COHOMOLOGY ON SITES

01FQ

Contents

1. Introduction 2
2. Topics 2
3. Cohomology of sheaves 2
4. Derived functors 3
5. First cohomology and torsors 4
6. First cohomology and extensions 5
7. First cohomology and invertible sheaves 7
8. Locality of cohomology 7
9. The Čech complex and Čech cohomology 9
10. Čech cohomology as a functor on presheaves 10
11. Čech cohomology and cohomology 14
12. Second cohomology and gerbes 17
13. Cohomology of modules 18
14. Limp sheaves 20
15. The Leray spectral sequence 22
16. The base change map 23
17. Cohomology and colimits 24
18. Flat resolutions 26
19. Derived pullback 29
20. Cohomology of unbounded complexes 32
21. Some properties of K-injective complexes 35
22. Localization and cohomology 38
23. Derived and homotopy limits 38
24. Producing K-injective resolutions 43
25. Bounded cohomological dimension 44
26. Mayer-Vietoris 47
27. Comparing two topologies 49
28. Formalities on cohomological descent 50
29. Comparing two topologies, II 52
30. Comparing cohomology 55
31. Cohomology on Hausdorff and locally quasi-compact spaces 61
32. Spectral sequences for Ext 67
33. Hom complexes 68
34. Internal hom in the derived category 70
35. Global derived hom 73
36. Derived lower shriek 74
37. Derived lower shriek for fibred categories 76
38. Homology on a category 79

This is a chapter of the Stacks Project, version d129618f, compiled on Mar 10, 2019.
1. Introduction

In this document we work out some topics on cohomology of sheaves. We work out what happens for sheaves on sites, although often we will simply duplicate the discussion, the constructions, and the proofs from the topological case in the case. Basic references are [AGV71], [God73] and [Ive86].

2. Topics

Here are some topics that should be discussed in this chapter, and have not yet been written.

1. Cohomology of a sheaf of modules on a site is the same as the cohomology of the underlying abelian sheaf.
2. Hypercohomology on a site.
3. Ext-groups.
4. Ext sheaves.
5. Tor functors.
6. Higher direct images for a morphism of sites.
7. Derived pullback for morphisms between ringed sites.
8. Cup-product.
10. Comparison of group cohomology and cohomology on T_G.
11. Čech cohomology on sites.
12. Čech to cohomology spectral sequence on sites.
13. Leray Spectral sequence for a morphism between ringed sites.
14. Etc, etc, etc.

3. Cohomology of sheaves

Let C be a site, see Sites, Definition 6.2. Let F be an abelian sheaf on C. We know that the category of abelian sheaves on C has enough injectives, see Injectives, Theorem 7.4. Hence we can choose an injective resolution $F[0] \to \mathcal{I}^\bullet$. For any object U of the site C we define

$$H^i(U, F) = H^i(\Gamma(U, \mathcal{I}^\bullet))$$
to be the \textit{ith cohomology group of the abelian sheaf} \mathcal{F} \textit{over the object} U. In other words, these are the right derived functors of the functor $\mathcal{F} \to \mathcal{F}(U)$. The family of functors $H^i(U, -)$ forms a universal δ-functor $\text{Ab}(\mathcal{C}) \to \text{Ab}$.

It sometimes happens that the site \mathcal{C} does not have a final object. In this case we define the \textit{global sections} of a presheaf of sets \mathcal{F} over \mathcal{C} to be the set

\begin{equation}
\Gamma(\mathcal{C}, \mathcal{F}) = \text{Mor}_{\text{PSh}(\mathcal{C})}(e, \mathcal{F})
\end{equation}

where e is a final object in the category of presheaves on \mathcal{C}. In this case, given an abelian sheaf \mathcal{F} on \mathcal{C}, we define the \textit{ith cohomology group of \mathcal{F} on \mathcal{C}} as follows

\begin{equation}
H^i(\mathcal{C}, \mathcal{F}) = H^i(\Gamma(\mathcal{C}, \mathcal{I}^\bullet))
\end{equation}

in other words, it is the ith right derived functor of the global sections functor. The family of functors $H^i(\mathcal{C}, -)$ forms a universal δ-functor $\text{Ab}(\mathcal{C}) \to \text{Ab}$.

Let $f : \text{Sh}(\mathcal{C}) \to \text{Sh}(\mathcal{D})$ be a morphism of topoi, see Sites, Definition [15.1]. With $\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above we define

\begin{equation}
R^i f_* \mathcal{F} = H^i(f_* \mathcal{I}^\bullet)
\end{equation}

to be the \textit{ith higher direct image} of \mathcal{F}. These are the right derived functors of f_*. The family of functors $R^i f_*$ forms a universal δ-functor from $\text{Ab}(\mathcal{C}) \to \text{Ab}(\mathcal{D})$.

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site, see Modules on Sites, Definition [6.1]. Let \mathcal{F} be an \mathcal{O}-module. We know that the category of \mathcal{O}-modules has enough injectives, see Injectives, Theorem [8.4]. Hence we can choose an injective resolution $\mathcal{F}[0] \to \mathcal{I}^\bullet$. For any object U of the site \mathcal{C} we define

\begin{equation}
H^i(U, \mathcal{F}) = H^i(\Gamma(U, \mathcal{I}^\bullet))
\end{equation}

to be the \textit{ith cohomology group of \mathcal{F} over U}. The family of functors $H^i(U, -)$ forms a universal δ-functor $\text{Mod}(\mathcal{O}) \to \text{Mod}(\mathcal{O}(U))$. Similarly

\begin{equation}
H^i(\mathcal{C}, \mathcal{F}) = H^i(\Gamma(\mathcal{C}, \mathcal{I}^\bullet))
\end{equation}

it the \textit{ith cohomology group of \mathcal{F} on \mathcal{C}}. The family of functors $H^i(\mathcal{C}, -)$ forms a universal δ-functor $\text{Mod}(\mathcal{C}) \to \text{Mod}(\Gamma(\mathcal{C}, \mathcal{O}))$.

Let $f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}')$ be a morphism of ringed topoi, see Modules on Sites, Definition [7.1]. With $\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above we define

\begin{equation}
R^i f_* \mathcal{F} = H^i(f_* \mathcal{I}^\bullet)
\end{equation}

to be the \textit{ith higher direct image of \mathcal{F}}. These are the right derived functors of f_*. The family of functors $R^i f_*$ forms a universal δ-functor from $\text{Mod}(\mathcal{O}) \to \text{Mod}(\mathcal{O}')$.

4. Derived functors

We briefly explain an approach to right derived functors using resolution functors. Namely, suppose that $(\mathcal{C}, \mathcal{O})$ is a ringed site. In this chapter we will write

\[K(\mathcal{O}) = K(\text{Mod}(\mathcal{O})) \quad \text{and} \quad D(\mathcal{O}) = D(\text{Mod}(\mathcal{O})) \]

and similarly for the bounded versions for the triangulated categories introduced in Derived Categories, Definition [8.1] and Definition [11.3]. By Derived Categories, Remark [21.3] there exists a resolution functor

\[j = j_{(\mathcal{C}, \mathcal{O})} : K^+(\text{Mod}(\mathcal{O})) \to K^+(\mathcal{I}) \]
where \(\mathcal{I} \) is the strictly full additive subcategory of \(\text{Mod}(\mathcal{O}) \) which consists of injective \(\mathcal{O} \)-modules. For any left exact functor \(F : \text{Mod}(\mathcal{O}) \to \mathcal{B} \) into any abelian category \(\mathcal{B} \) we will denote \(RF \) the right derived functor of Derived Categories, Section \(20 \) constructed using the resolution functor (4.0.1) \(RF \) as defined on \(\text{Mod}(\mathcal{O}) \), see Derived Categories, Lemma [25.1] for notation. Note that we may think of

\[
\text{Derived Categories, Definition 17.2}
\]

we obtain the \(RF \) functor so that

\[
\text{K}
\]

so that

\[
\text{U}
\]

and similarly for the bounded versions. For any object \(U \) of \(\mathcal{C} \) there exist a left exact functor \(\Gamma(U, -) : \text{Mod}(\mathcal{O}) \to \text{Mod}(\mathcal{O}(U)) \) which gives rise to

\[
RT\Gamma(U, -) : D^+(\mathcal{O}) \to D^+(\mathcal{O}(U))
\]

by the discussion above. Note that \(H^i(U, -) = R^i\Gamma(U, -) \) is compatible with \(3.0.5 \) above. We similarly have

\[
RT\Gamma(\mathcal{C}, -) : D^+(\mathcal{O}) \to D^+(\Gamma(\mathcal{C}, \mathcal{O}))
\]

compatible with \(3.0.6 \). If \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}') \) is a morphism of ringed topoi then we get a left exact functor \(f_* : \text{Mod}(\mathcal{O}) \to \text{Mod}(\mathcal{O}') \) which gives rise to derived pushforward

\[
Rf_* : D^+(\mathcal{O}) \to D^+(\mathcal{O}')
\]

The \(i \)th cohomology sheaf of \(Rf_*\mathcal{F}^\bullet \) is denoted \(R^i f_*\mathcal{F}^\bullet \) and called the \(i \)th higher direct image in accordance with \(3.0.7 \). The displayed functors above are exact functor of derived categories.

5. First cohomology and torsors

Definition 5.1. Let \(\mathcal{C} \) be a site. Let \(\mathcal{G} \) be a sheaf of (possibly non-commutative) groups on \(\mathcal{C} \). A pseudo torsor, or more precisely a pseudo \(\mathcal{G} \)-torsor, is a sheaf of sets \(\mathcal{F} \) on \(\mathcal{C} \) endowed with an action \(\mathcal{G} \times \mathcal{F} \to \mathcal{F} \) such that

(1) whenever \(\mathcal{F}(U) \) is nonempty the action \(\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U) \) is simply transitive.

A morphism of pseudo \(\mathcal{G} \)-torsors \(\mathcal{F} \to \mathcal{F}' \) is simply a morphism of sheaves of sets compatible with the \(\mathcal{G} \)-actions. A torsor, or more precisely a \(\mathcal{G} \)-torsor, is a pseudo \(\mathcal{G} \)-torsor such that in addition

(2) for every \(U \in \text{Ob}(\mathcal{C}) \) there exists a covering \(\{U_i \to U\}_{i \in I} \) of \(U \) such that \(\mathcal{F}(U_i) \) is nonempty for all \(i \in I \).

A morphism of \(\mathcal{G} \)-torsors is simply a morphism of pseudo \(\mathcal{G} \)-torsors. The trivial \(\mathcal{G} \)-torsor is the sheaf \(\mathcal{G} \) endowed with the obvious left \(\mathcal{G} \)-action.

It is clear that a morphism of torsors is automatically an isomorphism.
Lemma 5.2. Let \mathcal{C} be a site. Let \mathcal{G} be a sheaf of (possibly non-commutative) groups on \mathcal{C}. A \mathcal{G}-torsor \mathcal{F} is trivial if and only if $\Gamma(\mathcal{C}, \mathcal{F}) \neq \emptyset$.

Proof. Omitted. \hfill \Box

Lemma 5.3. Let \mathcal{C} be a site. Let \mathcal{H} be an abelian sheaf on \mathcal{C}. There is a canonical bijection between the set of isomorphism classes of \mathcal{H}-torsors and $H^1(\mathcal{C}, \mathcal{H})$.

Proof. Let \mathcal{F} be a \mathcal{H}-torsor. Consider the free abelian sheaf $\mathbb{Z}[\mathcal{F}]$ on \mathcal{F}. It is the sheafification of the rule which associates to $U \in \text{Ob}(\mathcal{C})$ the collection of finite formal sums $\sum n_i[s_i]$ with $n_i \in \mathbb{Z}$ and $s_i \in \mathcal{F}(U)$. There is a natural map

$$\sigma : \mathbb{Z}[\mathcal{F}] \to \mathbb{Z}$$

which to a local section $\sum n_i[s_i]$ associates $\sum n_i$. The kernel of σ is generated by sections of the form $[s] - [s']$. There is a canonical map $a : \text{Ker}(\sigma) \to \mathcal{H}$ which maps $[s] - [s'] \mapsto h$ where h is the local section of \mathcal{H} such that $h \cdot s = s'$. Consider the pushout diagram

$$
\begin{array}{cccc}
0 & \to & \text{Ker}(\sigma) & \to & \mathbb{Z}[\mathcal{F}] & \to & \mathbb{Z} & \to & 0 \\
& & \downarrow{a} & \uparrow & & \downarrow & & \uparrow & & \\
0 & \to & \mathcal{H} & \to & \mathcal{E} & \to & \mathcal{Z} & \to & 0
\end{array}
$$

Here \mathcal{E} is the extension obtained by pushout. From the long exact cohomology sequence associated to the lower short exact sequence we obtain an element $\xi = \xi_\mathcal{F} \in H^1(\mathcal{C}, \mathcal{H})$ by applying the boundary operator to $1 \in H^0(\mathcal{C}, \mathbb{Z})$.

Conversely, given $\xi \in H^1(\mathcal{C}, \mathcal{H})$ we can associate to ξ a torsor as follows. Choose an embedding $\mathcal{H} \to \mathcal{I}$ of \mathcal{H} into an injective abelian sheaf \mathcal{I}. We set $\mathcal{Q} = \mathcal{I}/\mathcal{H}$ so that we have a short exact sequence

$$
\begin{array}{cccc}
0 & \to & \mathcal{H} & \to & \mathcal{I} & \to & \mathcal{Q} & \to & 0
\end{array}
$$

The element ξ is the image of a global section $q \in H^0(\mathcal{C}, \mathcal{Q})$ because $H^1(\mathcal{C}, \mathcal{I}) = 0$ (see Derived Categories, Lemma [20.4]). Let $\mathcal{F} \subset \mathcal{I}$ be the subsheaf (of sets) of sections that map to q in the sheaf \mathcal{Q}. It is easy to verify that \mathcal{F} is a \mathcal{H}-torsor.

We omit the verification that the two constructions given above are mutually inverse. \hfill \Box

6. First cohomology and extensions

Lemma 6.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules on \mathcal{C}. There is a canonical bijection

$$\text{Ext}^1_{\text{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) \to H^1(\mathcal{C}, \mathcal{F})$$

which associates to the extension

$$
\begin{array}{cccc}
0 & \to & \mathcal{F} & \to & \mathcal{E} & \to & \mathcal{O} & \to & 0
\end{array}
$$

the image of $1 \in \Gamma(\mathcal{C}, \mathcal{O})$ in $H^1(\mathcal{C}, \mathcal{F})$.
Proof. Let us construct the inverse of the map given in the lemma. Let $\xi \in H^1(C, F)$. Choose an injection $F \subset I$ with I injective in $\text{Mod}(\mathcal{O})$. Set $Q = I/F$. By the long exact sequence of cohomology, we see that ξ is the image of a section $\tilde{\xi} \in \Gamma(C, Q) = \text{Hom}_\mathcal{O}(\mathcal{O}, Q)$. Now, we just form the pullback

$$
\begin{array}{ccccccccc}
0 & \rightarrow & F & \rightarrow & \mathcal{E} & \rightarrow & \mathcal{O} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & F & \rightarrow & I & \rightarrow & Q & \rightarrow & 0
\end{array}
$$

see Homology, Section 6. □

The following lemma will be superseded by the more general Lemma 13.4.

Lemma 6.2. Let (C, \mathcal{O}) be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules on C. Let \mathcal{F}_{ab} denote the underlying sheaf of abelian groups. Then there is a functorial isomorphism

$$
H^1(C, \mathcal{F}_{ab}) = H^1(C, \mathcal{F})
$$

where the left hand side is cohomology computed in $\text{Ab}(C)$ and the right hand side is cohomology computed in $\text{Mod}(\mathcal{O})$.

Proof. Let \mathcal{Z} denote the constant sheaf \mathcal{Z}. As $\text{Ab}(C) = \text{Mod}(\mathcal{Z})$ we may apply Lemma 6.1 twice, and it follows that we have to show

$$
\text{Ext}^1_{\text{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) = \text{Ext}^1_{\text{Mod}(\mathcal{Z})}(\mathcal{Z}, \mathcal{F}_{ab}).
$$

Suppose that $0 \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow \mathcal{O} \rightarrow 0$ is an extension in $\text{Mod}(\mathcal{O})$. Then we can use the obvious map of abelian sheaves $1 : \mathcal{Z} \rightarrow \mathcal{O}$ and pullback to obtain an extension \mathcal{E}_{ab}, like so:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & F_{ab} & \rightarrow & E_{ab} & \rightarrow & \mathcal{Z} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & F & \rightarrow & E & \rightarrow & \mathcal{O} & \rightarrow & 0
\end{array}
$$

The converse is a little more fun. Suppose that $0 \rightarrow \mathcal{F}_{ab} \rightarrow \mathcal{E}_{ab} \rightarrow \mathcal{Z} \rightarrow 0$ is an extension in $\text{Mod}(\mathcal{Z})$. Since \mathcal{Z} is a flat \mathcal{O}-module we see that the sequence

$$
0 \rightarrow \mathcal{F}_{ab} \otimes \mathcal{Z} \mathcal{O} \rightarrow \mathcal{E}_{ab} \otimes \mathcal{Z} \mathcal{O} \rightarrow \mathcal{Z} \otimes \mathcal{Z} \mathcal{O} \rightarrow 0
$$

is exact, see Modules on Sites, Lemma 28.8. Of course $\mathcal{Z} \otimes \mathcal{O} = \mathcal{O}$. Hence we can form the pushout via the (\mathcal{O}-linear) multiplication map $\mu : \mathcal{F} \otimes \mathcal{Z} \mathcal{O} \rightarrow \mathcal{F}$ to get an extension of \mathcal{O} by \mathcal{F}, like this

$$
\begin{array}{ccccccccc}
0 & \rightarrow & F_{ab} \otimes \mathcal{Z} \mathcal{O} & \rightarrow & E_{ab} \otimes \mathcal{Z} \mathcal{O} & \rightarrow & \mathcal{O} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & F & \rightarrow & E & \rightarrow & \mathcal{O} & \rightarrow & 0
\end{array}
$$

which is the desired extension. We omit the verification that these constructions are mutually inverse. □
7. First cohomology and invertible sheaves

Let $(\mathcal{C}, \mathcal{O})$ be a locally ringed site. There is a canonical isomorphism

$$H^1(\mathcal{C}, \mathcal{O}^*) = \text{Pic}(\mathcal{O}).$$

of abelian groups.

Proof. Let \mathcal{L} be an invertible \mathcal{O}-module. Consider the presheaf \mathcal{L}^* defined by the rule

$$U \mapsto \{ s \in \mathcal{L}(U) \text{ such that } \mathcal{O}_U \xrightarrow{\sim} \mathcal{L}_U \text{ is an isomorphism} \}$$

This presheaf satisfies the sheaf condition. Moreover, if $f \in \mathcal{O}^*(U)$ and $s \in \mathcal{L}^*(U)$, then clearly $fs \in \mathcal{L}^*(U)$. By the same token, if $s, s' \in \mathcal{L}^*(U)$ then there exists a unique $f \in \mathcal{O}^*(U)$ such that $fs = s'$. Moreover, the sheaf \mathcal{L}^* has sections locally by Modules on Sites, Lemma 39.7. In other words we see that \mathcal{L}^* is an \mathcal{O}^*-torsor. Thus we get a map

$$\begin{align*}
\text{set of invertible sheaves on } (\mathcal{C}, \mathcal{O}) & \rightarrow \text{set of } \mathcal{O}^*\text{-torsors} \\
\text{up to isomorphism} & \rightarrow \text{up to isomorphism}
\end{align*}$$

We omit the verification that this is a morphism of abelian groups. By Lemma 5.3 the right hand side is canonically bijective to $H^1(\mathcal{C}, \mathcal{O}^*)$. Thus we have to show this map is injective and surjective.

Injective. If the torsor \mathcal{L}^* is trivial, this means by Lemma 5.2 that \mathcal{L}^* has a global section. Hence this means exactly that $\mathcal{L} \cong \mathcal{O}$ is the neutral element in $\text{Pic}(\mathcal{O})$.

Surjective. Let \mathcal{F} be an \mathcal{O}^*-torsor. Consider the presheaf of sets

$$\mathcal{L}_1 : U \mapsto (\mathcal{F}(U) \times \mathcal{O}(U))/\mathcal{O}^*(U)$$

where the action of $f \in \mathcal{O}^*(U)$ on (s, g) is $(fs, f^{-1}g)$. Then \mathcal{L}_1 is a presheaf of \mathcal{O}-modules by setting $(s, g) + (s', g') = (s, g + (s'/s)g')$ where s'/s is the local section f of \mathcal{O}^* such that $fs = s'$, and $h(s, g) = (s, hg)$ for h a local section of \mathcal{O}. We omit the verification that the sheafification $\mathcal{L} = \mathcal{L}_1^\#$ is an invertible \mathcal{O}-module whose associated \mathcal{O}^*-torsor \mathcal{L}^* is isomorphic to \mathcal{F}. □

8. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a sheaf \mathcal{F} over an object of the site.

Lemma 8.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}.

1. If \mathcal{I} is an injective \mathcal{O}-module then $\mathcal{I}|_U$ is an injective \mathcal{O}_U-module.
2. For any sheaf of \mathcal{O}-modules \mathcal{F} we have $H^p(\mathcal{U}, \mathcal{F}) = H^p(\mathcal{C}/\mathcal{U}, \mathcal{F}|_U)$.

Proof. Recall that the functor j_U^{-1} of restriction to U is a right adjoint to the functor j_U^* of extension by 0, see Modules on Sites, Section 19. Moreover, j_U is exact. Hence (1) follows from Homology, Lemma 26.1

By definition $H^p(\mathcal{U}, \mathcal{F}) = H^p(\mathcal{I}^*|_U)$ where $\mathcal{F} \rightarrow \mathcal{I}^*$ is an injective resolution in $\text{Mod}(\mathcal{O})$. By the above we see that $\mathcal{F}|_U \rightarrow \mathcal{I}^*|_U$ is an injective resolution in $\text{Mod}(\mathcal{O}_U)$. Hence $H^p(\mathcal{U}, \mathcal{F}|_U)$ is equal to $H^p(\mathcal{I}^*|_U(U))$. Of course $\mathcal{F}(U) = \mathcal{F}|_U(U)$ for any sheaf \mathcal{F} on \mathcal{C}. Hence the equality in (2). □
The following lemma will be used to see what happens if we change a partial universe, or to compare cohomology of the small and big étale sites.

Lemma 8.2. Let \mathcal{C} and \mathcal{D} be sites. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor. Assume u satisfies the hypotheses of Sites, Lemma 21.8. Let $g : \text{Sh}(\mathcal{C}) \to \text{Sh}(\mathcal{D})$ be the associated morphism of topoi. For any abelian sheaf \mathcal{F} on \mathcal{D} we have isomorphisms

$$R\Gamma(\mathcal{C}, g^{-1}\mathcal{F}) = R\Gamma(\mathcal{D}, \mathcal{F}),$$

in particular $H^p(\mathcal{C}, g^{-1}\mathcal{F}) = H^p(\mathcal{D}, \mathcal{F})$ and for any $U \in \text{Ob}(\mathcal{C})$ we have isomorphisms

$$R\Gamma(U, g^{-1}\mathcal{F}) = R\Gamma(u(U), \mathcal{F}),$$

in particular $H^p(U, g^{-1}\mathcal{F}) = H^p(u(U), \mathcal{F})$. All of these isomorphisms are functorial in \mathcal{F}.

Proof. Since it is clear that $\Gamma(\mathcal{C}, g^{-1}\mathcal{F}) = \Gamma(\mathcal{D}, \mathcal{F})$ by hypothesis (e), it suffices to show that g^{-1} transforms injective abelian sheaves into injective abelian sheaves. As usual we use Homology, Lemma 26.1 to see this. The left adjoint to g^{-1} is $g_! = f_!$ with the notation of Sites, Lemma 21.8 which is an exact functor. Hence the lemma does indeed apply. □

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let $\varphi : U \to V$ be a morphism of \mathcal{O}. Then there is a canonical restriction mapping

$$(8.2.1) \quad H^n(V, \mathcal{F}) \to H^n(U, \mathcal{F}), \quad \xi \mapsto \xi|_U$$

functorial in \mathcal{F}. Namely, choose any injective resolution $\mathcal{F} \to I^\bullet$. The restriction mappings of the sheaves I^p give a morphism of complexes

$$\Gamma(V, I^\bullet) \to \Gamma(U, I^\bullet)$$

The LHS is a complex representing $R\Gamma(V, \mathcal{F})$ and the RHS is a complex representing $R\Gamma(U, \mathcal{F})$. We get the map on cohomology groups by applying the functor H^n. As indicated we will use the notation $\xi \mapsto \xi|_U$ to denote this map. Thus the rule $U \mapsto H^n(U, \mathcal{F})$ is a presheaf of \mathcal{O}-modules. This presheaf is customarily denoted $H^n(\mathcal{F})$. We will give another interpretation of this presheaf in Lemma 11.5.

The following lemma says that it is possible to kill higher cohomology classes by going to a covering.

Lemma 8.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let U be an object of \mathcal{C}. Let $n > 0$ and let $\xi \in H^n(U, \mathcal{F})$. Then there exists a covering $\{U_i \to U\}$ of \mathcal{C} such that $\xi|_{U_i} = 0$ for all $i \in I$.

Proof. Let $\mathcal{F} \to I^\bullet$ be an injective resolution. Then

$$H^n(U, \mathcal{F}) = \frac{\ker(I^n(U) \to I^{n+1}(U))}{\text{im}(I^{n-1}(U) \to I^n(U))}.$$

Pick an element $\tilde{\xi} \in I^n(U)$ representing the cohomology class in the presentation above. Since I^\bullet is an injective resolution of \mathcal{F} and $n > 0$ we see that the complex I^\bullet is exact in degree n. Hence $\text{im}(I^{n-1} \to I^n) = \ker(I^n \to I^{n+1})$ as sheaves. Since $\tilde{\xi}$ is a section of the kernel sheaf over U we conclude there exists a covering $\{U_i \to U\}$ of the site such that $\tilde{\xi}|_{U_i}$ is the image under d of a section $\xi_i \in I^{n-1}(U_i)$. By our definition of the restriction $\xi|_{U_i}$ as corresponding to the class of $\tilde{\xi}|_{U_i}$ we conclude. □
Lemma 8.4. Let \(f : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D}) \) be a morphism of ringed sites corresponding to the continuous functor \(u : \mathcal{D} \to \mathcal{C} \). For any \(\mathcal{F} \in \text{Ob}(\text{Mod}(\mathcal{O}_\mathcal{C})) \) the sheaf \(R^i f_* \mathcal{F} \) is the sheaf associated to the presheaf
\[
V \mapsto H^i(u(V), \mathcal{F})
\]

Proof. Let \(\mathcal{F} \to \mathcal{I}^* \) be an injective resolution. Then \(R^i f_* \mathcal{F} \) is by definition the \(i \)th cohomology sheaf of the complex
\[
f_* \mathcal{I}^0 \to f_* \mathcal{I}^1 \to f_* \mathcal{I}^2 \to \ldots
\]
By definition of the abelian category structure on \(\mathcal{O}_\mathcal{D}\)-modules this cohomology sheaf is the sheaf associated to the presheaf
\[
V \mapsto \frac{\text{Ker}(f_* \mathcal{I}^i(V) \to f_* \mathcal{I}^{i+1}(V))}{\text{Im}(f_* \mathcal{I}^{i-1}(V) \to f_* \mathcal{I}^i(V))}
\]
and this is obviously equal to
\[
\frac{\text{Ker}(\mathcal{I}^i(u(V)) \to \mathcal{I}^{i+1}(u(V)))}{\text{Im}(\mathcal{I}^{i-1}(u(V)) \to \mathcal{I}^i(u(V)))}
\]
which is equal to \(H^i(u(V), \mathcal{F}) \) and we win. \(\square \)

9. The Čech complex and Čech cohomology

Let \(\mathcal{C} \) be a category. Let \(\mathcal{U} = \{ U_i \to U \}_{i \in I} \) be a family of morphisms with fixed target, see Sites, Definition 6.1. Assume that all fibre products \(U_{i_0} \times_U \ldots \times_U U_{i_p} \) exist in \(\mathcal{C} \). Let \(\mathcal{F} \) be an abelian presheaf on \(\mathcal{C} \). Set
\[
\check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F}) = \prod_{(i_0, \ldots, i_p) \in I^{p+1}} \mathcal{F}(U_{i_0} \times_U \ldots \times_U U_{i_p}).
\]
This is an abelian group. For \(s \in \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F}) \) we denote \(s_{i_0, \ldots, i_p} \) its value in the factor \(\mathcal{F}(U_{i_0} \times_U \ldots \times U_{i_p}) \). We define
\[
d : \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F}) \to \check{\mathcal{C}}^{p+1}(\mathcal{U}, \mathcal{F})
\]
by the formula
\[
d(s)_{i_0, \ldots, i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j s_{i_0, \ldots, \hat{i}_j, \ldots, i_{p+1}}|_{U_{i_0} \times_U \ldots \times_U U_{i_{p+1}}}
\]
where the restriction is via the projection map
\[
U_{i_0} \times_U \ldots \times_U U_{i_{p+1}} \to U_{i_0} \times_U \ldots \times_U U_{i_j} \times_U \ldots \times_U U_{i_{p+1}}.
\]
It is straightforward to see that \(d \circ d = 0 \). In other words \(\check{\mathcal{C}}^*(\mathcal{U}, \mathcal{F}) \) is a complex.

Definition 9.1. Let \(\mathcal{C} \) be a category. Let \(\mathcal{U} = \{ U_i \to U \}_{i \in I} \) be a family of morphisms with fixed target such that all fibre products \(U_{i_0} \times_U \ldots \times_U U_{i_p} \) exist in \(\mathcal{C} \). Let \(\mathcal{F} \) be an abelian presheaf on \(\mathcal{C} \). The complex \(\check{\mathcal{C}}^*(\mathcal{U}, \mathcal{F}) \) is the Čech complex associated to \(\mathcal{F} \) and the family \(\mathcal{U} \). Its cohomology groups \(H^i(\check{\mathcal{C}}^*(\mathcal{U}, \mathcal{F})) \) are called the Čech cohomology groups of \(\mathcal{F} \) with respect to \(\mathcal{U} \). They are denoted \(\check{H}^i(\mathcal{U}, \mathcal{F}) \).

We observe that any covering \(\{ U_i \to U \} \) of a site \(\mathcal{C} \) is a family of morphisms with fixed target to which the definition applies.

Lemma 9.2. Let \(\mathcal{C} \) be a site. Let \(\mathcal{F} \) be an abelian presheaf on \(\mathcal{C} \). The following are equivalent

1. \(\mathcal{F} \) is an abelian sheaf on \(\mathcal{C} \) and
(2) for every covering \(\mathcal{U} = \{ U_i \to U \}_{i \in I} \) of the site \(\mathcal{C} \) the natural map
\[
\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})
\]
(see Sites, Section \[10\]) is bijective.

Proof. This is true since the sheaf condition is exactly that \(\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F}) \) is bijective for every covering of \(\mathcal{C} \).

Let \(\mathcal{C} \) be a category. Let \(\mathcal{U} = \{ U_i \to U \}_{i \in I} \) be a family of morphisms of \(\mathcal{C} \) with fixed target such that all fibre products \(U_{i_0} \times_U \ldots \times_U U_{i_p} \) exist in \(\mathcal{C} \). Let \(\mathcal{V} = \{ V_j \to V \}_{j \in J} \) be another. Let \(f : U \to V, \alpha : I \to J \) and \(f_i : U_i \to V_{\alpha(i)} \) be a morphism of families of morphisms with fixed target, see Sites, Section \[8\]. In this case we get a map of Čech complexes
\[
\phi : \check{C}^\bullet(\mathcal{V}, \mathcal{F}) \to \check{C}^\bullet(\mathcal{U}, \mathcal{F})
\]
which in degree \(p \) is given by
\[
\phi(s)_{i_0 \ldots i_p} = (f_{i_0} \times \ldots \times f_{i_p})^* s_{\alpha(i_0) \ldots \alpha(i_p)}
\]

10. Čech cohomology as a functor on presheaves

Lemma 10.1. The functor given by Equation \[(10.0.1)\] is an exact functor (see Homology, Lemma \[7.2\]).

Proof. For any object \(W \) of \(\mathcal{C} \) the functor \(\mathcal{F} \to \mathcal{F}(W) \) is an additive exact functor from \(\text{PAb}(\mathcal{C}) \) to \(\text{Ab} \). The terms \(\check{C}^n(\mathcal{U}, \mathcal{F}) \) of the complex are products of these exact functors and hence exact. Moreover a sequence of complexes is exact if and only if the sequence of terms in a given degree is exact. Hence the lemma follows.

Lemma 10.2. Let \(\mathcal{C} \) be a category. Let \(\mathcal{U} = \{ U_i \to U \}_{i \in I} \) be a family of morphisms with fixed target such that all fibre products \(U_{i_0} \times_U \ldots \times_U U_{i_p} \) exist in \(\mathcal{C} \). The functors \(\mathcal{F} \to \check{H}^n(\mathcal{U}, \mathcal{F}) \) form a \(\delta \)-functor from the abelian category \(\text{PAb}(\mathcal{C}) \) to the category of \(\mathbb{Z} \)-modules (see Homology, Definition \[11.1\]).

Proof. By Lemma \[10.1\] a short exact sequence of abelian presheaves \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) is turned into a short exact sequence of complexes of \(\mathbb{Z} \)-modules. Hence we can use Homology, Lemma \[12.12\] to get the boundary maps \(\delta : \check{H}^n(\mathcal{U}, \mathcal{F}_1) \to \check{H}^{n+1}(\mathcal{U}, \mathcal{F}_3) \) and a corresponding long exact sequence. We omit the verification that these maps are compatible with maps between short exact sequences of presheaves.
Lemma 10.3. Let \mathcal{C} be a category. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in \mathcal{C}. Consider the chain complex $\mathcal{Z}_{\mathcal{U}, \bullet}$ of abelian presheaves

$$\ldots \to \bigoplus_{i_0 i_1 i_2} \mathcal{Z}_{U_{i_0} \times_U U_{i_1} \times_U U_{i_2}} \to \bigoplus_{i_0 i_1} \mathcal{Z}_{U_{i_0} \times_U U_{i_1}} \to \bigoplus_{i_0} \mathcal{Z}_{U_{i_0}} \to 0 \to \ldots$$

where the last nonzero term is placed in degree 0 and where the map

$$\mathcal{Z}_{U_{i_0} \times_U \ldots \times_U U_{i_p}} \to \mathcal{Z}_{U_{i_0} \times_U \ldots \times_U U_{i_{p+1}}}$$

is given by $(-1)^j$ times the canonical map. Then there is an isomorphism

$$\text{Hom}_{\text{PAb}(\mathcal{C})}(\mathcal{Z}_{\mathcal{U}, \bullet}, \mathcal{F}) = \mathcal{C}^*(\mathcal{U}, \mathcal{F})$$

functorial in $\mathcal{F} \in \text{Ob}(\text{PAb}(\mathcal{C}))$.

Proof. This is a tautology based on the fact that

$$\text{Hom}_{\text{PAb}(\mathcal{C})}(\bigoplus_{i_0 \ldots i_p} \mathcal{Z}_{U_{i_0} \times_U \ldots \times_U U_{i_p}}, \mathcal{F}) = \prod_{i_0 \ldots i_p} \text{Hom}_{\text{PAb}(\mathcal{C})}(\mathcal{Z}_{U_{i_0} \times_U \ldots \times_U U_{i_p}}, \mathcal{F}) = \prod_{i_0 \ldots i_p} \mathcal{F}(U_{i_0} \times_U \ldots \times_U U_{i_p})$$

see Modules on Sites, Lemma 4.2. □

Lemma 10.4. Let \mathcal{C} be a category. Let $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in \mathcal{C}. The chain complex $\mathcal{Z}_{\mathcal{U}, \bullet}$ of presheaves of Lemma 10.3 above is exact in positive degrees, i.e., the homology presheaves $H_i(\mathcal{Z}_{\mathcal{U}, \bullet})$ are zero for $i > 0$.

Proof. Let V be an object of \mathcal{C}. We have to show that the chain complex of abelian groups $\mathcal{Z}_{\mathcal{U}, \bullet}(V)$ is exact in degrees > 0. This is the complex

$$\ldots \to \bigoplus_{i_0 i_1 i_2} \mathcal{Z}[\text{Mor}_\mathcal{C}(V, U_{i_0} \times_U U_{i_1} \times_U U_{i_2})] \to \bigoplus_{i_0 i_1} \mathcal{Z}[\text{Mor}_\mathcal{C}(V, U_{i_0} \times_U U_{i_1})] \to \bigoplus_{i_0} \mathcal{Z}[\text{Mor}_\mathcal{C}(V, U_{i_0})] \to 0$$

For any morphism $\varphi : V \to U$ denote $\text{Mor}_\varphi(V, U) = \{\varphi_i : V \to U_i \mid f_i \circ \varphi_i = \varphi\}$. We will use a similar notation for $\text{Mor}_\varphi(V, U_{i_0} \times_U \ldots \times_U U_{i_p})$. Note that composing with the various projection maps between the fibred products $U_{i_0} \times_U \ldots \times_U U_{i_p}$
preserves these morphism sets. Hence we see that the complex above is the same as the complex

$$\cdots \rightarrow \bigoplus_{\varphi} \bigoplus_{i_0 i_1 i_2} \mathbb{Z}[\text{Mor}_\varphi(V, U_{i_0} \times_U U_{i_1} \times_U U_{i_2})]$$

$$\downarrow$$

$$\bigoplus_{\varphi} \bigoplus_{i_0 i_1} \mathbb{Z}[\text{Mor}_\varphi(V, U_{i_0} \times_U U_{i_1})]$$

$$\downarrow$$

$$\bigoplus_{\varphi} \bigoplus_{i_0} \mathbb{Z}[\text{Mor}_\varphi(V, U_{i_0})]$$

$$\downarrow$$

$$0$$

Next, we make the remark that we have

$$\text{Mor}_\varphi(V, U_{i_0} \times_U \ldots \times_U U_{i_p}) = \text{Mor}_\varphi(V, U_{i_0}) \times \ldots \times \text{Mor}_\varphi(V, U_{i_p})$$

Using this and the fact that $\mathbb{Z}[A] \oplus \mathbb{Z}[B] = \mathbb{Z}[A \amalg B]$ we see that the complex becomes

$$\cdots \rightarrow \bigoplus_{\varphi} \mathbb{Z} \left[\prod_{i_0 i_1 i_2} \text{Mor}_\varphi(V, U_{i_0}) \times \text{Mor}_\varphi(V, U_{i_1}) \times \text{Mor}_\varphi(V, U_{i_2}) \right]$$

$$\downarrow$$

$$\bigoplus_{\varphi} \mathbb{Z} \left[\prod_{i_0 i_1} \text{Mor}_\varphi(V, U_{i_0}) \times \text{Mor}_\varphi(V, U_{i_1}) \right]$$

$$\downarrow$$

$$\bigoplus_{\varphi} \mathbb{Z} \left[\prod_{i_0} \text{Mor}_\varphi(V, U_{i_0}) \right]$$

$$\downarrow$$

$$0$$

Finally, on setting $S_\varphi = \prod_{i \in I} \text{Mor}_\varphi(V, U_i)$ we see that we get

$$\bigoplus_{\varphi} (\ldots \rightarrow \mathbb{Z}[S_\varphi \times S_\varphi \times S_\varphi] \rightarrow \mathbb{Z}[S_\varphi \times S_\varphi] \rightarrow \mathbb{Z}[S_\varphi] \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \ldots)$$

Thus we have simplified our task. Namely, it suffices to show that for any nonempty set S the (extended) complex of free abelian groups

$$\ldots \rightarrow \mathbb{Z}[S \times S \times S] \rightarrow \mathbb{Z}[S \times S] \rightarrow \mathbb{Z}[S] \xrightarrow{\Sigma} \mathbb{Z} \rightarrow 0 \rightarrow \ldots$$

is exact in all degrees. To see this fix an element $s \in S$, and use the homotopy

$$n_{(s_0, \ldots, s_p)} \mapsto n_{(s, s_0, \ldots, s_p)}$$

with obvious notations. \square
Lemma 10.5. Let \mathcal{C} be a category. Let $\mathcal{U} = \{ f_i : U_i \to U \}_{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times_U \cdots \times_U U_{i_p}$ exist in \mathcal{C}. Let \mathcal{O} be a presheaf of rings on \mathcal{C}. The chain complex

$$Z_{\mathcal{U}, \bullet} \otimes _{\mathbb{Z}} \mathcal{O}$$

is exact in positive degrees. Here $Z_{\mathcal{U}, \bullet}$ is the chain complex of Lemma 10.3 and the tensor product is over the constant presheaf of rings with value \mathbb{Z}.

Proof. Let V be an object of \mathcal{C}. In the proof of Lemma 10.4 we saw that $Z_{\mathcal{U}, \bullet}(V)$ is isomorphic as a complex to a direct sum of complexes which are homotopic to \mathbb{Z} placed in degree zero. Hence also $Z_{\mathcal{U}, \bullet}(V) \otimes _{\mathbb{Z}} \mathcal{O}(V)$ is isomorphic as a complex to a direct sum of complexes which are homotopic to $\mathcal{O}(V)$ placed in degree zero. Or you can use Modules on Sites, Lemma 28.10, which applies since the presheaves \mathcal{O} are flat, and the proof of Lemma 10.4 shows that $H_0(Z_{\mathcal{U}, \bullet})$ is a flat presheaf also. \(\square\)

Lemma 10.6. Let \mathcal{C} be a category. Let $\mathcal{U} = \{ f_i : U_i \to U \}_{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times_U \cdots \times_U U_{i_p}$ exist in \mathcal{C}. The Čech cohomology functors $H^p(\mathcal{U}, -)$ are canonically isomorphic to the right derived functors of the functor

$$\hat{H}^0(\mathcal{U}, -) : \mathcal{PAb}(\mathcal{C}) \to \mathsf{Ab}.$$

Moreover, there is a functorial quasi-isomorphism

$$\mathcal{C}^\bullet(\mathcal{U}, \mathcal{F}) \to \hat{R}H^0(\mathcal{U}, \mathcal{F})$$

where the right hand side indicates the derived functor

$$\hat{R}H^0(\mathcal{U}, -) : D^+(\mathcal{PAb}(\mathcal{C})) \to D^+(\mathbb{Z})$$

of the left exact functor $\hat{H}^0(\mathcal{U}, -)$.

Proof. Note that the category of abelian presheaves has enough injectives, see Injectives, Proposition 6.1. Note that $\hat{H}^0(\mathcal{U}, -)$ is a left exact functor from the category of abelian presheaves to the category of \mathbb{Z}-modules. Hence the derived functor and the right derived functor exist, see Derived Categories, Section 20.

Let \mathcal{I} be a injective abelian presheaf. In this case the functor $\operatorname{Hom}_{\mathcal{PAb}(\mathcal{C})}(-, \mathcal{I})$ is exact on $\mathcal{PAb}(\mathcal{C})$. By Lemma 10.3 we have

$$\operatorname{Hom}_{\mathcal{PAb}(\mathcal{C})}(Z_{\mathcal{U}, \bullet}, \mathcal{I}) = \mathcal{C}^\bullet(\mathcal{U}, \mathcal{I}).$$

By Lemma 10.4 we have that $Z_{\mathcal{U}, \bullet}$ is exact in positive degrees. Hence by the exactness of Hom into \mathcal{I} mentioned above we see that $\hat{H}^i(\mathcal{U}, \mathcal{I}) = 0$ for all $i > 0$. Thus the δ-functor (\hat{H}^p, δ) (see Lemma 10.2) satisfies the assumptions of Homology, Lemma 11.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 20.4, also the sequence $R^i \hat{H}^0(\mathcal{U}, -)$ forms a universal δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma 11.5, we conclude that $R^i \hat{H}^0(\mathcal{U}, -) = \hat{H}^i(\mathcal{U}, -)$. This is enough for most applications and the reader is suggested to skip the rest of the proof.

Let \mathcal{F} be any abelian presheaf on \mathcal{C}. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$ in the category $\mathcal{PAb}(\mathcal{C})$. Consider the double complex $A^{p, q}$ with terms

$$A^{p, q} = \mathcal{C}^p(\mathcal{U}, \mathcal{I}^q).$$
Consider the simple complex sA^\bullet associated to this double complex. There is a map of complexes

$$\tilde{C}^\bullet(\mathcal{U}, F) \longrightarrow sA^\bullet$$

coming from the maps $\tilde{C}^p(\mathcal{U}, F) \rightarrow A^{p,0} = \tilde{C}^\bullet(\mathcal{U}, \mathcal{I}^0)$ and there is a map of complexes

$$\tilde{H}^0(\mathcal{U}, \mathcal{I}^\bullet) \longrightarrow sA^\bullet$$

coming from the maps $\tilde{H}^0(\mathcal{U}, \mathcal{I}^q) \rightarrow A^{0,q} = \tilde{C}^\bullet(\mathcal{U}, \mathcal{I}^q)$. Both of these maps are quasi-isomorphisms by an application of Homology, Lemma 22.7. Namely, the columns of the double complex are exact in positive degrees because the Čech complex as a functor is exact (Lemma 10.1) and the rows of the double complex are exact in positive degrees since as we just saw the higher Čech cohomology groups of the injective presheaves \mathcal{I}^q are zero. Since quasi-isomorphisms become invertible in $D^+(\mathbb{Z})$ this gives the last displayed morphism of the lemma. We omit the verification that this morphism is functorial. □

11. Čech cohomology and cohomology

The relationship between cohomology and Čech cohomology comes from the fact that the Čech cohomology of an injective abelian sheaf is zero. To see this we note that an injective abelian sheaf is an injective abelian presheaf and then we apply results in Čech cohomology in the preceding section.

Lemma 11.1. Let \mathcal{C} be a site. An injective abelian sheaf is also injective as an object in the category $\text{PAb}(\mathcal{C})$.

Proof. Apply Homology, Lemma 26.1 to the categories $\mathcal{A} = Ab(\mathcal{C})$, $\mathcal{B} = \text{PAb}(\mathcal{C})$, the inclusion functor and sheafification. (See Modules on Sites, Section 3 to see that all assumptions of the lemma are satisfied.) □

Lemma 11.2. Let \mathcal{C} be a site. Let $\mathcal{U} = \{U_i \rightarrow U\}_{i \in I}$ be a covering of \mathcal{C}. Let \mathcal{I} be an injective abelian sheaf, i.e., an injective object of $\text{Ab}(\mathcal{C})$. Then

$$\tilde{H}^p(\mathcal{U}, \mathcal{I}) = \begin{cases} \mathcal{I}(U) & \text{if } p = 0 \\ 0 & \text{if } p > 0 \end{cases}$$

Proof. By Lemma 11.1 we see that \mathcal{I} is an injective object in $\text{PAb}(\mathcal{C})$. Hence we can apply Lemma 10.6 (or its proof) to see the vanishing of higher Čech cohomology group. For the zeroth see Lemma 9.2 □

Lemma 11.3. Let \mathcal{C} be a site. Let $\mathcal{U} = \{U_i \rightarrow U\}_{i \in I}$ be a covering of \mathcal{C}. There is a transformation

$$\tilde{C}^\bullet(\mathcal{U}, -) \longrightarrow \Gamma(\mathcal{U}, -)$$

of functors $\text{Ab}(\mathcal{C}) \rightarrow D^+(\mathbb{Z})$. In particular this gives a transformation of functors $\tilde{H}^p(\mathcal{U}, \mathcal{F}) \rightarrow H^p(\mathcal{U}, \mathcal{F})$ for \mathcal{F} ranging over $\text{Ab}(\mathcal{C})$.

Proof. Let \mathcal{F} be an abelian sheaf. Choose an injective resolution $\mathcal{F} \rightarrow \mathcal{I}^\bullet$. Consider the double complex $A^{\bullet,\bullet}$ with terms $A^{p,q} = \tilde{C}^p(\mathcal{U}, \mathcal{I}^q)$. Moreover, consider the associated simple complex sA^\bullet, see Homology, Definition 22.3. There is a map of complexes

$$\alpha : \Gamma(\mathcal{U}, \mathcal{I}^\bullet) \longrightarrow sA^\bullet$$

coming from the maps $\mathcal{I}^q(\mathcal{U}) \rightarrow \tilde{H}^q(\mathcal{U}, \mathcal{I}^q)$ and a map of complexes

$$\beta : \tilde{C}^\bullet(\mathcal{U}, \mathcal{F}) \longrightarrow sA^\bullet$$

...
Let \(\mathcal{F} \to \mathcal{I}^0 \). We can apply Homology, Lemma \[22.7\] to see that \(\alpha \) is a quasi-isomorphism. Namely, Lemma \[11.2\] implies that the \(q \)th row of the double complex \(A^{\bullet \bullet} \) is a resolution of \(\Gamma(U, \mathcal{I}^q) \). Hence \(\alpha \) becomes invertible in \(D^+(\mathcal{Z}) \) and the transformation of the lemma is the composition of \(\beta \) followed by the inverse of \(\alpha \). We omit the verification that this is functorial. \[\square\]

\textbf{Lemma 11.4.} Let \(\mathcal{C} \) be a site. Let \(\mathcal{G} \) be an abelian sheaf on \(\mathcal{C} \). Let \(\mathcal{U} = \{U_i \to U\}_{i \in I} \) be a covering of \(\mathcal{C} \). The map
\[H^1(U, \mathcal{G}) \to H^1(U, \mathcal{G}) \]
is injective and identifies \(H^1(U, \mathcal{G}) \) via the bijection of Lemma \[5.3\] with the set of isomorphism classes of \(\mathcal{G}|_U \)-torsors which restrict to trivial torsors over each \(U_i \).

\textbf{Proof.} To see this we construct an inverse map. Namely, let \(\mathcal{F} \) be a \(\mathcal{G}|_U \)-torsor on \(\mathcal{C}/U \) whose restriction to \(\mathcal{C}/U_i \) is trivial. By Lemma \[5.2\] this means there exists a section \(s_i \in \mathcal{F}(U_i) \). On \(U_{i_0} \times_U U_{i_1} \) there is a unique section \(s_{i_0i_1} \) of \(\mathcal{G} \) such that \(s_{i_0i_1} \cdot s_{i_0}|_{U_{i_0} \times_U U_{i_1}} = s_i|_{U_{i_0} \times_U U_{i_1}} \). An easy computation shows that \(s_{i_0i_1} \) is a Čech cocycle and that its class is well defined (i.e., does not depend on the choice of the sections \(s_i \)). The inverse maps the isomorphism class of \(\mathcal{F} \) to the cohomology class of the cocycle \((s_{i_0i_1}) \). We omit the verification that this map is indeed an inverse. \[\square\]

\textbf{Lemma 11.5.} Let \(\mathcal{C} \) be a site. Consider the functor \(i : Ab(\mathcal{C}) \to PAb(\mathcal{C}) \). It is a left exact functor with right derived functors given by
\[R^pi(\mathcal{F}) = H^p(\mathcal{F}) : U \mapsto H^p(U, \mathcal{F}) \]
see discussion in Section \[3\].

\textbf{Proof.} It is clear that \(i \) is left exact. Choose an injective resolution \(\mathcal{F} \to \mathcal{I}^\bullet \). By definition \(R^pi \) is the \(p \)th cohomology presheaf of the complex \(\mathcal{I}^\bullet \). In other words, the sections of \(R^pi(\mathcal{F}) \) over an object \(U \) of \(\mathcal{C} \) are given by
\[\operatorname{Ker}(\mathcal{I}_n(U) \to \mathcal{I}_{n+1}(U)) / \operatorname{Im}(\mathcal{I}_{n-1}(U) \to \mathcal{I}_n(U)) \]
which is the definition of \(H^p(U, \mathcal{F}) \). \[\square\]

\textbf{Lemma 11.6.} Let \(\mathcal{C} \) be a site. Let \(\mathcal{U} = \{U_i \to U\}_{i \in I} \) be a covering of \(\mathcal{C} \). For any abelian sheaf \(\mathcal{F} \) there is a spectral sequence \((E_r, d_r)_{r \geq 0}\) with
\[E_2^{p,q} = H^p(U, H^q(\mathcal{F})) \]
converging to \(H^{p+q}(U, \mathcal{F}) \). This spectral sequence is functorial in \(\mathcal{F} \).

\textbf{Proof.} This is a Grothendieck spectral sequence (see Derived Categories, Lemma \[22.2\]) for the functors \[i : Ab(\mathcal{C}) \to PAb(\mathcal{C}) \] and \(\hat{H}^0(\mathcal{U}, -) : PAb(\mathcal{C}) \to Ab \).

Namely, we have \(\hat{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U) \) by Lemma \[9.2\]. We have that \(i(\mathcal{I}) \) is Čech acyclic by Lemma \[11.2\]. And we have that \(\hat{H}^p(\mathcal{U}, -) = R^p \hat{H}^0(\mathcal{U}, -) \) as functors on \(PAb(\mathcal{C}) \) by Lemma \[10.6\]. Putting everything together gives the lemma. \[\square\]

\textbf{Lemma 11.7.} Let \(\mathcal{C} \) be a site. Let \(\mathcal{U} = \{U_i \to U\}_{i \in I} \) be a covering. Let \(\mathcal{F} \in \text{Ob}(Ab(\mathcal{C})) \). Assume that \(H^1(U_{i_0} \times_U \ldots \times_U U_{i_p}, \mathcal{F}) = 0 \) for all \(i > 0 \), all \(p \geq 0 \) and all \(i_0, \ldots, i_p \in I \). Then \(\hat{H}^p(U, \mathcal{F}) = H^p(U, \mathcal{F}) \).
Proof. We will use the spectral sequence of Lemma \[11.6\]. The assumptions mean that \(E^{p, q}_2 = 0 \) for all \((p, q)\) with \(q \neq 0 \). Hence the spectral sequence degenerates at \(E_2 \) and the result follows. \(\square \)

Lemma 11.8. Let \(\mathcal{C} \) be a site. Let

\[
0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0
\]

be a short exact sequence of abelian sheaves on \(\mathcal{C} \). Let \(U \) be an object of \(\mathcal{C} \). If there exists a cofinal system of coverings \(\mathcal{U} \) of \(U \) such that \(\check{H}^1(\mathcal{U}, \mathcal{F}) = 0 \), then the map \(\mathcal{G}(U) \to \mathcal{H}(U) \) is surjective.

