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1. Introduction

0FQT This chapter is a continuation of the discussion started in Differential Graded Al-
gebra, Section 1. A survey paper is [Kel06].

2. Conventions

0FQU In this chapter we hold on to the convention that ring means commutative ring
with 1. If R is a ring, then an R-algebra A will be an R-module A endowed with an
R-bilinear map A×A → A (multiplication) such that multiplication is associative
and has an identity. In other words, these are unital associative R-algebras such
that the structure map R → A maps into the center of A.

3. Sheaves of graded algebras

0FQV Please skip this section.

Definition 3.1.0FQW Let (C,O) be a ringed site. A sheaf of graded O-algebras or a
sheaf of graded algebras on (C,O) is given by a family An indexed by n ∈ Z of
O-modules endowed with O-bilinear maps

An × Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative, and
(2) there is a global section 1 of A0 which is a two-sided identity for multipli-

cation.
We often denote such a structure A. A homomorphism of graded O-algebras f :
A → B is a family of maps fn : An → Bn of O-modules compatible with the
multiplication maps.

Given a graded O-algebra A and an object U ∈ Ob(C) we use the notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a graded O(U)-algebra.

Remark 3.2.0FQX Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. We have

(1) Let A be a graded OC-algebra. The multiplication maps of A induce mul-
tiplication maps f∗An × f∗Am → f∗An+m and via f ♯ we may view these
as OD-bilinear maps. We will denote f∗A the graded OD-algebra we so
obtain.

(2) Let B be a graded OD-algebra. The multiplication maps of B induce multi-
plication maps f∗Bn×f∗Bm → f∗Bn+m and using f ♯ we may view these as
OC-bilinear maps. We will denote f∗B the graded OC-algebra we so obtain.

(3) The set of homomorphisms f∗B → A of graded OC-algebras is in 1-to-1
correspondence with the set of homomorphisms B → f∗A of graded OC-
algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on
sheaves of modules.

https://stacks.math.columbia.edu/tag/0FQW
https://stacks.math.columbia.edu/tag/0FQX
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4. Sheaves of graded modules

0FQY Please skip this section.

Definition 4.1.0FQZ Let (C,O) be a ringed site. Let A be a sheaf of graded algebras
on (C,O). A (right) graded A-module or (right) graded module over A is given by
a family Mn indexed by n ∈ Z of O-modules endowed with O-bilinear maps

Mn × Am → Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 of A0 acts as the identity on Mn for all n.

We often say “let M be a graded A-module” to indicate this situation. A homo-
morphism of graded A-modules f : M → N is a family of maps fn : Mn → Nn

of O-modules compatible with the multiplication maps. The category of (right)
graded A-modules is denoted Mod(A).

We can define left graded modules in exactly the same manner but our default in
the chapter will be right modules.

Given a graded A-module M and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) graded A(U)-module.

Lemma 4.2.0FR0 Let (C,O) be a ringed site. Let A be a graded O-algebra. The
category Mod(A) is an abelian category with the following properties

(1) Mod(A) has arbitrary direct sums,
(2) Mod(A) has arbitrary colimits,
(3) filtered colimit in Mod(A) are exact,
(4) Mod(A) has arbitrary products,
(5) Mod(A) has arbitrary limits.

The functor
Mod(A) −→ Mod(O), M 7−→ Mn

sending a graded A-module to its nth term commutes with all limits and colimits.

The lemma says that we may take limits and colimits termwise. It also says (or
implies if you like) that the forgetful functor

Mod(A) −→ graded O-modules

commutes with all limits and colimits.

Proof. Let us denote grn : Mod(A) → Mod(O) the functor in the statement of
the lemma. Consider a homomorphism f : M → N of graded A-modules. The
kernel and cokernel of f as maps of graded O-modules are additionally endowed
with multiplication maps as in Definition 4.1. Hence these are also the kernel and
cokernel in Mod(A). Thus Mod(A) is an abelian category and taking kernels and
cokernels commutes with grn.

To prove the existence of limits and colimits it is sufficient to prove the existence
of products and direct sums, see Categories, Lemmas 14.11 and 14.12. The same

https://stacks.math.columbia.edu/tag/0FQZ
https://stacks.math.columbia.edu/tag/0FR0
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lemmas show that proving the commutation of limits and colimits with grn follows
if grn commutes with direct sums and products.
Let Mt, t ∈ T be a set of graded A-modules. Then we can consider the graded A-
module whose degree n term is

⊕
t∈T Mn

t (with obvious multiplication maps). The
reader easily verifies that this is a direct sum in Mod(A). Similarly for products.
Observe that grn is an exact functor for all n and that a complex M1 → M2 → M3
of Mod(A) is exact if and only if grnM1 → grnM2 → grnM3 is exact in Mod(O)
for all n. Hence we conclude that (3) holds as filtered colimits are exact in Mod(O);
it is a Grothendieck abelian category, see Cohomology on Sites, Section 19. □

5. The graded category of sheaves of graded modules

0FR1 Please skip this section. This section is the analogue of Differential Graded Algebra,
Example 25.6. For our conventions on graded categories, please see Differential
Graded Algebra, Section 25.
Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). We will
construct a graded category Modgr(A) over R = Γ(C,O) whose associated category
(Modgr(A))0 is the category of graded A-modules. As objects of Modgr(A) we take
right graded A-modules (see Section 4). Given graded A-modules L and M we set

HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps f : L → M which are
homogeneous of degree n. More precisely, f is given by a family of maps f : Li →
Mi+n for i ∈ Z compatible with the multiplication maps. In terms of components,
we have that

Homn(L,M) ⊂
∏

p+q=n
HomO(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that
fp,q(ma) = fp−i,q+i(m)a

for local sections a of Ai and m of L−q−i. For graded A-modules K, L, M we
define composition in Modgr(A) via the maps

Homm(L,M) × Homn(K,L) −→ Homn+m(K,M)
by simple composition of right A-module maps: (g, f) 7→ g ◦ f .

6. Tensor product for sheaves of graded modules

0FR2 Please skip this section. This section is the analogue of part of Differential Graded
Algebra, Section 12.
Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). Let M
be a right graded A-module and let N be a left graded A-module. Then we define
the tensor product M ⊗A N to be the graded O-module whose degree n term is

(M ⊗A N )n = Coker
(⊕

r+s+t=n
Mr ⊗O As ⊗O N t −→

⊕
p+q=n

Mp ⊗O N q
)

where the map sends the local section x⊗a⊗y of Mr⊗O As⊗O N t to xa⊗y−x⊗ay.
With this definition we have that (M ⊗A N )n is the sheafification of the presheaf
U 7→ (M(U) ⊗A(U) N (U))n where the tensor product of graded modules is as
defined in Differential Graded Algebra, Section 12.
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If we fix the left graded A-module N we obtain a functor
− ⊗A N : Mod(A) −→ Gr(Mod(O)) = graded O-modules

For the notation Gr(−) please see Homology, Definition 16.1. The graded category
of graded O-modules is denoted Grgr(Mod(O)), see Differential Graded Algebra,
Example 25.5. The functor above can be upgraded to a functor of graded categories

− ⊗A N : Modgr(A) −→ Grgr(Mod(O))
by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M ⊗A N to M′ ⊗A N .

7. Internal hom for sheaves of graded modules

0FR3 We urge the reader to skip this section.
We are going to need the sheafified version of the construction in Section 5. Let
(C,O), A, M, L be as in Section 5. Then we define

Homgr
A (M,L)

as the graded O-module whose degree n term

Homn
A(M,L) ⊂

∏
p+q=n

HomO(L−q,Mp)

is the subsheaf consisting of those local sections f = (fp,q) such that
fp,q(ma) = fp−i,q+i(m)a

for local sections a of Ai and m of L−q−i. As in Section 5 there is a composition
map

Homgr
A (L,M) ⊗O Homgr

A (K,L) −→ Homgr
A (K,M)

where the left hand side is the tensor product of graded O-modules defined in
Section 6. This map is given by the composition map

Homm
A (L,M) ⊗O Homn

A(K,L) −→ Homn+m
A (K,M)

defined by simple composition (locally).
With these definitions we have

HomModgr(A)(L,M) = Γ(C,Homgr
A (L,M))

as graded R-modules compatible with composition.

8. Sheaves of graded bimodules and tensor-hom adjunction

0FR4 Please skip this section.

Definition 8.1.0FR5 Let (C,O) be a ringed site. Let A and B be a sheaves of graded
algebras on (C,O). A graded (A,B)-bimodule is given by a family Mn indexed by
n ∈ Z of O-modules endowed with O-bilinear maps

Mn × Bm → Mn+m, (x, b) 7−→ xb

and
An × Mm → Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
(2) (ax)b = a(xb),

https://stacks.math.columbia.edu/tag/0FR5
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(3) the identity section 1 of A0 acts as the identity by multiplication, and
(4) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structure M. A homomorphism of graded (A,B)-bimodules
f : M → N is a family of maps fn : Mn → Nn of O-modules compatible with the
multiplication maps.

Given a graded (A,B)-bimodule M and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a graded (A(U),B(U))-bimodule.
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
Let M be a right graded A-module and let N be a graded (A,B)-bimodule. In this
case the graded tensor product defined in Section 6

M ⊗A N
is a right graded B-module with obvious multiplication maps. This construction
defines a functor and a functor of graded categories

⊗AN : Mod(A) −→ Mod(B) and ⊗A N : Modgr(A) −→ Modgr(B)
by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M ⊗A N to M′ ⊗A N .
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
Let N be a graded (A,B)-bimodule. Let L be a right graded B-module. In this
case the graded internal hom defined in Section 7

Homgr
B (N ,L)

is a right graded A-module with multiplication maps1

Homn
B(N ,L) × Am −→ Homn+m

B (N ,L)
sending a section f = (fp,q) of Homn

B(N ,L) over U and a section a of Am over U
to the section fa if Homn+m

B (N ,L) over U defined as the family of maps

N −q−m|U
a·−−−→ N −q|U

fp,q−−→ Mp|U
We omit the verification that this is well defined. This construction defines a functor
and a functor of graded categories
Homgr

B (N ,−) : Mod(B) −→ Mod(A) and Homgr
B (N ,−) : Modgr(B) −→ Modgr(A)

by sending homomorphisms of degree n from L → L′ to the induced map of degree
n from Homgr

B (N ,L) to Homgr
B (N ,L′).

Lemma 8.2.0FR6 Let (C,O) be a ringed site. Let A and B be a sheaves of graded
algebras on (C,O). Let M be a right graded A-module. Let N be a graded (A,B)-
bimodule. Let L be a right graded B-module. With conventions as above we have

HomModgr(B)(M ⊗A N ,L) = HomModgr(A)(M,Homgr
B (N ,L))

and
Homgr

B (M ⊗A N ,L) = Homgr
A (M,Homgr

B (N ,L))
functorially in M, N , L.

1Our conventions are here that this does not involve any signs.

https://stacks.math.columbia.edu/tag/0FR6
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Proof. Omitted. Hint: This follows by interpreting both sides as A-bilinear graded
maps ψ : M × N → L which are B-linear on the right. □

Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
As a special case of the above, suppose we are given a homomorphism φ : A → B
of graded O-algebras. Then we obtain a functor and a functor of graded categories

⊗A,φB : Mod(A) −→ Mod(B) and ⊗A,φ B : Modgr(A) −→ Modgr(B)
On the other hand, we have the restriction functors

resφ : Mod(B) −→ Mod(A) and resφ : Modgr(B) −→ Modgr(A)
We can use the lemma above to show these functors are adjoint to each other (as
usual with restriction and base change). Namely, let us write ABB for B viewed as
a graded (A,B)-bimodule. Then for any right graded B-module L we have

Homgr
B (ABB,L) = resφ(L)

as right graded A-modules. Thus Lemma 8.2 tells us that we have a functorial
isomorphism

HomModgr(B)(M ⊗A,φ B,L) = HomModgr(A)(M, resφ(L))
We usually drop the dependence on φ in this formula if it is clear from context. In
the same manner we obtain the equality

Homgr
B (M ⊗A B,L) = Homgr

A (M,L)
of graded O-modules.

9. Pull and push for sheaves of graded modules

0FR7 We advise the reader to skip this section.
Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be
a graded OC-algebra. Let B be a graded OD-algebra. Suppose we are given a map

φ : f−1B → A
of graded f−1OD-algebras. By the adjunction of restriction and extension of scalars,
this is the same thing as a map φ : f∗B → A of graded OC-algebras or equivalently
φ can be viewed as a map

φ : B → f∗A
of graded OD-algebras. See Remark 3.2.
Let us define a functor

f∗ : Mod(A) −→ Mod(B)
Given a graded A-module M we define f∗M to be the graded B-module whose
degree n term is f∗Mn. As multiplication we use

f∗Mn × Bm (id,φm)−−−−−→ f∗Mn × f∗Am f∗µn,m−−−−−→ f∗Mn+m

where µn,m : Mn × Am → Mn+m is the multiplication map for M over A. This
uses that f∗ commutes with products. The construction is clearly functorial in M
and we obtain our functor.
Let us define a functor

f∗ : Mod(B) −→ Mod(A)
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We will define this functor as a composite of functors

Mod(B) f−1

−−→ Mod(f−1B)
−⊗f−1BA
−−−−−−−→ Mod(A)

First, given a graded B-module N we define f−1N to be the graded f−1B-module
whose degree n term is f−1Nn. As multiplication we use

f−1νn,m : f−1Nn × f−1Bm −→ f−1Nn+m

where νn,m : Nn × Bm → Nn+m is the multiplication map for N over B. This
uses that f−1 commutes with products. The construction is clearly functorial in
N and we obtain our functor f−1. Having said this, we can use the tensor product
discussion in Section 8 to define the functor

− ⊗f−1B A : Mod(f−1B) −→ Mod(A)
Finally, we set

f∗N = f−1N ⊗f−1B,φ A
as already foretold above.
The functors f∗ and f∗ are readily enhanced to give functors of graded categories

f∗ : Modgr(A) −→ Modgr(B) and f∗ : Modgr(B) −→ Modgr(A)
which do the same thing on underlying objects and are defined by functoriality of
the constructions on homogenous morphisms of degree n.

Lemma 9.1.0FR8 In the situation above we have
HomModgr(B)(N , f∗M) = HomModgr(A)(f∗N ,M)

Proof. Omitted. Hints: First prove that f−1 and f∗ are adjoint as functors be-
tween Mod(B) and Mod(f−1B) using the adjunction between f−1 and f∗ on sheaves
of abelian groups. Next, use the adjunction between base change and restriction
given in Section 8. □

10. Localization and sheaves of graded modules

0FR9 We advise the reader to skip this section.
Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote

j : (Sh(C/U),OU ) −→ (Sh(C),O)
the corresponding localization morphism (Modules on Sites, Section 19). Below we
will use the following fact: for OU -modules Mi, i = 1, 2 and a O-module A there
is a canonical map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)
Namely, we have j!(M1 ⊗OU

A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma 27.9.
Let A be a graded O-algebra. We will denote AU the restriction of A to C/U , in
other words, we have AU = j∗A = j−1A. In Section 9 we have constructed adjoint
functors

j∗ : Modgr(AU ) −→ Modgr(A) and j∗ : Modgr(A) −→ Modgr(AU )
with j∗ left adjoint to j∗. We claim there is in addition an exact functor

j! : Modgr(AU ) −→ Modgr(A)

https://stacks.math.columbia.edu/tag/0FR8
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left adjoint to j∗. Namely, given a graded AU -module M we define j!M to be the
graded A-module whose degree n term is j!Mn. As multiplication map we use

j!µn,m : j!Mn × Am → j!Mn+m

where µm,n : Mn × Am → Mn+m is the given multiplication map. Given a
homogeneous map f : M → M′ of degree n of graded AU -modules, we obtain a
homogeneous map j!f : j!M → j!M′ of degree n. Thus we obtain our functor.

Lemma 10.1.0FRA In the situation above we have
HomModgr(A)(j!M,N ) = HomModgr(AU )(M, j∗N )

Proof. By the discussion in Modules on Sites, Section 19 the functors j! and j∗ on
O-modules are adjoint. Thus if we only look at the O-module structures we know
that

HomGrgr(Mod(O))(j!M,N ) = HomGrgr(Mod(OU ))(M, j∗N )
(Recall that Grgr(Mod(O)) denotes the graded category of graded O-modules.)
Then one has to check that these identifications map the A-module maps on the
left hand side to the AU -module maps on the right hand side. To check this, given
OU -linear maps fn : Mn → j∗Nn+d corresponding to O-linear maps gn : j!Mn →
Nn+d it suffices to show that

Mn ⊗OU
Am
U fn⊗1

//

��

j∗Nn+d ⊗OU
Am
U

��
Mn+m fn+m

// j∗Nn+m+d

commutes if and only if

j!Mn ⊗O Am

gn⊗1
//

��

Nn+d ⊗O Am
U

��
j!Mn+m gn+m

// Nn+m+d

commutes. However, we know that
HomOU

(Mn ⊗OU
Am
U , j

∗Nn+d+m) = HomO(j!(Mn ⊗OU
Am
U ),Nn+d+m)

= HomO(j!Mn ⊗O Am,Nn+d+m)
by the already used Modules on Sites, Lemma 27.9. We omit the verification that
shows that the obstruction to the commutativity of the first diagram in the first
group maps to the obstruction to the commutativity of the second diagram in the
last group. □

Lemma 10.2.0FRB In the situation above, let M be a right graded AU -module and let
N be a left graded A-module. Then

j!M ⊗A N = j!(M ⊗AU
N |U )

as graded O-modules functorially in M and N .

