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1. Introduction

0163 This is a minimal introduction to simplicial methods. We just add here whenever
something is needed later on. A general reference to this material is perhaps [GJ99].
An example of the things you can do is the paper by Quillen on Homotopical
Algebra, see [Qui67] or the paper on Étale Homotopy by Artin and Mazur, see
[AM69].

2. The category of finite ordered sets

0164 The category ∆ is the category with
(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
(2) a morphism [n] → [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}

between the corresponding sets.
Here nondecreasing for a map φ : [n] → [m] means by definition that φ(i) ≥ φ(j)
if i ≥ j. In other words, ∆ is a category equivalent to the “big” category of
nonempty finite totally ordered sets and nondecreasing maps. There are exactly
n + 1 morphisms [0] → [n] and there is exactly 1 morphism [n] → [0]. There are
exactly (n+1)(n+2)/2 morphisms [1] → [n] and there are exactly n+2 morphisms
[n] → [1]. And so on and so forth.

Definition 2.1.0165 For any integer n ≥ 1, and any 0 ≤ j ≤ n we let δnj : [n−1] → [n]
denote the injective order preserving map skipping j. For any integer n ≥ 0, and
any 0 ≤ j ≤ n we denote σnj : [n + 1] → [n] the surjective order preserving map
with (σnj )−1({j}) = {j, j + 1}.

Lemma 2.2.0166 Any morphism in ∆ can be written as a composition of the mor-
phisms δnj and σnj .

Proof. Let φ : [n] → [m] be a morphism of ∆. If j ̸∈ Im(φ), then we can write
φ as δmj ◦ ψ for some morphism ψ : [n] → [m − 1]. If φ(j) = φ(j + 1) then we
can write φ as ψ ◦ σn−1

j for some morphism ψ : [n − 1] → [m]. The result follows
because each replacement as above lowers n+m and hence at some point φ is both
injective and surjective, hence an identity morphism. □

Lemma 2.3.0167 The morphisms δnj and σnj satisfy the following relations.

(1) If 0 ≤ i < j ≤ n + 1, then δn+1
j ◦ δni = δn+1

i ◦ δnj−1. In other words the
diagram

[n]
δn+1

j

""
[n− 1]

δn
i

<<

δn
j−1 ""

[n+ 1]

[n]
δn+1

i

<<

commutes.

https://stacks.math.columbia.edu/tag/0165
https://stacks.math.columbia.edu/tag/0166
https://stacks.math.columbia.edu/tag/0167
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(2) If 0 ≤ i < j ≤ n − 1, then σn−1
j ◦ δni = δn−1

i ◦ σn−2
j−1 . In other words the

diagram
[n]

σn−1
j

$$
[n− 1]

δn
i

::

σn−2
j−1 $$

[n− 1]

[n− 2]
δn−1

i

::

commutes.
(3) If 0 ≤ j ≤ n − 1, then σn−1

j ◦ δnj = id[n−1] and σn−1
j ◦ δnj+1 = id[n−1]. In

other words the diagram

[n]
σn−1

j

""
[n− 1]

δn
j

<<

δn
j+1 ""

id[n−1] // [n− 1]

[n]
σn−1

j

<<

commutes.
(4) If 0 < j + 1 < i ≤ n, then σn−1

j ◦ δni = δn−1
i−1 ◦ σn−2

j . In other words the
diagram

[n]
σn−1

j

$$
[n− 1]

δn
i

::

σn−2
j $$

[n− 1]

[n− 2]
δn−1

i−1

::

commutes.
(5) If 0 ≤ i ≤ j ≤ n − 1, then σn−1

j ◦ σni = σn−1
i ◦ σnj+1. In other words the

diagram
[n]

σn−1
j

""
[n+ 1]

σn
i

<<

σn
j+1 ""

[n− 1]

[n]
σn−1

i

<<

commutes.

Proof. Omitted. □

Lemma 2.4.0168 The category ∆ is the universal category with objects [n], n ≥ 0
and morphisms δnj and σnj such that (a) every morphism is a composition of these

https://stacks.math.columbia.edu/tag/0168
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morphisms, (b) the relations listed in Lemma 2.3 are satisfied, and (c) any relation
among the morphisms is a consequence of those relations.

Proof. Omitted. □

3. Simplicial objects

0169
Definition 3.1.016A Let C be a category.

(1) A simplicial object U of C is a contravariant functor U from ∆ to C, in a
formula:

U : ∆opp −→ C
(2) If C is the category of sets, then we call U a simplicial set.
(3) If C is the category of abelian groups, then we call U a simplicial abelian

group.
(4) A morphism of simplicial objects U → U ′ is a transformation of functors.
(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for φ any nondecreasing
map φ : [m] → [n] a morphism U(φ) : U([n]) → U([m]), satisfying U(φ ◦ ψ) =
U(ψ) ◦ U(φ).
In particular there is a unique morphism U([0]) → U([n]) and there are exactly n+1
morphisms U([n]) → U([0]) corresponding to the n+ 1 maps [0] → [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 2 above.

Lemma 3.2.016B Let C be a category.
(1) Given a simplicial object U in C we obtain a sequence of objects Un =

U([n]) endowed with the morphisms dnj = U(δnj ) : Un → Un−1 and snj =
U(σnj ) : Un → Un+1. These morphisms satisfy the opposites of the relations
displayed in Lemma 2.3, namely
(a) If 0 ≤ i < j ≤ n+ 1, then dni ◦ dn+1

j = dnj−1 ◦ dn+1
i .

(b) If 0 ≤ i < j ≤ n− 1, then dni ◦ sn−1
j = sn−2

j−1 ◦ dn−1
i .

(c) If 0 ≤ j ≤ n− 1, then id = dnj ◦ sn−1
j = dnj+1 ◦ sn−1

j .
(d) If 0 < j + 1 < i ≤ n, then dni ◦ sn−1

j = sn−2
j ◦ dn−1

i−1 .
(e) If 0 ≤ i ≤ j ≤ n− 1, then sni ◦ sn−1

j = snj+1 ◦ sn−1
i .

(2) Conversely, given a sequence of objects Un and morphisms dnj , snj satisfying
(1)(a) – (e) there exists a unique simplicial object U in C such that Un =
U([n]), dnj = U(δnj ), and snj = U(σnj ).

(3) A morphism between simplicial objects U and U ′ is given by a family of
morphisms Un → U ′

n commuting with the morphisms dnj and snj .

Proof. This follows from Lemma 2.4. □

Remark 3.3.016C By abuse of notation we sometimes write di : Un → Un−1 instead
of dni , and similarly for si : Un → Un+1. The relations among the morphisms dni
and sni may be expressed as follows:

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .

https://stacks.math.columbia.edu/tag/016A
https://stacks.math.columbia.edu/tag/016B
https://stacks.math.columbia.edu/tag/016C
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(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism s0
0 = U(σ0

0) : U0 → U1 and two morphisms d1
0 = U(δ1

0),
and d1

1 = U(δ1
1) which are morphisms U1 → U0. There are two morphisms s1

0 =
U(σ1

0), s1
1 = U(σ1

1) which are morphisms U1 → U2. Three morphisms d2
0 = U(δ2

0),
d2

1 = U(δ2
1), d2

2 = U(δ2
2) which are morphisms U3 → U2. And so on.

Pictorially we think of U as follows:

U2

//
//
//
U1

//
//oo

oo
U0oo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the
arrows pointing left.

Example 3.4.016D The simplest example is the constant simplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 3.5.016E Suppose that Y → X is a morphism of C such that all the fibred
products Y ×X Y ×X . . . ×X Y exist. Then we set Un equal to the (n + 1)-fold
fibre product, and we let φ : [n] → [m] correspond to the map (on “coordinates”)
(y0, . . . , ym) 7→ (yφ(0), . . . , yφ(n)). In other words, the map U0 = Y → U1 = Y ×X Y
is the diagonal map. The two maps U1 = Y ×X Y → U0 = Y are the projection
maps.

Geometrically Example 3.5 above is an important example. It tells us that it is
a good idea to think of the maps dnj : Un → Un−1 as projection maps (forgetting
the jth component), and to think of the maps snj : Un → Un+1 as diagonal maps
(repeating the jth coordinate). We will return to this in the sections below.

Lemma 3.6.016F Let C be a category. Let U be a simplicial object of C. Each of the
morphisms sni : Un → Un+1 has a left inverse. In particular sni is a monomorphism.

Proof. This is true because dn+1
i ◦ sni = idUn

. □

4. Simplicial objects as presheaves

016G Another observation is that we may think of a simplicial object of C as a presheaf
with values in C over ∆. See Sites, Definition 2.2. And in fact, if U , U ′ are simplicial
objects of C, then we have
(4.0.1)016H Mor(U,U ′) = MorPSh(∆)(U,U ′).
Some of the material below could be replaced by the more general constructions in
the chapter on sites. However, it seems a clearer picture arises from the arguments
specific to simplicial objects.

5. Cosimplicial objects

016I A cosimplicial object of a category C could be defined simply as a simplicial object
of the opposite category Copp. This is not really how the human brain works, so we
introduce them separately here and point out some simple properties.

Definition 5.1.016J Let C be a category.

https://stacks.math.columbia.edu/tag/016D
https://stacks.math.columbia.edu/tag/016E
https://stacks.math.columbia.edu/tag/016F
https://stacks.math.columbia.edu/tag/016J
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(1) A cosimplicial object U of C is a covariant functor U from ∆ to C, in a
formula:

U : ∆ −→ C
(2) If C is the category of sets, then we call U a cosimplicial set.
(3) If C is the category of abelian groups, then we call U a cosimplicial abelian

group.
(4) A morphism of cosimplicial objects U → U ′ is a transformation of functors.
(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for φ any nondecreasing
map φ : [m] → [n] a morphism U(φ) : U([m]) → U([n]), satisfying U(φ ◦ ψ) =
U(φ) ◦ U(ψ).
In particular there is a unique morphism U([n]) → U([0]) and there are exactly n+1
morphisms U([0]) → U([n]) corresponding to the n+ 1 maps [0] → [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 2 above.

Lemma 5.2.016K Let C be a category.
(1) Given a cosimplicial object U in C we obtain a sequence of objects Un =

U([n]) endowed with the morphisms δnj = U(δnj ) : Un−1 → Un and σnj =
U(σnj ) : Un+1 → Un. These morphisms satisfy the relations displayed in
Lemma 2.3.

(2) Conversely, given a sequence of objects Un and morphisms δnj , σnj satisfying
these relations there exists a unique cosimplicial object U in C such that
Un = U([n]), δnj = U(δnj ), and σnj = U(σnj ).

(3) A morphism between cosimplicial objects U and U ′ is given by a family of
morphisms Un → U ′

n commuting with the morphisms δnj and σnj .

Proof. This follows from Lemma 2.4. □

Remark 5.3.016L By abuse of notation we sometimes write δi : Un−1 → Un instead
of δni , and similarly for σi : Un+1 → Un. The relations among the morphisms δni
and σni may be expressed as follows:

(1) If i < j, then δj ◦ δi = δi ◦ δj−1.
(2) If i < j, then σj ◦ δi = δi ◦ σj−1.
(3) We have id = σj ◦ δj = σj ◦ δj+1.
(4) If i > j + 1, then σj ◦ δi = δi−1 ◦ σj .
(5) If i ≤ j, then σj ◦ σi = σi ◦ σj+1.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism σ0
0 = U(σ0

0) : U1 → U0 and two morphisms δ1
0 = U(δ1

0),
and δ1

1 = U(δ1
1) which are morphisms U0 → U1. There are two morphisms σ1

0 =
U(σ1

0), σ1
1 = U(σ1

1) which are morphisms U2 → U1. Three morphisms δ2
0 = U(δ2

0),
δ2

1 = U(δ2
1), δ2

2 = U(δ2
2) which are morphisms U2 → U3. And so on.

Pictorially we think of U as follows:

U0
//
// U1oo

//
//
//
U2oo

oo

Here the δ-morphisms are the arrows pointing right and the σ-morphisms are the
arrows pointing left.

https://stacks.math.columbia.edu/tag/016K
https://stacks.math.columbia.edu/tag/016L
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Example 5.4.016M The simplest example is the constant cosimplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 5.5.016N Suppose that X → Y is a morphism of C such that all the pushouts
Y ⨿X Y ⨿X . . .⨿X Y exist. Then we set Un equal to the (n+ 1)-fold pushout, and
we let φ : [n] → [m] correspond to the map

(y in ith component) 7→ (y in φ(i)th component)

on “coordinates”. In other words, the map U1 = Y ⨿X Y → U0 = Y is the
identity on each component. The two maps U0 = Y → U1 = Y ⨿X Y are the two
coprojections.

Example 5.6.0B13 For every n ≥ 0 we denote C[n] the cosimplicial set

∆ −→ Sets, [k] 7−→ Mor∆([n], [k])

This example is dual to Example 11.2.

Lemma 5.7.016O Let C be a category. Let U be a cosimplicial object of C. Each of the
morphisms δni : Un−1 → Un has a left inverse. In particular δni is a monomorphism.

Proof. This is true because σn−1
i ◦ δni = idUn

for j < n. □

6. Products of simplicial objects

016P Of course we should define the product of simplicial objects as the product in the
category of simplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the
product directly as follows.

Definition 6.1.016Q Let C be a category. Let U and V be simplicial objects of C.
Assume the products Un × Vn exist in C. The product of U and V is the simplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, U × V is the product of the presheaves U and V on ∆.

Lemma 6.2.016R If U and V are simplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U) × Mor(W,V )

for any third simplicial object W of C.

Proof. Omitted. □

7. Fibre products of simplicial objects

016S Of course we should define the fibre product of simplicial objects as the fibre product
in the category of simplicial objects. This may lead to the potentially confusing
situation where the fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.

https://stacks.math.columbia.edu/tag/016M
https://stacks.math.columbia.edu/tag/016N
https://stacks.math.columbia.edu/tag/0B13
https://stacks.math.columbia.edu/tag/016O
https://stacks.math.columbia.edu/tag/016Q
https://stacks.math.columbia.edu/tag/016R
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Definition 7.1.016T Let C be a category. Let U, V,W be simplicial objects of C. Let
a : V → U , b : W → U be morphisms. Assume the fibre products Vn ×Un Wn exist
in C. The fibre product of V and W over U is the simplicial object V ×UW defined
as follows:

(1) (V ×U W )n = Vn ×Un
Wn,

(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V ×U W is the fibre product of the presheaves V and W over the
presheaf U on ∆.

Lemma 7.2.016U If U, V,W are simplicial objects in the category C, and if a : V → U ,
b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V ) ×Mor(T,U) Mor(T,W )
for any fourth simplicial object T of C.

Proof. Omitted. □

8. Pushouts of simplicial objects

016V Of course we should define the pushout of simplicial objects as the pushout in the
category of simplicial objects. This may lead to the potentially confusing situation
where the pushouts exist but are not as described below. To avoid this we define
the pushout directly as follows.

Definition 8.1.016W Let C be a category. Let U, V,W be simplicial objects of C. Let
a : U → V , b : U → W be morphisms. Assume the pushouts Vn ⨿Un

Wn exist in
C. The pushout of V and W over U is the simplicial object V ⨿U W defined as
follows:

(1) (V ⨿U W )n = Vn ⨿Un Wn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V ⨿UW is the pushout of the presheaves V and W over the presheaf
U on ∆.

Lemma 8.2.016X If U, V,W are simplicial objects in the category C, and if a : U → V ,
b : U → W are morphisms and if V ⨿U W exists, then we have

Mor(V ⨿U W,T ) = Mor(V, T ) ×Mor(U,T ) Mor(W,T )
for any fourth simplicial object T of C.

Proof. Omitted. □

9. Products of cosimplicial objects

016Y Of course we should define the product of cosimplicial objects as the product in
the category of cosimplicial objects. This may lead to the potentially confusing
situation where the product exists but is not described as below. To avoid this we
define the product directly as follows.

Definition 9.1.016Z Let C be a category. Let U and V be cosimplicial objects of C.
Assume the products Un×Vn exist in C. The product of U and V is the cosimplicial
object U × V defined as follows:

https://stacks.math.columbia.edu/tag/016T
https://stacks.math.columbia.edu/tag/016U
https://stacks.math.columbia.edu/tag/016W
https://stacks.math.columbia.edu/tag/016X
https://stacks.math.columbia.edu/tag/016Z


SIMPLICIAL METHODS 9

(1) (U × V )n = Un × Vn,
(2) for any φ : [n] → [m] the map (U × V )(φ) : Un × Vn → Um × Vm is the

product U(φ) × V (φ).

Lemma 9.2.0170 If U and V are cosimplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U) × Mor(W,V )

for any third cosimplicial object W of C.

Proof. Omitted. □

10. Fibre products of cosimplicial objects

0171 Of course we should define the fibre product of cosimplicial objects as the fibre
product in the category of cosimplicial objects. This may lead to the potentially
confusing situation where the product exists but is not described as below. To
avoid this we define the fibre product directly as follows.

Definition 10.1.0172 Let C be a category. Let U, V,W be cosimplicial objects of
C. Let a : V → U and b : W → U be morphisms. Assume the fibre products
Vn ×Un

Wn exist in C. The fibre product of V and W over U is the cosimplicial
object V ×U W defined as follows:

(1) (V ×U W )n = Vn ×Un
Wn,

(2) for any φ : [n] → [m] the map (V ×U W )(φ) : Vn ×Un
Wn → Vm ×Um

Wm

is the product V (φ) ×U(φ) W (φ).

Lemma 10.2.0173 If U, V,W are cosimplicial objects in the category C, and if a : V →
U , b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V ) ×Mor(T,U) Mor(T,W )

for any fourth cosimplicial object T of C.

Proof. Omitted. □

11. Simplicial sets

0174 Let U be a simplicial set. It is a good idea to think of U0 as the 0-simplices, the
set U1 as the 1-simplices, the set U2 as the 2-simplices, and so on.

We think of the maps snj : Un → Un+1 as the map that associates to an n-simplex
A the degenerate (n+ 1)-simplex B whose (j, j + 1)-edge is collapsed to the vertex
j of A. We think of the map dnj : Un → Un−1 as the map that associates to an
n-simplex A one of the faces, namely the face that omits the vertex j. In this way it
become possible to visualize the relations among the maps snj and dnj geometrically.

Definition 11.1.0175 Let U be a simplicial set. We say x is an n-simplex of U to
signify that x is an element of Un. We say that y is the jthe face of x to signify
that dnj x = y. We say that z is the jth degeneracy of x if z = snj x. A simplex is
called degenerate if it is the degeneracy of another simplex.

Here are a few fundamental examples.

https://stacks.math.columbia.edu/tag/0170
https://stacks.math.columbia.edu/tag/0172
https://stacks.math.columbia.edu/tag/0173
https://stacks.math.columbia.edu/tag/0175
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Example 11.2.0176 For every n ≥ 0 we denote ∆[n] the simplicial set

∆opp −→ Sets, [k] 7−→ Mor∆([k], [n])

We leave it to the reader to verify the following statements. Every m-simplex of
∆[n] with m > n is degenerate. There is a unique nondegenerate n-simplex of ∆[n],
namely id[n].

Lemma 11.3.0177 Let U be a simplicial set. Let n ≥ 0 be an integer. There is a
canonical bijection

Mor(∆[n], U) −→ Un

which maps a morphism φ to the value of φ on the unique nondegenerate n-simplex
of ∆[n].

Proof. Omitted. □

Example 11.4.0178 Consider the category ∆/[n] of objects over [n] in ∆, see Cate-
gories, Example 2.13. There is a functor p : ∆/[n] → ∆. The fibre category of p
over [k], see Categories, Section 35, has as objects the set ∆[n]k of k-simplices in
∆[n], and as morphisms only identities. For every morphism φ : [k] → [l] of ∆, and
every object ψ : [l] → [n] in the fibre category over [l] there is a unique object over
[k] with a morphism covering φ, namely ψ ◦ φ : [k] → [n]. Thus ∆/[n] is fibred
in sets over ∆. In other words, we may think of ∆/[n] as a presheaf of sets over
∆. See also, Categories, Example 38.7. And this presheaf of sets agrees with the
simplicial set ∆[n]. In particular, from Equation (4.0.1) and Lemma 11.3 above we
get the formula

MorPSh(∆)(∆/[n], U) = Un

for any simplicial set U .

Lemma 11.5.0179 Let U , V be simplicial sets. Let a, b ≥ 0 be integers. Assume every
n-simplex of U is degenerate if n > a. Assume every n-simplex of V is degenerate
if n > b. Then every n-simplex of U × V is degenerate if n > a+ b.

Proof. Suppose n > a+b. Let (u, v) ∈ (U×V )n = Un×Vn. By assumption, there
exists a α : [n] → [a] and a u′ ∈ Ua and a β : [n] → [b] and a v′ ∈ Vb such that
u = U(α)(u′) and v = V (β)(v′). Because n > a + b, there exists an 0 ≤ i ≤ a + b
such that α(i) = α(i+ 1) and β(i) = β(i+ 1). It follows immediately that (u, v) is
in the image of sn−1

i . □

12. Truncated simplicial objects and skeleton functors

017Z Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be
a category.

Definition 12.1.0180 An n-truncated simplicial object of C is a contravariant functor
from ∆≤n to C. A morphism of n-truncated simplicial objects is a transformation
of functors. We denote the category of n-truncated simplicial objects of C by the
symbol Simpn(C).

Given a simplicial object U of C the truncation sknU is the restriction of U to the
subcategory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C)

https://stacks.math.columbia.edu/tag/0176
https://stacks.math.columbia.edu/tag/0177
https://stacks.math.columbia.edu/tag/0178
https://stacks.math.columbia.edu/tag/0179
https://stacks.math.columbia.edu/tag/0180
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from the category of simplicial objects of C to the category of n-truncated simplicial
objects of C. See Remark 21.6 to avoid possible confusion with other functors in
the literature.

13. Products with simplicial sets

017A Let C be a category. Let U be a simplicial set. Let V be a simplicial object of C.
We can consider the covariant functor which associates to a simplicial object W of
C the set
(13.0.1)

017B
{

(fn,u : Vn → Wn)n≥0,u∈Un such that ∀φ : [m] → [n]
fm,U(φ)(u) ◦ V (φ) = W (φ) ◦ fn,u

}
If this functor is of the form MorSimp(C)(Q,−) then we can think of Q as the
product of U with V . Instead of formalizing this in this way we just directly define
the product as follows.

Definition 13.1.017C Let C be a category such that the coproduct of any two objects
of C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume
that each Un is finite nonempty. In this case we define the product U ×V of U and
V to be the simplicial object of C whose nth term is the object

(U × V )n =
∐

u∈Un

Vn

with maps for φ : [m] → [n] given by the morphism∐
u∈Un

Vn −→
∐

u′∈Um

Vm

which maps the component Vn corresponding to u to the component Vm correspond-
ing to u′ = U(φ)(u) via the morphism V (φ). More loosely, if all of the coproducts
displayed above exist (without assuming anything about C) we will say that the
product U × V exists.

Lemma 13.2.017D Let C be a category such that the coproduct of any two objects of
C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that
each Un is finite nonempty. The functor W 7→ MorSimp(C)(U×V,W ) is canonically
isomorphic to the functor which maps W to the set in Equation (13.0.1).

