

R∧

OO

Aoo

OO

Thus we find a prime ideal of B lying over m. It follows that Spec(B/IB) →
Spec(A/I) is surjective, whence A/I → B/IB is faithfully flat (Algebra, Lemma
38.16). �

Remark 9.10.0AQZ The condition as formulated in Definition 9.1 is not right for mor-
phisms of locally adic* formal algebraic spaces. For example, if A = (

⋃
n≥1 k[t1/n])∧

where the completion is the t-adic completion, then there are no adic morphisms
Spf(R) → Spf(A) where R is a complete discrete valuation ring. Thus any mor-
phism X → Spf(A) would be rig-surjective, but since A is a domain and t ∈ A is not
zero, we want to think of A as having at least one “rig-point”, and we do not want
to allow X = ∅. To cover this particular case, one can consider adic morphisms

Spf(R) −→ Y

where R is a valuation ring complete with respect to a principal ideal J whose
radical is mR =

√
J . In this case the value group of R can be embedded into (R,+)

and one obtains the point of view used by Berkovich in defining an analytic space
associated to Y , see [Ber90]. Another approach is championed by Huber. In his
theory, one drops the hypothesis that Spec(R/J) is a singleton, see [Hub93].

Lemma 9.11.0AR0 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume X and Y are locally Noetherian, f locally of finite type,
and f a monomorphism. Then f is rig surjective if and only if every adic morphism
Spf(R)→ Y where R is a complete discrete valuation ring factors through X.

Proof. One direction is trivial. For the other, suppose that Spf(R)→ Y is an adic
morphism such that there exists an extension of complete discrete valuation rings
R ⊂ R′ with Spf(R′)→ Spf(R)→ X factoring through Y . Then Spec(R′/mnRR

′)→
Spec(R/mnR) is surjective and flat, hence the morphisms Spec(R/mnR) → X factor
through X as X satisfies the sheaf condition for fpqc coverings, see Formal Spaces,
Lemma 25.1. In other words, Spf(R)→ Y factors through X. �

10. Algebraization

0AR1 In this section we prove a generalization of the result on dilatations from the paper
of Artin [Art70]. We first reformulate the algebra results proved above into the
language of formal algebraic spaces.

Let S be a scheme. Let V be a locally Noetherian formal algebraic space over
S. We denote CV the category of formal algebraic spaces W over V such that the
structure morphism W → V is rig-étale.

Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. Recall that X/T denotes the formal completion of X along T , see Formal
Spaces, Section 9. More generally, for any algebraic space Y over X we denote Y/T
the completion of Y along the inverse image of T in |Y |, so that Y/T is a formal
algebraic space over X/T .
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Lemma 10.1.0AR2 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. If Y → X is morphism of algebraic spaces
which is locally of finite type and étale over X \ T , then Y/T → X/T is rig-étale,
i.e., Y/T is an object of CX/T

defined above.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint

union of affine schemes, see Properties of Spaces, Lemma 6.1. For each i choose
a surjective étale morphism Vi → Y ×X Ui where Vi =

∐
Vij is a disjoint union

of affines. Write Ui = Spec(Ai) and Vij = Spec(Bij). Let Ii ⊂ Ai be an ideal
cutting out the inverse image of T in Ui. Then we may apply Lemma 4.2 to see
that the map of Ii-adic completions A∧i → B∧ij has the property P of Lemma 5.1.
Since {Spf(A∧i )→ X/T } and {Spf(Bij)→ Y/T } are coverings as in Formal Spaces,
Definition 7.1 we see that Y/T → X/T is rig-étale by definition. �

Lemma 10.2.0AR3 Let X be a Noetherian affine scheme. Let T ⊂ X be a closed subset.
Let U be an affine scheme and let U → X a finite type morphism étale over X \ T .
Let V be a Noetherian affine scheme over X. For any morphism c′ : V/T → U/T
over X/T there exists an étale morphism b : V ′ → V of affine schemes which
induces an isomorphism b/T : V ′/T → V/T and a morphism a : V ′ → U such that
c′ = a/T ◦ b−1/T .