Proof. Take an element \(s \in \mathcal{H}(U) \). Choose a covering \(\mathcal{U} = \{U_i \to U\}_{i \in I} \) such that (a) \(\check{H}^1(\mathcal{U}, \mathcal{F}) = 0 \) and (b) \(s|_{U_i} \) is the image of a section \(s_i \in \mathcal{G}(U_i) \). Since we can certainly find a covering such that (b) holds it follows from the assumptions of the lemma that we can find a covering such that (a) and (b) both hold. Consider the sections

\[
s_{i_{i_1 i_2}} = s_{i_1}|_{U_{i_0} \times_U U_{i_1}} - s_{i_0}|_{U_{i_0} \times_U U_{i_1}}.
\]

Since \(s_i \) lifts \(s \) we see that \(s_{i_{i_1 i_2}} \in \mathcal{F}(U_{i_0} \times_U U_{i_1}) \). By the vanishing of \(\check{H}^1(\mathcal{U}, \mathcal{F}) \) we can find sections \(t_i \in \mathcal{F}(U_i) \) such that

\[
s_{i_{i_1 i_2}} = t_{i_1}|_{U_{i_0} \times_U U_{i_1}} - t_{i_0}|_{U_{i_0} \times_U U_{i_1}}.
\]

Then clearly the sections \(s_i - t_i \) satisfy the sheaf condition and glue to a section of \(\mathcal{G} \) over \(U \) which maps to \(s \). Hence we win. \(\square \)

Lemma 11.9. (Variant of Cohomology, Lemma \[12.8\]). Let \(\mathcal{C} \) be a site. Let \(\text{Cov} \) be the set of coverings of \(\mathcal{C} \) (see Sites, Definition \[6.3\]). Let \(\mathcal{B} \subset \text{Ob}(\mathcal{C}) \), and \(\text{Cov} \subset \text{Cov} \) be subsets. Let \(\mathcal{F} \) be an abelian sheaf on \(\mathcal{C} \). Assume that

1. For every \(\mathcal{U} \in \text{Cov} \), \(\mathcal{U} = \{U_i \to U\}_{i \in I} \) we have \(U, U_i \in \mathcal{B} \) and every \(U_{i_0} \times_U \ldots \times_U U_{i_p} \in \mathcal{B} \).
2. For every \(\mathcal{U} \in \mathcal{B} \) the coverings of \(U \) occurring in \(\text{Cov} \) is a cofinal system of coverings of \(U \).
3. For every \(\mathcal{U} \in \text{Cov} \) we have \(\check{H}^p(\mathcal{U}, \mathcal{F}) = 0 \) for all \(p > 0 \).

Then \(\check{H}^p(\mathcal{U}, \mathcal{F}) = 0 \) for all \(p > 0 \) and any \(\mathcal{U} \in \mathcal{B} \).

Proof. Let \(\mathcal{F} \) and \(\text{Cov} \) be as in the lemma. We will indicate this by saying “\(\mathcal{F} \) has vanishing higher Čech cohomology for any \(\mathcal{U} \in \text{Cov} \)”.

Choose an embedding \(\mathcal{F} \to \mathcal{I} \) into an injective abelian sheaf. By Lemma \[11.2\] \(\mathcal{I} \) has vanishing higher Čech cohomology for any \(\mathcal{U} \in \text{Cov} \). Let \(\mathcal{Q} = \mathcal{I}/\mathcal{F} \) so that we have a short exact sequence

\[
0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0.
\]

By Lemma \[11.8\] and our assumption (2) this sequence gives rise to an exact sequence

\[
0 \to \mathcal{F}(U) \to \mathcal{I}(U) \to \mathcal{Q}(U) \to 0.
\]

for every \(\mathcal{U} \in \mathcal{B} \). Hence for any \(\mathcal{U} \in \text{Cov} \) we get a short exact sequence of Čech complexes

\[
0 \to \check{\mathcal{C}}^n(\mathcal{U}, \mathcal{F}) \to \check{\mathcal{C}}^n(\mathcal{U}, \mathcal{I}) \to \check{\mathcal{C}}^n(\mathcal{U}, \mathcal{Q}) \to 0
\]

since each term in the Čech complex is made up out of a product of values over elements of \(\mathcal{B} \) by assumption (1). In particular we have a long exact sequence of Čech cohomology groups for any covering \(\mathcal{U} \in \text{Cov} \). This implies that \(\mathcal{Q} \) is also an abelian sheaf with vanishing higher Čech cohomology for all \(\mathcal{U} \in \text{Cov} \).
Next, we look at the long exact cohomology sequence

\[
0 \rightarrow H^0(U, F) \rightarrow H^0(U, I) \rightarrow H^0(U, Q) \rightarrow H^1(U, F) \rightarrow H^1(U, I) \rightarrow H^1(U, Q) \rightarrow \ldots
\]

for any \(U \in \mathcal{B} \). Since \(I \) is injective we have \(H^n(U, I) = 0 \) for \(n > 0 \) (see Derived Categories, Lemma \[20.4\]). By the above we see that \(H^0(U, I) \rightarrow H^0(U, Q) \) is surjective and hence \(H^1(U, F) = 0 \). Since \(F \) was an arbitrary abelian sheaf with vanishing higher Čech cohomology for all \(U \in \text{Cov} \) we conclude that also \(H^1(U, Q) = 0 \) since \(Q \) is another of these sheaves (see above). By the long exact sequence this in turn implies that \(H^2(U, F) = 0 \). And so on and so forth. □

12. Second cohomology and gerbes

Let \(p : S \rightarrow C \) be a gerbe over a site all of whose automorphism groups are commutative. In this situation the first and second cohomology groups of the sheaf of automorphisms (Stacks, Lemma \[11.8\]) controls the existence of objects.

The following lemma will be made obsolete by a more complete discussion of this relationship we will add in the future.

Lemma 12.1. Let \(C \) be a site. Let \(p : S \rightarrow C \) be a gerbe over a site whose automorphism sheaves are abelian. Let \(G \) be the sheaf of abelian groups constructed in Stacks, Lemma \[11.8\]. Let \(U \) be an object of \(C \) such that

1. there exists a cofinal system of coverings \(\{ U_i \rightarrow U \} \) of \(U \) in \(C \) such that \(H^1(U_i, G) = 0 \) and \(H^1(U_i \times_U U_j, G) = 0 \) for all \(i, j \), and
2. \(H^2(U, G) = 0 \).

Then there exists an object of \(S \) lying over \(U \).

Proof. By Stacks, Definition \[11.1\] there exists a covering \(\mathcal{U} = \{ U_i \rightarrow U \} \) and \(x_i \) in \(S \) lying over \(U_i \). Write \(U_{ij} = U_i \times_U U_j \). By (1) after refining the covering we may assume that \(H^1(U_i, G) = 0 \) and \(H^1(U_{ij}, G) = 0 \). Consider the sheaf

\[
\mathcal{F}_{ij} = \text{Isom}(x_i|_{U_{ij}}, x_j|_{U_{ij}})
\]

on \(C/U_{ij} \). Since \(G|_{U_{ij}} = \text{Aut}(x_i|_{U_{ij}}) \) we see that there is an action

\[
G|_{U_{ij}} \times \mathcal{F}_{ij} \rightarrow \mathcal{F}_{ij}
\]

by precomposition. It is clear that \(\mathcal{F}_{ij} \) is a pseudo \(G|_{U_{ij}} \)-torsor and in fact a torsor because any two objects of a gerbe are locally isomorphic. By our choice of the covering and by Lemma \[5.3\] these torsors are trivial (and hence have global sections by Lemma \[5.2\]). In other words, we can choose isomorphisms

\[
\varphi_{ij} : x_i|_{U_{ij}} \longrightarrow x_j|_{U_{ij}}
\]

To find an object \(x \) over \(U \) we are going to massage our choice of these \(\varphi_{ij} \) to get a descent datum (which is necessarily effective as \(p : S \rightarrow C \) is a stack). Namely, the
obstruction to being a descent datum is that the cocycle condition may not hold. Namely, set $U_{ijk} = U_i \times_U U_j \times_U U_k$. Then we can consider
\[g_{ijk} = \varphi_{ik}^{-1}|_{U_{ijk}} \circ \varphi_{jk}|_{U_{ijk}} \circ \varphi_{ij}|_{U_{ijk}} \]
which is an automorphism of x_i over U_{ijk}. Thus we may and do consider g_{ijk} as a section of \mathcal{G} over U_{ijk}. A computation (omitted) shows that (g_{i0i1i2}) is a 2-cocycle in the Čech complex $\check{C}^\bullet(U, \mathcal{G})$ of \mathcal{G} with respect to the covering U. By the spectral sequence of Lemma \[11.6\] and since $H^1(U_i, \mathcal{G}) = 0$ for all i we see that $H^2(U, \mathcal{G}) \to H^2(U, \mathcal{G})$ is injective. Hence (g_{i0i1i2}) is a coboundary by our assumption that $H^2(U, \mathcal{G}) = 0$. Thus we can find sections $g_{ij} \in \mathcal{G}(U_{ijk})$ such that $g_{ik}^{-1}|_{U_{ijk}} g_{jk}|_{U_{ijk}} g_{ij}|_{U_{ijk}} = g_{ijk}$ for all i, j, k. After replacing φ_{ij} by $\varphi_{ij} g_{ij}^{-1}$ we see that φ_{ij} gives a descent datum on the objects x_i over U_i and the proof is complete. \[\square \]

13. Cohomology of modules

03FA Everything that was said for cohomology of abelian sheaves goes for cohomology of modules, since the two agree.

03FB \textbf{Lemma 13.1.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. An injective sheaf of modules is also injective as an object in the category $P Mod(\mathcal{O})$.

\textbf{Proof.} Apply Homology, Lemma \[26.1\] to the categories $A = \text{Mod}(\mathcal{O}), B = P Mod(\mathcal{O})$, the inclusion functor and sheafification. (See Modules on Sites, Section \[11\] to see that all assumptions of the lemma are satisfied.) \[\square \]

06YK \textbf{Lemma 13.2.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Consider the functor $i : \text{Mod}(\mathcal{C}) \to P Mod(\mathcal{C})$. It is a left exact functor with right derived functors given by
\[R^p i(\mathcal{F}) = H^p(\mathcal{F}) : U \mapsto H^p(U, \mathcal{F}) \]
see discussion in Section \[3\].

\textbf{Proof.} It is clear that i is left exact. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$ in $\text{Mod}(\mathcal{O})$. By definition $R^p i$ is the pth cohomology presheaf of the complex \mathcal{I}^\bullet. In other words, the sections of $R^p i(\mathcal{F})$ over an object U of \mathcal{C} are given by
\[\text{Ker}(\mathcal{I}^p(U) \to \mathcal{I}^{p+1}(U)) \bigg/ \text{Im}(\mathcal{I}^{p-1}(U) \to \mathcal{I}^p(U)) \]
which is the definition of $H^p(U, \mathcal{F})$. \[\square \]

03FC \textbf{Lemma 13.3.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{U} = \{ U_i \to U \}_{i \in I}$ be a covering of \mathcal{C}. Let \mathcal{I} be an injective \mathcal{O}-module, i.e., an injective object of $\text{Mod}(\mathcal{O})$. Then
\[H^p(\mathcal{U}, \mathcal{I}) = \begin{cases} \mathcal{I}(U) & \text{if } p = 0 \\ 0 & \text{if } p > 0 \end{cases} \]

\textbf{Proof.} Lemma \[10.3\] gives the first equality in the following sequence of equalities
\[\check{C}^\bullet(\mathcal{U}, \mathcal{I}) = \text{Mor}_{\mathcal{PMod}(\mathcal{C})}(\mathbf{Z}_\mathcal{U}, \bullet, \mathcal{I}) \]
\[= \text{Mor}_{\mathcal{PMod}(\mathcal{O})}(\mathbf{Z}_\mathcal{U}, \bullet, \mathcal{I}) \]
\[= \text{Mor}_{\mathcal{PMod}(\mathcal{O})}(\mathbf{Z}_\mathcal{U} \otimes_{\mathbf{Z}} \mathcal{O}, \mathcal{I}) \]
The third equality by Modules on Sites, Lemma \[9.2\] By Lemma \[13.1\] we see that \mathcal{I} is an injective object in $\mathcal{PMod}(\mathcal{O})$. Hence $\text{Hom}_{\mathcal{PMod}(\mathcal{O})}(-, \mathcal{I})$ is an exact functor. By Lemma \[10.5\] we see the vanishing of higher Čech cohomology groups. For the zeroth see Lemma \[9.2\] \[\square \]
03FD Lemma 13.4. Let \(\mathcal{C} \) be a site. Let \(\mathcal{O} \) be a sheaf of rings on \(\mathcal{C} \). Let \(\mathcal{F} \) be an \(\mathcal{O} \)-module, and denote \(\mathcal{F}_{\text{ab}} \) the underlying sheaf of abelian groups. Then we have
\[
H^i(\mathcal{C}, \mathcal{F}_{\text{ab}}) = H^i(\mathcal{C}, \mathcal{F})
\]
and for any object \(U \) of \(\mathcal{C} \) we also have
\[
H^i(U, \mathcal{F}_{\text{ab}}) = H^i(U, \mathcal{F}).
\]
Here the left hand side is cohomology computed in \(\text{Ab}(\mathcal{C}) \) and the right hand side is cohomology computed in \(\text{Mod}(\mathcal{O}) \).

Proof. By Derived Categories, Lemma 20.4 the \(\delta \)-functor \((\mathcal{F} \mapsto H^p(U, \mathcal{F}))(p \geq 0) \) is universal. The functor \(\text{Mod}(\mathcal{O}) \to \text{Ab}(\mathcal{C}), \mathcal{F} \mapsto \mathcal{F}_{\text{ab}} \) is exact. Hence \((\mathcal{F} \mapsto H^p(U, \mathcal{F}_{\text{ab}}))(p \geq 0) \) is a \(\delta \)-functor also. Suppose we show that \((\mathcal{F} \mapsto H^p(U, \mathcal{F}_{\text{ab}}))(p \geq 0) \) is also universal. This will imply the second statement of the lemma by uniqueness of universal \(\delta \)-functors, see Homology, Lemma 11.5. Since \(\text{Mod}(\mathcal{O}) \) has enough injectives, it suffices to show that \(H^i(U, \mathcal{I}_{\text{ab}}) = 0 \) for any injective object \(\mathcal{I} \) in \(\text{Mod}(\mathcal{O}) \), see Homology, Lemma 11.4.

Let \(\mathcal{I} \) be an injective object of \(\text{Mod}(\mathcal{O}) \). Apply Lemma 11.9 with \(\mathcal{F} = \mathcal{I} \), \(\mathcal{B} = \mathcal{C} \) and \(\text{Cov} = \text{Cov}_{\mathcal{C}} \). Assumption (3) of that lemma holds by Lemma 13.3. Hence we see that \(H^i(U, \mathcal{I}_{\text{ab}}) = 0 \) for every object \(U \) of \(\mathcal{C} \).

If \(\mathcal{C} \) has a final object then this also implies the first equality. If not, then according to Sites, Lemma 29.5 we see that the ringed topos \((\text{Sh}(\mathcal{C}), \mathcal{O}) \) is equivalent to a ringed topos where the underlying site does have a final object. Hence the lemma follows. \(\square \)

060L Lemma 13.5. Let \(\mathcal{C} \) be a site. Let \(I \) be a set. For \(i \in I \) let \(\mathcal{F}_i \) be an abelian sheaf on \(\mathcal{C} \). Let \(U \in \text{Ob}(\mathcal{C}) \). The canonical map
\[
H^p(U, \prod_{i \in I} \mathcal{F}_i) \to \prod_{i \in I} H^p(U, \mathcal{F}_i)
\]
is an isomorphism for \(p = 0 \) and injective for \(p = 1 \).

Proof. The statement for \(p = 0 \) is true because the product of sheaves is equal to the product of the underlying presheaves, see Sites, Lemma 10.1. Proof for \(p = 1 \). Set \(\mathcal{F} = \prod_{i \in I} \mathcal{F}_i \). Let \(\xi \in H^1(U, \mathcal{F}) \) map to zero in \(\prod_{i \in I} H^1(U, \mathcal{F}_i) \). By locality of cohomology, see Lemma 8.3, there exists a covering \(U = \{ U_j \to U \} \) such that \(\xi|_{U_j} = 0 \) for all \(j \). By Lemma 11.4 (this means \(\xi \) comes from an element \(\xi \in H^1(U, \mathcal{F}) \). Since the maps \(H^1(U, \mathcal{F}_i) \to H^1(U, \mathcal{F}_j) \) are injective for all \(i \) (by Lemma 11.4) and since the image of \(\xi \) is zero in \(\prod_{i \in I} H^1(U, \mathcal{F}_i) \) we see that the image \(\xi \) is zero in \(H^1(U, \mathcal{F}_i) \). However, since \(\mathcal{F} = \prod_{i \in I} \mathcal{F}_i \) we see that \(\mathcal{F}^\bullet(U, \mathcal{F}) \) is the product of the complexes \(\mathcal{F}^\bullet(U, \mathcal{F}_i) \), hence by Homology, Lemma 29.1 we conclude that \(\xi = 0 \) as desired. \(\square \)

093X Lemma 13.6. Let \((\mathcal{C}, \mathcal{O}) \) be a ringed site. Let \(\alpha : U' \to U \) be a monomorphism in \(\mathcal{C} \). Then for any injective \(\mathcal{O} \)-module \(\mathcal{I} \) the restriction mapping \(\mathcal{I}(U) \to \mathcal{I}(U') \) is surjective.

Proof. Let \(j : \mathcal{C}/U \to \mathcal{C} \) and \(j' : \mathcal{C}/U' \to \mathcal{C} \) be the localization morphisms \(\text{(Modules on Sites, Section 19)}. \) Since \(j_! \) is a left adjoint to restriction we see that for any sheaf \(\mathcal{F} \) of \(\mathcal{O} \)-modules
\[
\text{Hom}_\mathcal{O}(j_! \mathcal{O}_U, \mathcal{F}) = \text{Hom}_{\mathcal{O}_U}(\mathcal{O}_U, \mathcal{F}|_U) = \mathcal{F}(U)
\]
Similarly, the sheaf $j'_!\mathcal{O}_U$ represents the functor $\mathcal{F} \mapsto \mathcal{F}(U')$. Moreover below we describe a canonical map of \mathcal{O}-modules

$$j'_!\mathcal{O}_U \longrightarrow j_!\mathcal{O}_U$$

which corresponds to the restriction mapping $\mathcal{F}(U) \rightarrow \mathcal{F}(U')$ via Yoneda’s lemma (Categories, Lemma 3.5). It suffices to prove the displayed map of modules is injective, see Homology, Lemma 24.2.

To construct our map it suffices to construct a map between the presheaves which assign to an object V of \mathcal{C} the $\mathcal{O}(V)$-module

$$\bigoplus_{\varphi' \in \text{Mor}_{\mathcal{C}}(V,U')} \mathcal{O}(V) \quad \text{and} \quad \bigoplus_{\varphi \in \text{Mor}_{\mathcal{C}}(V,U)} \mathcal{O}(V)$$

see Modules on Sites, Lemma 19.2. We take the map which maps the summand corresponding to φ' to the summand corresponding to $\varphi = a \circ \varphi'$ by the identity map on $\mathcal{O}(V)$. As a is a monomorphism, this map is injective. As sheafification is exact, the result follows.

\[\square \]

14. Limp sheaves

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K be a presheaf of sets on \mathcal{C} (we intentionally use a roman capital here to distinguish from abelian sheaves). Given a sheaf of \mathcal{O}-modules \mathcal{F} we set

$$\mathcal{F}(K) = \text{Mor}_{\text{PSh}(\mathcal{C})}(K, \mathcal{F}) = \text{Mor}_{\text{Sh}(\mathcal{C})}(K^{\#}, \mathcal{F})$$

The functor $\mathcal{F} \mapsto \mathcal{F}(K)$ is a left exact functor $\text{Mod}(\mathcal{O}) \rightarrow \text{Ab}$ hence we have its right derived functors. We will denote these $H^p(K, \mathcal{F})$ so that $H^0(K, \mathcal{F}) = \mathcal{F}(K)$.

Here are some observations:

1. Since $\mathcal{F}(K) = \mathcal{F}(K^{\#})$, we have $H^p(K, \mathcal{F}) = H^p(K^{\#}, \mathcal{F})$. Allowing K to be a presheaf in the definition above is a purely notational convenience.
2. Suppose that $K = h_U$ or $K = h_U^{\#}$ for some object U of \mathcal{C}. Then $H^p(K, \mathcal{F}) = H^p(U, \mathcal{F})$, because $\text{Mor}_{\text{Sh}(\mathcal{C})}(h_U^{\#}, \mathcal{F}) = \mathcal{F}(U)$, see Sites, Section 12.
3. If $\mathcal{O} = \mathbb{Z}$ (the constant sheaf), then the cohomology groups are functors $H^p(K, -) : \text{Ab}(\mathcal{C}) \rightarrow \text{Ab}$ since $\text{Mod}(\mathcal{O}) = \text{Ab}(\mathcal{C})$ in this case.

We can translate some of our already proven results using this language.

Lemma 14.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K be a presheaf of sets on \mathcal{C}. Let \mathcal{F} be an \mathcal{O}-module and denote \mathcal{F}_{ab} the underlying sheaf of abelian groups. Then $H^p(K, \mathcal{F}) = H^p(K, \mathcal{F}_{ab})$.

Proof. We may replace K by its sheafification and assume K is a sheaf. Note that both $H^p(K, \mathcal{F})$ and $H^p(K, \mathcal{F}_{ab})$ depend only on the topos, not on the underlying site. Hence by Sites, Lemma 29.5 we may replace \mathcal{C} by a “larger” site such that $K = h_U$ for some object U of \mathcal{C}. In this case the result follows from Lemma 13.4. \(\square \)

Lemma 14.2. Let \mathcal{C} be a site. Let $K' \rightarrow K$ be a map of presheaves of sets on \mathcal{C} whose sheafification is surjective. Set $K'_p = K' \times_K \ldots \times_K K'$ ($p+1$-factors). For every abelian sheaf \mathcal{F} there is a spectral sequence with $E_1^{p,q} = H^q(K'_p, \mathcal{F})$ converging to $H^{p+q}(K, \mathcal{F})$.

Proof. Since sheafification is exact, we see that $(K'_p)'\#$ is equal to $(K'_p)'\# \times_{K_p}'\# (p+1\text{-factors}). Thus we may replace K and K' by their sheafifications and assume $K \to K'$ is a surjective map of sheaves. After replacing C by a “larger” site as in Sites, Lemma 29.5 we may assume that K, K' are objects of C and that $U = \{K' \to K\}$ is a covering. Then we have the Čech to cohomology spectral sequence of Lemma 11.6 whose E_1 page is as indicated in the statement of the lemma. □

Lemma 14.3. Let C be a site. Let K be a sheaf of sets on C. Consider the morphism of topoi $j : \text{Sh}(C/K) \to \text{Sh}(C)$, see Sites, Lemma 30.3. Then j^{-1} preserves injectives and $H^p(K, F) = H^p(C/K, j^{-1}F)$ for any abelian sheaf F on C.

Proof. By Sites, Lemmas 30.1 and 30.3 the morphism of topoi j is equivalent to a localization. Hence this follows from Lemma 8.1. □

Keeping in mind Lemma 14.1 we see that the following definition is the “correct one” also for sheaves of modules on ringed sites.

Definition 14.4. Let C be a site. We say an abelian sheaf F is limp if for every sheaf of sets K we have $H^p(K, F) = 0$ for all $p \geq 1$.

It is clear that being limp is an intrinsic property, i.e., preserved under equivalences of topoi. A limp sheaf has vanishing higher cohomology on all objects of the site, but in general the condition of being limp is strictly stronger. Here is a characterization of limp sheaves which is sometimes useful.

Lemma 14.5. Let C be a site. Let F be an abelian sheaf. If

(1) $H^p(U, F) = 0$ for $p > 0$ and $U \in \text{Ob}(C)$, and

(2) for every surjection $K' \to K$ of sheaves of sets the extended Čech complex

$$0 \to H^0(K, F) \to H^0(K', F) \to H^0(K' \times_K K', F) \to \ldots$$

is exact,

then F is limp (and the converse holds too).

Proof. By assumption (1) we have $H^p(h_U^#, g^{-1}\mathcal{I}) = 0$ for all $p > 0$ and all objects U of C. Note that if $K = \coprod K_i$ is a coproduct of sheaves of sets on C then $H^p(K, g^{-1}\mathcal{I}) = \prod_{i} H^p(K_i, g^{-1}\mathcal{I})$. For any sheaf of sets K there exists a surjection $K' = \coprod h_U^#, \to K$ see Sites, Lemma 12.5. Thus we conclude that: (*) for every sheaf of sets K there exists a surjection $K' \to K$ of sheaves of sets such that $H^p(K', F) = 0$ for $p > 0$.

We claim that (*) and condition (2) imply that F is limp. Note that conditions (*) and (2) only depend on F as an object of the topos $\text{Sh}(C)$ and not on the underlying site. (We will not use property (1) in the rest of the proof.)

We are going to prove by induction on $n \geq 0$ that (*) and (2) imply the following induction hypothesis IH_n: $H^p(K, F) = 0$ for all $0 < p \leq n$ and all sheaves of sets

\footnotesize
\[1\text{This is probably nonstandard notation. In [AGV71, V, Definition 4.1] this property is dubbed “flasque”, but we cannot use this because it would clash with our definition of flasque sheaves on topological spaces. Please email stacks.project@gmail.com if you have a better suggestion.}\]
K. Note that \(IH_0 \) holds. Assume \(IH_n \). Pick a sheaf of sets \(K \). Pick a surjection \(K' \to K \) such that \(H^p(K', \mathcal{F}) = 0 \) for all \(p > 0 \). We have a spectral sequence with

\[
E^{p,q}_0 = H^q(K'_p, \mathcal{F})
\]

covering to \(H^{p+q}(K, \mathcal{F}) \), see Lemma \(\text{[14.2]} \). By \(IH_n \) we see that \(E^{p,q}_1 = 0 \) for \(0 < q \leq n \) and by assumption (2) we see that \(E^{p,0}_2 = 0 \) for \(p > 0 \). Finally, we have \(E^{0,q}_2 = 0 \) for \(q > 0 \) because \(H^q(K', \mathcal{F}) = 0 \) by choice of \(K' \). Hence we conclude that \(H^{n+1}(K, \mathcal{F}) = 0 \) because all the terms \(E^{p,q}_2 \) with \(p + q = n + 1 \) are zero. \hfill \(\square \)

15. The Leray spectral sequence

\begin{lemma} \text{[15.1]} \end{lemma}

Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \) be a morphism of ringed topoi. Then for any injective object \(\mathcal{I} \) in \(\text{Mod}(\mathcal{O}_\mathcal{C}) \) the pushforward \(f_* \mathcal{I} \) is limp.

Proof. Let \(K \) be a sheaf of sets on \(\mathcal{D} \). By Modules on Sites, Lemma \(\text{[7.2]} \) we may replace \(\mathcal{C}, \mathcal{D} \) by “larger” sites such that \(f \) comes from a morphism of ringed sites induced by a continuous functor \(u : \mathcal{D} \to \mathcal{C} \) such that \(K = h_V \) for some object \(V \) of \(\mathcal{D} \).

Thus we have to show that \(H^q(V, f_* \mathcal{I}) \) is zero for \(q > 0 \) and all objects \(V \) of \(\mathcal{D} \) when \(f \) is given by a morphism of ringed sites. Let \(\mathcal{V} = \{ V_j \to V \} \) be any covering of \(\mathcal{D} \). Since \(u \) is continuous we see that \(\mathcal{U} = \{ u(V_j) \to u(V) \} \) is a covering of \(\mathcal{C} \). Then we have an equality of Čech complexes

\[
\check{C}^*(\mathcal{V}, f_* \mathcal{I}) = \check{C}^*(\mathcal{U}, \mathcal{I})
\]

by the definition of \(f_* \). By Lemma \(\text{[13.3]} \) we see that the cohomology of this complex is zero in positive degrees. We win by Lemma \(\text{[11.9]} \). \hfill \(\square \)

For flat morphisms the functor \(f_* \) preserves injective modules. In particular the functor \(f_* : Ab(\mathcal{C}) \to Ab(\mathcal{D}) \) always transforms injective abelian sheaves into injective abelian sheaves.

\begin{lemma} \text{[15.2]} \end{lemma}

Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \) be a morphism of ringed topoi. If \(f \) is flat, then \(f_* \mathcal{I} \) is an injective \(\mathcal{O}_\mathcal{D} \)-module for any injective \(\mathcal{O}_\mathcal{C} \)-module \(\mathcal{I} \).

Proof. In this case the functor \(f^* \) is exact, see Modules on Sites, Lemma \(\text{[30.2]} \). Hence the result follows from Homology, Lemma \(\text{[26.1]} \). \hfill \(\square \)

\begin{lemma} \text{[15.3]} \end{lemma}

Let \((\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \) be a ringed topos. A limp sheaf is right acyclic for the following functors:

1. the functor \(H^0(U, -) \) for any object \(U \) of \(\mathcal{C} \),
2. the functor \(\mathcal{F} \mapsto \mathcal{F}(K) \) for any presheaf of sets \(K \),
3. the functor \(\Gamma(\mathcal{C}, -) \) of global sections,
4. the functor \(f_* \) for any morphism \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \) of ringed topoi.

Proof. Part (2) is the definition of a limp sheaf. Part (1) is a consequence of (2) as pointed out in the discussion following the definition of limp sheaves. Part (3) is a special case of (2) where \(K = \epsilon \) is the final object of \(\text{Sh}(\mathcal{C}) \).
To prove (4) we may assume, by Modules on Sites, Lemma [7.2] that f is given by a morphism of sites. In this case we see that $R^if_*i>0$ of a limp sheaf are zero by the description of higher direct images in Lemma [8.4].

Remark 15.4. As a consequence of the results above we find that Derived Categories, Lemma [22.1] applies to a number of situations. For example, given a morphism $f:(Sh(C),O_C)\rightarrow (Sh(D),O_D)$ of ringed topoi we have

$$R\Gamma(D,Rf_*F) = R\Gamma(C,F)$$

for any sheaf of O_C-modules F. Namely, for an injective O_Y-module I the O_D-module f_*I is limp by Lemma [15.1] and a limp sheaf is acyclic for $\Gamma(D,-)$ by Lemma [15.3].

Lemma 15.5 (Leray spectral sequence). Let $f:(Sh(C),O_C)\rightarrow (Sh(D),O_D)$ be a morphism of ringed topoi. Let F^\bullet be a bounded below complex of O_C-modules. There is a spectral sequence

$$E_{2}^{p,q} = H^p(D,R^qf_*(F^\bullet))$$

converging to $H^{p+q}(C,F^\bullet)$.

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma [22.2] coming from the composition of functors $\Gamma(C,-) = \Gamma(D,-) \circ f_*$. To see that the assumptions of Derived Categories, Lemma [22.2] are satisfied, see Lemmas [15.1] and [15.3].

Lemma 15.6. Let $f:(Sh(C),O_C)\rightarrow (Sh(D),O_D)$ be a morphism of ringed topoi. Let F be an O_C-module.

1. If $R^qf_*F = 0$ for $q > 0$, then $H^p(C,F) = H^p(D,f_*F)$ for all p.
2. If $H^p(D,R^qf_*F) = 0$ for all q and $p > 0$, then $H^q(C,F) = H^0(D,R^qf_*F)$ for all q.

Proof. These are two simple conditions that force the Leray spectral sequence to converge. You can also prove these facts directly (without using the spectral sequence) which is a good exercise in cohomology of sheaves.

Lemma 15.7 (Relative Leray spectral sequence). Let $f:(Sh(C),O_C)\rightarrow (Sh(D),O_D)$ and $g:(Sh(D),O_D)\rightarrow (Sh(E),O_E)$ be morphisms of ringed topoi. Let F be an O_C-module. There is a spectral sequence with

$$E_{2}^{p,q} = R^pg_*(R^qf_*F)$$

converging to $R^{p+q}(g \circ f)_*F$. This spectral sequence is functorial in F, and there is a version for bounded below complexes of O_C-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see Derived Categories, Lemma [22.2] and Lemmas [15.1] and [15.3].

16. The base change map

In this section we construct the base change map in some cases; the general case is treated in Remark [20.3]. The discussion in this section avoids using derived pullback by restricting to the case of a base change by a flat morphism of ringed sites. Before we state the result, let us discuss flat pullback on the derived category. Suppose $g:(Sh(C),O_C)\rightarrow (Sh(D),O_D)$ is a flat morphism of ringed topoi. By Modules on
Sites, Lemma 30.2 the functor $g^* : \text{Mod}(\mathcal{O}_D) \to \text{Mod}(\mathcal{O}_C)$ is exact. Hence it has a derived functor
\[g^* : D(\mathcal{O}_D) \to D(\mathcal{O}_C) \]
which is computed by simply pulling back any representative of a given object in $D(\mathcal{O}_D)$, see Derived Categories, Lemma 17.9. It preserved the bounded (above, below) subcategories. Hence as indicated we indicate this functor by g^* rather than Lg^*.

Lemma 16.1. Let
\[(\text{Sh}(\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \xrightarrow{g'} (\text{Sh}(\mathcal{C}), \mathcal{O}_C) \]
\[(\text{Sh}(\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \xrightarrow{g} (\text{Sh}(\mathcal{D}), \mathcal{O}_D) \]
be a commutative diagram of ringed topoi. Let \mathcal{F}^* be a bounded below complex of \mathcal{O}_C-modules. Assume both g and g' are flat. Then there exists a canonical base change map
\[g^* Rf_* \mathcal{F}^* \to R(f')_*(g')^* \mathcal{F}^* \]
in $D^+(\mathcal{O}_{\mathcal{D}'})$.

Proof. Choose injective resolutions $\mathcal{F}^* \to I^*$ and $(g')^* \mathcal{F}^* \to J^*$. By Lemma 15.2 we see that $(g')_*(J^*)$ is a complex of injectives representing $R(g')_*((g')^* \mathcal{F}^*)$. Hence by Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram
\[(g')_*((g')^* \mathcal{F}^*) \xrightarrow{\beta} (g')_*J^* \]
exists and is unique up to homotopy. Pushing down to \mathcal{D} we get
\[f_* \beta : f_* I^* \to f_*((g')_*J^*) = g_*((f')_*J^*) \]
By adjunction of g^* and g_*, we get a map of complexes $g^* f_* I^* \to (f')_* J^*$. Note that this map is unique up to homotopy since the only choice in the whole process was the choice of the map β and everything was done on the level of complexes. □

17. Cohomology and colimits

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I} \to \text{Mod}(\mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram over the index category \mathcal{I}, see Categories, Section 14. For each i there is a canonical map $\mathcal{F}_i \to \text{colim}_i \mathcal{F}_i$ which induces a map on cohomology. Hence we get a canonical map
\[\text{colim}_i H^p(U, \mathcal{F}_i) \to H^p(U, \text{colim}_i \mathcal{F}_i) \]
for every $p \geq 0$ and every object U of \mathcal{C}. These maps are in general not isomorphisms, even for $p = 0$.

The following lemma is the analogue of Sites, Lemma 17.5 for cohomology.

Lemma 17.1. Let \mathcal{C} be a site. Let $\text{Cov}_\mathcal{C}$ be the set of coverings of \mathcal{C} (see Sites, Definition 6.3). Let $\mathcal{B} \subset \text{Ob}(\mathcal{C})$, and $\text{Cov} \subset \text{Cov}_\mathcal{C}$ be subsets. Assume that

1. For every $\mathcal{U} \in \text{Cov}$ we have $\mathcal{U} = \{ U_i \to U \}_{i \in I}$ with I finite, $U, U_i \in \mathcal{B}$ and every $U_{i_0} \times_U \ldots \times_U U_{i_p} \in \mathcal{B}$.

0738 Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I} \to \text{Mod}(\mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram over the index category \mathcal{I}, see Categories, Section 14. For each i there is a canonical map $\mathcal{F}_i \to \text{colim}_i \mathcal{F}_i$ which induces a map on cohomology. Hence we get a canonical map
\[\text{colim}_i H^p(U, \mathcal{F}_i) \to H^p(U, \text{colim}_i \mathcal{F}_i) \]
for every $p \geq 0$ and every object U of \mathcal{C}. These maps are in general not isomorphisms, even for $p = 0$.

The following lemma is the analogue of Sites, Lemma 17.5 for cohomology.

Lemma 17.1. Let \mathcal{C} be a site. Let $\text{Cov}_\mathcal{C}$ be the set of coverings of \mathcal{C} (see Sites, Definition 6.3). Let $\mathcal{B} \subset \text{Ob}(\mathcal{C})$, and $\text{Cov} \subset \text{Cov}_\mathcal{C}$ be subsets. Assume that

1. For every $\mathcal{U} \in \text{Cov}$ we have $\mathcal{U} = \{ U_i \to U \}_{i \in I}$ with I finite, $U, U_i \in \mathcal{B}$ and every $U_{i_0} \times_U \ldots \times_U U_{i_p} \in \mathcal{B}$.

0738 Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I} \to \text{Mod}(\mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram over the index category \mathcal{I}, see Categories, Section 14. For each i there is a canonical map $\mathcal{F}_i \to \text{colim}_i \mathcal{F}_i$ which induces a map on cohomology. Hence we get a canonical map
\[\text{colim}_i H^p(U, \mathcal{F}_i) \to H^p(U, \text{colim}_i \mathcal{F}_i) \]
for every $p \geq 0$ and every object U of \mathcal{C}. These maps are in general not isomorphisms, even for $p = 0$.

The following lemma is the analogue of Sites, Lemma 17.5 for cohomology.
(2) For every $U \in \mathcal{B}$ the coverings of U occurring in Cov is a cofinal system of coverings of U.

Then the map

$$\text{colim}_i H^p(U, \mathcal{F}_i) \longrightarrow H^p(U, \text{colim}_i \mathcal{F}_i)$$

is an isomorphism for every $p \geq 0$, every $U \in \mathcal{B}$, and every filtered diagram $I \to \text{Ab}(\mathcal{C})$.

Proof. To prove the lemma we will argue by induction on p. Note that we require in (1) the coverings $U \in \text{Cov}$ to be finite, so that all the elements of \mathcal{B} are quasi-compact. Hence (2) and (1) imply that any $U \in \mathcal{B}$ satisfies the hypothesis of Sites, Lemma 17.5. Thus we see that the result holds for $p = 0$. Now we assume the lemma holds for p and prove it for $p + 1$.

Choose a filtered diagram $\mathcal{F} : I \to \text{Ab}(\mathcal{C})$, $i \mapsto \mathcal{F}_i$. Since $\text{Ab}(\mathcal{C})$ has functorial injective embeddings, see Injectives, Theorem 7.4, we can find a morphism of filtered diagrams $\mathcal{F} \to I$ such that each $\mathcal{F}_i \to I_i$ is an injective map of abelian sheaves into an injective abelian sheaf. Denote Q_i the cokernel so that we have short exact sequences

$$0 \to \mathcal{F}_i \to I_i \to Q_i \to 0.$$

Since colimits of sheaves are the sheafification of colimits on the level of presheaves, since sheafification is exact, and since filtered colimits of abelian groups are exact (see Algebra, Lemma 8.8), we see the sequence

$$0 \to \text{colim}_i \mathcal{F}_i \to \text{colim}_i I_i \to \text{colim}_i Q_i \to 0.$$

is also a short exact sequence. We claim that $H^q(U, \text{colim}_i I_i) = 0$ for all $U \in \mathcal{B}$ and all $q \geq 1$. Accepting this claim for the moment consider the diagram

$$\begin{array}{cccccc}
\text{colim}_i H^p(U, I_i) & \longrightarrow & \text{colim}_i H^p(U, Q_i) & \longrightarrow & \text{colim}_i H^{p+1}(U, \mathcal{F}_i) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
H^p(U, \text{colim}_i I_i) & \longrightarrow & H^p(U, \text{colim}_i Q_i) & \longrightarrow & H^{p+1}(U, \text{colim}_i \mathcal{F}_i) & \longrightarrow & 0
\end{array}$$

The zero at the lower right corner comes from the claim and the zero at the upper right corner comes from the fact that the sheaves I_i are injective. The top row is exact by an application of Algebra, Lemma 8.8. Hence by the snake lemma we deduce the result for $p + 1$.

It remains to show that the claim is true. We will use Lemma 11.9. By the result for $p = 0$ we see that for $U \in \mathcal{B}$ we have

$$\check{\mathcal{C}}^*(U, \text{colim}_i I_i) = \text{colim}_i \check{\mathcal{C}}^*(U, I_i)$$

because all the $U_{j_0} \times_U \ldots \times_U U_{j_p}$ are in \mathcal{B}. By Lemma 11.2 each of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma 8.8 we see that also the Čech complex $\check{\mathcal{C}}^*(U, \text{colim}_i I_i)$ is acyclic in degrees ≥ 1. In other words we see that $H^p(U, \text{colim}_i I_i) = 0$ for all $p \geq 1$. Thus the assumptions of Lemma 11.9 are satisfied and the claim follows. □

Lemma 17.2. Let I be a cofiltered index category and let $\{\mathcal{C}_i, f_a\}$ be an inverse system of sites over I as in Sites, Situation 18.1. Set $\mathcal{C} = \text{colim} \mathcal{C}_i$ as in Sites, Lemmas 18.2 and 18.3. Moreover, assume given

(1) an abelian sheaf \mathcal{F}_i on \mathcal{C}_i for all $i \in \text{Ob}(I)$,
(2) for a : j → i a map \(\varphi_a : f^{-1}_a F_i \to F_j \) of abelian sheaves on \(C_j \) such that \(\varphi_c = \varphi_b \circ f^{-1}_b \varphi_a \) whenever \(c = a \circ b \). Then there exists a map of systems \((F_i, \varphi_a) \to (G_i, \psi_a) \) such that \(F_i \to G_i \) is injective and \(G_i \) is an injective abelian sheaf.

Proof. For each \(i \) we pick an injection \(F_i \to A_i \) where \(A_i \) is an injective abelian sheaf on \(C_i \). Then we can consider the family of maps

\[
\gamma_i : F_i \to \prod_{b : k \to i} f_{b, *} A_k = G_i
\]

where the component maps are the maps adjoint to the maps \(f_{b, * :} A_k \to A_i \). For \(a : j \to i \) in \(I \) there is a canonical map

\[
\psi_a : f^{-1}_a G_i \to G_j
\]

whose components are the canonical maps \(f^{-1}_k f_{a, * :} A_k \to f_{b, * :} A_k \) for \(b : k \to j \). Thus we find an injection \(\{ \gamma_i \} : (F_i, \varphi_a) \to (G_i, \psi_a) \) of systems of abelian sheaves.

Note that \(G_i \) is an injective sheaf of abelian groups on \(C_i \), see Lemma \[15.2\] and Homology, Lemma \[24.3\]. This finishes the proof.

Lemma 17.3. In the situation of Lemma \[17.2\] set \(F = \text{colim} f^{-1}_i F_i \). Let \(i \in \text{Ob}(I), X_i \in \text{Ob}(C_i) \). Then

\[
\text{colim}_{a : j \to i} H^p(u_a(X_i), F_j) = H^p(u_i(X_i), F)
\]

for all \(p \geq 0 \).

Proof. The case \(p = 0 \) is Sites, Lemma \[18.4\].

Choose \((F_i, \varphi_a) \to (G_i, \psi_a) \) as in Lemma \[17.2\]. Arguing exactly as in the proof of Lemma \[17.1\] we see that it suffices to prove that \(H^p(X, \text{colim} f^{-1}_i G_i) = 0 \) for \(p > 0 \).

Set \(G = \text{colim} f^{-1}_i G_i \). To show vanishing of cohomology of \(G \) on every object of \(C \) we show that the Čech cohomology of \(G \) for any covering \(U \) of \(C \) is zero (Lemma \[11.9\]). The covering \(U \) comes from a covering \(U_i \) of \(C_i \) for some \(i \). We have

\[
\check{C}^\bullet(U, G) = \text{colim}_{a : j \to i} \check{C}^\bullet(u_a(U_i), G_j)
\]

by the case \(p = 0 \). The right hand side is acyclic in positive degrees as a filtered colimit of acyclic complexes by Lemma \[11.2\] See Algebra, Lemma \[8.8\].

18. Flat resolutions

In this section we redo the arguments of Cohomology, Section \[27\] in the setting of ringed sites and ringed topoi.

Lemma 18.1. Let \((C, \mathcal{O}) \) be a ringed site. Let \(\mathcal{G}^\bullet \) be a complex of \(\mathcal{O} \)-modules. The functor

\[
K(\text{Mod}(\mathcal{O})) \longrightarrow K(\text{Mod}(\mathcal{O})), \quad F^\bullet \longmapsto \text{Tot}(F^\bullet \otimes_{\mathcal{O}} \mathcal{G}^\bullet)
\]

is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas \[57.1\] and \[57.2\].

Definition 18.2. Let \((C, \mathcal{O}) \) be a ringed site. A complex \(K^\bullet \) of \(\mathcal{O} \)-modules is called \(K \)-flat if for every acyclic complex \(F^\bullet \) of \(\mathcal{O} \)-modules the complex

\[
\text{Tot}(F^\bullet \otimes_{\mathcal{O}} K^\bullet)
\]

is acyclic.
Lemma 18.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{K}^\bullet be a K-flat complex. Then the functor
\[K(\text{Mod}(\mathcal{O})) \to K(\text{Mod}(\mathcal{O})), \quad F^\bullet \mapsto \text{Tot}(F^\bullet \otimes_{\mathcal{O}} \mathcal{K}^\bullet) \]
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 18.1 and the fact that quasi-isomorphisms are characterized by having acyclic cones.

Lemma 18.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. If \mathcal{K}^\bullet is a K-flat complex of \mathcal{O}-modules, then $\mathcal{K}^\bullet|_U$ is a K-flat complex of \mathcal{O}_U-modules.

Proof. Let \mathcal{G}^\bullet be an exact complex of \mathcal{O}_U-modules. Since $j_U^!$ is exact (Modules on Sites, Lemma 19.3) and \mathcal{K}^\bullet is a K-flat complex of \mathcal{O}-modules we see that the complex
\[j_U^!(\text{Tot}(\mathcal{G}^\bullet \otimes_{\mathcal{O}_U} \mathcal{K}^\bullet|_U)) = \text{Tot}(j_U^!\mathcal{G}^\bullet \otimes_{\mathcal{O}} \mathcal{K}^\bullet) \]
is exact. Here the equality comes from Modules on Sites, Lemma 27.7 and the fact that $j_U^!$ commutes with direct sums (as a left adjoint). We conclude because $j_U^!$ reflects exactness by Modules on Sites, Lemma 19.4.

Lemma 18.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. If \mathcal{K}^\bullet, \mathcal{L}^\bullet are K-flat complexes of \mathcal{O}-modules, then $\text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet)$ is a K-flat complex of \mathcal{O}-modules.

Proof. Follows from the isomorphism
\[\text{Tot}(\mathcal{M}^\bullet \otimes_{\mathcal{O}} \text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet)) = \text{Tot}(\text{Tot}(\mathcal{M}^\bullet \otimes_{\mathcal{O}} \mathcal{K}^\bullet) \otimes_{\mathcal{O}} \mathcal{L}^\bullet) \]
and the definition.

Lemma 18.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{K}^\bullet_1, \mathcal{K}^\bullet_2, \mathcal{K}^\bullet_3)$ be a distinguished triangle in $K(\text{Mod}(\mathcal{O}))$. If two out of three of \mathcal{K}^\bullet_i are K-flat, so is the third.

Proof. Follows from Lemma 18.1 and the fact that in a distinguished triangle in $K(\text{Mod}(\mathcal{O}))$ if two out of three are acyclic, so is the third.

Lemma 18.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A bounded above complex of flat \mathcal{O}-modules is K-flat.

Proof. Let \mathcal{K}^\bullet be a bounded above complex of flat \mathcal{O}-modules. Let \mathcal{L}^\bullet be an acyclic complex of \mathcal{O}-modules. Note that $\mathcal{L}^\bullet = \text{colim}_m \tau_{\leq m}\mathcal{L}^\bullet$ where we take termwise colimits. Hence also
\[\text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet) = \text{colim}_m \text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \tau_{\leq m}\mathcal{L}^\bullet) \]
termwise. Hence to prove the complex on the left is acyclic it suffices to show each of the complexes on the right is acyclic. Since $\tau_{\leq m}\mathcal{L}^\bullet$ is acyclic this reduces us to the case where \mathcal{L}^\bullet is bounded above. In this case the spectral sequence of Homology, Lemma 22.6 has
\[E_1^{p,q} = H^p(\mathcal{L}^\bullet \otimes_R \mathcal{K}^q) \]
which is zero as \mathcal{K}^q is flat and \mathcal{L}^\bullet acyclic. Hence we win.

Lemma 18.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet_1 \to \mathcal{K}^\bullet_2 \to \ldots$ be a system of K-flat complexes. Then $\text{colim}_i \mathcal{K}^\bullet_i$ is K-flat.
Proof. Because we are taking termwise colimits it is clear that
\[\colim_i \Tot(F^\bullet \otimes_O K^\bullet_i) = \Tot(F^\bullet \otimes_O \colim_i K^\bullet_i) \]
Hence the lemma follows from the fact that filtered colimits are exact. \(\square\)

Lemma 18.9. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. For any complex \(\mathcal{G}^\bullet\) of \(\mathcal{O}\)-modules there exists a commutative diagram of complexes of \(\mathcal{O}\)-modules

\[
\begin{array}{ccc}
K^1_1 & \rightarrow & K^2_1 \\
\downarrow & & \downarrow \\
\tau_{\leq 1} \mathcal{G}^\bullet & \rightarrow & \tau_{\leq 2} \mathcal{G}^\bullet
\end{array}
\]

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2) each \(K^\bullet_n\) is a bounded above complex whose terms are direct sums of \(\mathcal{O}\)-modules of the form \(j_{U!}\mathcal{O}_U\), and (3) the maps \(K^\bullet_n \rightarrow K^\bullet_{n+1}\) are termwise split injections whose cokernels are direct sums of \(\mathcal{O}\)-modules of the form \(j_{U!}\mathcal{O}_U\). Moreover, the map \(\colim K^\bullet_n \rightarrow \mathcal{G}^\bullet\) is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from Modules on Sites, Lemma 28.7 and Derived Categories, Lemma 28.1. The induced map \(\colim K^\bullet_n \rightarrow \mathcal{G}^\bullet\) is a quasi-isomorphism because filtered colimits are exact. \(\square\)

Lemma 18.10. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. For any complex \(\mathcal{G}^\bullet\) of \(\mathcal{O}\)-modules there exists a \(K\)-flat complex \(K^\bullet\) and a quasi-isomorphism \(K^\bullet \rightarrow \mathcal{G}^\bullet\). Moreover, each \(K^n\) is a flat \(\mathcal{O}\)-module.

Proof. Choose a diagram as in Lemma 18.9. Each complex \(K^\bullet_n\) is a bounded above complex of flat modules, see Modules on Sites, Lemma 28.6. Hence \(K^\bullet_n\) is K-flat by Lemma 18.7. The induced map \(\colim K^\bullet_n \rightarrow \mathcal{G}^\bullet\) is a quasi-isomorphism by construction. Since \(\colim K^\bullet_n\) is K-flat by Lemma 18.8 we win. \(\square\)

Lemma 18.11. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\alpha : \mathcal{P}^\bullet \rightarrow \mathcal{Q}^\bullet\) be a quasi-isomorphism of \(K\)-flat complexes of \(\mathcal{O}\)-modules. For every complex \(\mathcal{F}^\bullet\) of \(\mathcal{O}\)-modules the induced map

\[\Tot(id_{\mathcal{F}^\bullet} \otimes \alpha) : \Tot(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{P}^\bullet) \rightarrow \Tot(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{Q}^\bullet) \]

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism \(\mathcal{K}^\bullet \rightarrow \mathcal{F}^\bullet\) with \(\mathcal{K}^\bullet\) a K-flat complex, see Lemma 18.10. Consider the commutative diagram

\[
\begin{array}{ccc}
\Tot(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{P}^\bullet) & \longrightarrow & \Tot(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{Q}^\bullet) \\
\downarrow & & \downarrow \\
\Tot(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{P}^\bullet) & \longrightarrow & \Tot(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{Q}^\bullet)
\end{array}
\]

The result follows as by Lemma 18.3 the vertical arrows and the top horizontal arrow are quasi-isomorphisms. \(\square\)
Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{F}^\bullet\) be an object of \(D(\mathcal{O})\). Choose a K-flat resolution \(K^\bullet \to \mathcal{F}^\bullet\), see Lemma \ref{lem:k-flat}. By Lemma \ref{lem:k-flat} we obtain an exact functor of triangulated categories
\[
K(\mathcal{O}) \to K(\mathcal{O}), \quad \mathcal{G}^\bullet \mapsto \text{Tot}(\mathcal{G}^\bullet \otimes_{\mathcal{O}} K^\bullet)
\]
By Lemma \ref{lem:derived-tensor} this functor induces a functor \(D(\mathcal{O}) \to D(\mathcal{O})\) simply because \(D(\mathcal{O})\) is the localization of \(K(\mathcal{O})\) at quasi-isomorphisms. By Lemma \ref{lem:derived-tensor} the resulting functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 18.12. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{F}^\bullet\) be an object of \(D(\mathcal{O})\). The derived tensor product
\[
- \otimes^L_{\mathcal{O}} \mathcal{F}^\bullet : D(\mathcal{O}) \to D(\mathcal{O})
\]
is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism
\[
\mathcal{F}^\bullet \otimes^L_{\mathcal{O}} \mathcal{G}^\bullet \cong \mathcal{G}^\bullet \otimes^L_{\mathcal{O}} \mathcal{F}^\bullet
\]
for \(\mathcal{G}^\bullet\) and \(\mathcal{F}^\bullet\) in \(D(\mathcal{O})\). Hence when we write \(\mathcal{F}^\bullet \otimes^L_{\mathcal{O}} \mathcal{G}^\bullet\) we will usually be agnostic about which variable we are using to define the derived tensor product with.

Definition 18.13. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{F}, \mathcal{G}\) be \(\mathcal{O}\)-modules. The Tor’s of \(\mathcal{F}\) and \(\mathcal{G}\) are defined by the formula
\[
\text{Tor}_p^\mathcal{O}(\mathcal{F}, \mathcal{G}) = H^{-p}(\mathcal{F} \otimes^L_{\mathcal{O}} \mathcal{G})
\]
with derived tensor product as defined above.

This definition implies that for every short exact sequence of \(\mathcal{O}\)-modules \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0\) we have a long exact cohomology sequence
\[
\mathcal{F}_1 \otimes_{\mathcal{O}} \mathcal{G} \to \mathcal{F}_2 \otimes_{\mathcal{O}} \mathcal{G} \to \mathcal{F}_3 \otimes_{\mathcal{O}} \mathcal{G} \to 0
\]
for every \(\mathcal{O}\)-module \(\mathcal{G}\). This will be called the long exact sequence of Tor associated to the situation.

Lemma 18.14. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{F}\) be an \(\mathcal{O}\)-module. The following are equivalent
\begin{enumerate}
 \item \(\mathcal{F}\) is a flat \(\mathcal{O}\)-module, and
 \item \(\text{Tor}_1^\mathcal{O}(\mathcal{F}, \mathcal{G}) = 0\) for every \(\mathcal{O}\)-module \(\mathcal{G}\).
\end{enumerate}

Proof. If \(\mathcal{F}\) is flat, then \(\mathcal{F} \otimes_{\mathcal{O}} -\) is an exact functor and the satellites vanish. Conversely assume (2) holds. Then if \(\mathcal{G} \to \mathcal{H}\) is injective with cokernel \(\mathcal{Q}\), the long exact sequence of Tor shows that the kernel of \(\mathcal{F} \otimes_{\mathcal{O}} \mathcal{G} \to \mathcal{F} \otimes_{\mathcal{O}} \mathcal{H}\) is a quotient of \(\text{Tor}_1^\mathcal{O}(\mathcal{F}, \mathcal{Q})\) which is zero by assumption. Hence \(\mathcal{F}\) is flat. \(\square\)

19. Derived pullback

Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{C}'), \mathcal{O}')\) be a morphism of ringed topoi. We can use K-flat resolutions to define a derived pullback functor
\[
Lf^* : D(\mathcal{O}') \to D(\mathcal{O})
\]
Lemma 19.1. Let \((\mathcal{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C})\) be a ringed topos. For any complex of \(\mathcal{O}_\mathcal{C}\)-modules \(\mathcal{G}^\bullet\) there exists a quasi-isomorphism \(\mathcal{K}^\bullet \to \mathcal{G}^\bullet\) such that \(f^*\mathcal{K}^\bullet\) is a \(K\)-flat complex of \(\mathcal{O}_\mathcal{D}\)-modules for any morphism \(f : (\mathcal{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \to (\mathcal{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C})\) of ringed topoi.

