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1. Introduction

01FR In this document we work out some topics on cohomology of sheaves. We work
out what happens for sheaves on sites, although often we will simply duplicate the
discussion, the constructions, and the proofs from the topological case in the case.
Basic references are [AGV71], [God73] and [Ive86].

2. Cohomology of sheaves

01FT Let C be a site, see Sites, Definition 6.2. Let F be an abelian sheaf on C. We know
that the category of abelian sheaves on C has enough injectives, see Injectives,
Theorem 7.4. Hence we can choose an injective resolution F [0] → I•. For any
object U of the site C we define

(2.0.1)071C Hi(U,F) = Hi(Γ(U, I•))

to be the ith cohomology group of the abelian sheaf F over the object U . In other
words, these are the right derived functors of the functor F 7→ F(U). The family
of functors Hi(U,−) forms a universal δ-functor Ab(C) → Ab.

It sometimes happens that the site C does not have a final object. In this case we
define the global sections of a presheaf of sets F over C to be the set

(2.0.2)071D Γ(C,F) = MorPSh(C)(e,F)

where e is a final object in the category of presheaves on C. In this case, given an
abelian sheaf F on C, we define the ith cohomology group of F on C as follows

(2.0.3)071E Hi(C,F) = Hi(Γ(C, I•))

in other words, it is the ith right derived functor of the global sections functor. The
family of functors Hi(C,−) forms a universal δ-functor Ab(C) → Ab.
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Let f : Sh(C) → Sh(D) be a morphism of topoi, see Sites, Definition 15.1. With
F [0] → I• as above we define
(2.0.4)071F Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Ab(C) → Ab(D).
Let (C,O) be a ringed site, see Modules on Sites, Definition 6.1. Let F be an
O-module. We know that the category of O-modules has enough injectives, see
Injectives, Theorem 8.4. Hence we can choose an injective resolution F [0] → I•.
For any object U of the site C we define
(2.0.5)071G Hi(U,F) = Hi(Γ(U, I•))

to be the the ith cohomology group of F over U . The family of functors Hi(U,−)
forms a universal δ-functor Mod(O) → ModO(U). Similarly

(2.0.6)071H Hi(C,F) = Hi(Γ(C, I•))

it the ith cohomology group of F on C. The family of functors Hi(C,−) forms a
universal δ-functor Mod(C) → ModΓ(C,O).
Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi, see Modules on
Sites, Definition 7.1. With F [0] → I• as above we define
(2.0.7)071I Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Mod(O) → Mod(O′).

3. Derived functors

071J We briefly explain an approach to right derived functors using resolution functors.
Namely, suppose that (C,O) is a ringed site. In this chapter we will write

K(O) = K(Mod(O)) and D(O) = D(Mod(O))
and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 8.1 and Definition 11.3. By Derived Categories,
Remark 24.3 there exists a resolution functor

j = j(C,O) : K+(Mod(O)) −→ K+(I)
where I is the strictly full additive subcategory of Mod(O) which consists of injective
O-modules. For any left exact functor F : Mod(O) → B into any abelian category
B we will denote RF the right derived functor of Derived Categories, Section 20
constructed using the resolution functor j just described:
(3.0.1)05U5 RF = F ◦ j′ : D+(O) −→ D+(B)
see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF
as defined on Mod(O), Comp+(Mod(O)), or K+(O) depending on the situation.
According to Derived Categories, Definition 16.2 we obtain the ithe right derived
functor
(3.0.2)05U6 RiF = Hi ◦RF : Mod(O) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 20.4.
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Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for the bounded versions. For any
object U of C have a left exact functor Γ(U,−) : Mod(O) −→ ModO(U) which gives
rise to

RΓ(U,−) : D+(O) −→ D+(O(U))
by the discussion above. Note that Hi(U,−) = RiΓ(U,−) is compatible with (2.0.5)
above. We similarly have

RΓ(C,−) : D+(O) −→ D+(Γ(C,O))

compatible with (2.0.6). If f : (Sh(C),O) → (Sh(D),O′) is a morphism of ringed
topoi then we get a left exact functor f∗ : Mod(O) → Mod(O′) which gives rise to
derived pushforward

Rf∗ : D+(O) → D+(O′)
The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (2.0.7). The displayed functors above are exact
functor of derived categories.