Proof. This is a reformulation of Lemma 4.4. �

Lemma 10.3.0AR4 Let X be a Noetherian affine scheme. Let T ⊂ X be a closed
subset. Let W → X/T be a rig-étale morphism of formal algebraic spaces with W
an affine formal algebraic space. Then there exists an affine scheme U , a finite type
morphism U → X étale over X \ T such that W ∼= U/T . Moreover, if W → X/T is
étale, then U → X is étale.

Proof. The existence of U is a restatement of Lemma 7.4. The final statement
follows from More on Morphisms, Lemma 12.3. �

Let S be a scheme. Let X be a locally Noetherian algebraic space over S and let
T ⊂ |X| be a closed subset. Let us denote CX,T the category of algebraic spaces Y
over X such that the structure morphism f : Y → X is locally of finite type and
an isomorphism over the complement of T . Formal completion defines a functor

(10.3.1)0AR5 FX,T : CX,T −→ CX/T
, (f : Y → X) 7−→ (f/T : Y/T → X/T )

see Lemma 10.1.

Lemma 10.4.0AR6 Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces. Let T ⊂ |X| be closed. Assume that

(1) X is locally Noetherian,
(2) g is a monomorphism and locally of finite type,
(3) f |X\T : X \ T → Y factors through g, and
(4) f/T : X/T → Y factors through g,

then f factors through g.

Proof. Consider the fibre product E = X ×Y Z → X. By assumption the open
immersion X \ T → X factors through E and any morphism ϕ : X ′ → X with
|ϕ|(|X ′|) ⊂ T factors through E as well, see Formal Spaces, Section 9. By More on
Morphisms of Spaces, Lemma 20.3 this implies that E → X is étale at every point
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of E mapping to a point of T . Hence E → X is an étale monomorphism, hence an
open immersion (Morphisms of Spaces, Lemma 51.2). Then it follows that E = X
since our assumptions imply that |X| = |E|. �

Lemma 10.5.0AR7 Let S be a scheme. Let X, Y be locally Noetherian algebraic spaces
over S. Let T ⊂ |X| and T ′ ⊂ |Y | be closed subsets. Let a, b : X → Y be morphisms
of algebraic spaces over S such that a|X\T = b|X\T , such that |a|(T ) ⊂ T ′ and
|b|(T ) ⊂ T ′, and such that a/T = b/T as morphisms X/T → Y/T ′ . Then a = b.

Proof. Let E be the equalizer of a and b. Then E is an algebraic space and E → X
is locally of finite type and a monomorphism, see Morphisms of Spaces, Lemma
4.1. Our assumptions imply we can apply Lemma 10.4 to the two morphisms
f = id : X → X and g : E → X and the closed subset T of |X|. �

Lemma 10.6.0AR8 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let s, t : R → U be two morphisms of
algebraic spaces over X. Assume

(1) R, U are locally of finite type over X,
(2) the base change of s and t to X \ T is an étale equivalence relation, and
(3) the formal completion (t/T , s/T ) : R/T → U/T ×X/T

U/T is an equivalence
relation too.

Then (t, s) : R→ U ×X U is an étale equivalence relation.

Proof. The morphisms s, t : R→ U are étale over X \T by assumption. Since the
formal completions of the maps s, t : R→ U are étale, we see that s and t are étale
for example by More on Morphisms, Lemma 12.3. Applying Lemma 10.4 to the
morphisms id : R×U×XU R→ R×U×XU R and ∆ : R→ R×U×XU R we conclude
that (t, s) is a monomorphism. Applying it again to (t ◦ pr0, s ◦ pr1) : R×s,U,t R→
U ×X U and (t, s) : R → U ×X U we find that “transitivity” holds. We omit the
proof of the other two axioms of an equivalence relation. �

Remark 10.7.0AR9 Let S, X, and T ⊂ |X| be as in (10.3.1). Let U → X be an
algebraic space over X such that U → X is locally of finite type and étale outside
of T . We will construct a factorization

U −→ Y −→ X

with Y in CX,T such that U/T → Y/T is an isomorphism. We may assume the image
of U → X contains X \T , otherwise we replace U by U q (X \T ). For an algebraic
space Z over X, let us denote Z◦ the open subspace which is the inverse image of
X \ T . Let