Proof. Omitted. □

Lemma 13.3.017E Let C be a category such that the coproduct of any two objects of C
exists. Let us temporarily denote FSSets the category of simplicial sets all of whose
components are finite nonempty.

(1) The rule (U, V ) 7→ U × V defines a functor FSSets × Simp(C) → Simp(C).
(2) For every U , V as above there is a canonical map of simplicial objects

U × V −→ V

defined by taking the identity on each component of (U × V )n =
∐
u Vn.

Proof. Omitted. □

We briefly study a special case of the construction above. Let C be a category. Let
X be an object of C. Let k ≥ 0 be an integer. If all coproducts X ⨿ . . . ⨿X exist
then according to the definition above the product

X × ∆[k]

https://stacks.math.columbia.edu/tag/017C
https://stacks.math.columbia.edu/tag/017D
https://stacks.math.columbia.edu/tag/017E
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exists, where we think of X as the corresponding constant simplicial object.

Lemma 13.4.017F With X and k as above. For any simplicial object V of C we have
the following canonical bijection

MorSimp(C)(X × ∆[k], V ) −→ MorC(X,Vk).
which maps γ to the restriction of the morphism γk to the component corresponding
to id[k]. Similarly, for any n ≥ k, if W is an n-truncated simplicial object of C,
then we have

MorSimpn(C)(skn(X × ∆[k]),W ) = MorC(X,Wk).

Proof. A morphism γ : X × ∆[k] → V is given by a family of morphisms γα :
X → Vn where α : [n] → [k]. The morphisms have to satisfy the rules that for all
φ : [m] → [n] the diagrams

X
γα //

idX

��

Vn

V (φ)
��

X
γα◦φ // Vm

commute. Taking α = id[k], we see that for any φ : [m] → [k] we have γφ =
V (φ)◦γid[k] . Thus the morphism γ is determined by the value of γ on the component
corresponding to id[k]. Conversely, given such a morphism f : X → Vk we easily
construct a morphism γ by putting γα = V (α) ◦ f .
The truncated case is similar, and left to the reader. □

A particular example of this is the case k = 0. In this case the formula of the
lemma just says that

MorC(X,V0) = MorSimp(C)(X,V )
where on the right hand side X indicates the constant simplicial object with value
X. We will use this formula without further mention in the following.

14. Hom from simplicial sets into cosimplicial objects

07K9 Let C be a category. Let U be a simplicial object of C, and let V be a cosimplicial
object of C. Then we get a cosimplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for φ : [m] → [n] we take the map HomC(U, V )m → HomC(U, V )n given by

f 7→ V (φ) ◦ f ◦ U(φ).
This is our motivation for the following definition.

Definition 14.1.019V Let C be a category with finite products. Let V be a cosimplicial
object of C. Let U be a simplicial set such that each Un is finite nonempty. We
define Hom(U, V ) to be the cosimplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un

Vn, in other words the unique object of C such
that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))
and

(2) for φ : [m] → [n] we take the map Hom(U, V )m → Hom(U, V )n given by
f 7→ V (φ) ◦ f ◦ U(φ) on X-valued points as above.

https://stacks.math.columbia.edu/tag/017F
https://stacks.math.columbia.edu/tag/019V
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We leave it to the reader to spell out the definition in terms of maps between
products. We also point out that the construction is functorial in both U (con-
travariantly) and V (covariantly), exactly as in Lemma 13.3 in the case of products
of simplicial sets with simplicial objects.

15. Hom from cosimplicial sets into simplicial objects

0B14 Let C be a category. Let U be a cosimplicial object of C, and let V be a simplicial
object of C. Then we get a simplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for φ : [m] → [n] we take the map HomC(U, V )n → HomC(U, V )m given by

f 7→ V (φ) ◦ f ◦ U(φ).
This is our motivation for the following definition.

Definition 15.1.0B15 Let C be a category with finite products. Let V be a simplicial
object of C. Let U be a cosimplicial set such that each Un is finite nonempty. We
define Hom(U, V ) to be the simplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un

Vn, in other words the unique object of C such
that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))
and

(2) for φ : [m] → [n] we take the map Hom(U, V )n → Hom(U, V )m given by
f 7→ V (φ) ◦ f ◦ U(φ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between
products. We also point out that the construction is functorial in both U (con-
travariantly) and V (covariantly), exactly as in Lemma 13.3 in the case of products
of simplicial sets with simplicial objects.
We spell out the construction above in a special case. Let X be an object of a
category C. Assume that self products X × . . . × X exist. Let k be an integer.
Consider the simplicial object U with terms

Un =
∏

α∈Mor([k],[n])
X

and maps given φ : [m] → [n]

U(φ) :
∏

α∈Mor([k],[n])
X −→

∏
α′∈Mor([k],[m])

X, (fα)α 7−→ (fφ◦α′)α′

In terms of “coordinates”, the element (xα)α is mapped to the element (xφ◦α′)α′ .
We claim this object is equal to Hom(C[k], X) where we think of X as the constant
simplicial object X and where C[k] is the cosimplicial set from Example 5.6.

Lemma 15.2.017M With X, k and U as above.
(1) For any simplicial object V of C we have the following canonical bijection

MorSimp(C)(V,U) −→ MorC(Vk, X).
wich maps γ to the morphism γk composed with the projection onto the
factor corresponding to id[k].

(2) Similarly, if W is an k-truncated simplicial object of C, then we have
MorSimpk(C)(W, skkU) = MorC(Wk, X).

https://stacks.math.columbia.edu/tag/0B15
https://stacks.math.columbia.edu/tag/017M
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(3) The object U constructed above is an incarnation of Hom(C[k], X) where
C[k] is the cosimplicial set from Example 5.6.

Proof. We first prove (1). Suppose that γ : V → U is a morphism. This is given
by a family of morphisms γα : Vn → X for α : [k] → [n]. The morphisms have to
satisfy the rules that for all φ : [m] → [n] the diagrams

X

idX

��

Vn

V (φ)
��

γφ◦α′
oo

X Vm
γα′oo

commute for all α′ : [k] → [m]. Taking α′ = id[k], we see that for any φ : [k] → [n]
we have γφ = γid[k] ◦ V (φ). Thus the morphism γ is determined by the component
of γk corresponding to id[k]. Conversely, given such a morphism f : Vk → X we
easily construct a morphism γ by putting γα = f ◦ V (α).

The truncated case is similar, and left to the reader.

Part (3) is immediate from the construction of U and the fact that C[k]n =
Mor([k], [n]) which are the index sets used in the construction of Un. □

16. Internal Hom

017G Let C be a category with finite nonempty products. Let U , V be simplicial objects
C. In some cases the functor

Simp(C)opp −→ Sets, W 7−→ MorSimp(C)(W × V,U)

is representable. In this case we denote Hom(V,U) the resulting simplicial object
of C, and we say that the internal hom of V into U exists. Moreover, in this case,
given X in C, we would have

MorC(X,Hom(V,U)n) = MorSimp(C)(X × ∆[n],Hom(V,U))
= MorSimp(C)(X × ∆[n] × V,U)
= MorSimp(C)(X,Hom(∆[n] × V,U))
= MorC(X,Hom(∆[n] × V,U)0)

provided that Hom(∆[n] × V,U) exists also. The first and last equalities follow
from Lemma 13.4.

The lesson we learn from this is that, given U and V , if we want to construct the
internal hom then we should try to construct the objects

Hom(∆[n] × V,U)0

because these should be the nth term of Hom(V,U). In the next section we study
a construction of simplicial objects “Hom(∆[n], U)”.

17. Hom from simplicial sets into simplicial objects

017H Motivated by the discussion on internal hom we define what should be the simplicial
object classifying morphisms from a simplicial set into a given simplicial object of
the category C.
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Definition 17.1.017I Let C be a category such that the coproduct of any two objects
exists. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V be
a simplicial object of C. We denote Hom(U, V ) any simplicial object of C such that

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )

functorially in the simplicial object W of C.

Of course Hom(U, V ) need not exist. Also, by the discussion in Section 16 we expect
that if it does exist, then Hom(U, V )n = Hom(U × ∆[n], V )0. We do not use the
italic notation for these Hom objects since Hom(U, V ) is not an internal hom.

Lemma 17.2.017J Assume the category C has coproducts of any two objects and count-
able limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V
be a simplicial object of C. Then the functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. A morphism from X × U into V is given by a collection of morphisms
fu : X → Vn with n ≥ 0 and u ∈ Un. And such a collection actually defines a
morphism if and only if for all φ : [m] → [n] all the diagrams

X
fu //

idX

��

Vn

V (φ)
��

X
fU(φ)(u)// Vm

commute. Thus it is natural to introduce a category U and a functor V : Uopp → C
as follows:

(1) The set of objects of U is
∐
n≥0 Un,

(2) a morphism from u′ ∈ Um to u ∈ Un is a φ : [m] → [n] such that U(φ)(u) =
u′

(3) for u ∈ Un we set V(u) = Vn, and
(4) for φ : [m] → [n] such that U(φ)(u) = u′ we set V(φ) = V (φ) : Vn → Vm.

At this point it is clear that our functor is nothing but the functor defining

limUopp V

Thus if C has countable limits then this limit and hence an object representing the
functor of the lemma exist. □

Lemma 17.3.017K Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n ≫ 0. Let V be a simplicial object
of C. Then the functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )

is representable.

https://stacks.math.columbia.edu/tag/017I
https://stacks.math.columbia.edu/tag/017J
https://stacks.math.columbia.edu/tag/017K


SIMPLICIAL METHODS 16

Proof. We have to show that the category U described in the proof of Lemma 17.2
has a finite subcategory U ′ such that the limit of V over U ′ is the same as the limit
of V over U . We will use Categories, Lemma 17.4. For m > 0 let U≤m denote the
full subcategory with objects

∐
0≤n≤m Um. Let m0 be an integer such that every

n-simplex of the simplicial set U is degenerate if n > m0. For any m ≥ m0 large
enough, the subcategory U≤m satisfies property (1) of Categories, Definition 17.3.

Suppose that u ∈ Un and u′ ∈ Un′ with n, n′ ≤ m0 and suppose that φ : [k] →
[n], φ′ : [k] → [n′] are morphisms such that U(φ)(u) = U(φ′)(u′). A simple
combinatorial argument shows that if k > 2m0, then there exists an index 0 ≤ i ≤
2m0 such that φ(i) = φ(i + 1) and φ′(i) = φ′(i + 1). (The pigeon hole principle
would tell you this works if k > m2

0 which is good enough for the argument below
anyways.) Hence, if k > 2m0, we may write φ = ψ ◦ σk−1

i and φ′ = ψ′ ◦ σk−1
i for

some ψ : [k − 1] → [n] and some ψ′ : [k − 1] → [n′]. Since sk−1
i : Uk−1 → Uk is

injective, see Lemma 3.6, we conclude that U(ψ)(u) = U(ψ′)(u′) also. Continuing
in this fashion we conclude that given morphisms u → z and u′ → z of U with
u, u′ ∈ U≤m0 , there exists a commutative diagram

u

  ''
a // z

u′

?? 77

with a ∈ U≤2m0 .

It is easy to deduce from this that the finite subcategory U≤2m0 works. Namely,
suppose given x′ ∈ Un and x′′ ∈ Un′ with n, n′ ≤ 2m0 as well as morphisms x′ → x
and x′′ → x of U with the same target. By our choice of m0 we can find objects
u, u′ of U≤m0 and morphisms u → x′, u′ → x′′. By the above we can find a ∈ U≤2m0

and morphisms u → a, u′ → a such that

u

!! ((

// x′

  
a // x

u′

== 66

// x′′

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired
diagram as in (2) of Categories, Definition 17.3. □

Lemma 17.4.017L Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n ≫ 0. Let V be a simplicial object
of C. Then Hom(U, V ) exists, moreover we have the expected equalities

Hom(U, V )n = Hom(U × ∆[n], V )0.

https://stacks.math.columbia.edu/tag/017L
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Proof. We construct this simplicial object as follows. For n ≥ 0 let Hom(U, V )n
denote the object of C representing the functor

X 7−→ MorSimp(C)(X × U × ∆[n], V )

This exists by Lemma 17.3 because U × ∆[n] is a simplicial set with finite sets of
simplices and no nondegenerate simplices in high enough degree, see Lemma 11.5.
For φ : [m] → [n] we obtain an induced map of simplicial sets φ : ∆[m] → ∆[n].
Hence we obtain a morphism X ×U × ∆[m] → X ×U × ∆[n] functorial in X, and
hence a transformation of functors, which in turn gives

Hom(U, V )(φ) : Hom(U, V )n −→ Hom(U, V )m.

Clearly this defines a contravariant functor Hom(U, V ) from ∆ into the category C.
In other words, we have a simplicial object of C.

We have to show that Hom(U, V ) satisfies the desired universal property

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )

To see this, let f : W → Hom(U, V ) be given. We want to construct the element f ′ :
W × U → V of the right hand side. By construction, each fn : Wn → Hom(U, V )n
corresponds to a morphism fn : Wn ×U × ∆[n] → V . Further, for every morphism
φ : [m] → [n] the diagram

Wn × U × ∆[m]
W (φ)×id×id

//

id×id×φ
��

Wm × U × ∆[m]

fm

��
Wn × U × ∆[n] fn // V

is commutative. For ψ : [n] → [k] in (∆[n])k we denote (fn)k,ψ : Wn×Uk → Vk the
component of (fn)k corresponding to the element ψ. We define f ′

n : Wn ×Un → Vn
as f ′

n = (fn)n,id, in other words, as the restriction of (fn)n : Wn×Un×(∆[n])n → Vn
to Wn ×Un × id[n]. To see that the collection (f ′

n) defines a morphism of simplicial
objects, we have to show for any φ : [m] → [n] that V (φ) ◦ f ′

n = f ′
m ◦W (φ) ×U(φ).

The commutative diagram above says that (fn)m,φ : Wn × Um → Vm is equal to
(fm)m,id ◦ W (φ) : Wn × Um → Vm. But then the fact that fn is a morphism of
simplicial objects implies that the diagram

Wn × Un × (∆[n])n (fn)n

//

id×U(φ)×φ
��

Vn

V (φ)
��

Wn × Um × (∆[n])m
(fn)m // Vm

is commutative. And this implies that (fn)m,φ ◦ U(φ) is equal to V (φ) ◦ (fn)n,id.
Altogether we obtain V (φ) ◦ (fn)n,id = (fn)m,φ ◦U(φ) = (fm)m,id ◦W (φ) ◦U(φ) =
(fm)m,id ◦W (φ) × U(φ) as desired.

On the other hand, given a morphism f ′ : W × U → V we define a morphism
f : W → Hom(U, V ) as follows. By Lemma 13.4 the morphisms id : Wn → Wn

corresponds to a unique morphism cn : Wn × ∆[n] → W . Hence we can consider
the composition

Wn × ∆[n] × U
cn−→ W × U

f ′

−→ V.
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By construction this corresponds to a unique morphism fn : Wn → Hom(U, V )n.
We leave it to the reader to see that these define a morphism of simplicial sets as
desired.

We also leave it to the reader to see that f 7→ f ′ and f ′ 7→ f are mutually inverse
operations. □

Lemma 17.5.017N Assume the category C has coproducts of any two objects and finite
limits. Let a : U → V , b : U → W be morphisms of simplicial sets. Assume
Un, Vn,Wn finite nonempty for all n ≥ 0. Assume that all n-simplices of U, V,W
are degenerate for all n ≫ 0. Let T be a simplicial object of C. Then

Hom(V, T ) ×Hom(U,T ) Hom(W,T ) = Hom(V ⨿U W,T )

In other words, the fibre product on the left hand side is represented by the Hom
object on the right hand side.

Proof. By Lemma 17.4 all the required Hom objects exist and satisfy the correct
functorial properties. Now we can identify the nth term on the left hand side as the
object representing the functor that associates to X the first set of the following
sequence of functorial equalities

Mor(X × ∆[n],Hom(V, T ) ×Hom(U,T ) Hom(W,T ))
= Mor(X × ∆[n],Hom(V, T )) ×Mor(X×∆[n],Hom(U,T )) Mor(X × ∆[n],Hom(W,T ))
= Mor(X × ∆[n] × V, T ) ×Mor(X×∆[n]×U,T ) Mor(X × ∆[n] ×W,T )
= Mor(X × ∆[n] × (V ⨿U W ), T ))

Here we have used the fact that

(X × ∆[n] × V ) ×X×∆[n]×U (X × ∆[n] ×W ) = X × ∆[n] × (V ⨿U W )

which is easy to verify term by term. The result of the lemma follows as the last
term in the displayed sequence of equalities corresponds to Hom(V ⨿U W,T )n. □

18. Splitting simplicial objects

017O A subobject N of an object X of the category C is an object N of C together
with a monomorphism N → X. Of course we say (by abuse of notation) that the
subobjects N , N ′ are equal if there exists an isomorphism N → N ′ compatible
with the morphisms to X. The collection of subobjects forms a partially ordered
set. (Because of our conventions on categories; not true for category of spaces up
to homotopy for example.)

Definition 18.1.017P Let C be a category which admits finite nonempty coproducts.
We say a simplicial object U of C is split if there exist subobjects N(Um) of Um,
m ≥ 0 with the property that

(18.1.1)017Q
∐

φ:[n]→[m] surjective
N(Um) −→ Un

is an isomorphism for all n ≥ 0. If U is an r-truncated simplicial object of C then we
say U is split if there exist subobjects N(Um) of Um, r ≥ m ≥ 0 with the property
that (18.1.1) is an isomorphism for r ≥ n ≥ 0.

https://stacks.math.columbia.edu/tag/017N
https://stacks.math.columbia.edu/tag/017P
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If this is the case, then N(U0) = U0. Next, we have U1 = U0 ⨿N(U1). Second we
have

U2 = U0 ⨿N(U1) ⨿N(U1) ⨿N(U2).
It turns out that in many categories C every simplicial object is split.

Lemma 18.2.017R Let U be a simplicial set. Then U has a unique splitting with
N(Um) equal to the set of nondegenerate m-simplices.

Proof. From the definition it follows immediately, that if there is a splitting then
N(Um) has to be the set of nondegenerate simplices. Let x ∈ Un. Suppose that
there are surjections φ : [n] → [k] and ψ : [n] → [l] and nondegenerate simplices
y ∈ Uk, z ∈ Ul such that x = U(φ)(y) and x = U(ψ)(z). Choose a right inverse
ξ : [l] → [n] of ψ, i.e., ψ ◦ ξ = id[l]. Then z = U(ξ)(x). Hence z = U(ξ)(x) =
U(φ◦ ξ)(y). Since z is nondegenerate we conclude that φ◦ ξ : [l] → [k] is surjective,
and hence l ≥ k. Similarly k ≥ l. Hence we see that φ ◦ ξ : [l] → [k] has to be
the identity map for any choice of right inverse ξ of ψ. This easily implies that
ψ = φ. □

Of course it can happen that a map of simplicial sets maps a nondegenerate n-
simplex to a degenerate n-simplex. Thus the splitting of Lemma 18.2 is not func-
torial. Here is a case where it is functorial.

Lemma 18.3.017S Let f : U → V be a morphism of simplicial sets. Suppose that
(a) the image of every nondegenerate simplex of U is a nondegenerate simplex of
V and (b) the restriction of f to a map from the set of nondegenerate simplices of
U to the set of nondegenerate simplices of V is injective. Then fn is injective for
all n. Same holds with “injective” replaced by “surjective” or “bijective”.

Proof. Under hypothesis (a) we see that the map f preserves the disjoint union
decompositions of the splitting of Lemma 18.2, in other words that we get commu-
tative diagrams ∐

φ:[n]→[m] surjective N(Um) //

��

Un

��∐
φ:[n]→[m] surjective N(Vm) // Vn.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective,
resp. bijective). □

Lemma 18.4.017T Let U be a simplicial set. Let n ≥ 0 be an integer. The rule

U ′
m =

⋃
φ:[m]→[i], i≤n

Im(U(φ))

defines a sub simplicial set U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, all m-

simplices of U ′ are degenerate for all m > n.

Proof. If x ∈ Um and x = U(φ)(y) for some y ∈ Ui, i ≤ n and some φ : [m] → [i]
then any image U(ψ)(x) for any ψ : [m′] → [m] is equal to U(φ ◦ ψ)(y) and
φ ◦ ψ : [m′] → [i]. Hence U ′ is a simplicial set. By construction all simplices in
dimension n+ 1 and higher are degenerate. □

https://stacks.math.columbia.edu/tag/017R
https://stacks.math.columbia.edu/tag/017S
https://stacks.math.columbia.edu/tag/017T
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Lemma 18.5.017U Let U be a simplicial abelian group. Then U has a splitting obtained
by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(Um) in the lemma
guarantees that (18.1.1) is an isomorphism for m ≤ n. This is clear for n = 0. In
the rest of this proof we are going to drop the superscripts from the maps di and
si in order to improve readability. We will also repeatedly use the relations from
Remark 3.3.

First we make a general remark. For 0 ≤ i ≤ m and z ∈ Um we have di(si(z)) = z.
Hence we can write any x ∈ Um+1 uniquely as x = x′ + x′′ with di(x′) = 0 and
x′′ ∈ Im(si) by taking x′ = (x − si(di(x))) and x′′ = si(di(x)). Moreover, the
element z ∈ Um such that x′′ = si(z) is unique because si is injective.

Here is a procedure for decomposing any x ∈ Un+1. First, write x = x0 + s0(z0)
with d0(x0) = 0. Next, write x0 = x1 + s1(z1) with dn(x1) = 0. Continue like this
to get

x = x0 + s0(z0),
x0 = x1 + s1(z1),
x1 = x2 + s2(z2),
. . . . . . . . .

xn−1 = xn + sn(zn)

where di(xi) = 0 for all i = n, . . . , 0. By our general remark above all of the xi and
zi are determined uniquely by x. We claim that xi ∈ Ker(d0)∩Ker(d1)∩. . .∩Ker(di)
and zi ∈ Ker(d0) ∩ . . . ∩ Ker(di−1) for i = n, . . . , 0. Here and in the following an
empty intersection of kernels indicates the whole space; i.e., the notation z0 ∈
Ker(d0) ∩ . . . ∩ Ker(di−1) when i = 0 means z0 ∈ Un with no restriction.

We prove this by ascending induction on i. It is clear for i = 0 by construction of
x0 and z0. Let us prove it for 0 < i ≤ n assuming the result for i−1. First of all we
have di(xi) = 0 by construction. So pick a j with 0 ≤ j < i. We have dj(xi−1) = 0
by induction. Hence

0 = dj(xi−1) = dj(xi) + dj(si(zi)) = dj(xi) + si−1(dj(zi)).

The last equality by the relations of Remark 3.3. These relations also imply
that di−1(dj(xi)) = dj(di(xi)) = 0 because di(xi) = 0 by construction. Then
the uniqueness in the general remark above shows the equality 0 = x′ + x′′ =
dj(xi) + si−1(dj(zi)) can only hold if both terms are zero. We conclude that
dj(xi) = 0 and by injectivity of si−1 we also conclude that dj(zi) = 0. This
proves the claim.