4. First cohomology and torsors

03AG
Definition 4.1.03AH Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A pseudo torsor, or more precisely a pseudo G-torsor, is a sheaf of
sets F on C endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive.

A morphism of pseudo G-torsors F → F ′ is simply a morphism of sheaves of sets
compatible with the G-actions. A torsor, or more precisely a G-torsor, is a pseudo
G-torsor such that in addition

(2) for every U ∈ Ob(C) there exists a covering {Ui → U}i∈I of U such that
F(Ui) is nonempty for all i ∈ I.

A morphism of G-torsors is simply a morphism of pseudo G-torsors. The trivial
G-torsor is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 4.2.03AI Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A G-torsor F is trivial if and only if Γ(C,F) ̸= ∅.

Proof. Omitted. □

Lemma 4.3.03AJ Let C be a site. Let H be an abelian sheaf on C. There is a canonical
bijection between the set of isomorphism classes of H-torsors and H1(C,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is
the sheafification of the rule which associates to U ∈ Ob(C) the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

sections of the form [s]− [s′]. There is a canonical map a : Ker(σ) → H which maps

https://stacks.math.columbia.edu/tag/03AH
https://stacks.math.columbia.edu/tag/03AI
https://stacks.math.columbia.edu/tag/03AJ
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[s] − [s′] 7→ h where h is the local section of H such that h · s = s′. Consider the
pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(C,H) by applying the boundary operator to 1 ∈ H0(C,Z).
Conversely, given ξ ∈ H1(C,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(C,Q) because H1(C, I) = 0
(see Derived Categories, Lemma 20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a H-torsor.
We omit the verification that the two constructions given above are mutually in-
verse. □

5. First cohomology and extensions

03F0
Lemma 5.1.03F1 Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
There is a canonical bijection

Ext1
Mod(O)(O,F) −→ H1(C,F)

which associates to the extension
0 → F → E → O → 0

the image of 1 ∈ Γ(C,O) in H1(C,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(C,F). Choose an injection F ⊂ I with I injective in Mod(O). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of a section
ξ̃ ∈ Γ(C,Q) = HomO(O,Q). Now, we just form the pullback

0 // F // E //

��

O //

ξ̃

��

0

0 // F // I // Q // 0
see Homology, Section 6. □

The following lemma will be superseded by the more general Lemma 12.4.

Lemma 5.2.03F2 Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
Let Fab denote the underlying sheaf of abelian groups. Then there is a functorial
isomorphism

H1(C,Fab) = H1(C,F)

https://stacks.math.columbia.edu/tag/03F1
https://stacks.math.columbia.edu/tag/03F2
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where the left hand side is cohomology computed in Ab(C) and the right hand side
is cohomology computed in Mod(O).

Proof. Let Z denote the constant sheaf Z. As Ab(C) = Mod(Z) we may apply
Lemma 5.1 twice, and it follows that we have to show

Ext1
Mod(O)(O,F) = Ext1

Mod(Z)(Z,Fab).
Suppose that 0 → F → E → O → 0 is an extension in Mod(O). Then we can use
the obvious map of abelian sheaves 1 : Z → O and pullback to obtain an extension
Eab, like so:

0 // Fab // Eab //

��

Z //

1
��

0

0 // F // E // O // 0
The converse is a little more fun. Suppose that 0 → Fab → Eab → Z → 0 is an
extension in Mod(Z). Since Z is a flat Z-module we see that the sequence

0 → Fab ⊗Z O → Eab ⊗Z O → Z ⊗Z O → 0
is exact, see Modules on Sites, Lemma 28.9. Of course Z ⊗Z O = O. Hence we can
form the pushout via the (O-linear) multiplication map µ : F ⊗Z O → F to get an
extension of O by F , like this

0 // Fab ⊗Z O //

µ

��

Eab ⊗Z O //

��

O // 0

0 // F // E // O // 0
which is the desired extension. We omit the verification that these constructions
are mutually inverse. □

6. First cohomology and invertible sheaves

040D The Picard group of a ringed site is defined in Modules on Sites, Section 32.

Lemma 6.1.040E Let (C,O) be a locally ringed site. There is a canonical isomorphism

H1(C,O∗) = Pic(O).
of abelian groups.