R = U qU◦ (U ×X U)◦

be the pushout of U◦ → U and the diagonal morphism U◦ → U◦ ×X U◦ = (U ×X
U)◦. Since U◦ → X is étale, the diagonal is an open immersion and we see that
R is an algebraic space (this follows for example from Spaces, Lemma 8.5). The
two projections (U ×X U)◦ → U extend to R and we obtain two étale morphisms
s, t : R → U . Checking on each piece separatedly we find that R is an étale
equivalence relation on U . Set Y = U/R which is an algebraic space by Bootstrap,
Theorem 10.1. Since U◦ → X \ T is a surjective étale morphism and since R◦ =
U◦×X\TU◦ we see that Y ◦ → X\T is an isomorphism. In other words, Y → X is an
object of CX,T . On the other hand, the morphism U → Y induces an isomorphism
U/T → Y/T . Namely, the formal completion of R along the inverse image of T is
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equal to the formal completion of U along the inverse image of T by our choice of
R. By our construction of the formal completion in Formal Spaces, Section 9 we
conclude that U/T = Y/T .

Lemma 10.8.0ARA Let S be a scheme. Let X be a Noetherian affine algebraic space
over S. Let T ⊂ |X| be a closed subset. Then the functor FX,T is an equivalence.

Before we prove this lemma let us discuss an example. Suppose that S = Spec(k),
X = A1

k, and T = {0}. Then X/T = Spf(k[[x]]). Let W = Spf(k[[x]] × k[[x]]).
Then the corresponding Y is the affine line with zero doubled (Schemes, Example
14.3). Moreover, this is the output of the construction in Remark 10.7 starting with
U = X qX.

Proof. For any scheme or algebraic space Z over X, let us denote Z0 ⊂ Z the in-
verse image of T with the induced reduced closed subscheme or subspace structure.
Note that Z0 = (Z/T )red is the reduction of the formal completion.

The functor FX,T is faithful by Lemma 10.5.

Let Y, Y ′ be objects of CX,T and let a′ : Y/T → Y ′/T be a morphism in CX/T
. To

prove FX,T is fully faithful, we will construct a morphism a : Y → Y ′ in CX,T such
that a′ = a/T .

Let U be an affine scheme and let U → Y be an étale morphism. Because U is
affine, U0 is affine and the image of U0 → Y0 → Y ′0 is a quasi-compact subspace
of |Y ′0 |. Thus we can choose an affine scheme V and an étale morphism V → Y ′

such that the image of |V0| → |Y ′0 | contains this quasi-compact subset. Consider
the formal algebraic space

W = U/T ×Y ′
/T
V/T

By our choice of V the above, the map W → U/T is surjective. Thus there exists
an affine formal algebraic space W ′ and an étale morphism W ′ → W such that
W ′ →W → U/T is surjective. ThenW ′ → U/T is étale. By Lemma 10.3W ′ = U ′/T
for U ′ → U étale and U ′ affine. Write V = Spec(C). By Lemma 10.2 there exists an
étale morphism U ′′ → U ′ of affines which is an isomorphism on completions and a
morphism U ′′ → V whose completion is the composition U ′′/T → U ′/T →W → V/T .
Thus we get

Y ←− U ′′ −→ Y ′

over X agreeing with the given map on formal completions such that the image of
U ′′0 → Y0 is the same as the image of U0 → Y0.

Taking a disjoint union of U ′′ as constructed in the previous paragraph, we find a
scheme U , an étale morphism U → Y , and a morphism b : U → Y ′ over X, such
that the diagram

U/T

��

b/T

!!
Y/T

a′ // Y ′/T

is commutative and such that U0 → Y0 is surjective. Taking a disjoint union with
the open X \T (which is also open in Y and Y ′), we find that we may even assume
that U → Y is a surjective étale morphism. Let R = U ×Y U . Then the two
compositions R → U → Y ′ agree both over X \ T and after formal completion
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along T , whence are equal by Lemma 10.5. This means exactly that b factors as
U → Y → Y ′ to give us our desired morphism a : Y → Y ′.