The claim implies we can uniquely write

x = s0(z0) + s1(z1) + . . .+ sn(zn) + x0
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with x0 ∈ N(Un+1) and zi ∈ Ker(d0) ∩ . . .∩ Ker(di−1). We can reformulate this as
saying that we have found a direct sum decomposition

Un+1 = N(Un+1) ⊕
⊕i=n

i=0
si

(
Ker(d0) ∩ . . . ∩ Ker(di−1)

)
with the property that

Ker(d0) ∩ . . . ∩ Ker(dj) = N(Un+1) ⊕
⊕i=n

i=j+1
si

(
Ker(dn) ∩ . . . ∩ Ker(di−1)

)
for j = 0, . . . , n. The result follows from this statement as follows. Each of the zi
in the expression for x can be written uniquely as

zi = si(z′
i,i) + . . .+ sn−1(z′

i,n−1) + zi,0

with zi,0 ∈ N(Un) and z′
i,j ∈ Ker(d0) ∩ . . . ∩ Ker(dj−1). The first few steps in the

decomposition of zi are zero because zi already is in the kernel of d0, . . . , di. This
in turn uniquely gives

x = x0 + s0(z0,0) + s1(z1,0) + . . .+ sn(zn,0) +
∑

0≤i≤j≤n−1
si(sj(z′

i,j)).

Continuing in this fashion we see that we in the end obtain a decomposition of x
as a sum of terms of the form

si1si2 . . . sik (z)
with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n − k + 1 and z ∈ N(Un+1−k). This is exactly the
required decomposition, because any surjective map [n + 1] → [n + 1 − k] can be
uniquely expressed in the form

σn−k
ik

. . . σn−1
i2

σni1

with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n− k + 1. □

Lemma 18.6.017V Let A be an abelian category. Let U be a simplicial object in A.
Then U has a splitting obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial objects of A.

Proof. For any object A of A we obtain a simplicial abelian group MorA(A,U).
Each of these are canonically split by Lemma 18.5. Moreover,

N(MorA(A,Um)) =
⋂m−1

i=0
Ker(dmi ) = MorA(A,N(Um)).

Hence we see that the morphism (18.1.1) becomes an isomorphism after applying
the functor MorA(A,−) for any object of A. Hence it is an isomorphism by the
Yoneda lemma. □

Lemma 18.7.017W Let A be an abelian category. Let f : U → V be a morphism of
simplicial objects of A. If the induced morphisms N(f)i : N(U)i → N(V )i are
injective for all i, then fi is injective for all i. Same holds with “injective” replaced
with “surjective”, or “isomorphism”.

Proof. This is clear from Lemma 18.6 and the definition of a splitting. □

Lemma 18.8.017X Let A be an abelian category. Let U be a simplicial object in A.
Let N(Um) as in Lemma 18.6 above. Then dmm(N(Um)) ⊂ N(Um−1).
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Proof. For j = 0, . . . ,m−2 we have dm−1
j dmm = dm−1

m−1d
m
j by the relations in Remark

3.3. The result follows. □

Lemma 18.9.017Y Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The rule

U ′
m =

∑
φ:[m]→[i], i≤n

Im(U(φ))

defines a sub simplicial object U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, N(U ′

m) =
0 for all m > n.

Proof. Pick m, i ≤ n and some φ : [m] → [i]. The image under U(ψ) of Im(U(φ))
for any ψ : [m′] → [m] is equal to the image of U(φ◦ψ) and φ◦ψ : [m′] → [i]. Hence
U ′ is a simplicial object. Pick m > n. We have to show N(U ′

m) = 0. By definition
of N(Um) and N(U ′

m) we have N(U ′
m) = U ′

m ∩N(Um) (intersection of subobjects).
Since U is split by Lemma 18.6, it suffices to show that U ′

m is contained in the sum∑
φ:[m]→[m′] surjective, m′<m

Im(U(φ)|N(Um′ )).

By the splitting each Um′ is the sum of images of N(Um′′) via U(ψ) for surjective
maps ψ : [m′] → [m′′]. Hence the displayed sum above is the same as∑

φ:[m]→[m′] surjective, m′<m
Im(U(φ)).

Clearly U ′
m is contained in this by the simple fact that any φ : [m] → [i], i ≤ n

occurring in the definition of U ′
m may be factored as [m] → [m′] → [i] with [m] →

[m′] surjective and m′ < m as in the last displayed sum above. □

19. Coskeleton functors

0AMA Let C be a category. The coskeleton functor (if it exists) is a functor
coskn : Simpn(C) −→ Simp(C)

which is right adjoint to the skeleton functor. In a formula
(19.0.1)0181 MorSimp(C)(U, cosknV ) = MorSimpn(C)(sknU, V )
Given a n-truncated simplicial object V we say that cosknV exists if there exists a
cosknV ∈ Ob(Simp(C)) and a morphism skncosknV → V such that the displayed
formula holds, in other words if the functor U 7→ MorSimpn(C)(sknU, V ) is repre-
sentable. If it exists it is unique up to unique isomorphism by the Yoneda lemma.
See Categories, Section 3.

Example 19.1.0182 Suppose the category C has finite nonempty self products. A
0-truncated simplicial object of C is the same as an object X of C. In this case we
claim that cosk0(X) is the simplicial object U with Un = Xn+1 the (n + 1)-fold
self product of X, and structure of simplicial object as in Example 3.5. Namely, a
morphism V → U where V is a simplicial object is given by morphisms Vn → Xn+1,
such that all the diagrams

Vn //

V ([0]→[n],0 7→i)
��

Xn+1

pri

��
V0 // X
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commute. Clearly this means that the map determines and is determined by a
unique morphism V0 → X. This proves that formula (19.0.1) holds.

Recall the category ∆/[n], see Example 11.4. We let (∆/[n])≤m denote the full
subcategory of ∆/[n] consisting of objects [k] → [n] of ∆/[n] with k ≤ m. In other
words we have the following commutative diagram of categories and functors

(∆/[n])≤m //

��

∆/[n]

��
∆≤m // ∆

Given a m-truncated simplicial object U of C we define a functor
U(n) : (∆/[n])opp≤m −→ C

by the rules
([k] → [n]) 7−→ Uk

ψ : ([k′] → [n]) → ([k] → [n]) 7−→ U(ψ) : Uk → Uk′

For a given morphism φ : [n] → [n′] of ∆ we have an associated functor
φ : (∆/[n])≤m −→ (∆/[n′])≤m

which maps α : [k] → [n] to φ ◦ α : [k] → [n′]. The composition U(n′) ◦ φ is equal
to the functor U(n).

Lemma 19.2.0183 If the category C has finite limits, then coskm functors exist for all
m. Moreover, for any m-truncated simplicial object U the simplicial object coskmU
is described by the formula

(coskmU)n = lim(∆/[n])opp
≤m

U(n)

and for φ : [n] → [n′] the map coskmU(φ) comes from the identification U(n′)◦φ =
U(n) above via Categories, Lemma 14.9.

Proof. During the proof of this lemma we denote coskmU the simplicial object
with (coskmU)n equal to lim(∆/[n])opp

≤m
U(n). We will conclude at the end of the

proof that it does satisfy the required mapping property.
Suppose that V is a simplicial object. A morphism γ : V → coskmU is given by a
sequence of morphisms γn : Vn → (coskmU)n. By definition of a limit, this is given
by a collection of morphisms γ(α) : Vn → Uk where α ranges over all α : [k] → [n]
with k ≤ m. These morphisms then also satisfy the rules that

Vn
γ(α)

// Uk

Vn′
γ(α′) //

V (φ)

OO

Uk′

U(ψ)

OO

are commutative, given any 0 ≤ k, k′ ≤ m, 0 ≤ n, n′ and any ψ : [k] → [k′],
φ : [n] → [n′], α : [k] → [n] and α′ : [k′] → [n′] in ∆ such that φ◦α = α′ ◦ψ. Taking
n = k = k′, φ = α′, and α = ψ = id[k] we deduce that γ(α′) = γ(id[k]) ◦ V (α′). In
other words, the morphisms γ(id[k]), k ≤ m determine the morphism γ. And it is
easy to see that these morphisms form a morphism skmV → U .
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Conversely, given a morphism γ : skmV → U , we obtain a family of morphisms γ(α)
where α ranges over all α : [k] → [n] with k ≤ m by setting γ(α) = γ(id[k]) ◦ V (α).
These morphisms satisfy all the displayed commutativity restraints pictured above,
and hence give rise to a morphism V → coskmU . □

Lemma 19.3.0184 Let C be a category. Let U be an m-truncated simplicial object of
C. For n ≤ m the limit lim(∆/[n])opp

≤m
U(n) exists and is canonically isomorphic to

Un.

Proof. This is true because the category (∆/[n])≤m has an final object in this
case, namely the identity map [n] → [n]. □

Lemma 19.4.0185 Let C be a category with finite limits. Let U be an n-truncated
simplicial object of C. The morphism skncosknU → U is an isomorphism.

Proof. Combine Lemmas 19.2 and 19.3. □

Let us describe a particular instance of the coskeleton functor in more detail. By
abuse of notation we will denote skn also the restriction functor Simpn′(C) →
Simpn(C) for any n′ ≥ n. We are going to describe a right adjoint of the functor skn :
Simpn+1(C) → Simpn(C). For n ≥ 1, 0 ≤ i < j ≤ n+1 define δn+1

i,j : [n−1] → [n+1]
to be the increasing map omitting i and j. Note that δn+1

i,j = δn+1
j ◦δni = δn+1

i ◦δnj−1,
see Lemma 2.3. This motivates the following lemma.

Lemma 19.5.0186 Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}
If this functor is representable by some object Un+1 of C, then

Un+1 = lim(∆/[n+1])opp
≤n

U(n)

Proof. The limit, if it exists, represents the functor that associates to an object T
the set

{(fα)α:[k]→[n+1],k≤n | fα◦ψ = U(ψ) ◦ fα ∀ ψ : [k′] → [k], α : [k] → [n+ 1]}.
In fact we will show this functor is isomorphic to the one displayed in the lemma.
The map in one direction is given by the rule

(fα)α 7−→ (fδn+1
0

, . . . , fδn+1
n+1

).

This satisfies the conditions of the lemma because
dnj−1 ◦ fδn+1

i
= fδn+1

i
◦δn

j−1
= fδn+1

j
◦δn

i
= dni ◦ fδn+1

j

by the relations we recalled above the lemma. To construct a map in the other
direction we have to associate to a system (f0, . . . , fn+1) as in the displayed formula
of the lemma a system of maps fα. Let α : [k] → [n+ 1] be given. Since k ≤ n the
map α is not surjective. Hence we can write α = δn+1

i ◦ ψ for some 0 ≤ i ≤ n + 1
and some ψ : [k] → [n]. We have no choice but to define

fα = U(ψ) ◦ fi.
Of course we have to check that this is independent of the choice of the pair (i, ψ).
First, observe that given i there is a unique ψ which works. Second, suppose that
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(j, ϕ) is another pair. Then i ̸= j and we may assume i < j. Since both i, j are
not in the image of α we may actually write α = δn+1

i,j ◦ ξ and then we see that
ψ = δnj−1 ◦ ξ and ϕ = δni ◦ ξ. Thus

U(ψ) ◦ fi = U(δnj−1 ◦ ξ) ◦ fi
= U(ξ) ◦ dnj−1 ◦ fi
= U(ξ) ◦ dni ◦ fj
= U(δni ◦ ξ) ◦ fj
= U(ϕ) ◦ fj

as desired. We still have to verify that the maps fα so defined satisfy the rules of
a system of maps (fα)α. To see this suppose that ψ : [k′] → [k], α : [k] → [n + 1]
with k, k′ ≤ n. Set α′ = α ◦ ψ. Choose i not in the image of α. Then clearly i is
not in the image of α′ also. Write α = δn+1

i ◦ ϕ (we cannot use the letter ψ here
because we’ve already used it). Then obviously α′ = δn+1

i ◦ ϕ ◦ ψ. By construction
above we then have

U(ψ) ◦ fα = U(ψ) ◦ U(ϕ) ◦ fi = U(ϕ ◦ ψ) ◦ fi = fα◦ψ = fα′

as desired. We leave to the reader the pleasant task of verifying that our construc-
tions are mutually inverse bijections, and are functorial in T . □

Lemma 19.6.0187 Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then there exists an (n+1)-
truncated simplicial object Ũ , with sknŨ = U and Ũn+1 = Un+1 such that the
following adjointness holds

MorSimpn+1(C)(V, Ũ) = MorSimpn(C)(sknV,U)

Proof. By Lemma 19.3 there are identifications

Ui = lim(∆/[i])opp
≤n

U(i)

for 0 ≤ i ≤ n. By Lemma 19.5 we have

Un+1 = lim(∆/[n+1])opp
≤n

U(n).

Thus we may define for any φ : [i] → [j] with i, j ≤ n + 1 the corresponding map
Ũ(φ) : Ũj → Ũi exactly as in Lemma 19.2. This defines an (n + 1)-truncated
simplicial object Ũ with sknŨ = U .

To see the adjointness we argue as follows. Given any element γ : sknV → U
of the right hand side of the formula consider the morphisms fi = γn ◦ dn+1

i :
Vn+1 → Vn → Un. These clearly satisfy the relations dnj−1 ◦ fi = dni ◦ fj and hence
define a unique morphism Vn+1 → Un+1 by our choice of Un+1. Conversely, given
a morphism γ′ : V → Ũ of the left hand side we can simply restrict to ∆≤n to
get an element of the right hand side. We leave it to the reader to show these are
mutually inverse constructions. □
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Remark 19.7.0188 Let U , and Un+1 be as in Lemma 19.6. On T -valued points
we can easily describe the face and degeneracy maps of Ũ . Explicitly, the maps
dn+1
i : Un+1 → Un are given by

(f0, . . . , fn+1) 7−→ fi.

And the maps snj : Un → Un+1 are given by

f 7−→ (sn−1
j−1 ◦ dn−1

0 ◦ f,
sn−1
j−1 ◦ dn−1

1 ◦ f,
. . .

sn−1
j−1 ◦ dn−1

j−1 ◦ f,
f,

f,

sn−1
j ◦ dn−1

j+1 ◦ f,
sn−1
j ◦ dn−1

j+2 ◦ f,
. . .

sn−1
j ◦ dn−1

n ◦ f)
where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma 19.6. For n = 0 there is one map, namely f 7→ (f, f). For n = 1
there are two maps, namely f 7→ (f, f, s0d1f) and f 7→ (s0d0f, f, f). For n = 2
there are three maps, namely f 7→ (f, f, s0d1f, s0d2f), f 7→ (s0d0f, f, f, s1d2f),
and f 7→ (s1d0f, s1d1f, f, f). And so on and so forth.

Remark 19.8.0189 The construction of Lemma 19.6 above in the case of simplicial
sets is the following. Given an n-truncated simplicial set U , we make a canonical
(n + 1)-truncated simplicial set Ũ as follows. We add a set of (n + 1)-simplices
Un+1 by the formula of the lemma. Namely, an element of Un+1 is a numbered
collection of (f0, . . . , fn+1) of n-simplices, with the property that they glue as they
would in a (n + 1)-simplex. In other words, the ith face of fj is the (j − 1)st face
of fi for i < j. Geometrically it is obvious how to define the face and degeneracy
maps for Ũ . If V is an (n + 1)-truncated simplicial set, then its (n + 1)-simplices
give rise to compatible collections of n-simplices (f0, . . . , fn+1) with fi ∈ Vn. Hence
there is a natural map Mor(sknV,U) → Mor(V, Ũ) which is inverse to the canonical
restriction mapping the other way.
Also, it is enough to do the combinatorics of the construction in the case of trun-
cated simplicial sets. Namely, for any object T of the category C, and any n-
truncated simplicial object U of C we can consider the n-truncated simplicial set
Mor(T,U). We may apply the construction to this, and take its set of (n + 1)-
simplices, and require this to be representable. This is a good way to think about
the result of Lemma 19.6.

Remark 19.9.018A Inductive construction of coskeleta. Suppose that C is a category
with finite limits. Suppose that U is an m-truncated simplicial object in C. Then
we can inductively construct n-truncated objects Un as follows:

(1) To start, set Um = U .
(2) Given Un for n ≥ m set Un+1 = Ũn, where Ũn is constructed from Un as

in Lemma 19.6.
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Since the construction of Lemma 19.6 has the property that it leaves the n-skeleton
of Un unchanged, we can then define coskmU to be the simplicial object with
(coskmU)n = Unn = Un+1

n = . . .. And it follows formally from Lemma 19.6 that Un
satisfies the formula

MorSimpn(C)(V,Un) = MorSimpm(C)(skmV,U)

for all n ≥ m. It also then follows formally from this that

MorSimp(C)(V, coskmU) = MorSimpm(C)(skmV,U)

with coskmU chosen as above.

Lemma 19.10.018B Let C be a category which has finite limits.
(1) For every n the functor skn : Simp(C) → Simpn(C) has a right adjoint

coskn.
(2) For every n′ ≥ n the functor skn : Simpn′(C) → Simpn(C) has a right

adjoint, namely skn′coskn.
(3) For every m ≥ n ≥ 0 and every n-truncated simplicial object U of C we

have coskmskmcosknU = cosknU .
(4) If U is a simplicial object of C such that the canonical map U → cosknsknU

is an isomorphism for some n ≥ 0, then the canonical map U → coskmskmU
is an isomorphism for all m ≥ n.

Proof. The existence in (1) follows from Lemma 19.2 above. Parts (2) and (3)
follow from the discussion in Remark 19.9. After this (4) is obvious. □

Remark 19.11.09VS We do not need all finite limits in order to be able to define the
coskeleton functors. Here are some remarks

(1) We have seen in Example 19.1 that if C has products of pairs of objects
then cosk0 exists.

(2) For k > 0 the functor coskk exists if C has finite connected limits.
This is clear from the inductive procedure of constructing coskeleta (Remarks 19.8
and 19.9) but it also follows from the fact that the categories (∆/[n])≤k for k ≥ 1
and n ≥ k + 1 used in Lemma 19.2 are connected. Observe that we do not need
the categories for n ≤ k by Lemma 19.3 or Lemma 19.4. (As k gets higher the
categories (∆/[n])≤k for k ≥ 1 and n ≥ k + 1 are more and more connected in a
topological sense.)

Lemma 19.12.018C Let U , V be n-truncated simplicial objects of a category C. Then

coskn(U × V ) = cosknU × cosknV

whenever the left and right hand sides exist.

Proof. Let W be a simplicial object. We have

Mor(W, coskn(U × V )) = Mor(sknW,U × V )
= Mor(sknW,U) × Mor(sknW,V )
= Mor(W, cosknU) × Mor(W, cosknV )
= Mor(W, cosknU × cosknV )

The lemma follows. □
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Lemma 19.13.018D Assume C has fibre products. Let U → V and W → V be mor-
phisms of n-truncated simplicial objects of the category C. Then

coskn(U ×V W ) = cosknU ×cosknV cosknW
whenever the left and right hand side exist.

Proof. Omitted, but very similar to the proof of Lemma 19.12 above. □

Lemma 19.14.08NJ Let C be a category with finite limits. Let X ∈ Ob(C). The functor
C/X → C commutes with the coskeleton functors coskk for k ≥ 1.

Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial
object X, then coskkU computed in C/X is the same as computed in C. This
follows for example from Categories, Lemma 16.2 because the categories (∆/[n])≤k
for k ≥ 1 and n ≥ k + 1 used in Lemma 19.2 are connected. Observe that we do
not need the categories for n ≤ k by Lemma 19.3 or Lemma 19.4. □

Lemma 19.15.018E The canonical map ∆[n] → cosk1sk1∆[n] is an isomorphism.

Proof. Consider a simplicial set U and a morphism f : U → ∆[n]. This is a rule
that associates to each u ∈ Ui a map fu : [i] → [n] in ∆. Furthermore, these
maps should have the property that fu ◦ φ = fU(φ)(u) for any φ : [j] → [i]. Denote
ϵij : [0] → [i] the map which maps 0 to j. Denote F : U0 → [n] the map u 7→ fu(0).
Then we see that

fu(j) = F (ϵij(u))
for all 0 ≤ j ≤ i and u ∈ Ui. In particular, if we know the function F then we know
the maps fu for all u ∈ Ui all i. Conversely, given a map F : U0 → [n], we can set
for any i, and any u ∈ Ui and any 0 ≤ j ≤ i

fu(j) = F (ϵij(u))
This does not in general define a morphism f of simplicial sets as above. Namely,
the condition is that all the maps fu are nondecreasing. This clearly is equivalent
to the condition that F (ϵij(u)) ≤ F (ϵij′(u)) whenever 0 ≤ j ≤ j′ ≤ i and u ∈ Ui.
But in this case the morphisms

ϵij , ϵ
i
j′ : [0] → [i]

both factor through the map ϵij,j′ : [1] → [i] defined by the rules 0 7→ j, 1 7→ j′. In
other words, it is enough to check the inequalities for i = 1 and u ∈ X1. In other
words, we have

Mor(U,∆[n]) = Mor(sk1U, sk1∆[n])
as desired. □

20. Augmentations

018F
Definition 20.1.018G Let C be a category. Let U be a simplicial object of C. An
augmentation ϵ : U → X of U towards an object X of C is a morphism from U into
the constant simplicial object X.

Lemma 20.2.018H Let C be a category. Let X ∈ Ob(C). Let U be a simplicial object
of C. To give an augmentation of U towards X is the same as giving a morphism
ϵ0 : U0 → X such that ϵ0 ◦ d1

0 = ϵ0 ◦ d1
1.
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Proof. Given a morphism ϵ : U → X we certainly obtain an ϵ0 as in the lemma.
Conversely, given ϵ0 as in the lemma, define ϵn : Un → X by choosing any morphism
α : [0] → [n] and taking ϵn = ϵ0 ◦ U(α). Namely, if β : [0] → [n] is another choice,
then there exists a morphism γ : [1] → [n] such that α and β both factor as
[0] → [1] → [n]. Hence the condition on ϵ0 shows that ϵn is well defined. Then it is
easy to show that (ϵn) : U → X is a morphism of simplicial objects. □

Lemma 20.3.018I Let C be a category with fibred products. Let f : Y → X be a
morphism of C. Let U be the simplicial object of C whose nth term is the (n+1)fold
fibred product Y ×X Y ×X . . .×X Y . See Example 3.5. For any simplicial object V
of C we have

MorSimp(C)(V,U) = MorSimp1(C)(sk1V, sk1U)
= {g0 : V0 → Y | f ◦ g0 ◦ d1

0 = f ◦ g0 ◦ d1
1}

In particular we have U = cosk1sk1U .

Proof. Suppose that g : sk1V → sk1U is a morphism of 1-truncated simplicial
objects. Then the diagram

V1

d1
0 //

d1
1

//

g1

��

V0

g0

��
Y ×X Y

pr1 //

pr0
// Y // X

is commutative, which proves that the relation shown in the lemma holds. We have
to show that, conversely, given a morphism g0 satisfying the relation f ◦ g0 ◦ d1

0 =
f ◦ g0 ◦ d1

1 we get a unique morphism of simplicial objects g : V → U . This is done
as follows. For any n ≥ 1 let gn,i = g0 ◦V ([0] → [n], 0 7→ i) : Vn → Y . The equality
above implies that f ◦ gn,i = f ◦ gn,i+1 because of the commutative diagram

[0]

0 7→0 ��

0 7→i

++[1] 0 7→i,1 7→i+1 // [n]

[0]

0 7→1
??