Proof. Recall that the degree n component of j!M ⊗A N is the cokernel of the
canonical map⊕

r+s+t=n
j!Mr ⊗O As ⊗O N t −→

⊕
p+q=n

j!Mp ⊗O N q

https://stacks.math.columbia.edu/tag/0FRA
https://stacks.math.columbia.edu/tag/0FRB
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See Section 6. By Modules on Sites, Lemma 27.9 this is the same thing as the
cokernel of⊕

r+s+t=n
j!(Mr ⊗OU

As|U ⊗OU
N t|U ) −→

⊕
p+q=n

j!(Mp ⊗OU
N q|U )

and we win. An alternative proof would be to redo the Yoneda argument given in
the proof of the lemma cited above. □

11. Shift functors on sheaves of graded modules

0FRC We urge the reader to skip this section. It turns out that sheaves of graded modules
over a graded algebra are an example of the phenomenon discussed in Differential
Graded Algebra, Remark 25.7.

Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). Let M
be a graded A-module. Let k ∈ Z. We define the kth shift of M, denoted M[k],
to be the graded A-module whose nth part is given by

(M[k])n = Mn+k

is the (n+ k)th part of M. As multiplication maps

(M[k])n × Am −→ (M[k])n+m

we simply use the multiplication maps

Mn+k × Am −→ Mn+m+k

of M. It is clear that we have defined a functor [k], that we have [k + l] = [k] ◦ [l],
and that we have

HomModgr(A)(L,M[k]) = HomModgr(A)(L,M)[k]

(without the intervention of signs) functorially in M and L. Thus we see indeed
that the graded category of graded A-modules can be recovered from the ordinary
category of graded A-modules and the shift functors as discussed in Differential
Graded Algebra, Remark 25.7.

Lemma 11.1.0FRD Let (C,O) be a ringed site. Let A be a graded O-algebra. The
category Mod(A) is a Grothendieck abelian category.

Proof. By Lemma 4.2 and the definition of a Grothendieck abelian category (In-
jectives, Definition 10.1) it suffices to show that Mod(A) has a generator. We claim
that

G =
⊕

k,U
jU !AU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a
graded A-module M if there are no nonzero maps from G to M, then we see that
for all k and U we have

HomMod(A)(jU !AU [k],M) = HomMod(AU )(AU [k],M|U ) = Γ(U,M−k)

is equal to zero. Hence M is zero. □

https://stacks.math.columbia.edu/tag/0FRD
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12. Sheaves of differential graded algebras

0FRE This section is the analogue of Differential Graded Algebra, Section 3.

Definition 12.1.0FRF Let (C,O) be a ringed site. A sheaf of differential graded O-
algebras or a sheaf of differential graded algebras on (C,O) is a cochain complex A•

of O-modules endowed with O-bilinear maps

An × Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative,
(2) there is a global section 1 of A0 which is a two-sided identity for multipli-

cation,
(3) for U ∈ Ob(C), a ∈ An(U), and b ∈ Am(U) we have

dn+m(ab) = dn(a)b+ (−1)nadm(b)

We often denote such a structure (A,d). A homomorphism of differential graded
O-algebras from (A,d) to (B,d) is a map f : A• → B• of complexes of O-modules
compatible with the multiplication maps.

Given a differential graded O-algebra (A,d) and an object U ∈ Ob(C) we use the
notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a differential graded O(U)-algebra.

As much as possible, we will think of a differential graded O-algebra (A,d) as a
graded O-algebra A endowed with the operator d : A → A of degree 1 (where A is
viewed as a graded O-module) satisfying the Leibniz rule given in the definition.

Remark 12.2.0FRG Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi.

(1) Let (A,d) be a differential graded OC-algebra. The pushforward will be
the differential graded OD-algebra (f∗A,d) where f∗A is as in Remark 3.2
and d = f∗d as maps f∗An → f∗An+1. We omit the verification that the
Leibniz rule is satisfied.

(2) Let B be a differential graded OD-algebra. The pullback will be the dif-
ferential graded OC-algebra (f∗B,d) where f∗B is as in Remark 3.2 and
d = f∗d as maps f∗Bn → f∗Bn+1. We omit the verification that the
Leibniz rule is satisfied.

(3) The set of homomorphisms f∗B → A of differential graded OC-algebras
is in 1-to-1 correspondence with the set of homomorphisms B → f∗A of
differential graded OD-algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on
sheaves of modules.

13. Sheaves of differential graded modules

0FRH This section is the analogue of Differential Graded Algebra, Section 4.

https://stacks.math.columbia.edu/tag/0FRF
https://stacks.math.columbia.edu/tag/0FRG
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Definition 13.1.0FRI Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A (right) differential graded A-module or (right) dif-
ferential graded module over A is a cochain complex M• endowed with O-bilinear
maps

Mn × Am → Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 of A0 acts as the identity on Mn for all n,
(3) for U ∈ Ob(C), x ∈ Mn(U), and a ∈ Am(U) we have

dn+m(xa) = dn(x)a+ (−1)nxdm(a)

We often say “let M be a differential graded A-module” to indicate this situation.
A homomorphism of differential graded A-modules from M to N is a map f :
M• → N • of complexes of O-modules compatible with the multiplication maps.
The category of (right) differential graded A-modules is denoted Mod(A,d).

We can define left differential graded modules in exactly the same manner but our
default in the chapter will be right modules.

Given a differential graded A-module M and an object U ∈ Ob(C) we use the
notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) differential graded A(U)-module.

Lemma 13.2.0FRJ Let (C,O) be a ringed site. Let (A, d) be a differential graded O-
algebra. The category Mod(A, d) is an abelian category with the following properties

(1) Mod(A, d) has arbitrary direct sums,
(2) Mod(A, d) has arbitrary colimits,
(3) filtered colimit in Mod(A, d) are exact,
(4) Mod(A, d) has arbitrary products,
(5) Mod(A, d) has arbitrary limits.

The forgetful functor
Mod(A, d) −→ Mod(A)

sending a differential graded A-module to its underlying graded module commutes
with all limits and colimits.

Proof. Let us denote F : Mod(A,d) → Mod(A) the functor in the statement of
the lemma. Observe that the category Mod(A) has properties (1) – (5), see Lemma
4.2.

Consider a homomorphism f : M → N of graded A-modules. The kernel and cok-
ernel of f as maps of graded A-modules are additionally endowed with differentials
as in Definition 13.1. Hence these are also the kernel and cokernel in Mod(A,d).
Thus Mod(A,d) is an abelian category and taking kernels and cokernels commutes
with F .

To prove the existence of limits and colimits it is sufficient to prove the existence
of products and direct sums, see Categories, Lemmas 14.11 and 14.12. The same
lemmas show that proving the commutation of limits and colimits with F follows
if F commutes with direct sums and products.

https://stacks.math.columbia.edu/tag/0FRI
https://stacks.math.columbia.edu/tag/0FRJ
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Let Mt, t ∈ T be a set of differential graded A-modules. Then we can consider the
direct sum

⊕
Mt as a graded A-module. Since the direct sum of graded modules

is done termwise, it is clear that
⊕

Mt comes endowed with a differential. The
reader easily verifies that this is a direct sum in Mod(A,d). Similarly for products.

Observe that F is an exact functor and that a complex M1 → M2 → M3 of
Mod(A,d) is exact if and only if F (M1) → F (M2) → F (M3) is exact in Mod(A).
Hence we conclude that (3) holds as filtered colimits are exact in Mod(A). □

Combining Lemmas 13.2 and 4.2 we find that there is an exact and faithful functor

Mod(A,d) −→ Comp(O)

of abelian categories. For a differential graded A-module M the cohomology O-
modules, denoted Hi(M), are defined as the cohomology of the complex of O-
modules corresponding to M. Therefore, a short exact sequence 0 → K → L →
M → 0 of differential graded A-modules gives rise to a long exact sequence

(13.2.1)0FRK Hn(K) → Hn(L) → Hn(M) → Hn+1(K)

of cohomology modules, see Homology, Lemma 13.12.

Moreover, from now on we borrow all the terminology used for complexes of mod-
ules. For example, we say that a differential graded A-module M is acyclic if
Hk(M) = 0 for all k ∈ Z. We say that a homomorphism M → N of differential
graded A-modules is a quasi-isomorphism if it induces isomorphisms Hk(M) →
Hk(N ) for all k ∈ Z. And so on and so forth.

14. The differential graded category of modules

0FRL This section is the analogue of Differential Graded Algebra, Example 26.8. For
our conventions on differential graded categories, please see Differential Graded
Algebra, Section 26.

Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). We will construct a differential graded category

Moddg(A,d)

over R = Γ(C,O) whose associated category of complexes is the category of differ-
ential graded A-modules:

Mod(A,d) = Comp(Moddg(A,d))

As objects of Moddg(A,d) we take right differential graded A-modules, see Section
13. Given differential graded A-modules L and M we set

HomModdg(A,d)(L,M) = HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

as a gradedR-module, see Section 5. In other words, the nth graded piece Homn(L,M)
is the R-module of right A-module maps homogeneous of degree n. For an element
f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL

To make sense of this we think of dM and dL as graded O-module maps and we
use composition of graded O-module maps. It is clear that d(f) is homogeneous of
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degree n+1 as a graded O-module map, and it is A-linear because for homogeneous
local sections x and a of M and A we have
d(f)(xa) = dM(f(x)a) − (−1)nf(dL(xa))

= dM(f(x))a+ (−1)deg(x)+nf(x)d(a) − (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the
definition of our differential on Hom).
For differential graded A-modules K, L, M we have already defined the composition

Homm(L,M) × Homn(K,L) −→ Homn+m(K,M)
in Section 5 by the usual composition of maps of sheaves. This defines a map of
differential graded modules

HomModdg(A,d)(L,M) ⊗R HomModdg(A,d)(K,L) −→ HomModdg(A,d)(K,M)
as required in Differential Graded Algebra, Definition 26.1 because

d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

if f has degree n and g has degree m as desired.

15. Tensor product for sheaves of differential graded modules

0FRM This section is the analogue of part of Differential Graded Algebra, Section 12.
Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). Let M be a right differential graded A-module and let N be a left differential
graded A-module. In this situation we define the tensor product M⊗AN as follows.
As a graded O-module it is given by the construction in Section 6. It comes endowed
with a differential

dM⊗AN : (M ⊗A N )n −→ (M ⊗A N )n+1

defined by the rule that
dM⊗AN (x⊗ y) = dM(x) ⊗ y + (−1)deg(x)x⊗ dN (y)

for homogeneous local sections x and y of M and N . To see that this is well defined
we have to show that dM⊗AN annihilates elements of the form xa⊗ y− x⊗ ay for
homogeneous local sections x, a, y of M, A, N . We compute
dM⊗AN (xa⊗ y − x⊗ ay)

= dM(xa) ⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y) − dM(x) ⊗ ay − (−1)deg(x)x⊗ dN (ay)

= dM(x)a⊗ y + (−1)deg(x)xd(a) ⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y)

− dM(x) ⊗ ay − (−1)deg(x)x⊗ d(a)y − (−1)deg(x)+deg(a)x⊗ adN (y)
then we observe that the elements
dM(x)a⊗y−dM(x)⊗ay, xd(a)⊗y−x⊗d(a)y, and xa⊗dN (y)−x⊗adN (y)
map to zero in M ⊗A N and we conclude. We omit the verification that dM⊗AN ◦
dM⊗AN = 0.
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If we fix the left differential graded A-module N we obtain a functor
− ⊗A N : Mod(A,d) −→ Comp(O)

where on the right hand side we have the category of complexes of O-modules. This
can be upgraded to a functor of differential graded categories

− ⊗A N : Moddg(A,d) −→ Compdg(O)
On underlying graded objects, we send a homomorphism f : M → M′ of degree n
to the degree n map f ⊗ idN : M ⊗A N → M′ ⊗A N , because this is what we did
in Section 6. To show that this works, we have to verify that the map

HomModdg(A,d)(M,M′) −→ HomCompdg(O)(M ⊗A N ,M′ ⊗A N )
is compatible with differentials. To see this for f as above we have to show that

(dM′ ◦ f − (−1)nf ◦ dM) ⊗ idN

is equal to
dM′⊗AN ◦ (f ⊗ idN ) − (−1)n(f ⊗ idN ) ◦ dM⊗AN

Let us compute the effect of these operators on a local section of the form x ⊗ y
with x and y homogeneous local sections of M and N . For the first we obtain

(dM′(f(x)) − (−1)nf(dM(x))) ⊗ y

and for the second we obtain
dM′⊗AN (f(x) ⊗ y) − (−1)n(f ⊗ idN )(dM⊗AN (x⊗ y)

= dM′(f(x)) ⊗ y + (−1)deg(x)+nf(x) ⊗ dN (y)

− (−1)nf(dM(x)) ⊗ y − (−1)n(−1)deg(x)f(x) ⊗ dN (y)
which is indeeed the same local section.

16. Internal hom for sheaves of differential graded modules

0FRN We are going to need the sheafified version of the construction in Section 14. Let
(C,O), A, M, L be as in Section 14. Then we define

Homdg
A (M,L) = Homgr

A (M,L) =
⊕

n∈Z
Homn

A(M,L)

as a graded O-module, see Section 7. In other words, a section f of the nth
graded piece Homn

A(L,M) over U is a map of right AU -module map L|U → M|U
homogeneous of degree n. For such f we set

d(f) = dM|U ◦ f − (−1)nf ◦ dL|U
To make sense of this we think of dM|U and dL|U as graded OU -module maps and
we use composition of graded OU -module maps. It is clear that d(f) is homogeneous
of degree n + 1 as a graded OU -module map. Using the exact same computation
as in Section 14 we see that d(f) is AU -linear.
As in Section 14 there is a composition map

Homdg
A (L,M) ⊗O Homdg

A (K,L) −→ Homdg
A (K,M)

where the left hand side is the tensor product of differential graded O-modules
defined in Section 15. This map is given by the composition map

Homm(L,M) ⊗O Homn(K,L) −→ Homn+m(K,M)
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defined by simple composition (locally). Using the exact same computation as in
Section 14 on local sections we see that the composition map is a morphism of
differential graded O-modules.

With these definitions we have

HomModdg(A)(L,M) = Γ(C,Homdg
A (L,M))

as graded R-modules compatible with composition.

17. Sheaves of differential graded bimodules and tensor-hom adjunction

0FRP This section is the analogue of part of Differential Graded Algebra, Section 12.

Definition 17.1.0FRQ Let (C,O) be a ringed site. Let A and B be a sheaves of
differential graded algebras on (C,O). A differential graded (A,B)-bimodule is given
by a complex M• of O-modules endowed with O-bilinear maps

Mn × Bm → Mn+m, (x, b) 7−→ xb

and
An × Mm → Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
(2) (ax)b = a(xb),
(3) d(ax) = d(a)x+ (−1)deg(a)ad(x) and d(xb) = d(x)b+ (−1)deg(x)xd(b),
(4) the identity section 1 of A0 acts as the identity by multiplication, and
(5) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structure M and sometimes we write AMB. A homomor-
phism of differential graded (A,B)-bimodules f : M → N is a map of complexes
f : M• → N • of O-modules compatible with the multiplication maps.

Given a differential graded (A,B)-bimodule M and an object U ∈ Ob(C) we use
the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a differential graded (A(U),B(U))-bimodule.

Observe that a differential graded (A,B)-bimodule M is the same thing as a right
differential graded B-module which is also a left differential graded A-module such
that the grading and differentials agree and such that the A-module structure
commutes with the B-module structure. Here is a precise statement.

Lemma 17.2.0FRR Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). Let N be a right differential graded B-module. There is
a 1-to-1 correspondence between (A,B)-bimodule structures on N compatible with
the given differential graded B-module structure and homomorphisms

A −→ Homdg
B (N ,N )

of differential graded O-algebras.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0FRQ
https://stacks.math.columbia.edu/tag/0FRR
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Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). Let M be a right differential graded A-module and let N be a differential
graded (A,B)-bimodule. In this case the differential graded tensor product defined
in Section 15

M ⊗A N
is a right differential graded B-module with multiplication maps as in Section 8.
This construction defines a functor and a functor of graded categories

⊗AN : Mod(A,d) −→ Mod(B,d) and ⊗A N : Moddg(A,d) −→ Moddg(B,d)
by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M ⊗A N to M′ ⊗A N .
Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). Let N be a differential graded (A,B)-bimodule. Let L be a right
differential graded B-module. In this case the differential graded internal hom
defined in Section 16

Homdg
B (N ,L)

is a right differential graded A-module where the right graded A-module structure
is the one defined in Section 8. Another way to define the multiplication is the use
the composition

Homdg
B (N ,L) ⊗O A → Homdg

B (N ,L) ⊗O Homdg
B (N ,N ) → Homdg

B (N ,L)
where the first arrow comes from Lemma 17.2 and the second arrow is the compo-
sition of Section 16. Since these arrows are both compatible with differentials, we
conclude that we indeed obtain a differential graded A-module. This construction
defines a functor and a functor of differential graded categories

Homdg
B (N ,−) : Mod(B,d) −→ Mod(A) and Homdg

B (N ,−) : Moddg(B,d) −→ Moddg(A,d)
by sending homomorphisms of degree n from L → L′ to the induced map of degree
n from Homdg

B (N ,L) to Homdg
B (N ,L′).

Lemma 17.3.0FRS Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). Let M be a right differential graded A-module. Let N be
a differential graded (A,B)-bimodule. Let L be a right differential graded B-module.
With conventions as above we have

HomModdg(B,d)(M ⊗A N ,L) = HomModdg(A,d)(M,Homdg
B (N ,L))

and
Homdg

B (M ⊗A N ,L) = Homdg
A (M,Homdg

B (N ,L))
functorially in M, N , L.