Proof. Let L be an invertible O-module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
by Modules on Sites, Lemma 40.7. In other words we see that L∗ is a O∗-torsor.
Thus we get a map

set of invertible sheaves on (C,O)
up to isomorphism −→ set of O∗-torsors

up to isomorphism
We omit the verification that this is a homomorphism of abelian groups. By Lemma
4.3 the right hand side is canonically bijective to H1(C,O∗). Thus we have to show
this map is injective and surjective.

https://stacks.math.columbia.edu/tag/040E
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Injective. If the torsor L∗ is trivial, this means by Lemma 4.2 that L∗ has a global
section. Hence this means exactly that L ∼= O is the neutral element in Pic(O).
Surjective. Let F be an O∗-torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U) × O(U))/O∗(U)
where the action of f ∈ O∗(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
O-modules by setting (s, g)+(s′, g′) = (s, g+(s′/s)g′) where s′/s is the local section
f of O∗ such that fs = s′, and h(s, g) = (s, hg) for h a local section of O. We omit
the verification that the sheafification L = L#

1 is an invertible O-module whose
associated O∗-torsor L∗ is isomorphic to F . □

7. Locality of cohomology

01FU The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an object of the site.

Lemma 7.1.03F3 Let (C,O) be a ringed site. Let U be an object of C.
(1) If I is an injective O-module then I|U is an injective OU -module.
(2) For any sheaf of O-modules F we have Hp(U,F) = Hp(C/U,F|U ).

Proof. Recall that the functor j−1
U of restriction to U is a right adjoint to the

functor jU ! of extension by 0, see Modules on Sites, Section 19. Moreover, jU ! is
exact. Hence (1) follows from Homology, Lemma 29.1.
By definition Hp(U,F) = Hp(I•(U)) where F → I• is an injective resolution
in Mod(O). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(I•|U (U)). Of course F(U) = F|U (U)
for any sheaf F on C. Hence the equality in (2). □

The following lemma will be use to see what happens if we change a partial universe,
or to compare cohomology of the small and big étale sites.

Lemma 7.2.03YU Let C and D be sites. Let u : C → D be a functor. Assume u satisfies
the hypotheses of Sites, Lemma 21.8. Let g : Sh(C) → Sh(D) be the associated
morphism of topoi. For any abelian sheaf F on D we have isomorphisms

RΓ(C, g−1F) = RΓ(D,F),
in particular Hp(C, g−1F) = Hp(D,F) and for any U ∈ Ob(C) we have isomor-
phisms

RΓ(U, g−1F) = RΓ(u(U),F),
in particular Hp(U, g−1F) = Hp(u(U),F). All of these isomorphisms are functorial
in F .

Proof. Since it is clear that Γ(C, g−1F) = Γ(D,F) by hypothesis (e), it suffices to
show that g−1 transforms injective abelian sheaves into injective abelian sheaves.
As usual we use Homology, Lemma 29.1 to see this. The left adjoint to g−1 is
g! = f−1 with the notation of Sites, Lemma 21.8 which is an exact functor. Hence
the lemma does indeed apply. □

Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let φ : U → V be a
morphism of O. Then there is a canonical restriction mapping
(7.2.1)01FV Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U

https://stacks.math.columbia.edu/tag/03F3
https://stacks.math.columbia.edu/tag/03YU
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functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)

The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of O-modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 10.5.

The following lemma says that it is possible to kill higher cohomology classes by
going to a covering.

Lemma 7.3.01FW Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let U
be an object of C. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists a covering
{Ui → U} of C such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U) → In+1(U))
Im(In−1(U) → In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex
I• is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves.
Since ξ̃ is a section of the kernel sheaf over U we conclude there exists a covering
{Ui → U} of the site such that ξ̃|Ui

is the image under d of a section ξi ∈ In−1(Ui).
By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. □

Lemma 7.4.072W Let f : (C,OC) → (D,OD) be a morphism of ringed sites correspond-
ing to the continuous functor u : D → C. For any F ∈ Ob(Mod(OC)) the sheaf
Rif∗F is the sheaf associated to the presheaf

V 7−→ Hi(u(V ),F)

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OD-modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V ) → f∗Ii+1(V ))
Im(f∗Ii−1(V ) → f∗Ii(V ))

and this is obviously equal to

Ker(Ii(u(V )) → Ii+1(u(V )))
Im(Ii−1(u(V )) → Ii(u(V )))

which is equal to Hi(u(V ),F) and we win. □

https://stacks.math.columbia.edu/tag/01FW
https://stacks.math.columbia.edu/tag/072W
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8. The Čech complex and Čech cohomology

03AK Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target, see Sites, Definition 6.1. Assume that all fibre products Ui0 ×U . . . ×U Uip
exist in C. Let F be an abelian presheaf on C. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0 ×U . . .×U Uip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in the factor
F(Ui0 ×U . . .×U Uip). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(8.0.1)03AL d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0 ×U ...×UUip+1

where the restriction is via the projection map

Ui0 ×U . . .×U Uip+1 −→ Ui0 ×U . . .×U Ûij ×U . . .×U Uip+1 .