Proof. In the proof of Lemma 18.10 we find a quasi-isomorphism \(\mathcal{K}^\bullet = \colim_i \mathcal{K}_i^\bullet \to \mathcal{G}^\bullet\) where each \(\mathcal{K}_i^\bullet\) is a bounded above complex of flat \(\mathcal{O}_\mathcal{C}\)-modules. Let \(f : (\mathcal{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \to (\mathcal{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C})\) be a morphism of ringed topoi. By Modules on Sites, Lemma 18.1 we see that \(f^*\mathcal{F}^\bullet\) is a bounded above complex of flat \(\mathcal{O}_\mathcal{D}\)-modules. Hence \(f^*\mathcal{K}^\bullet = \colim_i f^*\mathcal{K}_i^\bullet\) is \(K\)-flat by Lemmas 18.7 and 18.8.

Lemma 19.2. Let \(f : (\mathcal{Sh}(\mathcal{C}), \mathcal{O}) \to (\mathcal{Sh}(\mathcal{C}'), \mathcal{O}')\) be a morphism of ringed topoi. There exists an exact functor

\[Lf^* : D(\mathcal{O}') \to D(\mathcal{O})\]

of triangulated categories so that \(Lf^*\mathcal{K}^\bullet = f^*\mathcal{K}^\bullet\) for any complex as in Lemma 19.1 and in particular for any bounded above complex of flat \(\mathcal{O}'\)-modules.

Proof. To see this we use the general theory developed in Derived Categories, Section 15. Set \(\mathcal{D} = K(\mathcal{O}')\) and \(\mathcal{D}' = D(\mathcal{O})\). Let us write \(F : \mathcal{D} \to \mathcal{D}'\) the exact functor of triangulated categories defined by the rule \(F(\mathcal{G}^\bullet) = f^*\mathcal{G}^\bullet\). We let \(S\) be the set of quasi-isomorphisms in \(\mathcal{D} = K(\mathcal{O}')\). This gives a situation as in Derived Categories, Situation 15.1 so that Derived Categories, Definition 15.2 applies. We claim that \(LF\) is everywhere defined. This follows from Derived Categories, Lemma 15.15 with \(\mathcal{P} \subset \text{Ob}(\mathcal{D})\) the collection of complexes \(\mathcal{K}^\bullet\) as in Lemma 19.1. Namely, (1) follows from Lemma 19.1 and to see (2) we have to show that for a quasi-isomorphism \(\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet\) between elements of \(\mathcal{P}\) the map \(f^*\mathcal{K}_1^\bullet \to f^*\mathcal{K}_2^\bullet\) is a quasi-isomorphism. To see this write this as

\[f^{-1}\mathcal{K}_1^\bullet \otimes_{f^{-1}\mathcal{O}'} \mathcal{O} \to f^{-1}\mathcal{K}_2^\bullet \otimes_{f^{-1}\mathcal{O}'} \mathcal{O}\]

The functor \(f^{-1}\) is exact, hence the map \(f^{-1}\mathcal{K}_1^\bullet \to f^{-1}\mathcal{K}_2^\bullet\) is a quasi-isomorphism. The complexes \(f^{-1}\mathcal{K}_1^\bullet\) and \(f^{-1}\mathcal{K}_2^\bullet\) are \(K\)-flat complexes of \(f^{-1}\mathcal{O}'\)-modules by our choice of \(\mathcal{P}\) because we can consider the morphism of ringed topos \((\mathcal{Sh}(\mathcal{C}), f^{-1}\mathcal{O}') \to (\mathcal{Sh}(\mathcal{C}'), \mathcal{O}').\) Hence Lemma 18.11 guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived functor

\[LF : D(\mathcal{O}') = S^{-1}\mathcal{D} \to \mathcal{D}' = D(\mathcal{O})\]

see Derived Categories, Equation (15.9.1). Finally, Derived Categories, Lemma 15.15 also guarantees that \(LF(\mathcal{K}^\bullet) = F(\mathcal{K}^\bullet) = f^*\mathcal{K}^\bullet\) when \(\mathcal{K}^\bullet\) is in \(\mathcal{P}\). Since the proof of Lemma 19.1 shows that bounded above complexes of flat modules are in \(\mathcal{P}\) we win.

Lemma 19.3. Consider morphisms of ringed topoi \(f : (\mathcal{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to (\mathcal{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D})\) and \(g : (\mathcal{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D}) \to (\mathcal{Sh}(\mathcal{E}), \mathcal{O}_\mathcal{E})\). Then \(Lf^* \circ Lg^* = L(g \circ f)^*\) as functors \(D(\mathcal{O}_\mathcal{C}) \to D(\mathcal{O}_\mathcal{E})\).

Proof. Let \(E\) be an object of \(D(\mathcal{O}_\mathcal{C})\). By construction \(Lg^*E\) is computed by choosing a complex \(\mathcal{K}^\bullet\) as in Lemma 19.1 representing \(E\) and setting \(Lg^*E = g^*\mathcal{K}^\bullet\). By transitivity of pullback functors the complex \(g^*\mathcal{K}^\bullet\) pulled back by any morphism of ringed topoi \((\mathcal{Sh}(\mathcal{C}'), \mathcal{O}') \to (\mathcal{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D})\) is \(K\)-flat. Hence \(g^*\mathcal{K}^\bullet\) is a complex as in Lemma 19.1 representing \(Lg^*E\). We conclude \(Lf^*Lg^*E\) is given by \(f^*g^*\mathcal{K}^\bullet = (g \circ f)^*\mathcal{K}^\bullet\) which also represents \(L(g \circ f)^*E\).
Lemma 19.4. Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}^\prime) \) be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism
\[
Lf^*(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{G}^\bullet) = Lf^* \mathcal{F}^\bullet \otimes_{\mathcal{O}} Lf^* \mathcal{G}^\bullet
\]
for \(\mathcal{F}^\bullet, \mathcal{G}^\bullet \in \text{Ob}(\text{D}(\mathcal{O}^\prime)) \).

Proof. By Lemma 19.1 we may assume that \(\mathcal{F}^\bullet \) and \(\mathcal{G}^\bullet \) are K-flat complexes of \(\mathcal{O}^\prime \)-modules such that \(f^* \mathcal{F}^\bullet \) and \(f^* \mathcal{G}^\bullet \) are K-flat complexes of \(\mathcal{O} \)-modules. In this case \(\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{G}^\bullet \) is just the total complex associated to the double complex \(\mathcal{F}^\bullet \otimes_{\mathcal{O}^\prime} \mathcal{G}^\bullet \).

By Lemma 18.5 \(\text{Tot}(\mathcal{F}^\bullet \otimes_{\mathcal{O}^\prime} \mathcal{G}^\bullet) \) is K-flat also. Hence the isomorphism of the lemma comes from the isomorphism
\[
\text{Tot}(f^* \mathcal{F}^\bullet \otimes_{\mathcal{O}} f^* \mathcal{G}^\bullet) \to f^* \text{Tot}(\mathcal{F}^\bullet \otimes_{\mathcal{O}^\prime} \mathcal{G}^\bullet)
\]
whose constituents are the isomorphisms \(f^* \mathcal{F}^p \otimes_{\mathcal{O}} f^* \mathcal{G}^q \to f^* (\mathcal{F}^p \otimes_{\mathcal{O}^\prime} \mathcal{G}^q) \) of Modules on Sites, Lemma 26.1.

Lemma 19.5. Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{C}^\prime), \mathcal{O}^\prime) \) be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism
\[
\mathcal{F}^\bullet \otimes_{\mathcal{O}} Lf^* \mathcal{G}^\bullet = \mathcal{F}^\bullet \otimes_{\mathcal{O}} f^! \mathcal{G}^\bullet
\]
for \(\mathcal{F}^\bullet \) in \(\text{D}(\mathcal{O}) \) and \(\mathcal{G}^\bullet \) in \(\text{D}(\mathcal{O}^\prime) \).

Proof. Let \(\mathcal{F} \) be an \(\mathcal{O} \)-module and let \(\mathcal{G} \) be an \(\mathcal{O}^\prime \)-module. Then \(\mathcal{F} \otimes_{\mathcal{O}} f^* \mathcal{G} = \mathcal{F} \otimes_{f^{-1} \mathcal{O}^\prime} f^{-1} \mathcal{G} \) because \(f^* \mathcal{G} = \mathcal{O} \otimes_{f^{-1} \mathcal{O}^\prime} f^{-1} \mathcal{G} \). The lemma follows from this and the definitions.

Lemma 19.6. Let \((\mathcal{C}, \mathcal{O}) \) be a ringed site. Let \(\mathcal{K}^\bullet \) be a complex of \(\mathcal{O} \)-modules.

1. If \(\mathcal{K}^\bullet \) is K-flat, then for every point \(p \) of the site \(\mathcal{C} \) the complex of \(\mathcal{O}_p \)-modules \(\mathcal{K}^\bullet_p \) is K-flat in the sense of More on Algebra, Definition 57.3.
2. If \(\mathcal{C} \) has enough points, then the converse is true.

Proof. Proof of (2). If \(\mathcal{C} \) has enough points and \(\mathcal{K}^\bullet_p \) is K-flat for all points \(p \) of \(\mathcal{C} \) then we see that \(\mathcal{K}^\bullet \) is K-flat because \(\otimes \) and direct sums commute with taking stalks and because we can check exactness at stalks, see Modules on Sites, Lemma 14.4.

Proof of (1). Assume \(\mathcal{K}^\bullet \) is K-flat. Choose a quasi-isomorphism \(a : \mathcal{L}^\bullet \to \mathcal{K}^\bullet \) such that \(\mathcal{L}^\bullet \) is K-flat and such that any pullback of \(\mathcal{L}^\bullet \) is K-flat, see Lemma 19.1. In particular the stalk \(\mathcal{L}^\bullet_p \) is a K-flat complex of \(\mathcal{O}_p \)-modules. Thus the cone \(\mathcal{C}(a) \) on \(a \) is a K-flat (Lemma 18.6) acyclic complex of \(\mathcal{O} \)-modules and it suffices to show the stalk of \(\mathcal{C}(a) \) is K-flat (by More on Algebra, Lemma 57.7). Thus we may assume that \(\mathcal{K}^\bullet \) is K-flat and acyclic.

Assume \(\mathcal{K}^\bullet \) is acyclic and K-flat. Before continuing we replace the site \(\mathcal{C} \) by another one as in Sites, Lemma 29.5 to insure that \(\mathcal{C} \) has all finite limits. This implies the category of neighbourhoods of \(p \) is filtered (Sites, Lemma 33.1) and the colimit defining the stalk of a sheaf is filtered. Let \(M \) be a finitely presented \(\mathcal{O}_p \)-module. It suffices to show that \(\mathcal{K}^\bullet \otimes_{\mathcal{O}_p} M \) is acyclic, see More on Algebra, Lemma 57.11.

Since \(\mathcal{O}_p \) is the filtered colimit of \(\mathcal{O}(U) \) where \(U \) runs over the neighbourhoods of \(p \), we can find a neighbourhood \((U, x) \) of \(p \) and a finitely presented \(\mathcal{O}(U) \)-module \(M' \) whose base change to \(\mathcal{O}_p \) is \(M \), see Algebra, Lemma 126.6. By Lemma 18.4 we may replace \(\mathcal{C}, \mathcal{O}, \mathcal{K}^\bullet \) by \(\mathcal{C}/U, \mathcal{O}_U, \mathcal{K}^\bullet |_{U} \). We conclude that we may assume there exists an \(\mathcal{O} \)-module \(\mathcal{F} \) such that \(M \cong \mathcal{F}_p \). Since \(\mathcal{K}^\bullet \) is K-flat and acyclic, we see that
$K^\bullet \otimes_{\mathcal{O}} \mathcal{F}$ is acyclic (as it computes the derived tensor product by definition). Taking stalks is an exact functor, hence we get that $K^\bullet \otimes_{\mathcal{O}_p} M$ is acyclic as desired. □

Lemma 19.7. Let $f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. If \mathcal{C} has enough points, then the pullback of a K-flat complex of \mathcal{O}'-modules is a K-flat complex of \mathcal{O}-modules.

Proof. This follows from Lemma 19.6, Modules on Sites, Lemma 35.4, and More on Algebra, Lemma 57.5. □

Remark 19.8. The pullback of a K-flat complex is K-flat for a morphism of ringed topoi with enough points, see Lemma 19.7. This slightly improves the result of Lemma 19.1. However, in applications it seems rather that the explicit form of the K-flat complexes constructed in Lemma 18.10 is what is useful and not the plain fact that they are K-flat. Note for example that the terms of the complex constructed are each direct sums of modules of the form $j_U^! \mathcal{O}_U$, see Lemma 18.9.

20. Cohomology of unbounded complexes

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. The category $\text{Mod}(\mathcal{O})$ is a Grothendieck abelian category: it has all colimits, filtered colimits are exact, and it has a generator, namely

$$\bigoplus_{U \in \text{Ob}(\mathcal{C})} j_U^! \mathcal{O}_U,$$

see Modules on Sites, Section 14 and Lemmas 28.6 and 28.7. By Injectives, Theorem 12.6 for every complex \mathcal{F}^\bullet of \mathcal{O}-modules there exists an injective quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ to a K-injective complex of \mathcal{O}-modules. Hence we can define

$$R\Gamma(\mathcal{C}, \mathcal{F}^\bullet) = \Gamma(\mathcal{C}, \mathcal{I}^\bullet)$$

and similarly for any left exact functor, see Derived Categories, Lemma 29.7. For any morphism of ringed topoi $f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}')$ we obtain

$$Rf_* : D(\mathcal{O}) \to D(\mathcal{O}')$$

on the unbounded derived categories.

Lemma 20.1. Let $f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{D}), \mathcal{O}')$ be a morphism of ringed topoi. The functor Rf_* defined above and the functor Lf^* defined in Lemma 19.2 are adjoint:

$$\text{Hom}_{D(\mathcal{O})}(Lf^* \mathcal{G}^\bullet, \mathcal{F}^\bullet) = \text{Hom}_{D(\mathcal{O}')}(%(\mathcal{G}^\bullet, Rf_* \mathcal{F}^\bullet$$

bifunctorially in $\mathcal{F}^\bullet \in \text{Ob}(D(D(\mathcal{O})))$ and $\mathcal{G}^\bullet \in \text{Ob}(D(\mathcal{O}'))$.

Proof. This follows formally from the fact that Rf_* and Lf^* exist, see Derived Categories, Lemma 28.5. □

Lemma 20.2. Let $f : (\text{Sh}(\mathcal{C}), \mathcal{O}_C) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_D)$ and $g : (\text{Sh}(\mathcal{E}), \mathcal{O}_E) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_D)$ be morphisms of ringed topoi. Then $Rg_* \circ Rf_* = R(g \circ f)_*$ as functors $D(\mathcal{O}_C) \to D(\mathcal{O}_E).

Proof. By Lemma 20.1 we see that $Rg_* \circ Rf_*$ is adjoint to $Lf^* \circ Lg^*$. We have $Lf^* \circ Lg^* = L(g \circ f)^*$ by Lemma 19.3 and hence by uniqueness of adjoint functors we have $Rg_* \circ Rf_* = R(g \circ f)_*$. □
Remark 20.3. The construction of unbounded derived functor Lf^* and Rf_* allows one to construct the base change map in full generality. Namely, suppose that

$$
\begin{array}{ccc}
(Sh(C'), \mathcal{O}_{C'}) & \xrightarrow{g'} & (Sh(C), \mathcal{O}_C) \\
\downarrow f' & & \downarrow f \\
(Sh(D'), \mathcal{O}_{D'}) & \xrightarrow{g} & (Sh(D), \mathcal{O}_D)
\end{array}
$$

is a commutative diagram of ringed topoi. Let K be an object of $D(O_C)$. Then there exists a canonical base change map

$$Lg^* Rf_* K \longrightarrow R(f')_* L(g')^* K$$

in $D(O_{D'})$. Namely, this map is adjoint to a map $L(f')^* Lg^* Rf_* K \rightarrow L(g')^* K$. Since $L(f')^* \circ Lg^* = L(g')^* \circ Lf^*$ we see this is the same as a map $L(g')^* Lf^* Rf_* K \rightarrow L(g')^* K$ which we can take to be $L(g')^*$ of the adjunction map $Lf^* Rf_* K \rightarrow K$.

Remark 20.4. Consider a commutative diagram

$$
\begin{array}{ccc}
(Sh(B'), \mathcal{O}_{B'}) & \xrightarrow{k} & (Sh(B), \mathcal{O}_B) \\
\downarrow f' & & \downarrow f \\
(Sh(C'), \mathcal{O}_{C'}) & \xrightarrow{l} & (Sh(C), \mathcal{O}_C) \\
\downarrow g' & & \downarrow g \\
(Sh(D'), \mathcal{O}_{D'}) & \xrightarrow{m} & (Sh(D), \mathcal{O}_D)
\end{array}
$$

of ringed topoi. Then the base change maps of Remark 20.3 for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

$$Lm^* \circ R(g \circ f)_* = Lm^* \circ Rg_* \circ Rf_*$$

$$\rightarrow Rg'_* \circ Lf^* \circ Rf_*$$

$$\rightarrow Rg'_* \circ Rf'_* \circ Lk^*$$

$$= R(g' \circ f'_*)_* \circ Lk^*$$

is the base change map for the rectangle. We omit the verification.

Remark 20.5. Consider a commutative diagram

$$
\begin{array}{ccc}
(Sh(C''), \mathcal{O}_{C''}) & \xrightarrow{g''} & (Sh(C'), \mathcal{O}_{C'}) \\
\downarrow f'' & & \downarrow f' \\
(Sh(D''), \mathcal{O}_{D''}) & \xrightarrow{h'} & (Sh(D'), \mathcal{O}_{D'}) \\
\downarrow f'' & & \downarrow f \\
(Sh(D''), \mathcal{O}_{D''}) & \xrightarrow{h} & (Sh(D), \mathcal{O}_D)
\end{array}
$$

of ringed topoi. Then the base change maps of Remark 20.3 for the two squares compose to give the base change map for the outer rectangle. More precisely, the
Let \(f \) be a morphism of ringed topoi. The adjointness of \(Lf^* \) and \(Rf_* \) allows us to construct a relative cup product

\[
Rf_*K \otimes^{L}_{\mathcal{O}_D} Rf_*L \rightarrow Rf_*(K \otimes^{L}_{\mathcal{O}_C} L)
\]

in \(D(\mathcal{O}_D) \) for all \(K, L \) in \(D(\mathcal{O}_C) \). Namely, this map is adjoint to a map \(Lf^*(Rf_*K \otimes^{L}_{\mathcal{O}_D} Rf_*L) \rightarrow K \otimes^{L}_{\mathcal{O}_C} L \) for which we can take the composition of the isomorphism \(Lf^*(Rf_*K \otimes^{L}_{\mathcal{O}_D} Rf_*L) = Lf^*Rf_*K \otimes^{L}_{\mathcal{O}_C} Lf^*Rf_*L \) (Lemma 19.4) with the map \(Lf^*Rf_*K \otimes^{L}_{\mathcal{O}_C} Lf^*Rf_*L \rightarrow K \otimes^{L}_{\mathcal{O}_C} L \) coming from the counit \(Lf^* \circ Rf_* \rightarrow \text{id} \).

Lemma 20.7. Let \(\mathcal{C} \) be a site. Let \(\mathcal{A} \subset \text{Ab}(\mathcal{C}) \) denote the Serre subcategory consisting of torsion abelian sheaves. Then the functor \(D(\mathcal{A}) \rightarrow D_{\mathcal{A}}(\mathcal{C}) \) is an equivalence.

Proof. A key observation is that an injective abelian sheaf \(\mathcal{I} \) is divisible. Namely, if \(s \in \mathcal{I}(U) \) is a local section, then we interpret \(s \) as a map \(s : j_U!\mathbb{Z} \rightarrow \mathcal{I} \) and we apply the defining property of an injective object to the injective map of sheaves \(n : j_U!\mathbb{Z} \rightarrow j_U!\mathbb{Z} \) to see that there exists an \(s' \in \mathcal{I}(U) \) with \(ns' = s \).

For a sheaf \(\mathcal{F} \) denote \(\mathcal{F}_{\text{tor}} \) its torsion subsheaf. We claim that if \(\mathcal{I}^* \) is a complex of injective abelian sheaves whose cohomology sheaves are torsion, then

\[
\mathcal{I}^*_{\text{tor}} \rightarrow \mathcal{I}^*
\]

is a quasi-isomorphism. Namely, by flatness of \(\mathbb{Q} \) over \(\mathbb{Z} \) we have

\[
H^p(\mathcal{I}^*) \otimes_{\mathbb{Z}} \mathbb{Q} = H^p(\mathcal{I}^* \otimes_{\mathbb{Z}} \mathbb{Q})
\]

which is zero because the cohomology sheaves are torsion. By divisibility (shown above) we see that \(\mathcal{I}^* \rightarrow \mathcal{I}^* \otimes_{\mathbb{Z}} \mathbb{Q} \) is surjective with kernel \(\mathcal{I}_{\text{tor}}^* \). The claim follows from the long exact sequence of cohomology sheaves associated to the short exact sequence you get.

To prove the lemma we will construct right adjoint \(T : D(\mathcal{C}) \rightarrow D(\mathcal{A}) \). Namely, given \(K \) in \(D(\mathcal{C}) \) we can represent \(K \) by a K-injective complex \(\mathcal{I}^* \) whose cohomology sheaves are injective, see Injectives, Theorem 12.6. Then we set \(T(K) = \mathcal{I}_{\text{tor}}^* \), in other words, \(T \) is the right derived functor of taking torsion. The functor \(T \) is a right adjoint to \(i : D(\mathcal{A}) \rightarrow D_{\mathcal{A}}(\mathcal{C}) \). This readily follows from the observation that if \(\mathcal{F}^* \) is a complex of torsion sheaves, then

\[
\text{Hom}_{K(A)}(\mathcal{F}^*, \mathcal{I}^*_{\text{tor}}) = \text{Hom}_{K(\text{Ab}(\mathcal{C}))}(\mathcal{F}^*, \mathcal{I}^*)
\]

in particular \(\mathcal{I}^*_{\text{tor}} \) is a K-injective complex of \(\mathcal{A} \). Some details omitted; in case of doubt, it also follows from the more general Derived Categories, Lemma 28.3. Our claim above gives that \(L = T(i(L)) \) for \(L \) in \(D(\mathcal{A}) \) and \(i(T(K)) = K \) if \(K \) is in \(D_{\mathcal{A}}(\mathcal{C}) \). Using Categories, Lemma 24.3 the result follows. \(\square \)
21. Some properties of K-injective complexes

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. Denote $j : (\text{Sh}(\mathcal{C}/U), \mathcal{O}_U) \to (\text{Sh}(\mathcal{C}), \mathcal{O})$ the corresponding localization morphism. The pullback functor j^* is exact as it is just the restriction functor. Thus derived pullback Lj^* is computed on any complex by simply restricting the complex. We often simply denote the corresponding functor

$$D(\mathcal{O}) \to D(\mathcal{O}_U), \quad E \mapsto j^*E = E|_U$$

Similarly, extension by zero \mathcal{O} is an exact functor (Modules on Sites, Lemma 19.3). Thus it induces a functor

$$j! : D(\mathcal{O}_U) \to D(\mathcal{O}), \quad F \mapsto j!F$$

by simply applying $j!$ to any complex representing the object F.

Lemma 21.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. The restriction of a K-injective complex of \mathcal{O}-modules to \mathcal{C}/U is a K-injective complex of \mathcal{O}_U-modules.

Proof. Follows immediately from Derived Categories, Lemma 29.9 and the fact that the restriction functor has the exact left adjoint $j_!$. See discussion above. □

Lemma 21.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \text{Ob}(\mathcal{C})$. For K in $D(\mathcal{O})$ we have $H^p(U, K) = H^p(\mathcal{C}/U, K|_{\mathcal{C}/U})$.

Proof. Let I^\bullet be a K-injective complex of \mathcal{O}-modules representing K. Then

$$H^q(U, K) = H^q(\Gamma(U, I^\bullet)) = H^q(\Gamma(\mathcal{C}/U, I^\bullet|_{\mathcal{C}/U}))$$

by construction of cohomology. By Lemma 21.1 the complex $I^\bullet|_{\mathcal{C}/U}$ is a K-injective complex representing $K|_{\mathcal{C}/U}$ and the lemma follows. □

Lemma 21.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K be an object of $D(\mathcal{O})$. The sheafification of $U \mapsto H^q(U, K) = H^q(\mathcal{C}/U, K|_{\mathcal{C}/U})$ is the qth cohomology sheaf $H^q(K)$ of K.

Proof. The equality $H^q(U, K) = H^q(\mathcal{C}/U, K|_{\mathcal{C}/U})$ holds by Lemma 21.2. Choose a K-injective complex I^\bullet representing K. Then

$$H^q(U, K) = \frac{\text{Ker}(I^q(U) \to I^{q+1}(U))}{\text{Im}(I^{q-1}(U) \to I^q(U))}.$$

by our construction of cohomology. Since $H^q(K) = \text{Ker}(I^q \to I^{q+1})/\text{Im}(I^{q-1} \to I^q)$ the result is clear. □

Lemma 21.4. Let $f : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})$ be a morphism of ringed sites corresponding to the continuous functor $u : \mathcal{D} \to \mathcal{C}$. Given $V \in \mathcal{D}$, set $U = u(V)$ and denote $g : (\mathcal{C}/U, \mathcal{O}_U) \to (\mathcal{D}/V, \mathcal{O}_V)$ the induced morphism of ringed sites (Modules on Sites, Lemma 20.1). Then $(Rf_\ast E)|_{\mathcal{D}/V} = Rg_\ast(E|_{\mathcal{C}/U})$ for E in $D(\mathcal{O}_\mathcal{C})$.

Proof. Represent E by a K-injective complex \mathcal{I}^\bullet of $\mathcal{O}_\mathcal{C}$-modules. Then $Rf_\ast(E) = f_\ast\mathcal{I}^\bullet$ and $Rg_\ast(E|_{\mathcal{C}/U}) = g_\ast(\mathcal{I}^\bullet|_{\mathcal{C}/U})$ by Lemma 21.1. Since it is clear that $(f_\ast\mathcal{F})|_{\mathcal{D}/V} = g_\ast(\mathcal{F}|_{\mathcal{C}/U})$ for any sheaf \mathcal{F} on \mathcal{C} (see Modules on Sites, Lemma 20.1 or the more basic Sites, Lemma 28.1) the result follows. □
Let \((\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})\) be a morphism of ringed sites corresponding to the continuous functor \(u : \mathcal{D} \to \mathcal{C}\). Then \(R\Gamma(\mathcal{D}, -) \circ Rf_* = R\Gamma(\mathcal{C}, -)\) as functors \(D(\mathcal{O}_\mathcal{D}) \to D(\Gamma(\mathcal{O}_\mathcal{D}))\). More generally, for \(V \in \mathcal{D}\) with \(U = u(V)\) we have \(R\Gamma(U, -) = R\Gamma(V, -) \circ Rf_*\).

Proof. Consider the punctual topos \(pt\) endowed with \(\mathcal{O}_{pt}\) given by the ring \(\Gamma(\mathcal{O}_\mathcal{D})\). There is a canonical morphism \((\mathcal{D}, \mathcal{O}_\mathcal{D}) \to (pt, \mathcal{O}_{pt})\) of ringed topoi identifying the identification of global sections of structure sheaves. Then \(D(\mathcal{O}_{pt}) = D(\Gamma(\mathcal{O}_\mathcal{D}))\).

The assertion \(R\Gamma(\mathcal{D}, -) \circ Rf_* = R\Gamma(\mathcal{C}, -)\) follows from Lemma \ref{lem:20.2} applied to
\[(\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D}) \to (pt, \mathcal{O}_{pt})\]
The second (more general) statement follows from the first statement after applying Lemma \ref{lem:21.3}.

Lemma 21.6. Let \(f : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})\) be a morphism of ringed sites corresponding to the continuous functor \(u : \mathcal{D} \to \mathcal{C}\). Let \(K\) be in \(D(\mathcal{O}_\mathcal{C})\). Then \(H^i(Rf_*K)\) is the sheaf associated to the presheaf
\[V \mapsto H^i(u(V), K) = H^i(V, Rf_*K)\]

Proof. The equality \(H^i(u(V), K) = H^i(V, Rf_*K)\) follows upon taking cohomology from the second statement in Lemma \ref{lem:21.5}. Then the statement on sheafification follows from Lemma \ref{lem:21.3}.

Lemma 21.7. Let \((\mathcal{C}, \mathcal{O}_\mathcal{C})\) be a ringed site. Let \(K\) be an object of \(D(\mathcal{O}_\mathcal{C})\) and denote \(K_{ab}\) its image in \(D(\mathcal{Z}_C)\).

1. There is a canonical map \(R\Gamma(\mathcal{C}, K) \to R\Gamma(\mathcal{C}, K_{ab})\) which is an isomorphism in \(D(ab)\).
2. For any \(U \in \mathcal{C}\) there is a canonical map \(R\Gamma(U, K) \to R\Gamma(U, K_{ab})\) which is an isomorphism in \(D(ab)\).
3. Let \(f : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})\) be a morphism of ringed sites. There is a canonical map \(Rf_*K \to Rf_*K_{ab}\) which is an isomorphism in \(D(\mathcal{Z}_{D})\).

Proof. The map is constructed as follows. Choose a \(K\)-injective complex \(I^\bullet\) representing \(K\). Choose a quasi-isomorphism \(I^\bullet \to J^\bullet\) where \(J^\bullet\) is a \(K\)-injective complex of abelian groups. Then the map in (1) is given by \(\Gamma(\mathcal{C}, I^\bullet) \to \Gamma(\mathcal{C}, J^\bullet)\) (2) is given by \(\Gamma(U, I^\bullet) \to \Gamma(U, J^\bullet)\) and the map in (3) is given by \(f_*I^\bullet \to f_*J^\bullet\). To show that these maps are isomorphisms, it suffices to prove they induce isomorphisms on cohomology groups and cohomology sheaves. By Lemmas \ref{lem:21.2} and \ref{lem:21.6} it suffices to show that the map
\[H^0(\mathcal{C}, K) \to H^0(\mathcal{C}, K_{ab})\]
is an isomorphism. Observe that
\[H^0(\mathcal{C}, K) = \text{Hom}_{D(\mathcal{O}_\mathcal{C})}(\mathcal{O}_\mathcal{C}, K)\]
and similarly for the other group. Choose any complex \(K^\bullet\) of \(\mathcal{O}_\mathcal{C}\)-modules representing \(K\). By construction of the derived category as a localization we have
\[\text{Hom}_{D(\mathcal{O}_\mathcal{C})}(\mathcal{O}_\mathcal{C}, K) = \text{colim}_{s: \mathcal{F}^\bullet \to \mathcal{O}_\mathcal{C}} \text{Hom}_{K(\mathcal{O}_\mathcal{C})}(\mathcal{F}^\bullet, K^\bullet)\]
where the colimit is over quasi-isomorphisms \(s\) of complexes of \(\mathcal{O}_\mathcal{C}\)-modules. Similarly, we have
\[\text{Hom}_{D(\mathcal{Z}_C)}(\mathcal{Z}_C^\bullet, K) = \text{colim}_{s: \mathcal{G}^\bullet \to \mathcal{Z}_C} \text{Hom}_{K(\mathcal{Z}_C)}(\mathcal{G}^\bullet, K^\bullet)\]
Next, we observe that the quasi-isomorphisms $s : G^\bullet \to \mathbb{Z}_C$ with G^\bullet bounded above complex of flat \mathbb{Z}_C-modules is cofinal in the system. (This follows from Modules on Sites, Lemma 28.7 and Derived Categories, Lemma 16.5; see discussion in Section 18.) Hence we can construct an inverse to the map $H^0(C, K) \to H^0(C, K_{ab})$ by representing an element $\xi \in H^0(C, K_{ab})$ by a pair

$$(s : G^\bullet \to \mathbb{Z}_C, a : G^\bullet \to K^\bullet)$$

with G^\bullet a bounded above complex of flat \mathbb{Z}_C-modules and sending this to

$$(G^\bullet \otimes_{\mathbb{Z}_C} \mathcal{O}_C \to \mathcal{O}_C, G^\bullet \otimes_{\mathbb{Z}_C} \mathcal{O}_C \to K^\bullet)$$

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas 18.11 and 18.7. We omit the detailed verification that this construction is indeed an inverse. □

Lemma 21.8. Let (C, \mathcal{O}) be a ringed site. Let U be an object of C. Denote $j : (\text{Sh}(C/U), \mathcal{O}_U) \to (\text{Sh}(C), \mathcal{O})$ the corresponding localization morphism. The restriction functor $D(\mathcal{O}) \to D(\mathcal{O}_U)$ is a right adjoint to extension by zero $j_! : D(\mathcal{O}_U) \to D(\mathcal{O})$.

Proof. We have to show that $\text{Hom}_{D(\mathcal{O})}(j_! E, F) = \text{Hom}_{D(\mathcal{O}_U)}(E, F|_U)$.

Choose a complex \mathcal{E}^\bullet of \mathcal{O}_U-modules representing E and choose a K-injective complex \mathcal{I}^\bullet representing F. By Lemma 21.1 the complex $\mathcal{I}^\bullet|_U$ is K-injective as well. Hence we see that the formula above becomes

$$\text{Hom}_{D(\mathcal{O})}(j_! \mathcal{E}^\bullet, \mathcal{I}^\bullet) = \text{Hom}_{D(\mathcal{O}_U)}(\mathcal{E}^\bullet, \mathcal{I}^\bullet|_U)$$

which holds as $|_U$ and $j_!$ are adjoint functors (Modules on Sites, Lemma 19.2) and Derived Categories, Lemma 29.2. □

Lemma 21.9. Let $f : (\text{Sh}(C), \mathcal{O}_C) \to (\text{Sh}(D), \mathcal{O}_D)$ be a flat morphism of ringed topoi. If \mathcal{I}^\bullet is a K-injective complex of \mathcal{O}_C-modules, then $f_* \mathcal{I}^\bullet$ is K-injective as a complex of \mathcal{O}_D-modules.

Proof. This is true because

$$\text{Hom}_{K(\mathcal{O}_D)}(\mathcal{F}^\bullet, f_* \mathcal{I}^\bullet) = \text{Hom}_{K(\mathcal{O}_C)}(f^* \mathcal{F}^\bullet, \mathcal{I}^\bullet)$$

by Modules on Sites, Lemma 13.2 and the fact that f^* is exact as f is assumed to be flat. □

Lemma 21.10. Let C be a site. Let $\mathcal{O} \to \mathcal{O}'$ be a map of sheaves of rings. If \mathcal{I}^\bullet is a K-injective complex of \mathcal{O}-modules, then $\text{Hom}_{\mathcal{O}}(\mathcal{O}', \mathcal{I}^\bullet)$ is a K-injective complex of \mathcal{O}'-modules.

Proof. This is true because $\text{Hom}_{K(\mathcal{O}')}(\mathcal{G}^\bullet, \text{Hom}_{\mathcal{O}}(\mathcal{O}', \mathcal{I}^\bullet)) = \text{Hom}_{K(\mathcal{O})}(\mathcal{G}^\bullet, \mathcal{I}^\bullet)$ by Modules on Sites, Lemma 27.6. □
22. Localization and cohomology

Let C be a site. Let $f : X \to Y$ be a morphism of C. Then we obtain a morphism of topoi

$$j_{X/Y} : \text{Sh}(C/X) \to \text{Sh}(C/Y)$$

See Sites, Sections 25 and 27. Some questions about cohomology are easier for this type of morphisms of topoi. Here is an example where we get a trivial type of base change theorem.

Lemma 22.1. Let C be a site. Let $X' \to X \to Y' \to Y$ be a cartesian diagram of C. Then we have $j_{Y'/Y}^{-1} \circ Rj_{X/Y,*} = Rj_{X'/Y',*} \circ j_{X'/X}^{-1}$ as functors $D(C/X) \to D(C/Y').$

Proof. Let $E \in D(C/X)$. Choose a K-injective complex I^\bullet of abelian sheaves on C representing E. By Lemma 21.1 we see that $j_{X'/X}^{-1}I^\bullet$ is K-injective too. Hence we may compute $Rj_{X'/Y'}(j_{X'/X}^{-1}E)$ by $j_{X'/Y'}^{-1}(j_{X'/X}^{-1}E)$. Thus we see that the equality holds by Sites, Lemma 27.5. □

23. Derived and homotopy limits

Let C be a site. Consider the category $C \times \mathbb{N}$ with $\text{Mor}((U,n),(V,m)) = \emptyset$ if $n > m$ and $\text{Mor}((U,n),(V,m)) = \text{Mor}(U,V)$ else. We endow this with the structure of a site by letting coverings be families $\{(U_i,n) \to (U,n)\}$ such that $\{U_i \to U\}$ is a covering of C. Then the reader verifies immediately that sheaves on $C \times \mathbb{N}$ are the same thing as inverse systems of sheaves on C. In particular $\text{Ab}(C \times \mathbb{N})$ is inverse systems of abelian sheaves on C. Consider now the functor

$$\text{lim} : \text{Ab}(C \times \mathbb{N}) \to \text{Ab}(C)$$

which takes an inverse system to its limit. This is nothing but g_* where $g : \text{Sh}(C \times \mathbb{N}) \to \text{Sh}(C)$ is the morphism of topoi associated to the continuous and cocontinuous functor $C \times \mathbb{N} \to C$. (Observe that g^{-1} assigns to a sheaf on C the corresponding constant inverse system.)

By the general machinery explained above we obtain a derived functor

$$R\text{lim} = Rg_* : D(C \times \mathbb{N}) \to D(C).$$

As indicated this functor is often denoted $R\text{lim}$.

On the other hand, the continuous and cocontinuous functors $C \to C \times \mathbb{N}$, $U \mapsto (U,n)$ define morphisms of topoi $i_n : \text{Sh}(C) \to \text{Sh}(C \times \mathbb{N})$. Of course i_n^{-1} is the functor which picks the nth term of the inverse system. Thus there are transformations of functors $i_n^{-1} \to i_{n+1}^{-1}$. Hence given $K \in D(C \times \mathbb{N})$ we get $K_n = i_n^{-1}K \in D(C)$ and maps $K_{n+1} \to K_n$. In Derived Categories, Definition 32.1 we have defined the notion of a homotopy limit

$$R\text{lim}K_n \in D(C)$$

We claim the two notions agree (as far as it makes sense).
Lemma 23.1. Let \mathcal{C} be a site. Let K be an object of $D(\mathcal{C} \times \mathbb{N})$. Set $K_n = i_{n}^{-1} K$ as above. Then

\[R \lim K \cong R \lim K_n \]

in $D(\mathcal{C})$.

Proof. To calculate $R \lim$ on an object K of $D(\mathcal{C} \times \mathbb{N})$ we choose a K-injective representative I^\bullet whose terms are injective objects of $Ab(\mathcal{C} \times \mathbb{N})$, see Injectives, Theorem 12.6. We may and do think of I^\bullet as an inverse system of complexes (I_n^\bullet) and then we see that

\[R \lim K = \lim I_n^\bullet \]

where the right hand side is the termwise inverse limit.

Let $J = (J_n)$ be an injective object of $Ab(\mathcal{C} \times \mathbb{N})$. The morphisms $(U, n) \to (U, n + 1)$ are monomorphisms of $\mathcal{C} \times \mathbb{N}$, hence $J(U, n + 1) \to J(U, n)$ is surjective (Lemma 13.6). It follows that $J_{n+1} \to J_n$ is surjective as a map of presheaves.

Note that the functor i_n^{-1} has an exact left adjoint $i_n!$. Namely, $i_n! J$ is the inverse system \(\ldots 0 \to J \to \ldots \to J \). Thus the complexes $i_n^{-1} I^\bullet = I_n^\bullet$ are K-injective by Derived Categories, Lemma 29.9.

Because we chose our K-injective complex to have injective terms we conclude that

\[0 \to \lim I_n^\bullet \to \prod I_n^\bullet \to \prod I_n^\bullet \to 0 \]

is a short exact sequence of complexes of abelian sheaves as it is a short exact sequence of complexes of abelian presheaves. Moreover, the products in the middle and the right represent the products in $D(\mathcal{C})$, see Injectives, Lemma 13.4 and its proof (this is where we use that I_n^\bullet is K-injective). Thus $R \lim K$ is a homotopy limit of the inverse system (K_n) by definition of homotopy limits in triangulated categories.

Lemma 23.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. The functors $R\Gamma(\mathcal{C}, -)$ and $R\Gamma(U, -)$ for $U \in \text{Ob} (\mathcal{C})$ commute with $R \lim$. Moreover, there are short exact sequences

\[0 \to R^1 \lim H^{m-1}(U, K_n) \to H^m(U, R \lim K_n) \to \lim H^m(U, K_n) \to 0 \]

for any inverse system (K_n) in $D(\mathcal{O})$ and $m \in \mathbb{Z}$. Similar for $H^m(\mathcal{C}, R \lim K_n)$.

Proof. The first statement follows from Injectives, Lemma 13.6. Then we may apply More on Algebra, Remark 77.9 to $R \lim R\Gamma(U, K_n) = R\Gamma(U, R \lim K_n)$ to get the short exact sequences.

Lemma 23.3. Let $f : (Sh(\mathcal{C}), \mathcal{O}) \to (Sh(\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. Then $Rf^* \text{ commutes with } R \lim$, i.e., Rf_* commutes with derived limits.

Proof. Let (K_n) be an inverse system of objects of $D(\mathcal{O})$. By induction on n we may choose actual complexes K_n^\bullet of \mathcal{O}-modules and maps of complexes $K_{n+1}^\bullet \to K_n^\bullet$ representing the maps $K_{n+1} \to K_n$ in $D(\mathcal{O})$. In other words, there exists an object K in $D(\mathcal{C} \times \mathbb{N})$ whose associated inverse system is the given one. Next, consider the commutative diagram

\[\begin{array}{ccc}
Sh(\mathcal{C} \times \mathbb{N}) & \xrightarrow{g} & Sh(\mathcal{C}) \\
\downarrow f \times 1 & & \downarrow f \\
Sh(\mathcal{C'} \times \mathbb{N}) & \xrightarrow{g'} & Sh(\mathcal{C'})
\end{array} \]
of morphisms of topoi. It follows that $R \lim R(f \times 1)_* K = Rf_* R \lim K$. Working through the definitions and using Lemma 23.1 we obtain that $R \lim (Rf_*, K_n) = Rf_* (R \lim K_n)$.

Alternate proof in case \mathcal{C} has enough points. Consider the defining distinguished triangle

$$R \lim K_n \to \prod K_n \to \prod K_n$$

in $D(\mathcal{O})$. Applying the exact functor Rf_* we obtain the distinguished triangle

$$Rf_*(R \lim K_n) \to Rf_* \left(\prod K_n \right) \to Rf_* \left(\prod K_n \right)$$

in $D(\mathcal{O}')$. Thus we see that it suffices to prove that Rf_* commutes with products in the derived category (which are not just given by products of complexes, see Injectives, Lemma 13.4). However, since Rf_* is a right adjoint by Lemma 20.1 this follows formally (see Categories, Lemma 24.5). Caution: Note that we cannot apply Categories, Lemma 24.5 directly as $R \lim K_n$ is not a limit in $D(\mathcal{O})$. □

Remark 23.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let (K_n) be an inverse system in $D(\mathcal{O})$. Set $K = R \lim K_n$. For each n and m let $\mathcal{H}_n^m = H^m(K_n)$ be the mth cohomology sheaf of K_n and similarly set $\mathcal{H}^m = H^m(K)$. Let us denote \mathcal{H}_n^m the presheaf

$$U \mapsto \mathcal{H}_n^m(U) = H^m(U, K_n)$$

Similarly we set $\mathcal{H}^m(U) = H^m(U, K)$. By Lemma 21.3 we see that \mathcal{H}_n^m is the sheafification of \mathcal{H}^m_k and \mathcal{H}^m is the sheafification of \mathcal{H}^m. Here is a diagram

$$
\begin{array}{ccc}
K & \xrightarrow{\mathcal{H}^m} & \mathcal{H}^m \\
| & | & | \\
R \lim K_n & \xrightarrow{\lim \mathcal{H}_n^m} & \lim \mathcal{H}_n^m
\end{array}
$$

In general it may not be the case that $\lim \mathcal{H}_n^m$ is the sheafification of $\lim \mathcal{H}_n^m$. If $U \in \mathcal{C}$, then we have short exact sequences

$$0 \to R^1 \lim \mathcal{H}_n^{m-1}(U) \to \mathcal{H}_n^m(U) \to \lim \mathcal{H}_n^m(U) \to 0$$

by Lemma 23.2.

The following lemma applies to an inverse system of quasi-coherent modules with surjective transition maps on an algebraic space or an algebraic stack.

Lemma 23.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let (\mathcal{F}_n) be an inverse system of \mathcal{O}-modules. Let $\mathcal{B} \subset \text{Ob}(\mathcal{C})$ be a subset. Assume

1. every object of \mathcal{C} has a covering whose members are elements of \mathcal{B},
2. $H^p(U, \mathcal{F}_n) = 0$ for $p > 0$ and $U \in \mathcal{B}$,
3. the inverse system $\mathcal{F}_n(U)$ has vanishing $R^1 \lim$ for $U \in \mathcal{B}$.

Then $R \lim \mathcal{F}_n = \lim \mathcal{F}_n$ and we have $H^p(U, \lim \mathcal{F}_n) = 0$ for $p > 0$ and $U \in \mathcal{B}$.

Proof. Set $K_n = \mathcal{F}_n$ and $K = R \lim \mathcal{F}_n$. Using the notation of Remark 23.4 and assumption (2) we see that for $U \in \mathcal{B}$ we have $H^p(U, \mathcal{F}_n) = 0$ when $m \neq 0$ and $\mathcal{H}_n^0(U) = \mathcal{F}_n(U)$. From Equation (23.4.1) and assumption (3) we see that $\mathcal{H}^m(U) = 0$ when $m \neq 0$ and equal to $\lim \mathcal{F}_n(U)$ when $m = 0$. Sheafifying using (1) we find that $\mathcal{H}^m = 0$ when $m \neq 0$ and equal to $\lim \mathcal{F}_n$ when $m = 0$. Hence
Let \(K = \lim F_n \). Since \(H^m(U, K) = H^m(U) = 0 \) for \(m > 0 \) (see above) we see that the second assertion holds.

Lemma 23.6. Let \((C, \mathcal{O})\) be a ringed site. Let \((K_n)\) be an inverse system in \(D(\mathcal{O}) \). Let \(V \in \text{Ob}(C) \) and \(m \in \mathbb{Z} \). Assume there exist an integer \(n(V) \) and a cofinal system \(\text{Cov}_V \) of coverings of \(V \) such that for \(\{V_i \to V\} \in \text{Cov}_V \)

1. \(R^1 \lim H^{m-1}(V_i, K_n) = 0 \), and
2. \(H^m(V_i, K_n) \to H^m(V_i, K_{n(V)}) \) is injective for \(n \geq n(V) \).

Then the map on sections \(H^m(R \lim K_n)(V) \to H^m(K_{n(V)})(V) \) is injective.

Proof. Let \(\gamma \in H^m(R \lim K_n)(V) \) map to zero in \(H^m(K_{n(V)})(V) \). Since \(H^m(R \lim K_n) \) is the sheafification of \(U \mapsto H^m(U, R \lim K_n) \) (by Lemma 21.3) we can choose \(\{V_i \to V\} \in \text{Cov}_V \) and elements \(\tilde{\gamma}_i \in H^m(V_i, R \lim K_n) \) mapping to \(\gamma|_V \). Then \(\tilde{\gamma}_i \) maps to \(\tilde{\gamma}_{i,n(V)} \in H^m(V_i, K_{n(V)}) \). Using that \(H^m(K_{n(V)}) \) is the sheafification of \(U \mapsto H^m(U, K_{n(V)}) \) (by Lemma 21.3 again) we see that after replacing \(\{V_i \to V\} \) by a refinement we may assume that \(\tilde{\gamma}_{i,n(V)} = 0 \) for all \(i \). For this covering we consider the short exact sequences

\[
0 \to R^1 \lim H^{m-1}(V_i, K_n) \to H^m(V_i, R \lim K_n) \to \lim H^m(V_i, K_n) \to 0
\]

of Lemma 23.2. By assumption (1) the group on the left is zero and by assumption (2) the group on the right maps injectively into \(H^m(V_i, K_{n(V)}) \). We conclude \(\tilde{\gamma}_i = 0 \) and hence \(\gamma = 0 \) as desired.

Lemma 23.7. Let \((C, \mathcal{O})\) be a ringed site. Let \(E \in D(\mathcal{O}) \). Let \(\mathcal{B} \subset \text{Ob}(C) \) be a subset. Assume

1. every object of \(C \) has a covering whose members are elements of \(\mathcal{B} \), and
2. for every \(V \in \mathcal{B} \) there exist a function \(p(V, -) : \mathbb{Z} \to \mathbb{Z} \) and a cofinal system \(\text{Cov}_V \) of coverings of \(V \) such that

\[
H^p(V_i, H^{m-p}(E)) = 0
\]

for all \(\{V_i \to V\} \in \text{Cov}_V \) and all integers \(p, m \) satisfying \(p > p(V, m) \).

Then the canonical map \(E \to R \lim \tau_{\geq -n} E \) is an isomorphism in \(D(\mathcal{O}) \).

Proof. Set \(K_n = \tau_{\geq -n} E \) and \(K = R \lim K_n \). The canonical map \(E \to K \) comes from the canonical maps \(E \to K_n = \tau_{\geq -n} E \). We have to show that \(E \to K \) induces an isomorphism \(H^m(E) \to H^m(K) \) of cohomology sheaves. In the rest of the proof we fix \(m \). If \(n \geq -m \), then the map \(E \to \tau_{\geq -n} E = K_n \) induces an isomorphism \(H^m(E) \to H^m(K_n) \). To finish the proof it suffices to show that for every \(V \in \mathcal{B} \) there exists an integer \(n(V) \geq -m \) such that the map \(H^m(K)(V) \to H^m(K_{n(V)})(V) \) is injective. Namely, then the composition

\[
H^m(E)(V) \to H^m(K)(V) \to H^m(K_{n(V)})(V)
\]

is a bijection and the second arrow is injective, hence the first arrow is bijective. By property (1) this will imply \(H^m(E) \to H^m(K) \) is an isomorphism. Set

\[
n(V) = 1 + \max\{-m, p(V, m - 1) - m, -1 + p(V, m) - m, -2 + p(V, m + 1) - m\}
\]

so that in any case \(n(V) \geq -m \). Claim: the maps

\[
H^{m-1}(V_i, K_{n+1}) \to H^{m-1}(V_i, K_n) \quad \text{and} \quad H^m(V_i, K_{n+1}) \to H^m(V_i, K_n)
\]
are isomorphisms for \(n \geq n(V) \) and \(\{ V_i \to V \} \in \text{Cov}_V \). The claim implies conditions (1) and (2) of Lemma 23.6 are satisfied and hence implies the desired injectivity. Recall (Derived Categories, Remark 12.4) that we have distinguished triangles

\[
H^{-n-1}(E)[n+1] \to K_{n+1} \to K_n \to H^{-n-1}(E)[n+2]
\]

Looking at the associated long exact cohomology sequence the claim follows if

\[
H^{m+n}(V_i, H^{-n-1}(E)), \quad H^{m+n+1}(V_i, H^{-n-1}(E)), \quad H^{m+n+2}(V_i, H^{-n-1}(E))
\]

are zero for \(n \geq n(V) \) and \(\{ V_i \to V \} \in \text{Cov}_V \). This follows from our choice of \(n(V) \) and the assumption in the lemma. □

Lemma 23.8. Let \((C, \mathcal{O})\) be a ringed site. Let \(E \in D(\mathcal{O}) \). Let \(\mathcal{B} \subset \text{Ob}(C) \) be a subset. Assume

1. every object of \(C \) has a covering whose members are elements of \(\mathcal{B} \), and
2. for every \(V \in \mathcal{B} \) there exist an integer \(d_V \geq 0 \) and a cofinal system \(\text{Cov}_V \) of coverings of \(V \) such that

\[
H^p(V_i, H^q(E)) = 0 \text{ for } \{ V_i \to V \} \in \text{Cov}_V, \quad p > d_V, \quad q < 0
\]

Then the canonical map \(E \to R\lim \tau_{\geq-n}E \) is an isomorphism in \(D(\mathcal{O}) \).

Proof. This follows from Lemma 23.7 with \(p(V, m) = d_V + \max(0, m) \). □

Lemma 23.9. Let \((C, \mathcal{O})\) be a ringed site. Let \(E \in D(\mathcal{O}) \). Assume there exists a function \(p(-) : \mathbb{Z} \to \mathbb{Z} \) and a subset \(\mathcal{B} \subset \text{Ob}(C) \) such that

1. every object of \(C \) has a covering whose members are elements of \(\mathcal{B} \),
2. \(H^p(V, H^q(E)) = 0 \) for \(p > p(m) \) and \(V \in \mathcal{B} \).

Then the canonical map \(E \to R\lim \tau_{\geq-n}E \) is an isomorphism in \(D(\mathcal{O}) \).

Proof. Apply Lemma 23.7 with \(d_V = d \) and \(\text{Cov}_V \) equal to the set of coverings \(\{ V_i \to V \} \) with \(V_i \in \mathcal{B} \) for all \(i \). □

Lemma 23.10. Let \((C, \mathcal{O})\) be a ringed site. Let \(E \in D(\mathcal{O}) \). Assume there exists an integer \(d \geq 0 \) and a subset \(\mathcal{B} \subset \text{Ob}(C) \) such that

1. every object of \(C \) has a covering whose members are elements of \(\mathcal{B} \),
2. \(H^p(V, H^q(E)) = 0 \) for \(p > d, \ q < 0, \) and \(V \in \mathcal{B} \).

Then the canonical map \(E \to R\lim \tau_{\geq-n}E \) is an isomorphism in \(D(\mathcal{O}) \).

Proof. Apply Lemma 23.8 with \(d_V = d \) and \(\text{Cov}_V \) equal to the set of coverings \(\{ V_i \to V \} \) with \(V_i \in \mathcal{B} \) for all \(i \). □

The lemmas above can be used to compute cohomology in certain situations.

Lemma 23.11. Let \((C, \mathcal{O})\) be a ringed site. Let \(K \) be an object of \(D(\mathcal{O}) \). Let \(\mathcal{B} \subset \text{Ob}(C) \) be a subset. Assume

1. every object of \(C \) has a covering whose members are elements of \(\mathcal{B} \),
2. \(H^p(U, H^q(K)) = 0 \) for all \(p > 0, \ q \in \mathbb{Z}, \) and \(U \in \mathcal{B} \).

Then \(H^q(U, K) = H^0(U, H^q(K)) \) for \(q \in \mathbb{Z} \) and \(U \in \mathcal{B} \).