Proof. Omitted. Hint: On the graded level we have seen this is true in Lemma
8.2. Thus it suffices to check the isomorphisms are compatible with differentials
which can be done by a computation on the level of local sections. □

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). As a special case of the above, suppose we are given a homomorphism
φ : A → B of differential graded O-algebras. Then we obtain a functor and a
functor of differential graded categories
⊗A,φB : Mod(A,d) −→ Mod(B,d) and ⊗A,φ B : Moddg(A,d) −→ Moddg(B,d)

https://stacks.math.columbia.edu/tag/0FRS
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On the other hand, we have the restriction functors

resφ : Mod(B,d) −→ Mod(A,d) and resφ : Moddg(B,d) −→ Moddg(A,d)

We can use the lemma above to show these functors are adjoint to each other (as
usual with restriction and base change). Namely, let us write ABB for B viewed
as a differential graded (A,B)-bimodule. Then for any right differential graded
B-module L we have

Homdg
B (ABB,L) = resφ(L)

as right differential graded A-modules. Thus Lemma 8.2 tells us that we have a
functorial isomorphism

HomModdg(B,d)(M ⊗A,φ B,L) = HomModdg(A,d)(M, resφ(L))

We usually drop the dependence on φ in this formula if it is clear from context. In
the same manner we obtain the equality

Homdg
B (M ⊗A B,L) = Homdg

A (M,L)

of graded O-modules.

18. Pull and push for sheaves of differential graded modules

0FRT Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A

of differential graded OD-algebras. See Remark 12.2.

Let us define a functor

f∗ : Mod(A,d) −→ Mod(B,d)

Given a differential graded A-module M we define f∗M to be the graded B-module
constructed in Section 9 with differential given by the maps f∗d : f∗Mn → f∗Mn+1.
The construction is clearly functorial in M and we obtain our functor.

Let us define a functor

f∗ : Mod(B,d) −→ Mod(A,d)

Given a differential graded B-module N we define f∗N to be the graded A-module
constructed in Section 9. Recall that

f∗N = f−1N ⊗f−1B A

Since f−1N comes with the differentials f−1d : f−1Nn → f−1Nn+1 we can view
this tensor product as an example of the tensor product discussed in Section 17
which provides us with a differential. The construction is clearly functorial in N
and we obtain our functor f∗.
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The functors f∗ and f∗ are readily enhanced to give functors of differential graded
categories

f∗ : Moddg(A,d) −→ Moddg(B,d) and f∗ : Moddg(B,d) −→ Moddg(A,d)
which do the same thing on underlying objects and are defined by functoriality of
the constructions on homogenous morphisms of degree n.

Lemma 18.1.0FRU In the situation above we have
HomModdg(B,d)(N , f∗M) = HomModdg(A,d)(f∗N ,M)

Proof. Omitted. Hints: This is true for the underlying graded categories by
Lemma 9.1. A calculation shows that these isomorphisms are compatible with
differentials. □

19. Localization and sheaves of differential graded modules

0FRV Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote
j : (Sh(C/U),OU ) −→ (Sh(C),O)

the corresponding localization morphism (Modules on Sites, Section 19). Below we
will use the following fact: for OU -modules Mi, i = 1, 2 and a O-module A there
is a canonical map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)
Namely, we have j!(M1 ⊗OU

A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma 27.9.
Let A be a differential graded O-algebra. We will denote AU the restriction of
A to C/U , in other words, we have AU = j∗A = j−1A. In Section 18 we have
constructed adjoint functors
j∗ : Moddg(AU ,d) −→ Moddg(A,d) and j∗ : Moddg(A,d) −→ Moddg(AU ,d)

with j∗ left adjoint to j∗. We claim there is in addition an exact functor
j! : Moddg(AU ,d) −→ Moddg(A,d)

right adjoint to j∗. Namely, given a differential graded AU -module M we define j!M
to be the graded A-module constructed in Section 10 with differentials j!d : j!Mn →
j!Mn+1. Given a homogeneous map f : M → M′ of degree n of differential graded
AU -modules, we obtain a homogeneous map j!f : j!M → j!M′ of degree n of
differential graded A-modules. We omit the straightforward verification that this
construction is compatible with differentials. Thus we obtain our functor.

Lemma 19.1.0FRW In the situation above we have
HomModdg(A,d)(j!M,N ) = HomModdg(AU ,d)(M, j∗N )

Proof. Omitted. Hint: We have seen in Lemma 10.1 that the lemma is true on
graded level. Thus all that needs to be checked is that the resulting isomorphism
is compatible with differentials. □

Lemma 19.2.0FRX In the situation above, let M be a right differential graded AU -
module and let N be a left differential graded A-module. Then

j!M ⊗A N = j!(M ⊗AU
N |U )

as complexes of O-modules functorially in M and N .

https://stacks.math.columbia.edu/tag/0FRU
https://stacks.math.columbia.edu/tag/0FRW
https://stacks.math.columbia.edu/tag/0FRX


DIFFERENTIAL GRADED SHEAVES 20

Proof. As graded modules, this follows from Lemma 10.2. We omit the verification
that this isomorphism is compatible with differentials. □

20. Shift functors on sheaves of differential graded modules

0FRY Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let M be a differential graded A-module. Let k ∈ Z. We define the kth
shift of M, denoted M[k], as follows

(1) as a graded A-module we let M[k] be as defined in Section 11,
(2) the differential dM[k] : (M[k])n → (M[k])n+1 is defined to be (−1)kdM :

Mn+k → Mn+k+1.
For a homomorphism f : L → M of A-modules homogeneous of degree n, we let
f [k] : L[k] → M[k] be given by the same component maps as f . Then f [k] is a
homogeneous A-module map of degree n. This gives a map

HomModdg(A,d)(L,M) −→ HomModdg(A,d)(L[k],M[k])

compatible with differentials (it follows from the fact that the signs of the differen-
tials of L and M are changed by the same amount). These choices are compatible
with the choice in Differential Graded Algebra, Definition 4.3. It is clear that we
have defined a functor

[k] : Moddg(A,d) −→ Moddg(A,d)

of differential graded categories and that we have [k + l] = [k] ◦ [l].

We claim that the isomorphism

HomModdg(A,d)(L,M[k]) = HomModdg(A,d)(L,M)[k]

defined in Section 11 on underlying graded modules is compatible with the differ-
entials. To see this, suppose we have a right A-module map f : L → M[k] homo-
geneous of degree n; this is an element of degree n of the LHS. Denote f ′ : L → M
the homogeneous A-module map of degree n+ k with the same component maps
as f . By our conventions, this is the corresponding element of degree n of the RHS.
By definition of the differential of LHS we obtain

dLHS(f) = dM[k] ◦ f − (−1)nf ◦ dL = (−1)kdM ◦ f − (−1)nf ◦ dL

and for the differential on the RHS we obtain

dRHS(f ′) = (−1)k
(
dM ◦ f ′ − (−1)n+kf ′ ◦ dL

)
= (−1)kdM ◦ f ′ − (−1)nf ′ ◦ dL

These maps have the same component maps and the proof is complete.

21. The homotopy category

0FRZ This section is the analogue of Differential Graded Algebra, Section 5.

Definition 21.1.0FS0 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let f, g : M → N be homomorphisms of differential graded
A-modules. A homotopy between f and g is a graded A-module map h : M → N
homogeneous of degree −1 such that

f − g = dN ◦ h+ h ◦ dM

If a homotopy exists, then we say f and g are homotopic.

https://stacks.math.columbia.edu/tag/0FS0
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In the situation of the definition, if we have maps a : K → M and c : N → L then
we see that

h is a homotopy
between f and g

⇒ c ◦ h ◦ a is a homotopy
between c ◦ f ◦ a and c ◦ g ◦ a

Thus we can define composition of homotopy classes of morphisms in Mod(A,d).

Definition 21.2.0FS1 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). The homotopy category, denoted K(Mod(A,d)), is the
category whose objects are the objects of Mod(A,d) and whose morphisms are
homotopy classes of homomorphisms of differential graded A-modules.

The notation K(Mod(A,d)) is not standard but at least is consistent with the use
of K(−) in other places of the Stacks project.
In Differential Graded Algebra, Definition 26.3 we have defined what we mean
by the category of complexes Comp(S) and the homotopy category K(S) of a
differential graded category S. Applying this to the differential graded category
Moddg(A,d) we obtain

Mod(A,d) = Comp(Moddg(A,d))
(see discussion in Section 14) and we obtain

K(Mod(A,d)) = K(Moddg(A,d))
To see that this last equality is true, note that we have the equality

dHomModdg(A,d)(M,N )(h) = dN ◦ h+ h ◦ dM

when h is as in Definition 21.1. We omit the details.

Lemma 21.3.0FS2 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The homotopy category K(Mod(A, d)) has direct sums and
products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 13.2.
This works because we saw that these functors commute with the forgetful functor
to the category of graded A-modules and because

∏
and

⊕
are exact functors on

the category of families of abelian groups. □

22. Cones and triangles

0FS3 In this section we use the material from Differential Graded Algebra, Section 27
to conclude that the homotopy category of the category of differential graded A-
modules is a triangulated category.

Lemma 22.1.0FS4 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The differential graded category Moddg(A, d) satisfies axioms
(A) and (B) of Differential Graded Algebra, Section 27.

Proof. Suppose given differential graded A-modules M and N . Consider the
differential graded A-module M ⊕ N defined in the obvious manner. Then the
coprojections i : M → M ⊕ N and j : N → M ⊕ N and the projections p :
M ⊕ N → N and q : M ⊕ N → M are morphisms of differential graded A-
modules. Hence i, j, p, q are homogeneous of degree 0 and closed, i.e., d(i) = 0, etc.

https://stacks.math.columbia.edu/tag/0FS1
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Thus this direct sum is a differential graded sum in the sense of Differential Graded
Algebra, Definition 26.4. This proves axiom (A).

Axiom (B) was shown in Section 20. □

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Recall that a sequence

0 → K → L → N → 0

in Mod(A,d) is called an admissible short exact sequence (in Differential Graded
Algebra, Section 27) if it is split in Mod(A). In other words, if it is split as a
sequence of graded A-modules. Denote s : N → L and π : L → K graded A-module
splittings. Combining Lemma 22.1 and Differential Graded Algebra, Lemma 27.1
we obtain a triangle

K → L → N → K[1]
where the arrow N → K[1] in the proof of Differential Graded Algebra, Lemma
27.1 is constructed as

δ = π ◦ dHomModdg(A,d)(L,M)(s) = π ◦ dL ◦ s− π ◦ s ◦ dN = π ◦ dL ◦ s

with apologies for the horrendous notation. In any case, we see that in our setting
the boundary map δ as constructed in Differential Graded Algebra, Lemma 27.1
agrees on underlying complexes of O-modules with the usual boundary map used
throughout the Stacks project for termwise split short exact sequences of complexes,
see Derived Categories, Definition 9.9.

Definition 22.2.0FS5 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). Let f : K → L be a homomorphism of differential
graded A-modules. The cone of f is the differential graded A-module C(f) defined
as follows:

(1) the underlying complex of O-modules is the cone of the corresponding map
f : K• → L• of complexes of A-modules, i.e., we have C(f)n = Ln ⊕ Kn+1

and differential
dC(f) =

(
dL f
0 −dK

)
(2) the multiplication map

C(f)n × Am → C(f)n+m

is the direct sum of the multiplication map Ln × Am → Ln+m and the
multiplication map Kn+1 × Am → Kn+1+m.

It comes equipped with canonical hommorphisms of differential graded A-modules
i : L → C(f) and p : C(f) → K[1] induced by the obvious maps.

Observe that in the situation of the definition the sequence

0 → L → C(f) → K[1] → 0

is an addmissible short exact sequence.

Lemma 22.3.0FS6 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The differential graded category Moddg(A, d) satisfies axiom (C)
formulated in Differential Graded Algebra, Situation 27.2.

https://stacks.math.columbia.edu/tag/0FS5
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Proof. Let f : K → L be a homomorphism of differential graded A-modules. By
the above we have an admissible short exact sequence

0 → L → C(f) → K[1] → 0

To finish the proof we have to show that the boundary map

δ : K[1] → L[1]

associated to this (see discussion above) is equal to f [1]. For the section s : K[1] →
C(f) we use in degree n the embeddding Kn+1 → C(f)n. Then in degree n the
map π is given by the projections C(f)n → Ln. Then finally we have to compute

δ = π ◦ dC(f) ◦ s

(see discussion above). In matrix notation this is equal to(
1 0

) (
dL f
0 −dK

) (
0
1

)
= f

as desired. □

At this point we know that all lemmas proved in Differential Graded Algebra,
Section 27 are valid for the differential graded category Moddg(A,d). In particular,
we have the following.

Proposition 22.4.0FS7 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). The homotopy category K(Mod(A, d)) is a triangulated
category where

(1) the shift functors are those constructed in Section 20,
(2) the distinghuished triangles are those triangles in K(Mod(A, d)) which are

isomorphic as a triangle to a triangle

K → L → N δ−→ K[1], δ = π ◦ dL ◦ s

constructed from an admissible short exact sequence 0 → K → L → N → 0
in Mod(A, d) above.

Proof. Recall that K(Mod(A,d)) = K(Moddg(A,d)), see Section 21. Having said
this, the proposition follows from Lemmas 22.1 and 22.3 and Differential Graded
Algebra, Proposition 27.16. □

Remark 22.5.0FS8 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let C = C(idA) be the cone on the identity map A → A viewed
as a map of differential graded A-modules. Then

HomMod(A,d)(C,M) = {(x, y) ∈ Γ(C,M0) × Γ(C,M−1) | x = d(y)}

where the map from left to right sends f to the pair (x, y) where x is the image of
the global section (0, 1) of C−1 = A−1 ⊕ A0 and where y is the image of the global
section (1, 0) of C0 = A0 ⊕ A1.

Lemma 22.6.0FS9 Let (C,O) be a ringed site. Let (A, d) be a differential graded
O-algebra. The category Mod(A, d) is a Grothendieck abelian category.

https://stacks.math.columbia.edu/tag/0FS7
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Proof. By Lemma 13.2 and the definition of a Grothendieck abelian category (In-
jectives, Definition 10.1) it suffices to show that Mod(A,d) has a generator. For
every object U of C we denote CU the cone on the identity map AU → AU as in
Remark 22.5. We claim that

G =
⊕

k,U
jU !CU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a
differential graded A-module M if there are no nonzero maps from G to M, then
we see that for all k and U we have

HomMod(A)(jU !CU [k],M)
= HomMod(AU )(CU [k],M|U )
= {(x, y) ∈ M−k(U) × M−k−1(U) | x = d(y)}

is equal to zero. Hence M is zero. □

23. Flat resolutions

0FSA This section is the analogue of Differential Graded Algebra, Section 20.
Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let us call a right differential graded A-module P good if

(1) the functor N 7→ P ⊗A N is exact on the category of graded left A-modules,
(2) if N is an acyclic differential graded left A-module, then P ⊗A N is acyclic,
(3) for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi and

any differential graded O′-algebra A′ and any map φ : f−1A → A′ of
differential graded f−1OD-algebras we have properties (1) and (2) for the
pullback f∗P (Section 18) viewed as a differential graded A′-module.

The first condition means that P is flat as a right graded A-module, the second
condition means that P is K-flat in the sense of Spaltenstein (see Cohomology on
Sites, Section 17), and the third condition is that this holds after arbitrary base
change.
Perhaps surprisingly, there are many good modules.

Lemma 23.1.0FSB Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let U ∈ Ob(C). Then j!AU is a good differential graded A-
module.

Proof. Let N be a left graded A-module. By Lemma 10.2 we have
j!AU ⊗A N = j!(AU ⊗AU

N |U ) = j!(NU )
as graded modules. Since both restriction to U and j! are exact this proves condition
(1). The same argument works for (2) using Lemma 19.2.
Consider a morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a dif-
ferential graded O′-algebra A′, and a map φ : f−1A → A′ of differential graded
f−1O-algebras. We have to show that

f∗j!AU = f−1j!AU ⊗f−1A A′

satisfies (1) and (2) for the ringed topos (Sh(C′),O′) endowed with the sheaf of
differential graded O′-algebras A′. To prove this we may replace (Sh(C),O) and
(Sh(C′),O′) by equivalent ringed topoi. Thus by Modules on Sites, Lemma 7.2

https://stacks.math.columbia.edu/tag/0FSB
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we may assume that f comes from a morphism of sites f : C → C′ given by
the continuous functor u : C → C′. In this case, set U ′ = u(U) and denote
j′ : Sh(C′/U ′) → Sh(C′) the corresponding localization morphism. We obtain a
commutative square of morphisms of ringed topoi

(Sh(C′/U ′),O′
U ′)

(j′,(j′)♯)
//

(f ′,(f ′)♯)
��

(Sh(C′),O′)

(f,f♯)
��

(Sh(C/U),OU )
(j,j♯) // (Sh(C),O).

and we have f ′
∗(j′)−1 = j−1f∗. See Modules on Sites, Lemma 20.1. By uniqueness

of adjoints we obtain f−1j! = j′
!(f ′)−1. Thus we obtain

f∗j!AU = f−1j!AU ⊗f−1A A′

= j′
!(f ′)−1AU ⊗f−1A A′

= j′
!
(
(f ′)−1AU ⊗f−1A|U′ A′|U ′

)
= j′

!A′
U ′

The first equation is the definition of the pullback of j!AU to a differential graded
module over A′. The second equation because f−1j! = j′

!(f ′)−1. The third equation
by Lemma 19.2 applied to the ringed site (C′, f−1O) with sheaf of differential graded
algebras f−1A and with differential graded modules (f ′)−1AU on C′/U ′ and A′ on
C′. The fourth equation holds because of course we have (f ′)−1AU = f−1A|U ′ .
Hence we see that the pullback is another module of the same kind and we’ve
proven conditions (1) and (2) for it above. □

Lemma 23.2.0FSC et (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let 0 → P → P ′ → P ′′ → 0 be an admissible short exact
sequence of differential graded A-modules. If two-out-of-three of these modules are
good, so is the third.