0 7→i+1

33

Hence we get (gn,0, . . . , gn,n) : Vn → Y ×X . . .×X Y = Un. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma
is equivalent to the first equality in the displayed formula of the lemma. □

Remark 20.4.018J Let C be a category with fibre products. Let V be a simplicial
object. Let ϵ : V → X be an augmentation. Let U be the simplicial object whose
nth term is the (n+ 1)st fibred product of V0 over X. By a simple combination of
Lemmas 20.2 and 20.3 we obtain a canonical morphism V → U .
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21. Left adjoints to the skeleton functors

018K In this section we construct a left adjoint im! of the skeleton functor skm in certain
cases. The adjointness formula is

MorSimpm(C)(U, skmV ) = MorSimp(C)(im!U, V ).
It turns out that this left adjoint exists when the category C has finite colimits.
We use a similar construction as in Section 12. Recall the category [n]/∆ of objects
under [n], see Categories, Example 2.14. Its objects are morphisms α : [n] → [k]
and its morphisms are commutative triangles. We let ([n]/∆)≤m denote the full
subcategory of [n]/∆ consisting of objects [n] → [k] with k ≤ m. Given a m-
truncated simplicial object U of C we define a functor

U(n) : ([n]/∆)opp≤m −→ C
by the rules

([n] → [k]) 7−→ Uk

ψ : ([n] → [k′]) → ([n] → [k]) 7−→ U(ψ) : Uk → Uk′

For a given morphism φ : [n] → [n′] of ∆ we have an associated functor
φ : ([n′]/∆)≤m −→ ([n]/∆)≤m

which maps α : [n′] → [k] to φ ◦ α : [n] → [k]. The composition U(n) ◦ φ is equal
to the functor U(n′).

Lemma 21.1.018L Let C be a category which has finite colimits. The functors im! exist
for all m. Let U be an m-truncated simplicial object of C. The simplicial object
im!U is described by the formula

(im!U)n = colim([n]/∆)opp
≤m

U(n)

and for φ : [n] → [n′] the map im!U(φ) comes from the identification U(n) ◦ φ =
U(n′) above via Categories, Lemma 14.8.

Proof. In this proof we denote im!U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness
property.
Let V be a simplicial object of C. Let γ : U → skmV be given. A morphism

colim([n]/∆)opp
≤m

U(n) → T

is given by a compatible system of morphisms fα : Uk → T where α : [n] → [k] with
k ≤ m. Certainly, we have such a system of morphisms by taking the compositions

Uk
γk−→ Vk

V (α)−−−→ Vn.

Hence we get an induced morphism (im!U)n → Vn. We leave it to the reader to see
that these form a morphism of simplicial objects γ′ : im!U → V .
Conversely, given a morphism γ′ : im!U → V we obtain a morphism γ : U → skmV
by setting γi : Ui → Vi equal to the composition

Ui
id[i]−−→ colim([i]/∆)opp

≤m
U(i) γ′

i−→ Vi

for 0 ≤ i ≤ n. We leave it to the reader to see that this is the inverse of the
construction above. □

https://stacks.math.columbia.edu/tag/018L
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Lemma 21.2.018M Let C be a category. Let U be an m-truncated simplicial object of
C. For any n ≤ m the colimit

colim([n]/∆)opp
≤m

U(n)

exists and is equal to Un.

Proof. This is so because the category ([n]/∆)≤m has an initial object, namely
id : [n] → [n]. □

Lemma 21.3.018N Let C be a category which has finite colimits. Let U be an m-
truncated simplicial object of C. The map U → skmim!U is an isomorphism.

Proof. Combine Lemmas 21.1 and 21.2. □

Lemma 21.4.018O If U is an m-truncated simplicial set and n > m then all n-simplices
of im!U are degenerate.

Proof. This can be seen from the construction of im!U in Lemma 21.1, but we can
also argue directly as follows. Write V = im!U . Let V ′ ⊂ V be the simplicial subset
with V ′

i = Vi for i ≤ m and all i simplices degenerate for i > m, see Lemma 18.4.
By the adjunction formula, since skmV ′ = U , there is an inverse to the injection
V ′ → V . Hence V ′ = V . □

Lemma 21.5.018P Let U be a simplicial set. Let n ≥ 0 be an integer. The morphism
in!sknU → U identifies in!sknU with the simplicial set U ′ ⊂ U defined in Lemma
18.4.

Proof. By Lemma 21.4 the only nondegenerate simplices of in!sknU are in degrees
≤ n. The map in!sknU → U is an isomorphism in degrees ≤ n. Combined we
conclude that the map in!sknU → U maps nondegenerate simplices to nondegen-
erate simplices and no two nondegenerate simplices have the same image. Hence
Lemma 18.3 applies. Thus in!sknU → U is injective. The result follows easily from
this. □

Remark 21.6.018Q In some texts the composite functor

Simp(C) skm−−→ Simpm(C) im!−−→ Simp(C)

is denoted skm. This makes sense for simplicial sets, because then Lemma 21.5
says that im!skmV is just the sub simplicial set of V consisting of all i-simplices of
V , i ≤ m and their degeneracies. In those texts it is also customary to denote the
composition

Simp(C) skm−−→ Simpm(C) coskm−−−−→ Simp(C)
by coskm.

Lemma 21.7.018R Let U ⊂ V be simplicial sets. Suppose n ≥ 0 and x ∈ Vn, x ̸∈ Un
are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj, z ̸∈ Uj for j > n is degenerate.
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Let ∆[n] → V be the unique morphism mapping the nondegenerate n-simplex of
∆[n] to x. In this case the diagram

∆[n] // V

i(n−1)!skn−1∆[n] //

OO

U

OO

is a pushout diagram.

Proof. Let us denote ∂∆[n] = i(n−1)!skn−1∆[n] for convenience. There is a natural
map U ⨿∂∆[n] ∆[n] → V . We have to show that it is bijective in degree j for all
j. This is clear for j ≤ n. Let j > n. The third condition means that any
z ∈ Vj , z ̸∈ Uj is a degenerate simplex, say z = sj−1

i (z′). Of course z′ ̸∈ Uj−1.
By induction it follows that z′ is a degeneracy of x. Thus we conclude that all
j-simplices of V are either in U or degeneracies of x. This implies that the map
U⨿∂∆[n]∆[n] → V is surjective. Note that a nondegenerate simplex of U⨿∂∆[n]∆[n]
is either the image of a nondegenerate simplex of U , or the image of the (unique)
nondegenerate n-simplex of ∆[n]. Since clearly x is nondegenerate we deduce that
U ⨿∂∆[n] ∆[n] → V maps nondegenerate simplices to nondegenerate simplices and
is injective on nondegenerate simplices. Hence it is injective, by Lemma 18.3. □

Lemma 21.8.018S Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all
n. Assume that U and V have finitely many nondegenerate simplices. Then there
exists a sequence of sub simplicial sets

U = W 0 ⊂ W 1 ⊂ W 2 ⊂ . . .W r = V

such that Lemma 21.7 applies to each of the inclusions W i ⊂ W i+1.

Proof. Let n be the smallest integer such that V has a nondegenerate simplex that
does not belong to U . Let x ∈ Vn, x ̸∈ Un be such a nondegenerate simplex. Let
W ⊂ V be the set of elements which are either in U , or are a (repeated) degeneracy
of x (in other words, are of the form V (φ)(x) with φ : [m] → [n] surjective). It is
easy to see that W is a simplicial set. The inclusion U ⊂ W satisfies the conditions
of Lemma 21.7. Moreover the number of nondegenerate simplices of V which are
not contained in W is exactly one less than the number of nondegenerate simplices
of V which are not contained in U . Hence we win by induction on this number. □

Lemma 21.9.018T Let A be an abelian category Let U be an m-truncated simplicial
object of A. For n > m we have N(im!U)n = 0.

Proof. Write V = im!U . Let V ′ ⊂ V be the simplicial subobject of V with V ′
i = Vi

for i ≤ m and N(V ′
i ) = 0 for i > m, see Lemma 18.9. By the adjunction formula,

since skmV ′ = U , there is an inverse to the injection V ′ → V . Hence V ′ = V . □

Lemma 21.10.018U Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The morphism in!sknU → U identifies in!sknU with the
simplicial subobject U ′ ⊂ U defined in Lemma 18.9.

Proof. By Lemma 21.9 we have N(in!sknU)i = 0 for i > n. The map in!sknU → U
is an isomorphism in degrees ≤ n, see Lemma 21.3. Combined we conclude that the
map in!sknU → U induces injective maps N(in!sknU)i → N(U)i for all i. Hence
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Lemma 18.7 applies. Thus in!sknU → U is injective. The result follows easily from
this. □

Here is another way to think about the coskeleton functor using the material above.

Lemma 21.11.018V Let C be a category with finite coproducts and finite limits. Let V
be a simplicial object of C. In this case

(cosknsknV )n+1 = Hom(in!skn∆[n+ 1], V )0.

Proof. By Lemma 13.4 the object on the left represents the functor which assigns
to X the first set of the following equalities

Mor(X × ∆[n+ 1], cosknsknV ) = Mor(X × skn∆[n+ 1], sknV )
= Mor(X × in!skn∆[n+ 1], V ).

The object on the right in the formula of the lemma is represented by the functor
which assigns to X the last set in the sequence of equalities. This proves the result.
In the sequence of equalities we have used that skn(X×∆[n+1]) = X×skn∆[n+1]
and that in!(X×skn∆[n+1]) = X×in!skn∆[n+1]. The first equality is obvious. For
any (possibly truncated) simplicial object W of C and any object X of C denote tem-
porarily MorC(X,W ) the (possibly truncated) simplicial set [n] 7→ MorC(X,Wn).
From the definitions it follows that Mor(U ×X,W ) = Mor(U,MorC(X,W )) for any
(possibly truncated) simplicial set U . Hence

Mor(X × in!skn∆[n+ 1],W ) = Mor(in!skn∆[n+ 1],MorC(X,W ))
= Mor(skn∆[n+ 1], skn MorC(X,W ))
= Mor(X × skn∆[n+ 1], sknW )
= Mor(in!(X × skn∆[n+ 1]),W ).

This proves the second equality used, and ends the proof of the lemma. □

22. Simplicial objects in abelian categories

018Y Recall that an abelian category is defined in Homology, Section 5.

Lemma 22.1.018Z Let A be an abelian category.
(1) The categories Simp(A) and CoSimp(A) are abelian.
(2) A morphism of (co)simplicial objects f : A → B is injective if and only if

each fn : An → Bn is injective.
(3) A morphism of (co)simplicial objects f : A → B is surjective if and only if

each fn : An → Bn is surjective.
(4) A sequence of (co)simplicial objects

A
f−→ B

g−→ C

is exact at B if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Pre-additivity is easy. A final object is given by Un = 0 in all degrees.
Existence of direct products we saw in Lemmas 6.2 and 9.2. Kernels and cokernels
are obtained by taking termwise kernels and cokernels. □
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For an object A of A and an integer k consider the k-truncated simplicial object U
with

(1) Ui = 0 for i < k,
(2) Uk = A,
(3) all morphisms U(φ) equal to zero, except U(id[k]) = idA.

Since A has both finite limits and finite colimits we see that both coskkU and ik!U
exist. We will describe both of these and the canonical map ik!U → coskkU .

Lemma 22.2.0190 With A, k and U as above, so Ui = 0, i < k and Uk = A.
(1) Given a k-truncated simplicial object V we have

Mor(U, V ) = {f : A → Vk | dki ◦ f = 0, i = 0, . . . , k}
and

Mor(V,U) = {f : Vk → A | f ◦ sk−1
i = 0, i = 0, . . . , k − 1}.

(2) The object ik!U has nth term equal to
⊕

αA where α runs over all surjective
morphisms α : [n] → [k].

(3) For any φ : [m] → [n] the map ik!U(φ) is described as the mapping
⊕

αA →⊕
α′ A which maps to component corresponding to α : [n] → [k] to zero if

α ◦ φ is not surjective and by the identity to the component corresponding
to α ◦ φ if it is surjective.

(4) The object coskkU has nth term equal to
⊕

β A, where β runs over all
injective morphisms β : [k] → [n].

(5) For any φ : [m] → [n] the map coskkU(φ) is described as the mapping⊕
β A →

⊕
β′ A which maps to component corresponding to β : [k] → [n]

to zero if β does not factor through φ and by the identity to each of the
components corresponding to β′ such that β = φ ◦ β′ if it does.

(6) The canonical map c : ik!U → coskkU in degree n has (α, β) coefficient
A → A equal to zero if α ◦ β is not the identity and equal to idA if it is.

(7) The canonical map c : ik!U → coskkU is injective.

Proof. The proof of (1) is left to the reader.
Let us take the rules of (2) and (3) as the definition of a simplicial object, call it
Ũ . We will show that it is an incarnation of ik!U . This will prove (2), (3) at the
same time. We have to show that given a morphism f : U → skkV there exists a
unique morphism f̃ : Ũ → V which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : A → Vk which maps into the
kernel of dki for all i. For any surjective α : [n] → [k] we set f̃α : A → Vn equal to
the composition f̃α = V (α) ◦ fk : A → Vn. We define f̃n : Ũn → Vn as the sum of
the f̃α over α : [n] → [k] surjective. Such a collection of f̃α defines a morphism of
simplicial objects if and only if for any φ : [m] → [n] the diagram⊕

α:[n]→[k] surjective A
f̃n

//

(3)
��

Vn

V (φ)
��⊕

α′:[m]→[k] surjective A
f̃m // Vm

is commutative. Choosing φ = α shows our choice of f̃α is uniquely determined by
fk. The commutativity in general may be checked for each summand of the left
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upper corner separately. It is clear for the summands corresponding to α where α◦φ
is surjective, because those get mapped by idA to the summand with α′ = α ◦ φ,
and we have f̃α′ = V (α′) ◦ fk = V (α ◦ φ) ◦ fk = V (φ) ◦ f̃α. For those where α ◦ φ
is not surjective, we have to show that V (φ) ◦ f̃α = 0. By definition this is equal
to V (φ) ◦ V (α) ◦ fk = V (α ◦φ) ◦ fk. Since α ◦φ is not surjective we can write it as
δki ◦ ψ, and we deduce that V (φ) ◦ V (α) ◦ fk = V (ψ) ◦ dki ◦ fk = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it
Ũ . We will show that it is an incarnation of coskkU . This will prove (4), (5) at the
same time. The argument is completely dual to the proof of (2), (3) above, but we
give it anyway. We have to show that given a morphism f : skkV → U there exists
a unique morphism f̃ : V → Ũ which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : Vk → A which is zero on the
image of sk−1

i for all i. For any injective β : [k] → [n] we set f̃β : Vn → A equal to
the composition f̃β = fk ◦ V (β) : Vn → A. We define f̃n : Vn → Ũn as the sum of
the f̃β over β : [k] → [n] injective. Such a collection of f̃β defines a morphism of
simplicial objects if and only if for any φ : [m] → [n] the diagram

Vn

V (φ)
��

f̃n

//⊕
β:[k]→[n] injective A

(5)
��

Vm
f̃m //⊕

β′:[k]→[m] injective A

is commutative. Choosing φ = β shows our choice of f̃β is uniquely determined by
fk. The commutativity in general may be checked for each summand of the right
lower corner separately. It is clear for the summands corresponding to β′ where φ◦β′

is injective, because these summands get mapped into by exactly the summand with
β = φ◦β′ and we have in that case f̃β′ ◦V (φ) = fk ◦V (β′)◦V (φ) = fk ◦V (β) = f̃β .
For those where φ ◦ β′ is not injective, we have to show that f̃β′ ◦ V (φ) = 0. By
definition this is equal to fk◦V (β′)◦V (φ) = fk◦V (φ◦β′). Since φ◦β′ is not injective
we can write it as ψ◦σk−1

i , and we deduce that fk◦V (β′)◦V (φ) = fk◦sk−1
i ◦V (ψ) = 0

see above.

The composition ik!U → coskkU is the unique map of simplicial objects which is
the identity on A = Uk = (ik!U)k = (coskkU)k. Hence it suffices to check that the
proposed rule defines a morphism of simplicial objects. To see this we have to show
that for any φ : [m] → [n] the diagram⊕

α:[n]→[k] surjective A

(3)
��

(6)
//⊕

β:[k]→[n] injective A

(5)
��⊕

α′:[m]→[k] surjective A
(6) //⊕

β′:[k]→[m] injective A

is commutative. Now we can think of this in terms of matrices filled with only
0’s and 1’s as follows: The matrix of (3) has a nonzero (α′, α) entry if and only
if α′ = α ◦ φ. Likewise the matrix of (5) has a nonzero (β′, β) entry if and only
if β = φ ◦ β′. The upper matrix of (6) has a nonzero (α, β) entry if and only if
α ◦ β = id[k]. Similarly for the lower matrix of (6). The commutativity of the
diagram then comes down to computing the (α, β′) entry for both compositions
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and seeing they are equal. This comes down to the following equality
#

{
β | β = φ ◦ β′ and α ◦ β = id[k]

}
= #

{
α′ | α′ = α ◦ φ and α′ ◦ β′ = id[k]

}
whose proof may safely be left to the reader.
Finally, we prove (7). This follows directly from Lemmas 18.7, 19.4, 21.3 and
21.9. □

Definition 22.3.0191 Let A be an abelian category. Let A be an object of A and let
k be an integer ≥ 0. The Eilenberg-Maclane object K(A, k) is given by the object
K(A, k) = ik!U which is described in Lemma 22.2 above.

Lemma 22.4.0192 Let A be an abelian category. Let A be an object of A and let k be
an integer ≥ 0. Consider the simplicial object E defined by the following rules

(1) En =
⊕

αA, where the sum is over α : [n] → [k + 1] whose image is either
[k] or [k + 1].

(2) Given φ : [m] → [n] the map En → Em maps the summand corresponding
to α via idA to the summand corresponding to α ◦ φ, provided Im(α ◦ φ) is
equal to [k] or [k + 1].

Then there exists a short exact sequence
0 → K(A, k) → E → K(A, k + 1) → 0

which is term by term split exact.

Proof. The maps K(A, k)n → En resp. En → K(A, k + 1)n are given by the
inclusion of direct sums, resp. projection of direct sums which is obvious from the
inclusions of index sets. It is clear that these are maps of simplicial objects. □

Lemma 22.5.0193 Let A be an abelian category. For any simplicial object V of A we
have

V = colimn in!sknV
where all the transition maps are injections.

Proof. This is true simply because each Vm is equal to (in!sknV )m as soon as
n ≥ m. See also Lemma 21.10 for the transition maps. □

23. Simplicial objects and chain complexes

0194 Let A be an abelian category. See Homology, Section 13 for conventions and nota-
tion regarding chain complexes. Let U be a simplicial object of A. The associated
chain complex s(U) of U , sometimes called the Moore complex, is the chain complex

. . . → U2 → U1 → U0 → 0 → 0 → . . .

with boundary maps dn : Un → Un−1 given by the formula

dn =
∑n

i=0
(−1)idni .

This is a complex because, by the relations listed in Remark 3.3, we have

dn ◦ dn+1 = (
∑n

i=0
(−1)idni ) ◦ (

∑n+1

j=0
(−1)jdn+1

j )

=
∑

0≤i<j≤n+1
(−1)i+jdnj−1 ◦ dn+1

i +
∑

n≥i≥j≥0
(−1)i+jdni ◦ dn+1

j

= 0.
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https://stacks.math.columbia.edu/tag/0192
https://stacks.math.columbia.edu/tag/0193
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The signs cancel! We denote the associated chain complex s(U). Clearly, the
construction is functorial and hence defines a functor

s : Simp(A) −→ Ch≥0(A).
Thus we have the confusing but correct formula s(U)n = Un.

Lemma 23.1.0195 The functor s is exact.

Proof. Clear from Lemma 22.1. □

Lemma 23.2.0196 Let A be an abelian category. Let A be an object of A and let k be
an integer. Let E be the object described in Lemma 22.4. Then the complex s(E)
is acyclic.

Proof. For a morphism α : [n] → [k + 1] we define α′ : [n+ 1] → [k + 1] to be the
map such that α′|[n] = α and α′(n+1) = k+1. Note that if the image of α is [k] or
[k+1], then the image of α′ is [k+1]. Consider the family of maps hn : En → En+1
which maps the summand corresponding to α to the summand corresponding to α′

via the identity on A. Let us compute dn+1 ◦ hn − hn−1 ◦ dn. We will first do this
in case the category A is the category of abelian groups. Let us use the notation
xα to indicate the element x ∈ A in the summand of En corresponding to the map
α occurring in the index set. Let us also adopt the convention that xα designates
the zero element of En whenever Im(α) is not [k] or [k+1]. With these conventions
we see that

dn+1(hn(xα)) =
∑n+1

i=0
(−1)ixα′◦δn+1

i

and
hn−1(dn(xα)) =

∑n

i=0
(−1)ix(α◦δn

i
)′

It is easy to see that α′ ◦ δn+1
i = (α ◦ δni )′ for i = 0, . . . , n. It is also easy to see that

α′ ◦ δn+1
n+1 = α. Thus we see that

(dn+1 ◦ hn − hn−1 ◦ dn)(xα) = (−1)n+1xα

These identities continue to hold if A is any abelian category because they hold
in the simplicial abelian group [n] 7→ Hom(A,En); details left to the reader. We
conclude that the identity map on E is homotopic to zero, with homotopy given by
the system of maps h′

n = (−1)n+1hn : En → En+1. Hence we see that E is acyclic,
for example by Homology, Lemma 13.5. □

Lemma 23.3.0197 Let A be an abelian category. Let A be an object of A and let k be
an integer. We have Hi(s(K(A, k))) = A if i = k and 0 else.

Proof. First, let us prove this if k = 0. In this case we have K(A, 0)n = A for
all n. Furthermore, all the maps in this simplicial abelian group are idA, in other
words K(A, 0) is the constant simplicial object with value A. The boundary maps
dn =

∑n
i=0(−1)iidA = 0 if n odd and = idA if n is even. Thus s(K(A, 0)) looks

like this
. . . → A

0−→ A
1−→ A

0−→ A → 0
and the result is clear.
Next, we prove the result for all k by induction. Given the result for k consider the
short exact sequence

0 → K(A, k) → E → K(A, k + 1) → 0

https://stacks.math.columbia.edu/tag/0195
https://stacks.math.columbia.edu/tag/0196
https://stacks.math.columbia.edu/tag/0197
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from Lemma 22.4. By Lemma 22.1 the associated sequence of chain complexes is
exact. By Lemma 23.2 we see that s(E) is acyclic. Hence the result for k+1 follows
from the long exact sequence of homology, see Homology, Lemma 13.6. □

There is a second chain complex we can associate to a simplicial object of A.
Recall that by Lemma 18.6 any simplicial object U of A is canonically split with
N(Um) =

⋂m−1
i=0 Ker(dmi ). We define the normalized chain complex N(U) to be the

chain complex
. . . → N(U2) → N(U1) → N(U0) → 0 → 0 → . . .

with boundary map dn : N(Un) → N(Un−1) given by the restriction of (−1)ndnn to
the direct summand N(Un) of Un. Note that Lemma 18.8 implies that dnn(N(Un)) ⊂
N(Un−1). It is a complex because dnn◦dn+1

n+1 = dnn◦dn+1
n and dn+1

n is zero on N(Un+1)
by definition. Thus we obtain a second functor

N : Simp(A) −→ Ch≥0(A).
Here is the reason for the sign in the differential.