Proof. Observe that \(K = R\lim \tau_{\geq-n}K \) by Lemma 23.10 with \(d = 0 \). Let \(U \in \mathcal{B} \). By Equation 23.4.1 we get a short exact sequence

\[
0 \to R^1 \lim H^{p-1}(U, \tau_{\geq-n}K) \to H^0(U, K) \to \lim H^0(U, \tau_{\geq-n}K) \to 0
\]
Condition (2) implies \(H^q(U, \tau_{\geq -n} K) = H^0(U, H^q(\tau_{\geq -n} K)) \) for all \(q \) by using the spectral sequence of Derived Categories, Lemma 21.3. The spectral sequence converges because \(\tau_{\geq -n} K \) is bounded below. If \(n > -q \) then we have \(H^q(\tau_{\geq -n} K) = H^q(K) \). Thus the systems on the left and the right of the displayed short exact sequence are eventually constant with values \(H^0(U, H^{q-1}(K)) \) and \(H^0(U, H^q(K)) \) and the lemma follows. \(\square \)

Here is another case where we can describe the derived limit.

\[\text{Lemma 23.12. Let } (\mathcal{C}, \mathcal{O}) \text{ be a ringed site. Let } (K_n) \text{ be an inverse system of objects of } D(\mathcal{O}). \text{ Let } \mathcal{B} \subset \text{Ob}(\mathcal{C}) \text{ be a subset. Assume} \]

1. every object of \(\mathcal{C} \) has a covering whose members are elements of \(\mathcal{B} \),
2. for all \(U \in \mathcal{B} \) and all \(q \in \mathbb{Z} \) we have
 - (a) \(H^p(U, H^q(K_n)) = 0 \) for \(p > 0 \),
 - (b) the inverse system \(H^0(U, H^q(K_n)) \) has vanishing \(R^1 \) lim.

Then \(H^q(R\lim K_n) = \lim H^q(K_n) \) for \(q \in \mathbb{Z} \).

Proof. Set \(K = R\lim K_n \). We will use notation as in Remark 23.4. Let \(U \in \mathcal{B} \). By Lemma 23.11 and (2)(a) we have \(H^q(U, K_n) = H^0(U, H^q(K_n)) \). Using that the functor \(R\Gamma(U, -) \) commutes with derived limits we have

\[H^q(U, K) = H^q(R\lim R\Gamma(U, K_n)) = \lim H^q(U, H^q(K_n)) \]

where the final equality follows from More on Algebra, Remark 77.9 and assumption (2)(b). Thus \(H^q(U, K) \) is the inverse limit the sections of the sheaves \(H^q(K_n) \) over \(U \). Since \(\lim H^q(K_n) \) is a sheaf we find using assumption (1) that \(H^q(K) \), which is the sheafification of the presheaf \(U \mapsto H^q(U, K) \), is equal to \(\lim H^q(K_n) \). This proves the lemma. \(\square \)

24. Producing K-injective resolutions

Let \((\mathcal{C}, \mathcal{O}) \) be a ringed site. Let \(\mathcal{F}^\bullet \) be a complex of \(\mathcal{O} \)-modules. The category \(\text{Mod}(\mathcal{O}) \) has enough injectives, hence we can use Derived Categories, Lemma 28.3, to produce a diagram

\[\cdots \longrightarrow \tau_{\geq -2} \mathcal{F}^\bullet \longrightarrow \tau_{\geq -1} \mathcal{F}^\bullet \longrightarrow \cdots \]

\[\cdots \longrightarrow \mathcal{I}^\bullet_n \longrightarrow \mathcal{I}^\bullet_{n+1} \longrightarrow \cdots \]

in the category of complexes of \(\mathcal{O} \)-modules such that

1. the vertical arrows are quasi-isomorphisms,
2. \(\mathcal{I}^\bullet_n \) is a bounded below complex of injectives,
3. the arrows \(\mathcal{I}^\bullet_{n+1} \rightarrow \mathcal{I}^\bullet_n \) are termwise split surjections.

The category of \(\mathcal{O} \)-modules has limits (they are computed on the level of presheaves), hence we can form the termwise limit \(\mathcal{I}^\bullet = \lim_n \mathcal{I}^\bullet_n \). By Derived Categories, Lemmas 29.4 and 29.8, this is a K-injective complex. In general the canonical map

\[\mathcal{F}^\bullet \rightarrow \mathcal{I}^\bullet \]

may not be a quasi-isomorphism. In the following lemma we describe some conditions under which it is.

Lemma 24.1. In the situation described above. Denote \(\mathcal{H}^m = H^m(\mathcal{F}^\bullet) \) the \(m \)th cohomology sheaf. Let \(\mathcal{B} \subset \text{Ob}(\mathcal{C}) \) be a subset. Let \(d \in \mathbb{N} \). Assume

1. \(\mathcal{F}^\bullet \rightarrow \mathcal{I}^\bullet \)
2. The category of \(\mathcal{O} \)-modules has enough injectives,
3. The spectral sequence converges because \(\tau_{\geq -n} \mathcal{F}^\bullet \) is bounded below.
In this section we ask when a functor \(Rf_* \) has bounded cohomological dimension.

This is a rather subtle question when we consider unbounded complexes.

Situation 25.1. Let \(\mathcal{C} \) be a site. Let \(\mathcal{O} \) be a sheaf of rings on \(\mathcal{C} \). Let \(\mathcal{A} \subset \text{Mod}(\mathcal{O}) \) be a weak Serre subcategory. We assume the following is true: there exists a subset \(B \subset \text{Ob}(\mathcal{C}) \) such that

1. every object of \(\mathcal{C} \) has a covering whose members are in \(B \),
2. for every \(U \in B \) we have \(H^p(U, H^m) = 0 \) for \(p > d \) and \(q < (\text{[2]} \) for every object of \(\mathcal{C} \).

Then (24.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma \(\text{[32.4]} \) it suffices to show that the canonical map \(F^* \to R \lim \tau_{\geq -n} F^* \) is an isomorphism. This follows from Lemma \(\text{[23.10]} \). \(\square \)

Here is a technical lemma about cohomology sheaves of termwise limits of inverse systems of complexes of modules. We should avoid using this lemma as much as possible and instead use arguments with derived inverse limits.

Lemma 24.2. Let \((\mathcal{C}, \mathcal{O}) \) be a ringed site. Let \((\mathcal{F}_n^*) \) be an inverse system of complexes of \(\mathcal{O} \)-modules. Let \(m \in \mathbb{Z} \). Suppose given \(B \subset \text{Ob}(\mathcal{C}) \) and an integer \(n_0 \) such that

1. every object of \(\mathcal{C} \) has a covering whose members are elements of \(B \),
2. for every \(U \in B \)
 - (a) the systems of abelian groups \(\mathcal{F}_{n-2}^m(U) \) and \(\mathcal{F}_{n-1}^m(U) \) have vanishing \(R^1 \lim \) (for example these have the Mittag-Leffler property),
 - (b) the system of abelian groups \(H^{m-1}(\mathcal{F}_n^*(U)) \) has vanishing \(R^1 \lim \) (for example it has the Mittag-Leffler property), and
 - (c) we have \(H^m(\mathcal{F}_n^*(U)) = H^m(\mathcal{F}_{n_0}^*(U)) \) for all \(n \geq n_0 \).

Then the maps \(H^m(\mathcal{F}_n^*) \to \lim H^m(\mathcal{F}_n^*) \to H^m(\mathcal{F}_{n_0}^*) \) are isomorphisms of sheaves where \(F^* = \lim F_n^* \) is the termwise inverse limit.

Proof. Let \(U \in B \). Note that \(H^m(\mathcal{F}_n^*(U)) \) is the cohomology of

\[
\lim_n \mathcal{F}_{n-2}^m(U) \to \lim_n \mathcal{F}_{n-1}^m(U) \to \lim_n \mathcal{F}_n^m(U) \to \lim_n \mathcal{F}_{n+1}^m(U)
\]

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply More on Algebra, Lemma \(\text{[77.2]} \) to conclude that

\[
H^m(\mathcal{F}_n^*(U)) = \lim H^m(\mathcal{F}_n^*(U))
\]

By assumption (2)(c) we conclude

\[
H^m(\mathcal{F}_n^*(U)) = H^m(\mathcal{F}_{n_0}^*(U))
\]

for all \(n \geq n_0 \). By assumption (1) we conclude that the sheafification of \(U \mapsto H^m(\mathcal{F}_n^*(U)) \) is equal to the sheafification of \(U \mapsto H^m(\mathcal{F}_n^*(U)) \) for all \(n \geq n_0 \). Thus the inverse system of sheaves \(H^m(\mathcal{F}_n^*) \) is constant for \(n \geq n_0 \) with value \(H^m(\mathcal{F}_n^*) \) which proves the lemma. \(\square \)

25. Bounded cohomological dimension

In this section we ask when a functor \(Rf_* \) has bounded cohomological dimension.

This is a rather subtle question when we consider unbounded complexes.
In Situation 25.1 let \mathcal{F} be an \mathcal{A}-covering.

Lemma 25.3. This is \cite[Lemma 25.3.]{LO08}.

Proof. Let \mathcal{A} be an inverse system in $\mathcal{D}(\mathcal{O})$.

Lemma 25.4. This is \cite[Lemma 25.4.]{LO08}.

This is \cite[Proposition 2.1.4]{LO08} with slightly changed hypotheses; it is the analogue of \cite[Proposition 3.13]{Spa88} for sites.

Let $V \in \mathcal{B}$. Let $\{V_i \to V\}$ be in the set Cov_V of Situation 25.1. Because K_n is bounded below there is a spectral sequence $E_2^{p,q} = H^p(V_i, H^q(K_n))$ converging to $H^{p+q}(V_i, K_n)$. See Derived Categories, Lemma 21.3.

Observe that $E_2^{p,q} = 0$ for $p > d_V$ by assumption. Pick n_0 such that

$$H^{j+1} = H^{j+1}(K_n),$$

$$H^j = H^j(K_n),$$

$$H^{-d_V-2} = H^{-d_V-2}(K_n)$$

for all $n \geq n_0$. Comparing the spectral sequences above for K_n and K_{n_0}, we see that for $n \geq n_0$ the cohomology groups $H^{j-1}(V_i, K_n)$ and $H^j(V_i, K_n)$ are independent of n. It follows that the map on sections $H^j(R\lim K_n)(V) \to H^j(K_n)(V)$ is injective for n large enough (depending on V), see Lemma 23.6. Since every object of \mathcal{C} can be covered by elements of \mathcal{B}, we conclude that the map $H^j(R\lim K_n) \to H^j$ is injective.

Surjectivity is shown in a similar manner. Namely, pick $U \in \text{Ob}(\mathcal{C})$ and $\gamma \in H^j(U)$. We want to lift γ to a section of $H^j(R\lim K_n)$ after replacing U by the members of a covering. Hence we may assume $U = V \in \mathcal{B}$ by property (1) of Situation 25.1. Pick n_0 such that

$$H^{j+1} = H^{j+1}(K_n),$$

$$H^j = H^j(K_n),$$

$$H^{-d_V-2} = H^{-d_V-2}(K_n)$$

for all $n \geq n_0$. Choose an element $\{V_i \to V\}$ of Cov_V such that $\gamma|V_i \in H^j(V_i) = H^j(K_n)(V_i)$ lifts to an element $\gamma_{n_0,i} \in H^j(V_i, K_{n_0})$. This is possible because $H^j(K_{n_0})$ is the sheafification of $U \to H^j(U, K_{n_0})$ by Lemma 21.3. By the discussion in the first paragraph of the proof we have that $H^{j-1}(V_i, K_n)$ and $H^j(V_i, K_n)$ are independent of $n \geq n_0$. Hence $\gamma_{n_0,i}$ lifts to an element $\gamma_i \in H^j(V_i, R\lim K_n)$ by Lemma 23.2. This finishes the proof.

Lemma 25.4. Let $f : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi.

Let $\mathcal{A} \subseteq \text{Mod}(\mathcal{O})$ and $\mathcal{A}' \subseteq \text{Mod}(\mathcal{O}')$ be weak Serre subcategories. Assume there is an integer N such that

1. \mathcal{O}, \mathcal{A} satisfy the assumption of Situation 25.1.
2. $\mathcal{O}', \mathcal{A}'$ satisfy the assumption of Situation 25.1.

This is a version of \cite[Lemma 2.1.10]{LO08} with slightly changed hypotheses.
(3) $R^p f_* \mathcal{F} \in \text{Ob}(\mathcal{A}')$ for $p \geq 0$ and $\mathcal{F} \in \text{Ob}(\mathcal{A})$,
(4) $R^p f_* \mathcal{F} = 0$ for $p > N$ and $\mathcal{F} \in \text{Ob}(\mathcal{A})$.

Then for K in $D_\mathcal{A}(\mathcal{O})$ we have

(a) $Rf_* K$ is in $D_\mathcal{A}(\mathcal{O}')$,
(b) The map $H^j(Rf_* K) \to H^j(Rf_*(\tau_{\geq -n} K))$ is an isomorphism for $j \geq N - n$.

Proof. By Lemma 25.2 we have $K = R\lim_{\tau_{\geq -n} K}$. By Lemma 23.3 we have $Rf_* K = R\lim_{\tau_{\geq -n} K}$. The complexes $Rf_*(\tau_{\geq -n} K)$ are bounded below. The spectral sequence

$$E_{2}^{p,q} = R^p f_* H^q(\tau_{\geq -n} K)$$

converging to $H^{p+q}(Rf_*(\tau_{\geq -n} K))$ (Derived Categories, Lemma 21.3) and assumption (3) show that $Rf_*(\tau_{\geq -n} K)$ lies in $D^+_{\mathcal{A}}(\mathcal{O}')$, see Homology, Lemma 21.11. Observe that for $m \geq n$ the map

$Rf_*(\tau_{\geq -m} K) \to Rf_*(\tau_{\geq -n} K)$

induces an isomorphism on cohomology sheaves in degrees $j \geq -n + N$ by the spectral sequences above. Hence we may apply Lemma 25.3 to conclude. \hfill \square

It turns out that we sometimes need a variant of the lemma above where the assumptions are slightly different.

Situation 25.5. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. Let $u : \mathcal{C}' \to \mathcal{C}$ be the corresponding continuous functor of sites. Let $\mathcal{A} \subset \text{Mod}(\mathcal{O})$ be a weak Serre subcategory. We assume the following is true: there exists a subset $\mathcal{B}' \subset \text{Ob}(\mathcal{C}')$ such that

1. every object of \mathcal{C}' has a covering whose members are in \mathcal{B}', and
2. for every $V' \in \mathcal{B}'$ there exists an integer $d_{V'}$ and a cofinal system $\text{Cov}_{V'}$ of coverings of V' such that $H^p(u(V'_i), \mathcal{F}) = 0$ for $\{V'_i \to V'\} \in \text{Cov}_{V'}$, $p > d_{V'}$, and $\mathcal{F} \in \text{Ob}(\mathcal{A})$.

Lemma 25.6. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. assume moreover there is an integer N such that

1. $\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 25.4
2. $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ and \mathcal{A} satisfy the assumption of Situation 25.5
3. $R^p f_* \mathcal{F} = 0$ for $p > N$ and $\mathcal{F} \in \text{Ob}(\mathcal{A})$.

Then for K in $D_\mathcal{A}(\mathcal{O})$ the map $H^j(Rf_* K) \to H^j(Rf_*(\tau_{\geq -n} K))$ is an isomorphism for $j \geq N - n$.

Proof. Let K be in $D_\mathcal{A}(\mathcal{O})$. By Lemma 25.2 we have $K = R\lim_{\tau_{\geq -n} K}$. By Lemma 23.3 we have $Rf_* K = R\lim_{\tau_{\geq -n} K}$. Let $V' \in \mathcal{B}'$ and let $\{V'_i \to V'\}$ be an element of $\text{Cov}_{V'}$. Then we consider

$H^j(V'_i, Rf_* K) = H^j(u(V'_i), K)$ and $H^j(V'_i, Rf_*(\tau_{\geq -n} K)) = H^j(u(V'_i), \tau_{\geq -n} K)$

The assumption in Situation 25.5 implies that the last group is independent of n for n large enough depending on j and $d_{V'}$. Some details omitted. We apply this for j and $j - 1$ and via Lemma 23.2 this gives that

$H^j(V'_i, Rf_* K) = \lim H^j(V'_i, Rf_*(\tau_{\geq -n} K))$.
and the system on the right is constant for \(n \) larger than a constant depending only on \(d \). Thus Lemma 23.6 implies that
\[
H^j(Rf_* K)(V') \rightarrow (\lim H^j(Rf_*(\tau_{\geq -n} K)))(V')
\]
is injective. Since the elements \(V' \in B' \) cover every object of \(C' \) we conclude that the map \(H^j(Rf_* K) \rightarrow \lim H^j(Rf_*(\tau_{\geq -n} K)) \) is injective. The spectral sequence
\[
E_2^{p,q} = R^p f_* H^q(\tau_{\geq -n} K)
\]
converging to \(H^{p+q}(Rf_*(\tau_{\geq -n} K)) \) (Derived Categories, Lemma 21.3) and assumption (3) show that \(H^1(Rf_* \tau_{\geq -n} K) \) is constant for \(n \geq N - j \). Hence \(H^1(Rf_* K) \rightarrow H^1(Rf_*(\tau_{\geq -n} K)) \) is injective for \(j \geq N - n \).

Thus we proved the lemma with “isomorphism” in the last line of the lemma replaced by “injective”. However, now choose \(j \) and \(n \) with \(j \geq N - n \). Then consider the distinguished triangle
\[
\tau_{\leq -n-1} K \rightarrow K \rightarrow \tau_{\geq -n} K \rightarrow (\tau_{\leq -n-1} K)[1]
\]
See Derived Categories, Remark 12.4. Since \(\tau_{\geq -n} \tau_{\leq -n-1} K = 0 \), the injectivity already proven for \(\tau_{-n-1} K \) implies
\[
0 = H^j(Rf_*(\tau_{\leq -n-1} K)) = H^{j+1}(Rf_*(\tau_{\leq -n-1} K)) = H^{j+2}(Rf_*(\tau_{\leq -n-1} K)) = \ldots
\]
By the long exact cohomology sequence associated to the distinguished triangle
\[
Rf_*(\tau_{\leq -n-1} K) \rightarrow Rf_* K \rightarrow Rf_*(\tau_{\geq -n} K) \rightarrow Rf_*(\tau_{\leq -n-1} K)[1]
\]
this implies that \(H^1(Rf_* K) \rightarrow H^1(Rf_*(\tau_{\geq -n} K)) \) is an isomorphism.

26. Mayer-Vietoris

0EVX For the usual statement and proof of Mayer-Vietoris, please see Cohomology, Section 6.

Let \((C, O)\) be a ringed site. Consider a commutative diagram
\[
\begin{array}{ccc}
E & \longrightarrow & Y \\
\downarrow & & \downarrow \\
Z & \longrightarrow & X
\end{array}
\]
in the category \(C \). In this situation, given an object \(K \) of \(D(O) \) we get what looks like the beginning of a distinguished triangle
\[
R\Gamma(X, K) \rightarrow R\Gamma(Z, K) \oplus R\Gamma(Y, K) \rightarrow R\Gamma(E, K)
\]
In the following lemma we make this more precise.

0F16 Lemma 26.1. In the situation above, choose a \(K \)-injective complex \(I^* \) of \(O \)-modules representing \(K \). Using \(-1\) times the canonical map for one of the four arrows we get maps of complexes
\[
I^*(X) \xrightarrow{\alpha} I^*(Z) \oplus I^*(Y) \xrightarrow{\beta} I^*(E)
\]
with \(\beta \circ \alpha = 0 \). Thus a canonical map
\[
c_{X,Y,Z,E}^K : I^*(X) \rightarrow C(\beta)^*[1]
\]
This map is canonical in the sense that a different choice of \(K \)-injective complex representing \(K \) determines an isomorphic arrow in the derived category of abelian
groups. If $c_{X,Z,Y,E}^K$ is an isomorphism, then using its inverse we obtain a canonical distinguished triangle
\[R\Gamma(X, K) \to R\Gamma(Z, K) \oplus R\Gamma(Y, K) \to R\Gamma(E, K) \to R\Gamma(X, K)[1] \]
All of these constructions are functorial in K.

Proof. This lemma proves itself. For example, if \mathcal{J}^\bullet is a second K-injective complex representing K, then we can choose a quasi-isomorphism $\mathcal{I}^\bullet \to \mathcal{J}^\bullet$ which determines quasi-isomorphisms between all the complexes in sight. Details omitted. For the construction of cones and the relationship with distinguished triangles see Derived Categories, Sections 9 and 10.

\[\square \]

Lemma 26.2. In the situation above, let $K_1 \to K_2 \to K_3 \to K_1[1]$ be a distinguished triangle in $D(\mathcal{O})$. If $c_{X,Z,Y,E}^K_i$ is a quasi-isomorphism for two i out of \{1, 2, 3\}, then it is a quasi-isomorphism for the third i.

Proof. By rotating the triangle we may assume $c_{X,Z,Y,E}^{K_1}$ and $c_{X,Z,Y,E}^{K_2}$ are quasi-isomorphisms. Choose a map $f : \mathcal{I}_1^\bullet \to \mathcal{I}_2^\bullet$ of K-injective complexes of \mathcal{O}-modules representing $K_1 \to K_2$. Then K_3 is represented by the K-injective complex $C(f)^\bullet$, see Derived Categories, Lemma 29.3. Then the morphism $c_{X,Z,Y,E}^{K_3}$ is an isomorphism as it is the third leg in a map of distinguished triangles in $K(\mathcal{A}b)$ whose other two legs are quasi-isomorphisms. Some details omitted; use Derived Categories, Lemma 4.3.

\[\square \]

Let us give a criterion for when this does produce a distinguished triangle.

Lemma 26.3. In the situation above assume

1. $h_\#_X = h_\#_Y \amalg h_\#_Z$, and
2. $h_\#_E \to h_\#_Y$ is injective.

Then the construction of Lemma 26.1 produces a distinguished triangle
\[R\Gamma(X, K) \to R\Gamma(Z, K) \oplus R\Gamma(Y, K) \to R\Gamma(E, K) \to R\Gamma(X, K)[1] \]
functorial for K in $D(\mathcal{I})$.

Proof. We can represent K by a K-injective complex whose terms are injective abelian sheaves, see Section 20. Thus it suffices to show: if \mathcal{I} is an injective abelian sheaf, then
\[0 \to \mathcal{I}(X) \to \mathcal{I}(Z) \oplus \mathcal{I}(Y) \to \mathcal{I}(E) \to 0 \]
is a short exact sequence. The first arrow is injective because by condition (1) the map $h_\#_Y \amalg h_\#_Z \to h_\#_X$ becomes surjective after sheafification, which means that \{\(Y \to X, Z \to X\}\} can be refined by a covering of X. The last arrow is surjective because $\mathcal{I}(Y) \to \mathcal{I}(E)$ is surjective. Namely, we have $\mathcal{I}(E) = \text{Hom}(\mathcal{Z}_E^\#, \mathcal{I}), \mathcal{I}(Y) = \text{Hom}(\mathcal{Z}_Y^\#, \mathcal{I})$, the map $\mathcal{Z}_E^\# \to \mathcal{Z}_Y^\#$ is injective by (2), and \mathcal{I} is an injective abelian sheaf. Please compare with Modules on Sites, Section 5. Finally, suppose we have $s \in \mathcal{I}(Y)$ and $t \in \mathcal{I}(Z)$ mapping to the same element of $\mathcal{I}(E)$. Then s and t define a map
\[s \amalg t : h_\#_Y \amalg h_\#_Z \to \mathcal{I} \]
which by assumption factors through $h_\#_X \amalg h_\#_Z$. Thus by assumption (1) we obtain a unique map $h_\#_X \to \mathcal{I}$ which corresponds to an element of $\mathcal{I}(X)$ restricting to s on Y and t on Z.

\[\square \]
0EVZ Lemma 26.4. Let \mathcal{C} be a site. Consider a commutative diagram

$$
\begin{array}{ccc}
\mathcal{D} & \longrightarrow & \mathcal{F} \\
\downarrow & & \downarrow \\
\mathcal{E} & \longrightarrow & \mathcal{G}
\end{array}
$$

of presheaves of sets on \mathcal{C} and assume that

1. $\mathcal{G}^\# = \mathcal{E}^\# \amalg \mathcal{F}^\#$, and
2. $\mathcal{D}^\# \to \mathcal{F}^#$ is injective.

Then there is a canonical distinguished triangle

$$R\Gamma(\mathcal{G}, K) \to R\Gamma(\mathcal{E}, K) \oplus R\Gamma(\mathcal{F}, K) \to R\Gamma(\mathcal{D}, K) \to R\Gamma(\mathcal{G}, K)[1]$$

functorial in $K \in D(\mathcal{C})$ where $R\Gamma(\mathcal{G}, -)$ is the cohomology discussed in Section 14.

Proof. Since sheafification is exact and since $R\Gamma(\mathcal{G}, -) = R\Gamma(\mathcal{G}^\#, -)$ we may assume $\mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}$ are sheaves of sets. Moreover, the cohomology $R\Gamma(\mathcal{G}, -)$ only depends on the topos, not on the underlying site. Hence by Sites, Lemma 29.5 we may replace \mathcal{C} by a “larger” site with a subcanonical topology such that $\mathcal{G} = h_X$, $\mathcal{F} = h_Y$, $\mathcal{E} = h_Z$, and $\mathcal{D} = h_{E'}$ for some objects X, Y, Z, E' of \mathcal{C}. In this case the result follows from Lemma 26.3.

27. Comparing two topologies

0EWK Let \mathcal{C} be a category. Let Cov$(\mathcal{C}) \supset Cov'(\mathcal{C})$ be two ways to endow \mathcal{C} with the structure of a site. Denote τ the topology corresponding to Cov(\mathcal{C}) and τ' the topology corresponding to Cov(\mathcal{C}'). Then the identity functor on \mathcal{C} defines a morphism of sites

$$\epsilon : \mathcal{C}_\tau \longrightarrow \mathcal{C}_{\tau'}$$

where ϵ_* is the identity functor on underlying presheaves and where ϵ^{-1} is the τ-sheafification of a τ'-sheaf. See Sites, Examples 14.3 and 22.3. In the situation above we have the following

1. $\epsilon_* : Sh(\mathcal{C}_\tau) \to Sh(\mathcal{C}_{\tau'})$ is fully faithful and $\epsilon^{-1} \circ \epsilon_* = \text{id}$,
2. $\epsilon_* : Ab(\mathcal{C}_\tau) \to Ab(\mathcal{C}_{\tau'})$ is fully faithful and $\epsilon^{-1} \circ \epsilon_* = \text{id}$,
3. $R\epsilon_* : D(\mathcal{C}_\tau) \to D(\mathcal{C}_{\tau'})$ is fully faithful and $\epsilon^{-1} \circ R\epsilon_* = \text{id}$,
4. if \mathcal{O} is a sheaf of rings for the τ-topology, then \mathcal{O} is also a sheaf for the τ'-topology and ϵ becomes a flat morphism of ringed sites

$$\epsilon : (\mathcal{C}_\tau, \mathcal{O}_\tau) \longrightarrow (\mathcal{C}_{\tau'}, \mathcal{O}_{\tau'})$$

5. $\epsilon_* : Mod(\mathcal{O}_\tau) \to Mod(\mathcal{O}_{\tau'})$ is fully faithful and $\epsilon_* \circ \epsilon_* = \text{id}$
6. $R\epsilon_* : D(\mathcal{O}_\tau) \to D(\mathcal{O}_{\tau'})$ is fully faithful and $\epsilon_* \circ R\epsilon_* = \text{id}$.

Here are some explanations.

Ad (1). Let \mathcal{F} be a sheaf of sets in the τ-topology. Then $\epsilon_* \mathcal{F}$ is just \mathcal{F} viewed as a sheaf in the τ'-topology. Applying ϵ^{-1} means taking the τ-sheafification of \mathcal{F}, which doesn’t do anything as \mathcal{F} is already a τ-sheaf. Thus $\epsilon^{-1}(\epsilon_* \mathcal{F}) = \mathcal{F}$. The fully faithfulness follows by Categories, Lemma 24.3.

Ad (2). This is a consequence of (1) since pullback and pushforward of abelian sheaves is the same as doing those operations on the underlying sheaves of sets.
Ad (3). Let K be an object of $D(C)$. To compute $R\epsilon_* K$ we choose a K-injective complex I^\bullet representing K and we set $R\epsilon_* K = \epsilon_* I^\bullet$. Since $\epsilon^{-1} : D(C) \to D(C)$ is computed on an object L by applying the exact functor ϵ^{-1} to any complex of abelian sheaves representing L, we find that $\epsilon^{-1} R\epsilon_* K$ is represented by $\epsilon^{-1} \epsilon_* I^\bullet$. By Part (1) we have $I^\bullet = \epsilon^{-1} \epsilon_* I^\bullet$. In other words, we have $\epsilon^{-1} \circ R\epsilon_* = id$ and we conclude as before.

Ad (4). Observe that $\epsilon^{-1} O_\tau = O_\tau$, see discussion in part (1). Hence ϵ is a flat morphism of ringed sites, see Modules on Sites, Definition 30.1. Not only that, it is moreover clear that $\epsilon^* = \epsilon^{-1}$ on O_τ-modules (the pullback as a module has the same underlying abelian sheaf as the pullback of the underlying abelian sheaf).

Ad (5). This is clear from (2) and what we said in (4).

Ad (6). This is analogous to (3). We omit the details.

28. Formalities on cohomological descent

0D7N In this section we discuss only to what extent a morphism of ringed topoi determines an embedding from the derived category downstairs to the derived category upstairs. Here is a typical result.

0D7Q Lemma 28.1. Let $f : (\text{Sh}(C), O_C) \to (\text{Sh}(D), O_D)$ be a morphism of ringed topoi. Consider the full subcategory $D' \subset D(O_D)$ consisting of objects K such that

$$K \to Rf_* Lf^* K$$

is an isomorphism. Then D' is a saturated triangulated strictly full subcategory of $D(O_D)$ and the functor $Lf^* : D' \to D(O_C)$ is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in this setting. See Derived Categories, Lemma 4.15 for a discussion of triangulated subcategories. The canonical map of the lemma is the unit of the adjoint pair of functors (Lf^*, Rf_*), see Lemma 20.1. Having said this the proof that D' is a saturated triangulated subcategory is omitted; it follows formally from the fact that Lf^* and Rf_* are exact functors of triangulated categories. The final part follows formally from fact that Lf^* and Rf_* are adjoint; compare with Categories, Lemma 24.3.

0D7R Lemma 28.2. Let $f : (\text{Sh}(C), O_C) \to (\text{Sh}(D), O_D)$ be a morphism of ringed topoi. Consider the full subcategory $D' \subset D(O_C)$ consisting of objects K such that

$$Lf^* Rf_* K \to K$$

is an isomorphism. Then D' is a saturated triangulated strictly full subcategory of $D(O_C)$ and the functor $Rf_* : D' \to D(O_D)$ is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in this setting. See Derived Categories, Lemma 4.15 for a discussion of triangulated subcategories. The canonical map of the lemma is the counit of the adjoint pair of functors (Lf^*, Rf_*), see Lemma 20.1. Having said this the proof that D' is a saturated triangulated subcategory is omitted; it follows formally from the fact that Lf^* and Rf_* are exact functors of triangulated categories. The final part follows formally from fact that Lf^* and Rf_* are adjoint; compare with Categories, Lemma 24.3.
Lemma 28.3. Let $f : (\mathsf{Sh}(C), \mathcal{O}_C) \to (\mathsf{Sh}(D), \mathcal{O}_D)$ be a morphism of ringed topoi. Let K be an object of $D(\mathcal{O}_C)$. Assume

1. f is flat,
2. K is bounded below,
3. $f^* Rf_* H^0(K) \to H^0(K)$ is an isomorphism.

Then $f^* Rf_* K \to K$ is an isomorphism.

Proof. Observe that $f^* Rf_* K \to K$ is an isomorphism if and only if it is an isomorphism on cohomology sheaves H^j. Observe that $H^j(f^* Rf_* K) = f^* H^j(Rf_* K) = f^* H^j(Rf_* \tau_{\leq j} K) = H^j(f^* Rf_* \tau_{\leq j} K)$. Hence we may assume that K is bounded. Then property (3) tells us the cohomology sheaves are in the triangulated subcategory $D' \subset D(\mathcal{O}_D)$ of Lemma 28.1. Hence K is in it too.

Lemma 28.4. Let $f : (\mathsf{Sh}(C), \mathcal{O}_C) \to (\mathsf{Sh}(D), \mathcal{O}_D)$ be a morphism of ringed topoi. Let K be an object of $D(\mathcal{O}_D)$. Assume

1. f is flat,
2. K is bounded below,
3. $H^0(K) \to Rf_* f^* H^0(K)$ is an isomorphism.

Then $K \to Rf_* f^* K$ is an isomorphism.

Proof. Observe that $K \to Rf_* f^* K$ is an isomorphism if and only if it is an isomorphism on cohomology sheaves H^j. Observe that $H^j(Rf_* f^* K) = H^j(Rf_* f^* \tau_{\leq j} K) = H^j(Rf_* f^* \tau_{\leq j} K)$. Hence we may assume that K is bounded. Then property (3) tells us the cohomology sheaves are in the triangulated subcategory $D' \subset D(\mathcal{O}_D)$ of Lemma 28.1. Hence K is in it too.

Lemma 28.5. Let $f : (\mathsf{Sh}(C), \mathcal{O}) \to (\mathsf{Sh}(C'), \mathcal{O}')$ be a morphism of ringed topoi. Let $\mathcal{A} \subset \mathsf{Mod}(\mathcal{O})$ and $\mathcal{A}' \subset \mathsf{Mod}(\mathcal{O}')$ be weak Serre subcategories. Assume

1. f is flat,
2. $f^* \text{ induces an equivalence of categories } \mathcal{A}' \to \mathcal{A},$
3. $f^* \text{ induces an equivalence of categories } \mathcal{A}' \to \mathcal{A}.$

Then $f^* : D^+_A(\mathcal{O}') \to D^+_A(\mathcal{O})$ is an equivalence of categories with quasi-inverse given by $Rf_* : D^+_A(\mathcal{O}) \to D^+_A(\mathcal{O}')$.

Proof. By assumptions (2) and (3) and Lemmas 28.3 and 28.1 we see that $f^* : D^+_A(\mathcal{O}') \to D^+_A(\mathcal{O})$ is fully faithful. Let $\mathcal{F} \in \mathsf{Ob}(\mathcal{A})$. Then we can write $\mathcal{F} = f^* \mathcal{F}'$. Then $Rf_* \mathcal{F} = Rf_* f^* \mathcal{F}' = \mathcal{F}'$. In particular, we have $R^p f_* \mathcal{F} = 0$ for $p > 0$ and $f_* \mathcal{F} \in \mathsf{Ob}(\mathcal{A}')$. Thus for any $K \in D^+_A(\mathcal{O})$ we see, using the spectral sequence $E_2^{p,q} = R^p f_* H^q(K)$ converging to $R^{p+q} f_* K$, that $Rf_* K$ is in $D^+_A(\mathcal{O}')$. Of course, it also follows from Lemmas 28.4 and 28.2 that $Rf_* : D^+_A(\mathcal{O}) \to D^+_A(\mathcal{O}')$ is fully faithful. Since f^* and Rf_* are adjoint we then get the result of the lemma, for example by Categories, Lemma 24.3.

Lemma 28.6. Let $f : (\mathsf{Sh}(C), \mathcal{O}) \to (\mathsf{Sh}(C'), \mathcal{O}')$ be a morphism of ringed topoi. Let $\mathcal{A} \subset \mathsf{Mod}(\mathcal{O})$ and $\mathcal{A}' \subset \mathsf{Mod}(\mathcal{O}')$ be weak Serre subcategories. Assume

1. f is flat,
2. $f^* \text{ induces an equivalence of categories } \mathcal{A}' \to \mathcal{A},$
3. $f^* \text{ induces an equivalence of categories } \mathcal{A}' \to \mathcal{A}.$
4. $\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 25.1
5. $\mathcal{C}', \mathcal{O}', \mathcal{A}'$ satisfy the assumption of Situation 25.1

This is analogous to [LO08, Theorem 2.2.3].
Then $f^*: D_A(O') \to D_A(O)$ is an equivalence of categories with quasi-inverse given by $Rf_*: D_A(O) \to D_A'(O')$.

Proof. Since f^* is exact, it is clear that f^* defines a functor $f^*: D_A'(O') \to D_A(O)$ as in the statement of the lemma and that moreover this functor commutes with the truncation functors $\tau_{\geq -n}$. We already know that f^* and Rf_* are quasi-inverse equivalence on the corresponding bounded below categories, see Lemma 28.5. By Lemma 25.4 with $N = 0$ we see that Rf_* indeed defines a functor $Rf_*: D_A(O) \to D_A'(O')$ and that moreover this functor commutes with the truncation functors $\tau_{\geq -n}$. Thus for K in $D_A(O)$ the map $f^* Rf_* K \to K$ is an isomorphism as this is true on truncations. Similarly, for K' in $D_A(O')$ the map $K' \to Rf_* f^* K'$ is an isomorphism as this is true on truncations. This finishes the proof. \qed

Lemma 28.7. Let $f : (C, O) \to (C', O')$ be a morphism of ringed sites. Let $A \subset \text{Mod}(O)$ and $A' \subset \text{Mod}(O')$ be weak Serre subcategories. Assume

1. f is flat,
2. f^* induces an equivalence of categories $A' \to A$,
3. $f' : D_A(O) \to D_A'(O')$ is an isomorphism for $F' \in \text{Ob}(A')$,
4. C, O, A satisfy the assumption of Situation 25.7,
5. $f : (C', O') \to (C', O')$ and A satisfy the assumption of Situation 25.5.

Then $f^*: D_A'(O') \to D_A(O)$ is an equivalence of categories with quasi-inverse given by $Rf_* : D_A(O) \to D_A'(O')$.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 28.6 except the reference to Lemma 25.4 is replaced by a reference to Lemma 25.6. \qed

29. Comparing two topologies, II

Let \mathcal{C} be a category. Let $\text{Cov}(\mathcal{C}) \supset \text{Cov}'(\mathcal{C})$ be two ways to endow \mathcal{C} with the structure of a site. Denote τ the topology corresponding to $\text{Cov}(\mathcal{C})$ and τ' the topology corresponding to $\text{Cov}'(\mathcal{C})$. Then the identity functor on \mathcal{C} defines a morphism of sites

$$\epsilon : \mathcal{C}_\tau \longrightarrow \mathcal{C}_{\tau'}$$

where ϵ_* is the identity functor on underlying presheaves and where ϵ^{-1} is the τ-sheafification of a τ'-sheaf (hence clearly exact). Let \mathcal{O} be a sheaf of rings for the τ-topology. Then \mathcal{O} is also a sheaf for the τ'-topology and ϵ becomes a morphism of ringed sites

$$\epsilon : (\mathcal{C}_\tau, \mathcal{O}_\tau) \longrightarrow (\mathcal{C}_{\tau'}, \mathcal{O}_{\tau'})$$

For more discussion, see Section 27.

Lemma 29.1. With $\epsilon : (\mathcal{C}_\tau, \mathcal{O}_\tau) \to (\mathcal{C}_{\tau'}, \mathcal{O}_{\tau'})$ as above. Let $B \subset \text{Ob}(\mathcal{C})$ be a subset. Let $A \subset \text{PMod}(\mathcal{O})$ be a full subcategory. Assume

1. every object of A is a sheaf for the τ-topology,
2. A is a weak Serre subcategory of $\text{Mod}(\mathcal{O}_\tau)$,
3. every object of C has a τ'-covering whose members are elements of B, and
4. for every $U \in B$ we have $H^p(U, F) = 0$, $p > 0$ for all $F \in A$.

Then A is a weak Serre subcategory of $\text{Mod}(\mathcal{O}_{\tau'})$ and there is an equivalence of triangulated categories $D_A(\mathcal{O}_\tau) = D_A(\mathcal{O}_{\tau'})$ given by ϵ^* and $R\epsilon_*$.
Proof. Since \(\epsilon^{-1} \mathcal{O}_{\tau'} = \mathcal{O}_{\tau} \) we see that \(\epsilon \) is a flat morphism of ringed sites and that in fact \(\epsilon^{-1} = \epsilon^* \) on sheaves of modules. By property (1) we can think of every object of \(\mathcal{A} \) as a sheaf of \(\mathcal{O}_{\tau} \)-modules and as a sheaf of \(\mathcal{O}_{\tau'} \)-modules. In other words, we have fully faithful inclusion functors
\[
\mathcal{A} \to \text{Mod}(\mathcal{O}_{\tau}) \to \text{Mod}(\mathcal{O}_{\tau'})
\]
To avoid confusion we will denote \(\mathcal{A}' \subset \text{Mod}(\mathcal{O}_{\tau'}) \) the image of \(\mathcal{A} \). Then it is clear that \(\epsilon_* : \mathcal{A} \to \mathcal{A}' \) and \(\epsilon^* : \mathcal{A}' \to \mathcal{A} \) are quasi-inverse equivalences (see discussion preceding the lemma and use that objects of \(\mathcal{A}' \) are sheaves in the \(\tau \) topology).

Conditions (3) and (4) imply that \(R^p \epsilon_* \mathcal{F} = 0 \) for \(p > 0 \) and \(\mathcal{F} \in \text{Ob}(\mathcal{A}) \). This is true because \(R^p \epsilon_* \mathcal{F} \) is the sheaf associated to the presheave \(U \mapsto H^p(U, \mathcal{F}) \), see Lemma [8.4]. Thus any exact complex in \(\mathcal{A} \) (which is the same thing as an exact complex in \(\text{Mod}(\mathcal{O}_{\tau}) \)) whose terms are in \(\mathcal{A} \), see Homology, Lemma [9.3] remains exact upon applying the functor \(\epsilon_* \).

Consider an exact sequence
\[
\mathcal{F}'_0 \to \mathcal{F}'_1 \to \mathcal{F}'_2 \to \mathcal{F}'_3 \to \mathcal{F}'_4
\]
in \(\text{Mod}(\mathcal{O}_{\tau'}) \) with \(\mathcal{F}'_0, \mathcal{F}'_1, \mathcal{F}'_3, \mathcal{F}'_4 \) in \(\mathcal{A}' \). Apply the exact functor \(\epsilon^* \) to get an exact sequence
\[
\epsilon^* \mathcal{F}'_0 \to \epsilon^* \mathcal{F}'_1 \to \epsilon^* \mathcal{F}'_2 \to \epsilon^* \mathcal{F}'_3 \to \epsilon^* \mathcal{F}'_4
\]
in \(\text{Mod}(\mathcal{O}_{\tau}) \). Since \(\mathcal{A} \) is a weak Serre subcategory and since \(\epsilon^* \mathcal{F}'_0, \epsilon^* \mathcal{F}'_1, \epsilon^* \mathcal{F}'_3, \epsilon^* \mathcal{F}'_4 \) are in \(\mathcal{A} \), we conclude that \(\epsilon^* \mathcal{F}_2 \) is in \(\mathcal{A} \) by Homology, Definition [9.1]. Consider the map of sequences
\[
\begin{array}{cccccc}
\mathcal{F}'_0 & \to & \mathcal{F}'_1 & \to & \mathcal{F}'_2 & \to & \mathcal{F}'_3 & \to & \mathcal{F}'_4 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\epsilon_* \epsilon^* \mathcal{F}'_0 & \to & \epsilon_* \epsilon^* \mathcal{F}'_1 & \to & \epsilon_* \epsilon^* \mathcal{F}'_2 & \to & \epsilon_* \epsilon^* \mathcal{F}'_3 & \to & \epsilon_* \epsilon^* \mathcal{F}'_4
\end{array}
\]
The lower row is exact by the discussion in the preceding paragraph. The vertical arrows with index 0, 1, 3, 4 are isomorphisms by the discussion in the first paragraph. By the 5 lemma (Homology, Lemma [5.20]) we find that \(\mathcal{F}'_2 \cong \epsilon_* \epsilon^* \mathcal{F}'_2 \) and hence \(\mathcal{F}'_2 \) is in \(\mathcal{A}' \). In this way we see that \(\mathcal{A}' \) is a weak Serre subcategory of \(\text{Mod}(\mathcal{O}_{\tau'}) \), see Homology, Definition [9.1].

At this point it makes sense to talk about the derived categories \(D_\mathcal{A}(\mathcal{O}_{\tau}) \) and \(D_{\mathcal{A}'}(\mathcal{O}_{\tau'}) \), see Derived Categories, Section [13]. To finish the proof we show that conditions (1) – (5) of Lemma [28.7] apply. We have already seen (1), (2), (3) above. Note that since every object has a \(\tau \)-covering by objects of \(\mathcal{B} \), a fortiori every object has a \(\tau \)-covering by objects of \(\mathcal{B} \). Hence condition (4) of Lemma [28.7] is satisfied. Similarly, condition (5) is satisfied as well.

\[\square \]

Lemma 29.2. With \(\epsilon : (\mathcal{C}_{\tau}, \mathcal{O}_{\tau}) \to (\mathcal{C}_{\tau'}, \mathcal{O}_{\tau'}) \) as above. Let \(A \) be a set and for \(\alpha \in A \) let
\[
\begin{array}{ccc}
E_\alpha & \to & Y_\alpha \\
\downarrow & & \downarrow \\
Z_\alpha & \to & X_\alpha
\end{array}
\]
be a commutative diagram in the category \(\mathcal{C} \). Assume that
(1) a \(\tau' \)-sheaf \(F' \) is a \(\tau \)-sheaf if \(F'(X_\alpha) = F'(Z_\alpha) \times_{F'(E_\alpha)} F'(Y_\alpha) \) for all \(\alpha \),
(2) for \(K' \) in \(D(O_{\tau'}) \) in the essential image of \(R_{\tau} \) the maps \(c_{X_\alpha, Z_\alpha, Y_\alpha, E_\alpha}^{K'} \) of Lemma 26.1 are isomorphisms for all \(\alpha \).

Then \(K' \in D^+(O_{\tau'}) \) is in the essential image of \(R_{\tau} \) if and only if the maps \(c_{X_\alpha, Z_\alpha, Y_\alpha, E_\alpha}^{K'} \) are isomorphisms for all \(\alpha \).

Proof. The “only if” direction is implied by assumption (2). On the other hand, if \(K' \) has a unique nonzero cohomology sheaf, then the “if” direction follows from assumption (1). In general we will use an induction argument to prove the “if” direction. Let us say an object \(K' \) of \(D^+(O_{\tau'}) \) satisfies (P) if the maps \(c_{X_\alpha, Z_\alpha, Y_\alpha, E_\alpha}^{K'} \) are isomorphisms for all \(\alpha \in A \).

Namely, let \(K' \) be an object of \(D^+(O_{\tau'}) \) satisfying (P). Choose a bounded below complex \(K'^\bullet \) of sheaves of \(O_{\tau'} \)-modules representing \(K' \). We will show by induction on \(n \) that we may assume for \(p \leq n \) we have \((K')^p = \epsilon_* \mathcal{F}^p \) for some injective sheaf \(\mathcal{F}^p \) of \(O_{\tau'} \)-modules. The assertion is true for \(n \leq 0 \) because \((K')^\bullet \) is bounded below.

Induction step. Assume we have \((K')^p = \epsilon_* \mathcal{F}^p \) for some injective sheaves \(\mathcal{F}^p \) of \(O_{\tau'} \)-modules for \(p \leq n \). Denote \(\mathcal{F}^\bullet \) the bounded complex of injective \(O_{\tau'} \)-modules made from these sheaves and the maps between them. Consider the short exact sequence of complexes

\[
0 \to \sigma_{\geq n+1}(K')^\bullet \to (K')^\bullet \to \epsilon_* \mathcal{F}^\bullet \to 0
\]

where \(\sigma_{\geq n+1} \) denotes the “stupid” truncation. By assumption (2) the object \(\epsilon_* \mathcal{F}^\bullet \) of \(D(O_{\tau'}) \) satisfies (P). By Lemma 26.2 we conclude that \(\sigma_{\geq n+1}(K')^\bullet \) satisfies (P).

We conclude that for \(\alpha \in A \) the sequence

\[
0 \to \sigma_{\geq n+1}(K')^\bullet \to (K')^\bullet \to \epsilon_* \mathcal{F}^\bullet \to 0
\]

is exact by the distinguished triangle of Lemma 26.1 and the fact that \(\sigma_{\geq n+1}(K')^\bullet \) has vanishing cohomology over \(E_\alpha \) in degrees \(< n + 1 \). We conclude that

\[
\mathcal{F}' = \text{Ker}((K')^{n+1}) \to (K')^{n+2}
\]

is a \(\tau \)-sheaf by assumption (1) because the cohomology groups above evaluate to \(\mathcal{F}'(X_\alpha), \mathcal{F}'(Z_\alpha) \oplus \mathcal{F}'(Y_\alpha), \) and \(\mathcal{F}'(E_\alpha) \). Thus we may choose an injective \(O_{\tau'} \)-module \(\mathcal{J}^{n+1} \) and an injection \(\mathcal{F}' \to \epsilon_* \mathcal{J}^{n+1} \). Since \(\epsilon_* \mathcal{J}^{n+1} \) is also an injective \(O_{\tau'} \)-module (Lemma 15.2) we can extend \(\mathcal{F}' \to \epsilon_* \mathcal{J}^{n+1} \) to a map \((K')^{n+1} \to \epsilon_* \mathcal{J}^{n+1} \). Then the complex \((K')^\bullet \) is quasi-isomorphic to the complex

\[
\cdots \to \epsilon_* \mathcal{J}^n \to \epsilon_* \mathcal{J}^{n+1} \to \frac{\epsilon_* \mathcal{J}^{n+1} \oplus (K')^{n+2}}{(K')^{n+1}} \to (K')^{n+3} \to \cdots
\]

This finishes the induction step.

The induction procedure described above actually produces a sequence of quasi-isomorphisms of complexes

\[
(K')^\bullet \to (K'_{n_0})^\bullet \to (K'_{n_0+1})^\bullet \to (K'_{n_0+2})^\bullet \to \cdots
\]
where \((K_n) \to (K'_n)\) is an isomorphism in degrees \(\leq n\) and such that \((K'_n)^p = \epsilon_\ast \mathcal{J}^p\) for \(p \leq n\). Taking the “limit” of these maps therefore gives a quasi-isomorphism \((K')^\ast \to \epsilon_\ast \mathcal{J}^\ast\) which proves the lemma.

\[\text{Lemma 29.3.} \quad \text{With } \epsilon : (\mathcal{C}_\tau, \mathcal{O}_\tau) \to (\mathcal{C}'_{\tau'}, \mathcal{O}'_{\tau'}) \text{ as above. Let} \]

\[
\begin{array}{ccc}
E & \longrightarrow & Y \\
\downarrow & & \downarrow \\
Z & \longrightarrow & X
\end{array}
\]

be a commutative diagram in the category \(\mathcal{C}\) such that

1. \(h_X^\# = h_Y^\# \Pi h_Z^\#\), and
2. \(h_E^\# \to h_Y^\#\) is injective

where \(\#\) denotes \(\tau\)-sheafification. Then for \(K' \in D(\mathcal{O}_{\tau'})\) in the essential image of \(R\epsilon_\ast\) the map \(c_{X,Z,Y,E}^K\) of Lemma 26.1 (using the \(\tau'\)-topology) is an isomorphism.

Proof. This helper lemma is an almost immediate consequence of Lemma 26.3 and we strongly urge the reader skip the proof. Say \(K' = R\epsilon_\ast K\). Choose a K-injective complex of \(\mathcal{O}_\tau\)-modules \(\mathcal{J}^\ast\) representing \(K\). Then \(\epsilon_\ast \mathcal{J}^\ast\) is a K-injective complex of \(\mathcal{O}_{\tau'}\)-modules representing \(K'\), see Lemma 21.9. Next,

\[
0 \to \mathcal{J}^\ast(X) \xrightarrow{\epsilon_X} \mathcal{J}^\ast(Z) \oplus \mathcal{J}^\ast(Y) \xrightarrow{\epsilon_Y} \mathcal{J}^\ast(E) \to 0
\]

is a short exact sequence of complexes of abelian groups, see Lemma 26.3 and its proof. Since this is the same as the sequence of complexes of abelian groups which is used to define \(c_{X,Z,Y,E}^K\), we conclude.

30. Comparing cohomology

We develop some general theory which will help us compare cohomology in different topologies. Given \(\mathcal{C}, \tau, \tau'\) as in Section 27 and a morphism \(f : X \to Y\) in \(\mathcal{C}\) we obtain a commutative diagram of morphisms of topoi

\[
\begin{array}{ccc}
\text{Sh}(\mathcal{C}_\tau/X) & \xrightarrow{f_\tau} & \text{Sh}(\mathcal{C}_\tau/Y) \\
\epsilon_X & & \epsilon_Y \\
\text{Sh}(\mathcal{C}_{\tau'}/X) & \xrightarrow{f_{\tau'}} & \text{Sh}(\mathcal{C}_{\tau'}/X)
\end{array}
\]

Here the morphism \(\epsilon_X\), resp. \(\epsilon_Y\) is the comparison morphism of Section 27 for the category \(\mathcal{C}/X\) endowed with the two topologies \(\tau\) and \(\tau'\). The morphisms \(f_\tau\) and \(f_{\tau'}\) are “relocalization” morphisms (Sites, Lemma 25.8). The commutativity of the diagram is a special case of Sites, Lemma 28.1 (applied with \(\mathcal{C} = \mathcal{C}_\tau/Y, \mathcal{D} = \mathcal{C}_{\tau'}/Y, u = \text{id}, U = X, V = Y\)). We also get \(\epsilon_{X,\circ} \circ f_{\tau'}^{-1} = f_{\tau}^{-1} \circ \epsilon_{Y,\circ}\) either from the lemma or because it is obvious.

Situation 30.1

With \(\mathcal{C}, \tau, \tau'\) as in Section 27 Assume we are given a subset \(\mathcal{P} \subset \text{Arrows}(\mathcal{C})\) and for every object \(X\) of \(\mathcal{C}\) we are given a weak Serre subcategory \(\mathcal{A}_X \subset \text{Ab}(\mathcal{C}_\tau/X)\). We make the following assumption:

1. \(f : X \to Y\) in \(\mathcal{P}\) and \(Y' \to Y\) general, then \(X \times_Y Y'\) exists and \(X \times_Y Y' \to Y'\) is in \(\mathcal{P}\),
2. \(f_{\tau'}^{-1}\) sends \(\mathcal{A}_{Y'}\) into \(\mathcal{A}'_X\) for any morphism \(f : X \to Y\) of \(\mathcal{C}\),
In Situation 30.1 for X in C denote A_X the objects of $Ab(C/X)$ of the form $\epsilon_X^{-1}F'$ with F' in A'_X. Then

1. for F in $Ab(C/X)$ we have $F \in A_X \Leftrightarrow \epsilon_X F \in A',_X$, and
2. τ^{-1} sends A_Y into A_X for any morphism $f : X \to Y$ of C.

Proof. Part (1) follows from (3) and part (2) follows from (2) and the commutativity of (30.0.1) which gives $\epsilon_X \circ f^{-1} = f^{-1} \circ \epsilon_Y^{-1}$. □

Our next goal is to prove Lemmas 30.10 and 30.9. We will do this by an induction argument using the following induction hypothesis.