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 8.1.03AM Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in
C. Let F be an abelian presheaf on C. The complex Č•(U ,F) is the Čech complex
associated to F and the family U . Its cohomology groups Hi(Č•(U ,F)) are called
the Čech cohomology groups of F with respect to U . They are denoted Ȟi(U ,F).

We observe that any covering {Ui → U} of a site C is a family of morphisms with
fixed target to which the definition applies.

Lemma 8.2.03AN Let C be a site. Let F be an abelian presheaf on C. The following
are equivalent

(1) F is an abelian sheaf on C and
(2) for every covering U = {Ui → U}i∈I of the site C the natural map

F(U) → Ȟ0(U ,F)

(see Sites, Section 10) is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every covering of C. □

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms of C with fixed
target such that all fibre products Ui0 ×U . . .×UUip exist in C. Let V = {Vj → V }j∈J
be another. Let f : U → V , α : I → J and fi : Ui → Vα(i) be a morphism of families
of morphisms with fixed target, see Sites, Section 8. In this case we get a map of
Čech complexes

(8.2.1)03F4 φ : Č•(V,F) −→ Č•(U ,F)

which in degree p is given by

φ(s)i0...ip = (fi0 × . . .× fip)∗sα(i0)...α(ip)

https://stacks.math.columbia.edu/tag/03AM
https://stacks.math.columbia.edu/tag/03AN
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9. Čech cohomology as a functor on presheaves

03AO Warning: In this section we work exclusively with abelian presheaves on a category.
The results are completely wrong in the setting of sheaves and categories of sheaves!

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target such that all fibre products Ui0 ×U . . .×U Uip exist in C. Let F be an abelian
presheaf on C. The construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(9.0.1)03AP Č•(U ,−) : PAb(C) −→ Comp+(Ab)

see Derived Categories, Definition 8.1 for notation. Recall that the category of
bounded below complexes in an abelian category is an abelian category, see Homol-
ogy, Lemma 13.9.

Lemma 9.1.03AQ The functor given by Equation (9.0.1) is an exact functor (see Ho-
mology, Lemma 7.2).

Proof. For any object W of C the functor F 7→ F(W ) is an additive exact functor
from PAb(C) to Ab. The terms Čp(U ,F) of the complex are products of these exact
functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. □

Lemma 9.2.03AR Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. The
functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category PAb(C) to the
category of Z-modules (see Homology, Definition 12.1).

Proof. By Lemma 9.1 a short exact sequence of abelian presheaves 0 → F1 →
F2 → F3 → 0 is turned into a short exact sequence of complexes of Z-modules.
Hence we can use Homology, Lemma 13.12 to get the boundary maps δF1→F2→F3 :
Ȟn(U ,F3) → Ȟn+1(U ,F1) and a corresponding long exact sequence. We omit
the verification that these maps are compatible with maps between short exact
sequences of presheaves. □

Lemma 9.3.03AS Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in C. Consider
the chain complex ZU,• of abelian presheaves

. . . →
⊕
i0i1i2

ZUi0 ×UUi1 ×UUi2
→

⊕
i0i1

ZUi0 ×UUi1
→

⊕
i0

ZUi0
→ 0 → . . .

where the last nonzero term is placed in degree 0 and where the map

ZUi0 ×U ...×uUip+1
−→ Z

Ui0 ×U ...Ûij
...×UUip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomPAb(C)(ZU,•,F) = Č•(U ,F)

functorial in F ∈ Ob(PAb(C)).

https://stacks.math.columbia.edu/tag/03AQ
https://stacks.math.columbia.edu/tag/03AR
https://stacks.math.columbia.edu/tag/03AS
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Proof. This is a tautology based on the fact that

HomPAb(C)(
⊕
i0...ip

ZUi0 ×U ...×UUip
,F) =

∏
i0...ip

HomPAb(C)(ZUi0 ×U ...×UUip
,F)

=
∏
i0...ip

F(Ui0 ×U . . .×U Uip)

see Modules on Sites, Lemma 4.2. □

Lemma 9.4.03AT Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. The chain complex ZU,• of presheaves of Lemma 9.3 above is exact in positive
degrees, i.e., the homology presheaves Hi(ZU,•) are zero for i > 0.