Proof. For condition (1) this is immediate as the sequence is a direct sum at the
graded level. For condition (2) note that for any left differential graded A-module,
the sequence

0 → P ⊗A N → P ′ ⊗A N → P ′′ ⊗A N → 0
is an admissible short exact sequence of differential graded O-modules (since for-
getting the differential the tensor product is just taken in the category of graded
modules). Hence if two out of three are exact as complexes of O-modules, so
is the third. Finally, the same argument shows that given a morphism (f, f ♯) :
(Sh(C′),O′) → (Sh(C),O) of ringed topoi, a differential graded O′-algebra A′, and
a map φ : f−1A → A′ of differential graded f−1O-algebras we have that

0 → f∗P → f∗P ′ → f∗P ′′ → 0

is an admissible short exact sequence of differential graded A′-modules and the
same argument as above applies here. □

Lemma 23.3.0FSD Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). An arbitrary direct sum of good differential graded A-modules
is good. A filtered colimit of good differential graded A-modules is good.

https://stacks.math.columbia.edu/tag/0FSC
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Proof. Omitted. Hint: direct sums and filtered colimits commute with tensor
products and with pullbacks. □

Lemma 23.4.0FSE Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let M be a differential graded A-module. There exists a homo-
morphism P → M of differential graded A-modules with the following properties

(1) P → M is surjective,
(2) Ker(dP) → Ker(dM) is surjective, and
(3) P is good.

Proof. Consider triples (U, k, x) where U is an object of C, k ∈ Z, and x is a section
of Mk over U with dM(x) = 0. Then we obtain a unique morphism of differential
graded AU -modules φx : AU [−k] → M|U mapping 1 to x. This is adjoint to a
morphism ψx : jU !AU [−k] → M. Observe that 1 ∈ AU (U) corresponds to a section
1 ∈ jU !AU [−k](U) of degree k whose differential is zero and which is mapped to x
by ψx. Thus if we consider the map⊕

(U,k,x)
jU !AU [−k] −→ M

then we will have conditions (2) and (3). Namely, the objects jU !AU [−k] are good
(Lemma 23.1) and any direct sum of good objects is good (Lemma 23.3).

Next, consider triples (U, k, x) where U is an object of C, k ∈ Z, and x is a section
of Mk (not necessarily annihilated by the differential). Then we can consider the
cone CU on the identity map AU → AU as in Remark 22.5. The element x will
determine a map φx : CU [−k − 1] → AU , see Remark 22.5. Now, since we have an
admissible short exact sequence

0 → AU → CU → AU [1] → 0

we conclude that jU !CU is a good module by Lemma 23.2 and the already used
Lemma 23.1. As above we conclude that the direct sum of the maps ψx : jU !CU →
M adjoint to the φx ⊕

(U,k,x)
jU !CU −→ M

is surjective. Taking the direct sum with the map produced in the first paragraph
we conclude. □

Remark 23.5.0FSF Let (C,O) be a ringed site. A sheaf of graded sets on C is a sheaf
of sets S endowed with a map deg : S → Z of sheaves of sets. Let us denote O[S]
the graded O-module which is the free O-module on the graded sheaf of sets S.
More precisely, the nth graded part of O[S] is the sheafification of the rule

U 7−→
⊕

s∈S(U), deg(s)=n
s · O(U)

With zero differential we also may consider this as a differential graded O-module.
Let A be a sheaf of graded O-algebras Then we similarly define A[S] to be the
graded A-module whose nth graded part is the sheafification of the rule

U 7−→
⊕

s∈S(U)
s · An−deg(s)(U)

If A is a differential graded O-algebra, the we turn this into a differential graded
O-module by setting d(s) = 0 for all s ∈ S(U) and sheafifying.

https://stacks.math.columbia.edu/tag/0FSE
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Lemma 23.6.0FSG Let (C,O) be a ringed site. Let A be a differential graded A-algebra.
Let S be a sheaf of graded sets on C. Then the free graded module A[S] on S endowed
with differential as in Remark 23.5 is a good differential graded A-module.

Proof. Let N be a left graded A-module. Then we have
A[S] ⊗A N = O[S] ⊗O N = N [S]

where N [S is the graded O-module whose degree n part is the sheaf associated to
the presheaf

U 7−→
⊕

s∈S(U)
s · Nn−deg(s)(U)

It is clear that N → N [S] is an exact functor, hence A[S is flat as a graded A-
module. Next, suppose that N is a differential graded left A-module. Then we
have

H∗(A[S] ⊗A N ) = H∗(O[S] ⊗O N )
as graded sheaves of O-modules, which by the flatness (over O) is equal to

H∗(N )[S]
as a graded O-module. Hence if N is acyclic, then A[S] ⊗A N is acyclic.
Finally, consider a morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a
differential graded O′-algebra A′, and a map φ : f−1A → A′ of differential graded
f−1O-algebras. Then it is straightforward to see that

f∗A[S] = A′[f−1S]
which finishes the proof that our module is good. □

Lemma 23.7.0FSH Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let M be a differential graded A-module. There exists a homo-
morphism P → M of differential graded A-modules with the following properties

(1) P → M is a quasi-isomorphism, and
(2) P is good.

First proof. Let S0 be the sheaf of graded sets (Remark 23.5) whose degree n
part is Ker(dnM). Consider the homomorphism of differential graded modules

P0 = A[S0] −→ M
where the left hand side is as in Remark 23.5 and the map sends a local section
s of S0 to the corresponding local section of Mdeg(s) (which is in the kernel of
the differential, so our map is a map of differential graded modules indeed). By
construction the induced maps on cohomology sheaves Hn(P0) → Hn(M) are
surjective. We are going to inductively construct maps

P0 → P1 → P2 → . . . → M
Observe that of course H∗(Pi) → H∗(M) will be surjective for all i. Given Pi → M
denote Si+1 the sheaf of graded sets whose degree n part is

Ker(dn+1
Pi

) ×Mn+1,d Mn

Then we set
Pi+1 = Pi ⊕ A[Si+1]

as graded A-module with differential and map to M defined as follows
(1) for local sections of Pi use the differential on Pi and the given map to M,

https://stacks.math.columbia.edu/tag/0FSG
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(2) for a local section s = (p,m) of Si+1 we set d(s) equal to p viewed as a
section of Pi of degree deg(s) + 1 and we map s to m in M, and

(3) extend the differential uniquely so that the Leibniz rule holds.
This makes sense because d(m) is the image of p and d(p) = 0. Finally, we set
P = colim Pi with the induced map to M.
The map P → M is a quasi-isomorphism: we have Hn(P) = colimHn(Pi) and
for each i the map Hn(Pi) → Hn(M) is surjective with kernel annihilated by the
map Hn(Pi) → Hn(Pi+1) by construction. Each Pi is good because P0 is good by
Lemma 23.6 and each Pi+1 is in the middle of the admissible short exact sequence
0 → Pi → Pi+1 → A[Si+1] → 0 whose outer terms are good by induction. Hence
Pi+1 is good by Lemma 23.2. Finally, we conclude that P is good by Lemma
23.3. □

Second proof. We urge the reader to read the proof of Differential Graded Alge-
bra, Lemma 20.4 before reading this proof. Set M = M0. We inductively choose
short exact sequences

0 → Mi+1 → Pi → Mi → 0
where the maps Pi → Mi are chosen as in Lemma 23.4. This gives a “resolution”

. . . → P2
f2−→ P1

f1−→ P0 → M → 0
Then we let P be the differential graded A-module defined as follows

(1) as a graded A-module we set P =
⊕

a≤0 P−a[−a], i.e., the degree n part is
given by Pn =

⊕
a+b=n Pb

−a,
(2) the differential on P is as in the construction of the total complex associated

to a double complex given by
dP(x) = f−a(x) + (−1)adP−a(x)

for x a local section of Pb
−a.

With these conventions P is indeed a differential graded A-module; we omit the
details. There is a map P → M of differential graded A-modules which is zero on
the summands P−a[−a] for a < 0 and the given map P0 → M for a = 0. Observe
that we have

P = colimi FiP
where FiP ⊂ P is the differential graded A-submodule whose underlying graded
A-module is

FiP =
⊕

i≥−a≥0
P−a[−a]

It is immediate that the maps
0 → F1P → F2P → F3P → . . . → P

are all admissible monomorphisms and we have admissible short exact sequences
0 → FiP → Fi+1P → Pi+1[i+ 1] → 0

By induction and Lemma 23.2 we find that FiP is a good differential graded A-
module. Since P = colimFiP we find that P is good by Lemma 23.3.
Finally, we have to show that P → M is a quasi-isomorphism. If C has enough
points, then this follows from the elementary Homology, Lemma 26.2 by checking
on stalks. In general, we can argue as follows (this proof is far too long — there is an
alternative argument by working with local sections as in the elementary proof but
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it is also rather long). Since filtered colimits are exact on the category of abelian
sheaves, we have

Hd(P) = colimHd(FiP)
We claim that for each i ≥ 0 and d ∈ Z we have (a) a short exact sequence

0 → Hd(Mi+1[i]) → Hd(FiP) → Hd(M) → 0

where the second arrow comes from FiP → P → M and (b) the composition

Hd(Mi+1[i]) → Hd(FiP) → Hd(Fi+1P)

is zero. It is clear that the claim suffices to finish the proof.

Proof of the claim. For any i ≥ 0 there is a map Mi+1[i] → FiP coming from the
inclusion of Mi+1 into Pi as the kernel of fi. Consider the short exact sequence

0 → Mi+1[i] → FiP → Ci → 0

of complexes of O-modules defining Ci. Observe that C0 = M0 = M. Also,
observe that Ci is the total complex associated to the double complex C•,•

i with
columns

Mi = Pi/Mi+1,Pi−1, . . . ,P0

in degree −i,−i+1, . . . , 0. There is a map of double complexes C•,•
i → C•,•

i−1 which
is 0 on the column in degree −i, is the surjection Pi−1 → Mi−1 in degree −i + 1,
and is the identity on the other columns. Hence there are maps of complexes

Ci −→ Ci−1

These maps are surjective quasi-isomorphisms because the kernel is the total com-
plex on the double complex with columns Mi,Mi in degrees −i,−i + 1 and
the identity map between these two columns. Using the resulting identifications
Hd(Ci) = Hd(Ci−1 = . . . = Hd(M) this already shows we get a long exact se-
quence

Hd(Mi+1[i]) → Hd(FiP) → Hd(M) → Hd+1(Mi+1[i])
from the short exact sequence of complexes above. However, we also have the
commutative diagram

Mi+2[i+ 1]
a

// Ti+1 // Fi+1P // Ci+1

��
Mi+1[i] //

b

OO

FiP

OO

// Ci

where Ti+1 is the total complex on the double complex with columns Pi+1,Mi+1
placed in degrees −i− 1 and −i. In other words, Ti+1 is a shift of the cone on the
map Pi+1 → Mi+1 and we find that a is a quasi-isomorphism and the map a−1 ◦ b
is a shift of the third map of the distinguished triangle in D(O) associated to the
short exact sequence

0 → Mi+2 → Pi+1 → Mi+1 → 0

The map Hd(Pi+1) → Hd(Mi+1) is surjective because we chose our maps such
that Ker(dPi+1) → Ker(dMi+1) is surjective. Thus we see that a−1 ◦ b is zero on
cohomology sheaves. This proves part (b) of the claim. Since Ti+1 is the kernel
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of the surjective map of complexes Fi+1P → Ci we find a map of long exact
cohomology sequences

Hd(Ti+1) // Hd(Fi+1P) // Hd(M) // Hd+1(Ti+1)

Hd(Mi+1[i]) //

OO

Hd(FiP) //

OO

Hd(M) //

OO

Hd+1(Mi+1[i])

OO

Here we know, by the discussion above, that the vertical maps on the outside are
zero. Hence the maps Hd(Fi+1P) → Hd(M) are surjective and part (a) of the
claim follows. More precisely, the claim follows for i > 0 and we leave the claim for
i = 0 to the reader (actually it suffices to prove the claim for all i ≫ 0 in order to
get the lemma). □

Lemma 23.8.0FSI Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let P be a good acyclic right differential graded A-module.

(1) for any differential graded left A-module N the tensor product P ⊗A N is
acyclic,

(2) for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi and
any differential graded O′-algebra A′ and any map φ : f−1A → A′ of
differential graded f−1O-algebras the pullback f∗P is acyclic and good.

Proof. Proof of (1). By Lemma 23.7 we can choose a good left differential graded
Q and a quasi-isomorphism Q → N . Then P ⊗A Q is acyclic because Q is good.
Let N ′ be the cone on the map Q → N . Then P ⊗A N ′ is acyclic because P is
good and because N ′ is acyclic (as the cone on a quasi-isomorphism). We have a
distinguished triangle

Q → N → N ′ → Q[1]
in K(Mod(A,d)) by our construction of the triangulated structure. Since P ⊗A −
sends distinguished triangles to distinguished triangles, we obtain a distinguished
triangle

P ⊗A Q → P ⊗A N → P ⊗A N ′ → P ⊗A Q[1]
in K(Mod(O)). Thus we conclude.

Proof of (2). Observe that f∗P is good by our definition of good modules. Recall
that f∗P = f−1P ⊗f−1A A′. Then f−1P is a good acyclic (because f−1 is exact)
differential graded f−1A-module. Hence we see that f∗P is acyclic by part (1). □

24. The differential graded hull of a graded module

0FSJ The differential graded hull of a graded module N is the result of applying the
functor G in the following lemma.

Lemma 24.1.0FSK Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The forgetful functor F : Mod(A, d) → Mod(A) has a left adjoint
G : Mod(A) → Mod(A, d).

Proof. To prove the existence of G we can use the adjoint functor theorem, see
Categories, Theorem 25.3 (observe that we have switched the roles of F and G).
The exactness conditions on F are satisfied by Lemma 13.2. The set theoretic
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condition can be seen as follows: suppose given a graded A-module N . Then for
any map

φ : N −→ F (M)
we can consider the smallest differential graded A-submodule M′ ⊂ M with
Im(φ) ⊂ F (M′). It is clear that M′ is the image of the map of graded A-modules

N ⊕ N [−1] ⊗O A −→ M
defined by

(n,
∑

ni ⊗ ai) 7−→ φ(n) +
∑

d(φ(ni))ai
because the image of this map is easily seen to be a differential graded submodule
of M. Thus the number of possible isomorphism classes of these M′ is bounded
and we conclude. □

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let M be a differential graded A-module and suppose we have a short
exact sequence

0 → N → F (M) → N ′ → 0
in Mod(A). Then we obtain a canonical graded A-module homomorphism

d : N → N ′[1]
as follows: given a local section x of N denote d(x) the image in N ′ of dM(x) when
x is viewed as a local section of M.

Lemma 24.2.0FSL The functors F,G of Lemma 24.1 have the following properties.
Given a graded A-module N we have

(1) the counit N → F (G(N )) is injective,
(2) the map d : N → Coker(N → F (G(N )))[1] is an isomorphism, and
(3) G(N ) is an acyclic differential graded A-module.

Proof. We observe that property (3) is a consequence of properties (1) and (2).
Namely, if s is a nonzero local section of F (G(N )) with d(s) = 0, then s cannot
be in the image of N → F (G(N )). Hence we can write the image s of s in the
cokernel as d(s′) for some local section s′ of N . Then we see that s = d(s′) because
the difference s − d(s′) is still in the kernel of d and is contained in the image of
the counit.
Let us write temporarily Agr, respectively Adg the sheaf A viewed as a (right)
graded module over itself, respectively as a (right) differential graded module over
itself. The most important case of the lemma is to understand what is G(Agr). Of
course G(Agr) is the object of Mod(A,d) representing the functor

M 7−→ HomMod(A)(Agr, F (M)) = Γ(C,M)
By Remark 22.5 we see that this functor represented by C[−1] where C is the cone
on the identity of Adg. We have a short exact sequence

0 → Adg[−1] → C[−1] → Adg → 0
in Mod(A,d) which is split by the counit Agr → F (C[−1]) in Mod(A). Thus G(Agr)
satisfies properties (1) and (2).
Let U be an object of C. Denote jU : C/U → C the localization morphism. Denote
AU the restriction of A to U . We will use the notation AU,gr to denote AU viewed
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as a graded AU -module. Denote FU : Mod(AU ,d) → Mod(AU ) the forgetful functor
and denote GU its adjoint. Then we have the commutative diagrams

Mod(A,d)

j∗
U

��

F
// Mod(A)

j∗
U

��
Mod(AU ,d) FU // Mod(AU )

and

Mod(AU ,d)
FU

//

jU!

��

Mod(AU )

jU!

��
Mod(A,d) F // Mod(A)

by the construction of j∗
U and jU ! in Sections 9, 18, 10, and 19. By uniqueness

of adjoints we obtain jU ! ◦ GU = G ◦ jU !. Since jU ! is an exact functor, we see
that the properties (1) and (2) for the counit AU,gr → FU (GU (AU,gr)) which we’ve
seen in the previous part of the proof imply properties (1) and (2) for the counit
jU !AU,gr → F (G(jU !AU,gr)) = jU !FU (GU (AU,gr)).
In the proof of Lemma 11.1 we have seen that any object of Mod(A) is a quotient of
a direct sum of copies of jU !AU,gr. Since G is a left adjoint, we see that G commutes
with direct sums. Thus properties (1) and (2) hold for direct sums of objects for
which they hold. Thus we see that every object N of Mod(A) fits into an exact
sequence

N1 → N0 → N → 0
such that (1) and (2) hold for N1 and N0. We leave it to the reader to deduce (1)
and (2) for N using that G is right exact. □

25. K-injective differential graded modules

0FSM This section is the analogue of Injectives, Section 12 in the setting of sheaves of
differential graded modules over a sheaf of differential graded algebras.

Lemma 25.1.0FSN Let (C,O) be a ringed site. Let A be a sheaf of graded algebras
on (C,O). There exists a set T and for each t ∈ T an injective map Nt → N ′

t of
graded A-modules such that an object I of Mod(A) is injective if and only if for
every solid diagram

Nt
//

��

I

N ′
t

??

a dotted arrow exists in Mod(A) making the diagram commute.