Essential surjectivity. Let W be an object of CX/T
. We prove W is in the essential

image in a number of steps.

Step 1: W is an affine formal algebraic space. Then we can find U → X of finite
type and étale over X \T such that U/T is isomorphic toW , see Lemma 10.3. Thus
we see that W is in the essential image by the construction in Remark 10.7.

Step 2: W is separated. Choose {Wi →W} as in Formal Spaces, Definition 7.1. By
Step 1 the formal algebraic spacesWi andWi×WWj are in the essential image. Say
Wi = (Yi)/T and Wi ×W Wj = (Yij)/T . By fully faithfulness we obtain morphisms
tij : Yij → Yi and sij : Yij → Yj matching the projections Wi ×W Wj → Wi and
Wi ×W Wj → Wj . Set R =

∐
Yij and U =

∐
Yi and denote s =

∐
sij : R → U

and t =
∐
tij : R → U . Applying Lemma 10.6 we find that (t, s) : R → U ×X U

is an étale equivalence relation. Thus we can take the quotient Y = U/R and it is
an algebraic space, see Bootstrap, Theorem 10.1. Since completion commutes with
fibre products and taking quotient sheaves, we find that Y/T ∼= W in CX/T

.

Step 3: W is general. Choose {Wi →W} as in Formal Spaces, Definition 7.1. The
formal algebraic spaces Wi and Wi ×W Wj are separated. Hence by Step 2 the
formal algebraic spaces Wi and Wi ×W Wj are in the essential image. Then we
argue exactly as in the previous paragraph to see that W is in the essential image
as well. This concludes the proof. �

Theorem 10.9.0ARB Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. The functor FX,T (10.3.1)algebraic spaces Y locally of finite

type over X such that Y → X
is an isomorphism over X \ T

 −→
{

formal algebraic spaces W endowed
with a rig-étale morphism W → X/T

}
given by formal completion is an equivalence.

Proof. The theorem is essentially a formal consequence of Lemma 10.8. We give
the details but we encourage the reader to think it through for themselves. Let
g : U → X be a surjective étale morphism with U =

∐
Ui and each Ui affine.

Denote FU,T the functor for U and the inverse image of T in |U |.
Since U =

∐
Ui both the category CU,T and the category CU/T

decompose as a
product of categories, one for each i. Since the functors FUi,T are equivalences for
all i by the lemma we find that the same is true for FU,T .

Since FU,T is faithful, it follows that FX,T is faithful too. Namely, if a, b : Y → Y ′

are morphisms in CX,T such that a/T = b/T , then we find on pulling back that
the base changes aU , bU : U ×X Y → U ×X Y ′ are equal. Since U ×X Y → Y is
surjective étale, this implies that a = b.

At this point we know that FX,T is faithful for every situation as in the theorem.
Let R = U ×X U where U is as above. Let t, s : R → U be the projections. Since
X is Noetherian, so is R. Thus the functor FR,T (defined in the obvious manner)
is faithful. Let Y → X and Y ′ → X be objects of CX,T . Let a′ : Y/T → Y ′/T be a
morphism in the category CX/T

. Taking the base change to U we obtain a morphism
a′U : (U ×X Y )/T → (U ×X Y ′)/T in the category CU/T

. Since the functor FU,T is
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fully faithful we obtain a morphism aU : U ×X Y → U ×X Y ′ with FU,T (aU ) = a′U .
Since s∗(a′U ) = t∗(a′U ) and since FR,T is faithful, we find that s∗(aU ) = t∗(aU ).
Since

R×X Y
//
// U ×X Y // Y

is an equalizer diagram of sheaves, we find that aU descends to a morphism a :
Y → Y ′. We omit the proof that FX,T (a) = a′.