Proof. Let V be an object of C. We have to show that the chain complex of abelian
groups ZU,•(V ) is exact in degrees > 0. This is the complex

. . .

��⊕
i0i1i2

Z[MorC(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
i0i1

Z[MorC(V,Ui0 ×U Ui1)]

��⊕
i0

Z[MorC(V,Ui0)]

��
0

For any morphism φ : V → U denote Morφ(V,Ui) = {φi : V → Ui | fi ◦ φi = φ}.
We will use a similar notation for Morφ(V,Ui0 ×U . . .×U Uip). Note that composing
with the various projection maps between the fibred products Ui0 ×U . . . ×U Uip
preserves these morphism sets. Hence we see that the complex above is the same
as the complex

. . .

��⊕
φ

⊕
i0i1i2

Z[Morφ(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
φ

⊕
i0i1

Z[Morφ(V,Ui0 ×U Ui1)]

��⊕
φ

⊕
i0

Z[Morφ(V,Ui0)]

��
0

https://stacks.math.columbia.edu/tag/03AT
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Next, we make the remark that we have

Morφ(V,Ui0 ×U . . .×U Uip) = Morφ(V,Ui0) × . . .× Morφ(V,Uip)

Using this and the fact that Z[A] ⊕ Z[B] = Z[A ⨿ B] we see that the complex
becomes

. . .

��⊕
φ Z

[∐
i0i1i2

Morφ(V,Ui0) × Morφ(V,Ui1) × Morφ(V,Ui2)
]

��⊕
φ Z

[∐
i0i1

Morφ(V,Ui0) × Morφ(V,Ui1)
]

��⊕
φ Z

[∐
i0

Morφ(V,Ui0)
]

��
0

Finally, on setting Sφ =
∐
i∈I Morφ(V,Ui) we see that we get⊕

φ
(. . . → Z[Sφ × Sφ × Sφ] → Z[Sφ × Sφ] → Z[Sφ] → 0 → . . .)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty
set S the (extended) complex of free abelian groups

. . . → Z[S × S × S] → Z[S × S] → Z[S] Σ−→ Z → 0 → . . .

is exact in all degrees. To see this fix an element s ∈ S, and use the homotopy

n(s0,...,sp) 7−→ n(s,s0,...,sp)

with obvious notations. □

Lemma 9.5.03F5 Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. Let O be a presheaf of rings on C. The chain complex

ZU,• ⊗p,Z O

is exact in positive degrees. Here ZU,• is the chain complex of Lemma 9.3, and the
tensor product is over the constant presheaf of rings with value Z.

Proof. Let V be an object of C. In the proof of Lemma 9.4 we saw that ZU,•(V )
is isomorphic as a complex to a direct sum of complexes which are homotopic to
Z placed in degree zero. Hence also ZU,•(V ) ⊗Z O(V ) is isomorphic as a complex
to a direct sum of complexes which are homotopic to O(V ) placed in degree zero.
Or you can use Modules on Sites, Lemma 28.11, which applies since the presheaves
ZU,i are flat, and the proof of Lemma 9.4 shows that H0(ZU,•) is a flat presheaf
also. □

https://stacks.math.columbia.edu/tag/03F5
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Lemma 9.6.03AU Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in C.
The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as a δ-functor
to the right derived functors of the functor

Ȟ0(U ,−) : PAb(C) −→ Ab.

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the derived functor

RȞ0(U ,−) : D+(PAb(C)) −→ D+(Z)

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of abelian presheaves has enough injectives, see
Injectives, Proposition 6.1. Note that Ȟ0(U ,−) is a left exact functor from the
category of abelian presheaves to the category of Z-modules. Hence the derived
functor and the right derived functor exist, see Derived Categories, Section 20.

Let I be a injective abelian presheaf. In this case the functor HomPAb(C)(−, I) is
exact on PAb(C). By Lemma 9.3 we have

HomPAb(C)(ZU,•, I) = Č•(U , I).