Lemma 23.4.0198 Let A be an abelian category. Let U be a simplicial object of A. The
canonical map N(Un) → Un gives rise to a morphism of complexes N(U) → s(U).

Proof. This is clear because the differential on s(U)n = Un is
∑

(−1)idni and
the maps dni , i < n are zero on N(Un), whereas the restriction of (−1)ndnn is the
boundary map of N(U) by definition. □

Lemma 23.5.0199 Let A be an abelian category. Let A be an object of A and let k be
an integer. We have N(K(A, k))i = A if i = k and 0 else.

Proof. It is clear that N(K(A, k))i = 0 when i < k because K(A, k)i = 0 in that
case. It is clear that N(K(A, k))k = A since K(A, k)k−1 = 0 and K(A, k)k = A.
For i > k we have N(K(A, k))i = 0 by Lemma 21.9 and the definition of K(A, k),
see Definition 22.3. □

Lemma 23.6.019A Let A be an abelian category. Let U be a simplicial object of A.
The canonical morphism of chain complexes N(U) → s(U) is split. In fact,

s(U) = N(U) ⊕D(U)
for some complex D(U). The construction U 7→ D(U) is functorial.

Proof. Define D(U)n to be the image of⊕
φ:[n]→[m] surjective, m<n

N(Um)
⊕

U(φ)
−−−−−→ Un

which is a subobject of Un complementary to N(Un) according to Lemma 18.6
and Definition 18.1. We show that D(U) is a subcomplex. Pick a surjective map
φ : [n] → [m] with m < n and consider the composition

N(Um) U(φ)−−−→ Un
dn−→ Un−1.

This composition is the sum of the maps

N(Um) U(φ◦δn
i )−−−−−→ Un−1

with sign (−1)i, i = 0, . . . , n.

https://stacks.math.columbia.edu/tag/0198
https://stacks.math.columbia.edu/tag/0199
https://stacks.math.columbia.edu/tag/019A
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First we will prove by ascending induction on m, 0 ≤ m < n− 1 that all the maps
U(φ ◦ δni ) map N(Um) into D(U)n−1. (The case m = n − 1 is treated below.)
Whenever the map φ ◦ δni : [n − 1] → [m] is surjective then the image of N(Um)
under U(φ ◦ δni ) is contained in D(U)n−1 by definition. If φ ◦ δni : [n − 1] → [m]
is not surjective, set j = φ(i) and observe that i is the unique index whose image
under φ is j. We may write φ ◦ δni = δmj ◦ ψ ◦ δni for some ψ : [n − 1] → [m − 1].
Hence U(φ ◦ δni ) = U(ψ ◦ δni ) ◦ dmj which is zero on N(Um) unless j = m. If j = m,
then dmm(N(Um)) ⊂ N(Um−1) and hence U(φ◦δni )(N(Um)) ⊂ U(ψ ◦δni )(N(Um−1))
and we win by induction hypothesis.
To finish proving that D(U) is a subcomplex we still have to deal with the compo-
sition

N(Um) U(φ)−−−→ Un
dn−→ Un−1.

in case m = n− 1. In this case φ = σn−1
j for some 0 ≤ j ≤ n− 1 and U(φ) = sn−1

j .
Thus the composition is given by the sum∑

(−1)idni ◦ sn−1
j

Recall from Remark 3.3 that dnj ◦sn−1
j = dnj+1◦sn−1

j = id and these drop out because
the corresponding terms have opposite signs. The map dnn ◦ sn−1

j , if j < n − 1,
is equal to sn−2

j ◦ dn−1
n−1. Since dn−1

n−1 maps N(Un−1) into N(Un−2), we see that
the image dnn(sn−1

j (N(Un−1)) is contained in sn−2
j (N(Un−2)) which is contained in

D(Un−1) by definition. For all other combinations of (i, j) we have either dni ◦sn−1
j =

sn−2
j−1 ◦ dn−1

i (if i < j), or dni ◦ sn−1
j = sn−2

j ◦ dn−1
i−1 (if n > i > j + 1) and in these

cases the map is zero because of the definition of N(Un−1). □

Remark 23.7.0FKI In the situation of Lemma 23.6 the subcomplex D(U) ⊂ s(U) can
also be defined as the subcomplex with terms

D(U)n = Im
(⊕

φ:[n]→[m] surjective, m<n
Um

⊕
U(φ)

−−−−−→ Un

)
Namely, since Um is the direct sum of the subobject N(Um) and the images of
N(Uk) for surjections [m] → [k] with k < m this is clearly the same as the def-
inition of D(U)n given in the proof of Lemma 23.6. Thus we see that if U is a
simplicial abelian group, then elements of D(U)n are exactly the sums of degener-
ate n-simplices.

Lemma 23.8.019B The functor N is exact.

Proof. By Lemma 23.1 and the functorial decomposition of Lemma 23.6. □

Lemma 23.9.019C Let A be an abelian category. Let V be a simplicial object of A.
The canonical morphism of chain complexes N(V ) → s(V ) is a quasi-isomorphism.
In other words, the complex D(V ) of Lemma 23.6 is acyclic.

Proof. Note that the result holds for K(A, k) for any object A and any k ≥ 0,
by Lemmas 23.3 and 23.5. Consider the hypothesis IHn,m: for all V such that
Vj = 0 for j ≤ m and all i ≤ n the map N(V ) → s(V ) induces an isomorphism
Hi(N(V )) → Hi(s(V )).
To start of the induction, note that IHn,n is trivially true, because in that case
N(V )n = 0 and s(V )n = 0.

https://stacks.math.columbia.edu/tag/0FKI
https://stacks.math.columbia.edu/tag/019B
https://stacks.math.columbia.edu/tag/019C
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Assume IHn,m, with m ≤ n. Pick a simplicial object V such that Vj = 0 for j < m.
By Lemma 22.2 and Definition 22.3 we have K(Vm,m) = im!skmV . By Lemma
21.10 the natural morphism

K(Vm,m) = im!skmV → V

is injective. Thus we get a short exact sequence

0 → K(Vm,m) → V → W → 0

for some W with Wi = 0 for i = 0, . . . ,m. This short exact sequence induces a
morphism of short exact sequence of associated complexes

0 // N(K(Vm,m)) //

��

N(V ) //

��

N(W ) //

��

0

0 // s(K(Vm,m)) // s(V ) // s(W ) // 0

see Lemmas 23.1 and 23.8. Hence we deduce the result for V from the result on
the ends. □

24. Dold-Kan

019D In this section we prove the Dold-Kan theorem relating simplicial objects in an
abelian category with chain complexes.

Lemma 24.1.019E Let A be an abelian category. The functor N is faithful, and reflects
isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 18.6.
The statement on reflecting injections, surjections, and isomorphisms follows from
Lemma 18.7. □

Lemma 24.2.019F Let A and B be abelian categories. Let N : A → B, and S : B → A
be functors. Suppose that

(1) the functors S and N are exact,
(2) there is an isomorphism g : N ◦ S → idB to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.

Then S and N are quasi-inverse equivalences of categories.

Proof. It suffices to construct a functorial isomorphism S(N(A)) ∼= A. To do this
choose B and an isomorphism f : A → S(B). Consider the map

f−1 ◦ gS(B) ◦ S(N(f)) : S(N(A)) → S(N(S(B))) → S(B) → A.

It is easy to show this does not depend on the choice of f,B and gives the desired
isomorphism S ◦N → idA. □

Theorem 24.3.019G Let A be an abelian category. The functor N induces an equiva-
lence of categories

N : Simp(A) −→ Ch≥0(A)

https://stacks.math.columbia.edu/tag/019E
https://stacks.math.columbia.edu/tag/019F
https://stacks.math.columbia.edu/tag/019G
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Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma 22.4 (except that we throw in a sign to get the boundaries right).
Let A• be a chain complex with boundary maps dA,n : An → An−1. For each n ≥ 0
denote

In =
{
α : [n] → {0, 1, 2, . . .} | Im(α) = [k] for some k

}
.

For α ∈ In we denote k(α) the unique integer such that Im(α) = [k]. We define a
simplicial object S(A•) as follows:

(1) S(A•)n =
⊕

α∈In
Ak(α), which we will write as

⊕
α∈In

Ak(α) · α to suggest
thinking of “α” as a basis vector for the summand corresponding to it,

(2) given φ : [m] → [n] we define S(A•)(φ) by its restriction to the direct
summand Ak(α) · α of S(A•)n as follows
(a) α ◦ φ ̸∈ Im then we set it equal to zero,
(b) α ◦ φ ∈ Im but k(α ◦ φ) not equal to either k(α) or k(α) − 1 then we

set it equal to zero as well,
(c) if α ◦φ ∈ Im and k(α ◦φ) = k(α) then we use the identity map to the

summand Ak(α◦φ) · (α ◦ φ) of S(A•)m, and
(d) if α ◦ φ ∈ Im and k(α ◦ φ) = k(α) − 1 then we use (−1)k(α)dA,k(α) to

the summand Ak(α◦φ) · (α ◦ φ) of S(A•)m.
Let us show that S(A•) is a simplicial object of A. To do this, assume we have
maps φ : [m] → [n] and ψ : [n] → [p]. We will show that S(A•)(φ) ◦ S(A•)(ψ) =
S(A•)(ψ ◦ φ). Choose β ∈ Ip and set α = β ◦ ψ and γ = α ◦ φ viewed as maps
α : [n] → {0, 1, 2, . . .} and γ : [m] → {0, 1, 2, . . .}. Picture

[m]
φ

//

γ

��

[n]
ψ

//

α

��

[p]

β

��
Im(γ) // Im(α) // [k(β)]

We will show that the restriction of the maps S(A•)(φ)◦S(A•)(ψ) and S(A•)(ψ◦φ).
to the summand Ak(β) · β agree. There are several cases to consider

(1) Say α ̸∈ In so the restriction of S(A•)(ψ) to Ak(β) · β is zero. Then either
γ ̸∈ Im or we have [k(γ)] = Im(γ) ⊂ Im(α) ⊂ [k(β)] and the subset Im(α)
of [k(β)] has a gap so k(γ) < k(β) − 1. In both cases we see that the
restriction of S(A•)(ψ ◦ φ) to Ak(β) · β is zero as well.

(2) Say α ∈ In and k(α) < k(β) − 1 so the restriction of S(A•)(ψ) to Ak(β) · β
is zero. Then either γ ̸∈ Im or we have [k(γ)] ⊂ [k(α)] ⊂ [k(β)] and it
follows that k(γ) < k(β) − 1. In both cases we see that the restriction of
S(A•)(ψ ◦ φ) to Ak(β) · β is zero as well.

(3) Say α ∈ In and k(α) = k(β) so the restriction of S(A•)(ψ) to Ak(β) ·β is the
identity map from Ak(β) ·β to Ak(α) ·α. In this case because Im(α) = [k(β)]
the rule describing the restriction of S(A•)(ψ ◦φ) to the summand Ak(β) ·β
is exactly the same as the rule describing the restriction of S(A•)(φ) to the
summand Ak(α) · α and hence agreement holds.

(4) Say α ∈ In and k(α) = k(β) − 1 so the restriction of S(A•)(ψ) to Ak(β) · β
is given by (−1)k(β)dA,k(β) to Ak(α) · α. Subcases
(a) If γ ̸∈ Im, then both the restriction of S(A•)(ψ ◦ φ) to the summand

Ak(β) ·β and the restriction of S(A•)(φ) to the summand Ak(α) ·α are
zero and we get agreement.
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(b) If γ ∈ Im but k(γ) < k(α) − 1, then again both restrictions are zero
and we get agreement.

(c) If γ ∈ Im and k(γ) = k(α) then Im(γ) = Im(α). In this case the
restriction of S(A•)(ψ ◦ φ) to the summand Ak(β) · β is given by
(−1)k(β)dA,k(β) to Ak(γ) · γ and the restriction of S(A•)(φ) to the
summand Ak(α) · α is the identity map Ak(α) · α → Ak(γ) · γ. Hence
agreement holds.

(d) Finally, if γ ∈ Im and k(γ) = k(α)−1 then the restriction of S(A•)(φ)
to the summand Ak(α) ·α is given by (−1)k(α)dA,k(α) as a map Ak(α) ·
α → Ak(β) · β. Since A• is a complex we see that the composition
Ak(β) · β → Ak(α) · α → Ak(γ) · γ is zero which matches what we get
for the restriction of S(A•)(ψ ◦ φ) to the summand Ak(β) · β because
k(γ) = k(β) − 2 < k(β) − 1.

Thus S(A•) is a simplicial object of A.
Let us construct an isomorphism A• → N(S(A•)) functorial in A•. Recall that

S(A•) = N(S(A•)) ⊕D(S(A•))
as chain complexes by Lemma 23.6. On the other hand it follows from Remark 23.7
and the construction of S(A•) that

D(S(A•))n =
⊕

α∈In, k(α)<n
Ak(α) · α ⊂

⊕
α∈In

Ak(α) · α

However, if α ∈ In then we have k(α) ≥ n ⇔ α = id[n] : [n] → [n]. Thus the
summand An · id[n] of S(A•)n is a complement to the summand D(S(A•))n. All
the maps dni : S(A•)n → S(A•)n restrict to zero on the summand An · id[n] except
for dnn which produces (−1)ndA,n from An · id[n] to An−1 · id[n−1]. We conclude that
An · id[n] must be equal to the summand N(S(A•))n and moreover the restriction
of the differential dn =

∑
(−1)idni : S(A•)n → S(A•)n−1 to the summand An · id[n]

gives what we want!
Finally, we have to show that S ◦ N is isomorphic to the identity functor. Let U
be a simplicial object of A. Then we can define an obvious map

S(N(U))n =
⊕

α∈In

N(U)k(α) · α −→ Un

by using U(α) : N(U)k(α) → Un on the summand corresponding to α. By Definition
18.1 this is an isomorphism. To finish the proof we have to show that this is
compatible with the maps in the simplicial objects. Thus let φ : [m] → [n] and let
α ∈ In. Set β = α ◦ φ. Picture

[m]
φ

//

β

��

[n]

α

��
Im(β) // [k(α)]

There are several cases to consider
(1) Say β ̸∈ Im. Then there exists an index 0 ≤ j < k(α) with j ̸∈ Im(α ◦ φ)

and hence we can choose a factorization α ◦ φ = δ
k(α)
j ◦ ψ for some ψ :

[m] → [k(α)−1]. It follows that U(φ) is zero on the image of the summand
N(U)k(α) · α because U(φ) ◦ U(α) = U(α ◦ φ) = U(ψ) ◦ dk(α)

j is zero on
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N(U)k(α) by construction of N . This matches our rule for S(N(U)) given
above.

(2) Say β ∈ Im and k(β) < k(α) − 1. Here we argue exactly as in case (1) with
j = k(α) − 1.

(3) Say β ∈ Im and k(β) = k(α). Here the summand N(U)k(α) · α is mapped
by the identity to the summand N(U)k(β) ·β. This is the same as the effect
of U(φ) since in this case U(φ) ◦ U(α) = U(β).

(4) Say β ∈ Im and k(β) = k(α)−1. Here we use the differential (−1)k(α)dN(U),k(α)
to map the summand N(U)k(α) · α to the summand N(U)k(β) · β. On the
other hand, since Im(β) = [k(β)] in this case we get α ◦ φ = δ

k(α)
k(α) ◦ β.

Thus we see that U(φ) composed with the restriction of U(α) to N(U)k(α)

is equal to U(β) precomposed with d
k(α)
k(α) restricted to N(U)k(α). Since

dN(U),k(α) =
∑

(−1)idk(α)
i and since dk(α)

i restricts to zero on N(U)k(α) for
i < k(α) we see that equality holds.

This finishes the proof of the theorem. □

25. Dold-Kan for cosimplicial objects

019H Let A be an abelian category. According to Homology, Lemma 5.2 also Aopp is
abelian. It follows formally from the definitions that

CoSimp(A) = Simp(Aopp)opp.
Thus Dold-Kan (Theorem 24.3) implies that CoSimp(A) is equivalent to the cate-
gory Ch≥0(Aopp)opp. And it follows formally from the definitions that

CoCh≥0(A) = Ch≥0(Aopp)opp.
Putting these arrows together we obtain an equivalence

Q : CoSimp(A) −→ CoCh≥0(A).
In this section we describe Q.
First we define the cochain complex s(U) associated to a cosimplicial object U .
It is the cochain complex with terms zero in negative degrees, and s(U)n = Un
for n ≥ 0. As differentials we use the maps dn : s(U)n → s(U)n+1 defined by
dn =

∑n+1
i=0 (−1)iδn+1

i . In other words the complex s(U) looks like

0 // U0
δ1

0−δ1
1 // U1

δ2
0−δ2

1+δ2
2 // U2 // . . .

This is sometimes also called the Moore complex associated to U .
On the other hand, given a cosimplicial object U of A set Q(U)0 = U0 and

Q(U)n = Coker(
⊕n−1

i=0 Un−1
δn

i // Un ).

The differential dn : Q(U)n → Q(U)n+1 is induced by (−1)n+1δn+1
n+1 , i.e., by fitting

the morphism (−1)n+1δn+1
n+1 into a commutative diagram

Un
(−1)n+1δn+1

n+1

//

��

Un+1

��
Q(U)n dn // Q(U)n+1.
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We leave it to the reader to show that this diagram makes sense, i.e., that the image
of δni maps into the kernel of the right vertical arrow for i = 0, . . . , n− 1. (This is
dual to Lemma 18.8.) Thus our cochain complex Q(U) looks like this

0 → Q(U)0 → Q(U)1 → Q(U)2 → . . .

This is called the normalized cochain complex associated to U . The dual to the
Dold-Kan Theorem 24.3 is the following.

Lemma 25.1.019I Let A be an abelian category.
(1) The functor s : CoSimp(A) → CoCh≥0(A) is exact.
(2) The maps s(U)n → Q(U)n define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition s(U) = D(U) ⊕Q(U) in

CoCh≥0(A).
(4) The functor Q is exact.
(5) The morphism of complexes s(U) → Q(U) is a quasi-isomorphism.
(6) The functor U 7→ Q(U)• defines an equivalence of categories CoSimp(A) →

CoCh≥0(A).

Proof. Omitted. But the results are the exact dual statements to Lemmas 23.1,
23.4, 23.6, 23.8, 23.9, and Theorem 24.3. □

26. Homotopies

019J Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms
e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0] → [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set ∆[1]k is finite. Hence, if the category C has finite coproducts,
then we can form the product

U × ∆[1]
for any simplicial object U of C, see Definition 13.1. Note that ∆[0] has the property
that ∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U × ∆[0] = U . Thus e0, e1
above gives rise to morphisms

e0, e1 : U → U × ∆[1].

Definition 26.1.019K Let C be a category having finite coproducts. Suppose that U
and V are two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism
h : U × ∆[1] −→ V

is a homotopy from a to b if a = h ◦ e0 and b = h ◦ e1.
(2) We say the morphisms a and b are homotopic or are in the same homotopy

class if there exists a sequence of morphisms a = a0, a1, . . . , an = b from U
to V such that for each i = 1, . . . , n there either exists a homotopy from
ai−1 to ai or there exists a homotopy from ai to ai−1.

The relation “there is a homotopy from a to b” is in general not transitive or
symmetric; we will see it is reflexive in Example 26.3. Of course, “being homotopic”
is an equivalence relation on the set Mor(U, V ) and it is the equivalence relation
generated by the relation “there is a homotopy from a to b” . It turns out we can
define homotopies between pairs of maps of simplicial objects in any category. We
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will do this in Remark 26.4 after we work out in some detail what it means to have
a morphism h : U × ∆[1] → V .
Let C be a category with finite coproducts. Let U , V be simplicial objects of C. Let
a, b : U → V be morphisms. Further, suppose that h : U ×∆[1] → V is a homotopy
from a to b. For every n ≥ 0 let us write

∆[1]n = {αn0 , . . . , αnn+1}
where αni : [n] → [1] is the map such that

αni (j) =
{

0 if j < i
1 if j ≥ i

Thus
hn : (U × ∆[1])n =

∐
Un · αni −→ Vn

has a component hn,i : Un → Vn which is the restriction to the summand corre-
sponding to αni for all i = 0, . . . , n+ 1.

Lemma 26.2.019L In the situation above, we have the following relations:
(1) We have hn,0 = bn and hn,n+1 = an.
(2) We have dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j.
(3) We have dnj ◦ hn,i = hn−1,i ◦ dnj for i ≤ j.
(4) We have snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j.
(5) We have snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a system of maps hn,i satisfying the properties listed above, then
these define a morphism h which is a homotopy from a to b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 2.4
that to give a morphism of simplicial objects is the same as giving a sequence of
morphisms hn commuting with all dnj and snj . □

Example 26.3.07KA Suppose in the situation above a = b. Then there is a trivial
homotopy from a to b, namely the one with hn,i = an = bn.

Remark 26.4.019M Let C be any category (no assumptions whatsoever). Let U and
V be simplicial objects of C. Let a, b : U → V be morphisms of simplicial objects
of C. A homotopy from a to b is given by morphisms1 hn,i : Un → Vn, for n ≥ 0,
i = 0, . . . , n + 1 satisfying the relations of Lemma 26.2. As in Definition 26.1 we
say the morphisms a and b are homotopic if there exists a sequence of morphisms
a = a0, a1, . . . , an = b from U to V such that for each i = 1, . . . , n there either exists
a homotopy from ai−1 to ai or there exists a homotopy from ai to ai−1. Clearly,
if F : C → C′ is any functor and {hn,i} is a homotopy from a to b, then {F (hn,i)}
is a homotopy from F (a) to F (b). Similarly, if a and b are homotopic, then F (a)
and F (b) are homotopic. Since the lemma says that the newer notion is the same
as the old one in case finite coproduct exist, we deduce in particular that functors
preserve the original notion whenever both categories have finite coproducts.

Remark 26.5.08RJ Let C be any category. Suppose two morphisms a, a′ : U → V of
simplicial objects are homotopic. Then for any morphism b : V → W the two maps
b◦a, b◦a′ : U → W are homotopic. Similarly, for any morphism c : X → U the two

1In the literature, often the maps hn+1,i ◦ si : Un → Vn+1 are used instead of the maps hn,i.
Of course the relations these maps satisfy are different from the ones in Lemma 26.2.
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maps a◦c, a′ ◦c : X → V are homotopic. In fact the maps b◦a◦c, b◦a′ ◦c : X → W
are homotopic. Namely, if the maps hn,i : Un → Vn define a homotopy from a to a′

then the maps b◦hn,i ◦ c define a homotopy from b◦a◦ c to b◦a′ ◦ c. In this way we
see that we obtain a new category hSimp(C) with the same objects as Simp(C) but
whose morphisms are homotopy classes of of morphisms of Simp(C). Thus there is
a canonical functor

Simp(C) −→ hSimp(C)
which is essentially surjective and surjective on sets of morphisms.