At this point we know that FX,T is faithful for every situation as in the theorem.
To finish the proof we show that FX,T is essentially surjective. Let W → X/T be
an object of CX/T

. Then U ×X W is an object of CU/T
. By the affine case we

find an object V → U of CU,T and an isomorphism α : FU,T (V ) → U ×X W in
CU/T

. By fully faithfulness of FR,T we find a unique morphism h : s∗V → t∗V in
the category CR,T such that FR,T (h) corresponds, via the isomorphism α, to the
canonical descent datum on U ×X W in the category CR/T

. Using faithfulness of
our functor on R×s,U,tR we see that h satisfies the cocycle condition. We conclude,
for example by the much more general Bootstrap, Lemma 11.3, that there exists an
object Y → X of CX,T and an isomorphism β : U ×X Y → V such that the descent
datum h corresponds, via β, to the canonical descent datum on U ×X Y . We omit
the verification that FX,T (Y ) is isomorphic to W ; hint: in the category of formal
algebraic spaces there is descent for morphisms along étale coverings. �

We are often interested as to whether the output of the construction of Theorem
10.9 is a separated algebraic space. In the next few lemmas we match properties of
Y → X and the corresponding completion Y/T → X/T .

Lemma 10.10.0ARU Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 10.9. Then
Y → X is quasi-compact if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 8.8 as well as Formal Spaces, Lemma 12.3. If U → X ranges
over étale morphisms with U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union of

affines. Then V/T → Y/T = W is a surjective étale morphism. Thus if Y is quasi-
compact, we can choose J is finite, and we conclude that W is quasi-compact.
Conversely, if W is quasi-compact, then we can find a finite subset J ′ ⊂ J such
that

∐
j∈J′(Vj)/T →W is surjective. Then it follows that

(X \ T )q
∐

j∈J′
Vj −→ Y

is surjective. This either follows from the construction of Y in the proof of Lemma
10.8 or it follows since we have

|Y | = |X \ T | q |Wred|

as Y/T = W . �
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Lemma 10.11.0ARV Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 10.9. Then
Y → X is quasi-separated if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 4.12 as well as Formal Spaces, Lemma 23.5, If U → X ranges
over étale morphisms with U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union

of affines. Then Y is quasi-separated if and only if Vj ×Y Vj′ is quasi-compact
for all j, j′ ∈ J . Similarly, W is quasi-separated if and only if (Vj ×Y Vj′)/T =
(Vj)/T ×Y/T

(Vj′)/T is quasi-compact for all j, j′ ∈ J . Since X is Noetherian affine,
we see that

(Vj ×Y Vj′)×X (X \ T )

is quasi-compact. Hence we conclude the equivalence holds by the equality

|Vj ×Y Vj′ | = |(Vj ×Y Vj′)×X (X \ T )| q |(Vj ×Y Vj′)/T |

and the fact that the second summand is closed in the left hand side. �

Lemma 10.12.0ARW Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 10.9. Then
Y → X is separated if and only if W → X/T is separated and ∆ : W →W ×X/T

W
is rig-surjective.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 4.12 as well as Formal Spaces, Lemma 23.5. If U → X ranges
over étale morphisms with U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine. In the proof of both directions we may assume that
Y → X and W → X/T are quasi-separated by Lemma 10.11.

Proof of easy direction. Assume Y → X is separated. Then Y → Y ×X Y is a
closed immersion and it follows that W → W ×X/T

W is a closed immersion too,
i.e., we see that W → X/T is separated. Let

p : Spf(R) −→W ×X/T
W = (Y ×X Y )/T

be an adic morphism where R is a complete discrete valuation ring with fraction field
K. The composition into Y×XY corresponds to a morphism g : Spec(R)→ Y×XY ,
see Formal Spaces, Lemma 26.3. Since p is an adic morphism, so is the composition
Spf(R)→ X. Thus we see that g(Spec(K)) is a point of

(Y ×X Y )×X (X \ T ) ∼= X \ T ∼= Y ×X (X \ T )
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(small detail omitted). Hence this lifts to a K-point of Y and we obtain a commu-
tative diagram

Spec(K) //

��

Y

��
Spec(R) //

99

Y ×X Y

Since Y → X was assumed separated we find the dotted arrow exists (Cohomology
of Spaces, Lemma 19.1). Applying the functor completion along T we find that p
can be lifted to a morphism into W , i.e., W →W ×X/T

W is rig-surjective.