By Lemma 9.4 we have that ZU,• is exact in positive degrees. Hence by the exactness
of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0. Thus the
δ-functor (Ȟn, δ) (see Lemma 9.2) satisfies the assumptions of Homology, Lemma
12.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal
δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma 12.5
we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications
and the reader is suggested to skip the rest of the proof.

Let F be any abelian presheaf on C. Choose an injective resolution F → I• in
the category PAb(C). Consider the double complex Č•(U , I•) with terms Čp(U , Iq).
Next, consider the total complex Tot(Č•(U , I•)) associated to this double complex,
see Homology, Section 18. There is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the maps Čp(U ,F) → Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))

coming from the maps Ȟ0(U , Iq) → Č0(U , Iq). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 25.4. Namely, the columns
of the double complex are exact in positive degrees because the Čech complex as a
functor is exact (Lemma 9.1) and the rows of the double complex are exact in posi-
tive degrees since as we just saw the higher Čech cohomology groups of the injective
presheaves Iq are zero. Since quasi-isomorphisms become invertible in D+(Z) this
gives the last displayed morphism of the lemma. We omit the verification that this
morphism is functorial. □

https://stacks.math.columbia.edu/tag/03AU
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10. Čech cohomology and cohomology

03AV The relationship between cohomology and Čech cohomology comes from the fact
that the Čech cohomology of an injective abelian sheaf is zero. To see this we note
that an injective abelian sheaf is an injective abelian presheaf and then we apply
results in Čech cohomology in the preceding section.

Lemma 10.1.03F6 Let C be a site. An injective abelian sheaf is also injective as an
object in the category PAb(C).

Proof. Apply Homology, Lemma 29.1 to the categories A = Ab(C), B = PAb(C),
the inclusion functor and sheafification. (See Modules on Sites, Section 3 to see
that all assumptions of the lemma are satisfied.) □

Lemma 10.2.03AW Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let I be
an injective abelian sheaf, i.e., an injective object of Ab(C). Then

Ȟp(U , I) =
{

I(U) if p = 0
0 if p > 0

Proof. By Lemma 10.1 we see that I is an injective object in PAb(C). Hence we
can apply Lemma 9.6 (or its proof) to see the vanishing of higher Čech cohomology
group. For the zeroth see Lemma 8.2. □

Lemma 10.3.03AX Let C be a site. Let U = {Ui → U}i∈I be a covering of C. There is
a transformation

Č•(U ,−) −→ RΓ(U,−)
of functors Ab(C) → D+(Z). In particular this gives a transformation of functors
Ȟp(U,F) → Hp(U,F) for F ranging over Ab(C).

Proof. Let F be an abelian sheaf. Choose an injective resolution F → I•. Con-
sider the double complex Č•(U , I•) with terms Čp(U , Iq). Next, consider the as-
sociated total complex Tot(Č•(U , I•)), see Homology, Definition 18.3. There is a
map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))

coming from the maps Iq(U) → Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the map F → I0. We can apply Homology, Lemma 25.4 to see that
α is a quasi-isomorphism. Namely, Lemma 10.2 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible
in D+(Z) and the transformation of the lemma is the composition of β followed by
the inverse of α. We omit the verification that this is functorial. □

Lemma 10.4.0A6G Let C be a site. Let G be an abelian sheaf on C. Let U = {Ui →
U}i∈I be a covering of C. The map

Ȟ1(U ,G) −→ H1(U,G)

is injective and identifies Ȟ1(U ,G) via the bijection of Lemma 4.3 with the set of
isomorphism classes of G|U -torsors which restrict to trivial torsors over each Ui.

https://stacks.math.columbia.edu/tag/03F6
https://stacks.math.columbia.edu/tag/03AW
https://stacks.math.columbia.edu/tag/03AX
https://stacks.math.columbia.edu/tag/0A6G
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Proof. To see this we construct an inverse map. Namely, let F be a G|U -torsor
on C/U whose restriction to C/Ui is trivial. By Lemma 4.2 this means there exists
a section si ∈ F(Ui). On Ui0 ×U Ui1 there is a unique section si0i1 of G such that
si0i1 · si0 |Ui0 ×UUi1

= si1 |Ui0 ×UUi1
. An easy computation shows that si0i1 is a Čech

cocycle and that its class is well defined (i.e., does not depend on the choice of
the sections si). The inverse maps the isomorphism class of F to the cohomology
class of the cocycle (si0i1). We omit the verification that this map is indeed an
inverse. □

Lemma 10.5.03AY Let C be a site. Consider the functor i : Ab(C) → PAb(C). It is a
left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an object U of C are given by

Ker(In(U) → In+1(U))
Im(In−1(U) → In(U)) .

which is the definition of Hp(U,F). □

Lemma 10.6.03AZ Let C be a site. Let U = {Ui → U}i∈I be a covering of C. For any
abelian sheaf F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Ab(C) → PAb(C) and Ȟ0(U ,−) : PAb(C) → Ab.