Proof. This is true in any Grothendieck abelian category, see Injectives, Lemma
11.6. By Lemma 11.1 the category Mod(A) is a Grothendieck abelian category. □

Definition 25.2.0FSP Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is said to be graded
injective2 if M viewed as a graded A-module is an injective object of the category
Mod(A) of graded A-modules.

Remark 25.3.0FSQ Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let I be a graded injective diffential graded A-module.
Let

0 → M1 → M2 → M3 → 0

2This may be nonstandard terminology.
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be a short exact sequence of differential graded A-modules. Since I is graded
injective we obtain a short exact sequence of complexes

0 → HomModdg(A,d)(M3, I) → HomModdg(A,d)(M2, I) → HomModdg(A,d)(M1, I) → 0

of Γ(C,O)-modules. Taking cohomology we obtain a long exact sequence

HomK(Mod(A,d))(M3, I)

��

HomK(Mod(A,d))(M3, I)[1]

��
HomK(Mod(A,d))(M2, I)

��

HomK(Mod(A,d))(M2, I)[1]

��
HomK(Mod(A,d))(M1, I)

88

HomK(Mod(A,d))(M1, I)[1]

of groups of homomorphisms in the homotopy category. The point is that we get
this even though we didn’t assume that our short exact sequence is admissible (so
the short exact sequence in general does not define a distinguished triangle in the
homotopy category).

Lemma 25.4.0FSR Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let T be a set and for each t ∈ T let It be a graded
injective diffential graded A-module. Then

∏
It is a graded injective differential

graded A-module.

Proof. This is true because products of injectives are injectives, see Homology,
Lemma 27.3, and because products in Mod(A,d) are compatible with products in
Mod(A) via the forgetful functor. □

Lemma 25.5.0FSS Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). There exists a set T and for each t ∈ T an injective
map Mt → M′

t of acyclic differential graded A-modules such that for an object I
of Mod(A, d) the following are equivalent

(1) I is graded injective, and
(2) for every solid diagram

Mt
//

��

I

M′
t

>>

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. Let T and Nt → N ′
t be as in Lemma 25.1. Denote F : Mod(A,d) → Mod(A)

the forgetful functor. Let G be the left adjoint functor to F as in Lemma 24.1. Set

Mt = G(Nt) → G(N ′
t ) = M′

t

This is an injective map of acyclic differential graded A-modules by Lemma 24.2.
Since G is the left adjoint to F we see that there exists a dotted arrow in the
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diagram
Mt

//

��

I

M′
t

>>

if and only if there exists a dotted arrow in the diagram

Nt
//

��

F (I)

N ′
t

==

Hence the result follows from the choice of our collection of arrows Nt → N ′
t . □

Lemma 25.6.0FST Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). There exists a set S and for each s an acyclic differential
graded A-module Ms such that for every nonzero acyclic differential graded A-
module M there is an s ∈ S and an injective map Ms → M in Mod(A, d).
Proof. Before we start recall that our conventions guarantee the site C has a set of
objects and morphisms and a set Cov(C) of coverings. If F is a differential graded
A-module, let us define |F| to be the sum of the cardinality of∐

(U,n)
Fn(U)

as U ranges over the objects of C and n ∈ Z. Choose an infinite cardinal κ big-
ger than the cardinals | Ob(C)|, |Arrows(C)|, |Cov(C)|, sup |I| for {Ui → U}i∈I ∈
Cov(C), and |A|.
Let F ⊂ M be an inclusion of differential graded A-modules. Suppose given a set
K and for each k ∈ K a triple (Uk, nk, xk) consisting of an object Uk of C, integer
nk, and a section xk ∈ Mnk (Uk). Then we can consider the smallest differential
graded A-submodule F ′ ⊂ M containing F and the sections xk for k ∈ K. We can
describe

(F ′)n(U) ⊂ Mn(U)
as the set of elements x ∈ Mn(U) such that there exists {fi : Ui → U}i∈I ∈ Cov(C)
such that for each i ∈ I there is a finite set Ti and morphisms gt : Ui → Ukt

f∗
i x = yi +

∑
t∈Ti

aitg
∗
t xkt + bitg

∗
t d(xkt)

for some section yi ∈ Fn(U) and sections ait ∈ An−nkt (Ui) and bit ∈ An−nkt −1(Ui).
(Details omitted; hints: these sections are certainly in F ′ and you show conversely
that this rule defines a differential graded A-submodule.) It follows from this de-
scription that |F ′| ≤ max(|F|, |K|, κ).
Let M be a nonzero acyclic differential graded A-module. Then we can find an
integer n and a nonzero section x of Mn over some object U of C. Let

F0 ⊂ M
be the smallest differential graded A-submodule containing x. By the previous
paragraph we have |F0| ≤ κ. By induction, given F0, . . . ,Fn define Fn+1 as follows.
Consider the set

L = {(U, n, x)}{Ui → U}i∈I , (xi)i∈I)}
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of triples where U is an object of C, n ∈ Z, and x ∈ Fn(U) with d(x) = 0. Since M
is acyclic for each triple l = (Ul, nl, xl) ∈ L we can choose {(Ul,i → Ul}i∈Il

∈ Cov(C)
and xl,i ∈ Mnl−1(Ul,i) such that d(xl,i) = x|Ul,i

. Then we set

K = {(Ul,i, nl − 1, xl,i) | l ∈ L, i ∈ Il}

and we let Fn+1 be the smallest differential graded A-submodule of M containing
Fn and the sections xl,i. Since |K| ≤ max(κ, |Fn|) we conclude that |Fn+1| ≤ κ by
induction.

By construction the inclusion Fn → Fn+1 induces the zero map on cohomology
sheaves. Hence we see that F =

⋃
Fn is a nonzero acyclic submodule with |F| ≤ κ.

Since there is only a set of isomorphism classes of differential graded A-modules F
with |F| bounded, we conclude. □

Definition 25.7.0FSU Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is K-injective if for every
acyclic differential graded M we have

HomK(Mod(A,d))(M, I) = 0

Please note the similarity with Derived Categories, Definition 31.1.

Lemma 25.8.0FSV Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let T be a set and for each t ∈ T let It be a K-
injective diffential graded A-module. Then

∏
It is a K-injective differential graded

A-module.

Proof. Let K be an acyclic differential graded A-module. Then we have

HomModdg(A,d)(K,
∏

t∈T
It) =

∏
t∈T

HomModdg(A,d)(K, It)

because taking products in Mod(A,d) commutes with the forgetful functor to graded
A-modules. Since taking products is an exact functor on the category of abelian
groups we conclude. □

Lemma 25.9.0FSW Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let I be a K-injective and graded injective object of
Mod(A, d). For every solid diagram in Mod(A, d)

M
a
//

b
��

I

M′

>>

where b is injective and M is acyclic a dotted arrow exists making the diagram
commute.

Proof. Since M is acyclic and I is K-injective, there exists a graded A-module
map h : M → I of degree −1 such that a = d(h). Since I is graded injective and
b is injective, there exists a graded A-module map h′ : M′ → I of degree −1 such
that h = h′ ◦ b. Then we can take a′ = d(h′) as the dotted arrow. □
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Lemma 25.10.0FSX Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let I be a K-injective and graded injective object of
Mod(A, d). For every solid diagram in Mod(A, d)

M
a
//

b
��

I

M′

>>

where b is a quasi-isomorphism a dotted arrow exists making the diagram commute
up to homotopy.

Proof. After replacing M′ by the direct sum of M′ and the cone on the identity
on M (which is acyclic) we may assume b is also injective. Then the cokernel Q of
b is acyclic. Thus we see that

HomK(Mod(A,d))(Q, I) = HomK(Mod(A,d))(Q, I)[1] = 0
as I is K-injective. As I is graded injective by Remark 25.3 we see that

HomK(Mod(A,d))(M′, I) −→ HomK(Mod(A,d))(M, I)
is bijective and the proof is complete. □

Lemma 25.11.0FSY Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). There exists a set R and for each r ∈ R an injective
map Mr → M′

r of acyclic differential graded A-modules such that for an object I
of Mod(A, d) the following are equivalent

(1) I is K-injective and graded injective, and
(2) for every solid diagram

Mr
//

��

I

M′
r

>>

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. Let T and Mt → M′
t be as in Lemma 25.5. Let S and Ms be as in Lemma

25.6. Choose an injective map Ms → M′
s of acyclic differential graded A-modules

which is homotopic to zero. This is possible because we may take M′
s to be the cone

on the identity; in that case it is even true that the identity on M′
s is homotopic to

zero, see Differential Graded Algebra, Lemma 27.4 which applies by the discussion
in Section 22. We claim that R = T

∐
S with the given maps works.

The implication (1) ⇒ (2) holds by Lemma 25.9.
Assume (2). First, by Lemma 25.5 we see that I is graded injective. Next, let M
be an acyclic differential graded A-module. We have to show that

HomK(Mod(A,d))(M, I) = 0
The proof will be exactly the same as the proof of Injectives, Lemma 12.3.
We are going to construct by induction on the ordinal α an acyclic differential
graded submodule Kα ⊂ M as follows. For α = 0 we set K0 = 0. For α > 0 we
proceed as follows:
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(1) If α = β + 1 and Kβ = M then we choose Kα = Kβ .
(2) If α = β+1 and Kβ ̸= M then M/Kβ is a nonzero acyclic differential graded

A-module. We choose a differential graded A submodule Nα ⊂ M/Kβ

isomorphic to Ms for some s ∈ S, see Lemma 25.6. Finally, we let Kα ⊂ M
be the inverse image of Nα.

(3) If α is a limit ordinal we set Kβ = colim Kα.
It is clear that M = Kα for a suitably large ordinal α. We will prove that

HomK(Mod(A,d))(Kα, I)
is zero by transfinite induction on α. It holds for α = 0 since K0 is zero. Suppose
it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence

0 → Kβ → Kα → Nα → 0
By Remark 25.3 and since we’ve seen that I is graded injective, we obtain an exact
sequence

HomK(Mod(A,d))(Kβ , I) → HomK(Mod(A,d))(Kα, I) → HomK(Mod(A,d))(Nα, I)
By induction the term on the left is zero. By assumption (2) the term on the right is
zero: any map Ms → I factors through M′

s and hence is homotopic to zero. Thus
the middle group is zero too. Finally, suppose that α is a limit ordinal. Because
we also have Kα = colim Kα as graded A-modules we see that

HomModdg(A,d)(Kα, I) = limβ<α HomModdg(A,d)(Kβ , I)
as complexes of abelian groups. The cohomology groups of these complexes com-
pute morphisms in K(Mod(A,d)) between shifts. The transition maps in the system
of complexes are surjective by Remark 25.3 because I is graded injective. Moreover,
for a limit ordinal β ≤ α we have equality of limit and value. Thus we may apply
Homology, Lemma 31.8 to conclude. □

Lemma 25.12.0FSZ Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let R be a set and for each r ∈ R let an injective map
Mr → M′

r of acyclic differential graded A-modules be given. There exists a functor
M : Mod(A, d) → Mod(A, d) and a natural transformation j : id → M such that

(1) jM : M → M(M) is injective and a quasi-isomorphism,
(2) for every solid diagram

Mr
//

��

M

jM

��
M′

r
// M(M)

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. We define M(M) as the pushout in the following diagram⊕
(r,φ) Mr

//

��

M

��⊕
(r,φ) M′

r
// M(M)

https://stacks.math.columbia.edu/tag/0FSZ
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where the direct sum is over all pairs (r, φ) with r ∈ R and φ ∈ HomMod(A,d)(Mr,M).
Since the pushout of an injective map is injective, we see that M → M(M) is in-
jective. Since the cokernel of the left vertical arrow is acyclic, we see that the
(isomorphic) cokernel of M → M(M) is acyclic, hence M → M(M) is a quasi-
isomorphism. Property (2) holds by construction. We omit the verification that
this procedure can be turned into a functor. □

Theorem 25.13.0FT0 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). For every differential graded A-module M there exists a
quasi-isomorphism M → I where I is a graded injective and K-injective differential
graded A-module. Moreover, the construction is functorial in M.

Proof. Let R and Mr → M′
r be a set of morphisms of Mod(A,d) found in Lemma

25.11. Let M with transformation id → M be as constructed in Lemma 25.12 using
R and Mr → M′

r. Using transfinite recursion we define a sequence of functors Mα

and natural transformations Mβ → Mα for α < β by setting
(1) M0 = id,
(2) Mα+1 = M ◦ Mα with natural transformation Mβ → Mα+1 for β < α + 1

coming from the already constructed Mβ → Mα and the maps Mα →
M ◦Mα coming from id → M , and

(3) Mα = colimβ<αMβ if α is a limit ordinal with the coprojections as trans-
formations Mβ → Mα for α < β.

Observe that for every differential graded A-module the maps M → Mβ(M) →
Mα(M) are injective quasi-isomorphisms (as filtered colimits are exact).

Recall that Mod(A,d) is a Grothendieck abelian category. Thus by Injectives,
Proposition 11.5 (applied to the direct sum of Mr for all r ∈ R) there is a limit
ordinal α such that Mr is α-small with respect to injections for every r ∈ R. We
claim that M → Mα(M) is the desired functorial embedding of M into a graded
injective K-injective module.

Namely, any map Mr → Mα(M) factors through Mβ(M) for some β < α. How-
ever, by the construction of M we see that this means that Mr → Mβ+1(M) =
M(Mβ(M)) factors through M′

r. Since Mβ(M) ⊂ Mβ+1(M) ⊂ Mα(M) we get the
desired factorizaton into Mα(M). We conclude by our choice of R and Mr → M′

r

in Lemma 25.11. □

26. The derived category

0FT1 This section is the analogue of Differential Graded Algebra, Section 22.

Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras
on (C,O). We will construct the derived category D(A,d) by inverting the quasi-
isomorphisms in K(Mod(A,d)).

Lemma 26.1.0FT2 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). The functor H0 : Mod(A, d) → Mod(O) of Section 13
factors through a functor

H0 : K(Mod(A, d)) → Mod(O)

which is homological in the sense of Derived Categories, Definition 3.5.
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Proof. It follows immediately from the definitions that there is a commutative
diagram

Mod(A,d) //

��

K(Mod(A,d))

��
Comp(O) // K(Mod(O))

Since H0(M) is defined as the zeroth cohomology sheaf of the underlying complex
of O-modules of M the lemma follows from the case of complexes of O-modules
which is a special case of Derived Categories, Lemma 11.1. □

Lemma 26.2.0FT3 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differen-
tial graded algebras on (C,O). The full subcategory Ac of the homotopy category
K(Mod(A, d)) consisting of acyclic modules is a strictly full saturated triangulated
subcategory of K(Mod(A, d)).

Proof. Of course an object M of K(Mod(A,d)) is in Ac if and only if Hi(M) =
H0(M[i]) is zero for all i. The lemma follows from this, Lemma 26.1, and Derived
Categories, Lemma 6.3. See also Derived Categories, Definitions 6.1 and 3.4 and
Lemma 4.16. □

Lemma 26.3.0FT4 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Consider the subclass Qis ⊂ Arrows(K(Mod(A, d))) con-
sisting of quasi-isomorphisms. This is a saturated multiplicative system compatible
with the triangulated structure on K(Mod(A, d)).

Proof. Observe that if f, g : M → N are morphisms of Mod(A,d) which are ho-
motopic, then f is a quasi-isomorphism if and only if g is a quasi-isomorphism.
Namely, the maps Hi(f) = H0(f [i]) and Hi(g) = H0(g[i]) are the same by Lemma
26.1. Thus it is unambiguous to say that a morphism of the homotopy category
K(Mod(A,d)) is a quasi-isomorphism. For definitions of “multiplicative system”,
“saturated”, and “compatible with the triangulated structure” see Derived Cate-
gories, Definition 5.1 and Categories, Definitions 27.1 and 27.20.
To actually prove the lemma consider the composition of exact functors of triangu-
lated categories

K(Mod(A,d)) −→ K(Mod(O)) −→ D(O)
and observe that a morphism f : M → N of K(Mod(A,d)) is in Qis if and only
if it maps to an isomorphism in D(O). Thus the lemma follows from Derived
Categories, Lemma 5.4. □

In the situation of Lemma 26.3 we can apply Derived Categories, Proposition 5.6
to obtain an exact functor of triangulated categories

Q : K(Mod(A,d)) −→ Qis−1K(Mod(A,d))
However, as Mod(A,d) is a “big” category, i.e., its objects form a proper class, it
isn’t immediately clear that given M and N the construction of Qis−1K(Mod(A,d))
produces a set

MorQis−1K(Mod(A,d))(M,N )
of morphisms. However, this is true thanks to our construction of K-injective
complexes. Namely, by Theorem 25.13 we can choose a quasi-isomorphism s0 :
N → I where I is a graded injective and K-injective differential graded A-module.
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Next, recall that elements of the displayed set are equivalence classes of pairs (f :
M → N ′, s : N → N ′) where f is an arbitrary morphism of K(Mod(A,d)) and
s is a quasi-isomorphsm, see the description of the left calculus of fractions in
Categories, Section 27. By Lemma 25.10 we can choose the dotted arrow

M
f

!!

N
s

}}

s0

��
N ′ s′

// I

making the diagram commute (in the homotopy category). Thus the pair (f, s)
is equivalent to the pair (s′ ◦ f, s0) and we find that the collection of equivalence
classes forms a set.

Definition 26.4.0FT5 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let Qis be as in Lemma 26.3. The derived category of
(A, d) is the triangulated category

D(A,d) = Qis−1K(Mod(A,d))

discussed in more detail above.

We prove some facts about this construction.

Lemma 26.5.0FT6 In Definition 26.4 the kernel of the localization functor Q : K(Mod(A, d)) →
D(A, d) is the category Ac of Lemma 26.2.

Proof. This is immediate from Derived Categories, Lemma 5.9 and the fact that
0 → M is a quasi-isomorphism if and only if M is acyclic. □

Lemma 26.6.0FT7 In Definition 26.4 the functor H0 : K(Mod(A, d)) → Mod(O)
factors through a homological functor H0 : D(A, d) → Mod(O).