Definition 26.6.019N Let U and V be two simplicial objects of a category C. We
say a morphism a : U → V is a homotopy equivalence if there exists a morphism
b : V → U such that a◦ b is homotopic to idV and b◦a is homotopic to idU . We say
U and V are homotopy equivalent if there exists a homotopy equivalence a : U → V .

Example 26.7.08Q3 The simplicial set ∆[m] is homotopy equivalent to ∆[0]. Namely,
consider the unique morphism f : ∆[m] → ∆[0] and the morphism g : ∆[0] → ∆[m]
given by the inclusion of the last 0-simplex of ∆[m]. We have f ◦ g = id. We will
give a homotopy h : ∆[m] × ∆[1] → ∆[m] from id∆[m] to g ◦ f . Namely h is given
by the maps

Mor∆([n], [m]) × Mor∆([n], [1]) → Mor∆([n], [m])

which send (φ, α) to

k 7→
{
φ(k) if α(k) = 0
m if α(k) = 1

Note that this only works because we took g to be the inclusion of the last 0-simplex.
If we took g to be the inclusion of the first 0-simplex we could find a homotopy from
g ◦ f to id∆[m]. This is an illustration of the asymmetry inherent in homotopies in
the category of simplicial sets.

The following lemma says that U × ∆[1] is homotopy equivalent to U .

Lemma 26.8.019O Let C be a category with finite coproducts. Let U be a simplicial
object of C. Consider the maps e1, e0 : U → U × ∆[1], and π : U × ∆[1] → U , see
Lemma 13.3.

(1) We have π ◦ e1 = π ◦ e0 = idU , and
(2) The morphisms idU×∆[1], and e0 ◦ π are homotopic.
(3) The morphisms idU×∆[1], and e1 ◦ π are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets ∆[1] × ∆[1] −→ ∆[1] which in degree n assigns to a pair (β1, β2), βi : [n] → [1]
the morphism β : [n] → [1] defined by the rule

β(i) = max{β1(i), β2(i)}.

It is a morphism of simplicial sets, because the action ∆[1](φ) : ∆[1]n → ∆[1]m of
φ : [m] → [n] is by precomposing. Clearly, using notation from Section 26, we have
β = β1 if β2 = αn0 and β = αnn+1 if β2 = αnn+1. This implies easily that the induced
morphism

U × ∆[1] × ∆[1] −→ U × ∆[1]
of Lemma 13.3 is a homotopy from idU×∆[1] to e0 ◦ π. Similarly for e1 ◦ π (use
minimum instead of maximum). □
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Lemma 26.9.019P Let f : Y → X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example
3.5 starting with f . The morphism U → U which in each degree is the self map
(s◦f)n+1 of Y ×X . . .×X Y given by s◦f on each factor is homotopic to the identity
on U . In particular, U is homotopy equivalent to the constant simplicial object X.

Proof. Set g0 = idY and g1 = s ◦ f . We use the morphisms
Y ×X . . .×X Y × Mor([n], [1]) → Y ×X . . .×X Y

(y0, . . . , yn) × α 7→ (gα(0)(y0), . . . , gα(n)(yn))
where we use the functor of points point of view to define the maps. Another way to
say this is to say that hn,0 = id, hn,n+1 = (s◦f)n+1 and hn,i = idi+1

Y × (s◦f)n+1−i.
We leave it to the reader to show that these satisfy the relations of Lemma 26.2.
Hence they define the desired homotopy. See also Remark 26.4 which shows that
we do not need to assume anything else on the category C. □

Lemma 26.10.08Q4 Let C be a category. Let T be a set. For t ∈ T let Xt, Yt be
simplicial objects of C. Assume X =

∏
t∈T Xt and Y =

∏
t∈T Yt exist.

(1) If Xt and Yt are homotopy equivalent for all t ∈ T and T is finite, then X
and Y are homotopy equivalent.

For t ∈ T let at, bt : Xt → Yt be morphisms. Set a =
∏
at : X → Y and

b =
∏
bt : X → Y .

(2) If there exists a homotopy from at to bt for all t ∈ T , then there exists a
homotopy from a to b.

(3) If T is finite and at, bt : Xt → Yt for t ∈ T are homotopic, then a and b are
homotopic.

Proof. If ht = (ht,n,i) is a homotopy from at to bt (see Remark 26.4), then h =
(
∏
t ht,n,i) is a homotopy from

∏
at to

∏
bt. This proves (2).

Proof of (3). Choose t ∈ T . There exists an integer n ≥ 0 and a chain at =
at,0, at,1, . . . , at,n = bt such that for every 1 ≤ i ≤ n either there is a homotopy
from at,i−1 to at,i or there is a homotopy from at,i to at,i−1. If n = 0, then we pick
another t. (We’re done if at = bt for all t ∈ T .) So assume n > 0. By Example 26.3
there are is a homotopy from bt′ to bt′ for all t′ ∈ T \ {t}. Thus by (2) there is a
homotopy from at,n−1 ×

∏
t′ bt′ to b or there is a homotopy from b to at,n−1 ×

∏
t′ bt′ .

In this way we can decrease n by 1. This proves (3).
Part (1) follows from part (3) and the definitions. □

27. Homotopies in abelian categories

019Q Let A be an additive category. Let U , V be simplicial objects of A. Let a, b : U → V
be morphisms. Further, suppose that h : U × ∆[1] → V is a homotopy from a to b.
Let us prove the two morphisms of chain complexes s(a), s(b) : s(U) −→ s(V ) are
homotopic in the sense of Homology, Section 13. Using the notation introduced in
Section 26 we define

s(h)n : Un −→ Vn+1

by the formula

(27.0.1)019R s(h)n =
∑n

i=0
(−1)i+1hn+1,i+1 ◦ sni .
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Let us compute dn+1 ◦ s(h)n + s(h)n−1 ◦ dn. We first compute

dn+1 ◦ s(h)n =
∑n+1

j=0

∑n

i=0
(−1)j+i+1dn+1

j ◦ hn+1,i+1 ◦ sni

=
∑

1≤i+1≤j≤n+1
(−1)j+i+1hn,i+1 ◦ dn+1

j ◦ sni

+
∑

n≥i≥j≥0
(−1)i+j+1hn,i ◦ dn+1

j ◦ sni

=
∑

1≤i+1<j≤n+1
(−1)j+i+1hn,i+1 ◦ sn−1

i ◦ dnj−1

+
∑

1≤i+1=j≤n+1
(−1)j+i+1hn,i+1

+
∑

n≥i=j≥0
(−1)i+j+1hn,i

+
∑

n≥i>j≥0
(−1)i+j+1hn,i ◦ sn−1

i−1 ◦ dnj

We leave it to the reader to see that the first and the last of the four sums cancel
exactly against all the terms of

s(h)n−1 ◦ dn =
n−1∑
i=0

n∑
j=0

(−1)i+1+jhn,i+1 ◦ sn−1
i ◦ dnj .

Hence we obtain

dn+1 ◦ s(h)n + s(h)n−1 ◦ dn =
n+1∑
j=1

(−1)2jhn,j +
n∑
i=0

(−1)2i+1hn,i

= hn,n+1 − hn,0

= an − bn

as desired.

Lemma 27.1.019S Let A be an additive category. Let a, b : U → V be morphisms
of simplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V )
are homotopic maps of chain complexes. If A is abelian, then also N(a), N(b) :
N(U) → N(V ) are homotopic maps of chain complexes.

Proof. We may choose a sequence a = a0, a1, . . . , an = b of morphisms from U to
V such that for each i = 1, . . . , n either there is a homotopy from ai to ai−1 or there
is a homotopy from ai−1 to ai. The calculation above shows that in this case either
s(ai) is homotopic to s(ai−1) as a map of chain complexes or s(ai−1) is homotopic
to s(ai) as a map of chain complexes. Of course, these things are equivalent and
moreover being homotopic is an equivalence relation on the set of maps of chain
complexes, see Homology, Section 13. This proves that s(a) and s(b) are homotopic
as maps of chain complexes.
Next, we turn to N(a) and N(b). It follows from Lemma 23.6 that N(a), N(b) are
compositions

N(U) → s(U) → s(V ) → N(V )
where we use s(a), s(b) in the middle. Hence the assertion follows from Homology,
Lemma 13.1. □

Lemma 27.2.019T Let A be an additive category. Let a : U → V be a morphism of
simplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V ) is
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a homotopy equivalence of chain complexes. If in addition A is abelian, then also
N(a) : N(U) → N(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 27.1 above. □

28. Homotopies and cosimplicial objects

019U Let C be a category with finite products. Let V be a cosimplicial object and consider
Hom(∆[1], V ), see Section 14. The morphisms e0, e1 : ∆[0] → ∆[1] produce two
morphisms e0, e1 : Hom(∆[1], V ) → V .

Definition 28.1.019W Let C be a category having finite products. Let U and V be
two cosimplicial objects of C. Let a, b : U → V be two morphisms of cosimplicial
objects of C.

(1) We say a morphism

h : U −→ Hom(∆[1], V )

such that a = e0 ◦ h and b = e1 ◦ h is a homotopy from a to b.
(2) We say a and b are homotopic or are in the same homotopy class if there

exists a sequence a = a0, a1, . . . , an = b of morphisms from U to V such
that for each i = 1, . . . , n there either exists a homotopy from ai to ai−1 or
there exists a homotopy from ai−1 to ai.

This is dual to the notion we introduced for simplicial objects in Section 26. To
explain this, consider a homotopy h : U → Hom(∆[1], V ) from a to b as in the
definition. Recall that ∆[1]n is a finite set. The degree n component of h is a
morphism

hn = (hn,α) : U −→ Hom(∆[1], V )n =
∏

α∈∆[1]n

Vn

The morphisms hn,α : Un → Vn of C have the property that for every morphism
f : [n] → [m] of ∆ we have

(28.1.1)07KB hm,α ◦ U(f) = V (f) ◦ hn,α◦f

Moreover, the condition that a = e0 ◦ h means that an = hn,0:[n]→[1] where 0 :
[n] → [1] is the constant map with value 0. Similarly, the condition that b = e1 ◦ h
means that bn = hn,1:[n]→[1] where 1 : [n] → [1] is the constant map with value
1. Conversly, given a family of morphisms {hn,α} such that (28.1.1) holds for all
morphisms f of ∆ and such that an = hn,0:[n]→[1] and bn = hn,1:[n]→[1] for all n ≥ 0,
then we obtain a homotopy h from a to b by setting h =

∏
α∈∆[1]n

hn,α.

Remark 28.2.0FKJ Let C be any category (no assumptions whatsoever). Let U and
V be cosimplicial objects of C. Let a, b : U → V be morphisms of cosimplicial
objects of C. A homotopy from a to b is given by morphisms hn,α : Un → Vn,
for n ≥ 0, α ∈ ∆[1]n satisfying (28.1.1) for all morphisms f of ∆ and such that
an = hn,0:[n]→[1] and bn = hn,1:[n]→[1] for all n ≥ 0. As in Definition 28.1 we
say the morphisms a and b are homotopic if there exists a sequence of morphisms
a = a0, a1, . . . , an = b from U to V such that for each i = 1, . . . , n there either exists
a homotopy from ai−1 to ai or there exists a homotopy from ai to ai−1. Clearly,
if F : C → C′ is any functor and {hn,i} is a homotopy from a to b, then {F (hn,i)}
is a homotopy from F (a) to F (b). Similarly, if a and b are homotopic, then F (a)
and F (b) are homotopic. This new notion is the same as the old one in case finite
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products exist. We deduce in particular that functors preserve the original notion
whenever both categories have finite products.

Lemma 28.3.019X Let C be a category. Suppose that U and V are two cosimplicial
objects of C. Let a, b : U → V be morphisms of cosimplicial objects. Recall that
U , V correspond to simplicial objects U ′, V ′ of Copp. Moreover a, b correspond to
morphisms a′, b′ : V ′ → U ′. The following are equivalent

(1) There exists a homotopy h = {hn,α} from a to b as in Remark 28.2.
(2) There exists a homotopy h = {hn,i} from a′ to b′ as in Remark 26.4.

Thus a is homotopic to b as in Remark 28.2 if and only if a′ is homotopic to b′ as
in Remark 26.4.

Proof. In case C has finite products, then Copp has finite coproducts and we may
use Definitions 28.1 and 26.1 instead of Remarks 28.2 and 26.4. In this case h : U →
Hom(∆[1], V ) is the same as a morphism h′ : Hom(∆[1], V )′ → U ′. Since products
and coproducts get switched too, it is immediate that (Hom(∆[1], V ))′ = V ′ ×∆[1].
Moreover, the “primed” version of the morphisms e0, e1 : Hom(∆[1], V ) → V are
the morphisms e0, e1 : V ′ → ∆[1] × V . Thus e0 ◦ h = a translates into h′ ◦ e0 = a′

and similarly e1 ◦ h = b translates into h′ ◦ e1 = b′. This proves the lemma in this
case.

In the general case, one needs to translate the relations given by (28.1.1) into the
relations given in Lemma 26.2. We omit the details.

The final assertion is formal from the equivalence of (1) and (2). □

Lemma 28.4.019Y Let C, C′,D,D′ be categories. With terminology as in Remarks 28.2
and 26.4.

(1) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → D′

be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U) → F (V ) of simplicial objects.

(2) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → C′

be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U) → F (V ) of cosimplicial objects.

(3) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → C
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V ) → F (U) of cosimplicial objects.

(4) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → D
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V ) → F (U) of simplicial objects.

Proof. By Lemma 28.3 above, we can turn F into a covariant functor between a
pair of categories, and we have to show that the functor preserves homotopic pairs
of maps. This is explained in Remark 26.4. □

Lemma 28.5.019Z Let f : X → Y be a morphism of a category C with pushouts.
Assume there is a morphism s : Y → X with s◦f = idX . Consider the cosimplicial
object U constructed in Example 5.5 starting with f . The morphism U → U which
in each degree is the self map of Y ⨿X . . . ⨿X Y given by f ◦ s on each factor is
homotopic to the identity on U . In particular, U is homotopy equivalent to the
constant cosimplicial object X.
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Proof. This lemma is dual to Lemma 26.9. Hence this lemma follows on applying
Lemma 28.3. □

Lemma 28.6.01A0 Let A be an additive category. Let a, b : U → V be morphisms of
cosimplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ) are
homotopic maps of cochain complexes. If in addition A is abelian, then Q(a), Q(b) :
Q(U) → Q(V ) are homotopic maps of cochain complexes.

Proof. Let (−)′ : A → Aopp be the contravariant functor A 7→ A. By Lemma
28.5 the maps a′ and b′ are homotopic. By Lemma 27.1 we see that s(a′) and
s(b′) are homotopic maps of chain complexes. Since s(a′) = (s(a))′ and s(b′) =
(s(b))′ we conclude that also s(a) and s(b) are homotopic by applying the additive
contravariant functor (−)′′ : Aopp → A. The result for the Q-complexes follows in
the same manner using that Q(U)′ = N(U ′). □

Lemma 28.7.0FKK Let A be an additive category. Let a : U → V be a morphism of
cosimplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V )
is a homotopy equivalence of chain complexes. If in addition A is abelian, then also
Q(a) : Q(U) → Q(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 28.6 above. □

29. More homotopies in abelian categories

01A1 Let A be an abelian category. In this section we show that a homotopy between
morphisms in Ch≥0(A) always comes from a morphism U × ∆[1] → V in the
category of simplicial objects. In some sense this will provide a converse to Lemma
27.1. We first develop some material on homotopies between morphisms of chain
complexes.

Lemma 29.1.01A2 Let A be an abelian category. Let A be a chain complex. Consider
the covariant functor

B 7−→ {(a, b, h) | a, b : A → B and h a homotopy between a, b}

There exists a chain complex ⋄A such that MorCh(A)(⋄A,−) is isomorphic to the
displayed functor. The construction A 7→ ⋄A is functorial.

Proof. We set ⋄An = An ⊕An ⊕An−1, and we define d⋄A,n by the matrix

d⋄A,n =

dA,n 0 idAn−1

0 dA,n −idAn−1

0 0 −dA,n−1

 : An ⊕An ⊕An−1 → An−1 ⊕An−1 ⊕An−2

If A is the category of abelian groups, and (x, y, z) ∈ An ⊕ An ⊕ An−1 then
d⋄A,n(x, y, z) = (dn(x) + z, dn(y) − z,−dn−1(z)). It is easy to verify that d2 = 0.
Clearly, there are two maps ⋄a, ⋄b : A → ⋄A (first summand and second summand),
and a map ⋄A → A[−1] which give a short exact sequence

0 → A⊕A → ⋄A → A[−1] → 0

which is termwise split. Moreover, there is a sequence of maps ⋄hn : An → ⋄An+1,
namely the identity from An to the summand An of ⋄An+1, such that ⋄h is a
homotopy between ⋄a and ⋄b.
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We conclude that any morphism f : ⋄A → B gives rise to a triple (a, b, h) by setting
a = f ◦ ⋄a, b = f ◦ ⋄b and hn = fn+1 ◦ ⋄hn. Conversely, given a triple (a, b, h) we
get a morphism f : ⋄A → B by taking

fn = (an, bn, hn−1).
To see that this is a morphism of chain complexes you have to do a calculation.
We only do this in case A is the category of abelian groups: Say (x, y, z) ∈ ⋄An =
An ⊕An ⊕An−1. Then
fn−1(dn(x, y, z)) = fn−1(dn(x) + z, dn(y) − z,−dn−1(z))

= an(dn(x)) + an(z) + bn(dn(y)) − bn(z) − hn−2(dn−1(z))
and

dn(fn(x, y, z) = dn(an(x) + bn(y) + hn−1(z))
= dn(an(x)) + dn(bn(y)) + dn(hn−1(z))

which are the same by definition of a homotopy. □

Note that the extension
0 → A⊕A → ⋄A → A[−1] → 0

comes with sections of the morphisms ⋄An → A[−1]n with the property that the
associated morphism δ : A[−1] → (A⊕ A)[−1], see Homology, Lemma 14.4 equals
the morphism (1,−1) : A[−1] → A[−1] ⊕A[−1].

Lemma 29.2.01A3 Let A be an abelian category. Let
0 → A⊕A → B → C → 0

be a short exact sequence of chain complexes of A. Suppose given in addition
morphisms sn : Cn → Bn splitting the associated short exact sequence in degree
n. Let δ(s) : C → (A ⊕ A)[−1] = A[−1] ⊕ A[−1] be the associated morphism
of complexes, see Homology, Lemma 14.4. If δ(s) factors through the morphism
(1,−1) : A[−1] → A[−1] ⊕A[−1], then there is a unique morphism B → ⋄A fitting
into a commutative diagram

0 // A⊕A

��

// B //

��

C

��

// 0

0 // A⊕A // ⋄A // A[−1] // 0

where the vertical maps are compatible with the splittings sn and the splittings of
⋄An → A[−1]n as well.

Proof. Denote (pn, qn) : Bn → An ⊕ An the morphism πn of Homology, Lemma
14.4. Also write (a, b) : A ⊕ A → B, and r : B → C for the maps in the short
exact sequence. Write the factorization of δ(s) as δ(s) = (1,−1) ◦ f . This means
that pn−1 ◦ dB,n ◦ sn = fn, and qn−1 ◦ dB,n ◦ sn = −fn, and Set Bn → ⋄An =
An ⊕An ⊕An−1 equal to (pn, qn, fn ◦ rn).
Now we have to check that this actually defines a morphism of complexes. We will
only do this in the case of abelian groups. Pick x ∈ Bn. Then x = an(x1)+bn(x2)+
sn(x3) and it suffices to show that our definition commutes with differential for each
term separately. For the term an(x1) we have (pn, qn, fn ◦ rn)(an(x1)) = (x1, 0, 0)

https://stacks.math.columbia.edu/tag/01A3
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and the result is obvious. Similarly for the term bn(x2). For the term sn(x3) we
have

(pn, qn, fn ◦ rn)(dn(sn(x3))) = (pn, qn, fn ◦ rn)(
an(fn(x3)) − bn(fn(x3)) + sn(dn(x3)))

= (fn(x3),−fn(x3), fn(dn(x3)))

by definition of fn. And

dn(pn, qn, fn ◦ rn)(sn(x3)) = dn(0, 0, fn(x3))
= (fn(x3),−fn(x3), dA[−1],n(fn(x3)))

The result follows as f is a morphism of complexes. □

Lemma 29.3.01A4 Let A be an abelian category. Let U , V be simplicial objects of
A. Let a, b : U → V be a pair of morphisms. Assume the corresponding maps
of chain complexes N(a), N(b) : N(U) → N(V ) are homotopic by a homotopy
{Nn : N(U)n → N(V )n+1}. Then there exists a homotopy from a to b as in
Definition 26.1. Moreover, one can choose the homotopy h : U × ∆[1] → V such
that Nn = N(h)n where N(h) is the homotopy coming from h as in Section 27.

Proof. Let (⋄N(U), ⋄a, ⋄b, ⋄h) be as in Lemma 29.1 and its proof. By that lemma
there exists a morphism ⋄N(U) → N(V ) representing the triple (N(a), N(b), {Nn}).
We will show there exists a morphism ψ : N(U × ∆[1]) → ⋄N(U) such that ⋄a =
ψ ◦N(e0), and ⋄b = ψ ◦N(e1). Moreover, we will show that the homotopy between
N(e0), N(e1) : N(U) → N(U × ∆[1]) coming from (27.0.1) and Lemma 27.1 with
h = idU×∆[1] is mapped via ψ to the canonical homotopy ⋄h between the two maps
⋄a, ⋄b : N(U) → ⋄N(U). Certainly this will imply the lemma.

Note that N : Simp(A) → Ch≥0(A) as a functor is a direct summand of the functor
s : Simp(A) → Ch≥0(A). Also, the functor ⋄ is compatible with direct sums. Thus
it suffices instead to construct a morphism Ψ : s(U × ∆[1]) → ⋄s(U) with the
corresponding properties. This is what we do below.

By Definition 26.1 the morphisms e0 : U → U × ∆[1] and e1 : U → U × ∆[1] are
homotopic with homotopy idU×∆[1]. By Lemma 27.1 we get an explicit homotopy
{hn : s(U)n → s(U × ∆[1])n+1} between the morphisms of chain complexes s(e0) :
s(U) → s(U × ∆[1]) and s(e1) : s(U) → s(U × ∆[1]). By Lemma 29.2 above we get
a corresponding morphism

Φ : ⋄s(U) → s(U × ∆[1])

According to the construction, Φn restricted to the summand s(U)[−1]n = s(U)n−1
of ⋄s(U)n is equal to hn−1. And

hn−1 =
∑n−1

i=0
(−1)i+1sni · αni+1 : Un−1 →

⊕
j
Un · αnj .

with obvious notation.