(V) For X in C and F in A_X we have $R^i \epsilon_X F = 0$ for $1 \leq i \leq n$.

Lemma 30.3. In Situation 30.1 assume (V) holds. For $f : X \to Y$ in P and F in A_X we have $R^i f_{*X} \epsilon_X F = \epsilon_Y R^i f_{*X} F$ for $1 \leq i \leq n$.

Proof. We will use the commutative diagram (30.0.1) without further mention. In particular have

$$R f_{*X} R e_{X,Y} F = R e_{Y,X} R f_{*X} F$$

Assumption (V) tells us that $\epsilon_X F \to R e_{X,Y} F$ is an isomorphism in degrees $\leq n$. Hence $R f_{*X} \epsilon_X F \to R f_{*X} R e_{X,Y} F$ is an isomorphism in degrees $\leq n$. We conclude that

$$R^i f_{*X} \epsilon_X F \to H^i (R e_{Y,X} R f_{*X} F)$$

is an isomorphism for $i \leq n$. We will prove the lemma by looking at the second page of the spectral sequence of Lemma 15.7 for $R e_{Y,X} R f_{*X} F$. Here is a picture:

$$
\begin{array}{cccccccc}
\cdots & \cdots & \cdots & \cdots & \cdots

\epsilon_Y R^2 f_{*X} F & R^1 \epsilon_Y R^2 f_{*X} F & R^2 \epsilon_Y R^2 f_{*X} F & \cdots

\epsilon_Y R^1 f_{*X} F & R^1 \epsilon_Y R^1 f_{*X} F & R^2 \epsilon_Y R^1 f_{*X} F & \cdots

\epsilon_Y f_{*X} F & R^1 \epsilon_Y f_{*X} F & R^2 \epsilon_Y f_{*X} F & \cdots

\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}
$$

Let (C_m) be the hypothesis: $R^i f_{*X} \epsilon_X F = \epsilon_Y R^i f_{*X} F$ for $i \leq m$. Observe that (C_0) holds. We will show that $(C_{m-1}) \Rightarrow (C_m)$ for $m < n$. Namely, if (C_{m-1}) holds, then for $n \geq p > 0$ and $q \leq m - 1$ we have

$$R^p \epsilon_Y R^q f_{*X} F = R^p \epsilon_Y \epsilon_Y^{-1} R^q f_{*X} F = R^p \epsilon_Y \epsilon_Y^{-1} R^q f_{*X} F = 0$$

First equality as $\epsilon_Y^{-1} \epsilon_Y = 1$, the second by (C_{m-1}), and the final by by (V) because $\epsilon_Y^{-1} R^q f_{*X} F$ is in A_Y by (1). Looking at the spectral sequence we see that $E^{0,m}_{2q} = \epsilon_Y R^m f_{*X} F$ is the only nonzero term $E^{p,q}_{2q}$ with $p + q = m$. Recall that $d^{q}_{r} : E^{p,q}_{r} \to E^{p+r,q-r+1}_{r}$. Hence there are no nonzero differentials d^{q}_{r}, $r \geq 2$.
either emanating or entering this spot. We conclude that \(H^m(\text{Re}_{Y*}Rf_{\tau,*}\mathcal{F}) = \epsilon_{Y*}R^m f_{\tau,*}\mathcal{F} \) which implies \((C_n)\) by the discussion above.

Finally, assume \((C_{n-1})\). The same analysis shows that \(E_2^{0,n} = \epsilon_{Y*}R^n f_{\tau,*}\mathcal{F} \) is the only nonzero term \(E_2^{p,q} \) with \(p + q = n \). We do still have no nonzero differentials entering this spot, but there can be a nonzero differential emanating it. Namely, the map \(d_{n+1}^{0,n} : \epsilon_{Y*}R^n f_{\tau,*}\mathcal{F} \to R^{n+1}\epsilon_{Y*}f_{\tau,*}\mathcal{F} \). We conclude that there is an exact sequence

\[0 \to R^n f_{\tau,*}\epsilon_{X,*}\mathcal{F} \to \epsilon_{Y*}R^n f_{\tau,*}\mathcal{F} \to R^{n+1}\epsilon_{Y*}f_{\tau,*}\mathcal{F} \]

By \(0 \) and \(3 \) the sheaf \(R^n f_{\tau,*}\epsilon_{X,*}\mathcal{F} \) satisfies the sheaf property for \(\tau \)-coverings as does \(\epsilon_{Y*}R^n f_{\tau,*}\mathcal{F} \) (use the description of \(\epsilon_* \) in Section 27). However, the \(\tau \)-sheafification of the \(\tau' \)-sheaf \(R^{n+1}\epsilon_{Y*}f_{\tau,*}\mathcal{F} \) is zero (by locality of cohomology; use Lemmas \(8.3 \) and \(8.4 \)). Thus \(R^n f_{\tau,*}\epsilon_{X,*}\mathcal{F} \to \epsilon_{Y*}R^n f_{\tau,*}\mathcal{F} \) has to be an isomorphism and the proof is complete. \(\Box \)

If \(E' \), resp. \(E \) is an object of \(D(\mathcal{C}_*/X) \), resp. \(D(\mathcal{C}_*/X) \) then we will write \(H^n_{\tau'}(U, E') \), resp. \(H^n_{\tau'}(U, E) \) for the cohomology of \(E' \), resp. \(E \) over an object \(U \) of \(\mathcal{C}/X \).

Lemma 30.4. In Situation 30.1 if \((V_n)\) holds, then for \(X \) in \(\mathcal{C} \) and \(L \in D(\mathcal{C}_*/X) \) with \(H^i(L) = 0 \) for \(i < 0 \) and \(H^i(L) \) in \(\mathcal{A}_X \) for \(0 \leq i \leq n \) we have \(H^n_{\tau'}(X, L) = H^n_{\tau'}(X, \epsilon_{X*}\epsilon_1^{-1}L) \).

Proof. By Lemma \(21.5 \) we have \(H^n_{\tau'}(X, \epsilon_{X*}\epsilon_1^{-1}L) = H^n_{\tau'}(X, \text{Re}_{X*}\epsilon_{X*}\epsilon_1^{-1}L) \). There is a spectral sequence

\[E_2^{p,q} = R^p\epsilon_{X,*}\epsilon_{X}^{-1}H^q(L) \]

converging to \(H^{p+q}(\text{Re}_{X*}\epsilon_{X}^{-1}L) \). By \((V_n)\) we have the vanishing of \(E_2^{p,q} \) for \(0 < p \leq n \) and \(0 \leq q \leq n \). Thus \(E_2^{0,q} = \epsilon_{X,*}\epsilon_{X}^{-1}H^q(L) = H^q(L) \) are the only nonzero terms \(E_2^{p,q} \) with \(p + q \leq n \). It follows that the map

\[L \to \text{Re}_{X*}\epsilon_{X}^{-1}L \]

is an isomorphism in degrees \(\leq n \) (small detail omitted). Hence we find that \(H^n_{\tau'}(X, L) = H^n_{\tau'}(X, \text{Re}_{X*}\epsilon_{X}^{-1}L) \) for \(i \leq n \). Thus the lemma is proved. \(\Box \)

Lemma 30.5. In Situation 30.1 if \((V_n)\) holds, then for \(X \) in \(\mathcal{C} \) and \(\mathcal{F} \) in \(\mathcal{A}_X \) the map \(H^{p+1}_{\tau'}(X, \epsilon_{X,*}\mathcal{F}) \to H^{p+1}_{\tau'}(X, \mathcal{F}) \) is injective with image those classes which become trivial on a \(\tau' \)-covering of \(X \).

Proof. Recall that \(\epsilon_{X*}\epsilon_{X,*}\mathcal{F} = \mathcal{F} \) hence the map is given by pulling back cohomology classes by \(\epsilon_{X} \). The Leray spectral sequence (Lemma \(15.5 \))

\[E_2^{p,q} = H^p_{\tau'}(X, R^q\epsilon_{X,*}\mathcal{F}) \Rightarrow H^{p+q}_{\tau'}(X, \mathcal{F}) \]

combined with the assumed vanishing gives an exact sequence

\[0 \to H^{p+1}_{\tau'}(X, \epsilon_{X,*}\mathcal{F}) \to H^{p+1}_{\tau'}(X, \mathcal{F}) \to H^0_{\tau'}(X, R^{n+1}\epsilon_{X,*}\mathcal{F}) \]

This is a restatement of the lemma. \(\Box \)

Lemma 30.6. In Situation 30.1 let \(f : X \to Y \) be in \(\mathcal{P} \) such that \(\{X \to Y\} \) is a \(\tau \)-covering. Let \(\mathcal{F}' \) be in \(\mathcal{A}_Y \). If \(n \geq 0 \) and

\[\theta \in \text{Equalizer} \left(H^{p+1}_{\tau'}(X, \mathcal{F}') \xrightarrow{H^{p+1}_{\tau'}(X \times_Y X, \mathcal{F}')} H^{p+1}_{\tau'}(Y, \mathcal{F}') \right) \]

then there exists a \(\tau' \)-covering \(\{Y_i \to Y\} \) such that \(\theta \) restricts to zero in \(H^{n+1}_{\tau'}(Y_i \times_Y X, \mathcal{F}') \).
Consider the cartesian diagram

\[\begin{array}{ccc} X \times_Y X & \xrightarrow{pr_2} & X \\ \downarrow{pr_1} & & \downarrow{f} \\ X & \xrightarrow{f} & Y \end{array} \]

By trivial base change (Lemma 22.1) we have

\[f^{-1}R^{n+1}F_{\tau^\prime} = R^{n+1}pr_{1,\tau^\prime}(F|_{X \times_Y X}) \]

If \(pr_1^{-1}\theta = pr_2^{-1}\theta \), then the section \(f^{-1}\bar{\theta} \) of \(f^{-1}R^{n+1}f_{\tau^\prime}|X \) is zero, because it is clear that \(pr_1^{-1}\theta \) maps to the zero element in \(H^0(X, R^{n+1}pr_{1,\tau^\prime}(F|_{X \times_Y X})) \). By Lemma 30.7 we have \(F|_X \in A_X \). Thus \(G' = R^{n+1}f_{\tau^\prime}|X \) is an object of \(A_Y \) by Lemma 30.8. Thus \(G' \) satisfies the sheaf property for \(\tau \)-coverings by Lemma 30.9. Since \(\{X \to Y\} \) is a \(\tau \)-covering we conclude that restriction \(G'(Y) \to G'(X) \) is injective. It follows that \(\bar{\theta} \) is zero.

Proof. Observe that \(X \times Y \) exists by [1]. For \(Z \in C/Y \) denote \(F'|_Z \) the restriction of \(F' \) to \(C_z/Y \). Recall that \(H^{n+1}_F(X, F') = H^{n+1}(C_{X/X}, F'|_{X|X}) \), see Lemma 8.1. The lemma asserts that the image \(\bar{\theta} \in H^0(Y, R^{n+1}f_{\tau^\prime}|_{X|X}) \) of \(\theta \) is zero. Consider the cartesian diagram

\[\begin{array}{ccc} X \times_Y X & \xrightarrow{pr_2} & X \\ \downarrow{pr_1} & & \downarrow{f} \\ X & \xrightarrow{f} & Y \end{array} \]

Lemma 30.7. In Situation 30.1 we have \((V_n) \Rightarrow (V_{n+1}) \).

Proof. Let \(X \in C \) and \(F \) in \(A_X \). Let \(\xi \in H^{n+1}(U, F) \) for some \(U/X \). We have to show that \(\xi \) restricts to zero on the elements of a \(\tau' \)-covering of \(U \). See Lemma 8.4. It follows from this that we may replace \(U \) by the members of a \(\tau' \)-covering of \(U \).

By locality of cohomology (Lemma 8.3) we can choose a \(\tau \)-covering \(\{U_i \to U\} \) such that \(\xi \) restricts to zero on \(U_i \). Choose \(\{V_j \to V\}, \{f_j : W_j \to V_j\}, \) and \(\{W_{jk} \to W_j\} \) as in [5]. After replacing both \(U \) by \(V \) and \(F \) by its restriction to \(C_{V'/V_j} \), which is allowed by [1], we reduce to the case discussed in the next paragraph.

Here \(f : X \to Y \) is an element of \(P \) such that \(\{X \to Y\} \) is a \(\tau \)-covering, \(F \) is an object of \(A_Y \), and \(\xi \in H^{n+1}_F(Y, F) \) is such that there exists a \(\tau' \)-covering \(\{X_i \to X\} \) such that \(\xi \) restricts to zero on \(X_i \) for all \(i \in I \). Problem: show that \(\xi \) restricts to zero on a \(\tau' \)-covering of \(Y \).

By Lemma 30.5 there exists a unique \(\tau' \)-cohomology class \(\theta \in \tau^{n+1}(X, \epsilon_{X'|X}, F) \) whose image is \(\xi|_X \). Since \(\xi|_X \) pulls back to the same class on \(X \times_Y X \) via the two projections, we find that the same is true for \(\theta \) (by uniqueness). By Lemma 30.6 we see that after replacing \(Y \) by the members of a \(\tau' \)-covering, we may assume that \(\theta = 0 \). Consequently, we may assume that \(\xi|_X \) is zero.

Let \(f : X \to Y \) be an element of \(P \) such that \(\{X \to Y\} \) is a \(\tau \)-covering, \(F \) is an object of \(A_Y \), and \(\xi \in H^{n+1}(Y, F) \) maps to zero in \(H^{n+1}_F(X, F) \). Problem: show that \(\xi \) restricts to zero on a \(\tau' \)-covering of \(Y \).

The assumptions tell us \(\xi \) maps to zero under the map

\[F \to Rf_{\tau^\prime}f_{\tau}^{-1}F \]

Use Lemma 21.5. A simple argument using the distinguished triangle of truncations (Derived Categories, Remark 12.4) shows that \(\bar{\xi} \) maps to zero under the map

\[F \to \tau^{\leq n}Rf_{\tau^\prime}f_{\tau}^{-1}F \]
We will compare this with the map \(\epsilon_{Y,*} F \to K \) where
\[
K = \tau_{\leq n} Rf_{\tau,*} f_{\tau}^{-1} \epsilon_{Y,*} F = \tau_{\leq n} Rf_{\tau,*} \epsilon_{X,*} f_{\tau}^{-1} F
\]
The equality \(\epsilon_{X,*} f_{\tau}^{-1} = f_{\tau}^{-1} \epsilon_{Y,*} \) is a property of (30.0.1). Consider the map
\[
Rf_{\tau,*} \epsilon_{X,*} f_{\tau}^{-1} F \to Rf_{\tau,*} R\epsilon_{X,*} f_{\tau}^{-1} F = R\epsilon_{Y,*} Rf_{\tau,*} f_{\tau}^{-1} F
\]
used in the proof of Lemma 30.3 which induces by adjunction a map
\[
\epsilon_{Y}^{-1} Rf_{\tau,*} \epsilon_{X,*} f_{\tau}^{-1} F \to Rf_{\tau,*} f_{\tau}^{-1} F
\]
Taking truncations we find a map
\[
\epsilon_{Y}^{-1} K \to \tau_{\leq n} Rf_{\tau,*} f_{\tau}^{-1} F
\]
which is an isomorphism by Lemma 30.3, the lemma applies because \(f_{\tau}^{-1} F \) is in \(A_X \) by Lemma 30.2. Choose a distinguished triangle
\[
\epsilon_{Y,*} F \to K \to L \to \epsilon_{Y,*} F[1]
\]
The map \(F \to f_{\tau,*} f_{\tau}^{-1} F \) is injective as \(\{ X \to Y \} \) is a \(\tau \)-covering. Thus \(\epsilon_{Y,*} F \to \epsilon_{Y,*} f_{\tau,*} f_{\tau}^{-1} F = f_{\tau,*} f_{\tau}^{-1} \epsilon_{Y,*} F \) is injective too. Hence \(L \) only has nonzero cohomology sheaves in degrees 0, \ldots, \(n \). As \(f_{\tau,*} f_{\tau}^{-1} \epsilon_{Y,*} F \) is in \(A'_Y \) by (2) and (4) we conclude that
\[
H^0(L) = \text{Coker}(\epsilon_{Y,*} F \to f_{\tau,*} f_{\tau}^{-1} \epsilon_{Y,*} F)
\]
is in the weak Serre subcategory \(A'_Y \). For \(1 \leq i \leq n \) we see that \(H^i(L) = R^i f_{\tau,*} f_{\tau}^{-1} \epsilon_{Y,*} F \) is in \(A'_Y \) by (2) and (4). Pulling back the distinguished triangle above by \(\epsilon_Y \) we get the distinguished triangle
\[
F \to \tau_{\leq n} Rf_{\tau,*} f_{\tau}^{-1} F \to \epsilon_{Y}^{-1} L \to F[1]
\]
Since \(\xi \) maps to zero in the middle term we find that \(\xi \) is the image of an element \(\xi' \in H^n_{\tau}(Y, \epsilon_{Y}^{-1} L) \). By Lemma 30.4 we have
\[
H^n_{\tau}(Y, L) = H^n_{\tau}(Y, \epsilon_{Y}^{-1} L),
\]
Thus we may lift \(\xi' \) to an element of \(H^n_{\tau}(Y, L) \) and take the boundary into \(H^{n+1}_{\tau}(Y, \epsilon_{Y,*} F) \) to see that \(\xi \) is in the image of the canonical map \(H^{n+1}_{\tau}(Y, \epsilon_{Y,*} F) \to H^{n+1}_{\tau}(Y, F) \).

By locality of cohomology for \(H^{n+1}_{\tau}(Y, \epsilon_{Y,*} F) \), see Lemma 8.3, we conclude. \(\square \)

Lemma 30.8. In Situation 30.1 we have that \((V_n) \) is true for all \(n \). Moreover:

1. For \(X \) in \(C \) and \(K' \in D^+_A(C_{\tau} / X) \) the map \(K' \to R\epsilon_{X,*} (\epsilon_{X}^{-1} K') \) is an isomorphism.
2. For \(f : X \to Y \) in \(P \) and \(K' \in D^+_A(C_{\tau} / X) \) we have \(Rf_{\tau,*} K' \in D^+_A(C_{\tau} / Y) \) and \(\epsilon_{Y}(Rf_{\tau,*} K') = Rf_{\tau,*} (\epsilon_{X}(K')) \).

Proof. Observe that \((V_0) \) holds as it is the empty condition. Then we get \((V_n) \) for all \(n \) by Lemma 30.7.

Proof of (1). The object \(K = \epsilon_{X}^{-1} K' \) has cohomology sheaves \(H^i(K) = \epsilon_{X}^{-1} H^i(K') \) in \(A_X \). Hence the spectral sequence
\[
E_2^{p,q} = R^p \epsilon_{X,*} H^q(K) \Rightarrow H^{p+q}(R\epsilon_{X,*} K)
\]
degenerates by \((V_n) \) for all \(n \) and we find
\[
H^n(R\epsilon_{X,*} K) = \epsilon_{X,*} H^n(K) = \epsilon_{X,*} \epsilon_{X}^{-1} H^i(K') = H^i(K').
\]
Again because $H^1(K')$ is in \mathcal{A}'_X. Thus the canonical map $K' \to R\epsilon_{X,*}(\epsilon_X^{-1}K')$ is an isomorphism.

Proof of (2). Using the spectral sequence

$$E_2^{p,q} = R^p f_\tau,* H^q(K') \Rightarrow R^{p+q} f_\tau,* K'$$

the fact that $R^p f_\tau,* H^q(K')$ is in \mathcal{A}'_X by [4], the fact that \mathcal{A}'_X is a weak Serre subcategory of $Ab(\mathcal{C}_\tau/Y)$, and Homology, Lemma [21.11] we conclude that $Rf_\tau,* K' \in D^+_{\mathcal{A}_X}(\mathcal{C}_\tau/X)$. To finish the proof we have to show the base change map

$$\epsilon_X^{-1}(Rf_\tau,* K') \to Rf_\tau,*(\epsilon_X^{-1}K')$$

is an isomorphism. Comparing the spectral sequence above to the spectral sequence

$$E_2^{p,q} = R^p f_\tau,* H^q(\epsilon_X^{-1}K') \Rightarrow R^{p+q} f_\tau,* \epsilon_X^{-1}K'$$

we reduce this to the case where K' has a single nonzero cohomology sheaf F' in \mathcal{A}'_X; details omitted. Then Lemma [30.3] gives $\epsilon_X^{-1} R^i f_\tau,* F' = R^i f_\tau,* \epsilon_X^{-1} F'$ for all i and the proof is complete. □

Lemma 30.9. In Situation [30.1] For any X in \mathcal{C} the category $\mathcal{A}_X \subset Ab(\mathcal{C}_\tau/X)$ is a weak Serre subcategory and the functor $R\epsilon_{X,*} : D^+_{\mathcal{A}_X}(\mathcal{C}_\tau/X) \to D^+_{\mathcal{A}'_X}(\mathcal{C}_\tau/X)$ is an equivalence with quasi-inverse given by ϵ_X^{-1}.

Proof. We need to check the conditions listed in Homology, Lemma [9.3] for \mathcal{A}_X. If $\varphi : \mathcal{F} \to \mathcal{G}$ is a map in \mathcal{A}_X, then $\epsilon_X,* \varphi : \epsilon_X,* \mathcal{F} \to \epsilon_X,* \mathcal{G}$ is a map in \mathcal{A}'_X. Hence $\ker(\epsilon_X,* \varphi)$ and $\coker(\epsilon_X,* \varphi)$ are objects of \mathcal{A}'_X as this is a weak Serre subcategory of $Ab(\mathcal{C}_\tau/X)$. Applying ϵ_X^{-1} we obtain an exact sequence

$$0 \to \epsilon_X^{-1} \ker(\epsilon_X,* \varphi) \to \mathcal{F} \to \mathcal{G} \to \epsilon_X^{-1} \coker(\epsilon_X,* \varphi) \to 0$$

and we see that $\ker(\varphi)$ and $\coker(\varphi)$ are in \mathcal{A}_X. Finally, suppose that

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

is a short exact sequence in $Ab(\mathcal{C}_\tau/X)$ with \mathcal{F}_1 and \mathcal{F}_3 in \mathcal{A}_X. Then applying $\epsilon_X,*$ we obtain an exact sequence

$$0 \to \epsilon_X,* \mathcal{F}_1 \to \epsilon_X,* \mathcal{F}_2 \to \epsilon_X,* \mathcal{F}_3 \to R^1 \epsilon_X,* \mathcal{F}_1 = 0$$

Vanishing by Lemma [30.8]. Hence $\epsilon_X,* \mathcal{F}_2$ is in \mathcal{A}'_X as this is a weak Serre subcategory of $Ab(\mathcal{C}_\tau/X)$. Pulling back by ϵ_X we conclude that \mathcal{F}_2 is in \mathcal{A}_X.

Thus \mathcal{A}_X is a weak Serre subcategory of $Ab(\mathcal{C}_\tau/X)$ and it makes sense to consider the category $D^+_{\mathcal{A}_X}(\mathcal{C}_\tau/X)$. Observe that $\epsilon_X^{-1} : \mathcal{A}'_X \to \mathcal{A}_X$ is an equivalence and that $\mathcal{F}' \to R\epsilon_{X,*} \epsilon_X^{-1} \mathcal{F}'$ is an isomorphism for \mathcal{F}' in \mathcal{A}'_X since we have (V_n) for all n by Lemma [30.8]. Thus we conclude by Lemma [28.5]. □

Lemma 30.10. In Situation [30.1] Let X be in \mathcal{C}.

1. for \mathcal{F} in \mathcal{A}'_X we have $H^n_{\mathcal{F'}}(X,\mathcal{F'}) = H^n_{\epsilon_X^{-1} \mathcal{F'}}(X,\epsilon_X^{-1} \mathcal{F'})$,
2. for $K' \in D^+_{\mathcal{A}'_X}(\mathcal{C}_\tau/X)$ we have $H^n_{\mathcal{F'}}(X,K') = H^n_{\epsilon_X^{-1} \mathcal{F'}}(X,\epsilon_X^{-1} K')$.

Proof. This follows from Lemma [30.8] by Remark [15.4]. □
31. Cohomology on Hausdorff and locally quasi-compact spaces

We continue our convention to say “Hausdorff and locally quasi-compact” instead of saying “locally compact” as is often done in the literature. Let LC denote the category whose objects are Hausdorff and locally quasi-compact topological spaces and whose morphisms are continuous maps.

Lemma 31.1. The category LC has fibre products and a final object and hence has arbitrary finite limits. Given morphisms $X \to Z$ and $Y \to Z$ in LC with X and Y quasi-compact, then $X \times_Z Y$ is quasi-compact.

Proof. The final object is the singleton space. Given morphisms $X \to Z$ and $Y \to Z$ of LC the fibre product $X \times_Z Y$ is a subspace of $X \times Y$. Hence $X \times_Z Y$ is Hausdorff as $X \times Y$ is Hausdorff by Topology, Section 14.4. Since $X \times_Z Y$ is a closed subset of $X \times Y$ (Topology, Lemma 3.4) we find that $X \times_Z Y$ is quasi-compact by Topology, Lemma 12.3.

Finally, returning to the general case, if $x \in X$ and $y \in Y$ we can pick quasi-compact neighbourhoods $x \in E \subset X$ and $y \in F \subset Y$ and we find that $E \times_Z F$ is a quasi-compact neighbourhood of (x, y) by the result above. Thus $X \times_Z Y$ is an object of LC by Topology, Lemma 13.2.

We can endow LC with a stronger topology than the usual one.

Definition 31.2. Let $\{f_i : X_i \to X\}$ be a family of morphisms with fixed target in the category LC. We say this family is a qc covering if for every $x \in X$ there exist $i_1, \ldots, i_n \in I$ and quasi-compact subsets $E_j \subset X_{i_j}$ such that $\bigcup f_{i_j}(E_j)$ is a neighbourhood of x.

Observe that an open covering $X = \bigcup U_i$ of an object of LC gives a qc covering $\{U_i \to X\}$ because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 31.3. Let X be a Hausdorff and locally quasi-compact space, in other words, an object of LC.

1. If $X' \to X$ is an isomorphism in LC then $\{X' \to X\}$ is a qc covering.
2. If $\{f_i : X_i \to X\}_{i \in I}$ is a qc covering and for each i we have a qc covering $\{g_{ij} : X_{ij} \to X_i\}_{j \in J_i}$, then $\{X_{ij} \to X\}_{i \in I, j \in J_i}$ is a qc covering.
3. If $\{X_i \to X\}_{i \in I}$ is a qc covering and $X' \to X$ is a morphism of LC then $\{X' \times_X X_i \to X'\}_{i \in I}$ is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings. Proof of (2). Let $x \in X$. Choose $i_1, \ldots, i_n \in I$ and $E_a \subset X_{i_a}$ quasi-compact such that $\bigcup f_{i_a}(E_a)$ is a neighbourhood of x. For every $e \in E_a$ we can find a finite subset $J_e \subset J_{i_a}$ and quasi-compact $F_{e,j} \subset X_{ij}$, $j \in J_e$ such that $\bigcup g_{ij}(F_{e,j})$ is a neighbourhood of e. Since E_a is quasi-compact we find a finite collection e_1, \ldots, e_m such that

$$E_a \subset \bigcup_{k=1}^{m_a} \bigcup_{j \in J_{e_k}} g_{ij}(F_{e,k,j})$$

Then we find that

$$\bigcup_{a=1}^n \bigcup_{k=1}^{m_a} \bigcup_{j \in J_{e_k}} f_i(g_{ij}(F_{e,k,j}))$$

This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.
is a neighbourhood of x.

Proof of (3). Let $x' \in X'$ be a point. Let $x \in X$ be its image. Choose $i_1, \ldots, i_n \in I$ and quasi-compact subsets $E_j \subset X_{i_j}$ such that $\bigcup f_{i_j}(E_j)$ is a neighbourhood of x. Choose a quasi-compact neighbourhood $F \subset X'$ of x' which maps into the quasi-compact neighbourhood $\bigcup f_{i_j}(E_j)$ of x. Then $F \times_X E_j \subset X' \times_X X_{i_j}$ is a quasi-compact subset and F is the image of the map $\prod F \times_X E_j \rightarrow F$. Hence the base change is a qc covering and the proof is finished. □

09X5 Lemma 31.4. Let $f : X \rightarrow Y$ be a morphism of LC. If f is proper and surjective, then $\{f : X \rightarrow Y\}$ is a qc covering.

Proof. Let $y \in Y$ be a point. For each $x \in X_y$ choose a quasi-compact neighbourhood $E_x \subset X$. Choose $x \in U_x \subset E_x$ open. Since f is proper the fibre X_y is quasi-compact and we find $x_1, \ldots, x_n \in X_y$ such that $X_y \subset U_{x_1} \cup \ldots \cup U_{x_n}$. We claim that $f(E_{x_1}) \cup \ldots \cup f(E_{x_n})$ is a neighbourhood of y. Namely, as f is closed (Topology, Theorem 17.5) we see that $Z = f(X \setminus U_{x_1} \cup \ldots \cup U_{x_n})$ is a closed subset of Y not containing y. As f is surjective we see that $Y \setminus Z$ is contained in $f(E_{x_1}) \cup \ldots \cup f(E_{x_n})$ as desired. □

Besides some set theoretic issues Lemma 31.3 shows that LC with the collection of qc coverings forms a site. We will denote this site (suitably modified to overcome the set theoretical issues) LC_{qc}.

09X2 Remark 31.5 (Set theoretic issues). The category LC is a “big” category as its objects form a proper class. Similarly, the coverings form a proper class. Let us define the size of a topological space X to be the cardinality of the set of points of X. Choose a function Bound on cardinals, for example as in Sets, Equation (9.1.1). Finally, let S_0 be an initial set of objects of LC, for example $S_0 = \{R, \text{euclidean topology}\}$. Exactly as in Sets, Lemma 9.2 we can choose a limit ordinal α such that $LC_\alpha = LC \cap V_\alpha$ contains S_0 and is preserved under all countable limits and colimits which exist in LC. Moreover, if $X \in LC_\alpha$ and if $Y \in LC$ and size$(Y) \leq$ Bound(size(X)), then Y is isomorphic to an object of LC_α. Next, we apply Sets, Lemma 11.1 to choose set Cov of qc covering on LC_α such that every qc covering in LC_α is combinatorially equivalent to a covering this set. In this way we obtain a site (LC_α, Cov) which we will denote LC_{qc}.

There is a second topology on the site LC_{qc} of Remark 31.5. Namely, given an object X we can consider all coverings $\{X_i \rightarrow X\}$ of LC_{qc} such that $X_i \rightarrow X$ is an open immersion. We denote this site LC_{Zar}. The identity functor $LC_{Zar} \rightarrow LC_{qc}$ is continuous and defines a morphism of sites

$$\epsilon : LC_{qc} \rightarrow LC_{Zar}$$

See Section 27. For a Hausdorff and locally quasi-compact topological space X, more precisely for $X \in \text{Ob}(LC_{qc})$, we denote the induced morphism

$$\epsilon_X : LC_{qc}/X \rightarrow LC_{Zar}/X$$

(see Sites, Lemma 28.1). Let X_{Zar} be the site whose objects are opens of X, see Sites, Example 6.4. There is a morphism of sites

$$\pi_X : LC_{Zar}/X \rightarrow X_{Zar}$$
Let $X_{zar} \rightarrow LC_{zar}/X$, $U \mapsto U$. Namely, X_{zar} has fibre products and a final object and the functor above commutes with these and Sites, Proposition 14.7 applies. We often think of π as a morphism of topoi

$$\pi_X : Sh(LC_{zar}/X) \rightarrow Sh(X)$$

using the equality $Sh(X_{zar}) = Sh(X)$.

Lemma 31.6. Let X be an object of LC_{qc}. Let \mathcal{F} be a sheaf on X. The rule

$$LC_{qc}/X \rightarrow Sets, \quad (f : Y \rightarrow X) \mapsto \Gamma(Y, f^{-1}\mathcal{F})$$

is a sheaf and a fortiori also a sheaf on LC_{zar}/X. This sheaf is equal to $\pi_X^{-1}\mathcal{F}$ on LC_{zar}/X and $\epsilon_X^{-1}\pi_X^{-1}\mathcal{F}$ on LC_{qc}/X.

Proof. Denote \mathcal{G} the presheaf given by the formula in the lemma. Of course the pullback f^{-1} in the formula denotes usual pullback of sheaves on topological spaces. It is immediate from the definitions that \mathcal{G} is a sheaf for the Zar topology. Let $Y \rightarrow X$ be a morphism in LC_{qc}. Let $\mathcal{V} = \{g_i : Y_i \rightarrow Y\}_{i \in I}$ be a qc covering. To prove \mathcal{G} is a sheaf for the qc topology it suffices to show that $\mathcal{G}(Y) \rightarrow H^0(\mathcal{V}, \mathcal{G})$ is an isomorphism, see Sites, Section 10. We first point out that the map is injective as a qc covering is surjective and we can detect equality of sections at stalks (use Sheaves, Lemmas 11.1 and 21.4). Thus \mathcal{G} is a separated presheaf on LC_{qc} hence it suffices to show that any element $(s_i) \in H^0(\mathcal{V}, \mathcal{G})$ maps to an element in the image of $\mathcal{G}(Y)$ after replacing \mathcal{V} by a refinement (Sites, Theorem 10.10).

Identifying sheaves on $Y_{i,zar}$ and sheaves on Y, we find that $\mathcal{G}|_{Y_{i,zar}}$ is the pullback of $f^{-1}\mathcal{F}$ under the continuous map $g_i : Y_i \rightarrow Y$. Thus we can choose an open covering $Y_i = \bigcup V_{i,j}$ such that for each j there is an open $W_{i,j} \subset Y$ and a section $t_{i,j} \in \mathcal{G}(W_{i,j})$ such that $V_{i,j}$ maps into $W_{i,j}$ and such that $s|_{V_{i,j}}$ is the pullback of $t_{i,j}$. In other words, after refining the covering $\{Y_i \rightarrow Y\}$ we may assume there are opens $W_i \subset Y$ such that $Y_i \rightarrow Y$ factors through W_i and sections t_i of \mathcal{G} over W_i which restrict to the given sections s_i. Moreover, if $y \in Y$ is in the image of both $Y_i \rightarrow Y$ and $Y_j \rightarrow Y$, then the images $t_{i,y}$ and $t_{j,y}$ in the stalk $f^{-1}F_y$ agree (because s_i and s_j agree over $Y_i \times_Y Y_j$). Thus for $y \in Y$ there is a well defined element t_y of $f^{-1}F_y$ agreeing with $t_{i,y}$ whenever y is in the image of $Y_i \rightarrow Y$. We will show that the element (t_y) comes from a global section of $f^{-1}F$ over Y which will finish the proof of the lemma.

It suffices to show that this is true locally on Y, see Sheaves, Section 17. Let $y_0 \in Y$. Pick $i_1, \ldots, i_n \in I$ and quasi-compact subsets $E_j \subset Y_{i_j}$ such that $\bigcup g_{i_j}(E_j)$ is a neighbourhood of y_0. Let $V \subset Y$ be an open neighbourhood of y_0 contained in $\bigcup g_{i_j}(E_j)$ and contained in $W_{i_1} \cap \ldots \cap W_{i_n}$. Since $t_{i_1,y_0} = \ldots = t_{i_n,y_0}$, after shrinking V we may assume the sections $t_{i_j}|V$, $j = 1, \ldots, n$ of $f^{-1}F$ agree. As $V \subset \bigcup g_{i_j}(E_j)$ we see that $(t_y)_{y \in V}$ comes from this section.

We still have to show that \mathcal{G} is equal to $\epsilon_X^{-1}\pi_X^{-1}\mathcal{F}$ on LC_{qc}, resp. $\pi_X^{-1}\mathcal{F}$ on LC_{zar}. In both cases the pullback is defined by taking the presheaf

$$(f : Y \rightarrow X) \mapsto \text{colim}_{f(Y) \in U \subset X} F(U)$$

and then sheafifying. Sheafifying in the Zar topology exactly produces our sheaf \mathcal{G} and the fact that \mathcal{G} is a qc sheaf, shows that it works as well in the qc topology. □
Let $X \in \text{Ob}(LC_{\text{Zar}})$ and let \mathcal{H} be an abelian sheaf on LC_{Zar}/X. Then we will write $H^*_\text{Zar}(U, \mathcal{H})$ for the cohomology of \mathcal{H} over an object U of LC_{Zar}/X.

0DCU Lemma 31.7. Let X be an object of LC_{Zar}. Then

(1) for $\mathcal{F} \in \text{Ab}(X)$ we have $H^n_{\text{Zar}}(X, \pi_X^{-1}\mathcal{F}) = H^n(X, \mathcal{F})$,
(2) $\pi_{X,*} : \text{Ab}(LC_{\text{Zar}}/X) \to \text{Ab}(X)$ is exact,
(3) the unit $\text{id} \to \pi_{X,*} \circ \pi_X^{-1}$ of the adjunction is an isomorphism, and
(4) for $K \in D(X)$ the canonical map $K \to R\pi_{X,*}\pi_X^{-1}K$ is an isomorphism.

Let $f : X \to Y$ be a morphism of LC_{Zar}. Then

(5) there is a commutative diagram

$$
\begin{array}{ccc}
\text{Sh}(LC_{\text{Zar}}/X) & \xrightarrow{f_{zar}} & \text{Sh}(LC_{\text{Zar}}/Y) \\
\pi_X & & \pi_Y \\
\text{Sh}(X_{\text{Zar}}) & \xrightarrow{f} & \text{Sh}(Y_{\text{Zar}})
\end{array}
$$

of topoi,

(6) for $L \in D^+(Y)$ we have $H^n_{\text{Zar}}(X, \pi_Y^{-1}L) = H^n(X, f^{-1}L),$

(7) if f is proper, then we have

(a) $\pi_Y^{-1} \circ f_* = f_{zar,*} \circ \pi_X^{-1}$ as functors $\text{Sh}(X) \to \text{Sh}(LC_{\text{Zar}}/Y),$
(b) $\pi_Y^{-1} \circ Rf_* = Rf_{zar,*} \circ \pi_X^{-1}$ as functors $D^+(X) \to D^+(LC_{\text{Zar}}/Y)$.

Proof. Proof of (1). The equality $H^n_{\text{Zar}}(X, \pi_X^{-1}\mathcal{F}) = H^n(X, \mathcal{F})$ is a general fact coming from the trivial observation that coverings of X in LC_{Zar} are the same thing as open coverings of X. The reader who wishes to see a detailed proof should apply Lemma 8.2 to the functor $X_{\text{Zar}} \to LC_{\text{Zar}}$.

Proof of (2). This is true because $\pi_{X,*} = \pi_X^{-1}$ for some morphism of topoi $\tau_X : \text{Sh}(X_{\text{Zar}}) \to \text{Sh}(LC_{\text{Zar}})$ as follows from Sites, Lemma 21.8 applied to the functor $X_{\text{Zar}} \to LC_{\text{Zar}}/X$ used to define π_X.

Proof of (3). This is true because $\pi_Y^{-1} \circ \pi_X^{-1}$ is the identity functor by Sites, Lemma 21.8. Or you can deduce it from the explicit description of π_X^{-1} in Lemma 31.6.

Proof of (4). Apply (3) to an complex of abelian sheaves representing K.

Proof of (5). The morphism of topoi f_{zar} comes from an application of Sites, Lemma 25.8 and in our case comes from the continuous functor $Z/Y \to Z \times_Y X/X$ by Sites, Lemma 27.3. The diagram commutes simply because the corresponding continuous functors compose correctly (see Sites, Lemma 14.4).

Proof of (6). We have $H^n_{\text{Zar}}(X, \pi_Y^{-1}\mathcal{G}) = H^n_{\text{Zar}}(X, f^{-1}_{zar}\pi_Y^{-1}\mathcal{G})$ for \mathcal{G} in $\text{Ab}(Y)$, see Lemma 8.1. This is equal to $H^n_{\text{Zar}}(X, \pi_X^{-1}f^{-1}\mathcal{G})$ by the commutativity of the diagram in (5). Hence we conclude by (1) in the case L consists of a single sheaf in degree 0. The general case follows by representing L by a bounded below complex of abelian sheaves.

Proof of (7a). Let \mathcal{F} be a sheaf on X. Let $g : Z \to Y$ be an object of LC_{Zar}/Y. Consider the fibre product

$$
\begin{array}{ccc}
Z' \xrightarrow{f'} & Z \\
g' \downarrow & \downarrow g \\
X \xrightarrow{f} & Y
\end{array}
$$
Then we have
\[(f_{Zar,*}\pi^{-1}_X F)(Z/Y) = (\pi^{-1}_X F)(Z'/X) = \Gamma(Z', (g')^{-1} F) = \Gamma(Z, f'_*(g')^{-1} F)\]
the second equality by Lemma [31.6] On the other hand
\[(\pi^{-1}_X f_* F)(Z/Y) = \Gamma(Z, g^{-1} f_* F)\]
again by Lemma [31.6] Hence by proper base change for sheaves of sets (Cohomology, Lemma [19.3]) we conclude the two sets are canonically isomorphic. The isomorphism is compatible with restriction mappings and defines an isomorphism \(\pi^{-1}_X f_* F = f_{Zar,*} \pi^{-1}_X F\). Thus an isomorphism of functors \(\pi^{-1}_X \circ f_* = f_{Zar,*} \circ \pi^{-1}_X\).

Proof of (7b). Let \(K \in D^+(X)\). By Lemma [21.6] the \(n\)th cohomology sheaf of \(Rf_{Zar,*}\pi^{-1}_X K\) is the sheaf associated to the presheaf
\[(g : Z \to Y) \mapsto H^0_{Zar}(Z', \pi^{-1}_X K)\]
with notation as above. Observe that
\[H^0_{Zar}(Z', \pi^{-1}_X K) = H^n(Z', (g')^{-1} K) = H^n(Z, Rf'_*(g')^{-1} K) = H^n(Z, g^{-1} Rf_* K) = H^0_{Zar}(Z, \pi^{-1}_X Rf_* K)\]
The first equality is (6) applied to \(K\) and \(g' : Z' \to X\). The second equality is Leray for \(f' : Z' \to Z\) (Cohomology, Lemma [14.1]). The third equality is the proper base change theorem (Cohomology, Theorem [19.2]). The fourth equality is (6) applied to \(g : Z \to Y\) and \(Rf_* K\). Thus \(Rf_{Zar,*} \pi^{-1}_X K\) and \(\pi^{-1}_X Rf_* K\) have the same cohomology sheaves. We omit the verification that the canonical base change map \(\pi^{-1}_X Rf_* K \to Rf_{Zar,*} \pi^{-1}_X K\) induces this isomorphism.

In the situation of Lemma [31.6] the composition of \(\epsilon\) and \(\pi\) and the equality \(Sh(X) = Sh(X_{Zar})\) determine a morphism of topoi
\[a_X : Sh(LC_{qc}/X) \to Sh(X)\]

Lemma 31.8. Let \(f : X \to Y\) be a morphism of \(LC_{qc}\). Then there are commutative diagrams of topoi

\[
\begin{array}{ccc}
Sh(LC_{qc}/X) & \xrightarrow{f_{qc}} & Sh(LC_{qc}/Y) \\
\downarrow \epsilon_X & & \downarrow \epsilon_Y \\
Sh(LC_{Zar}/X) & \xrightarrow{f_{Zar}} & Sh(LC_{Zar}/Y)
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
Sh(LC_{qc}/X) & \xrightarrow{f_{qc}} & Sh(LC_{qc}/Y) \\
\downarrow a_X & & \downarrow a_Y \\
Sh(X) & \xrightarrow{f} & Sh(Y)
\end{array}
\]

with \(a_X = \pi_X \circ \epsilon_X\), \(a_Y = \pi_X \circ \epsilon_Y\). If \(f\) is proper, then \(a_Y^{-1} \circ f_* = f_{qc,*} \circ a_X^{-1}\).

Proof. The morphism of topoi \(f_{qc}\) is the one from Sites, Lemma [25.8] which in our case comes from the continuous functor \(Z/Y \to Z \times_Y X/X\), see Sites, Lemma [27.3]. The diagram on the left commutes because the corresponding continuous functors compose correctly (see Sites, Lemma [14.4]). The diagram on the right commutes because the one on the left does and because of part (5) of Lemma [31.7].

Proof of the final assertion. The reader may repeat the proof of part (7a) of Lemma [31.7]; we will instead deduce this from it. As \(\epsilon_{Y,*}\) is the identity functor on underlying presheaves, it reflects isomorphisms. The description in Lemma
Lemma 31.9. Consider the comparison morphism $\epsilon : \mathcal{L}C_{qc} \to \mathcal{L}C_{zar}$. Let P denote the class of proper maps of topological spaces. For X in $\mathcal{L}C_{zar}$ denote $\mathcal{A}_X' \subset \text{Ab}(\mathcal{L}C_{zar}/X)$ the full subcategory consisting of sheaves of the form $\pi_X^{-1}F$ with F in $\text{Ab}(X)$. Then (1), (2), (3), and (4) of Situation 30.1 hold.

Proof. We first show that $\mathcal{A}_X' \subset \text{Ab}(\mathcal{L}C_{zar}/X)$ is a weak Serre subcategory by checking conditions (1), (2), (3), and (4) of Homology, Lemma 9.3. Parts (1), (2), (3) are immediate as π_X^{-1} is exact and fully faithful by Lemma 31.7 part (3). If $0 \to \pi_X^{-1}F \to G \to \pi_X^{-1}F' \to 0$ is a short exact sequence in $\text{Ab}(\mathcal{L}C_{zar}/X)$ then $0 \to F \to \pi_X_*G \to \pi_X_*F' \to 0$ is exact by Lemma 31.7 part (2). Hence $G = \pi_X^{-1}\pi_X_*G$ is in \mathcal{A}_X' which checks the final condition.

Property (1) holds by Lemma 31.1 and the fact that the base change of a proper map is a proper map, see Topology, Theorem 17.5.

Property (2) follows from the commutative diagram (5) in Lemma 31.7.

Property (3) is Lemma 31.6.

Property (4) is Lemma 31.7 part $(7)(b)$.

Proof of (4). Suppose given a qc covering $\{U_i \to U\}$. For $u \in U$ pick $i_1, \ldots, i_m \in I$ and quasi-compact subsets $E_j \subset U_{i_j}$ such that $\bigcup f_{i_j}(E_j)$ is a neighbourhood of u. Observe that $Y = \coprod_{j=1}^m E_j \to U$ is proper as a continuous map from a quasi-compact space to a Hausdorff one (Topology, Lemma 17.7). Choose an open neighbourhood $u \in V$ contained in $\bigcup f_{i_j}(E_j)$. Then $Y \times_U V \to V$ is a surjective proper morphism and hence a qc covering by Lemma 31.4. Since we can do this for every $u \in U$ we see that (4) holds.

Lemma 31.10. With notation as above.

1. For $X \in \text{Ob}(\mathcal{L}C_{qc})$ and an abelian sheaf F on X we have $\epsilon_{X,*}a_X^{-1}F = \pi_X^{-1}F$ and $R^i\epsilon_{X,*}(a_X^{-1}F) = 0$ for $i > 0$.

2. For a proper morphism $f : X \to Y$ in $\mathcal{L}C_{qc}$ and abelian sheaf F on X we have $a_Y^{-1}(R^if_*F) = R^if_{qc,*}(a_X^{-1}F)$ for all i.

3. For $X \in \text{Ob}(\mathcal{L}C_{qc})$ and K in $D^+(X)$ the map $\pi_X^{-1}K \to \epsilon_{X,*}(a_X^{-1}K)$ is an isomorphism.

4. For a proper morphism $f : X \to Y$ in $\mathcal{L}C_{qc}$ and K in $D^+(X)$ we have $a_Y^{-1}(Rf_*K) = Rf_{qc,*}(a_X^{-1}K)$.

Proof. By Lemma 31.9 the lemmas in Section 30 all apply to our current setting. To translate the results observe that the category \mathcal{A}_X of Lemma 30.2 is the essential image of $a_X^{-1} : \text{Ab}(X) \to \text{Ab}(\mathcal{L}C_{qc}/X)$.

Part (1) is equivalent to (V_n) for all n which holds by Lemma 30.8.

Part (2) follows by applying ϵ_Y^{-1} to the conclusion of Lemma 30.3.

Part (3) follows from Lemma 30.8 part (1) because $\pi_X^{-1}K$ is in $D^+_{\mathcal{A}_X}(\mathcal{L}C_{zar}/X)$ and $a_X^{-1} = \epsilon_X^{-1} \circ a_X^{-1}$.
Part (4) follows from Lemma 30.8 part (2) for the same reason. □

Lemma 31.11. Let X be an object of LC_{qc}. For $K \in D^+(X)$ the map

$$K \to R\pi_X a_X^{-1}K$$

is an isomorphism with $a_X : \text{Sh}(\text{LC}_{qc}/X) \to \text{Sh}(X)$ as above.

Proof. We first reduce the statement to the case where K is given by a single abelian sheaf. Namely, represent K by a bounded below complex \mathcal{F}^\bullet. By the case of a sheaf we see that $\mathcal{F}^n = a_X^{-1}a_X^{-1}\mathcal{F}^n$ and that the sheaves $R^i a_X^{-1}a_X^{-1}\mathcal{F}^n$ are zero for $q > 0$. By Leray’s acyclicity lemma (Derived Categories, Lemma 17.7) applied to $a_X^{-1}\mathcal{F}^\bullet$ and the functor a_X^{-1} we conclude. From now on assume $K = \mathcal{F}$.

By Lemma 31.6 we have $a_X^{-1}a_X^{-1}\mathcal{F} = \mathcal{F}$. Thus it suffices to show that $R^q a_X^{-1}a_X^{-1}\mathcal{F} = 0$ for $q > 0$. For this we can use $a_X = \epsilon_X \circ \pi_X$ and the Leray spectral sequence Lemma 15.7. By Lemma 31.10 we have $R^i \epsilon_X^{-1}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$ and $\epsilon_X^{-1}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$. By Lemma 31.7 we have $R^j \pi_X^{-1}(\pi_X^{-1}\mathcal{F}) = 0$ for $j > 0$. This concludes the proof. □

Lemma 31.12. With $X \in \text{Ob}(\text{LC}_{qc})$ and $a_X : \text{Sh}(\text{LC}_{qc}/X) \to \text{Sh}(X)$ as above:

1. for an abelian sheaf \mathcal{F} on X we have $H^n(X, \mathcal{F}) = H^n_{qc}(X, a_X^{-1}\mathcal{F})$,
2. for $K \in D^+(X)$ we have $H^n(X, K) = H^n_{qc}(X, a_X^{-1}K)$.

For example, if A is an abelian group, then we have $H^n(X, A) = H^n_{qc}(X, A)$.

Proof. This follows from Lemma 31.11 by Remark 15.4 □

32. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering the Ext functors. For any pair of complexes $\mathcal{G}^\bullet, \mathcal{F}^\bullet$ of complexes of modules on a ringed site $(\mathcal{C}, \mathcal{O})$ we denote

$$\text{Ext}^n_{\mathcal{O}}(\mathcal{G}^\bullet, \mathcal{F}^\bullet) = \text{Hom}_{D(\mathcal{O})}(\mathcal{G}^\bullet, \mathcal{F}^\bullet[n])$$

according to our general conventions in Derived Categories, Section 27.

Example 32.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{K}^\bullet be a bounded above complex of \mathcal{O}-modules. Let \mathcal{F} be an \mathcal{O}-module. Then there is a spectral sequence with E_2-page

$$E_2^{i,j} = \text{Ext}_{\mathcal{O}}^j(H^{-i}(\mathcal{K}^\bullet), \mathcal{F}) \Rightarrow \text{Ext}_{\mathcal{O}}^{i+j}(\mathcal{K}^\bullet, \mathcal{F})$$

and another spectral sequence with E_1-page

$$E_1^{i,j} = \text{Ext}_{\mathcal{O}}^j(\mathcal{K}^{-i}, \mathcal{F}) \Rightarrow \text{Ext}_{\mathcal{O}}^{i+j}(\mathcal{K}^\bullet, \mathcal{F}).$$

To construct these spectral sequences choose an injective resolution $F \to I^\bullet$ and consider the two spectral sequences coming from the double complex $\text{Hom}_{\mathcal{O}}(\mathcal{K}^\bullet, I^\bullet)$, see Homology, Section 22.
33. Hom complexes

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let L^\bullet and M^\bullet be two complexes of \mathcal{O}-modules. We construct a complex of \mathcal{O}-modules $\text{Hom}^n(L^\bullet, M^\bullet)$. Namely, for each n we set

$$\text{Hom}^n(L^\bullet, M^\bullet) = \prod_{p+q=n} \text{Hom}_\mathcal{O}(L^{-q}, M^p)$$

It is a good idea to think of Hom^n as the sheaf of \mathcal{O}-modules of all \mathcal{O}-linear maps from L^\bullet to M^\bullet (viewed as graded \mathcal{O}-modules) which are homogeneous of degree n. In this terminology, we define the differential by the rule

$$d(f) = d_M \circ f - (-1)^n f \circ d_L$$

for $f \in \text{Hom}_\mathcal{O}^n(L^\bullet, M^\bullet)$. We omit the verification that $d^2 = 0$. This construction is a special case of Differential Graded Algebra, Example 19.6. It follows immediately from the construction that we have

$$H^n(\Gamma(U, \text{Hom}^\bullet(L^\bullet, M^\bullet))) = \text{Hom}_{\mathcal{K}(\mathcal{O}_U)}(L^\bullet, M^\bullet[n])$$

for all $n \in \mathbb{Z}$ and every $U \in \text{Ob}(\mathcal{C})$. Similarly, we have

$$H^n(\Gamma(U, \text{Hom}^\bullet(L^\bullet, M^\bullet))) = \text{Hom}_{\mathcal{K}(\mathcal{O}_U)}(L^\bullet, M^\bullet[n])$$

for the complex of global sections.

Lemma 33.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $K^\bullet, L^\bullet, M^\bullet$ of \mathcal{O}-modules there is an isomorphism

$$\text{Hom}^\bullet(K^\bullet, \text{Hom}^\bullet(L^\bullet, M^\bullet)) = \text{Hom}^\bullet(\text{Tot}(K^\bullet \otimes_\mathcal{O} L^\bullet), M^\bullet)$$

of complexes of \mathcal{O}-modules functorial in $K^\bullet, L^\bullet, M^\bullet$.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra, Lemma 67.1.

Lemma 33.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $K^\bullet, L^\bullet, M^\bullet$ of \mathcal{O}-modules there is a canonical morphism

$$\text{Tot}(\text{Hom}^\bullet(L^\bullet, M^\bullet) \otimes_\mathcal{O} \text{Hom}^\bullet(K^\bullet, L^\bullet)) \to \text{Hom}^\bullet(K^\bullet, M^\bullet)$$

of complexes of \mathcal{O}-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra, Lemma 67.2.

Lemma 33.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $K^\bullet, L^\bullet, M^\bullet$ of \mathcal{O}-modules there is a canonical morphism

$$\text{Tot}(\text{Hom}^\bullet(L^\bullet, M^\bullet) \otimes_\mathcal{O} K^\bullet) \to \text{Hom}^\bullet(\text{Hom}^\bullet(K^\bullet, L^\bullet), M^\bullet)$$

of complexes of \mathcal{O}-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra, Lemma 67.3.