Proof. Follows immediately from Derived Categories, Lemma 5.7. □

Here is the promised lemma computing morphism sets in the derived category.

Lemma 26.7.0FT8 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let M and N be differential graded A-modules. Let
N → I be a quasi-isomorphism with I a graded injective and K-injective differential
graded A-module. Then

HomD(A,d)(M,N ) = HomK(Mod(A,d))(M, I)

Proof. Since N → I is a quasi-isomorphism we see that

HomD(A,d)(M,N ) = HomD(A,d)(M, I)

In the discussion preceding Definition 26.4 we found, using Lemma 25.10, that any
morphism M → I in D(A,d) can be represented by a morphism f : M → I
in K(Mod(A,d)). Now, if f, f ′ : M → I are two morphism in K(Mod(A,d)),
then they define the same morphism in D(A,d) if and only if there exists a quasi-
isomorphism g : I → K in K(Mod(A,d)) such that g ◦ f = g ◦ f ′, see Categories,
Lemma 27.6. However, by Lemma 25.10 there exists a map h : K → I such that
h ◦ g = idI in in K(Mod(A,d)). Thus g ◦ f = g ◦ f ′ implies f = f ′ and the proof is
complete. □
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Lemma 26.8.0FT9 Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Then

(1) D(A, d) has both direct sums and products,
(2) direct sums are obtained by taking direct sums of differential graded A-

modules,
(3) products are obtained by taking products of K-injective differential graded

modules.

Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct
sums and products, and that these give rise to direct sums and products inK(Mod(A,d)).
See Lemmas 13.2 and 21.3.

Let Mj be a family of differential graded A-modules. Consider the direct sum
M =

⊕
Mj as a differential graded A-module. For a differential graded A-module

N choose a quasi-isomorphism N → I where I is graded injective and K-injective
as a differential graded A-module. See Theorem 25.13. Using Lemma 26.7 we have

HomD(A,d)(M,N ) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , I)

whence the existence of direct sums in D(A,d) as given in part (2) of the lemma.

Let Mj be a family of differential graded A-modules. For each j choose a quasi-
isomorphism M → Ij where Ij is graded injective and K-injective as a differential
graded A-module. Consider the product I =

∏
Ij of differential graded A-modules.

By Lemmas 25.8 and 25.4 we see that I is graded injective and K-injective as a
differential graded A-module. For a differential graded A-module N using Lemma
26.7 we have

HomD(A,d)(N , I) = HomK(A,d)(N , I)

=
∏

HomK(A,d)(N , Ij)

=
∏

HomD(A,d)(N ,Mj)

whence the existence of products in D(A,d) as given in part (3) of the lemma. □

27. The canonical delta-functor

0FTA Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). Consider the functor Mod(A,d) → K(Mod(A,d)). This functor is not a
δ-functor in general. However, it turns out that the functor Mod(A,d) → D(A,d)
is a δ-functor. In order to see this we have to define the morphisms δ associated to
a short exact sequence

0 → K a−→ L b−→ M → 0
in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a
together with its canonical morphisms i : L → C(a) and p : C(a) → K[1], see
Definition 22.2. There is a homomorphism of differential graded A-modules

q : C(a) −→ M
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by Differential Graded Algebra, Lemma 27.3 (which we may use by the discussion
in Section 22) applied to the diagram

K
a
//

��

L

b
��

0 //M

The map q is a quasi-isomorphism for example because this is true in the category
of morphisms of complexes of O-modules, see discussion in Derived Categories,
Section 12. According to Differential Graded Algebra, Lemma 27.13 (which we
may use by the discussion in Section 22) the triangle

(K,L, C(a), a, i,−p)

is a distinguished triangle inK(Mod(A,d)). As the localization functorK(Mod(A,d)) →
D(A,d) is exact we see that (K,L, C(a), a, i,−p) is a distinguished triangle in
D(A,d). Since q is a quasi-isomorphism we see that q is an isomorphism in D(A,d).
Hence we deduce that

(K,L,M, a, b,−p ◦ q−1)

is a distinguished triangle of D(A,d). This suggests the following lemma.

Lemma 27.1.0FTB Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). The localization functor Mod(A, d) → D(A, d) has the
natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle
whenever given a short exact sequence of complexes. We have to show functorial-
ity of this construction, see Derived Categories, Definition 3.6. This follows from
Differential Graded Algebra, Lemma 27.3 (which we may use by the discussion in
Section 22) with a bit of work. Compare with Derived Categories, Lemma 12.1. □

Lemma 27.2.0FTC Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let Mn be a system of differential graded A-modules.
Then the derived colimit hocolimMn in D(A, d) is represented by the differential
graded module colim Mn.

Proof. Set M = colim Mn. We have an exact sequence of differential graded
A-modules

0 →
⊕

Mn →
⊕

Mn → M → 0

by Derived Categories, Lemma 33.6 (applied the underlying complexes of O-modules).
The direct sums are direct sums in D(A,d) by Lemma 26.8. Thus the result follows
from the definition of derived colimits in Derived Categories, Definition 33.1 and
the fact that a short exact sequence of complexes gives a distinguished triangle
(Lemma 27.1). □
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28. Derived pullback

0FTD Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A
of differential graded OD-algebras. See Remark 12.2.
In addition to the above, let A′ be a second differential graded OC-algebra and let
N be a differential graded (A,A′)-bimodule. In this setting we can consider the
functor

Mod(B,d) −→ Mod(A′,d), M 7−→ f∗M ⊗A N
Observe that this extends to a functor

Moddg(B,d) −→ Moddg(A′,d), M 7−→ f∗M ⊗A N
of differential graded categories by the discussion in Sections 18 and 17. It follows
formally that we also obtain an exact functor
(28.0.1)0FTE K(Mod(B,d)) −→ K(Mod(A′,d)), M 7−→ f∗M ⊗A N
of triangulated categories.

Lemma 28.1.0FTF In the situation above, the functor (28.0.1) composed with the local-
ization functor K(Mod(A′, d)) → D(A′, d) has a left derived extension D(B, d) →
D(A′, d) whose value on a good right differential graded B-module P is f∗P ⊗A N .

Proof. Recall that for any (right) differential graded B-module M there exists
a quasi-isomorphism P → M with P a good differential graded B-module. See
Lemma 23.7. Hence by Derived Categories, Lemma 14.15 it suffices to show that
given a quasi-isomorphism P → P ′ of good differential graded B-modules the in-
duced map

f∗P ⊗A N −→ f∗P ′ ⊗A N
is a quasi-isomorphism. The cone P ′′ on P → P ′ is a good differential graded
A-module by Lemma 23.2. Since we have a distinguished triangle

P → P ′ → P ′′ → P[1]
in K(Mod(B,d)) we obtain a distinguished triangle

f∗P ⊗A N → f∗P ′ ⊗A N → f∗P ′′ ⊗A N → f∗P[1] ⊗A N
in K(Mod(A′,d)). By Lemma 23.8 the differential graded module f∗P ′′ ⊗A N is
acyclic and the proof is complete. □

Definition 28.2.0FTG Derived tensor product and derived pullback.
(1) Let (C,O) be a ringed site. Let A, B be differential graded O-algebras.

Let N be a differential graded (A,B)-bimodule. The functor D(A,d) →
D(B,d) constructed in Lemma 28.1 is called the derived tensor product and
denoted − ⊗L

A N .
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(2) Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let A be a differential graded OC-algebra. Let B be a differential graded
OD-algebra. Let φ : B → f∗A be a homomorphism of differential graded
OD-algebras. The functor D(B,d) → D(A,d) constructed in Lemma 28.1
is called derived pullback and denote Lf∗.

With this language in place we can express some obvious compatibilities.

Lemma 28.3.0FTH In Lemma 28.1 the functor D(B, d) → D(A′, d) is equal to M 7→
Lf∗M ⊗L

A N .

Proof. Immediate from the fact that we can compute these functors by repre-
senting objects by good differential graded modules and because f∗P is a good
differential graded A-module if P is a good differential graded B-module. □

Lemma 28.4.0FTI Let (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) and (g, g♯) : (Sh(C′),O′) →
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential
graded O-algebra, O′-algebra, and O′′-algebra. Let φ : A′ → f∗A and φ′ : A′′ →
g∗A′ be a homomorphism of differential graded O′-algebras and O′′-algebras. Then
we have L(g ◦ f)∗ = Lf∗ ◦ Lg∗ : D(A′′, d) → D(A, d).

Proof. Immediate from the fact that we can compute these functors by repre-
senting objects by good differential graded modules and because f∗P is a good
differential graded A′-module of P is a good differential graded A-module. □

Let (C,O) be a ringed site. Let A, B be differential graded O-algebras. Let N →
N ′ be a homomorphism of differential graded (A,B)-bimodules. Then we obtain
canonical maps

t : M ⊗L
A N −→ M ⊗L

A N ′

functorial in M in D(A,d) which define a natural transformation between exact
functors D(A,d) → D(B,d) of triangulated categories. The value of t on a good
differential graded A-module P is the obvious map

P ⊗L
A N = P ⊗A N −→ P ⊗A N ′ = P ⊗L

A N ′

Lemma 28.5.0FTJ In the situation above, if N → N ′ is an isomorphism on cohomology
sheaves, then t is an isomorphism of functors (− ⊗L

A N ) → (− ⊗L
A N ′).

Proof. It is enough to show that P ⊗A N → P ⊗A N ′ is an isomorphism on
cohomology sheaves for any good differential graded A-module P. To do this,
let N ′′ be the cone on the map N → N ′ as a left differential graded A-module,
see Definition 22.2. (To be sure, N ′′ is a bimodule too but we don’t need this.)
By functoriality of the tensor construction (it is a functor of differential graded
categories) we see that P ⊗A N ′′ is the cone (as a complex of O-modules) on the
map P ⊗A N → P ⊗A N ′. Hence it suffices to show that P ⊗A N ′′ is acyclic. This
follows from the fact that P is good and the fact that N ′′ is acyclic as a cone on a
quasi-isomorphism. □

Lemma 28.6.0FTK Let (C,O) be a ringed site. Let A, B be differential graded O-
algebras. Let N be a differential graded (A,B)-bimodule. If N is good as a left
differential graded A-module, then we have M ⊗L

A N = M ⊗A N for all differential
graded A-modules M.
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Proof. Let P → M be a quasi-isomorphism where P is a good (right) differential
graded A-module. To prove the lemma we have to show that P ⊗A N → M ⊗A N
is a quasi-isomorphism. The cone C on the map P → M is an acyclic right
differential graded A-module. Hence C ⊗A N is acyclic as N is assumed good
as a left differential graded A-module. Since C ⊗A N is the cone on the maps
P ⊗A N → M ⊗A N as a complex of O-modules we conclude. □

Lemma 28.7.0FTL Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded
O-algebras. Let N and N ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-
bimodule. Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′, d) is a quasi-isomorphism. Then we have

(M ⊗L
A N ) ⊗L

A′ N ′ = M ⊗L
A (N ⊗A′ N ′)

as functors D(A, d) → D(A′′, d).

Proof. Choose a good differential graded A-module P and a quasi-isomorphism
P → M, see Lemma 23.7. Then

M ⊗L
A (N ⊗A′ N ′) = P ⊗A N ⊗A′ N ′

and we have
(M ⊗L

A N ) ⊗L
A′ N ′ = (P ⊗A N ) ⊗L

A′ N ′

Thus we have to show the canonical map
(P ⊗A N ) ⊗L

A′ N ′ −→ P ⊗A N ⊗A′ N ′

is a quasi-isomorphism. Choose a quasi-isomorphism Q → N ′ where Q is a good
left differential graded A′-module (Lemma 23.7). By Lemma 28.6 the map above
as a map in the derived category of O-modules is the map

P ⊗A N ⊗A′ Q −→ P ⊗A N ⊗A′ N ′

Since N ⊗A′ Q → N ⊗A′ N ′ is a quasi-isomorphism by assumption and P is a good
differential graded A-module this map is an quasi-isomorphism by Lemma 28.5 (the
left and right hand side compute P ⊗L

A (N ⊗A′ Q) and P ⊗L
A (N ⊗A′ N ′) or you

can just repeat the argument in the proof of the lemma). □

29. Derived pushforward

0FTM The existence of enough K-injective guarantees that we can take the right derived
functor of any exact functor on the homotopy category.

Lemma 29.1.0FTN Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Then any exact functor

T : K(Mod(A, d)) −→ D
of triangulated categories has a right derived extension RT : D(A, d) → D whose
value on a graded injective and K-injective differential graded A-module I is T (I).

Proof. By Theorem 25.13 for any (right) differential graded A-module M there
exists a quasi-isomorphism M → I where I is a graded injective and K-injective
differential graded A-module. Hence by Derived Categories, Lemma 14.15 it suffices
to show that given a quasi-isomorphism I → I ′ of differential graded A-modules

https://stacks.math.columbia.edu/tag/0FTL
https://stacks.math.columbia.edu/tag/0FTN


DIFFERENTIAL GRADED SHEAVES 46

which are both graded injective and K-injective then T (I) → T (I ′) is an isomor-
phism. This is true because the map I → I ′ is an isomorphism in K(Mod(A,d)) as
follows for example from Lemma 26.7 (or one can deduce it from Lemma 25.10). □

There are a number of functors we have already seen to which this applies. Here
are two examples.

Definition 29.2.0FTP Derived internal hom and derived pushforward.
(1) Let (C,O) be a ringed site. Let A, B be differential graded O-algebras. Let

N be a differential graded (A,B)-bimodule. The right derived extension

RHomB(N ,−) : D(B,d) −→ D(A,d)

of the internal hom functor Homdg
B (N ,−) is called derived internal hom.

(2) Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let A be a differential graded OC-algebra. Let B be a differential graded
OD-algebra. Let φ : B → f∗A be a homomorphism of differential graded
OD-algebras. The right derived extension

Rf∗ : D(A,d) −→ D(B,d)

of the pushforward f∗ is called derived pushforward.

It turns out that Rf∗ : D(A,d) → D(B,d) agrees with derived pusforward on
underlying complexes of O-modules, see Lemma 29.8.

These functors are the adjoints of derived pullback and derived tensor product.

Lemma 29.3.0FTQ Let (C,O) be a ringed site. Let A, B be differential graded O-
algebras. Let N be a differential graded (A,B)-bimodule. Then

RHomB(N ,−) : D(B, d) −→ D(A, d)

is right adjoint to
− ⊗L

A N : D(A, d) −→ D(B, d)

Proof. This follows from Derived Categories, Lemma 30.1 and Lemma 17.3. □

Lemma 29.4.0FTR Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let A be a differential graded OC-algebra. Let B be a differential graded OD-
algebra. Let φ : B → f∗A be a homomorphism of differential graded OD-algebras.
Then

Rf∗ : D(A, d) −→ D(B, d)
is right adjoint to

Lf∗ : D(B, d) −→ D(A, d)

Proof. This follows from Derived Categories, Lemma 30.1 and Lemma 18.1. □

Next, we discuss what happens in the situation considered in Section 28.

Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A
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of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A

of differential graded OD-algebras. See Remark 12.2.

In addition to the above, let A′ be a second differential graded OC-algebra and let
N be a differential graded (A,A′)-bimodule. In this setting we can consider the
functor

Mod(A′,d) −→ Mod(B,d), M 7−→ f∗ Homdg
A′(N ,M)

Observe that this extends to a functor

Moddg(A′,d) −→ Moddg(B,d), M 7−→ f∗ Homdg
A′(N ,M)

of differential graded categories by the discussion in Sections 18 and 17. It follows
formally that we also obtain an exact functor

(29.4.1)0FTS K(Mod(A′,d)) −→ K(Mod(B,d)), M 7−→ f∗ Homdg
A′(N ,M)

of triangulated categories.

Lemma 29.5.0FTT In the situation above, denote RT : D(A′, d) → D(B, d) the right
derived extension of (29.4.1). Then we have

RT (M) = Rf∗RHom(N ,M)

functorially in M.

Proof. By Lemmas 17.3 and 18.1 the functor (29.4.1) is right adjoint to the functor
(28.0.1). By Derived Categories, Lemma 30.1 the functor RT is right adjoint to
the functor of Lemma 28.1 which is equal to Lf∗(−) ⊗L

A N by Lemma 28.3. By
Lemmas 29.3 and 29.4 the functor Lf∗(−)⊗L

A N is left adjoint to Rf∗RHom(N ,−)
Thus we conclude by uniqueness of adjoints. □

Lemma 29.6.0FTU Let (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) and (g, g♯) : (Sh(C′),O′) →
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential
graded O-algebra, O′-algebra, and O′′-algebra. Let φ : A′ → f∗A and φ′ : A′′ →
g∗A′ be a homomorphism of differential graded O′-algebras and O′′-algebras. Then
we have R(g ◦ f)∗ = Rg∗ ◦Rf∗ : D(A, d) → D(A′′, d).

Proof. Follows from Lemmas 28.4 and 29.4 and uniqueness of adjoints. □

Lemma 29.7.0FTV Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded
O-algebras. Let N and N ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-
bimodule. Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′, d) is a quasi-isomorphism. Then we have

RHomA′′(N ⊗A′ N ′,−) = RHomA′(N , RHomA′′(N ′,−))

as functors D(A′′, d) → D(A, d).

Proof. Follows from Lemmas 28.7 and 29.3 and uniqueness of adjoints. □
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Lemma 29.8.0FTW Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let A be a differential graded OC-algebra. Let B be a differential graded OD-
algebra. Let φ : B → f∗A be a homomorphism of differential graded OD-algebras.
The diagram

D(A, d)

Rf∗

��

forget
// D(OC)

Rf∗

��
D(B, d) forget // D(OD)

commutes.

Proof. Besides identifying some categories, this lemma follows immediately from
Lemma 29.6.