On the other hand, the morphisms ei : U → U × ∆[1] induce a morphism (e0, e1) :
U ⊕ U → U × ∆[1]. Denote W the cokernel. Note that, if we write (U × ∆[1])n =⊕

α:[n]→[1] Un · α, then we may identify Wn =
⊕n

i=1 Un · αni with αni as in Section

https://stacks.math.columbia.edu/tag/01A4
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26. We have a commutative diagram

0 // U ⊕ U

(1,1)
%%

// U × ∆[1]

π

��

// W // 0

U

This implies we have a similar commutative diagram after applying the functor s.
Next, we choose the splittings σn : s(W )n → s(U×∆[1])n by mapping the summand
Un ·αni ⊂ Wn via (−1, 1) to the summands Un ·αn0 ⊕Un ·αni ⊂ (U×∆[1])n. Note that
s(π)n ◦ σn = 0. It follows that (1, 1) ◦ δ(σ)n = 0. Hence δ(σ) factors as in Lemma
29.2. By that lemma we obtain a canonical morphism Ψ : s(U × ∆[1]) → ⋄s(U).

To compute Ψ we first compute the morphism δ(σ) : s(W ) → s(U)[−1] ⊕ s(U)[−1].
According to Homology, Lemma 14.4 and its proof, to do this we have compute

ds(U×δ[1]),n ◦ σn − σn−1 ◦ ds(W ),n

and write it as a morphism into Un−1 ·αn−1
0 ⊕Un−1 ·αn−1

n . We only do this in case
A is the category of abelian groups. We use the short hand notation xα for x ∈ Un
to denote the element x in the summand Un · α of (U × ∆[1])n. Recall that

ds(U×δ[1]),n =
∑n

i=0
(−1)idni

where dni maps the summand Un ·α to the summand Un−1 ·(α◦δni ) via the morphism
dni of the simplicial object U . In terms of the notation above this means

ds(U×δ[1]),n(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i

Starting with xα ∈ Wn, in other words α = αnj for some j ∈ {1, . . . , n}, we see that
σn(xα) = xα − xαn

0
and hence

(ds(U×δ[1]),n ◦ σn)(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i
−

∑n

i=0
(−1)i(dni (x))αn

0 ◦δn
i

To compute ds(W ),n(xα), we have to omit all terms where α ◦ δni = αn−1
0 , αn−1

n .
Hence we get

(σn−1 ◦ ds(W ),n)(xα) =∑
i=0,...,n and α◦δn

i
̸=αn−1

0 or αn−1
n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Clearly the difference of the two terms is the sum∑

i=0,...,n and α◦δn
i

=αn−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Of course, if α ◦ δni = αn−1

0 then the term drops out. Recall that α = αnj for some
j ∈ {1, . . . , n}. The only way αnj ◦δni = αn−1

n is if j = n and i = n. Thus we actually
get 0 unless j = n and in that case we get (−1)n(dnn(x))αn−1

n
− (−1)n(dnn(x))αn−1

0
.

In other words, we conclude the morphism

δ(σ)n : Wn → (s(U)[−1] ⊕ s(U)[−1])n = Un−1 ⊕ Un−1

is zero on all summands except Un · αnn and on that summand it is equal to
((−1)ndnn,−(−1)ndnn). (Namely, the first summand of the two corresponds to the
factor with αn−1

n because that is the map [n − 1] → [1] which maps everybody to
0, and hence corresponds to e0.)
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We obtain a canonical diagram

0 // s(U) ⊕ s(U) //

��

⋄s(U) //

Φ
��

s(U)[−1] //

��

0

0 // s(U) ⊕ s(U) //

��

s(U × ∆[1]) //

Ψ
��

s(W ) //

��

0

0 // s(U) ⊕ s(U) // ⋄s(U) // s(U)[−1] // 0

We claim that Φ ◦ Ψ is the identity. To see this it is enough to prove that the
composition of Φ and δ(σ) as a map s(U)[−1] → s(W ) → s(U)[−1]⊕s(U)[−1] is the
identity in the first factor and minus identity in the second. By the computations
above it is ((−1)ndn0 ,−(−1)ndn0 ) ◦ (−1)nsnn = (1,−1) as desired. □

30. Trivial Kan fibrations

08NK Recall that for n ≥ 0 the simplicial set ∆[n] is given by the rule [k] 7→ Mor∆([k], [n]),
see Example 11.2. Recall that ∆[n] has a unique nondegenerate n-simplex and all
nondegenerate simplices are faces of this n-simplex. In fact, the nondegenerate
simplices of ∆[n] correspond exactly to injective morphisms [k] → [n], which we
may identify with subsets of [n]. Moreover, recall that Mor(∆[n], X) = Xn for any
simplicial set X (Lemma 11.3). We set

∂∆[n] = i(n−1)!skn−1∆[n]

and we call it the boundary of ∆[n]. From Lemma 21.5 we see that ∂∆[n] ⊂ ∆[n]
is the simplicial subset having the same nondegenerate simplices in degrees ≤ n− 1
but not containing the nondegenerate n-simplex.

Definition 30.1.08NL A map X → Y of simplicial sets is called a trivial Kan fibration
if X0 → Y0 is surjective and for all n ≥ 1 and any commutative solid diagram

∂∆[n] //

��

X

��
∆[n] //

<<

Y

a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.

Lemma 30.2.08NM Let f : X → Y be a trivial Kan fibration of simplicial sets. For
any solid commutative diagram

Z
b
//

��

X

��
W

a //

>>

Y

of simplicial sets with Z → W (termwise) injective a dotted arrow exists making
the diagram commute.

https://stacks.math.columbia.edu/tag/08NL
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Proof. Suppose that Z ̸= W . Let n be the smallest integer such that Zn ̸= Wn.
Let x ∈ Wn, x ̸∈ Zn. Denote Z ′ ⊂ W the simplicial subset containing Z, x, and all
degeneracies of x. Let φ : ∆[n] → Z ′ be the morphism corresponding to x (Lemma
11.3). Then φ|∂∆[n] maps into Z as all the nondegenerate simplices of ∂∆[n] end
up in Z. By assumption we can extend b ◦ φ|∂∆[n] to β : ∆[n] → X. By Lemma
21.7 the simplicial set Z ′ is the pushout of ∆[n] and Z along ∂∆[n]. Hence b and
β define a morphism b′ : Z ′ → X. In other words, we have extended the morphism
b to a bigger simplicial subset of Z.

The proof is finished by an application of Zorn’s lemma (omitted). □

Lemma 30.3.08NN Let f : X → Y be a trivial Kan fibration of simplicial sets. Let
Y ′ → Y be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a trivial Kan
fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. □

Lemma 30.4.08NP The composition of two trivial Kan fibrations is a trivial Kan
fibration.

Proof. Omitted. □

Lemma 30.5.08NQ Let . . . → U2 → U1 → U0 be a sequence of trivial Kan fibrations.
Let U = limU t defined by taking Un = limU tn. Then U → U0 is a trivial Kan
fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. □

Lemma 30.6.08NR Let Xi → Yi be a set of trivial Kan fibrations. Then
∏
Xi →

∏
Yi

is a trivial Kan fibration.

Proof. Omitted. □

Lemma 30.7.08Q5 A filtered colimit of trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories,
Section 19. □

Lemma 30.8.08NS Let f : X → Y be a trivial Kan fibration of simplicial sets. Then
f is a homotopy equivalence.

Proof. By Lemma 30.2 we can choose an right inverse g : Y → X to f . Consider
the diagram

∂∆[1] ×X

��

// X

��
∆[1] ×X //

::

Y

Here the top horizontal arrow is given by idX and g ◦ f where we use that (∂∆[1] ×
X)n = Xn ⨿ Xn for all n ≥ 0. The bottom horizontal arrow is given by the map
∆[1] → ∆[0] and f : X → Y . The diagram commutes as f ◦ g ◦ f = f . By Lemma
30.2 we can fill in the dotted arrow and we win. □

https://stacks.math.columbia.edu/tag/08NN
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31. Kan fibrations

08NT Let n, k be integers with 0 ≤ k ≤ n and 1 ≤ n. Let σ0, . . . , σn be the n + 1 faces
of the unique nondegenerate n-simplex σ of ∆[n], i.e., σi = diσ. We let

Λk[n] ⊂ ∆[n]
be the kth horn of the n-simplex ∆[n]. It is the simplicial subset of ∆[n] generated
by σ0, . . . , σ̂k, . . . , σn. In other words, the image of the displayed inclusion contains
all the nondegenerate simplices of ∆[n] except for σ and σk.

Definition 31.1.08NU A map X → Y of simplicial sets is called a Kan fibration if for
all k, n with 1 ≤ n, 0 ≤ k ≤ n and any commutative solid diagram

Λk[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute. A Kan complex is a simplicial
set X such that X → ∗ is a Kan fibration, where ∗ is the constant simplicial set on
a singleton.

Note that Λk[n] is always nonempty. Thus a morphism from the empty simplicial
set to any simplicial set is always a Kan fibration. It follows from Lemma 30.2 that
a trivial Kan fibration is a Kan fibration.

Lemma 31.2.08NV Let f : X → Y be a Kan fibration of simplicial sets. Let Y ′ → Y
be a morphism of simplicial sets. Then X ×Y Y

′ → Y ′ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. □

Lemma 31.3.08NW The composition of two Kan fibrations is a Kan fibration.

Proof. Omitted. □

Lemma 31.4.08NX Let . . . → U2 → U1 → U0 be a sequence of Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. □

Lemma 31.5.08NY Let Xi → Yi be a set of Kan fibrations. Then
∏
Xi →

∏
Yi is a

Kan fibration.

Proof. Omitted. □

The following lemma is due to J.C. Moore, see [Moo55].

Lemma 31.6.08NZ Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof
in the reference mentioned above. Using the terminology as explained in the intro-
duction to this section, suppose f : Λk[n] → X is a morphism from a horn. Set
xi = f(σi) ∈ Xn−1 for i = 0, . . . , k̂, . . . , n. This means that for i < j we have
dixj = dj−1xi whenever i, j ̸= k. We have to find an x ∈ Xn such that xi = dix

for i = 0, . . . , k̂, . . . , n.

https://stacks.math.columbia.edu/tag/08NU
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We first prove there exists a u ∈ Xn such that diu = xi for i < k. This is trivial for
k = 0. If k > 0, one defines by induction an element ur ∈ Xn such that diur = xi
for 0 ≤ i ≤ r. Start with u0 = s0x0. If r < k − 1, we set

yr = sr+1((dr+1u
r)−1xr+1), ur+1 = uryr.

An easy calculation shows that diyr = 1 (unit element of the group Xn−1) for i ≤ r
and dr+1y

r = (dr+1u
r)−1xr+1. It follows that diur+1 = xi for i ≤ r + 1. Finally,

take u = uk−1 to get u as promised.
Next we prove, by induction on the integer r, 0 ≤ r ≤ n−k, there exists a xr ∈ Xn

such that
dix

r = xi for i < k and i > n− r.

Start with x0 = u for r = 0. Having defined xr for r ≤ n− k − 1 we set
zr = sn−r−1((dn−rx

r)−1xn−r), xr+1 = xrzr

A simple calculation, using the given relations, shows that dizr = 1 for i < k and
i > n − r and that dn−r(zr) = (dn−rx

r)−1xn−r. It follows that dixr+1 = xi for
i < k and i > n− r − 1. Finally, we take x = xn−k which finishes the proof. □

Lemma 31.7.08P0 Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

Λk[n]
a
//

��

X

��
∆[n] b //

==

Y

as in Definition 31.1. The map a corresponds to x0, . . . , x̂k, . . . , xn ∈ Xn−1 sat-
isfying dixj = dj−1xi for i < j, i, j ̸= k. The map b corresponds to an element
y ∈ Yn such that diy = f(xi) for i ̸= k. Our task is to produce an x ∈ Xn such
that dix = xi for i ̸= k and f(x) = y.
Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y− f(x) and xi by xi − dix for i ̸= k. Then we see that we may assume y = 0.
In particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y
by 0. In this case the statement become Lemma 31.6. □

Lemma 31.8.08P1 Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective and induces a quasi-isomorphism on associated chain
complexes. Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

∂∆[n]
a
//

��

X

��
∆[n] b //

<<

Y

as in Definition 30.1. The map a corresponds to x0, . . . , xn ∈ Xn−1 satisfying
dixj = dj−1xi for i < j. The map b corresponds to an element y ∈ Yn such that
diy = f(xi). Our task is to produce an x ∈ Xn such that dix = xi and f(x) = y.

https://stacks.math.columbia.edu/tag/08P0
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Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y − f(x) and xi by xi − dix. Then we see that we may assume y = 0. In
particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y by 0.
This works, because by Homology, Lemma 13.6 the homology of the chain complex
associated to Ker(f) is zero and hence Ker(f) → 0 induces a quasi-isomorphism on
associated chain complexes.

Since X is a Kan complex (Lemma 31.6) we can find x ∈ Xn with dix = xi
for i = 0, . . . , n − 1. After replacing xi by xi − dix for i = 0, . . . , n we may
assume that x0 = x1 = . . . = xn−1 = 0. In this case we see that dixn = 0 for
i = 0, . . . , n − 1. Thus xn ∈ N(X)n−1 and lies in the kernel of the differential
N(X)n−1 → N(X)n−2. Here N(X) is the normalized chain complex associated to
X, see Section 23. Since N(X) is quasi-isomorphic to s(X) (Lemma 23.9) and thus
acyclic we find x ∈ N(Xn) whose differential is xn. This x answers the question
posed by the lemma and we are done. □

Lemma 31.9.08P2 Let f : X → Y be a map of simplicial abelian groups. If f is
a homotopy equivalence of simplicial sets, then f induces a quasi-isomorphism of
associated chain complexes.

Proof. In this proof we will write Hn(Z) = Hn(s(Z)) = Hn(N(Z)) when Z is a
simplicial abelian group, with s and N as in Section 23. Let Z[X] denote the free
abelian group on X viewed as a simplicial set and similarly for Z[Y ]. Consider the
commutative diagram

Z[X]
g
//

��

Z[Y ]

��
X

f // Y

of simplicial abelian groups. Since taking the free abelian group on a set is a
functor, we see that the horizontal arrow is a homotopy equivalence of simplicial
abelian groups, see Lemma 28.4. By Lemma 27.2 we see that Hn(g) : Hn(Z[X]) →
Hn(Z[Y ]) is bijective for all n ≥ 0.

Let ξ ∈ Hn(Y ). By definition of N(Y ) we can represent ξ by an element y ∈ N(Yn)
whose boundary is zero. This means y ∈ Yn with dn0 (y) = . . . = dnn−1(y) = 0
because y ∈ N(Yn) and dnn(y) = 0 because the boundary of y is zero. Denote
0n ∈ Yn the zero element. Then we see that

ỹ = [y] − [0n] ∈ (Z[Y ])n

is an element with dn0 (ỹ) = . . . = dnn−1(ỹ) = 0 and dnn(ỹ) = 0. Thus ỹ is in N(Z[Y ])n
has boundary 0, i.e., ỹ determines a class ξ̃ ∈ Hn(Z[Y ]) mapping to ξ. Because
Hn(Z[X]) → Hn(Z[Y ]) is bijective we can lift ξ̃ to a class in Hn(Z[X]). Looking at
the commutative diagram above we see that ξ is in the image of Hn(X) → Hn(Y ).

Let ξ ∈ Hn(X) be an element mapping to zero in Hn(Y ). Exactly as in the previous
parapgraph we can represent ξ by an element x ∈ N(Xn) whose boundary is zero,
i.e., dn0 (x) = . . . = dnn−1(x) = dnn(x) = 0. In particular, we see that [x] − [0n] is an
element of N(Z[X])n whose boundary is zero, whence defines a lift ξ̃ ∈ Hn(Z[x]) of
ξ. The fact that ξ maps to zero in Hn(Y ) means there exists a y ∈ N(Yn+1) whose

https://stacks.math.columbia.edu/tag/08P2


SIMPLICIAL METHODS 60

boundary is fn(x). This means dn+1
0 (y) = . . . = dn+1

n (y) = 0 and dn+1
n+1(y) = f(x).

However, this means exactly that z = [y] − [0n+1] is in N(Z[y])n+1 and
g([x] − [0n]) = [f(x)] − [0n] = boundary of z

This proves that ξ̃ maps to zero in Hn(Z[y]). As Hn(Z[X]) → Hn(Z[Y ]) is bijective
we conclude ξ̃ = 0 and hence ξ = 0. □

32. A homotopy equivalence

01A5 Suppose that A, B are sets, and that f : A → B is a map. Consider the associated
map of simplicial sets

cosk0(A)
(
. . . A×A×A

��

//
//
//
A×A

��

//
//oo

oo
A

)
��

oo

cosk0(B)
(
. . . B ×B ×B

//
//
//
B ×B

//
//oo

oo
B

)
oo

See Example 19.1. The case n = 0 of the following lemma says that this map of
simplicial sets is a trivial Kan fibration if f is surjective.
Lemma 32.1.01A6 Let f : V → U be a morphism of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The map fi : Vi → Ui is a bijection for i < n.
(2) The map fn : Vn → Un is a surjection.
(3) The canonical morphism U → cosknsknU is an isomorphism.
(4) The canonical morphism V → cosknsknV is an isomorphism.

Then f is a trivial Kan fibration.
Proof. Consider a solid diagram

∂∆[k] //

��

V

��
∆[k] //

==

U

as in Definition 30.1. Let x ∈ Uk be the k-simplex corresponding to the lower
horizontal arrow. If k ≤ n then the dotted arrow is the one corresponding to a
lift y ∈ Vk of x; the diagram will commute as the other nondegenerate simplices of
∆[k] are in degrees < k where f is an isomorphism. If k > n, then by conditions
(3) and (4) we have (using adjointness of skeleton and coskeleton functors)

Mor(∆[k], U) = Mor(skn∆[k], sknU) = Mor(skn∂∆[k], sknU) = Mor(∂∆[k], U)
and similarly for V because skn∆[k] = skn∂∆[k] for k > n. Thus we obtain a
unique dotted arrow fitting into the diagram in this case also. □

Let A,B be sets. Let f0, f1 : A → B be maps of sets. Consider the induced
maps f0, f1 : cosk0(A) → cosk0(B) abusively denoted by the same symbols. The
following lemma for n = 0 says that f0 is homotopic to f1. In fact, there is a
homotopy h : cosk0(A) × ∆[1] → cosk0(A) from f0 to f1 with components

hm : A× . . .×A× Mor∆([m], [1]) −→ B × . . .×B,

(a0, . . . , am, α) 7−→ (fα(0)(a0), . . . , fα(m)(am))

https://stacks.math.columbia.edu/tag/01A6
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To check that this works, note that for a map φ : [k] → [m] the induced maps are
(a0, . . . , am) 7→ (aφ(0), . . . , aφ(k)) and α 7→ α ◦ φ. Thus h = (hm)m≥0 is clearly a
map of simplicial sets as desired.

Lemma 32.2.01A9 Let f0, f1 : V → U be maps of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The maps f ji : Vi → Ui, j = 0, 1 are equal for i < n.
(2) The canonical morphism U → cosknsknU is an isomorphism.
(3) The canonical morphism V → cosknsknV is an isomorphism.

Then f0 is homotopic to f1.

First proof. Let W be the n-truncated simplicial set with Wi = Ui for i < n and
Wn = Un/ ∼ where ∼ is the equivalence relation generated by f0(y) ∼ f1(y) for
y ∈ Vn. This makes sense as the morphisms U(φ) : Un → Ui corresponding to
φ : [i] → [n] for i < n factor through the quotient map Un → Wn because f0 and
f1 are morphisms of simplicial sets and equal in degrees < n. Next, we upgrade W
to a simplicial set by taking cosknW . By Lemma 32.1 the morphism g : U → W
is a trivial Kan fibration. Observe that g ◦ f0 = g ◦ f1 by construction and denote
this morphism f : V → W . Consider the diagram

∂∆[1] × V
f0,f1

//

��

U

��
∆[1] × V

f //

66

W

By Lemma 30.2 the dotted arrow exists and the proof is done. □

Second proof. We have to construct a morphism of simplicial sets h : V ×∆[1] →
U which recovers f i on composing with ei. The case n = 0 was dealt with above
the lemma. Thus we may assume that n ≥ 1. The map ∆[1] → cosk1sk1∆[1] is
an isomorphism, see Lemma 19.15. Thus we see that ∆[1] → cosknskn∆[1] is an
isomorphism as n ≥ 1, see Lemma 19.10. And hence V ×∆[1] → cosknskn(V ×∆[1])
is an isomorphism too, see Lemma 19.12. In other words, in order to construct the
homotopy it suffices to construct a suitable morphism of n-truncated simplicial sets
h : sknV × skn∆[1] → sknU .

For k = 0, . . . , n−1 we define hk by the formula hk(v, α) = f0(v) = f1(v). The map
hn : Vn × Mor∆([k], [1]) → Un is defined as follows. Pick v ∈ Vn and α : [n] → [1]:

(1) If Im(α) = {0}, then we set hn(v, α) = f0(v).
(2) If Im(α) = {0, 1}, then we set hn(v, α) = f0(v).
(3) If Im(α) = {1}, then we set hn(v, α) = f1(v).

Let φ : [k] → [l] be a morphism of ∆≤n. We will show that the diagram

Vl × Mor([l], [1]) //

��

Ul

��
Vk × Mor([k], [1]) // Uk

commutes. Pick v ∈ Vl and α : [l] → [1]. The commutativity means that

hk(V (φ)(v), α ◦ φ) = U(φ)(hl(v, α)).

https://stacks.math.columbia.edu/tag/01A9
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In almost every case this holds because hk(V (φ)(v), α ◦ φ) = f0(V (φ)(v)) and
U(φ)(hl(v, α)) = U(φ)(f0(v)), combined with the fact that f0 is a morphism of
simplicial sets. The only cases where this does not hold is when either (A) Im(α) =
{1} and l = n or (B) Im(α◦φ) = {1} and k = n. Observe moreover that necessarily
f0(v) = f1(v) for any degenerate n-simplex of V . Thus we can narrow the cases
above down even further to the cases (A) Im(α) = {1}, l = n and v nondegenerate,
and (B) Im(α ◦ φ) = {1}, k = n and V (φ)(v) nondegenerate.

In case (A), we see that also Im(α◦φ) = {1}. Hence we see that not only hl(v, α) =
f1(v) but also hk(V (φ)(v), α ◦ φ) = f1(V (φ)(v)). Thus we see that the relation
holds because f1 is a morphism of simplicial sets.

In case (B) we conclude that l = k = n and φ is bijective, since otherwise V (φ)(v)
is degenerate. Thus φ = id[n], which is a trivial case. □

Lemma 32.3.01AB Let A, B be sets, and that f : A → B is a map. Consider the
simplicial set U with n-simplices

A×B A×B . . .×B A (n+ 1 factors).

see Example 3.5. If f is surjective, the morphism U → B where B indicates the
constant simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U

��

// cosk0(A)

��
B // cosk0(B)

Since the right vertical arrow is a trivial Kan fibration by Lemma 32.1, so is the
left by Lemma 30.3. □

33. Preparation for standard resolutions

0G5L The material in this section can be found in [God73, Appendix 1]

Example 33.1.0G5M Let Y : C → C be a functor from a category to itself and suppose
given transformations of functors

d : Y −→ idC and s : Y −→ Y ◦ Y

Using these transformations we can construct something that looks like a simplicial
object. Namely, for n ≥ 0 we define

Xn = Y ◦ . . . ◦ Y (n+ 1 compositions)

Observe that Xn+m+1 = Xn ◦Xm for n,m ≥ 0. Next, for n ≥ 0 and 0 ≤ j ≤ n we
define using notation as in Categories, Section 28

dnj = 1Xj−1 ⋆d⋆1Xn−j−1 : Xn → Xn−1 and snj = 1Xj−1 ⋆s⋆1Xn−j−1 : Xn → Xn+1

So dnj , resp. snj is the natural transformation using d, resp. s on the jth Y (counted
from the left) in the composition defining Xn.

https://stacks.math.columbia.edu/tag/01AB
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Lemma 33.2.0G5N In Example 33.1 if
1Y = (d ⋆ 1Y ) ◦ s = (1Y ⋆ d) ◦ s and (s ⋆ 1) ◦ s = (1 ⋆ s) ◦ s

then X = (Xn, d
n
j , s

n
j ) is a simplicial object in the category of endofunctors of C

and d : X0 = Y → idC defines an augmentation.