Proof of hard direction. Assume W → X/T separated and W → W ×X/T
W rig-

surjective. By Cohomology of Spaces, Lemma 19.1 and Remark 19.3 it suffices to
show that given any commutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

99

Y ×X Y

where R is a complete discrete valuation ring with fraction field K, there is at most
one dotted arrow making the diagram commute. Let h : Spec(R) → X be the
composition of g with the morphism Y ×X Y → X. There are three cases: Case I:
h(Spec(R)) ⊂ (X \T ). This case is trivial because Y ×X (X \T ) = X \T . Case II:
h maps Spec(R) into T . This case follows from our assumption that W → X/T is
separated. Namely, if T denotes the reduced induced closed subspace structure on
T , then h factors through T and

W ×X/T
T = Y ×X T −→ T

is separated by assumption (and for example Formal Spaces, Lemma 23.5) which
implies we get the lifting property by Cohomology of Spaces, Lemma 19.1 applied
to the displayed arrow. Case III: h(Spec(K)) is not in T but h maps the closed
point of Spec(R) into T . In this case the corresponding morphism

g/T : Spf(R) −→ (Y ×X Y )/T = W ×X/T
W

is an adic morphism (detail omitted). Hence our assumption thatW →W ×X/T
W

be rig-surjective implies we can lift g/T to a morphism e : Spf(R)→W = Y/T (see
Lemma 9.11 for why we do not need to extend R). Algebraizing the composition
Spf(R) → Y using Formal Spaces, Lemma 26.3 we find a morphism Spec(R) → Y
lifting g as desired. �

Lemma 10.13.0ARX Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 10.9. Then
Y → X is proper if and only if the following conditions hold

(1) W → X/T is proper,
(2) W → X/T is rig-surjective, and
(3) ∆ : W →W ×X/T

W is rig-surjective.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
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of Spaces, Lemma 40.2 as well as Formal Spaces, Lemma 24.2. If U → X ranges
over étale morphisms with U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine. In the proof of both directions we may assume that
Y → X andW → X/T are separated and quasi-compact and thatW →W×X/T

W
is rig-surjective by Lemmas 10.10 and 10.12.

Proof of the easy direction. Assume Y → X is proper. Then Y/T = Y ×X X/T →
X/T is proper too. Let

p : Spf(R) −→ X/T

be an adic morphism where R is a complete discrete valuation ring with fraction
field K. Then p corresponds to a morphism g : Spec(R) → X, see Formal Spaces,
Lemma 26.3. Since p is an adic morphism, we have p(Spec(K)) 6∈ T . Since Y → X
is an isomorphism over X \ T we can lift to X and obtain a commutative diagram

Spec(K) //

��

Y

��
Spec(R) //

;;

X

Since Y → X was assumed proper we find the dotted arrow exists. (Cohomology
of Spaces, Lemma 19.2). Applying the functor completion along T we find that p
can be lifted to a morphism into W , i.e., W → X/T is rig-surjective.

Proof of hard direction. AssumeW → X/T proper,W →W ×X/T
W rig-surjective,

and W → X/T rig-surjective. By Cohomology of Spaces, Lemma 19.2 and Remark
19.3 it suffices to show that given any commutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

;;

X

where R is a complete discrete valuation ring with fraction field K, there is a dotted
arrow making the diagram commute. Let h : Spec(R) → X be the composition of
g with the morphism Y ×X Y → X. There are three cases: Case I: h(Spec(R)) ⊂
(X \ T ). This case is trivial because Y ×X (X \ T ) = X \ T . Case II: h maps
Spec(R) into T . This case follows from our assumption that W → X/T is proper.
Namely, if T denotes the reduced induced closed subspace structure on T , then h
factors through T and