We may view (OC , 0) as a differential graded OC-algebra by placing OC in degree 0
and endowing it with the zero differential. It is clear that we have

Mod(OC , 0) = Comp(OC) and D(OC , 0) = D(OC)

Via this identification the forgetful functor Mod(A,d) → Comp(OC) is the “push-
forward” idC,∗ defined in Section 18 corresponding to the identity morphism idC :
(C,OC) → (C,OC) of ringed topoi and the map (OC , 0) → (A,d) of differential
graded OC-algebras. Since idC,∗ is exact, we immediately see that

RidC,∗ = forget : D(A,d) −→ D(OC , 0) = D(OC)

The exact same reasoning shows that

RidD,∗ = forget : D(B,d) −→ D(OD, 0) = D(OD)

Moreover, the construction of Rf∗ : D(OC) → D(OD) of Cohomology on Sites,
Section 19 agrees with the construction of Rf∗ : D(OC , 0) → D(OD, 0) in Definition
29.2 as both functors are defined as the right derived extension of pushforward on
underlying complexes of modules. By Lemma 29.6 we see that both Rf∗ ◦ RidC,∗
and RidD,∗ ◦ Rf∗ are the derived functors of f∗ ◦ forget = forget ◦ f∗ and hence
equal by uniqueness of adjoints. □

Lemma 29.9.0FTX Let (C,O) be a ringed site. Let A be a differential graded O-algebra.
Let M be a differential graded A-module. Let n ∈ Z. We have

Hn(C,M) = HomD(A,d)(A,M[n])

where on the left hand side we have the cohomology of M viewed as a complex of
O-modules.

Proof. To prove the formula, observe that

RΓ(C,M) = Γ(C, I)

where M → I is a quasi-isomorphism to a graded injective and K-injective differ-
ential graded A-module I (combine Lemmas 29.1 and 29.8). By Lemma 26.7 we
have

HomD(A,d)(A,M[n]) = HomK(Mod(A,d))(M, I[n]) = H0(Γ(C, I[n])) = Hn(Γ(C, I))

Combining these two results we obtain our equality. □

https://stacks.math.columbia.edu/tag/0FTW
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30. Equivalences of derived categories

0FTY This section is the analogue of Differential Graded Algebra, Section 37.

Lemma 30.1.0FTZ Let (C,O) be a ringed site. If φ : A → B is a homomorphism of dif-
ferential graded O-algebras which induces an isomorphism on cohomology sheaves,
then

D(A, d) −→ D(B, d), M 7−→ M ⊗L
A B

is an equivalence of categories.

Proof. Recall that the restriction functor
Moddg(B,d) → Moddg(A,d), N 7→ resφN

is a right adjoint to
Moddg(A,d) → Moddg(B,d), M 7→ M ⊗A B

See Section 17. Since restriction sends quasi-isomorphisms to quasi-isomorphisms,
we see that it trivially has a left derived extension (given by restriction). This
functor will be right adjoint to − ⊗L

A B by Derived Categories, Lemma 30.1. The
adjunction map

M → resφ(M ⊗L
A B)

is an isomorphism in D(A,d) by our assumption that A → B is a quasi-isomorphism
of (left) differential graded A-modules. In particular, the functor of the lemma is
fully faithful, see Categories, Lemma 24.4. It is clear that the kernel of the restric-
tion functor D(B,d) → D(A,d) is zero. Thus we conclude by Derived Categories,
Lemma 7.2. □

31. Resolutions of differential graded algebras

0FU0 This section is the analogue of Differential Graded Algebra, Section 38.
Let (C,O) be a ringed site. As in Remark 23.5 consider a sheaf of graded sets S
on C. Let us think of the r-fold self product S × . . . × S as a sheaf of graded sets
with the rule deg(s1 · . . . · sr) =

∑
deg(si). Here given local sections si ∈ S(U),

i = 1, . . . , r we use s1 · . . . · sr to denote the corresponding section of S × . . . × S
over U . Let us denote O⟨S⟩ the free graded O-algebra on S. More precisely, we set

O⟨S⟩ = O ⊕
⊕

r≥1
O[S × . . .× S]

with notation as in Remark 23.5. This becomes a sheaf of graded O-algebras by
concatenation

(s1 · . . . · sr)(s′
1 · . . . · s′

r′) = s1 · . . . sr · s′
1 · . . . · s′

r′

We may endow O⟨S⟩ with a differential by setting d(s) = 0 for all local sections s
of S and extending uniquely using the Leibniz rule although it is important to also
consider other differentials.
Indeed, suppose that we are given a system of the following kind

(1) for i = 0, 1, 2, . . . sheaves of graded sets Si,
(2) for i = 0, 1, 2, . . . maps

δi+1 : Si+1 −→ Ai = O⟨S0 ⨿ . . .⨿ Si⟩
of sheaves of graded sets of degree 1 whose image is contained in the kernel
of the inductively defined differential on the target.

https://stacks.math.columbia.edu/tag/0FTZ
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More precisely, we first set A0 = O⟨S0⟩ and we endow it with the unique differential
satisfying the Leibniz rule where d(s) = 0 for any local section s of S. By induction,
assume given a differential d on Ai. Then we extend it to the unique differential
on Ai+1 satisfying the Leibniz rule and with

d(s) = δ(s)
where δ(s) = δj(s) if s is in the summand Sj of S0 ⨿ . . . ⨿ Si+1. This makes sense
exactly because δ(s) is in the kernel of the inductively defined differential.

Lemma 31.1.0FU1 In the situation above the differential graded O-algebra
A = colim Ai

has the following property: for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O)
of ringed topoi, the pullback f∗A is flat as a graded O′-module and is K-flat as a
complex of O′-modules.

Proof. Observe that f∗A = colim f∗Ai and that
f∗Ai = O′⟨f−1S0 ⨿ . . .⨿ f−1Si⟩

with differential given by the inductive procedure above using f−1δi+1. Thus it
suffices to prove that A is flat as a graded O-module and is K-flat as a complex of
O-modules. For this it suffices to prove that each Ai is flat as a graded O-module
and is K-flat as a complex of O-modules, compare with Lemma 23.3.
For i ≥ 1 write S = S0 ⨿ . . . ⨿ Si so that we have Ai = O⟨S⟩ as a graded O-
algebra. We are going to construct a filtration of this algebra by differential graded
O-submodules.
Set W = Zi+1

≥0 considered with lexicographical ordering. Namely, given w =
(w0, . . . wi) and w′ = (w′

0, . . . , w
′
i) in W we say

w > w′ ⇔ ∃j, 0 ≤ j ≤ i : wi = w′
i, wi−1 = w′

i−1, . . . , wj+1 = w′
j+1, wj > w′

j

and so on. Suppose given a section s = s1 · . . . · sr of S × . . . × S over U . We say
that the weight of s is defined if we have sa ∈ Sja(U) for a unique 0 ≤ ja ≤ i. In
this case we define the weight

w(s) = (w0(s), . . . , wi(s)) ∈ W, wj(s) = |{a | ja = j}|
The weight of any section of S × . . .× S is defined locally. The reader checks easily
that we obtain a disjoint union decompostion

S × . . .× S =
∐

w∈W
(S × . . .× S)w

into the subsheaves of sections of a given weight. Of course only w ∈ W with∑
0≤j≤i wj = r show up for a given r. We correspondingly obtain a decomposition

Ai = O ⊕
⊕

r≥1

⊕
w∈W

O[(S × . . .× S)w]

The rest of the proof relies on the following trivial observation: given r, w and local
section s = s1 · . . . · sr of (S × . . .× S)w we have

d(s) is a local section of O ⊕
⊕

r′≥1

⊕
w′∈W, w′<w

O[(S × . . .× S)w′ ]

The reason is that in each of the expressions
(−1)deg(s1)+...+deg(sa−1)s1 · . . . sa−1 · δ(sa) · sa+1 · . . . · sr

https://stacks.math.columbia.edu/tag/0FU1
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whose sum give the element d(s) the element δ(sa) is locally a O-linear combination
of elements s′

1 · . . . · s′
r′ with s′

a′ in Sj′
a

for some 0 ≤ j′
a′ < ja where ja is such that

sa is section of Sja .
What this means is the following. Suppose for w ∈ W we set

FwAi = O ⊕
⊕

r≥1

⊕
w′∈W, w′≤w

O[(S × . . .× S)w′ ]

By the observation above this is a differential graded O-submodule. We get admis-
sible short exact sequences

0 → colimw′<w Fw′Ai → FwAi →
⊕

r≥1
O[(S × . . .× S)w] → 0

of differential graded A-modules where the differential on the right hand side is
zero.
Now we finish the proof by transfinite induction over the ordered set W . The
differential graded complex F0A0 is the summand O and this is K-flat and graded
flat. For w ∈ W if the result is true for Fw′Ai for w′ < w, then by Lemmas 23.3,
23.2, and 23.6 we obtain the result for w. Finally, we have Ai = colimw∈W FwAi

and we conclude. □

Lemma 31.2.0FU2 Let (C,O) be a ringed site. Let (B, d) be a differential graded O-
algebra. There exists a quasi-isomorphism of differential graded O-algebras (A, d) →
(B, d) such that A is graded flat and K-flat as a complex of O-modules and such
that the same is true after pullback by any morphism of ringed topoi.

Proof. The proof is exactly the same as the first proof of Lemma 23.7 but now
working with free graded algebras instead of free graded modules.
We will construct A = colim Ai as in Lemma 31.1 by constructing

A0 → A1 → A2 → . . . → B

Let S0 be the sheaf of graded sets (Remark 23.5) whose degree n part is Ker(dnB).
Consider the homomorphism of differential graded modules

A0 = O⟨S0⟩ −→ B

where map sends a local section s of S0 to the corresponding local section of
Adeg(s) (which is in the kernel of the differential, so our map is a map of differ-
ential graded algebras indeed). By construction the induced maps on cohomology
sheaves Hn(A0) → Hn(B) are surjective and hence the same will remain true for
all i.
Induction step of the construction. Given Ai → B denote Si+1 the sheaf of graded
sets whose degree n part is

Ker(dn+1
Ai

) ×Bn+1,d Bn

This comes equipped with a canonical map
δi+1 : Si+1 −→ Ai

whose image is contained in the kernel of dAi by construction. Hence Ai+1 =
O⟨S0 ⨿ . . .Si+1⟩ has a differential exteding the differential on Ai, see discussion at
the start of this section. The map from Ai+1 to B is the unique map of graded
algebras which restricts to the given map on Ai and sends a local section s = (a, b)

https://stacks.math.columbia.edu/tag/0FU2


DIFFERENTIAL GRADED SHEAVES 52

of Si+1 to b in B. This is compatible with differentials exactly because d(b) is the
image of a in B.
The map A → B is a quasi-isomorphism: we have Hn(A) = colimHn(Ai) and for
each i the map Hn(Ai) → Hn(B) is surjective with kernel annihilated by the map
Hn(Ai) → Hn(Ai+1) by construction. Finally, the flatness condition for A where
shown in Lemma 31.1. □

32. Miscellany

0FU3 Let (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi. Let A be a
sheaf of differential graded O-algebras. Using the composition3

A ⊗L
O A −→ A ⊗O A −→ A

and the relative cup product (see Cohomology on Sites, Remark 19.7 and Section
33) we obtain a multiplication4

µ : Rf∗A ⊗L
O′ Rf∗A −→ Rf∗A

in D(O′). This multiplication is associative in the sense that the diagram

Rf∗A ⊗L
O′ Rf∗A ⊗L

O′ Rf∗A
µ⊗1

//

1⊗µ
��

Rf∗A ⊗L
O′ Rf∗A

µ

��
Rf∗A ⊗L

O′ Rf∗A
µ // Rf∗A

commutes in D(O′); this follows from Cohomology on Sites, Lemma 33.2. In ex-
actly the same way, given a right differential graded A-module M we obtain a
multiplication

µM : Rf∗M ⊗L
O′ Rf∗A −→ Rf∗M

in D(O′). This multiplication is compatible with µ above in the sense that the
diagram

Rf∗M ⊗L
O′ Rf∗A ⊗L

O′ Rf∗A
µM⊗1

//

1⊗µ
��

Rf∗M ⊗L
O′ Rf∗A

µM

��
Rf∗M ⊗L

O′ Rf∗A
µM // Rf∗M

commutes in D(O′); again this follows from Cohomology on Sites, Lemma 33.2.
A particular example of the above is when one takes f to be the morphism to the
punctual topos Sh(pt). In that case µ is just the cup product map

RΓ(C,A) ⊗L
Γ(C,O) RΓ(C,A) −→ RΓ(C,A), η ⊗ θ 7→ η ∪ θ

and similarly µM is the cup product map
RΓ(C,M) ⊗L

Γ(C,O) RΓ(C,A) −→ RΓ(C,M), η ⊗ θ 7→ η ∪ θ

3It would be more precise to write F (A) ⊗L
O F (A) → F (A ⊗O A) → F (A) were F denotes

the forgetful functor to complexes of O-modules. Also, note that A ⊗O A indicates the tensor
product of Section 15 so that F (A ⊗O A) = Tot(F (A) ⊗O F (A)). The first arrow of the sequence
is the canonical map from the derived tensor product of two complexes of O-modules to the usual
tensor product of complexes of O-modules.

4Here and below Rf∗ : D(O) → D(O′) is the derived functor studied in Cohomology on Sites,
Section 19 ff.
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In general, via the identifications
RΓ(C,A) = RΓ(C′, Rf∗A) and RΓ(C,M) = RΓ(C′, Rf∗M)

of Cohomology on Sites, Remark 14.4 the map µM induces the cup product on
cohomology. To see this use Cohomology on Sites, Lemma 33.4 where the second
morphism of topoi is the morphism from Sh(C′) to the punctual topos as above.
If M1 → M2 is a homomorphism of right differential graded A-modules, then the
diagram

Rf∗M1 ⊗L
O′ Rf∗A

µM1
//

��

Rf∗M1

��
Rf∗M2 ⊗L

O′ Rf∗A
µM2 // Rf∗M2

commutes in D(O′); this follows from the fact that the relative cup product is
functorial. Suppose we have a short exact sequence

0 → M1
a−→ M2 → M3 → 0

of right differential graded A-modules. Then we claim that the diagram

Rf∗M3 ⊗L
O′ Rf∗A

µM3
//

Rf∗δ⊗id
��

Rf∗M3

Rf∗δ

��
Rf∗M1[1] ⊗L

O′ Rf∗A
µM1[1] // Rf∗M1[1]

commutes in D(O′) where δ : M3 → M1[1] is the morphism of D(O) coming from
the given short exact sequence (see Derived Categories, Section 12). This is clear
if our sequence is split as a sequence of graded right A-modules, because in this
case δ can be represented by a map of right A-modules and the discussion above
applies. In general we argue using the cone on a and the diagram

M1 a
//

��

M2
i
//

��

C(a)
−p
//

q

��

M1[1]

��
M1 //M2 //M3

δ //M1[1]

where the right square is commutative in D(O) by the definition of δ in Derived
Categories, Lemma 12.1. Now the cone C(a) has the structure of a right differential
graded A-module such that i, p, q are homomorphisms of right differential graded
A-modules, see Definition 22.2. Hence by the above we know that the corresponding
diagrams commute for the morphisms q and −p. Since q is an isomorphism in D(O)
we conclude the same is true for δ as desired.
In the situation above given a right differential graded A-module M let

ξ ∈ Hn(C,M)
In other words, ξ is a degree n cohomology class in the cohomology of M viewed
as a complex of O-modules. By Lemma 29.9 we can construct maps

x : A → M′[n] and s : M → M′

of right differential graded A-modules where s is a quasi-isomorphism and such
that ξ is the image of 1 ∈ H0(C,A) via the morphism s[n]−1 ◦ x in the derived



DIFFERENTIAL GRADED SHEAVES 54

category D(A,d) and a fortiori in the derived category D(O). It follows that the
corresponding map

ξ′ = (s[n])−1 ◦ x : A −→ M[n]
in D(O) is uniquely characterized by the following two properties

(1) ξ′ can be lifted to a morphism in D(A,d), and
(2) ξ = ξ′(1) in H0(C,M[n]) = Hn(C,M).

Using the compatibilities of x and s with the relative cup product discussed above it
follows that for every5 morphism of ringed topoi (f, f ♯) : (Sh(C),O) → (Sh(C′),O′)
the derived pushforward

Rf∗ξ
′ : Rf∗A −→ Rf∗M[n]

of ξ′ is compatible with the maps µ and µM[n] constructed above in the sense that
the diagram

Rf∗A ⊗L
O′ Rf∗A

µ
//

Rf∗ξ
′⊗id
��

Rf∗A

Rf∗ξ
′

��
Rf∗M[n] ⊗L

O′ Rf∗A
µM[n] // Rf∗M[n]

commutes in D(O′). Using this compatibility for the map to the punctual topos,
we see in particular that

RΓ(C,A) ⊗L
Γ(C,O) RΓ(C,A)

ξ′⊗id
��

// RΓ(C,A)

ξ′

��
RΓ(C,M[n]) ⊗L

Γ(C,O) RΓ(C,A) // RΓ(C,M[n])

commutes. Combined with ξ′(1) = ξ this implies that the induced map on coho-
mology

ξ′ : RΓ(C,A) → RΓ(C,M[n]), η 7→ ξ ∪ η

is given by left cup product by ξ as indicated.

33. Differential graded modules on a category

0GZ8 This section is the continuation of Cohomology on Sites, Section 43.
Let C be a category. We think of C as a site with the chaotic topology. Let O be
a sheaf of rings on C. Let (A,d) be a sheaf of differential graded O-algebras. In
other words, O is a presheaf of rings on the category C and (A,d) is a presheaf of
differential graded O-algebras on C, see Categories, Definition 3.3.

Definition 33.1.0GZ9 In the situation above, we denote QC (A, d) the full subcategory
of D(A,d) consisting of objects M such that for all U → V in C the canonical map

RΓ(V,M) ⊗L
A(V ) A(U) −→ RΓ(U,M)

is an isomorphism in D(A(U),d).