Proof. To see that we obtain a simplicial object we have to check that the relations
(1)(a) – (e) of Lemma 3.2 are satisfied. We will use the short hand notation

1a = 1Xa−1 = 1Y ⋆ . . . ⋆ 1Y (a factors)
for a ≥ 0. With this notation we have

dnj = 1j ⋆ d ⋆ 1n−j and snj = 1j ⋆ s ⋆ 1n−j

We are repeatedly going to use the rule that for transformations of funtors a, a′, b, b′

we have (a′ ◦ a) ⋆ (b′ ◦ b) = (a′ ⋆ b′) ◦ (a ⋆ b) provided that the ⋆ and ◦ compositions
in this formula make sense, see Categories, Lemma 28.2.
Condition (1)(a) always holds (no conditions needed on d and s). Namely, let
0 ≤ i < j ≤ n+ 1. We have to show that dni ◦ dn+1

j = dnj−1 ◦ dn+1
i , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ d ⋆ 1n+1−j) = (1j−1 ⋆ d ⋆ 1n+1−j) ◦ (1i ⋆ d ⋆ 1n+1−i)
We can rewrite the left hand side as

(1i ⋆ d ⋆ 1j−i−1 ⋆ 1n+1−j) ◦ (1i ⋆ 11 ⋆ 1j−i−1 ⋆ d ⋆ 1n+1−j)
= 1i ⋆ ((d ⋆ 1j−i−1) ◦ (11 ⋆ 1j−i−1 ⋆ d)) ⋆ 1n+1−j

= 1i ⋆ d ⋆ 1j−i−1 ⋆ d ⋆ 1n+1−j

The second equality is true because d ◦ 11 = d and 1j−i ◦ (1j−i−1 ⋆ d) = 1j−i−1 ⋆ d.
A similar computation gives the same result for the right hand side.
We check condition (1)(b). Let 0 ≤ i < j ≤ n − 1. We have to show that
dni ◦ sn−1

j = sn−2
j−1 ◦ dn−1

i , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j−1 ⋆ s ⋆ 1n−1−j) ◦ (1i ⋆ d ⋆ 1n−1−i)
By the same kind of calculus as in case (1)(a) both sides simplify to 1i ⋆d⋆1j−i−1 ⋆
s ⋆ 1n−j−1.

We check condition (1)(c). Let 0 ≤ j ≤ n − 1. We have to show id = dnj ◦ sn−1
j =

dnj+1 ◦ sn−1
j , i.e.,

1n = (1j ⋆ d ⋆ 1n−j) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j+1 ⋆ d ⋆ 1n−j−1) ◦ (1j ⋆ s ⋆ 1n−1−j)
This is easily seen to be implied by the first assumption of the lemma.
We check condition (1)(d). Let 0 < j + 1 < i ≤ n. We have to show dni ◦ sn−1

j =
sn−2
j ◦ dn−1

i−1 , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j ⋆ s ⋆ 1n−2−j) ◦ (1i−1 ⋆ d ⋆ 1n−i)
By the same kind of calculus as in case (1)(a) both sides simplify to 1j ⋆s⋆1i−j−2 ⋆
d ⋆ 1n−i.
We check condition (1)(e). Let 0 ≤ i ≤ j ≤ n−1. We have to show that sni ◦sn−1

j =
snj+1 ◦ sn−1

i , i.e.,

(1i ⋆ s ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j+1 ⋆ s ⋆ 1n−1−j) ◦ (1i ⋆ s ⋆ 1n−1−i)

https://stacks.math.columbia.edu/tag/0G5N
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By the same kind of calculus as in case (1)(a) this reduces to
(s ⋆ 1j−i+1) ◦ (1j−i ⋆ s) = (1j−i+1 ⋆ s) ◦ (s ⋆ 1j−i)

If j = i this is exactly one of the two assumptions of the lemma. For j > i left and
right hand side both reduce to the equality s ⋆ 1j−i−1 ⋆ s by calculations similar to
those we did in case (1)(a).
Finally, in order to show that d defines an augmentation we have to show that
d ◦ (11 ⋆ d) = d ◦ (d ⋆ 11) which is true because both sides are equal to d ⋆ d. □

Example 33.3.0G5P Let C, Y , d, s be as in Example 33.1 satisfying the equations of
Lemma 33.2. Given functors F : A → C and G : C → B we obtain a simplicial
object G ◦ X ◦ F in the category of functors from A to B which comes with an
augmentation to G ◦ F .

Lemma 33.4.0G5Q Let A, B, C, Y , d, s, F , G be as in Example 33.3. Given a
transformation of functors h0 : G ◦ F → G ◦ Y ◦ F such that

1G◦F = (1G ⋆ d ⋆ 1F ) ◦ h0

Then there is a morphism h : G ◦ F → G ◦ X ◦ F of simplicial objects such that
ϵ ◦ h = id where ϵ : G ◦X ◦ F → G ◦ F is the augmentation.

Proof. Denote un : Y = X0 → Xn the map of the simplicial object X correspond-
ing to the unique morphism [n] → [0] in ∆. Set hn : G ◦ F → G ◦Xn ◦ F equal to
(1G ⋆ un ⋆ 1F ) ◦ h0.
For any simplicial object X = (Xn) in any category u = (un) : X0 → X is a
morphism from the constant simplicial object on X0 to X. Hence h is a morphism
of simplicial objects because it is the composition of 1G ⋆ u ⋆ 1F and h0.
Let us check that ϵ ◦ h = id. We compute

ϵn ◦ (1G ⋆ un ⋆ 1F ) ◦ h0 = ϵ0 ◦ h0 = id
The first equality because ϵ is a morphism of simplicial objects and the second
equality because ϵ0 = (1G⋆d⋆1F ) and we can apply the assumption in the statement
of the lemma. □

Lemma 33.5.0G5R Let A, B, C, Y , d, s, F , G be as in Example 33.3. Let F ′ : A → C
and G′ : C → B be two functors. Let (an) : G ◦ X → G′ ◦ X be a morphism
of simplicial objects compatible via augmentations with a : G → G′. Let (bn) :
X ◦ F → X ◦ F ′ be a morphism of simplicial objects compatible via augmentations
with b : F → F ′. Then the two maps

a ⋆ (bn), (an) ⋆ b : G ◦X ◦ F → G′ ◦X ◦ F ′

are homotopic.

Proof. To show the morphisms are homotopic we construct morphisms
hn,i : G ◦Xn ◦ F → G′ ◦Xn ◦ F ′

for n ≥ 0 and 0 ≤ i ≤ n + 1 satisfying the relations described in Lemma 26.2.
See also Remark 26.4. To satisfy condition (1) of Lemma 26.2 we are forced to set
hn,0 = a ⋆ bn and hn,n+1 = an ⋆ b. Thus a logical choice is

hn,i = ai−1 ⋆ bn−i

https://stacks.math.columbia.edu/tag/0G5P
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for 1 ≤ i ≤ n. Setting a = a−1 and b = b−1 we see the displayed formular holds for
0 ≤ i ≤ n+ 1.
Recall that

dnj = 1G ⋆ 1j ⋆ d ⋆ 1n−j ⋆ 1F
on G ◦ X ◦ F where we use the notation 1a = 1Y ◦...◦Y introduced in the proof of
Lemma 33.2. We are going to use below that we can rewrite this as

dnj = djj ⋆ 1n−j = dj+1
j ⋆ 1n−j = . . . = dn−1

j ⋆ 11

= 1j ⋆ dn−j
0 = 1j−1 ⋆ d

n−j+1
1 = . . . = 11 ⋆ d

n−1
j−1

Of course we have the analogous formulae for dnj on G′ ◦X ◦ F ′.
We check condition (2) of Lemma 26.2. Let i > j. We have to show

dnj ◦ (ai−1 ⋆ bn−i) = (ai−2 ⋆ bn−i) ◦ dnj
Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left
hand side as

(di−1
j ⋆ 1n−i+1) ◦ (ai−1 ⋆ bn−i) = (di−1

j ◦ ai−1) ⋆ bn−i = (ai−2 ◦ di−1
j ) ⋆ bn−i

Similarly the right hand side becomes
(ai−2 ⋆ bn−i) ◦ (di−1

j ⋆ 1n−i+1) = (ai−2 ◦ di−1
j ) ⋆ bn−i

Thus we obtain the same result and (2) is checked.
We check condition (3) of Lemma 26.2. Let i ≤ j. We have to show

dnj ◦ (ai−1 ⋆ bn−i) = (ai−1 ⋆ bn−1−i) ◦ dnj
Since j ≥ i we may rewrite the left hand side as

(1i ⋆ dn−i
j−i ) ◦ (ai−1 ⋆ bn−i) = ai−1 ⋆ (bn−1−i ◦ dn−i

j−i )
A similar manipulation shows this agrees with the right hand side.
Recall that

snj = 1G ⋆ 1j ⋆ s ⋆ 1n−j ⋆ 1F
on G ◦X ◦ F . We are going to use below that we can rewrite this as

snj = sjj ⋆ 1n−j = sj+1
j ⋆ 1n−j−1 = . . . = sn−1

j ⋆ 11

= 1j ⋆ sn−j
0 = 1j−1 ⋆ s

n−j+1
1 = . . . = 11 ⋆ s

n−1
j−1

Of course we have the analogous formulae for snj on G′ ◦X ◦ F ′.
We check condition (4) of Lemma 26.2. Let i > j. We have to show

snj ◦ (ai−1 ⋆ bn−i) = (ai ⋆ bn−i) ◦ snj
Since i− 1 ≥ j we can rewrite the left hand side as

(si−1
j ⋆ 1n−i+1) ◦ (ai−1 ⋆ bn−i) = (si−1

j ◦ ai−1) ⋆ bn−i = (ai ◦ si−1
j ) ⋆ bn−i

Similarly the right hand side becomes
(ai ⋆ bn−i) ◦ (si−1

j ⋆ 1n−i+1) = (ai ◦ si−1
j ) ⋆ bn−i

as desired.
We check condition (5) of Lemma 26.2. Let i ≤ j. We have to show

snj ◦ (ai−1 ⋆ bn−i) = (ai−1 ⋆ bn+1−i) ◦ snj
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This equality holds because both sides evaluate to ai−1 ⋆ (sn−i
j−i ◦ bn−i) = ai−1 ⋆

(bn+1−i ◦ sn−i
j−i ) by exactly the same arguments as above. □

Lemma 33.6.0G5S Let C, Y , d, s be as in Example 33.1 satisfying the equations of
Lemma 33.2. Let f : idC → idC be an endomorphism of the identity functor. Then
f ⋆ 1X , 1X ⋆ f : X → X are maps of simplicial objects compatible with f via the
augmentation ϵ : X → idC. Moreover, f ⋆ 1X and 1X ⋆ f are homotopic.

Proof. The map f ⋆ 1X is the map with components

Xn = idC ◦Xn
f⋆1Xn−−−−→ idC ◦Xn = Xn

For a transformation a : F → G of endofunctors of C we have a ◦ (f ⋆ 1F ) = f ⋆ a =
(f ⋆ 1G) ◦ a. Thus f ⋆ 1X is indeed a morphism of simplicial objects. Similarly for
1X ⋆ f .

To show the morphisms are homotopic we construct morphisms hn,i : Xn → Xn

for n ≥ 0 and 0 ≤ i ≤ n+ 1 satisfying the relations described in Lemma 26.2. See
also Remark 26.4. It turns out we can take

hn,i = 1i ⋆ f ⋆ 1n+1−i

where 1i is the identity transformation on Y ◦ . . .◦Y as in the proof of Lemma 33.2.
We have hn,0 = f ⋆ 1Xn and hn,n+1 = 1Xn ⋆ f which checks the first condition. In
checking the other conditions we use the comments made in the proof of Lemma
33.5 about the maps dnj and snj .

We check condition (2) of Lemma 26.2. Let i > j. We have to show

dnj ◦ (1i ⋆ f ⋆ 1n+1−i) = (1i−1 ⋆ f ⋆ 1n+1−i) ◦ dnj
Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left
hand side as

(di−1
j ⋆ 1n−i+1) ◦ (1i ⋆ f ⋆ 1n+1−i) = di−1

j ⋆ f ⋆ 1n+1−i

Similarly the right hand side becomes

(1i−1 ⋆ f ⋆ 1n+1−i) ◦ (di−1
j ⋆ 1n−i+1) = di−1

j ⋆ f ⋆ 1n+1−i

Thus we obtain the same result and (2) is checked.

The conditions (3), (4), and (5) of Lemma 26.2 are checked in exactly the same
manner using the strategy of the proof of Lemma 33.5. We omit the details2. □

34. Standard resolutions

08N8 Some of the material in this section can be found in [God73, Appendix 1] and [Ill72,
I 1.5].

Situation 34.1.08N9 Let A, S be categories and let V : A → S be a functor with a
left adjoint U : S → A.

2When f is invertible it suffices to prove that (an) = 1X and (bn) = f−1 ⋆1X ⋆f are homotopic.
But this follows from Lemma 33.5 because in this case a = b = 1idC .
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In this very general situation we will construct a simplicial object X in the category
of functors from A to A. We suggest looking at the examples presented later on
before reading the text of this section.
For the construction we will use the horizontal composition as defined in Categories,
Section 28. The definition of the adjunction morphisms3

d : U ◦ V → idA (counit) and η : idS → V ◦ U (unit)
in Categories, Section 24 shows that the compositions

(34.1.1)08NB V
η⋆1V−−−→ V ◦ U ◦ V 1V ⋆d−−−→ V and U

1U⋆η−−−→ U ◦ V ◦ U d⋆1U−−−→ U

are the identity morphisms. Here to define the morphism η ⋆1V we silently identify
V with idS ◦V and 1V stands for idV : V → V . We will use this notation and these
relations repeatedly in what follows. For n ≥ 0 we set

Xn = (U ◦ V )◦(n+1) = U ◦ V ◦ U ◦ . . . ◦ U ◦ V
In other words, Xn is the (n + 1)-fold composition of U ◦ V with itself. We also
set X−1 = idA. We have Xn+m+1 = Xn ◦ Xm for all n,m ≥ −1. We will endow
this sequence of functors with the structure of a simplicial object of Fun(A,A) by
constructing the morphisms of functors

dnj : Xn → Xn−1, snj : Xn → Xn+1

satisfying the relations displayed in Lemma 2.3. Namely, we set
dnj = 1Xj−1 ⋆ d ⋆ 1Xn−j−1 and snj = 1Xj−1◦U ⋆ η ⋆ 1V ◦Xn−j−1

Finally, write ϵ0 = d : X0 → X−1.

Lemma 34.2.08NC In Situation 34.1 the system X = (Xn, d
n
j , s

n
j ) is a simplicial object

of Fun(A,A) and ϵ0 defines an augmentation ϵ from X to the constant simplicial
object with value X−1 = idA.

Proof. Consider Y = U ◦ V : A → A. We already have the transformation
d : Y = U ◦ V → idA. Let us denote

s = 1U ⋆ η ⋆ 1V : Y = U ◦ idS ◦ V −→ U ◦ V ◦ U ◦ V = Y ◦ Y
This places us in the sitation of Example 33.1. It is immediate from the formulas
that the X, dni , sni constructed above and the X, sni , sni constructed from Y, d, s in
Example 33.1 agree. Thus, according to Lemma 33.2 it suffices to prove that

1Y = (d ⋆ 1Y ) ◦ s = (1Y ⋆ d) ◦ s and (s ⋆ 1) ◦ s = (1 ⋆ s) ◦ s
The first equal sign translates into the equality

1U ⋆ 1V = (d ⋆ 1U ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V )
which holds if we have 1U = (d ⋆ 1U ) ◦ (1U ⋆ η) which in turn holds by (34.1.1).
Similarly for the second equal sign. For the last equation we need to prove

(1U ⋆ η ⋆ 1V ⋆ 1U ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V ) = (1U ⋆ 1V ⋆ 1U ⋆ η ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V )
For this it suffices to prove (η ⋆ 1V ⋆ 1U ) ◦ η = (1V ⋆ 1U ⋆ η) ◦ η which is true because
both sides are the same as η ⋆ η. □

3We can’t use ϵ for the counit of the adjunction because we want to use ϵ for the augmentation
of our simplicial obejct.
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SIMPLICIAL METHODS 68

Before reading the proof of the following lemma, we advise the reader to look at
the example discussed in Example 34.8 in order to understand the purpose of the
lemma.
Lemma 34.3.08ND In Situation 34.1 the maps

1V ⋆ ϵ : V ◦X → V, and ϵ ⋆ 1U : X ◦ U → U

are homotopy equivalences.
Proof. As in the proof of Lemma 34.2 we set Y = U ◦ V so that we are in the
sitation of Example 33.1.
Proof of the first homotopy equivalence. By Lemma 33.4 to construct a map h :
V → V ◦X right inverse to 1V ⋆ ϵ it suffices to construct a map h0 : V → V ◦ Y =
V ◦ U ◦ V such that 1V = (1V ⋆ d) ◦ h0. Of course we take h0 = η ⋆ 1V and the
equality holds by (34.1.1). To finish the proof we need to show the two maps

(1V ⋆ ϵ) ◦ h, 1V ⋆ idX : V ◦X −→ V ◦X
are homotopic. This follows immediately from Lemma 33.5 (with G = G′ = V and
F = F ′ = idS).
The proof of the second homotopy equivalence. By Lemma 33.4 to construct a map
h : U → X ◦ U right inverse to ϵ ⋆ 1U it suffices to construct a map h0 : U →
Y ◦U = U ◦ V ◦U such that 1U = (d ⋆ 1U ) ◦ h0. Of course we take h0 = 1U ⋆ η and
the equality holds by (34.1.1). To finish the proof we need to show the two maps

(ϵ ⋆ 1U ) ◦ h, idX ⋆ 1U : X ◦ U −→ X ◦ U
are homotopic. This follows immediately from Lemma 33.5 (with G = G′ = idA
and F = F ′ = U). □

Example 34.4.0G5T Let R be a ring. As an example of the above we can take
i : ModR → Sets to be the forgetful functor and F : Sets → ModR to be the functor
that associates to a set E the free R-module R[E] on E. For an R-module M the
simplicial R-module X(M) will have the following shape

X(M) =
(
. . . R[R[R[M ]]]

//
//
//
R[R[M ]] //

//oo
oo

R[M ]oo
)

which comes with an augmentation towards M . We will also show this augmen-
tation is a homotopy equivalence of sets. By Lemmas 30.8, 31.9, and 31.8 this
is equivalent to asking M to be the only nonzero cohomology group of the chain
complex associated to the simplicial module X(M).
Example 34.5.08NA Let A be a ring. Let AlgA be the category of commutative A-
algebras. As an example of the above we can take i : AlgA → Sets to be the
forgetful functor and F : Sets → AlgA to be the functor that associates to a set E
the polynomial algebra A[E] on E over A. (We apologize for the overlap in notation
between this example and Example 34.4.) For an A-algebra B the simplicial A-
algebra X(B) will have the following shape

X(B) =
(
. . . A[A[A[B]]]

//
//
//
A[A[B]] //

//oo
oo

A[B]oo
)

which comes with an augmentation towards B. We will also show this augmentation
is a homotopy equivalence of sets. By Lemmas 30.8, 31.9, and 31.8 this is equivalent
to asking B to be the only nonzero cohomology group of the chain complex of A-
modules associated to X(B) viewed as a simplicial A-module.

https://stacks.math.columbia.edu/tag/08ND
https://stacks.math.columbia.edu/tag/0G5T
https://stacks.math.columbia.edu/tag/08NA
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Example 34.6.0G5U In Example 34.4 we have Xn(M) = R[R[. . . [M ] . . .]] with n + 1
brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ri

[∑
j
rij [mij ]

]
of X1(M). The maps d0, d1 : R[R[M ]] → R[M ] are given by

d0(ξ) =
∑

i,j
ririj [mij ] and d1(ξ) =

∑
i
ri

[∑
j
rijmij

]
.

The maps s0, s1 : R[R[M ]] → R[R[R[M ]]] are given by

s0(ξ) =
∑

i
ri

[[∑
j
rij [mij ]

]]
and s1(ξ) =

∑
i
ri

[∑
j
rij [[mij ]]

]
.

Example 34.7.09CB In Example 34.5 we have Xn(B) = A[A[. . . [B] . . .]] with n + 1
brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ai[xi,1] . . . [xi,mi ] ∈ A[A[B]] = X1(B)

where for each i, j we can write

xi,j =
∑

ai,j,k[bi,j,k,1] . . . [bi,j,k,ni,j,k
] ∈ A[B]

Obviously this is horrendous! To ease the notation, to see what the A-algebra maps
d0, d1 : A[A[B]] → A[B] are doing it suffices to see what happens to the variables
[x] where

x =
∑

ak[bk,1] . . . [bk,nk
] ∈ A[B]

is a general element. For these we get

d0([x]) = x =
∑

ak[bk,1] . . . [bk,nk
] and d1([x]) =

[∑
akbk,1 . . . bk,nk

]
The maps s0, s1 : A[A[B]] → A[A[A[B]]] are given by

s0([x]) =
[[∑

ak[bk,1] . . . [bk,nk
]
]]

and s1([x]) =
[∑

ak[[bk,1]] . . . [[bk,nk
]]
]

Example 34.8.08NE Going back to the example discussed in Example 34.5 our Lemma
34.3 signifies that for any ring map A → B the map of simplicial rings

A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo

B
//
//
//
B

//
//oo

oo
Boo

is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map
constructed in Lemma 34.3 is in degree n given by

b 7−→ [. . . [b] . . .]

with obvious notation. In the other direction the lemma tells us that for every set
E there is a homotopy equivalence

A[A[A[A[E]]]]

��

//
//
//
A[A[A[E]]]

��

//
//oo

oo
A[A[E]]

��

oo

A[E]
//
//
//
A[E] //

//oo
oo

A[E]oo

https://stacks.math.columbia.edu/tag/0G5U
https://stacks.math.columbia.edu/tag/09CB
https://stacks.math.columbia.edu/tag/08NE
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of rings. The inverse map constructed in the lemma is in degree n given by the ring
map∑

ae1,...,ep
[e1][e2] . . . [ep] 7−→

∑
ae1,...,ep

[. . . [e1] . . .][. . . [e2] . . .] . . . [. . . [ep] . . .]

(with obvious notation).
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