Lemma 33.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $K^\bullet, L^\bullet, M^\bullet$ of \mathcal{O}-modules there is a canonical morphism

$$\text{Tot}(K^\bullet \otimes_\mathcal{O} \text{Hom}^\bullet(M^\bullet, L^\bullet)) \to \text{Hom}^\bullet(M^\bullet, \text{Tot}(K^\bullet \otimes_\mathcal{O} L^\bullet))$$

of complexes of \mathcal{O}-modules functorial in all three complexes.
Lemma 33.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $\mathcal{K}^\bullet, \mathcal{L}^\bullet, \mathcal{M}^\bullet$ of \mathcal{O}-modules there is a canonical morphism

$$\mathcal{K}^\bullet \longrightarrow \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet))$$

of complexes of \mathcal{O}-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra, Lemma \[67.5\]

Lemma 33.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{I}^\bullet be a \mathcal{K}-injective complex of \mathcal{O}-modules. Let \mathcal{L}^\bullet be a complex of \mathcal{O}-modules. Then

$$H^0(\Gamma(U, \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet))) = \text{Hom}_{D(\mathcal{O}_U)}(L|_U, M|_U)$$

for all $U \in \text{Ob} (\mathcal{C})$. Similarly, $H^0(\Gamma(\mathcal{C}, \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet))) = \text{Hom}_{D(\mathcal{O}_U)}(L, M)$.

Proof. We have

$$H^0(\Gamma(U, \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet))) = \text{Hom}_{K(\mathcal{O}_U)}(L|_U, M|_U)$$

$$= \text{Hom}_{D(\mathcal{O}_U)}(L|_U, M|_U)$$

The first equality is \[33.0.1\]. The second equality is true because $\mathcal{I}^\bullet|_U$ is \mathcal{K}-injective by Lemma \[21.1\]. The proof of the last equation is similar except that it uses \[33.0.2\].

Lemma 33.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{I}')^\bullet \rightarrow \mathcal{I}^\bullet$ be a quasi-isomorphism of \mathcal{K}-injective complexes of \mathcal{O}-modules. Let $(\mathcal{L}')^\bullet \rightarrow \mathcal{L}^\bullet$ be a quasi-isomorphism of complexes of \mathcal{O}-modules. Then

$$\mathcal{HOM}^\bullet(\mathcal{L}^\bullet, (\mathcal{I}')^\bullet) \longrightarrow \mathcal{HOM}^\bullet((\mathcal{L}')^\bullet, \mathcal{I}^\bullet)$$

is a quasi-isomorphism.

Proof. Let M be the object of $D(\mathcal{O})$ represented by \mathcal{I}^\bullet and $(\mathcal{I}')^\bullet$. Let L be the object of $D(\mathcal{O})$ represented by \mathcal{L}^\bullet and $(\mathcal{L}')^\bullet$. By Lemma \[33.6\] we see that the sheaves

$$H^0(\mathcal{HOM}^\bullet(\mathcal{L}^\bullet, (\mathcal{I}')^\bullet)) \quad \text{and} \quad H^0(\mathcal{HOM}^\bullet((\mathcal{L}')^\bullet, \mathcal{I}^\bullet))$$

are both equal to the sheaf associated to the presheaf

$$U \mapsto \text{Hom}_{D(\mathcal{O}_U)}(L|_U, M|_U)$$

Thus the map is a quasi-isomorphism.

Lemma 33.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{I}^\bullet be a \mathcal{K}-injective complex of \mathcal{O}-modules. Let \mathcal{L}^\bullet be a \mathcal{K}-flat complex of \mathcal{O}-modules. Then $\mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet)$ is a \mathcal{K}-injective complex of \mathcal{O}-modules.

Proof. Namely, if \mathcal{K}^\bullet is an acyclic complex of \mathcal{O}-modules, then

$$\text{Hom}_{K(\mathcal{O})}(\mathcal{K}^\bullet, \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet)) = H^0(\Gamma(\mathcal{C}, \mathcal{HOM}^\bullet(\mathcal{K}^\bullet, \mathcal{HOM}^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet))))$$

$$= H^0(\Gamma(\mathcal{C}, \mathcal{HOM}^\bullet(\text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet), \mathcal{I}^\bullet)))$$

$$= \text{Hom}_{K(\mathcal{O})}(\text{Tot}(\mathcal{K}^\bullet \otimes_{\mathcal{O}} \mathcal{L}^\bullet), \mathcal{I}^\bullet)$$

$$= 0$$
08JA \textbf{Lemma 34.1.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K, L be objects of $D(\mathcal{O})$. For every object U of \mathcal{C} we have

$$H^0(U, R\mathcal{H}om(L, M)) = \text{Hom}_{D(\mathcal{O}_U)}(L|_U, M|_U)$$

and we have $H^0(\mathcal{C}, R\mathcal{H}om(L, M)) = \text{Hom}_{D(\mathcal{O})}(L, M)$.

\textbf{Proof.} Choose a K-injective complex \mathcal{I}^\bullet of \mathcal{O}-modules representing M and a K-flat complex \mathcal{L}^\bullet representing L. Then $\mathcal{H}om^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet)$ is K-injective by Lemma 33.8. Hence we can compute cohomology over U by simply taking sections over U and the result follows from Lemma 33.6. \hfill \Box

08JB \textbf{Lemma 34.3.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K, L be objects of $D(\mathcal{O})$. The construction of $R\mathcal{H}om(K, L)$ commutes with restrictions, i.e., for every object U of \mathcal{C} we have $R\mathcal{H}om(K|_U, L|_U) = R\mathcal{H}om(K, L)|_U$.

08JA \textbf{Lemma 34.2.} Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let K, L, M be objects of $D(\mathcal{O})$. With the construction as described above there is a canonical isomorphism

$$R\mathcal{H}om(K, R\mathcal{H}om(L, M)) = R\mathcal{H}om(K \otimes^\mathbb{L} L, M)$$

in $D(\mathcal{O})$ functorial in K, L, M which recovers (34.0.1) on taking $H^0(\mathcal{C}, -)$.

\textbf{Proof.} Choose a K-injective complex \mathcal{I}^\bullet representing M and a K-flat complex \mathcal{L}^\bullet representing L. For any complex of \mathcal{O}-modules K^\bullet we have

$$\mathcal{H}om^\bullet(K^\bullet, \mathcal{H}om^\bullet(\mathcal{L}^\bullet, \mathcal{I}^\bullet)) = \mathcal{H}om^\bullet(\text{Tot}(K^\bullet \otimes^\mathbb{L} \mathcal{L}^\bullet), \mathcal{I}^\bullet)$$

by Lemma 33.1. Note that the left hand side represents $R\mathcal{H}om(K, R\mathcal{H}om(L, M))$ (use Lemma 33.8) and that the right hand side represents $R\mathcal{H}om(K \otimes^\mathbb{L} L, M)$. This proves the displayed formula of the lemma. Taking global sections and using Lemma 34.1 we obtain (34.0.1). \hfill \Box

The first equality by Lemma 33.2. The second equality by Lemma 33.1. The third equality by Lemma 33.2. The final equality because $\text{Tot}(K^\bullet \otimes^\mathbb{L} L^\bullet)$ is acyclic because L^\bullet is K-flat (Definition 18.2) and because \mathcal{I}^\bullet is K-injective. \hfill \Box
Lemma 34.4. Let \((C, \mathcal{O})\) be a ringed site. The bifunctor \(R\mathcal{H}om(-, -)\) transforms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment
\[
(L^\bullet, M^\bullet) \mapsto \mathcal{H}om^\bullet(L^\bullet, M^\bullet)
\]
transforms a termwise split short exact sequences of complexes in either variable into a termwise split short exact sequence. Details omitted.

Lemma 34.5. Let \((C, \mathcal{O})\) be a ringed site. Let \(K, L, M\) be objects of \(D(\mathcal{O})\). There is a canonical morphism
\[
R\mathcal{H}om(L, M) \otimes_{\mathcal{O}}^L K \rightarrow R\mathcal{H}om(R\mathcal{H}om(K, L), M)
\]
in \(D(\mathcal{O})\) functorial in \(K, L, M\).

Proof. Choose a K-injective complex \(I^\bullet\) representing \(M\), a K-injective complex \(J^\bullet\) representing \(L\), and a K-flat complex \(K^\bullet\) representing \(K\). The map is defined using the map
\[
\text{Tot}(\mathcal{H}om^\bullet(J^\bullet, I^\bullet) \otimes_{\mathcal{O}} K^\bullet) \rightarrow \mathcal{H}om^\bullet(\mathcal{H}om^\bullet(K^\bullet, J^\bullet), I^\bullet)
\]
of Lemma 33.3. By our particular choice of complexes the left hand side represents \(R\mathcal{H}om(L, M) \otimes_{\mathcal{O}}^L K\) and the right hand side represents \(R\mathcal{H}om(R\mathcal{H}om(K, L), M)\). We omit the proof that this is functorial in all three objects of \(D(\mathcal{O})\).

Lemma 34.6. Let \((C, \mathcal{O})\) be a ringed site. Given \(K, L, M\) in \(D(\mathcal{O})\) there is a canonical morphism
\[
R\mathcal{H}om(L, M) \otimes_{\mathcal{O}}^L R\mathcal{H}om(K, L) \rightarrow R\mathcal{H}om(K, M)
\]
in \(D(\mathcal{O})\).

Proof. Choose a K-injective complex \(I^\bullet\) representing \(M\), a K-injective complex \(J^\bullet\) representing \(L\), and any complex of \(\mathcal{O}\)-modules \(K^\bullet\) representing \(K\). By Lemma 33.2 there is a map of complexes
\[
\text{Tot}(\mathcal{H}om^\bullet(J^\bullet, I^\bullet) \otimes_{\mathcal{O}} \mathcal{H}om^\bullet(K^\bullet, J^\bullet)) \rightarrow \mathcal{H}om^\bullet(K^\bullet, J^\bullet)
\]
The complexes of \(\mathcal{O}\)-modules \(\mathcal{H}om^\bullet(J^\bullet, I^\bullet)\), \(\mathcal{H}om^\bullet(K^\bullet, J^\bullet)\), and \(\mathcal{H}om^\bullet(K^\bullet, I^\bullet)\) represent \(R\mathcal{H}om(L, M)\), \(R\mathcal{H}om(K, L)\), and \(R\mathcal{H}om(K, M)\). If we choose a K-flat complex \(H^\bullet\) and a quasi-isomorphism \(H^\bullet \rightarrow \mathcal{H}om^\bullet(K^\bullet, J^\bullet)\), then there is a map
\[
\text{Tot}(\mathcal{H}om^\bullet(J^\bullet, I^\bullet) \otimes_{\mathcal{O}} H^\bullet) \rightarrow \text{Tot}(\mathcal{H}om^\bullet(J^\bullet, I^\bullet) \otimes_{\mathcal{O}} \mathcal{H}om^\bullet(K^\bullet, J^\bullet))
\]
whose source represents \(R\mathcal{H}om(L, M) \otimes_{\mathcal{O}}^L R\mathcal{H}om(K, L)\). Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial.

Lemma 34.7. Let \((C, \mathcal{O})\) be a ringed site. Given \(K, L, M\) in \(D(\mathcal{O})\) there is a canonical morphism
\[
K \otimes_{\mathcal{O}}^L R\mathcal{H}om(M, L) \rightarrow R\mathcal{H}om(M, K \otimes_{\mathcal{O}}^L L)
\]
in \(D(\mathcal{O})\) functorial in \(K, L, M\).
Proof. Choose a K-flat complex \(K^\bullet \) representing \(K \), and a K-injective complex \(I^\bullet \) representing \(L \), and choose any complex of \(\mathcal{O} \)-modules \(M^\bullet \) representing \(M \). Choose a quasi-isomorphism \(\text{Tot}(K^\bullet \otimes_{\mathcal{O}} I^\bullet) \to J^\bullet \) where \(J^\bullet \) is K-injective. Then we use the map

\[
\text{Tot}(K^\bullet \otimes_{\mathcal{O}} \text{Hom}^*(M^\bullet, I^\bullet)) \to \text{Hom}^*(M^\bullet, \text{Tot}(K^\bullet \otimes_{\mathcal{O}} I^\bullet)) \to \text{Hom}^*(M^\bullet, J^\bullet)
\]

where the first map is the map from Lemma \ref{lem:33.4} \(\square \)

Lemma 34.8. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Given \(K, L \in D(\mathcal{O}) \) there is a canonical morphism

\[
K \to R\text{Hom}(L, K \otimes_{\mathcal{O}} L)
\]

in \(D(\mathcal{O}) \) functorial in both \(K \) and \(L \).

Proof. Choose a K-flat complex \(K^\bullet \) representing \(K \) and any complex of \(\mathcal{O} \)-modules \(L^\bullet \) representing \(L \). Choose a K-injective complex \(J^\bullet \) and a quasi-isomorphism \(\text{Tot}(K^\bullet \otimes_{\mathcal{O}} L^\bullet) \to J^\bullet \). Then we use

\[
K^\bullet \to \text{Hom}^*(L^\bullet, \text{Tot}(K^\bullet \otimes_{\mathcal{O}} L^\bullet)) \to \text{Hom}^*(L^\bullet, J^\bullet)
\]

where the first map comes from Lemma \ref{lem:33.5} \(\square \)

Lemma 34.9. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(L \) be an object of \(D(\mathcal{O}) \). Set \(L^\vee = R\text{Hom}(L, \mathcal{O}) \). For \(M \) in \(D(\mathcal{O}) \) there is a canonical map

\[
L^\vee \otimes_{\mathcal{O}} M \to R\text{Hom}(L, M)
\]

which induces a canonical map

\[
H^0(\mathcal{C}, L^\vee \otimes_{\mathcal{O}} M) \to \text{Hom}_{D(\mathcal{O})}(L, M)
\]

functorial in \(M \) in \(D(\mathcal{O}) \).

Proof. The map \(\eqref{eq:34.9.1} \) is a special case of Lemma \ref{lem:34.6} using the identification \(M = R\text{Hom}(\mathcal{O}, M) \). \(\square \)

Remark 34.10. Let \(f : (\text{Sh}(\mathcal{C}), \mathcal{O}_C) \to (\text{Sh}(\mathcal{D}), \mathcal{O}_D) \) be a morphism of ringed topoi. Let \(K, L \) be objects of \(D(\mathcal{O}_C) \). We claim there is a canonical map

\[
Rf_* R\text{Hom}(L, K) \to R\text{Hom}(Rf_* L, Rf_* K)
\]

Namely, by \(\eqref{eq:34.9.1} \) this is the same thing as a map

\[
Rf_* R\text{Hom}(L, K) \otimes_{\mathcal{O}_C} Rf_* L \to Rf_* (R\text{Hom}(L, K) \otimes_{\mathcal{O}_C} L) \to Rf_* K
\]

where the first arrow is the relative cup product (Remark \ref{rem:20.6}) and the second arrow is \(Rf_* \) applied to the canonical map \(R\text{Hom}(L, K) \otimes_{\mathcal{O}_C} L \to K \) coming from Lemma \ref{lem:34.6} (with \(\mathcal{O}_C \) in one of the spots).

Remark 34.11. Let \(h : (\text{Sh}(\mathcal{C}), \mathcal{O}) \to (\text{Sh}(\mathcal{C}'), \mathcal{O}') \) be a morphism of ringed topoi. Let \(K, L \) be objects of \(D(\mathcal{O}') \). We claim there is a canonical map

\[
Lh^* R\text{Hom}(K, L) \to R\text{Hom}(Lh^* K, Lh^* L)
\]

in \(D(\mathcal{O}) \). Namely, by \(\eqref{eq:34.9.1} \) proved in Lemma \ref{lem:34.2} such a map is the same thing as a map

\[
Lh^* R\text{Hom}(K, L) \otimes_{Lh^*} Lh^* K \to Lh^* L
\]
The source of this arrow is $Lh^*(\mathcal{H}om(K, L) \otimes^L K)$ by Lemma 19.4 hence it suffices to construct a canonical map

$$R \mathcal{H}om(K, L) \otimes^L K \to L.$$

For this we take the arrow corresponding to

$$\text{id} : R \mathcal{H}om(K, L) \to R \mathcal{H}om(K, L)$$

via \([34.0.1]\).

\begin{remark}
08JG Suppose that $(\mathcal{S}h(C'), \mathcal{O}_C)$ \to $(\mathcal{S}h(C), \mathcal{O}_C)$, let $f : (\mathcal{S}h(C'), \mathcal{O}_C)
\to (\mathcal{S}h(D), \mathcal{O}_D)$ be a commutative diagram of ringed topos. Let K, L be objects of $D(\mathcal{O}_C)$. We claim there exists a canonical base change map

$$Lg^* Rf_* R\mathcal{H}om(K, L) \to R(f')_* R\mathcal{H}om(Lh^* K, Lh^* L)$$

in $D(\mathcal{O}_D)$. Namely, we take the map adjoint to the composition

$$(f')^* Lg^* Rf_* R\mathcal{H}om(K, L) = Lh^* Lf^* Rf_* R\mathcal{H}om(K, L)$$

$$(f')^* R\mathcal{H}om(Lh^* K, Lh^* L)$$

where the first arrow uses the adjunction mapping $Lf^* Rf_* \to \text{id}$ and the second arrow is the canonical map constructed in Remark \([34.11]\).

35. Global derived hom

0B6E Let $(\mathcal{S}h(C), \mathcal{O})$ be a ringed topos. Let $K, L \in D(\mathcal{O})$. Using the construction of the internal hom in the derived category we obtain a well defined object

$$R \mathcal{H}om_{\mathcal{O}}(K, L) = R\Gamma(X, R \mathcal{H}om(K, L))$$

in $D(\Gamma(\mathcal{O}))$. By Lemma \([34.1]\) we have

$$H^0(R \mathcal{H}om_{\mathcal{O}}(K, L)) = \mathcal{H}om_{D(\mathcal{O})}(K, L)$$

and

$$H^p(R \mathcal{H}om_{\mathcal{O}}(K, L)) = \mathcal{E}xt^p_{D(\mathcal{O})}(K, L)$$

If $f : (\mathcal{C}', \mathcal{O}') \to (\mathcal{C}, \mathcal{O})$ is a morphism of ringed topos, then there is a canonical map

$$R \mathcal{H}om_{\mathcal{O}}(K, L) \to R \mathcal{H}om_{\mathcal{O}'}(Lf^* K, Lf^* L)$$

in $D(\Gamma(\mathcal{O}))$ by taking global sections of the map defined in Remark \([34.11]\).
36. Derived lower shriek

In this section we study morphisms \(g \) of ringed topoi where besides \(Lg^* \) and \(Rg_* \) there also a derived functor \(Lg_! \).

Lemma 36.1. Let \(u : C \to D \) be a continuous and cocontinuous functor of sites. Let \(g : Sh(C) \to Sh(D) \) be the corresponding morphism of topoi. Let \(O_D \) be a sheaf of rings and set \(I \in \text{Ob}(D) \). Then \(H^p(U, g^{-1}I) = 0 \) for all \(p > 0 \) and \(U \in \text{Ob}(C) \).

Proof. The vanishing of the lemma follows from Lemma 11.9 if we can prove vanishing of all higher Čech cohomology groups \(\check{H}^p(U, g^{-1}I) \) for any covering \(U = \{U_i \to U\} \) of \(C \). Since \(u \) is continuous, \(u(U) = \{u(U_i) \to u(U)\} \) is a covering of \(D \), and \(u(U_i \times_U \ldots \times_U U_{i_n}) = u(U_{i_0}) \times_{u(U)} \ldots \times_{u(U)} u(U_{i_n}) \). Thus we have

\[
\check{H}^p(U, g^{-1}I) = \check{H}^p(u(U), I)
\]

because \(g^{-1} = u^p \) by Sites, Lemma 21.5. Since \(I \) is an injective \(O \)-module these Čech cohomology groups vanish, see Lemma 13.3. \(\square \)

Lemma 36.2. Let \(u : C \to D \) be a continuous and cocontinuous functor of sites. Let \(g : Sh(C) \to Sh(D) \) be the corresponding morphism of topoi. Let \(O_D \) be a sheaf of rings and set \(O_C = g^{-1}O_D \). The functor \(g_* : D(O_C) \to D(O_D) \) (see Modules on Sites, Lemma 40.1) has a left derived functor

\[
Lg_! : D(O_C) \to D(O_D)
\]

which is left adjoint to \(g^* \). Moreover, for \(U \in \text{Ob}(C) \) we have

\[
Lg_!(j_U|_U O_U) = g_!(j_U|_U O_U) = j_{u(U)!}O_{u(U)}
\]

where \(j_U|_U \) and \(j_{u(U)!} \) are extension by zero associated to the localization morphism \(j_U : C/U \to C \) and \(j_{u(U)} : D/u(U) \to D \).

Proof. We are going to use Derived Categories, Proposition 28.2 to construct \(Lg_! \). To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that proposition. First, since \(g_* \) is a left adjoint we see that it is right exact and commutes with all colimits, so (5) holds. Conditions (3) and (4) hold because the category of modules on a ringed site is a Grothendieck abelian category. Let \(P \subset \text{Ob}(Mod(O_C)) \) be the collection of \(O_C \)-modules which are direct sums of modules of the form \(j_U|_U O_U \). Note that \(g_!j_U|_U O_U = j_{u(U)!}O_{u(U)} \), see proof of Modules on Sites, Lemma 40.1. Every \(O_C \)-module is a quotient of an object of \(P \), see Modules on Sites, Lemma 28.7. Thus (1) holds. Finally, we have to prove (2). Let \(K^\bullet \) be a bounded above acyclic complex of \(O_C \)-modules with \(K^n \in P \) for all \(n \). We have to show that \(g_*K^\bullet \) is exact. To do this it suffices to show, for every injective \(O_D \)-module \(I \) that

\[
\text{Hom}_{D(O_D)}(g_*K^\bullet, I[n]) = 0
\]

for all \(n \in \mathbb{Z} \). Since \(I \) is injective we have

\[
\text{Hom}_{D(O_D)}(g_*K^\bullet, I[n]) = \text{Hom}_{K(O_D)}(g_*K^\bullet, I[n]) = H^n(\text{Hom}_{O_D}(g_*K^\bullet, I)) = H^n(\text{Hom}_{O_C}(K^\bullet, g^{-1}I))
\]

the last equality by the adjointness of \(g_! \) and \(g^{-1} \).
The vanishing of this group would be clear if $g^{-1}\mathcal{I}$ were an injective \mathcal{O}_C-module. But $g^{-1}\mathcal{I}$ isn’t necessarily an injective \mathcal{O}_C-module as $g_!$ isn’t exact in general. We do know that

$$\text{Ext}^p_{\mathcal{O}_C}(j_{U!}\mathcal{O}_U, g^{-1}\mathcal{I}) = H^p(U, g^{-1}\mathcal{I}) = 0$$

for $p \geq 1$.

Here the first equality follows from $\text{Hom}_{\mathcal{O}_C}(j_{U!}\mathcal{O}_U, \mathcal{H}) = \mathcal{H}(U)$ and taking derived functors and the vanishing of $H^p(U, g^{-1}\mathcal{I})$ for $p > 0$ and $U \in \text{Ob}(\mathcal{C})$ follows from Lemma 36.1. Since each K^{-q} is a direct sum of modules of the form $j_{U!}\mathcal{O}_U$ we see that

$$\text{Ext}^p_{\mathcal{O}_C}(K^{-q}, g^{-1}\mathcal{I}) = 0$$

for $p \geq 1$ and all q.

Let us use the spectral sequence (see Example 32.1)

$$E_1^{p,q} = \text{Ext}^p_{\mathcal{O}_C}(K^{-q}, g^{-1}\mathcal{I}) \Rightarrow \text{Ext}^{p+q}_{\mathcal{O}_C}(K^\bullet, g^{-1}\mathcal{I}) = 0.$$

Note that the spectral sequence abuts to zero as K^\bullet is acyclic (hence vanishes in the derived category, hence produces vanishing ext groups). By the vanishing of higher exts proved above the only nonzero terms on the E_1 page are the terms $E_1^{0,q} = \text{Hom}_{\mathcal{O}_C}(K^{-q}, g^{-1}\mathcal{I})$. We conclude that the complex $\text{Hom}_{\mathcal{O}_C}(K^\bullet, g^{-1}\mathcal{I})$ is acyclic as desired.

Thus the left derived functor $Lg_!$ exists. It is left adjoint to $g^{-1} = g^* = Rg^* = Lg^*$, i.e., we have

$$\text{Hom}_{\text{Sh}(\mathcal{D})}(K, g_* L) = \text{Hom}_{\text{Sh}(\mathcal{C})}(Lg_! K, L)$$

by Derived Categories, Lemma 28.5. This finishes the proof. □

07AE **Remark 36.3.** Warning! Let $u : \mathcal{C} \to \mathcal{D}$, g, $\mathcal{O}_\mathcal{D}$, and $\mathcal{O}_\mathcal{C}$ be as in Lemma 36.2. In general it is **not** the case that the diagram

$$
\begin{array}{ccc}
D(\mathcal{O}_\mathcal{C}) & \xrightarrow{Lg_!} & D(\mathcal{O}_\mathcal{D}) \\
\text{forget} \downarrow & & \downarrow \text{forget} \\
D(\mathcal{C}) & \xrightarrow{Lg^\text{Ab}} & D(\mathcal{D})
\end{array}
$$

commutes where the functor $Lg^\text{Ab}_!$ is the one constructed in Lemma 36.2 but using the constant sheaf \mathbb{Z} as the structure sheaf on both \mathcal{C} and \mathcal{D}. In general it isn’t even the case that $g_! = (g^\text{Ab})_!$ (see Modules on Sites, Remark 40.2), but this phenomenon **can occur even if** $g_! = (g^\text{Ab})_!$ Namely, the construction of $Lg_!$ in the proof of Lemma 36.2 shows that $Lg_!$ agrees with $Lg^\text{Ab}_!$ if and only if the canonical maps

$$Lg^\text{Ab}_! j_{U!}\mathcal{O}_U \to j_{u(U)!}\mathcal{O}_{u(U)}$$

are isomorphisms in $D(\mathcal{D})$ for all objects U in \mathcal{C}. In general all we can say is that there exists a natural transformation

$$Lg^\text{Ab}_! \circ \text{forget} \to \text{forget} \circ Lg_!$$

07AE **Lemma 36.4.** Let $u : \mathcal{C} \to \mathcal{D}$ be a continuous and cocontinuous functor of sites. Let $g : \text{Sh}(\mathcal{C}) \to \text{Sh}(\mathcal{D})$ be the corresponding morphism of topoi. Let $\mathcal{O}_\mathcal{D}$ be a sheaf of rings and let \mathcal{I} be an injective $\mathcal{O}_\mathcal{D}$-module. If $g_!^\text{Sh} : \text{Sh}(\mathcal{C}) \to \text{Sh}(\mathcal{D})$ commutes with fibre products\footnote{Holds if \mathcal{C} has finite connected limits and u commutes with them, see Sites, Lemma 21.6} then $g^{-1}\mathcal{I}$ is limp.
Proof. We will use the criterion of Lemma 36.5. Condition (1) holds by Lemma 36.1. Let $K' \to K$ be a surjective map of sites on C. Since g^0_{sh} is a left adjoint, we see that $g^0_{sh}K' \to g^0_{sh}K$ is surjective. Observe that

$$H^0(K' \times_K \ldots \times_K K', g^{-1}\mathcal{I}) = H^0(g^0_{sh}(K' \times_K \ldots \times_K K'), \mathcal{I})$$

by our assumption on g^0_{sh}. Since \mathcal{I} is injective module it is limp by Lemma 15.1 (applied to the identity). Hence we can use the converse of Lemma 14.5 to see that the complex

$$0 \to H^0(K, g^{-1}\mathcal{I}) \to H^0(K', g^{-1}\mathcal{I}) \to H^0(K' \times_K K', g^{-1}\mathcal{I}) \to \ldots$$

is exact as desired. □

Lemma 36.5. Let $u : C \to D$ be a continuous and cocontinuous functor of sites. Let $g : \text{Sh}(C) \to \text{Sh}(D)$ be the corresponding morphism of topoi. Let $U \in \text{Ob}(C)$.

1. For M in $D(D)$ we have $R\Gamma(U, g^{-1}M) = R\Gamma(u(U), M)$.
2. If O_D is a sheaf of rings and $O_C = g^{-1}O_D$, then for M in $D(O_D)$ we have $R\Gamma(U, g^*M) = R\Gamma(u(U), M)$.

Proof. In the bounded below case (1) and (2) can be seen by representing K by a bounded below complex of injectives and using Lemma 36.1 as well as Leray’s acyclicity lemma. In the unbounded case, first note that (1) is a special case of (2). For (2) we can use

$$R\Gamma(U, g^*M) = R\text{Hom}(\pi_U O_C, g^*M) = R\text{Hom}(O_{D, \pi(U)} d_{\pi(U), M}) = R\Gamma(u(U), M)$$

where the middle equality is a consequence of Lemma 36.2. □

37. Derived lower shriek for fibred categories

In this section we work out some special cases of the situation discussed in Section 36. We make sure that we have equality between lower shriek on modules and sheaves of abelian groups. We encourage the reader to skip this section on a first reading.

Situation 37.1. Here (D, O_D) be a ringed site and $p : C \to D$ is a fibred category. We endow C with the topology inherited from D (Stacks, Section 10). We denote $\pi : \text{Sh}(C) \to \text{Sh}(D)$ the morphism of topoi associated to p (Stacks, Lemma 10.3). We set $O_C = \pi^{-1}O_D$ so that we obtain a morphism of ringed topoi

$$\pi : (\text{Sh}(C), O_C) \to (\text{Sh}(D), O_D)$$

Lemma 37.2. Assumptions and notation as in Situation 37.1. For $U \in \text{Ob}(C)$ consider the induced morphism of topoi

$$\pi_U : \text{Sh}(C/U) \to \text{Sh}(D/p(U))$$

Then there exists a morphism of topoi

$$\sigma : \text{Sh}(D/p(U)) \to \text{Sh}(C/U)$$

such that $\pi_U \circ \sigma = \text{id}$ and $\sigma^{-1} = \pi_{U, *}$.
Proof. Observe that \(\pi_U \) is the restriction of \(\pi \) to the localizations, see Sites, Lemma 28.4. For an object \(V \to p(U) \) of \(\mathcal{D}/p(U) \) denote \(V \times_{p(U)} U \to U \) the strongly cartesian morphism of \(\mathcal{C} \) over \(\mathcal{D} \) which exists as \(p \) is a fibred category. The functor
\[
v : \mathcal{D}/p(U) \to \mathcal{C}/U, \quad V/p(U) \mapsto V \times_{p(U)} U/U
\]
is continuous by the definition of the topology on \(\mathcal{C} \). Moreover, it is a right adjoint to \(p \) by the definition of strongly cartesian morphisms. Hence we are in the situation discussed in Sites, Section 22 and we see that the sheaf \(\pi_{U,*} \mathcal{F} \) is equal to \(V \mapsto \mathcal{F}(V \times_{p(U)} U) \) (see especially Sites, Lemma 22.2).

But here we have more. Namely, the functor \(v \) is also cocontinuous (as all morphisms in coverings of \(\mathcal{C} \) are strongly cartesian). Hence \(v \) defines a morphism \(\sigma \) as indicated in the lemma. The equality \(\sigma^{-1} = \pi_{U,*} \) is immediate from the definition. Since \(\pi_U^{-1} \mathcal{G} \) is given by the rule \(U'/U \mapsto \mathcal{G}(p(U')/p(U)) \) it follows that \(\sigma^{-1} \circ \pi_U^{-1} = \text{id} \) which proves the equality \(\pi_U \circ \sigma = \text{id} \).

\begin{proof}
\end{proof}

Situation 37.3. Let \((\mathcal{D}, \mathcal{O}_\mathcal{D}) \) be a ringed site. Let \(u : \mathcal{C}' \to \mathcal{C} \) be a 1-morphism of fibred categories over \(\mathcal{D} \) (Categories, Definition 32.9). Endow \(\mathcal{C} \) and \(\mathcal{C}' \) with their inherited topologies (Stacks, Definition 10.2) and let \(\pi : \text{Sh}(\mathcal{C}) \to \text{Sh}(\mathcal{D}) \), \(\pi' : \text{Sh}(\mathcal{C}') \to \text{Sh}(\mathcal{D}) \), and \(g : \text{Sh}(\mathcal{C}') \to \text{Sh}(\mathcal{C}) \) be the corresponding morphisms of topoi (Stacks, Lemma 10.3). Set \(\mathcal{O}_\mathcal{C} = \pi^{-1} \mathcal{O}_\mathcal{D} \) and \(\mathcal{O}_{\mathcal{C}'} = (\pi')^{-1} \mathcal{O}_\mathcal{D} \). Observe that \(g^{-1} \mathcal{O}_\mathcal{C} = \mathcal{O}_{\mathcal{C}'} \) so that
\[
\begin{array}{ccc}
(\text{Sh}(\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) & \xrightarrow{g} & (\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{C}) \\
\pi' \downarrow & & \downarrow \pi \\
(\text{Sh}(\mathcal{D}), \mathcal{O}_\mathcal{D})
\end{array}
\]
is a commutative diagram of morphisms of ringed topoi.

Lemma 37.4. Assumptions and notation as in Situation 37.3. For \(U' \in \text{Ob}(\mathcal{C}') \) set \(U = u(U') \) and \(V = p'(U') \) and consider the induced morphisms of ringed topoi
\[
\begin{array}{ccc}
(\text{Sh}(\mathcal{C}'/U'), \mathcal{O}_{\mathcal{C}'/U'}) & \xrightarrow{g'} & (\text{Sh}(\mathcal{C}), \mathcal{O}_\mathcal{U}) \\
\pi'_{U'} \downarrow & & \downarrow \pi_U \\
(\text{Sh}(\mathcal{D}/V), \mathcal{O}_V)
\end{array}
\]
Then there exists a morphism of topoi
\[
\sigma' : \text{Sh}(\mathcal{D}/V) \to \text{Sh}(\mathcal{C}'/U'),
\]
such that setting \(\sigma = g' \circ \sigma' \) we have \(\pi'_V \circ \sigma' = \text{id} \), \(\pi_U \circ \sigma = \text{id} \), \((\sigma')^{-1} = \pi'_{U',*} \), and \(\sigma^{-1} = \pi_{U,*} \).

Proof. Let \(v' : \mathcal{D}/V \to \mathcal{C}'/U' \) be the functor constructed in the proof of Lemma 37.2 starting with \(p' : \mathcal{C}' \to \mathcal{D}' \) and the object \(U' \). Since \(u \) is a 1-morphism of fibred categories over \(\mathcal{D} \) it transforms strongly cartesian morphisms into strongly cartesian morphisms, hence the functor \(v = u \circ v' \) is the functor of the proof of Lemma 37.2 relative to \(p : \mathcal{C} \to \mathcal{D} \) and \(U \). Thus our lemma follows from that lemma.

Lemma 37.5. Assumptions and notation as in Situation 37.3.

1. There are left adjoints \(g_* : \text{Mod}(\mathcal{O}_{\mathcal{C}'}) \to \text{Mod}(\mathcal{O}_{\mathcal{C}}) \) and \(g^{\text{Ab}}_* : \text{Ab}(\mathcal{C}') \to \text{Ab}(\mathcal{C}) \) to \(g^* = g^{-1} \) on modules and on abelian sheaves.
The diagram
\[
\begin{array}{ccc}
\text{Mod}(\mathcal{O}_{C'}) & \xrightarrow{g^!} & \text{Mod}(\mathcal{O}_C) \\
\downarrow & & \downarrow \\
\text{Ab}(C') & \xrightarrow{g^{\text{Ab}}^!} & \text{Ab}(C)
\end{array}
\]
commutes.

There are left adjoints \(Lg^! : D(\mathcal{O}_{C'}) \to D(\mathcal{O}_C)\) and \(Lg^{\text{Ab}}^! : D(C') \to D(C)\) to \(g^* = g^{-1}\) on derived categories of modules and abelian sheaves.

The diagram
\[
\begin{array}{ccc}
D(\mathcal{O}_{C'}) & \xrightarrow{Lg^!} & D(\mathcal{O}_C) \\
\downarrow & & \downarrow \\
D(C') & \xrightarrow{Lg^{\text{Ab}}^!} & D(C)
\end{array}
\]
commutes.

Proof. The functor \(u\) is continuous and cocontinuous, Stacks, Lemma 10.3. Hence the existence of the functors \(g^!, g^{\text{Ab}}^!, Lg^!, \) and \(Lg^{\text{Ab}}^!\) can be found in Modules on Sites, Sections 16 and 40 and Section 36.

To prove (2) it suffices to show that the canonical map
\[
g^{\text{Ab}}_! j_{U'}^! \mathcal{O}_{U'} \to j_{u(U')!} \mathcal{O}_{u(U')}
\]
is an isomorphism for all objects \(U'\) of \(C'\), see Modules on Sites, Remark 40.2. Similarly, to prove (4) it suffices to show that the canonical map
\[
Lg^{\text{Ab}}_! j_{U'}^! \mathcal{O}_{U'} \to j_{u(U')!} \mathcal{O}_{u(U')}
\]
is an isomorphism in \(D(C)\) for all objects \(U'\) of \(C'\), see Remark 36.3. This will also imply the previous formula hence this is what we will show.

We will use that for a localization morphism \(j\) the functors \(j^!\) and \(j^{\text{Ab}}^!\) agree (see Modules on Sites, Remark 19.6) and that \(j^!\) is exact (Modules on Sites, Lemma 19.3). Let us adopt the notation of Lemma 37.4. Since \(Lg^{\text{Ab}}_! \circ j_{U'}^! = j_{u!} \circ L(g')^{\text{Ab}}_!\) (by commutativity of Sites, Lemma 28.4 and uniqueness of adjoint functors) it suffices to prove that \(L(g')^{\text{Ab}}_! \mathcal{O}_{U'} = \mathcal{O}_{U'}\). Using the results of Lemma 37.4 we have for any object \(E\) of \(D(C/u(U'))\) the following sequence of equalities
\[
\text{Hom}_{D(C/u)}(L(g')^{\text{Ab}}_! \mathcal{O}_{U'}, E) = \text{Hom}_{D(C'/u')}((\pi_{U'})^{-1} \mathcal{O}_V, (g')^{-1} E)
\]
\[
= \text{Hom}_{D(C'/u')}((\sigma_{U'})^{-1} \mathcal{O}_V, (g')^{-1} E)
\]
\[
= \text{Hom}_{D(\mathcal{D}/V)}(\mathcal{O}_V, R\pi_{U'}^*(g')^{-1} E)
\]
\[
= \text{Hom}_{D(\mathcal{D}/V)}(\mathcal{O}_V, (\sigma')^{-1} (g')^{-1} E)
\]
\[
= \text{Hom}_{D(\mathcal{D}/V)}(\mathcal{O}_V, \sigma^{-1} E)
\]
\[
= \text{Hom}_{D(\mathcal{D}/V)}(\mathcal{O}_V, \pi_{U,*} E)
\]
\[
= \text{Hom}_{D(C/u)}(\pi_{U,*} \mathcal{O}_V, E)
\]
\[
= \text{Hom}_{D(C/u)}(\mathcal{O}_V, E)
\]

By Yoneda’s lemma we conclude. \(\square\)
09RW In the case of a category over a point we will baptize the left derived lower shriek

09CY Assumptions and notation as in Situation\ref{situation:7.3}. Note that setting

08PD Assumptions and notation as in Situation\ref{situation:7.1}. Hence Lemma\ref{lemma:7.5} tells us we have functors $\pi_1, \pi_1^{Ab}, L\pi_1$, and $L\pi_1^{Ab}$ such that $\text{forget} \circ \pi_1 = \pi_1^{Ab} \circ \text{forget}$ and $\text{forget} \circ L\pi_1 = L\pi_1^{Ab} \circ \text{forget}$.

08PE Assumptions and notation as in Situation\ref{situation:7.3}. Let \mathcal{F} be an

08PE Let \mathcal{F} be an abelian sheaf on \mathcal{C}, let \mathcal{F}' be an abelian sheaf on \mathcal{C}', and let $t : \mathcal{F}' \to \mathcal{F}$ be a map. Then we obtain a canonical map

08PE $L\pi'_1(\mathcal{F}') \to L\pi_1(\mathcal{F})$

by using the adjoint $g_! \mathcal{F}' \to \mathcal{F}$ of t, the map $Lg_!(\mathcal{F}') \to g_! \mathcal{F}'$, and the equality $L\pi'_1 = L\pi_1 \circ Lg_!$.

08PE \textbf{Lemma 37.8.} Assumptions and notation as in Situation\ref{situation:7.1}. For \mathcal{F} in $\text{Ab}(\mathcal{C})$

the sheaf $\pi_1 \mathcal{F}$ is the sheaf associated to the presheaf

08PE $V \mapsto \text{colim}_{\mathcal{C}' \to \mathcal{C}} \mathcal{F}|_{\mathcal{C}_V}$

with restriction maps as indicated in the proof.

\textbf{Proof.} Denote \mathcal{H} be the rule of the lemma. For a morphism $h : V' \to V$ of \mathcal{D} there is a pullback functor $h^* : \mathcal{C}_V \to \mathcal{C}_{V'}$ of fibre categories (Categories, Definition\ref{definition:26.6}). Moreover for $U \in \text{Ob}(\mathcal{C}_V)$ there is a strongly cartesian morphism $h^* U \to U$ covering h. Restriction along these strongly cartesian morphisms defines a transformation of functors

$\mathcal{F}|_{\mathcal{C}_V} \to \mathcal{F}|_{\mathcal{C}_{V'}} \circ h^*$.

Hence a map $\mathcal{H}(V) \to \mathcal{H}(V')$ between colimits, see Categories, Lemma\ref{lemma:14.7}

To prove the lemma we show that

$\text{Mor}_{\text{PSM}(\mathcal{D})}(\mathcal{H}, \mathcal{G}) = \text{Mor}_{\text{Sh}(\mathcal{C})}(\mathcal{F}, \pi^{-1}(\mathcal{G}))$

for every sheaf \mathcal{G} on \mathcal{C}. An element of the left hand side is a compatible system of maps $\mathcal{F}(U) \to \mathcal{G}(g(U))$ for all U in \mathcal{C}. Since $\pi^{-1}(\mathcal{G}(U)) = \mathcal{G}(g(U))$ by our choice of topology on \mathcal{C} we see the same thing is true for the right hand side and we win. \square

38. Homology on a category

08RW In the case of a category over a point we will baptize the left derived lower shriek functors the homology functors.

08PF \textbf{Example 38.1} (Category over point). Let \mathcal{C} be a category. Endow \mathcal{C} with the chaotic topology (Sites, Example\ref{example:6.6}). Thus presheaves and sheaves agree on \mathcal{C}. The functor $p : \mathcal{C} \to *$ where $*$ is the category with a single object and a single morphism is cocontinuous and continuous. Let $\pi : \text{Sh}(\mathcal{C}) \to \text{Sh}(*)$ be the corresponding morphism of topoi. Let B be a ring. We endow $*$ with the sheaf of rings B and \mathcal{C} with $\mathcal{O}_\mathcal{C} = \pi^{-1}B$ which we will denote \mathcal{B}. In this way

$\pi : (\text{Sh}(\mathcal{C}), \mathcal{B}) \to (\text{Sh}(*) , B)$

is an example of Situation\ref{situation:7.1}. By Remark\ref{remark:7.6} we do not need to distinguish between π_1 on modules or abelian sheaves. By Lemma\ref{lemma:7.8} we see that $\pi_1 \mathcal{F} = \text{colim}_{\mathcal{C}' \to \mathcal{C}} \mathcal{F}$. Thus $L_n \pi_1$ is the nth left derived functor of taking colimits. In the following, we write

$H_n(\mathcal{C}, \mathcal{F}) = L_n \pi_1(\mathcal{F})$

and we will name this the nth homology group of \mathcal{F} on \mathcal{C}.
Example 38.2 (Computing homology). In Example 38.1 we can compute the functors $H_n(C, -)$ as follows. Let $\mathcal{F} \in \text{Ob}(Ab(C))$. Consider the chain complex

$$K_\bullet(\mathcal{F}) : \cdots \to \bigoplus_{U_2 \to U_1 \to U_0} \mathcal{F}(U_0) \to \bigoplus_{U_1 \to U_0} \mathcal{F}(U_0) \to \bigoplus_{U_0} \mathcal{F}(U_0)$$

where the transition maps are given by

$$(U_2 \to U_1 \to U_0, s) \mapsto (U_1 \to U_0, s) - (U_2 \to U_0, s) + (U_2 \to U_1, s|_{U_1})$$

and similarly in other degrees. By construction

$$H_0(C, \mathcal{F}) = \lim_{\text{C-opp}} F = H_0(K_\bullet(\mathcal{F})),$$

see Categories, Lemma 14.11. The construction of $K_\bullet(\mathcal{F})$ is functorial in \mathcal{F} and transforms short exact sequences of $Ab(C)$ into short exact sequences of complexes. Thus the sequence of functors $\mathcal{F} \mapsto H_n(K_\bullet(\mathcal{F}))$ forms a δ-functor, see Homology, Definition 11.1 and Lemma 12.12. For $\mathcal{F} = j_{U!} \mathbb{Z}_U$ the complex $K_\bullet(\mathcal{F})$ is the complex associated to the free \mathbb{Z}-module on the simplicial set X_\bullet with terms

$$X_n = \coprod_{U_0 \to \cdots \to U_1 \to U_0} \text{Mor}_C(U_0, U)$$

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton $\{(*)\}$. Namely, the map $X_\bullet \to \{(*)\}$ is obvious, the map $\{(*)\} \to X_n$ is given by mapping $*$ to $(U \to \cdots \to U, id_U)$, and the maps

$$h_{n,i} : X_n \to X_n$$

are given by the rule

$$h_{n,i} : (U \to \cdots \to U_0, f) \mapsto (U \to \cdots \to U_i \to U \to \cdots \to U, id)$$

for $i > 0$ and $h_{n,0} = id$. Verifications omitted. This implies that $K_\bullet(j_{U!} \mathbb{Z}_U)$ has trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark 26.4 and the result of Simplicial, Lemma 27.1). Thus $K_\bullet(\mathcal{F})$ computes the left derived functors $H_n(C, -)$ of $H_0(C, -)$ for example by (the duals of) Homology, Lemma 11.3 and Derived Categories, Lemma 17.6.

Example 38.3. Let $u : C' \to C$ be a functor. Endow C' and C with the chaotic topology as in Example 38.1. The functors $u_*, C' \to \ast$, and $C \to \ast$ where \ast is the category with a single object and a single morphism are cocontinuous and continuous. Let $g : \text{Sh}(C') \to \text{Sh}(C)$, $\pi' : \text{Sh}(C') \to \text{Sh}(\ast)$, and $\pi : \text{Sh}(C) \to \text{Sh}(\ast)$, be the corresponding morphisms of topos. Let B be a ring. We endow \ast with the sheaf of rings B and C', C with the constant sheaf B. In this way

$$(\text{Sh}(C'), B) \xrightarrow{g} (\text{Sh}(C), B)$$

$$\xrightarrow{\pi'} (\text{Sh}(\ast), B)$$

is an example of Situation 37.3. Thus Lemma 37.5 applies to g so we do not need to distinguish between $g_!$ on modules or abelian sheaves. In particular Remark 37.7 produces canonical maps

$$H_n(C', \mathcal{F}') \to H_n(C, \mathcal{F})$$
whenever we have \mathcal{F} in $\text{Ab}(\mathcal{C})$, \mathcal{F}' in $\text{Ab}(\mathcal{C}')$, and a map $t : \mathcal{F}' \to g^{-1}\mathcal{F}$. In terms of the computation of homology given in Example 38.2 we see that these maps come from a map of complexes

$$K_\bullet(\mathcal{F}') \to K_\bullet(\mathcal{F})$$

given by the rule

$$(U'_n \to \ldots \to U'_0, s') \mapsto (u(U'_n) \to \ldots \to u(U'_0), t(s'))$$

with obvious notation.

Remark 38.4. Notation and assumptions as in Example 38.1. Let \mathcal{F}^\bullet be a bounded complex of abelian sheaves on \mathcal{C}. For any object U of \mathcal{C} there is a canonical map

$$\mathcal{F}^\bullet(U) \to L\pi_!(\mathcal{F}^\bullet)$$

in $\text{D}(\text{Ab})$. If \mathcal{F}^\bullet is a complex of B-modules then this map is in $\text{D}(B)$. To prove this, note that we compute $L\pi_!(\mathcal{F}^\bullet)$ by taking a quasi-isomorphism $\mathcal{P}^\bullet \to \mathcal{F}^\bullet$ where \mathcal{P}^\bullet is a complex of projectives. However, since the topology is chaotic this means that $\mathcal{P}^\bullet(U) \to \mathcal{F}^\bullet(U)$ is a quasi-isomorphism hence can be inverted in $\text{D}(\text{Ab})$, resp. $\text{D}(B)$. Composing with the canonical map $\mathcal{P}^\bullet(U) \to \pi_!(\mathcal{P}^\bullet)$ coming from the computation of $\pi_!$ as a colimit we obtain the desired arrow.

Lemma 38.5. Notation and assumptions as in Example 38.1 If \mathcal{C} has either an initial or a final object, then $L\pi_! \circ \pi^{-1} = \text{id}$ on $\text{D}(\text{Ab})$, resp. $\text{D}(B)$.

Proof. If \mathcal{C} has an initial object, then $\pi_!$ is computed by evaluating on this object and the statement is clear. If \mathcal{C} has a final object, then $R\pi_!$ is computed by evaluating on this object, hence $R\pi_! \circ \pi^{-1} \cong \text{id}$ on $\text{D}(\text{Ab})$, resp. $\text{D}(B)$. This implies that $\pi^{-1} : \text{D}(\text{Ab}) \to \text{D}(\mathcal{C})$, resp. $\pi^{-1} : \text{D}(B) \to \text{D}(\text{Ab})$ is fully faithful, see Categories, Lemma 24.3 Then the same lemma implies that $L\pi_! \circ \pi^{-1} = \text{id}$ as desired.

Lemma 38.6. Notation and assumptions as in Example 38.1 Let $B \to B'$ be a ring map. Consider the commutative diagram of ringed topos

$$
\begin{array}{ccc}
(\text{Sh}(\mathcal{C}), B) & \xleftarrow{h} & (\text{Sh}(\mathcal{C}), B') \\
\downarrow{\pi} & & \downarrow{\pi'} \\
(*, B) & \xleftarrow{f} & (*, B')
\end{array}
$$

Then $L\pi_! \circ Lh^* = Lf^* \circ L\pi_!$.

Proof. Both functors are right adjoint to the obvious functor $\text{D}(B') \to \text{D}(B)$.

Lemma 38.7. Notation and assumptions as in Example 38.1 Let U_\bullet be a cosimplicial object in \mathcal{C} such that for every $U \in \text{Ob}(\mathcal{C})$ the simplicial set $\text{Mor}_\mathcal{C}(U_\bullet, U)$ is homotopy equivalent to the constant simplicial set on a singleton. Then

$$L\pi_!(\mathcal{F}) = \mathcal{F}(U_\bullet)$$

in $\text{D}(\text{Ab})$, resp. $\text{D}(B)$ functorially in \mathcal{F} in $\text{Ab}(\mathcal{C})$, resp. $\text{Mod}(B)$.

Proof. As $L\pi_!$ agrees for modules and abelian sheaves by Lemma 37.3 it suffices to prove this when \mathcal{F} is an abelian sheaf. For $U \in \text{Ob}(\mathcal{C})$ the abelian sheaf $j_U! \mathbb{Z}_U$ is a projective object of $\text{Ab}(\mathcal{C})$ since $\text{Hom}(j_U! \mathbb{Z}_U, \mathcal{F}) = \mathcal{F}(U)$ and taking sections is an exact functor as the topology is chaotic. Every abelian sheaf is a quotient of
a direct sum of $j_{i!}Z_U$ by Modules on Sites, Lemma \[28.7\]. Thus we can compute $L\pi_!(\mathcal{F})$ by choosing a resolution

$$\ldots \to \mathcal{G}^{-1} \to \mathcal{G}^0 \to \mathcal{F} \to 0$$

whose terms are direct sums of sheaves of the form above and taking $L\pi_!(\mathcal{F}) = \pi_!(\mathcal{G}^\bullet)$. Consider the double complex $A^{\bullet\bullet} = \mathcal{G}^\bullet(U_\bullet)$. The map $\mathcal{G}^0 \to \mathcal{F}$ gives a map of complexes $A^{0\bullet} \to \mathcal{F}(U_0)$. Since $\pi_!$ is computed by taking the colimit over \mathcal{C}^{opp} (Lemma \[37.8\]) we see that the two compositions $\mathcal{G}^m(U_1) \to \mathcal{G}^m(U_0) \to \pi_!\mathcal{G}^m$ are equal. Thus we obtain a canonical map of complexes

$$\text{Tot}(A^{\bullet\bullet}) \to \pi_!(\mathcal{G}^\bullet) = L\pi_!(\mathcal{F})$$

To prove the lemma it suffices to show that the complexes

$$\ldots \to \mathcal{G}^m(U_1) \to \mathcal{G}^m(U_0) \to \pi_!\mathcal{G}^m \to 0$$

are exact, see Homology, Lemma \[22.7\]. Since the sheaves \mathcal{G}^m are direct sums of the sheaves $j_{i!}Z_U$ we reduce to $\mathcal{G} = j_{i!}Z_U$. The complex $j_{i!}Z_U(U_\bullet)$ is the complex of abelian groups associated to the free \mathcal{Z}-module on the simplicial set $\text{Mor}_C(U_\bullet, U)$ which we assumed to be homotopy equivalent to a singleton. We conclude that

$$j_{i!}Z_U(U_\bullet) \to \mathcal{Z}$$

is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial, Remark \[26.4\] and Lemma \[27.1\]). This finishes the proof since $\pi_!j_{i!}Z_U = \mathcal{Z}$ as was shown in the proof of Lemma \[37.5\].

\[08QA\] **Lemma 38.8.** Notation and assumptions as in Example 38.3. If there exists a cosimplicial object U_\bullet of \mathcal{C} such that Lemma 38.7 applies to both U_\bullet in \mathcal{C} and $u(U_\bullet)$ in \mathcal{B}, then we have $L\pi_! \circ g^{-1} = L\pi_!$ as functors $D(\mathcal{C}) \to D(\mathcal{B})$, resp.

$D(\mathcal{C}, \mathcal{B}) \to D(\mathcal{B})$.

Proof. Follows immediately from Lemma \[38.7\] and the fact that g^{-1} is given by precomposing with u.

\[08QB\] **Lemma 38.9.** Let \mathcal{C}_i, $i = 1, 2$ be categories. Let $u_i : \mathcal{C}_1 \times \mathcal{C}_2 \to \mathcal{C}_i$ be the projection functors. Let \mathcal{B} be a ring. Let $g_i : (\text{Sh}(\mathcal{C}_1 \times \mathcal{C}_2), \mathcal{B}) \to (\text{Sh}(\mathcal{C}_i), \mathcal{B})$ be the corresponding morphisms of ringed topoi, see Example 38.3. For $K_i \in D(\mathcal{C}_i, \mathcal{B})$ we have

$$L(\pi_1 \times \pi_2)_!(g_1^{-1}K_1 \otimes^L_{\mathcal{B}} g_2^{-1}K_2) = L\pi_1!(K_1) \otimes^L_{\mathcal{B}} L\pi_2!(K_2)$$

in $D(\mathcal{B})$ with obvious notation.