Lemma 33.2.0GZA In the situation above, the subcategory QC (A, d) is a strictly full,
saturated, triangulated subcategory of D(A, d) preserved by arbitrary direct sums.

5For example the identity morphism.
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Proof. Let U be an object of C. Since the topology on C is chaotic, the functor
F 7→ F(U) is exact and commutes with direct sums. Hence the exact functor
M 7→ RΓ(U,M) is computed by representing K by any differential graded A-
module M and taking M(U). Thus RΓ(U,−) commutes with direct sums, see
Lemma 26.8. Similarly, given a morphism U → V of C the derived tensor product
functor − ⊗L

O(A) A(U) : D(A(V )) → D(A(U)) is exact and commutes with direct
sums. The lemma follows from these observations in a straightforward manner;
details omitted. □

Remark 33.3.0GZB As above, let C be a category viewed as a site with the chaotic
topology, let O be a sheaf of rings on C, and let (A,d) be a sheaf of differential
graded O-algebras. Then the analogue of Cohomology on Sites, Proposition 43.9
holds for QC (A,d) with almost exactly the same proof:

(1) any contravariant cohomological functor H : QC (A,d) → Ab which trans-
forms direct sums into products is representable,

(2) any exact functor F : QC (A,d) → D of triangulated categories which
transforms direct sums into direct sums has an exact right adjoint, and

(3) the inclusion functor QC (A,d) → D(A,d) has an exact right adjoint.
If we ever need this we will precisely formulate and prove this here.
Let u : C′ → C be a functor between categories. If we view C and C′ as sites with the
chaotic topology, then u is a continuous and cocontinuous functor. Hence we obtain
a morphism g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 21.1. Additionally,
suppose given sheaves of rings O on C and O′ on C′ and a map g♯ : g−1O → O′.
We denote the corresponding morphism of ringed topoi simply g : (Sh(C′),O′) →
(Sh(C),O), see Modules on Sites, Section 7. Finally, suppose that (A,d) is a sheaf
of differential graded O-algebras and that (A′,d) is a sheaf of differential graded
O′-algebras and moreover that we are given a map φ : g∗A → A′ of differential
graded O′-algebras (see Section 18).
Lemma 33.4.0GZC Let g : (Sh(C′),O′) → (Sh(C),O) and φ : g∗A → A′ be as above.
Then the functor Lg∗ : D(A, d) → D(A′, d) maps QC (A, d) into QC (A′, d).
Proof. Let U ′ ∈ Ob(C′) with image U = u(U ′) in C. Let pt denote the cat-
egory with a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and
(Sh(pt),O(U)) the ringed topoi as indicated endowed with the differential graded
algebras A′(U) and A(U). Of course we identify the derived category of differen-
tial graded modules on these with D(A′(U ′),d) and D(A(U),d). Then we have a
commutative diagram of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

each endowed with corresponding differential graded algebras. Pullback along the
lower horizontal morphism sends M in D(A,d) to RΓ(U,K) viewed as an object
in D(A(U),d). Pullback by the left vertical arrow sends M to M ⊗L

A(U) A′(U ′).
Going around the diagram either direction produces the same result (Lemma 28.4)
and hence we conclude

RΓ(U ′, Lg∗K) = RΓ(U,K) ⊗L
A(U) A′(U ′)

https://stacks.math.columbia.edu/tag/0GZB
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Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′) →
V = u(V ′) the image in C. If K is in QC (A,d) then we have

RΓ(V ′, Lg∗K) ⊗L
A′(V ′) A′(U ′) = RΓ(V,K) ⊗L

A(V ) A′(V ′) ⊗L
A′(V ′) A′(U ′)

= RΓ(V,K) ⊗L
A(V ) A′(U ′)

= RΓ(V,K) ⊗L
A(V ) A(U) ⊗L

A(U) A′(U ′)

= RΓ(U,K) ⊗L
A(U) A′(U ′)

= RΓ(U ′, Lg∗K)

as desired. Here we have used the observation above both for U ′ and V ′. □

34. Differential graded modules on a category, bis

0GZD We develop a few more results on the notion of quasi-coherent modules introduced
in Section 33.

Lemma 34.1.0GZE Let C,O,A be as in Section 33. Let C′ ⊂ C be a full subcategory with
the following property: for every U ∈ Ob(C) the category U/C′ of arrows U → U ′

is cofiltered. Denote O′,A′ the restrictions of O,A to C′. Then restrictions induces
an equivalence QC (A, d) → QC (A′, d).

Proof. We will construct a quasi-inverse of the functor. Namely, let M ′ be an
object of QC (A′,d). We may represent M ′ by a good differential graded module
M′, see Lemma 23.7. Then for every U ′ ∈ Ob(C′) the differential graded A′(U ′)-
module M′(U) is K-flat and graded flat and for every morphism U ′

1 → U ′
2 of C′ the

map
M′(U ′

2) ⊗A′(U ′
2) A′(U ′

1) −→ M′(U ′
1)

is a quasi-isomorphism (as the source represents the derived tensor product). Con-
sider the differential graded A-module M defined by the rule

M(U) = colimU→U ′∈U/C′ M′(U ′) ⊗A′(U ′) A(U)
This is a filtered colimit of complexes by our assumption in the lemma. Since
M ′ is in QC (A′,d) all the transition maps in the system are quasi-isomorphisms.
Since filtered colimits are exact, we see that M(U) in D(A(U),d) is isomorphic to
M′(U ′) ⊗A′(U ′) A(U) for any morphism U → U ′ with U ′ ∈ Ob(C′).
We claim that M is in QC (A,d): namely, given U → V in C we choose a map
V → V ′ with V ′ ∈ Ob(C′). By the above we see that the map M(V ) → M(U) is
identified with the map

M′(V ′) ⊗A′(V ′) A(V ) −→ M′(V ′) ⊗A′(V ′) A(U)
Since M′(V ′) is K-flat as differential gradede A′(V ′)-module, we conclude the claim
is true.
The natural map M|C′ → M′ is an isomorphism in D(A′, d) as follows immediately
from the above.
Conversely, if we have an object E of QC (A,d), then we represent it by a good
differential graded module E . Setting M′ = E|C′ (this is another good differential
graded module) we see that there is a map

E → M

https://stacks.math.columbia.edu/tag/0GZE
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wich over U in C is given by the map

E(U) −→ colimU→U ′∈U/C′ E(U ′) ⊗A′(U ′) A(U)

which is a quasi-isomorphism by the same reason. Thus restriction and the con-
struction above are quasi-inverse functors as desired. □

Lemma 34.2.0GZF Let C,O be as in Section 33. Let φ : A → B be a homomor-
phism of differential graded O-algebras which induces an isomorphism on cohomol-
ogy sheaves, then the equivalence D(A, d) → D(B, d) of Lemma 30.1 induces an
equivalence QC (A, d) → QC (B, d).

Proof. It suffices to show the following: given a morphism U → V of C and M in
D(A,d) the following are equivalent

(1) RΓ(V,M) ⊗L
A(V ) A(U) → Γ(U,M) is an isomorphism in D(A(U),d), and

(2) RΓ(V,M⊗L
AB)⊗L

B(V )B(U) → Γ(U,M⊗L
AB) is an isomorphism inD(B(U),d).

Since the topology on C is chaotic, this simply boils down to fact that A(U) → B(U)
and A(V ) → B(V ) are quasi-isomorphisms. Details omitted. □

35. Inverse systems of differential graded algebras

0GZG In this section we consider the following special case of the situation discussed in
Section 33:

(1) C is the category N with a unique morphism i → j if and only if i ≤ j,
(2) O is the constant (pre)sheaf of rings with value a given ring R.

In this setting a sheaf A of differential graded O-algebras is the same thing as an
inverse system (An) of differential graded R-algebras. A sheaf M of differential
graded A-modules is the same thing as an inverse system (Mn) where Mn is a
differential graded An-module and the transition maps Mn+1 → Mn are An+1-
module maps.

Suppose that B = (Bn) is a second inverse system of differential graded R-algebras.
Given a morphism φ : (An) → (Bn) of pro-objects we will construct an exact
functor from QC (A,d) to QC (B,d). Namely, according to Categories, Example
22.6 the morphism φ is given by a sequence . . . ≥ m(3) ≥ m(2) ≥ m(1) of integers
and a commutative diagram

. . . // Am(3)

φ3

��

// Am(2)

φ2

��

// Am(1)

φ1

��
. . . // B3 // B2 // B1

of differential graded R-algebras. Then given a good sheaf of differential graded
A-modules M = (Mn) representing an object of QC (A,d) we can set

Nn = Mm(n) ⊗Am(n) Bn

This inverse system determines an object of QC (B,d) because the Am(n)-modules
Mm(n) are K-flat; details omitted. We also leave it to the reader to show that the
resulting functor is independent of the choices made in its construction.

https://stacks.math.columbia.edu/tag/0GZF


DIFFERENTIAL GRADED SHEAVES 58

Lemma 35.1.0GZH In the situation above, suppose that A = (An) and B = (Bn)
are inverse systems of differential graded R-algebras. If φ : (An) → (Bn) is an
isomorphism of pro-objects, then the functor QC (A, d) → QC (B, d) constructed
above is an equivalence.

Proof. Let ψ : (Bn) → (An) be a morphism of pro-objects which is inverse to
φ. According to the discussion in Categories, Example 22.6 we may assume that
φ is given by a system of maps as above and ψ is given n(1) < n(2) < . . . and a
commutative diagram

. . . // Bn(3)

ψ3

��

// Bn(2)

ψ2

��

// Bn(1)

ψ1

��
. . . // A3 // A2 // A1

of differential graded R-algebras. Since φ◦ψ = id we may, after possibly increasing
the values of the functions n(·) and m(·) assume that Bn(m(i)) → Am(i) → Bi is
the identity. It follows that the composition of the functors

QC (B,d) → QC (A,d) → QC (B,d)
sends a good sheaf of differential graded B-modules N = (Nn) to the inverse system
N ′ = (N ′

i) with values
N ′
i = Nn(m(i)) ⊗Bn(m(i)) Bi

which is canonically quasi-isomorphic to N exactly because N is an object of
QC (B,d) and because Nj is a K-flat differential graded module for all j. Since
the same is true for the composition the other way around we conclude. □

Let C = N and O the constant sheaf with value a ring R and let A be given by
an inverse system (An) of differential graded R-algebras. Suppose given two left
differential graded A-modules N and N ′ given by inverse systems (Nn) and (N ′

n).
Thus each Nn and N ′

n is a left differential graded An-module. Let us temporarily
say that (Nn) and (N ′

n) are pro-isomorphic in the derived category if there exist a
sequence of integers

1 = n0 < n1 < n2 < n3 < . . .

and maps
Nn2i

→ N ′
n2i−1

in D(Aoppn2i
,d)

and
N ′
n2i+1

→ N ′
n2i

in D(Aoppn2i+1
,d)

such that the compositions Nn2i → Nn2i−2 and N ′
n2i+1

→ N ′
2i−1 are given by the

transition maps of the respective systems.

Lemma 35.2.0GZI If (Nn) and (N ′
n) are pro-isomorphic in the derived category as

defined above, then for every object (Mn) of D(N,A) we have
R lim(Mn ⊗L

An
Nn) = R lim(Mn ⊗L

An
N ′
n)

in D(R).

Proof. The assumption implies that the inverse system (Mn ⊗L
An

Nn) of D(R) is
pro-isomorphic (in the usual sense) to the inverse system (Mn ⊗L

An
N ′
n) of D(R).

Hence the result follows from the fact that taking R lim is well defined for inverse
systems in the derived category, see discussion in More on Algebra, Section 87. □

https://stacks.math.columbia.edu/tag/0GZH
https://stacks.math.columbia.edu/tag/0GZI
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Lemma 35.3.0GZJ This is a variant of
[BS13, Lemma 3.5.4]

Let R be a ring. Let f1, . . . , fr ∈ R. Let Kn be the Koszul complex
on fn1 , . . . , f

n
r viewed as a differential graded R-algebra. Let (Mn) be an object of

D(N, (Kn)). Then for any t ≥ 1 we have

R lim(Mn ⊗L
R Kt) = R lim(Mn ⊗L

Kn
Kt)

in D(R).

Proof. We fix t ≥ 1. For n ≥ t let us denote nKt the differential graded R-algebra
Kt viewed as a left differential graded Kn-module. Observe that

Mn ⊗L
R Kt = Mn ⊗L

Kn
(Kn ⊗L

R Kt) = Mn ⊗L
Kn

(Kn ⊗R Kt)
Hence by Lemma 35.2 it suffices to show that (nKt) and (Kn ⊗R Kt) are pro-
isomorphic in the derived category. The multiplication maps

Kn ⊗R Kt −→ nKt

are maps of left differential graded Kn-modules. Thus to finish the proof it suffices
to show that for all n ≥ 1 there exists an N > n and a map

NKt −→ NKn ⊗R Kt

in D(Kopp
N ,d) whose composition with the multiplication map is the transition map

(in either direction). This is done in Divided Power Algebra, Lemma 12.4 by an
explicit construction. □

Proposition 35.4.0GZK Let R be a Noetherian ring. Let I ⊂ R be an ideal. The
following three categories are canonically equivalent:

(1) Let A be the sheaf of R-algebras on N corresponding to the inverse system
of R-algebras An = R/In. The category QC (A).

(2) Choose generators f1, . . . , fr of I. Let B be the sheaf of differential graded
R-algebras on N corresponding to the inverse system of Koszul algebras on
fn1 , . . . , f

n
r . The category QC (B).

(3) The full subcategory Dcomp(R, I) ⊂ D(R) of derived complete objects, see
More on Algebra, Definition 91.4 and text following.

Proof. Consider the obvious morphism f : (Sh(N),A) → (Sh(pt), R) of ringed
topoi and let us consider the adjoint functors Lf∗ and Rf∗. The first restricts to a
functor

F : Dcomp(R, I) −→ QC (A)
which sends an object K of Dcomp(R, I) represented by a K-flat complex K• to the
object (K• ⊗R R/I

n) of QC (A). The second restricts to a functor
G : QC (A) −→ Dcomp(R, I)

which sends an object (M•
n) of QC (A) to R limM•

n. The output is derived complete
for example by More on Algebra, Lemma 91.14. Also, it follows from More on
Algebra, Proposition 94.2 that G ◦ F = id. Thus to see that F and G are quasi-
inverse equivalences it suffices to see that the kernel of G is zero (see Derived
Categories, Lemma 7.2). However, it does not appear easy to show this directly!
In this paragraph we will show that QC (A) and QC (B) are equivalent. Write
B = (Bn) where Bn is the Koszul complex viewed as a cochain complex in degrees
−r,−r + 1, . . . , 0. By Divided Power Algebra, Remark 12.2 (but with chain com-
plexes turned into cochain complexes) we can find 1 < n1 < n2 < . . . and maps of

https://stacks.math.columbia.edu/tag/0GZJ
https://stacks.math.columbia.edu/tag/0GZK
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differential graded R-algebras Bni
→ Ei → R/(fni

1 , . . . , fni
r ) and Ei → Bni−1 such

that
Bn1

��

Bn2

��

oo Bn3

��

oo . . .oo

E1

��

E2oo

��

E3oo

��

. . .oo

B1 Bn1
oo Bn2

oo . . .oo

is a commutative diagram of differential graded R-algebras and such that Ei →
R/(fni

1 , . . . , fni
r ) is a quasi-isomorphism. We conclude

(1) there is an equivalence between QC (B) and QC ((Ei)),
(2) there is an equivalence between QC ((Ei)) and QC ((R/(fni

1 , . . . , fni
r ))),

(3) there is an equivalence between QC ((R/(fni
1 , . . . , fni

r ))) and QC (A).
Namely, for (1) we can apply Lemma 35.1 to the diagram above which shows that
(Ei) and (Bn) are pro-isomorphic. For (2) we can apply Lemma 34.2 to the inverse
system of quasi-isomorphisms Ei → R/(fni

1 , . . . , fni
r ). For (3) we can apply Lemma

35.1 and the elementary fact that the inverse systems (R/In) and (R/(fni
1 , . . . , fni

r )
are pro-isomorphic.
Exactly as in the first paragraph of the proof we can define adjoint functors6

F ′ : Dcomp(R, I) −→ QC (B) and G′ : QC (B) −→ Dcomp(R, I).
The first sends an object K of Dcomp(R, I) represented by a K-flat complex K• to
the object (K• ⊗R Bn) of QC (B). The second sends an object (Mn) of QC (B) to
R limMn. Arguing as above it suffices to show that the kernel of G′ is zero. So let
M = (Mn) be a good sheaf of differential graded modules over B which represents
an object of QC (B) in the kernel of G′. Then

0 = R limMn ⇒ 0 = (R limMn) ⊗L
R Bt = R lim(Mn ⊗L

R Bt)
By Lemma 35.3 we have R lim(Mn ⊗L

R Bt) = R lim(Mn ⊗L
Bn

Bt). Since (Mn) is an
object of QC (B) we see that the inverse system Mn ⊗L

Bn
Bt is eventually constant

with value Mt. Hence Mt = 0 as desired. □

Remark 35.5.0H1E Let R be a ring and let f1, . . . , fr ∈ R be a sequence of elements
generating an ideal I. Let Kn be the Koszul complex on fn1 , . . . , f

n
r viewed as a

differential graded R-algebra. We say f1, . . . , fr is a weakly proregular sequence
if for all n there is an m > n such that Km → Kn induces the zero map on
cohomology except in degree 0. If so, then the arguments in the proof of Proposition
35.4 continue to work even when R is not Noetherian. In particular we see that
QC ({R/In}) is equivalent as an R-linear triangulated category to the category
Dcomp(R, I) of derived complete objects, provided I can be generated by a weakly
proregular sequence. If the need arises, we will precisely state and prove this here.

6It can be shown that these functors are, via the equivalences above, compatible with F and
G defined before.

https://stacks.math.columbia.edu/tag/0H1E
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