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 8.2. We have that i(I) is Čech
acyclic by Lemma 10.2. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on
PAb(C) by Lemma 9.6. Putting everything together gives the lemma. □

Lemma 10.7.03F7 Let C be a site. Let U = {Ui → U}i∈I be a covering. Let F ∈
Ob(Ab(C)). Assume that Hi(Ui0 ×U . . .×U Uip ,F) = 0 for all i > 0, all p ≥ 0 and
all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F).

Proof. We will use the spectral sequence of Lemma 10.6. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q ̸= 0. Hence the spectral sequence degenerates at
E2 and the result follows. □

Lemma 10.8.03F8 Let C be a site. Let

0 → F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let U be an object of C. If there
exists a cofinal system of coverings U of U such that Ȟ1(U ,F) = 0, then the map
G(U) → H(U) is surjective.

https://stacks.math.columbia.edu/tag/03AY
https://stacks.math.columbia.edu/tag/03AZ
https://stacks.math.columbia.edu/tag/03F7
https://stacks.math.columbia.edu/tag/03F8
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Proof. Take an element s ∈ H(U). Choose a covering U = {Ui → U}i∈I such that
(a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we can
certainly find a covering such that (b) holds it follows from the assumptions of the
lemma that we can find a covering such that (a) and (b) both hold. Consider the
sections

si0i1 = si1 |Ui0 ×UUi1
− si0 |Ui0 ×UUi1

.

Since si lifts s we see that si0i1 ∈ F(Ui0 ×U Ui1). By the vanishing of Ȟ1(U ,F) we
can find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0 ×UUi1
− ti0 |Ui0 ×UUi1

.

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. □

Lemma 10.9.03F9 (Variant of Cohomology, Lemma 11.8.) Let C be a site. Let
CovC be the set of coverings of C (see Sites, Definition 6.2). Let B ⊂ Ob(C), and
Cov ⊂ CovC be subsets. Let F be an abelian sheaf on C. Assume that

(1) For every U ∈ Cov, U = {Ui → U}i∈I we have U,Ui ∈ B and every
Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.
Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective abelian sheaf. By Lemma 10.2 I has vanishing higher Čech
cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact sequence

0 → F → I → Q → 0.

By Lemma 10.8 and our assumption (2) this sequence gives rise to an exact sequence

0 → F(U) → I(U) → Q(U) → 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0 → Č•(U ,F) → Č•(U , I) → Č•(U ,Q) → 0
since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any covering U ∈ Cov. This implies that Q is also an
abelian sheaf with vanishing higher Čech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

https://stacks.math.columbia.edu/tag/03F9
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for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I) → H0(U,Q) is surjec-
tive and hence H1(U,F) = 0. Since F was an arbitrary abelian sheaf with vanishing
higher Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since
Q is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. □

11. Second cohomology and gerbes

0CJZ Let p : S → C be a gerbe over a site all of whose automorphism groups are com-
mutative. In this situation the first and second cohomology groups of the sheaf of
automorphisms (Stacks, Lemma 11.8) controls the existence of objects.
The following lemma will be made obsolete by a more complete discussion of this
relationship we will add in the future.
Lemma 11.1.0CK0 Let C be a site. Let p : S → C be a gerbe over a site whose
automorphism sheaves are abelian. Let G be the sheaf of abelian groups constructed
in Stacks, Lemma 11.8. Let U be an object of C such that

(1) there exists a cofinal system of coverings {Ui → U} of U in C such that
H1(Ui,G) = 0 and H1(Ui ×U Uj ,G) = 0 for all i, j, and

(2) H2(U,G) = 0.
Then there exists an object of S lying over U .
Proof. By Stacks, Definition 11.1 there exists a covering U = {Ui → U} and xi in
S lying over Ui. Write Uij = Ui ×U Uj . By (1) after refining the covering we may
assume that H1(Ui,G) = 0 and H1(Uij ,G) = 0. Consider the sheaf