W ×X/T
T = Y ×X T −→ T

is proper by assumption which implies we get the lifting property by Cohomology
of Spaces, Lemma 19.2 applied to the displayed arrow. Case III: h(Spec(K)) is not
in T but h maps the closed point of Spec(R) into T . In this case the corresponding
morphism

g/T : Spf(R) −→ Y/T = W

is an adic morphism (detail omitted). Hence our assumption that W → X/T be
rig-surjective implies we can lift g/T to a morphism e : Spf(R′) → W = Y/T for
some extension of complete discrete valuation rings R ⊂ R′. Algebraizing the
composition Spf(R′) → Y using Formal Spaces, Lemma 26.3 we find a morphism
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Spec(R′) → Y lifting g. By the discussion in Cohomology of Spaces, Remark 19.3
this is sufficient to conclude that Y → X is proper. �

11. Application to modifications

0AS1 Let A be a Noetherian ring and let I ⊂ A be an ideal. We set S = Spec(A) and
U = S \ V (I). In this section we will consider the category

(11.0.1)0AS2

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is locally of finite type

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X → X ′

compatible with the structure morphisms over S.

Let A → B be a homomorphism of Noetherian rings and let J ⊂ B be an ideal
such that J =

√
IB. Then base change along the morphism Spec(B) → Spec(A)

gives a functor from the category (11.0.1) for A to the category (11.0.1) for B.

Lemma 11.1.0AE5 Let (A, I) be a pair consisting of a Noetherian ring and an ideal
I. Let A∧ be the I-adic completion of A. Then base change defines an equivalence
of categories between the category (11.0.1) for A with the category (11.0.1) for the
completion A∧.

Proof. Set S = Spec(A) as in (11.0.1) and T = V (I). Similarly, write S′ =
Spec(A∧) and T ′ = V (IA∧). The morphism S′ → S defines an isomorphism S′/T ′ →
S/T of formal completions. Let CS,T , CS/T

, CS′
/T ′

, and CS′,T ′ be the corresponding
categories as used in (10.3.1). By Theorem 10.9 (in fact we only need the affine
case treated in Lemma 10.8) we see that

CS,T = CS/T
= CS′

/T ′
= CS′,T ′

Since CS,T is the category (11.0.1) for A and CS′,T ′ the category (11.0.1) for A∧
this proves the lemma. �

Lemma 11.2.0BH5 Notation and assumptions as in Lemma 11.1. Let f : X → Spec(A)
correspond to g : Y → Spec(A∧) via the equivalence. Then f is quasi-compact,
quasi-separated, separated, proper, finite, and add more here if and only if g is so.

Proof. You can deduce this for the statements quasi-compact, quasi-separated,
separated, and proper by using Lemmas 10.10 10.11, 10.12, 10.11, and 10.13 to
translate the corresponding property into a property of the formal completion and
using the argument of the proof of Lemma 11.1. However, there is a direct argu-
ment using fpqc descent as follows. First, note that {U → Spec(A),Spec(A∧) →
Spec(A)} is an fpqc covering with U = Spec(A) \ V (I) as before. The base change
of f by U → Spec(A) is idU by definition of our category (11.0.1). Let P be a prop-
erty of morphisms of algebraic spaces which is fpqc local on the base (Descent on
Spaces, Definition 9.1) such that P holds for identity morphisms. Then we see that
P holds for f if and only if P holds for g. This applies to P equal to quasi-compact,
quasi-separated, separated, proper, and finite by Descent on Spaces, Lemmas 10.1,
10.2, 10.18, 10.19, and 10.23. �

Lemma 11.3.0AF7 Let A→ B be a local map of local Noetherian rings such that
(1) A→ B is flat,

https://stacks.math.columbia.edu/tag/0AE5
https://stacks.math.columbia.edu/tag/0BH5
https://stacks.math.columbia.edu/tag/0AF7
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(2) mB = mAB, and
(3) κ(mA) = κ(mB)

(equivalently, A→ B induces an isomorphism on completions, see More on Algebra,
Lemma 42.8). Then the base change functor from the category (11.0.1) for (A,mA)
to the category (11.0.1) for (B,mB) is an equivalence.

Proof. This follows immediately from Lemma 11.1. �

Lemma 11.4.0AE6 Let (A,m, κ) be a Noetherian local ring. Let f : X → S be an object
of (11.0.1). Then there exists a U -admissible blowup S′ → S which dominates X.

Proof. Special case of More on Morphisms of Spaces, Lemma 38.4. �
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