Proof. As both sides commute with colimits, it suffices to prove this for $K_1 = j_{i!}\mathcal{B}_U$ and $K_2 = j_{i!}\mathcal{B}_V$ for $U \in \text{Ob}(\mathcal{C}_1)$ and $V \in \text{Ob}(\mathcal{C}_2)$. See construction of $L\pi_!$ in Lemma 36.2. In this case

$$g_1^{-1}K_1 \otimes^L_{\mathcal{B}} g_2^{-1}K_2 = g_1^{-1}K_1 \otimes^L_{\mathcal{B}} g_2^{-1}K_2 = j_{(U,V)!}\mathcal{B}_{(U,V)}$$

Verification omitted. Hence the result follows as both the left and the right hand side of the formula of the lemma evaluate to \mathcal{B}, see construction of $L\pi_!$ in Lemma 36.2.

\[08QC\] **Lemma 38.10.** Notation and assumptions as in Example 38.4. If there exists a cosimplicial object U_\bullet of \mathcal{C} such that Lemma 38.7 applies, then

$$L\pi_!(K_1 \otimes^L_{\mathcal{B}} K_2) = L\pi_!(K_1) \otimes^L_{\mathcal{B}} L\pi_!(K_2)$$

for all $K_i \in D(\mathcal{B})$.

Proof. Consider the diagram of categories and functors

\[
\begin{array}{ccc}
C & \xrightarrow{u} & C \times C \\
\downarrow{u_1} & & \downarrow{u_2} \\
C & \xrightarrow{u} & C
\end{array}
\]

where \(u \) is the diagonal functor and \(u_i \) are the projection functors. This gives morphisms of ringed topoi \(g, g_1, g_2 \). For any object \((U_1, U_2)\) of \(C \) we have

\[
\text{Mor}_{C \times C}(u(U\cdot), (U_1, U_2)) = \text{Mor}_C(U\cdot, U_1) \times \text{Mor}_C(U\cdot, U_2)
\]

which is homotopy equivalent to a point by Simplicial, Lemma \(\text{26.10} \). Thus Lemma \(\text{38.8} \) gives \(L\pi_!(g^{-1}K) = L(\pi \times \pi)_!(K) \) for any \(K \) in \(D(C \times C, B) \). Take \(K = g_1^{-1}K_1 \otimes^L_B g_2^{-1}K_2 \). Then \(g^{-1}K = K_1 \otimes^L_B K_2 \) because \(g^{-1} = g^* \) commutes with derived tensor product (Lemma \(\text{19.4} \)). To finish we apply Lemma \(\text{38.9} \). \(\square \)

Remark 38.11 (Simplicial modules). Let \(C = \Delta \) and let \(B \) be any ring. This is a special case of Example \(\text{38.1} \) where the assumptions of Lemma \(\text{38.7} \) hold. Namely, let \(U\cdot \) be the cosimplicial object of \(\Delta \) given by the identity functor. To verify the condition we have to show that for \([m] \in \text{Ob}(\Delta) \) the simplicial set \(\Delta[m] : n \mapsto \text{Mor}_\Delta([n], [m]) \) is homotopy equivalent to a point. This is explained in Simplicial, Example \(\text{26.7} \).

In this situation the category \(\text{Mod}_B \) is just the category of simplicial \(B \)-modules and the functor \(L\pi_! \) sends a simplicial \(B \)-module \(M\cdot \) to its associated complex \(s(M\cdot) \) of \(B \)-modules. Thus the results above can be reinterpreted in terms of results on simplicial modules. For example a special case of Lemma \(\text{38.10} \) is: if \(M\cdot, M'\cdot \) are flat simplicial \(B \)-modules, then the complex \(s(M\cdot \otimes_B M'\cdot) \) is quasi-isomorphic to the total complex associated to the double complex \(s(M\cdot) \otimes_B s(M'\cdot) \). (Hint: use flatness to convert from derived tensor products to usual tensor products.) This is a special case of the Eilenberg-Zilber theorem which can be found in [EZ53].

Lemma 38.12. Let \(C \) be a category (endowed with chaotic topology). Let \(O \to O' \) be a map of sheaves of rings on \(C \). Assume

1. there exists a cosimplicial object \(U\cdot \) in \(C \) as in Lemma \(\text{38.7} \) and
2. \(L\pi_!O \to L\pi_!O' \) is an isomorphism.

For \(K \) in \(D(O) \) we have

\[
L\pi_!(K) = L\pi_!(K \otimes^B_O O')
\]

in \(D(\text{Ab}) \).

Proof. Note: in this proof \(L\pi_! \) denotes the left derived functor of \(\pi_! \) on abelian sheaves. Since \(L\pi_! \) commutes with colimits, it suffices to prove this for bounded above complexes of \(O \)-modules (compare with argument of Derived Categories, Proposition \(\text{28.2} \) or just stick to bounded above complexes). Every such complex is quasi-isomorphic to a bounded above complex whose terms are direct sums of \(j_U!O_U \) with \(U \in \text{Ob}(C) \), see Modules on Sites, Lemma \(\text{28.7} \).

Thus it suffices to prove the lemma for \(j_U!O_U \). By assumption

\[
S\cdot = \text{Mor}_C(U\cdot, U)
\]
is a simplicial set homotopy equivalent to the constant simplicial set on a singleton. Set $P_n = O(U_n)$ and $P'_n = O'(U_n)$. Observe that the complex associated to the simplicial abelian group

$$X_\bullet : n \mapsto \bigoplus_{s \in S_n} P_n$$

computes $L\pi_!(j_U!O_U)$ by Lemma \[38.7\] Since $j_U!O_U$ is a flat O-module we have $j_U!O_U \otimes^L_O O' = j_U!O'_U$ and $L\pi_!$ of this is computed by the complex associated to the simplicial abelian group

$$X'_\bullet : n \mapsto \bigoplus_{s \in S_n} P'_n$$

As the rule which to a simplicial set T_\bullet associated the simplicial abelian group with terms $\bigoplus_{t \in T_n} P_n$ is a functor, we see that $X_\bullet \to P_\bullet$ is a homotopy equivalence of simplicial abelian groups. Similarly, the rule which to a simplicial set T_\bullet associates the simplicial abelian group with terms $\bigoplus_{t \in T_n} P'_n$ is a functor. Hence $X'_\bullet \to P'_\bullet$ is a homotopy equivalence of simplicial abelian groups. By assumption $P_\bullet \to P'_\bullet$ is a quasi-isomorphism (since P_\bullet, resp. P'_\bullet computes $L\pi_!O$, resp. $L\pi_!O'$ by Lemma \[38.7\]). We conclude that X_\bullet and X'_\bullet are quasi-isomorphic as desired. \[\square\]

\textbf{Remark 38.13.} Let C and B be as in Example \[38.1\] Assume there exists a cosimplicial object as in Lemma \[38.7\]. Let $O \to B$ be a map sheaf of rings on C which induces an isomorphism $L\pi_!O \to L\pi_!B$. In this case we obtain an exact functor of triangulated categories

$$L\pi_! : D(O) \to D(B)$$

Namely, for any object K of $D(O)$ we have $L\pi_!^{Ab}(K) = L\pi_!^{Ab}(K \otimes^L_O B)$ by Lemma \[38.12\] Thus we can define the displayed functor as the composition of $- \otimes^L_O B$ with the functor $L\pi_! : D(B) \to D(B)$. In other words, we obtain a B-module structure on $L\pi_!(K)$ coming from the (canonical, functorial) identification of $L\pi_!(K)$ with $L\pi_!(K \otimes^L_O B)$ of the lemma.

39. Calculating derived lower shriek

08P7

In this section we apply the results from Section \[38\] to compute $L\pi_!$ in Situation \[37.1\] and $L\pi_!$ in Situation \[37.3\].

08PI

\textbf{Lemma 39.1.} Assumptions and notation as in Situation \[37.1\]. For \mathcal{F} in $PAb(C)$ and $n \geq 0$ consider the abelian sheaf $L_n(\mathcal{F})$ on \mathcal{D} which is the sheaf associated to the presheaf

$$V \mapsto H_n(\mathcal{C}_V, \mathcal{F}|_{\mathcal{C}_V})$$

with restriction maps as indicated in the proof. Then $L_n(\mathcal{F}) = L_n(\mathcal{F}^\#)$. \[\square\]

\textbf{Proof.} For a morphism $h : V' \to V$ of \mathcal{D} there is a pullback functor $h^* : \mathcal{C}_V \to \mathcal{C}_{V'}$, of fibre categories (Categories, Definition \[32.6\]). Moreover for $U \in \text{Ob}(\mathcal{C}_V)$ there is a strongly cartesian morphism $h^*U \to U$ covering h. Restriction along these strongly cartesian morphisms defines a transformation of functors

$$\mathcal{F}|_{\mathcal{C}_V} \to \mathcal{F}|_{\mathcal{C}_{V'}} \circ h^*.$$

By Example \[38.3\] we obtain the desired restriction map

$$H_n(\mathcal{C}_V, \mathcal{F}|_{\mathcal{C}_V}) \to H_n(\mathcal{C}_{V'}, \mathcal{F}|_{\mathcal{C}_{V'}})$$
Let us denote $L_{n,p}(F)$ this presheaf, so that $L_n(F) = L_{n,p}(F)$. The canonical map $\gamma : F \to F^+$ (Sites, Theorem 10.10) defines a canonical map $L_{n,p}(F) \to L_n(F^+)$. We have to prove this map becomes an isomorphism after sheafification.

Let us use the computation of homology given in Example 38.2. Denote $K \bullet(F|_V)$ the complex associated to the restriction of F to the fibre category C_V. By the remarks above we obtain a presheaf $K \bullet(F)$ of complexes

$$V \mapsto K \bullet(F|_V)$$

whose cohomology presheaves are the presheaves $L_{n,p}(F)$. Thus it suffices to show that

$$K \bullet(F) \to K \bullet(F^+)$$

becomes an isomorphism on sheafification.

Injectivity. Let V be an object of D and let $\xi \in K_n(F)(V)$ be an element which maps to zero in $K_n(F^+)(V)$. We have to show there exists a covering $\{V_j \to V\}$ such that $\xi|_{V_j}$ is zero in $K_n(F)(V_j)$. We write

$$\xi = \sum (U_{i,n+1} \to \ldots \to U_{i,0}, \sigma_i)$$

with $\sigma_i \in F(U_{i,0})$. We arrange it so that each sequence of morphisms $U_n \to \ldots \to U_0$ of C_V occurs are most once. Since the sums in the definition of the complex $K \bullet$ are direct sums, the only way this can map to zero in $K \bullet(F^+)(V)$ is if all σ_i map to zero in $F^+(U_{i,0})$. By construction of F^+ there exist coverings $\{U_{i,0,j} \to U_{i,0}\}$ such that $\sigma_i|_{U_{i,0,j}}$ is zero. By our construction of the topology on C we can write $U_{i,0,j} \to U_{i,0}$ as the pullback (Categories, Definition 32.6) of some morphisms $V_{i,j} \to V$ and moreover each $\{V_{i,j} \to V\}$ is a covering. Choose a covering $\{V_j \to V\}$ dominating each of the coverings $\{V_{i,j} \to V\}$. Then it is clear that $\xi|_{V_j} = 0$.

Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. □

Lemma 39.2. Assumptions and notation as in Situation 37.1. For F in $Ab(C)$ and $n \geq 0$ the sheaf $L_n(F)$ is equal to the sheaf $L_n(F)$ constructed in Lemma 39.1.

Proof. Consider the sequence of functors $F \mapsto L_n(F)$ from $PAb(C) \to Ab(C)$. Since for each $V \in Ob(D)$ the sequence of functors $H_n(C_V, -)$ forms a δ-functor so do the functors $F \mapsto L_n(F)$. Our goal is to show these form a universal δ-functor. In order to do this we construct some abelian presheaves on which these functors vanish.

For $U' \in Ob(C)$ consider the abelian presheaf $\mathcal{F}_{U'} = \mathcal{F}_{U'}^{PAb} \mathbb{Z}$ (Modules on Sites, Remark 19.7). Recall that

$$\mathcal{F}_{U'}(U) = \bigoplus_{\text{Mor}_C(U, U')} \mathbb{Z}$$

If U lies over $V = p(U)$ in D and U' lies over $V' = p(U')$ then any morphism $a : U \to U'$ factors uniquely as $U \to h^*U' \to U'$ where $h = p(a) : V \to V'$ (see Categories, Definition 32.6). Hence we see that

$$\mathcal{F}_{U'}|_V = \bigoplus_{h \in \text{Mor}_D(V, V')} \mathbb{Z} h^*U'$$
where \(j_{h^*U} : \text{Sh}(C_V/h^*U) \to \text{Sh}(C_V) \) is the localization morphism. The sheaves \(j_{h^*U}^{-1}Z_{h^*U} \) have vanishing higher homology groups (see Example 38.2). We conclude that \(L_n(F_{U'}) = 0 \) for all \(n > 0 \) and all \(U' \). It follows that any abelian presheaf \(F \) is a quotient of an abelian presheaf \(G \) with \(L_n(G) = 0 \) for all \(n > 0 \) (Modules on Sites, Lemma 28.7). Since \(L_n(F) = L_n(F^\#) \) we see that the same thing is true for abelian sheaves. Thus the sequence of functors \(L_n(_ \raq) \) is a universal delta functor on \(\text{Ab}(C) \) (Homology, Lemma 11.4). Since we have agreement with \(H^{-n}(L\pi_0(_ \raq)) \) for \(n = 0 \) by Lemma 37.8 we conclude by uniqueness of universal \(\delta \)-functors (Homology, Lemma 11.5) and Derived Categories, Lemma 17.6.

\[\text{Lemma 39.3. Assumptions and notation as in Situation 37.3. For an abelian sheaf } F' \text{ on } C' \text{ the sheaf } L_n g_! (F') \text{ is the sheaf associated to the presheaf} \]

\[U \longmapsto H_n(\mathcal{I}_U, F'_{U'}) \]

\[\text{For notation and restriction maps see proof.} \]

Proof. Say \(p(U) = V \). The category \(\mathcal{I}_U \) is the category of pairs \((U', \varphi) \) where \(\varphi : U \to u(U') \) is a morphism of \(C \) with \(p(\varphi) = \text{id}_V \), i.e., \(\varphi \) is a morphism of the fibre category \(C_m \). Morphisms \((U'_1, \varphi_1) \to (U'_2, \varphi_2) \) are given by morphisms \(a : U'_1 \to U'_2 \) of the fibre category \(C_m' \) such that \(\varphi_2 = a(\varphi_1) \circ \varphi_1 \). The presheaf \(F'_{U'} \) sends \((U', \varphi) \) to \(F'(U') \). We will construct the restriction mappings below.

Choose a factorization

\[
\begin{array}{ccc}
C' & \xrightarrow{w} & C'' & \xrightarrow{u''} & C
\end{array}
\]

of \(u \) as in Categories, Lemma 32.14. Then \(g_! = g''_! \circ g'_! \) and similarly for derived functors. On the other hand, the functor \(g'_! \) is exact, see Modules on Sites, Lemma 16.6. Thus we get \(Lg_!(F') = Lg''_!(F'') \) where \(F'' = g'_! F' \). Note that \(F'' = h^{-1} F' \) where \(h : \text{Sh}(C') \to \text{Sh}(C) \) is the morphism of topoi associated to \(w \), see Sites, Lemma 23.7. The functor \(u'' \) turns \(C'' \) into a fibred category over \(C \), hence Lemma 39.2 applies to the computation of \(L_n g''_! \). The result follows as the construction of \(C'' \) in the proof of Categories, Lemma 32.14 shows that the fibre category \(C''_m \) is equal to \(\mathcal{I}_U \). Moreover, \(h^{-1} F'|_{C''_m} \) is given by the rule described above (as \(w \) is continuous and cocontinuous by Stacks, Lemma 10.3) so we may apply Sites, Lemma 21.5.

40. Simplicial modules

Let \(A_\bullet \) be a simplicial ring. Recall that we may think of \(A_\bullet \) as a sheaf on \(\Delta \) (endowed with the chaotic topology), see Simplicial, Section 4. Then a simplicial module \(M_\bullet \) over \(A_\bullet \) is just a sheaf of \(A_\bullet \)-modules on \(\Delta \). In other words, for every \(n \geq 0 \) we have an \(A_n \)-module \(M_n \) and for every map \(\varphi : [n] \to [m] \) we have a corresponding map

\[M_\bullet(\varphi) : M_m \to M_n \]

which is \(A_\bullet(\varphi) \)-linear such that these maps compose in the usual manner.

Let \(C \) be a site. A simplicial sheaf of rings \(A_\bullet \) on \(C \) is a simplicial object in the category of sheaves of rings on \(C \). In this case the assignment \(U \mapsto A_\bullet(U) \) is a sheaf of simplicial rings and in fact the two notions are equivalent. A similar discussion holds for simplicial abelian sheaves, simplicial sheaves of Lie algebras, and so on.
However, as in the case of simplicial rings above, there is another way to think about simplicial sheaves. Namely, consider the projection
\[p : \Delta \times C \rightarrow C \]
This defines a fibred category with strongly cartesian morphisms exactly the morphisms of the form \(([n], U) \rightarrow ([n], V)\). We endow the category \(\Delta \times C\) with the topology inherited from \(C\) (see Stacks, Section 10). The simple description of the coverings in \(\Delta \times C\) (Stacks, Lemma 10.1) immediately implies that a simplicial sheaf of rings on \(C\) is the same thing as a sheaf of rings on \(\Delta \times C\).

By analogy with the case of simplicial modules over a simplicial ring, we define simplicial modules over simplicial sheaves of rings as follows.

Definition 40.1. Let \(\mathcal{C}\) be a site. Let \(A^\bullet\) be a simplicial sheaf of rings on \(\mathcal{C}\). A simplicial \(A^\bullet\)-module \(F^\bullet\) (sometimes called a simplicial sheaf of \(A^\bullet\)-modules) is a sheaf of modules over the sheaf of rings on \(\Delta \times C\) associated to \(A^\bullet\).

We obtain a category \(\text{Mod}(A^\bullet)\) of simplicial modules and a corresponding derived category \(D(A^\bullet)\). Given a map \(A^\bullet \rightarrow B^\bullet\) of simplicial sheaves of rings we obtain a functor
\[- \otimes_{A^\bullet} B^\bullet : D(A^\bullet) \rightarrow D(B^\bullet) \]
Moreover, the material of the preceding sections determines a functor
\[L\pi_1 : D(A^\bullet) \rightarrow D(C) \]
Given a simplicial module \(F^\bullet\) the object \(L\pi_1(F^\bullet)\) is represented by the associated chain complex \(s(F^\bullet)\) (Simplicial, Section 23). This follows from Lemmas 39.2 and 38.7.

Lemma 40.2. Let \(\mathcal{C}\) be a site. Let \(A^\bullet \rightarrow B^\bullet\) be a homomorphism of simplicial sheaves of rings on \(\mathcal{C}\). If \(L\pi_1 A^\bullet \rightarrow L\pi_1 B^\bullet\) is an isomorphism in \(D(C)\), then we have
\[L\pi_1(K) = L\pi_1(K \otimes_{A^\bullet} B^\bullet) \]
for all \(K\) in \(D(A^\bullet)\).

Proof. Let \(([n], U)\) be an object of \(\Delta \times C\). Since \(L\pi_1\) commutes with colimits, it suffices to prove this for bounded above complexes of \(O\)-modules (compare with argument of Derived Categories, Proposition 28.2 or just stick to bounded above complexes). Every such complex is quasi-isomorphic to a bounded above complex whose terms are flat modules, see Modules on Sites, Lemma 28.7. Thus it suffices to prove the lemma for a flat \(A^\bullet\)-module \(F\). In this case the derived tensor product is the usual tensor product and is a sheaf also. Hence by Lemma 39.2 we can compute the cohomology sheaves of both sides of the equation by the procedure of Lemma 39.1. Thus it suffices to prove the result for the restriction of \(F\) to the fibre categories (i.e., to \(\Delta \times U\)). In this case the result follows from Lemma 38.12. \(\square\)

Remark 40.3. Let \(\mathcal{C}\) be a site. Let \(\epsilon : A^\bullet \rightarrow O\) be an augmentation (Simplicial, Definition 20.1) in the category of sheaves of rings. Assume \(\epsilon\) induces a quasi-isomorphism \(s(A^\bullet) \rightarrow O\). In this case we obtain an exact functor of triangulated categories
\[L\pi_1 : D(A^\bullet) \rightarrow D(O) \]
Namely, for any object \(K\) of \(D(A^\bullet)\) we have \(L\pi_1(K) = L\pi_1(K \otimes_{A^\bullet} O)\) by Lemma 40.2. Thus we can define the displayed functor as the composition of \(- \otimes_{A^\bullet} O\) with
the functor $L\pi_1 : D(\Delta \times C, \pi^{-1}\mathcal{O}) \to D(\mathcal{O})$ of Remark 37.6. In other words, we obtain a \mathcal{O}-module structure on $L\pi_1(K)$ coming from the (canonical, functorial) identification of $L\pi_1(K)$ with $L\pi_1(K \otimes_{L\pi_1 \mathcal{O}} \mathcal{O})$ of the lemma.

41. Cohomology on a category

Example 41.1 (Computing cohomology). In Example 38.1 we can compute the functors $H^n(C, -)$ as follows. Let $\mathcal{F} \in \text{Ob}(Ab(C))$. Consider the cochain complex

$$K^\bullet(\mathcal{F}) : \prod_{U_0} \mathcal{F}(U_0) \to \prod_{U_0 \to U_1} \mathcal{F}(U_0) \to \prod_{U_0 \to U_1 \to U_2} \mathcal{F}(U_0) \to \ldots$$

where the transition maps are given by

$$(s_{U_0 \to U_1}) \mapsto ((U_0 \to U_1 \to U_2) \mapsto s_{U_0 \to U_1} - s_{U_0 \to U_2} + s_{U_1 \to U_2}|U_0)$$

and similarly in other degrees. By construction

$$H^0(C, \mathcal{F}) = \lim_{\text{Cov}} \mathcal{F} = H^0(K^\bullet(\mathcal{F})),$$

see Categories, Lemma 14.10. The construction of $K^\bullet(\mathcal{F})$ is functorial in \mathcal{F} and transforms short exact sequences of $Ab(C)$ into short exact sequences of complexes. Thus the sequence of functors $\mathcal{F} \mapsto H^n(K^\bullet(\mathcal{F}))$ forms a δ-functor, see Homology, Definition 11.1 and Lemma 12.12. For an object U of C denote $p_U : Sh(*) \to Sh(C)$ the corresponding point with $p_U^* \text{ equal to evaluation at } U$, see Sites, Example 33.7.

Let A be an abelian group and set $\mathcal{F} = p_U^*A$. In this case the complex $K^\bullet(\mathcal{F})$ is the complex with terms $\text{Map}(X_n, A)$ where

$$X_n = \prod_{U_0 \to \ldots \to U_{n-1} \to U_n} Mor_C(U, U_0)$$

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton $\{*\}$. Namely, the map $X_* \to \{*\}$ is obvious, the map $\{*\} \to X_n$ is given by mapping $*$ to $(U \to \ldots \to U, \text{id}_U)$, and the maps

$$h_{n,i} : X_n \to X_n$$

(Simplicial, Lemma 26.2) defining the homotopy between the two maps $X_* \to X_*$ are given by the rule

$$h_{n,i} : (U_0 \to \ldots \to U_n, f) \mapsto (U \to \ldots \to U \to U_i \to \ldots \to U_n, \text{id})$$

for $i > 0$ and $h_{n,0} = \text{id}$. Verifications omitted. Since $\text{Map}(-, A)$ is a contravariant functor, implies that $K^\bullet(p_U^*A)$ has trivial cohomology in positive degrees (by the functoriality of Simplicial, Remark 26.4 and the result of Simplicial, Lemma 28.5). This implies that $K^\bullet(\mathcal{F})$ is acyclic in positive degrees also if \mathcal{F} is a product of sheaves of the form p_U^*A. As every abelian sheaf on C embeds into such a product we conclude that $K^\bullet(\mathcal{F})$ computes the left derived functors $H^n(C, -)$ of $H^0(C, -)$ for example by Homology, Lemma 11.4 and Derived Categories, Lemma 17.6.

Example 41.2 (Computing Exts). In Example 38.1 assume we are moreover given a sheaf of rings \mathcal{O} on C. Let \mathcal{F}, \mathcal{G} be \mathcal{O}-modules. Consider the complex $K^\bullet(\mathcal{G}, \mathcal{F})$ with degree n term

$$\prod_{U_0 \to U_1 \to \ldots \to U_n} \text{Hom}_{\mathcal{O}(U_n)}(\mathcal{G}(U_n), \mathcal{F}(U_0))$$
and transition map given by
\[(\varphi_{u_0 \to u_1}) \mapsto (\U_0 \to \U_1 \to \U_2) \mapsto \varphi_{u_0 \to u_1} \circ \rho_{u_1}^U - \varphi_{u_0 \to u_2} + \rho_{u_0}^U \circ \varphi_{u_1 \to u_2}\]
and similarly in other degrees. Here the ρ’s indicate restriction maps. By construction
\[\text{Hom}_C(\mathcal{G}, \mathcal{F}) = H^0(K^\bullet(\mathcal{G}, \mathcal{F}))\]
for all pairs of O-modules \mathcal{F}, \mathcal{G}. The assignment $(\mathcal{G}, \mathcal{F}) \mapsto K^\bullet(\mathcal{G}, \mathcal{F})$ is a bifunctor which transforms direct sums in the first variable into products and commutes with products in the second variable. We claim that
\[\text{Ext}^i_C(\mathcal{G}, \mathcal{F}) = H^i(K^\bullet(\mathcal{G}, \mathcal{F}))\]
for $i \geq 0$ provided either

1. $\mathcal{G}(U)$ is a projective $O(U)$-module for all $U \in \text{Ob}(\mathcal{C})$, or
2. $\mathcal{F}(U)$ is an injective $O(U)$-module for all $U \in \text{Ob}(\mathcal{C})$.

Namely, case (1) the functor $K^\bullet(\mathcal{G}, -)$ is an exact functor from the category of O-modules to the category of cochain complexes of abelian groups. Thus, arguing as in Example 41.1 it suffices to show that $K^\bullet(\mathcal{G}, \mathcal{F})$ is acyclic in positive degrees when \mathcal{F} is $p_{U,*}A$ for an $O(U)$-module A. Choose a short exact sequence
\[(41.2.1) 0 \to \mathcal{G}' \to \bigoplus j_{U_i!}O_{U_i} \to \mathcal{G} \to 0\]
see Modules on Sites, Lemma 28.7. Since (1) holds for the middle and right sheaves, it also holds for \mathcal{G}' and evaluating (41.2.1) on an object of \mathcal{C} gives a split exact sequence of modules. We obtain a short exact sequence of complexes
\[0 \to K^\bullet(\mathcal{G}, \mathcal{F}) \to \prod K^\bullet(j_{U_i!}O_{U_i}, \mathcal{F}) \to K^\bullet(\mathcal{G}', \mathcal{F}) \to 0\]
for any \mathcal{F}, in particular $\mathcal{F} = p_{U,*}A$. On H^0 we obtain
\[0 \to \text{Hom}(\mathcal{G}, p_{U,*}A) \to \text{Hom}(\prod j_{U_i!}O_{U_i}, p_{U,*}A) \to \text{Hom}(\mathcal{G}', p_{U,*}A) \to 0\]
which is exact as $\text{Hom}(\mathcal{H}, p_{U,*}A) = \text{Hom}_{O(U)}(\mathcal{H}(U), A)$ and the sequence of sections of (41.2.1) over U is split exact. Thus we can use dimension shifting to see that it suffices to prove $K^\bullet(j_{U!*}O_{U'}, p_{U,*}A)$ is acyclic in positive degrees for all $U, U' \in \text{Ob}(\mathcal{C})$. In this case $K^n(j_{U!*}O_{U'}, p_{U,*}A)$ is equal to
\[\prod_{U \to U_0 \to U_1 \to \ldots \to U_n \to U'} A\]
In other words, $K^\bullet(j_{U!*}O_{U'}, p_{U,*}A)$ is the complex with terms $\text{Map}(X_n, A)$ where
\[X_n = \coprod_{U_0 \to \ldots \to U_{n-1} \to U_n} \text{Mor}_C(U_0, U) \times \text{Mor}_C(U_n, U')\]
This simplicial set is homotopy equivalent to the constant simplicial set on a singleton $\{*\}$ as can be proved in exactly the same way as the corresponding statement in Example 41.1. This finishes the proof of the claim.

The argument in case (2) is similar (but dual).
42. Strictly perfect complexes

Definition 42.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{E}^\bullet be a complex of \mathcal{O}-modules. We say \mathcal{E}^\bullet is **strictly perfect** if \mathcal{E}^i is zero for all but finitely many i and \mathcal{E}^i is a direct summand of a finite free \mathcal{O}-module for all i.

Let U be an object of \mathcal{C}. We will often say “Let \mathcal{E}^\bullet be a strictly perfect complex of \mathcal{O}_U-modules” to mean \mathcal{E}^\bullet is a strictly perfect complex of modules on the ringed site $(\mathcal{C}/U, \mathcal{O}_U)$, see Modules on Sites, Definition 19.1.

Lemma 42.2. The cone on a morphism of strictly perfect complexes is strictly perfect.

Proof. This is immediate from the definitions. □

Lemma 42.3. The total complex associated to the tensor product of two strictly perfect complexes is strictly perfect.

Proof. Omitted. □

Lemma 42.4. Let $(f, f^\flat) : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})$ be a morphism of ringed topoi. If \mathcal{F}^\bullet is a strictly perfect complex of $\mathcal{O}_\mathcal{D}$-modules, then $f^* \mathcal{F}^\bullet$ is a strictly perfect complex of $\mathcal{O}_\mathcal{C}$-modules.

Proof. We have seen in Modules on Sites, Lemma 17.2 that the pullback of a finite free module is finite free. The functor f^* is additive functor hence preserves direct summands. The lemma follows. □

Lemma 42.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. Given a solid diagram of \mathcal{O}_U-modules

$$
\begin{array}{ccc}
\mathcal{E} & \rightarrow & \mathcal{F} \\
p & & \downarrow \\
\mathcal{G}
\end{array}
$$

with \mathcal{E} a direct summand of a finite free \mathcal{O}_U-module and p surjective, then there exists a covering $\{U_i \to U\}$ such that a dotted arrow making the diagram commute exists over each U_i.

Proof. We may assume $\mathcal{E} = \mathcal{O}_U^{\oplus n}$ for some n. In this case finding the dotted arrow is equivalent to lifting the images of the basis elements in $\Gamma(U, \mathcal{F})$. This is locally possible by the characterization of surjective maps of sheaves (Sites, Section 11). □

Lemma 42.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}.

1. Let $\alpha : \mathcal{E}^\bullet \to \mathcal{F}^\bullet$ be a morphism of complexes of \mathcal{O}_U-modules with \mathcal{E}^\bullet strictly perfect and \mathcal{F}^\bullet acyclic. Then there exists a covering $\{U_i \to U\}$ such that each $\alpha|_{U_i}$ is homotopic to zero.

2. Let $\alpha : \mathcal{E}^\bullet \to \mathcal{F}^\bullet$ be a morphism of complexes of \mathcal{O}_U-modules with \mathcal{E}^\bullet strictly perfect, $\mathcal{E}^i = 0$ for $i < a$, and $H^i(\mathcal{F}^\bullet) = 0$ for $i \geq a$. Then there exists a covering $\{U_i \to U\}$ such that each $\alpha|_{U_i}$ is homotopic to zero.
Proof. The first statement follows from the second, hence we only prove (2). We will prove this by induction on the length of the complex \mathcal{E}^\bullet. If $\mathcal{E}^\bullet \cong \mathcal{E}[-n]$ for some direct summand \mathcal{E} of a finite free \mathcal{O}-module and integer $n \geq a$, then the result follows from Lemma 42.5 and the fact that $\mathcal{F}^n \to \text{Ker}(\mathcal{F}^{n+1})$ is surjective by the assumed vanishing of $H^a(\mathcal{F}^\bullet)$. If \mathcal{E}^i is zero except for $i \in [a,b]$, then we have a split exact sequence of complexes

$$0 \to \mathcal{E}^b[-b] \to \mathcal{E}^\bullet \to \sigma_{\leq b-1}\mathcal{E}^\bullet \to 0$$

which determines a distinguished triangle in $K(\mathcal{O}_U)$. Hence an exact sequence

$$\text{Hom}_{K(\mathcal{O}_U)}(\sigma_{\leq b-1}\mathcal{E}^\bullet, \mathcal{F}^\bullet) \to \text{Hom}_{K(\mathcal{O}_U)}(\mathcal{E}^\bullet, \mathcal{F}^\bullet) \to \text{Hom}_{K(\mathcal{O}_U)}(\mathcal{E}^b[-b], \mathcal{F}^\bullet)$$

by the axioms of triangulated categories. The composition $\mathcal{E}^b[-b] \to \mathcal{F}^\bullet$ is homotopic to zero on the members of a covering of U by the above, whence we may assume our map comes from an element in the left hand side of the displayed exact sequence above. This element is zero on the members of a covering of U by induction hypothesis.

Lemma 42.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. Given a solid diagram of complexes of \mathcal{O}_U-modules

$$\begin{array}{ccc}
\mathcal{E}^\bullet & \overset{\alpha}{\longrightarrow} & \mathcal{F}^\bullet \\
\downarrow & & \downarrow f \\
\mathcal{G}^\bullet & &
\end{array}$$

with \mathcal{E}^\bullet strictly perfect, $\mathcal{G}^j = 0$ for $j < a$ and $H^j(f)$ an isomorphism for $j > a$ and surjective for $j = a$, then there exists a covering $\{U_i \to U\}$ and for each i a dotted arrow over U_i making the diagram commute up to homotopy.

Proof. Our assumptions on f imply the cone $C(f)^\bullet$ has vanishing cohomology sheaves in degrees $\geq a$. Hence Lemma 42.6 guarantees there is a covering $\{U_i \to U\}$ such that the composition $\mathcal{E}^\bullet \to \mathcal{F}^\bullet \to C(f)^\bullet$ is homotopic to zero over U_i. Since

$$\mathcal{G}^\bullet \to \mathcal{F}^\bullet \to C(f)^\bullet \to \mathcal{G}^\bullet[1]$$

restricts to a distinguished triangle in $K(\mathcal{O}_{U_i})$ we see that we can lift $\alpha|_{U_i}$ up to homotopy to a map $\alpha_i : \mathcal{E}^\bullet|_{U_i} \to \mathcal{G}^\bullet|_{U_i}$ as desired.

Lemma 42.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let U be an object of \mathcal{C}. Let $\mathcal{E}^\bullet, \mathcal{F}^\bullet$ be complexes of \mathcal{O}_U-modules with \mathcal{E}^\bullet strictly perfect.

1. For any element $\alpha \in \text{Hom}_{D(\mathcal{O}_U)}(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ there exists a covering $\{U_i \to U\}$ such that $\alpha|_{U_i}$ is given by a morphism of complexes $\alpha_i : \mathcal{E}^\bullet|_{U_i} \to \mathcal{F}^\bullet|_{U_i}$.

2. Given a morphism of complexes $\alpha : \mathcal{E}^\bullet \to \mathcal{F}^\bullet$ whose image in the group $\text{Hom}_{D(\mathcal{O}_U)}(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ is zero, there exists a covering $\{U_i \to U\}$ such that $\alpha|_{U_i}$ is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a quasi-isomorphism $f : \mathcal{F}^\bullet \to \mathcal{G}^\bullet$ and a map of complexes $\beta : \mathcal{E}^\bullet \to \mathcal{G}^\bullet$ such that $\alpha = f^{-1}\beta$. Thus the result follows from Lemma 42.7. We omit the proof of (2).
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{E}^\bullet, \mathcal{F}^\bullet be complexes of \mathcal{O}-modules with \mathcal{E}^\bullet strictly perfect. Then the internal hom $R\mathcal{H}\hom(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ is represented by the complex \mathcal{H}^\bullet with terms

$$\mathcal{H}^n = \bigoplus_{n=p+q} \mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{F}^p)$$

and differential as described in Section [34].

Proof. Choose a quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ into a K-injective complex. Let $(\mathcal{H}')^\bullet$ be the complex with terms

$$(\mathcal{H}')^n = \prod_{n=p+q} \mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{I}^p)$$

which represents $R\mathcal{H}\hom(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ by the construction in Section [34]. It suffices to show that the map

$$\mathcal{H}^\bullet \to (\mathcal{H}')^\bullet$$

is a quasi-isomorphism. Given an object U of \mathcal{C} we have by inspection

$$H^0(\mathcal{H}^\bullet(U)) = \mathcal{H}\hom_{\mathcal{O}_U}(\mathcal{E}^\bullet|_U, \mathcal{F}^\bullet|_U) \to H^0((\mathcal{H}')^\bullet(U)) = \mathcal{H}\hom_{\mathcal{O}_U}(\mathcal{E}^\bullet|_U, \mathcal{F}^\bullet|_U)$$

By Lemma [42.8] the sheafification of $U \mapsto H^0(\mathcal{H}^\bullet(U))$ is equal to the sheafification of $U \mapsto H^0((\mathcal{H}')^\bullet(U))$. A similar argument can be given for the other cohomology sheaves. Thus \mathcal{H}^\bullet is quasi-isomorphic to $(\mathcal{H}')^\bullet$ which proves the lemma.

Lemma 42.10. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let \mathcal{E}^\bullet, \mathcal{F}^\bullet be complexes of \mathcal{O}-modules with

1. $\mathcal{F}^n = 0$ for $n \ll 0$,
2. $\mathcal{E}^n = 0$ for $n \gg 0$, and
3. \mathcal{E}^n isomorphic to a direct summand of a finite free \mathcal{O}-module.

Then the internal hom $R\mathcal{H}\hom(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ is represented by the complex \mathcal{H}^\bullet with terms

$$\mathcal{H}^n = \bigoplus_{n=p+q} \mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{F}^p)$$

and differential as described in Section [34].

Proof. Choose a quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ where \mathcal{I}^\bullet is a bounded below complex of injectives. Note that \mathcal{I}^\bullet is K-injective (Derived Categories, Lemma [29.4]). Hence the construction in Section [34] shows that $R\mathcal{H}\hom(\mathcal{E}^\bullet, \mathcal{F}^\bullet)$ is represented by the complex $(\mathcal{H}')^\bullet$ with terms

$$(\mathcal{H}')^n = \prod_{n=p+q} \mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{I}^p)$$

(equality because there are only finitely many nonzero terms). Note that \mathcal{H}^\bullet is the total complex associated to the double complex with terms $\mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{F}^p)$ and similarly for $(\mathcal{H}')^\bullet$. The natural map $(\mathcal{H}')^\bullet \to \mathcal{H}^\bullet$ comes from a map of double complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral sequence of a double complex (Homology, Lemma [22.6])

$$E_1^{p,q} = H^p(\mathcal{H}\hom_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{F}^\bullet))$$

converging to $H^{p+q}(\mathcal{H}^\bullet)$ and similarly for $(\mathcal{H}')^\bullet$. To finish the proof of the lemma it suffices to show that $\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ induces an isomorphism

$$H^p(\mathcal{H}\hom_\mathcal{O}(\mathcal{E}, \mathcal{F}^\bullet)) \to H^p(\mathcal{H}\hom_\mathcal{O}(\mathcal{E}, \mathcal{I}^\bullet))$$

on cohomology sheaves whenever \mathcal{E} is a direct summand of a finite free \mathcal{O}-module. Since this is clear when \mathcal{E} is finite free the result follows.
43. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

\textbf{Definition 43.1.} Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{E}^*\) be a complex of \(\mathcal{O}\)-modules. Let \(m \in \mathbb{Z}\).

1. We say \(\mathcal{E}^*\) is \(m\)-pseudo-coherent \(m\)-pseudo-coherent if for every object \(U\) of \(\mathcal{C}\) there exists a covering \(\{U_i \to U\}\) and for each \(i\) a morphism of complexes \(\alpha_i : \mathcal{E}_i^* \to \mathcal{E}_i^*|_{U_i}\) where \(\mathcal{E}_i\) is a strictly perfect complex of \(\mathcal{O}_{U_i}\)-modules and \(H^j(\alpha_i)\) is an isomorphism for \(j > m\) and \(H^m(\alpha_i)\) is surjective.

2. We say \(\mathcal{E}^*\) is pseudo-coherent if it is \(m\)-pseudo-coherent for all \(m\).

3. We say an object \(E\) of \(\mathcal{D}(\mathcal{O})\) is \(m\)-pseudo-coherent \(m\)-pseudo-coherent (resp. pseudo-coherent) if and only if it can be represented by a \(m\)-pseudo-coherent (resp. pseudo-coherent) complex of \(\mathcal{O}\)-modules.

If \(\mathcal{C}\) has a final object \(X\) which is quasi-compact (for example if every covering of \(X\) can be refined by a finite covering), then an \(m\)-pseudo-coherent object of \(\mathcal{D}(\mathcal{O})\) is in \(\mathcal{D}^{-}(\mathcal{O})\). But this need not be the case in general.

\textbf{Lemma 43.2.} Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(E\) be an object of \(\mathcal{D}(\mathcal{O})\).

1. If \(\mathcal{C}\) has a final object \(X\) and if there exist a covering \(\{U_i \to X\}\), strictly perfect complexes \(\mathcal{E}_i^*\) of \(\mathcal{O}_{U_i}\)-modules, and maps \(\alpha_i : \mathcal{E}_i^* \to E|_{U_i}\) in \(\mathcal{D}(\mathcal{O}_{U_i})\) with \(H^j(\alpha_i)\) an isomorphism for \(j > m\) and \(H^m(\alpha_i)\) surjective, then \(E\) is \(m\)-pseudo-coherent.

2. If \(E\) is \(m\)-pseudo-coherent, then any complex of \(\mathcal{O}\)-modules representing \(E\) is \(m\)-pseudo-coherent.

3. If for every object \(U\) of \(\mathcal{C}\) there exists a covering \(\{U_i \to U\}\) such that \(E|_{U_i}\) is \(m\)-pseudo-coherent, then \(E\) is \(m\)-pseudo-coherent.

\textbf{Proof.} Let \(\mathcal{F}^*\) be any complex representing \(E\) and let \(X\), \(\{U_i \to X\}\), and \(\alpha_i : \mathcal{E}_i^* \to E|_{U_i}\) be as in (1). We will show that \(\mathcal{F}^*\) is \(m\)-pseudo-coherent as a complex, which will prove (1) and (2) in case \(\mathcal{C}\) has a final object. By Lemma \([42.8]\) we can after refining the covering \(\{U_i \to X\}\) represent the maps \(\alpha_i\) by maps of complexes \(\alpha_i : \mathcal{E}_i^* \to \mathcal{F}_i^*|_{U_i}\). By assumption \(H^j(\alpha_i)\) are isomorphisms for \(j > m\), and \(H^m(\alpha_i)\) surjective whence \(\mathcal{F}^*\) is \(m\)-pseudo-coherent.

Proof of (2). By the above we see that \(\mathcal{F}^*|_{U_i}\) is \(m\)-pseudo-coherent as a complex of \(\mathcal{O}_{U_i}\)-modules for all objects \(U\) of \(\mathcal{C}\). It is a formal consequence of the definitions that \(\mathcal{F}^*\) is \(m\)-pseudo-coherent.

Proof of (3). Follows from the definitions and Sites, Definition \([6.2]\) part (2). \(\square\)

\textbf{Lemma 43.3.} Let \((f, f^\#) : (\mathcal{C}, \mathcal{O}_C) \to (\mathcal{D}, \mathcal{O}_D)\) be a morphism of ringed sites. Let \(E\) be an object of \(\mathcal{D}(\mathcal{O}_C)\). If \(E\) is \(m\)-pseudo-coherent, then \(Lf^*\)E is \(m\)-pseudo-coherent.

\textbf{Proof.} Say \(f\) is given by the functor \(u : \mathcal{D} \to \mathcal{C}\). Let \(U\) be an object of \(\mathcal{C}\). By Sites, Lemma \([14.10]\) we can find a covering \(\{U_i \to U\}\) and for each \(i\) a morphism \(U_i \to u(V_i)\) for some object \(V_i\) of \(\mathcal{D}\). By Lemma \([43.2]\) it suffices to show that \(Lf^*E|_{U_i}\) is \(m\)-pseudo-coherent. To do this it is enough to show that \(Lf^*E|_{u(V_i)}\) is \(m\)-pseudo-coherent, since \(Lf^*E|_{U_i}\) is the restriction of \(Lf^*E|_{u(V_i)}\) to \(\mathcal{C}/U_i\) (via Modules on Sites, Lemma \([19.5]\)). By the commutative diagram of Modules on Sites, Lemma \([20.1]\) it suffices to prove the lemma for the morphism of ringed sites.
Let \(m \) be a final object of \(C \).

Let \(\{ V_i \to Y \} \) be a covering such that for each \(i \) there exists a strictly perfect complex \(F_i^* \) of \(\mathcal{O}_{V_i} \)-modules and a morphism \(\alpha_i : F_i^* \to E|_{V_i} \) of \(D(\mathcal{O}_{V_i}) \) such that \(H^j(\alpha_i) \) is an isomorphism for \(j > m \) and \(H^m(\alpha_i) \) is surjective. Arguing as above it suffices to prove the result for \((C/u(V_i), \mathcal{O}_{u(V_i)}) \to (C/V_i, \mathcal{O}_{V_i}) \). Hence we may assume that there exists a strictly perfect complex \(F^* \) of \(\mathcal{O}_D \)-modules and a morphism \(\alpha : F^* \to E \) of \(D(\mathcal{O}_D) \) such that \(H^j(\alpha) \) is an isomorphism for \(j > m \) and \(H^m(\alpha) \) is surjective. In this case, choose a distinguished triangle

\[
F^* \to E \to C \to F^*[1]
\]

The assumption on \(\alpha \) means exactly that the cohomology sheaves \(H^i(C) \) are zero for all \(j \geq m \). Applying \(Lf^* \) we obtain the distinguished triangle

\[
Lf^*F^* \to Lf^*E \to Lf^*C \to Lf^*F^*[1]
\]

By the construction of \(Lf^* \) as a left derived functor we see that \(H^j(Lf^*C) = 0 \) for \(j \geq m \) (by the dual of Derived Categories, Lemma \[17.1\]). Hence \(H^j(Lf^*\alpha) \) is an isomorphism for \(j > m \) and \(H^m(Lf^*\alpha) \) is surjective. On the other hand, since \(F^* \) is a bounded above complex of flat \(\mathcal{O}_D \)-modules we see that \(Lf^*F^* = f^*F^* \).

Applying Lemma \[12.2\] we conclude. \(\square \)

Lemma 43.4. Let \((C, \mathcal{O}) \) be a ringed site and \(m \in \mathbb{Z} \). Let \((K, L, M, f, g, h) \) be a distinguished triangle in \(D(\mathcal{O}) \).

1. If \(K \) is \((m + 1)\)-pseudo-coherent and \(L \) is \(m \)-pseudo-coherent then \(M \) is \(m \)-pseudo-coherent.
2. If \(K \) and \(M \) are \(m \)-pseudo-coherent, then \(L \) is \(m \)-pseudo-coherent.
3. If \(L \) is \((m + 1)\)-pseudo-coherent and \(M \) is \(m \)-pseudo-coherent, then \(K \) is \((m + 1)\)-pseudo-coherent.

Proof. Proof of (1). Let \(U \) be an object of \(C \). Choose a covering \(\{ U_i \to U \} \) and maps \(\alpha_i : K_i^* \to K|_{U_i} \) in \(D(\mathcal{O}_{U_i}) \) with \(K_i^* \) strictly perfect and \(H^j(\alpha_i) \) isomorphisms for \(j > m + 1 \) and surjective for \(j = m + 1 \). We may replace \(K_i^* \) by \(\sigma_{\geq m+1}K_i^* \) and hence we may assume that \(K_i^j = 0 \) for \(j < m + 1 \). After refining the covering we may choose maps \(\beta_i : L_i^* \to L|_{U_i} \) in \(D(\mathcal{O}_{U_i}) \) with \(L_i^* \) strictly perfect such that \(H^j(\beta) \) is an isomorphism for \(j > m \) and surjective for \(j = m \). By Lemma \[12.7\] we can, after refining the covering, find maps of complexes \(\gamma_i : K_i^* \to L_i^* \) such that the diagrams

\[
\begin{array}{ccc}
K|_{U_i} & \longrightarrow & L|_{U_i} \\
\downarrow \alpha_i & & \downarrow \beta_i \\
K_i^* & \gamma_i \downarrow & L_i^* \\
\end{array}
\]

are commutative in \(D(\mathcal{O}_{U_i}) \) (this requires representing the maps \(\alpha_i, \beta_i \) and \(K|_{U_i} \to L|_{U_i} \) by actual maps of complexes; some details omitted). The cone \(C(\gamma_i)^* \) is strictly perfect (Lemma \[12.2\]). The commutativity of the diagram implies that there exists a morphism of distinguished triangles

\[
(K_i^*, L_i^*, C(\gamma_i)^*) \to (K|_{U_i}, L|_{U_i}, M|_{U_i})
\]

It follows from the induced map on long exact cohomology sequences and Homology, Lemmas \[5.19\] and \[5.20\] that \(C(\gamma_i)^* \to M|_{U_i} \) induces an isomorphism on cohomology.
in degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by Lemma 43.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. \(\square \)

Lemma 43.5. Let \((\mathcal{C},\mathcal{O})\) be a ringed site. Let \(K,L\) be objects of \(D(\mathcal{O})\).

(1) If \(K\) is \(n\)-pseudo-coherent and \(H^i(K) = 0\) for \(i > a\) and \(L\) is \(m\)-pseudo-coherent and \(H^j(L) = 0\) for \(j > b\), then \(K \otimes^L_O L\) is \(t\)-pseudo-coherent with \(t = \max(m + a, n + b)\).

(2) If \(K\) and \(L\) are pseudo-coherent, then \(K \otimes^L_O L\) is pseudo-coherent.

Proof. Proof of (1). Let \(U\) be an object of \(\mathcal{C}\). By replacing \(U\) by the members of a covering and replacing \(\mathcal{C}\) by the localization \(\mathcal{C}/U\) we may assume there exist strictly perfect complexes \(K^*\) and \(L^*\) and maps \(\alpha : K^* \to K\) and \(\beta : L^* \to L\) with \(H^i(\alpha)\) and isomorphism for \(i > n\) and surjective for \(i = n\) and with \(H^i(\beta)\) and isomorphism for \(i > m\) and surjective for \(i = m\). Then the map
\[
\alpha \otimes^L_O \beta : \text{Tot}(K^* \otimes_O L^*) \to K \otimes^L_O L
\]
induces isomorphisms on cohomology sheaves in degree \(i\) for \(i > t\) and a surjection for \(i = t\). This follows from the spectral sequence of tors (details omitted).

Proof of (2). Let \(U\) be an object of \(\mathcal{C}\). We may first replace \(U\) by the members of a covering and \(\mathcal{C}\) by the localization \(\mathcal{C}/U\) to reduce to the case that \(K\) and \(L\) are bounded above. Then the statement follows immediately from case (1). \(\square \)

Lemma 43.6. Let \((\mathcal{C},\mathcal{O})\) be a ringed site. Let \(m \in \mathbb{Z}\). If \(K \oplus L\) is \(m\)-pseudo-coherent (resp. pseudo-coherent) in \(D(\mathcal{O})\) so are \(K\) and \(L\).

Proof. Assume that \(K \oplus L\) is \(m\)-pseudo-coherent. Let \(U\) be an object of \(\mathcal{C}\). After replacing \(U\) by the members of a covering we may assume \(K \oplus L \in D^-(\mathcal{O}_U)\), hence \(L \in D^-(\mathcal{O}_U)\). Note that there is a distinguished triangle
\[
(K \oplus L, K \oplus L, L \oplus L[1]) = (K,K,0) \oplus (L,L,L[1])
\]
see Derived Categories, Lemma 43.4. By Lemma 43.4 we see that \(L \oplus L[1]\) is \(m\)-pseudo-coherent. Hence also \(L[1] \oplus L[2]\) is \(m\)-pseudo-coherent. By induction \(L[n] \oplus L[n+1]\) is \(m\)-pseudo-coherent. Since \(L\) is bounded above we see that \(L[n]\) is \(m\)-pseudo-coherent for large \(n\). Hence working backwards, using the distinguished triangles
\[
(L[n], L[n] \oplus L[n-1], L[n-1])
\]
we conclude that \(L[n+1], L[n-2], \ldots, L\) are \(m\)-pseudo-coherent as desired. \(\square \)

Lemma 43.7. Let \((\mathcal{C},\mathcal{O})\) be a ringed site. Let \(K\) be an object of \(D(\mathcal{O})\). Let \(m \in \mathbb{Z}\).

(1) If \(K\) is \(m\)-pseudo-coherent and \(H^i(K) = 0\) for \(i > m\), then \(H^m(K)\) is a finite type \(\mathcal{O}\)-module.

(2) If \(K\) is \(m\)-pseudo-coherent and \(H^i(K) = 0\) for \(i > m + 1\), then \(H^{m+1}(K)\) is a finitely presented \(\mathcal{O}\)-module.

Proof. Proof of (1). Let \(U\) be an object of \(\mathcal{C}\). We have to show that \(H^m(K)\) is can be generated by finitely many sections over the members of a covering of \(U\) (see Modules on Sites, Definition 23.1). Thus during the proof we may (finitely often) choose a covering \(\{U_i \to U\}\) and replace \(\mathcal{C}\) by \(\mathcal{C}/U\) and \(U\) by \(U_i\). In particular, by our definitions we may assume there exists a strictly perfect complex \(\mathcal{E}^*\) and a map \(\alpha : \mathcal{E}^* \to K\) which induces an isomorphism on cohomology in degrees > m...
and a surjection in degree m. It suffices to prove the result for E^\bullet. Let n be the largest integer such that $E^n \neq 0$. If $n = m$, then $H^m(E^\bullet)$ is a quotient of E^n and the result is clear. If $n > m$, then $E^{n-1} \to E^n$ is surjective as $H^n(E^\bullet) = 0$. By Lemma 42.5 we can (after replacing U by the members of a covering) find a section of this surjection and write $E^{n-1} = E' \oplus E^n$. Hence it suffices to prove the result for the complex $(E')^\bullet$ which is the same as E^\bullet except has E' in degree $n - 1$ and 0 in degree n. We win by induction on n.

Proof of (2). Pick an object U of \mathcal{C}. As in the proof of (1) we may work locally on U. Hence we may assume there exists a strictly perfect complex E^\bullet and a map $\alpha : E^\bullet \to K$ which induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree m. As in the proof of (1) we can reduce to the case that $E_i = 0$ for $i > m + 1$. Then we see that $H^{m+1}(K) \cong H^{m+1}(E^\bullet) = \text{Coker}(E^m \to E^{m+1})$ which is of finite presentation.

44. Tor dimension

Definition 44.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let E be an object of $D(\mathcal{O})$. Let $a, b \in \mathbb{Z}$ with $a \leq b$.

1. We say E has tor-amplitude in $[a, b]$ if $H^i(E \otimes^L \mathcal{O}) = 0$ for all \mathcal{O}-modules \mathcal{F} and all $i \not\in [a, b]$.
2. We say E has finite tor dimension if it has tor-amplitude in $[a, b]$ for some a, b.
3. We say E locally has finite tor dimension if for any object U of \mathcal{C} there exists a covering $\{U_i \to U\}$ such that $E|_{U_i}$ has finite tor dimension for all i.

An \mathcal{O}-module \mathcal{F} has tor dimension $\leq d$ if $\mathcal{F}[0]$ viewed as an object of $D(\mathcal{O})$ has tor-amplitude in $[-d, 0]$.

Note that if E as in the definition has finite tor dimension, then E is an object of $D^b(\mathcal{O})$ as can be seen by taking $\mathcal{F} = \mathcal{O}$ in the definition above.

Lemma 44.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let E^\bullet be a bounded above complex of flat \mathcal{O}-modules with tor-amplitude in $[a, b]$. Then $\text{Coker}(d_{E^\bullet}^{a-1})$ is a flat \mathcal{O}-module.

Proof. As E^\bullet is a bounded above complex of flat modules we see that $E^\bullet \otimes\mathcal{O} \mathcal{F} = E^\bullet \otimes^L \mathcal{F}$ for any \mathcal{O}-module \mathcal{F}. Hence for every \mathcal{O}-module \mathcal{F} the sequence

$$E^{a-1} \otimes\mathcal{O} \mathcal{F} \to E^a \otimes\mathcal{O} \mathcal{F} \to E^a \otimes\mathcal{O} \mathcal{F}$$

is exact in the middle. Since $E^{a-2} \to E^{a-1} \to E^a \to \text{Coker}(d^{a-1}) \to 0$ is a flat resolution this implies that $\text{Tor}_1^\mathcal{O}(\text{Coker}(d^{a-1}), \mathcal{F}) = 0$ for all \mathcal{O}-modules \mathcal{F}. This means that $\text{Coker}(d^{a-1})$ is flat, see Lemma 18.14.

Lemma 44.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let E be an object of $D(\mathcal{O})$. Let $a, b \in \mathbb{Z}$ with $a \leq b$. The following are equivalent

1. E has tor-amplitude in $[a, b]$.
2. E is represented by a complex E^\bullet of flat \mathcal{O}-modules with $E^i = 0$ for $i \not\in [a, b]$.

Proof. If (2) holds, then we may compute $E \otimes^L \mathcal{F} = E^\bullet \otimes\mathcal{O} \mathcal{F}$ and it is clear that (1) holds.
Assume that (1) holds. We may represent E by a bounded above complex of flat \mathcal{O}-modules \mathcal{K}^\bullet, see Section 18. Let n be the largest integer such that $\mathcal{K}^n \neq 0$. If $n > b$, then $\mathcal{K}^{n-1} \to \mathcal{K}^n$ is surjective as $H^n(\mathcal{K}^\bullet) = 0$. As \mathcal{K}^n is flat we see that $\text{Ker}(\mathcal{K}^{n-1} \to \mathcal{K}^n)$ is flat (Modules on Sites, Lemma 28.9). Hence we may replace \mathcal{K}^\bullet by $\tau_{\leq n-1} \mathcal{K}^\bullet$. Thus, by induction on n, we reduce to the case that \mathcal{K}^\bullet is a complex of flat \mathcal{O}-modules with $\mathcal{K}^i = 0$ for $i > b$.

Set $\mathcal{E}^\bullet = \tau_{\geq a} \mathcal{K}^\bullet$. Everything is clear except that \mathcal{E}^a is flat which follows immediately from Lemma 44.2 and the definitions.

Lemma 44.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let E be an object of $D(\mathcal{O})$. Let $a \in \mathbb{Z}$. The following are equivalent

1. E has tor-amplitude in $[a, \infty]$.
2. E can be represented by a K-flat complex \mathcal{E}^\bullet of flat \mathcal{O}-modules with $\mathcal{E}^i = 0$ for $i \notin [a, \infty]$.

Moreover, we can choose \mathcal{E}^\bullet such that any pullback by a morphism of ringed sites is a K-flat complex with flat terms.

Proof. The implication (2) \Rightarrow (1) is immediate. Assume (1) holds. First we choose a K-flat complex \mathcal{K}^\bullet with flat terms representing E, see Lemma 18.10. For any \mathcal{O}-module \mathcal{M} the cohomology of

\[\mathcal{K}^{n-1} \otimes_{\mathcal{O}} \mathcal{M} \to \mathcal{K}^n \otimes_{\mathcal{O}} \mathcal{M} \to \mathcal{K}^{n+1} \otimes_{\mathcal{O}} \mathcal{M} \]

computes $H^n(\mathcal{E} \otimes_{\mathcal{O}} \mathcal{M})$. This is always zero for $n < a$. Hence if we apply Lemma 44.2 to the complex $\ldots \to \mathcal{K}^{a-1} \to \mathcal{K}^a \to \mathcal{K}^{a+1}$ we conclude that $\mathcal{N} = \text{Coker}(\mathcal{K}^{a-1} \to \mathcal{K}^a)$ is a flat \mathcal{O}-module. We set

\[\mathcal{E}^\bullet = \tau_{\geq a} \mathcal{K}^\bullet = (\ldots \to 0 \to \mathcal{N} \to \mathcal{K}^{a+1} \to \ldots) \]

The kernel \mathcal{L}^\bullet of $\mathcal{K}^\bullet \to \mathcal{E}^\bullet$ is the complex

\[\mathcal{L}^\bullet = (\ldots \to \mathcal{K}^{a-1} \to \mathcal{I} \to 0 \to \ldots) \]

where $\mathcal{I} \subset \mathcal{K}^a$ is the image of $\mathcal{K}^{a-1} \to \mathcal{K}^a$. Since we have the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^a \to \mathcal{N} \to 0$ we see that \mathcal{I} is a flat \mathcal{O}-module. Thus \mathcal{L}^\bullet is a bounded above complex of flat modules, hence K-flat by Lemma 18.7. It follows that \mathcal{E}^\bullet is K-flat by Lemma 18.6.

Proof of the final assertion. Let $f : (\mathcal{C}', \mathcal{O}') \to (\mathcal{C}, \mathcal{O})$ be a morphism of ringed sites. The proof of Lemma 19.1 shows that the complex \mathcal{K}^\bullet (as constructed in Lemma 18.10) has the property that $f^* \mathcal{K}^\bullet$ is K-flat. The complex $f^* \mathcal{L}^\bullet$ is K-flat as it is a bounded above complex of flat \mathcal{O}'-modules. We have a short exact sequence of complexes of \mathcal{O}'-modules

\[0 \to f^* \mathcal{L}^\bullet \to f^* \mathcal{K}^\bullet \to f^* \mathcal{E}^\bullet \to 0 \]

because the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^a \to \mathcal{N} \to 0$ of flat modules pulls back to a short exact sequence. Then we can use the 2-out-of-3 property for K-flat complexes to conclude that $f^* \mathcal{E}^\bullet$ is K-flat.

Lemma 44.5. Let $(f, f^\sharp) : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to (\mathcal{D}, \mathcal{O}_\mathcal{D})$ be a morphism of ringed sites. Let E be an object of $D(\mathcal{O}_\mathcal{D})$. If E has tor amplitude in $[a, b]$, then $Lf^* E$ has tor amplitude in $[a, b]$.

Proof. Assume E has tor amplitude in $[a,b]$. By Lemma 44.3 we can represent E by a complex of \mathcal{E}^\bullet of flat O-modules with $\mathcal{E}^i = 0$ for $i \notin [a,b]$. Then Lf^*E is represented by $f^*\mathcal{E}^\bullet$. By Modules on Sites, Lemma 38.1 the module $f^*\mathcal{E}^i$ are flat. Thus by Lemma 44.3 we conclude that Lf^*E has tor amplitude in $[a,b]$. □

Lemma 44.6. Let (\mathcal{C}, O) be a ringed site. Let (K, L, M, f, g, h) be a distinguished triangle in $D(O)$. Let $a, b \in \mathbb{Z}$.

1. If K has tor-amplitude in $[a+1, b+1]$ and L has tor-amplitude in $[a, b]$ then M has tor-amplitude in $[a, b]$.

2. If K and M have tor-amplitude in $[a, b]$, then L has tor-amplitude in $[a, b]$.

3. If L has tor-amplitude in $[a+1, b+1]$ and M has tor-amplitude in $[a, b]$, then K has tor-amplitude in $[a+1, b+1]$.

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence associated to a distinguished triangle and the fact that $- \otimes^L \mathcal{F}$ preserves distinguished triangles. The easiest one to prove is (2) and the others follow from it by translation. □

Lemma 44.7. Let (\mathcal{C}, O) be a ringed site. Let K, L be objects of $D(O)$. If K has tor-amplitude in $[a, b]$ and L has tor-amplitude in $[c, d]$ then $K \otimes^L O \ L$ has tor amplitude in $[a+c, b+d]$.

Lemma 44.8. Let (\mathcal{C}, O) be a ringed site. Let $a, b \in \mathbb{Z}$. For K, L objects of $D(O)$ if $K \oplus L$ has tor amplitude in $[a, b]$ so do K and L.

Proof. Clear from the fact that the Tor functors are additive. □

Lemma 44.9. Let (\mathcal{C}, O) be a ringed site. Let $\mathcal{I} \subset O$ be a sheaf of ideals. Let K be an object of $D(O)$.

1. If $K \otimes^L O/\mathcal{I}$ is bounded above, then $K \otimes^L O/\mathcal{I}^n$ is uniformly bounded above for all n.

2. If $K \otimes^L O/\mathcal{I}$ as an object of $D(O/\mathcal{I})$ has tor amplitude in $[a, b]$, then $K \otimes^L O/\mathcal{I}^n$ as an object of $D(O/\mathcal{I}^n)$ has tor amplitude in $[a, b]$ for all n.

Proof. Proof of (1). Assume that $K \otimes^L O/\mathcal{I}$ is bounded above, say $H^i(K \otimes^L O/\mathcal{I}) = 0$ for $i > b$. Note that we have distinguished triangles

$$K \otimes^L \mathcal{I}^n/\mathcal{I}^{n+1} \to K \otimes^L O/\mathcal{I}^{n+1} \to K \otimes^L O/\mathcal{I}^n \to K \otimes^L \mathcal{I}^n/\mathcal{I}^{n+1}[1]$$

and that

$$K \otimes^L \mathcal{I}^n/\mathcal{I}^{n+1} = (K \otimes^L O/\mathcal{I}) \otimes^L O/\mathcal{I} \mathcal{I}^n/\mathcal{I}^{n+1}$$

By induction we conclude that $H^i(K \otimes^L O/\mathcal{I}^n) = 0$ for $i > b$ for all n.

Proof of (2). Assume $K \otimes^L O/\mathcal{I}$ as an object of $D(O/\mathcal{I})$ has tor amplitude in $[a, b]$. Let \mathcal{F} be a sheaf of O/\mathcal{I}^n-modules. Then we have a finite filtration

$$0 \subset \mathcal{I}^{n-1} \mathcal{F} \subset \cdots \subset \mathcal{I} \mathcal{F} \subset \mathcal{F}$$

whose successive quotients are sheaves of O/\mathcal{I}-modules. Thus to prove that $K \otimes^L O/\mathcal{I}^n$ has tor amplitude in $[a, b]$ it suffices to show $H^i(K \otimes^L O/\mathcal{I}^n \otimes^L O/\mathcal{I}^n \mathcal{G})$ is zero for $i \notin [a, b]$ for all O/\mathcal{I}-modules \mathcal{G}. Since

$$(K \otimes^L O/\mathcal{I}^n) \otimes^L O/\mathcal{I} \mathcal{G} = (K \otimes^L O/\mathcal{I}) \otimes^L O/\mathcal{I} \mathcal{G}$$
Lemma 44.10. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(E\) be an object of \(D(\mathcal{O})\). Let \(a, b \in \mathbb{Z}\).

1. If \(E\) has tor amplitude in \([a, b]\), then for every point \(p\) of the site \(\mathcal{C}\) the object \(E_p\) of \(D(\mathcal{O}_p)\) has tor amplitude in \([a, b]\).

2. If \(\mathcal{C}\) has enough points, then the converse is true.

Proof. Proof of (1). This follows because taking stalks at \(p\) is the same as pulling back by the morphism of ringed sites \((p, \mathcal{O}_p) \to (\mathcal{C}, \mathcal{O})\) and hence we can apply Lemma 44.5.

Proof of (2). If \(\mathcal{C}\) has enough points, then we can check vanishing of \(H^i(E \otimes^\mathbb{L}_{\mathcal{O}} \mathcal{F})\) at stalks, see Modules on Sites, Lemma 14.4. Since \(H^i(E \otimes^\mathbb{L}_{\mathcal{O}} \mathcal{F})_p = H^i(E_p \otimes^\mathbb{L}_{\mathcal{O}_p} \mathcal{F}_p)\) we conclude.

\(\square\)

45. Perfect complexes

In this section we discuss properties of perfect complexes on ringed sites.

Definition 45.1. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(\mathcal{E}^\bullet\) be a complex of \(\mathcal{O}\)-modules. We say \(\mathcal{E}^\bullet\) is perfect if for every object \(U\) of \(\mathcal{C}\) there exists a covering \(\{U_i \to U\}\) such that for each \(i\) there exists a morphism of complexes \(\mathcal{E}^\bullet_i \to \mathcal{E}^\bullet|_{U_i}\) which is a quasi-isomorphism with \(\mathcal{E}^\bullet_i\) strictly perfect. An object \(E\) of \(D(\mathcal{O})\) is perfect if it can be represented by a perfect complex of \(\mathcal{O}\)-modules.

Lemma 45.2. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(E\) be an object of \(D(\mathcal{O})\).

1. If \(\mathcal{C}\) has a final object \(X\) and there exist a covering \(\{U_i \to X\}\), strictly perfect complexes \(\mathcal{E}^\bullet_i\) of \(\mathcal{O}_{U_i}\)-modules, and isomorphisms \(\alpha_i : \mathcal{E}^\bullet_i \to E|_{U_i}\) in \(D(\mathcal{O}_{U_i})\), then \(E\) is perfect.

2. If \(E\) is perfect, then any complex representing \(E\) is perfect.

Proof. Identical to the proof of Lemma 43.2

Lemma 45.3. Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(E\) be an object of \(D(\mathcal{O})\). Let \(a \leq b\) be integers. If \(E\) has tor amplitude in \([a, b]\) and is \((a - 1)\)-pseudo-coherent, then \(E\) is perfect.

Proof. Let \(U\) be an object of \(\mathcal{C}\). After replacing \(U\) by the members of a covering and \(\mathcal{C}\) by the localization \(\mathcal{C}/U\) we may assume there exists a strictly perfect complex \(\mathcal{E}^\bullet\) and a map \(\alpha : \mathcal{E}^\bullet \to E\) such that \(H^i(\alpha)\) is an isomorphism for \(i \geq a\). We may and do replace \(\mathcal{E}^\bullet\) by \(\sigma_{\geq a - 1}\mathcal{E}^\bullet\). Choose a distinguished triangle
\[
\mathcal{E}^\bullet \to E \to C \to \mathcal{E}^\bullet[1]
\]
From the vanishing of cohomology sheaves of \(E\) and \(\mathcal{E}^\bullet\) and the assumption on \(\alpha\) we obtain \(C \cong \mathcal{K}[a - 2]\) with \(\mathcal{K} = \text{Ker}(\mathcal{E}^{a - 1} \to \mathcal{E}^a)\). Let \(\mathcal{F}\) be an \(\mathcal{O}\)-module. Applying \(\mathcal{K} \otimes_{\mathcal{O}} \mathcal{F}\) the assumption that \(E\) has tor amplitude in \([a, b]\) implies \(\mathcal{K} \otimes_{\mathcal{O}} \mathcal{F} \to \mathcal{E}^{a - 1} \otimes_{\mathcal{O}} \mathcal{F}\) has image \(\text{Ker}(\mathcal{E}^{a - 1} \otimes_{\mathcal{O}} \mathcal{F} \to \mathcal{E}^a \otimes_{\mathcal{O}} \mathcal{F})\). It follows that \(\text{Tor}_1^\mathcal{O}(\mathcal{E}', \mathcal{F}) = 0\) where \(\mathcal{E}' = \text{Coker}(\mathcal{E}^{a - 1} \to \mathcal{E}^a)\). Hence \(\mathcal{E}'\) is flat (Lemma 18.14). Thus there exists a covering \(\{U_i \to U\}\) such that \(\mathcal{E}'|_{U_i}\) is a direct summand of a finite free module by Modules on Sites, Lemma 28.13. Thus the complex
\[
\mathcal{E}'|_{U_i} \to \mathcal{E}^{a - 1}|_{U_i} \to \ldots \to \mathcal{E}^b|_{U_i}
\]
is quasi-isomorphic to \(E|_{U_i}\) and \(E\) is perfect.

\(\square\)
Lemma 45.4. Let \((C, \mathcal{O})\) be a ringed site. Let \(E\) be an object of \(D(\mathcal{O})\). The following are equivalent

1. \(E\) is perfect, and
2. \(E\) is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let \(U\) be an object of \(C\). By definition there exists a covering \(\{U_i \to U\}\) such that \(E|_{U_i}\) is represented by a strictly perfect complex. Thus \(E\) is pseudo-coherent (i.e., \(m\)-pseudo-coherent for all \(m\)) by Lemma 43.2. Moreover, a direct summand of a finite free module is flat, hence \(E|_{U_i}\) has finite Tor dimension by Lemma 44.3. Thus (2) holds.

Assume (2). Let \(U\) be an object of \(C\). After replacing \(U\) by the members of a covering we may assume there exist integers \(a \leq b\) such that \(E|_{U}\) has tor amplitude in \([a,b]\). Since \(E|_{U}\) is \(m\)-pseudo-coherent for all \(m\) we conclude using Lemma 45.3.

Lemma 45.5. Let \((f, f^\#) : (C, \mathcal{O}_C) \to (D, \mathcal{O}_D)\) be a morphism of ringed sites. Let \(E\) be an object of \(D(\mathcal{O}_D)\). If \(E\) is perfect in \(D(\mathcal{O}_D)\), then \(Lf^*E\) is perfect in \(D(\mathcal{O}_C)\).

Proof. This follows from Lemma 45.4, 44.5, and 43.3.

Lemma 45.6. Let \((C, \mathcal{O})\) be a ringed site. Let \((K, L, M, f, g, h)\) be a distinguished triangle in \(D(\mathcal{O})\). If two out of three of \(K, L, M\) are perfect then the third is also perfect.

Proof. First proof: Combine Lemmas 45.4, 43.4, and 44.6. Second proof (sketch): Say \(K\) and \(L\) are perfect. Let \(U\) be an object of \(C\). After replacing \(U\) by the members of a covering we may assume that \(K|_U\) and \(L|_U\) are represented by strictly perfect complexes \(K^\bullet\) and \(L^\bullet\). After replacing \(U\) by the members of a covering we may assume the map \(K|_U \to L|_U\) is given by a map of complexes \(\alpha : K^\bullet \to L^\bullet\), see Lemma 42.8. Then \(M|_U\) is isomorphic to the cone of \(\alpha\) which is strictly perfect by Lemma 42.2.

Lemma 45.7. Let \((C, \mathcal{O})\) be a ringed site. If \(K, L\) are perfect objects of \(D(\mathcal{O})\), then so is \(K \otimes_{\mathcal{O}} L\).

Proof. Follows from Lemmas 45.4, 44.5, and 44.7.

Lemma 45.8. Let \((C, \mathcal{O})\) be a ringed site. If \(K \oplus L\) is a perfect object of \(D(\mathcal{O})\), then so are \(K\) and \(L\).

Proof. Follows from Lemmas 45.4, 43.6, and 44.8.

Lemma 45.9. Let \((C, \mathcal{O})\) be a ringed site. Let \(K\) be a perfect object of \(D(\mathcal{O})\). Then \(K^\vee = R \text{Hom}(K, \mathcal{O})\) is a perfect object too and \((K^\vee)^\vee = K\). There are functorial isomorphisms

\[K^\vee \otimes_{\mathcal{O}} M = R \text{Hom}_{\mathcal{O}}(K, M) \]

and

\[H^0(C, K^\vee \otimes_{\mathcal{O}} M) = \text{Hom}_{D(\mathcal{O})}(K, M) \]

for \(M\) in \(D(\mathcal{O})\).
Proof. We will use without further mention that formation of internal hom commutes with restriction (Lemma \ref{lem:internal-hom-commutes-with-restriction}). In particular we may check the first two statements locally, i.e., given any object \(U \) of \(\mathcal{C} \) it suffices to prove there is a covering \(\{ U_i \to U \} \) such that the statement is true after restricting to \(\mathcal{C}/U_i \) for each \(i \). By Lemma \ref{lem:by-local-lemma} to see the final statement it suffices to check that the map (34.9.1)

\[
K^\vee \otimes^L \mathcal{O} M \to R\mathcal{H}om(K, M)
\]

is an isomorphism. This is a local question as well. Hence it suffices to prove the lemma when \(K \) is represented by a strictly perfect complex.

Assume \(K \) is represented by the strictly perfect complex \(\mathcal{E}^\bullet \). Then it follows from Lemma \ref{lem:strictly-perfect-complex} that \(K^\vee \) is represented by the complex whose terms are \((\mathcal{E}^n)^\vee = \mathcal{H}om_\mathcal{O}(\mathcal{E}^n, \mathcal{O}) \) in degree \(-n \). Since \(\mathcal{E}^n \) is a direct summand of a finite free \(\mathcal{O} \)-module, so is \((\mathcal{E}^n)^\vee \). Hence \(K^\vee \) is represented by a strictly perfect complex too. It is also clear that \((K^\vee)^\vee = K \) as we have \(((\mathcal{E}^n)^\vee)^\vee = \mathcal{E}^n \). To see that (34.9.1) is an isomorphism, represent \(M \) by a \(K \)-flat complex \(\mathcal{F}^\bullet \). By Lemma \ref{lem:derived-hom-zero} the complex \(R\mathcal{H}om(K, M) \) is represented by the complex with terms

\[
\bigoplus_{n=p+q} \mathcal{H}om_\mathcal{O}(\mathcal{E}^{-q}, \mathcal{F}^p)
\]

On the other hand, the object \(K^\vee \otimes^L \mathcal{O} M \) is represented by the complex with terms

\[
\bigoplus_{n=p+q} \mathcal{F}^p \otimes_\mathcal{O} (\mathcal{E}^{-q})^\vee
\]

Thus the assertion that (34.9.1) is an isomorphism reduces to the assertion that the canonical map

\[
\mathcal{F} \otimes_\mathcal{O} \mathcal{H}om_\mathcal{O}(\mathcal{E}, \mathcal{O}) \to \mathcal{H}om_\mathcal{O}(\mathcal{E}, \mathcal{F})
\]

is an isomorphism when \(\mathcal{E} \) is a direct summand of a finite free \(\mathcal{O} \)-module and \(\mathcal{F} \) is any \(\mathcal{O} \)-module. This follows immediately from the corresponding statement when \(\mathcal{E} \) is finite free. \(\Box \)

\begin{lem}
Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \((K_n)_{n \in \mathbb{N}}\) be a system of perfect objects of \(D(\mathcal{O}) \). Let \(K = \text{hocolim} K_n \) be the derived colimit (Derived Categories, Definition \ref{def:derived-colimit}). Then for any object \(E \) of \(D(\mathcal{O}) \) we have

\[
R\mathcal{H}om(K, E) = R\lim E \otimes_\mathcal{O} K_n^\vee
\]

where \((K_n^\vee)\) is the inverse system of dual perfect complexes.
\end{lem}

Proof. By Lemma \ref{lem:derived-hom-zero} we have \(R\lim E \otimes_\mathcal{O} K_n^\vee = R\lim R\mathcal{H}om(K_n, E) \) which fits into the distinguished triangle

\[
R\lim R\mathcal{H}om(K_n, E) \to \prod R\mathcal{H}om(K_n, E) \to \prod R\mathcal{H}om(K_n, E)
\]

Because \(K \) similarly fits into the distinguished triangle \(\bigoplus K_n \to \bigoplus K_n \to K \) it suffices to show that \(\prod R\mathcal{H}om(K_n, E) = R\mathcal{H}om(\bigoplus K_n, E) \). This is a formal consequence of (34.0.1) and the fact that derived tensor product commutes with direct sums. \(\Box \)
46. Projection formula

Let \(f : (Sh(\mathcal{C}), \mathcal{O}_C) \to (Sh(\mathcal{D}), \mathcal{O}_D) \) be a morphism of ringed topoi. Let \(E \in D(\mathcal{O}_C) \) and \(K \in D(\mathcal{O}_D) \). Without any further assumptions there is a map

\[
Rf_\ast E \otimes_{\mathcal{O}_D}^L K \to Rf_\ast (E \otimes_{\mathcal{O}_C}^L Lf^\ast K)
\]

Namely, it is the adjoint to the canonical map

\[
Lf^\ast (Rf_\ast E \otimes_{\mathcal{O}_D}^L K) = Lf^\ast Rf_\ast E \otimes_{\mathcal{O}_C}^L Lf^\ast K \to E \otimes_{\mathcal{O}_C}^L Lf^\ast K
\]

coming from the map \(Lf^\ast Rf_\ast E \to E \) and Lemmas [19.3] and [20.1]. A reasonably general version of the projection formula is the following.

Lemma 46.1. Let \(f : (Sh(\mathcal{C}), \mathcal{O}_C) \to (Sh(\mathcal{D}), \mathcal{O}_D) \) be a morphism of ringed topoi. Let \(E \in D(\mathcal{O}_C) \) and \(K \in D(\mathcal{O}_D) \). If \(K \) is perfect, then

\[
Rf_\ast E \otimes_{\mathcal{O}_D}^L K = Rf_\ast (E \otimes_{\mathcal{O}_C}^L Lf^\ast K)
\]

in \(D(\mathcal{O}_D) \).

Proof. To check (46.0.1) is an isomorphism we may work locally on \(\mathcal{D} \), i.e., for any object \(V \) of \(\mathcal{D} \) we have to find a covering \(\{V_j \to V\} \) such that the map restricts to an isomorphism on \(V_j \). By definition of perfect objects, this means we may assume \(K \) is represented by a strictly perfect complex of \(\mathcal{O}_D \)-modules. Note that, completely generally, the statement is true for \(K = K_1 \oplus K_2 \), if and only if the statement is true for \(K_1 \) and \(K_2 \). Hence we may assume \(K \) is a finite complex of finite free \(\mathcal{O}_D \)-modules. In this case a simple argument involving stupid truncations reduces the statement to the case where \(K \) is represented by a finite free \(\mathcal{O}_D \)-module. Since the statement is invariant under finite direct summands in the \(\mathcal{K} \) variable, we conclude it suffices to prove it for \(K = \mathcal{O}_D[n] \) in which case it is trivial.

Remark 46.2. The map (46.0.1) is compatible with the base change map of Remark [20.3] in the following sense. Namely, suppose that

\[
\begin{array}{ccc}
(Sh(\mathcal{C}'), \mathcal{O}_{C'}) & \xrightarrow{g'} & (Sh(\mathcal{C}), \mathcal{O}_C) \\
\downarrow f' & & \downarrow f \\
(Sh(\mathcal{D}'), \mathcal{O}_{D'}) & \xrightarrow{g} & (Sh(\mathcal{D}), \mathcal{O}_D)
\end{array}
\]

is a commutative diagram of ringed topoi. Let \(E \in D(\mathcal{O}_C) \) and \(K \in D(\mathcal{O}_D) \). Then the diagram

\[
\begin{array}{ccc}
Lg^\ast (Rf_\ast E \otimes_{\mathcal{O}_D}^L K) & \xrightarrow{p} & Lg^\ast Rf_\ast (E \otimes_{\mathcal{O}_C}^L Lf^\ast K) \\
\downarrow t & & \downarrow b \\
Lg^\ast Rf_\ast E \otimes_{\mathcal{O}_{D'}}^L Lg^\ast K & = & Rf'_\ast (L(g')^\ast (E \otimes_{\mathcal{O}_{C'}}^L Lf^\ast K)) \\
\downarrow b & & \downarrow t \\
Rf'_\ast (L(g')^\ast E \otimes_{\mathcal{O}_{D'}}^L Lg^\ast K) & = & Rf'_\ast (L(g')^\ast E \otimes_{\mathcal{O}_{D'}}^L L(f')^\ast Lg^\ast K)
\end{array}
\]

is commutative.
is commutative. Here arrows labeled t are gotten by an application of Lemma 19.4, arrows labeled b by an application of Remark 20.3, arrows labeled p by an application of (46.0.1), and c comes from $L(g')^* \circ Lf^* = L(f')^* \circ Lg^*$. We omit the verification.

47. Weakly contractible objects

An object U of a site is weakly contractible if every surjection $F \to G$ of sheaves of sets gives rise to a surjection $F(U) \to G(U)$, see Sites, Definition 40.2.

Lemma 47.1. Let C be a site. Let U be a weakly contractible object of C. Then

1. the functor $F \to F(U)$ is an exact functor $\text{Ab}(C) \to \text{Ab}$,
2. $H^p(U, F) = 0$ for every abelian sheaf F and all $p \geq 1$, and
3. for any sheaf of groups G any G-torsor has a section over U.

Proof. The first statement follows immediately from the definition (see also Homology, Section 7). The higher derived functors vanish by Derived Categories, Lemma 17.9. Let F be a G-torsor. Then $F \to *$ is a surjective map of sheaves. Hence (3) follows from the definition as well.

It is convenient to list some consequences of having enough weakly contractible objects here.

Proposition 47.2. Let C be a site. Let $B \subset \text{Ob}(C)$ such that every $U \in B$ is weakly contractible and every object of C has a covering by elements of B. Let O be a sheaf of rings on C. Then

1. A complex $F_1 \to F_2 \to F_3$ of O-modules is exact, if and only if $F_1(U) \to F_2(U) \to F_3(U)$ is exact for all $U \in B$.
2. Every object K of $D(O)$ is a derived limit of its canonical truncations: $K = \text{R} \lim \tau_{\geq -n} K$.
3. Given an inverse system $\ldots \to F_3 \to F_2 \to F_1$ with surjective transition maps, the projection $\lim F_n \to F_1$ is surjective.
4. Products are exact on $\text{Mod}(O)$.
5. Products on $D(O)$ can be computed by taking products of any representative complexes.
6. If (F_n) is an inverse system of O-modules, then $R^p \lim F_n = 0$ for all $p > 1$ and

 $R^1 \lim F_n = \text{Coker}(\prod F_n \to \prod F_n)$

 where the map is $(x_n) \mapsto (x_n - f(x_{n+1}))$.
7. If (K_n) is an inverse system of objects of $D(O)$, then there are short exact sequences

 $0 \to R^1 \lim H^{p-1}(K_n) \to H^p(\text{R} \lim K_n) \to \lim H^p(K_n) \to 0$

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly contractible element of C gives an exact sequence by Lemma 17.1. Conversely, assume that $F_1(U) \to F_2(U) \to F_3(U)$ is exact for all $U \in B$. Let V be an object of C and let $s \in F_2(V)$ be an element of the kernel of $F_2 \to F_3$. By assumption there exists a covering $\{U_i \to V\}$ with $U_i \in B$. Then $s|_{U_i}$ lifts to a section $s_i \in F_1(U_i)$. Thus s is a section of the image sheaf $\text{Im}(F_1 \to F_2)$. In other words, the sequence $F_1 \to F_2 \to F_3$ is exact.
Proof of (2). This holds by Lemma 23.10 with $d = 0$.

Proof of (3). Let (\mathcal{F}_n) be a system as in (2) and set $\mathcal{F} = \lim \mathcal{F}_n$. If $U \in \mathcal{B}$, then $\mathcal{F}(U) = \lim \mathcal{F}_n(U)$ surjects onto $\mathcal{F}_1(U)$ as all the transition maps $\mathcal{F}_{n+1}(U) \to \mathcal{F}_n(U)$ are surjective. Thus $\mathcal{F} \to \mathcal{F}_1$ is surjective by Sites, Definition 11.1 and the assumption that every object has a covering by elements of \mathcal{B}.

Proof of (4). Let $\mathcal{F}_{i,1} \to \mathcal{F}_{i,2} \to \mathcal{F}_{i,3}$ be a family of exact sequences of \mathcal{O}-modules. We want to show that $\prod \mathcal{F}_{i,1} \to \prod \mathcal{F}_{i,2} \to \prod \mathcal{F}_{i,3}$ is exact. We use the criterion of (1). Let $U \in \mathcal{B}$. Then

$$\left(\prod \mathcal{F}_{i,1}(U) \right) \to \left(\prod \mathcal{F}_{i,2}(U) \right) \to \left(\prod \mathcal{F}_{i,3}(U) \right)$$

is the same as

$$\prod \mathcal{F}_{i,1}(U) \to \prod \mathcal{F}_{i,2}(U) \to \prod \mathcal{F}_{i,3}(U)$$

Each of the sequences $\mathcal{F}_{i,1}(U) \to \mathcal{F}_{i,2}(U) \to \mathcal{F}_{i,3}(U)$ are exact by (1). Thus the displayed sequences are exact by Homology, Lemma 29.1. We conclude by (1) again.

Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma 32.2.

Proof of (6) and (7). We refer to Section 23 for a discussion of derived and homotopy limits and their relationship. By Derived Categories, Definition 32.1 we have a distinguished triangle

$$R\lim K_n \to \prod K_n \to \prod K_n \to R\lim K_n[1]$$

Taking the long exact sequence of cohomology sheaves we obtain

$$H^{p-1}(\prod K_n) \to H^{p-1}(\prod K_n) \to H^p(R\lim K_n) \to H^p(\prod K_n) \to H^p(\prod K_n)$$

Since products are exact by (4) this becomes

$$\prod H^{p-1}(K_n) \to \prod H^{p-1}(K_n) \to H^p(R\lim K_n) \to \prod H^p(K_n) \to \prod H^p(K_n)$$

Now we first apply this to the case $K_n = \mathcal{F}_n[0]$ where (\mathcal{F}_n) is as in (6). We conclude that (6) holds. Next we apply it to (K_n) as in (7) and we conclude (7) holds. □

48. Compact objects

In this section we study compact objects in the derived category of modules on a ringed site. We recall that compact objects are defined in Derived Categories, Definition 34.1.

Lemma 48.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Assume \mathcal{C} has the following properties

1. \mathcal{C} has a quasi-compact final object X,
2. every quasi-compact object of \mathcal{C} has a cofinal system of coverings which are finite and consist of quasi-compact objects,
3. for a finite covering $\left\{ U_i \to U \right\}_{i \in I}$ with U, U_i quasi-compact the fibre products $U_i \times_U U_j$ are quasi-compact.

Then any perfect object of $\mathcal{D}(\mathcal{O})$ is compact.
Proof. Let K be a perfect object and let K^\vee be its dual, see Lemma 45.9. Then we have

$$\text{Hom}_{D(O_X)}(K, M) = H^0(X, K^\vee \otimes^{L}_{O_X} M)$$

functorially in M in $D(O_X)$. Since $K^\vee \otimes^{L}_{O_X} -$ commutes with direct sums (by construction) and H^0 does by Lemma 17.1 and the construction of direct sums in Injectives, Lemma 13.4 we obtain the result of the lemma. □

Lemma 48.2. Let \mathcal{A} be a Grothendieck abelian category. Let $S \subset \text{Ob}(\mathcal{A})$ be a set of objects such that

1. any object of \mathcal{A} is a quotient of a direct sum of elements of S, and
2. for any $E \in S$ the functor $\text{Hom}_\mathcal{A}(E, -)$ commutes with direct sums.

Then every compact object of $D(\mathcal{A})$ is a direct summand in $D(\mathcal{A})$ of a finite complex of finite direct sums of elements of S.

Proof. Assume $K \in D(\mathcal{A})$ is a compact object. Represent K by a complex K^\bullet and consider the map

$$K^\bullet \longrightarrow \bigoplus_{n \geq 0} \tau_{\geq n} K^\bullet$$

where we have used the canonical truncations, see Homology, Section 14. This makes sense as in each degree the direct sum on the right is finite. By assumption this map factors through a finite direct sum. We conclude that $K \to \tau_{\geq n} K$ is zero for at least one n, i.e., K is in $D^-(R)$.

We may represent K by a bounded above complex K^\bullet each of whose terms is a direct sum of objects from S, see Derived Categories, Lemma 16.5. Note that we have

$$K^\bullet = \bigcup_{n \leq 0} \sigma_{\geq n} K^\bullet$$

where we have used the stupid truncations, see Homology, Section 14. Hence by Derived Categories, Lemmas 31.7 and 31.9 we see that $1 : K^\bullet \to K^\bullet$ factors through $\sigma_{\geq n} K^\bullet \to K^\bullet$ in $D(R)$. Thus we see that $1 : K^\bullet \to K^\bullet$ factors as

$$K^\bullet \xrightarrow{\varphi} L^\bullet \xrightarrow{\psi} K^\bullet$$

in $D(\mathcal{A})$ for some complex L^\bullet which is bounded and whose terms are direct sums of elements of S. Say L^i is zero for $i \not\in [a, b]$. Let c be the largest integer $\leq b + 1$ such that L^i a finite direct sum of elements of S for $i < c$. Claim: if $c < b + 1$, then we can modify L^\bullet to increase c. By induction this claim will show we have a factorization of 1_K as

$$K \xrightarrow{\varphi} L \xrightarrow{\psi} K$$

in $D(\mathcal{A})$ where L can be represented by a finite complex of finite direct sums of elements of S. Note that $e = \varphi \circ \psi \in \text{End}_{D(\mathcal{A})}(L)$ is an idempotent. By Derived Categories, Lemma 4.13 we see that $L = \text{Ker}(e) \oplus \text{Ker}(1 - e)$. The map $\varphi : K \to L$ induces an isomorphism with $\text{Ker}(1 - e)$ in $D(R)$ and we conclude.

Proof of the claim. Write $L^c = \bigoplus_{\lambda \in \Lambda} E_\lambda$. Since L^{c-1} is a finite direct sum of elements of S we can by assumption (2) find a finite subset $\Lambda' \subset \Lambda$ such that $L^{c-1} \to L^c$ factors through $\bigoplus_{\lambda \in \Lambda'} E_\lambda \subset L^c$. Consider the map of complexes

$$\pi : L^\bullet \longrightarrow \left(\bigoplus_{\lambda \in \Lambda \setminus \Lambda'} E_\lambda \right)[-i]$$
given by the projection onto the factors corresponding to \(\Lambda \setminus \Lambda' \) in degree \(i \). By our assumption on \(K \) we see that, after possibly replacing \(\Lambda' \) by a larger finite subset, we may assume that \(\pi \circ \varphi = 0 \) in \(D(A) \). Let \((L')^* \subseteq L^* \) be the kernel of \(\pi \). Since \(\pi \) is surjective we get a short exact sequence of complexes, which gives a distinguished triangle in \(D(A) \) (see Derived Categories, Lemma 12.1). Since \(\text{Hom}_{D(A)}(K, -) \) is homological (see Derived Categories, Lemma 4.2), \(\pi \circ \varphi = 0 \), we can find a morphism \(\varphi' : K^* \rightarrow (L')^* \) in \(D(A) \) whose composition with \((L')^* \rightarrow L^* \) gives \(\varphi \). Setting \(\psi' \) equal to the composition of \(\psi \) with \((L')^* \rightarrow L^* \) we obtain a new factorization. Since \((L')^* \) agrees with \(L^* \) except in degree \(c \) and since \((L')^c \) is compact, we get a distinguished triangle in \(D(A) \) whose composition with \((L')^* \rightarrow L^* \) gives \(\varphi \).

\textbf{Lemma 48.3.} Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Assume every object of \(\mathcal{C} \) has a covering by quasi-compact objects. Then every compact object of \(D(\mathcal{O}) \) is a direct summand in \(D(\mathcal{O}) \) of a finite complex whose terms are finite direct sums of \(\mathcal{O} \)-modules of the form \(j_! \mathcal{O}_U \) where \(U \) is a quasi-compact object of \(\mathcal{C} \).

\textbf{Proof.} Apply Lemma 48.2 where \(S \subset \text{Ob} \left(\text{Mod}(\mathcal{O}) \right) \) is the set of modules of the form \(j_! \mathcal{O}_U \) with \(U \in \text{Ob}(\mathcal{C}) \) quasi-compact. Assumption (1) holds by Modules on Sites, Lemma 28.1 and the assumption that every \(U \) can be covered by quasi-compact objects. Assumption (2) follows as

\[\text{Hom}_{\mathcal{O}}(j_! \mathcal{O}_U, \mathcal{F}) = \mathcal{F}(U) \]

which commutes with direct sums by Sites, Lemma 17.0. □

In the situation of the lemma above it is not always true that the modules \(j_! \mathcal{O}_U \) are compact objects of \(D(\mathcal{O}) \) (even if \(U \) is a quasi-compact object of \(\mathcal{C} \)). Here is a criterion.

\textbf{Lemma 48.4.} Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(U \) be an object of \(\mathcal{C} \). The \(\mathcal{O} \)-module \(j_! \mathcal{O}_U \) is a compact object of \(D(\mathcal{O}) \) if there exists an integer \(d \) such that

1. \(H^p(U, \mathcal{F}) = 0 \) for all \(p > d \), and
2. the functors \(\mathcal{F} \mapsto H^p(U, \mathcal{F}) \) commute with direct sums.

\textbf{Proof.} Assume (1) and (2). The first means that the functor \(F = H^0(U, -) \) has finite cohomological dimension. Moreover, any direct sum of injective modules is acyclic for \(F \) by (2). Since we may compute \(RF \) by applying \(F \) to any complex of acyclics (Derived Categories, Lemma 30.2), \(K_i \) is a family of objects of \(D(\mathcal{O}) \), then we can choose \(\mathcal{K} \)-injective representatives \(I^*_i \) and we see that \(\bigoplus K_i \) is represented by \(\bigoplus I^*_i \). Thus \(H^0(U, -) \) commutes with direct sums. □

\textbf{Lemma 48.5.} Let \((\mathcal{C}, \mathcal{O})\) be a ringed site. Let \(U \) be an object of \(\mathcal{C} \) which is quasi-compact and weakly contractible. Then \(j_! \mathcal{O}_U \) is a compact object of \(D(\mathcal{O}) \).

\textbf{Proof.} Combine Lemmas 48.4 and 47.0 with Modules on Sites, Lemma 29.4. □

49. Complexes with locally constant cohomology sheaves

Locally constant sheaves are introduced in Modules on Sites, Section 42. Let \(\mathcal{C} \) be a site. Let \(\Lambda \) be a ring. We denote \(D(\mathcal{C}, \Lambda) \) the derived category of the abelian category of \(\Lambda \)-modules on \(\mathcal{C} \).
Lemma 49.1. Let \mathcal{C} be a site with final object X. Let Λ be a Noetherian ring. Let $K \in D^b(\mathcal{C}, \Lambda)$ with $H^i(K)$ locally constant sheaves of Λ-modules of finite type. Then there exists a covering $\{U_i \to X\}$ such that each $K|_{U_i}$ is represented by a complex of locally constant sheaves of Λ-modules of finite type.

Proof. Let $a \leq b$ be such that $H^i(K) = 0$ for $i \not\in [a, b]$. By induction on $b - a$ we will prove there exists a covering $\{U_i \to X\}$ such that $K|_{U_i}$ can be represented by a complex $M^\bullet_{U_i}$ with M^p a finite type Λ-module and $M^p = 0$ for $p \not\in [a, b]$. If $b = a$, then this is clear. In general, we may replace X by the members of a covering and assume that $H^b(K)$ is constant, say $H^b(K) = M$. By Modules on Sites, Lemma 41.5 the module M is a finite Λ-module. Choose a surjection $\Lambda^{\oplus r} \to M$ given by generators x_1, \ldots, x_r of M.

By a slight generalization of Lemma 8.3 (details omitted) there exists a covering $\{U_i \to X\}$ such that $x_i \in H^0(X, H^b(K))$ lifts to an element of $H^b(U_i, K)$. Thus, after replacing X by the U_i we reach the situation where there is a map $\Lambda^{\oplus r}[−b] \to K$ inducing a surjection on cohomology sheaves in degree b. Choose a distinguished triangle

$$\Lambda^{\oplus r}[−b] \to K \to L \to \Lambda^{\oplus r}[−b + 1]$$

Now the cohomology sheaves of L are nonzero only in the interval $[a, b - 1]$, agree with the cohomology sheaves of K in the interval $[a, b - 2]$ and there is a short exact sequence

$$0 \to H^{b-1}(K) \to H^{b-1}(L) \to \text{Ker}(\Lambda^{\oplus r} \to M) \to 0$$

in degree $b - 1$. By Modules on Sites, Lemma 42.5 we see that $H^{b-1}(L)$ is locally constant of finite type. By induction hypothesis we obtain an isomorphism $M^\bullet \to L$ in $D(\mathcal{C}, \Lambda)$ with M^p a finite Λ-module and $M^p = 0$ for $p \not\in [a, b - 1]$. The map $L \to \Lambda^{\oplus r}[−b + 1]$ gives a map $M^{b-1} \to \Lambda^{\oplus r}$ which locally is constant (Modules on Sites, Lemma 42.3). Thus we may assume it is given by a map $M^{b-1} \to \Lambda^{\oplus r}$. The distinguished triangle shows that the composition $M^{b-2} \to M^{b-1} \to \Lambda^{\oplus r}$ is zero and the axioms of triangulated categories produce an isomorphism

$$M^a \to \ldots \to M^{b-1} \to \Lambda^{\oplus r} \to K$$

in $D(\mathcal{C}, \Lambda)$. □

Let \mathcal{C} be a site. Let Λ be a ring. Using the morphism $Sh(\mathcal{C}) \to Sh(pt)$ we see that there is a functor $D(\Lambda) \to D(\mathcal{C}, \Lambda)$, $K \mapsto K$.

Lemma 49.2. Let \mathcal{C} be a site with final object X. Let Λ be a ring. Let

1. K a perfect object of $D(\Lambda)$,
2. a finite complex K^\bullet of finite projective Λ-modules representing K,
3. \mathcal{L}^\bullet a complex of sheaves of Λ-modules, and
4. $\varphi : K \to \mathcal{L}^\bullet$ a map in $D(\mathcal{C}, \Lambda)$.

Then there exists a covering $\{U_i \to X\}$ and maps of complexes $\alpha_i : K^\bullet|_{U_i} \to \mathcal{L}^\bullet|_{U_i}$ representing $\varphi|_{U_i}$.

Proof. Follows immediately from Lemma 42.8 □

Lemma 49.3. Let \mathcal{C} be a site with final object X. Let Λ be a ring. Let K, L be objects of $D(\Lambda)$ with K perfect. Let $\varphi : K \to L$ be map in $D(\mathcal{C}, \Lambda)$. There exists a covering $\{U_i \to X\}$ such that $\varphi|_{U_i}$ is equal to α_i for some map $\alpha_i : K \to L$ in $D(\Lambda)$.
Proof. Follows from Lemma 49.2 and Modules on Sites, Lemma 42.3.

Lemma 49.4. Let C be a site. Let Λ be a Noetherian ring. Let $K, L \in D^-(C, \Lambda)$. If the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of finite type, then the cohomology sheaves of $K \otimes^\Lambda L$ are locally constant sheaves of Λ-modules of finite type.

Proof. We’ll prove this as an application of Lemma 49.1. Note that $H^i(K \otimes^\Lambda L)$ is the same as $H^i(\tau_{\geq i-1}K \otimes^\Lambda \tau_{\geq i-1}L)$. Thus we may assume K and L are bounded. By Lemma 49.1 we may assume that K and L are represented by complexes of locally constant sheaves of Λ-modules of finite type. Then we can replace these complexes by bounded above complexes of finite free Λ-modules. In this case the result is clear.

Lemma 49.5. Let C be a site. Let Λ be a Noetherian ring. Let $I \subset \Lambda$ be an ideal. Let $K \in D^-(C, \Lambda)$. If the cohomology sheaves of $K \otimes^\Lambda \Lambda/I$ are locally constant sheaves of Λ/I-modules of finite type, then the cohomology sheaves of $K \otimes^\Lambda \Lambda/I^n$ are locally constant sheaves of Λ/I^n-modules of finite type for all $n \geq 1$.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form a weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 42.5. Thus the subcategory of $D(C, \Lambda)$ consisting of complexes whose cohomology sheaves are locally constant sheaves of Λ-modules of finite type forms a strictly full, saturated triangulated subcategory of $D(C, \Lambda)$, see Derived Categories, Lemma 13.1. Next, consider the distinguished triangles

$$K \otimes^\Lambda I^n/I^{n+1} \to K \otimes^\Lambda \Lambda/I^{n+1} \to K \otimes^\Lambda \Lambda/I^n \to K \otimes^\Lambda I^n/I^{n+1}[1]$$

and the isomorphisms

$$K \otimes^\Lambda I^n/I^{n+1} = (K \otimes^\Lambda \Lambda/I^n) \otimes^\Lambda \Lambda/I^{n+1}$$

Combined with Lemma 49.4 we obtain the result.

50. Other chapters

Preliminaries

<table>
<thead>
<tr>
<th>(16)</th>
<th>(17)</th>
<th>(18)</th>
<th>(19)</th>
<th>(20)</th>
<th>(21)</th>
<th>(22)</th>
<th>(23)</th>
<th>(24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothings Ring Maps</td>
<td>Sheaves of Modules</td>
<td>Modules on Sites</td>
<td>Injectives</td>
<td>Cohomology of Sheaves</td>
<td>Cohomology of Sites</td>
<td>Differential Graded Sheaves</td>
<td>Divided Power Algebra</td>
<td>Hypercoverings</td>
</tr>
</tbody>
</table>

Schemes

<table>
<thead>
<tr>
<th>(25)</th>
<th>(26)</th>
<th>(27)</th>
<th>(28)</th>
<th>(29)</th>
<th>(30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schemes</td>
<td>Constructions of Schemes</td>
<td>Properties of Schemes</td>
<td>Morphisms of Schemes</td>
<td>Cohomology of Schemes</td>
<td>Divisors</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(31)</td>
<td>Limits of Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(32)</td>
<td>Varieties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(33)</td>
<td>Topologies on Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(34)</td>
<td>Descent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(35)</td>
<td>Derived Categories of Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(36)</td>
<td>More on Morphisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(37)</td>
<td>More on Flatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38)</td>
<td>Groupoid Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(39)</td>
<td>More on Groupoid Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40)</td>
<td>Etale Morphisms of Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(41)</td>
<td>Chow Homology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(42)</td>
<td>Intersection Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(43)</td>
<td>Picard Schemes of Curves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(44)</td>
<td>Adequate Modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(45)</td>
<td>Dualizing Complexes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(46)</td>
<td>Duality for Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(47)</td>
<td>Discriminants and Differents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(48)</td>
<td>Local Cohomology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(49)</td>
<td>Algebraic and Formal Geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50)</td>
<td>Algebraic Curves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(51)</td>
<td>Resolution of Surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(52)</td>
<td>Semistable Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(53)</td>
<td>Fundamental Groups of Schemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(54)</td>
<td>Etale Cohomology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(55)</td>
<td>Crystalline Cohomology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(56)</td>
<td>Pro-étale Cohomology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(57)</td>
<td>Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(58)</td>
<td>Properties of Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(59)</td>
<td>Morphisms of Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60)</td>
<td>Decent Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(61)</td>
<td>Cohomology of Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(62)</td>
<td>Limits of Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(63)</td>
<td>Divisors on Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(64)</td>
<td>Algebraic Spaces over Fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(65)</td>
<td>Topologies on Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(66)</td>
<td>Descent and Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(67)</td>
<td>Derived Categories of Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(68)</td>
<td>More on Morphisms of Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(69)</td>
<td>Flatness on Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(70)</td>
<td>Groupoids in Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(71)</td>
<td>More on Groupoids in Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(72)</td>
<td>Bootstrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(73)</td>
<td>Pushouts of Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(74)</td>
<td>Chow Groups of Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(75)</td>
<td>Quotients of Groupoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(76)</td>
<td>More on Cohomology of Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(77)</td>
<td>Simplicial Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(78)</td>
<td>Duality for Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(79)</td>
<td>Formal Algebraic Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(80)</td>
<td>Restricted Power Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(81)</td>
<td>Resolution of Surfaces Revisited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topics in Geometry

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(73)</td>
<td>Pushouts of Algebraic Spaces</td>
</tr>
<tr>
<td>(74)</td>
<td>Chow Groups of Spaces</td>
</tr>
<tr>
<td>(75)</td>
<td>Quotients of Groupoids</td>
</tr>
<tr>
<td>(76)</td>
<td>More on Cohomology of Spaces</td>
</tr>
<tr>
<td>(77)</td>
<td>Simplicial Spaces</td>
</tr>
<tr>
<td>(78)</td>
<td>Duality for Spaces</td>
</tr>
<tr>
<td>(79)</td>
<td>Formal Algebraic Spaces</td>
</tr>
<tr>
<td>(80)</td>
<td>Restricted Power Series</td>
</tr>
<tr>
<td>(81)</td>
<td>Resolution of Surfaces Revisited</td>
</tr>
</tbody>
</table>

Deformation Theory

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(73)</td>
<td>Pushouts of Algebraic Spaces</td>
</tr>
<tr>
<td>(74)</td>
<td>Chow Groups of Spaces</td>
</tr>
<tr>
<td>(75)</td>
<td>Quotients of Groupoids</td>
</tr>
<tr>
<td>(76)</td>
<td>More on Cohomology of Spaces</td>
</tr>
<tr>
<td>(77)</td>
<td>Simplicial Spaces</td>
</tr>
<tr>
<td>(78)</td>
<td>Duality for Spaces</td>
</tr>
<tr>
<td>(79)</td>
<td>Formal Algebraic Spaces</td>
</tr>
<tr>
<td>(80)</td>
<td>Restricted Power Series</td>
</tr>
<tr>
<td>(81)</td>
<td>Resolution of Surfaces Revisited</td>
</tr>
</tbody>
</table>

Algebraic Stacks

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(73)</td>
<td>Pushouts of Algebraic Spaces</td>
</tr>
<tr>
<td>(74)</td>
<td>Chow Groups of Spaces</td>
</tr>
<tr>
<td>(75)</td>
<td>Quotients of Groupoids</td>
</tr>
<tr>
<td>(76)</td>
<td>More on Cohomology of Spaces</td>
</tr>
<tr>
<td>(77)</td>
<td>Simplicial Spaces</td>
</tr>
<tr>
<td>(78)</td>
<td>Duality for Spaces</td>
</tr>
<tr>
<td>(79)</td>
<td>Formal Algebraic Spaces</td>
</tr>
<tr>
<td>(80)</td>
<td>Restricted Power Series</td>
</tr>
<tr>
<td>(81)</td>
<td>Resolution of Surfaces Revisited</td>
</tr>
</tbody>
</table>

Topics in Moduli Theory

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100)</td>
<td>Moduli Stacks</td>
</tr>
<tr>
<td>(101)</td>
<td>Moduli of Curves</td>
</tr>
</tbody>
</table>

Miscellany

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(102)</td>
<td>Examples</td>
</tr>
<tr>
<td>(103)</td>
<td>Exercises</td>
</tr>
<tr>
<td>(104)</td>
<td>Guide to Literature</td>
</tr>
<tr>
<td>(105)</td>
<td>Desirables</td>
</tr>
<tr>
<td>(106)</td>
<td>Coding Style</td>
</tr>
<tr>
<td>(107)</td>
<td>Obsolete</td>
</tr>
<tr>
<td>(108)</td>
<td>GNU Free Documentation Li-</td>
</tr>
<tr>
<td>(109)</td>
<td>Auto Generated Index</td>
</tr>
</tbody>
</table>
References