Fij = Isom(xi|Uij , xj |Uij )
on C/Uij . Since G|Uij

= Aut(xi|Uij
) we see that there is an action

G|Uij × Fij → Fij
by precomposition. It is clear that Fij is a pseudo G|Uij

-torsor and in fact a torsor
because any two objects of a gerbe are locally isomorphic. By our choice of the
covering and by Lemma 4.3 these torsors are trivial (and hence have global sections
by Lemma 4.2). In other words, we can choose isomorphisms

φij : xi|Uij
−→ xj |Uij

To find an object x over U we are going to massage our choice of these φij to get a
descent datum (which is necessarily effective as p : S → C is a stack). Namely, the
obstruction to being a descent datum is that the cocycle condition may not hold.
Namely, set Uijk = Ui ×U Uj ×U Uk. Then we can consider

gijk = φ−1
ik |Uijk

◦ φjk|Uijk
◦ φij |Uijk

which is an automorphism of xi over Uijk. Thus we may and do consider gijk
as a section of G over Uijk. A computation (omitted) shows that (gi0i1i2) is a 2-
cocycle in the Čech complex Č•(U ,G) of G with respect to the covering U . By
the spectral sequence of Lemma 10.6 and since H1(Ui,G) = 0 for all i we see
that Ȟ2(U ,G) → H2(U,G) is injective. Hence (gi0i1i2) is a coboundary by our
assumption that H2(U,G) = 0. Thus we can find sections gij ∈ G(Uij) such that
g−1
ik |Uijk

gjk|Uijk
gij |Uijk

= gijk for all i, j, k. After replacing φij by φijg−1
ij we see that

φij gives a descent datum on the objects xi over Ui and the proof is complete. □

https://stacks.math.columbia.edu/tag/0CK0
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12. Cohomology of modules

03FA Everything that was said for cohomology of abelian sheaves goes for cohomology of
modules, since the two agree.

Lemma 12.1.03FB Let (C,O) be a ringed site. An injective sheaf of modules is also
injective as an object in the category PMod(O).

Proof. Apply Homology, Lemma 29.1 to the categories A = Mod(O), B = PMod(O),
the inclusion functor and sheafification. (See Modules on Sites, Section 11 to see
that all assumptions of the lemma are satisfied.) □

Lemma 12.2.06YK Let (C,O) be a ringed site. Consider the functor i : Mod(C) →
PMod(C). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I• in
Mod(O). By definition Rpi is the pth cohomology presheaf of the complex I•. In
other words, the sections of Rpi(F) over an object U of C are given by

Ker(In(U) → In+1(U))
Im(In−1(U) → In(U)) .

which is the definition of Hp(U,F). □

Lemma 12.3.03FC Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be a covering of
C. Let I be an injective O-module, i.e., an injective object of Mod(O). Then

Ȟp(U , I) =
{

I(U) if p = 0
0 if p > 0

Proof. Lemma 9.3 gives the first equality in the following sequence of equalities

Č•(U , I) = MorPAb(C)(ZU,•, I)
= MorPMod(Z)(ZU,•, I)
= MorPMod(O)(ZU,• ⊗p,Z O, I)

The third equality by Modules on Sites, Lemma 9.2. By Lemma 12.1 we see that
I is an injective object in PMod(O). Hence HomPMod(O)(−, I) is an exact functor.
By Lemma 9.5 we see the vanishing of higher Čech cohomology groups. For the
zeroth see Lemma 8.2. □

Lemma 12.4.03FD Let C be a site. Let O be a sheaf of rings on C. Let F be an
O-module, and denote Fab the underlying sheaf of abelian groups. Then we have

Hi(C,Fab) = Hi(C,F)

and for any object U of C we also have

Hi(U,Fab) = Hi(U,F).

Here the left hand side is cohomology computed in Ab(C) and the right hand side is
cohomology computed in Mod(O).

https://stacks.math.columbia.edu/tag/03FB
https://stacks.math.columbia.edu/tag/06YK
https://stacks.math.columbia.edu/tag/03FC
https://stacks.math.columbia.edu/tag/03FD
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Proof. By Derived Categories, Lemma 20.4 the δ-functor (F 7→ Hp(U,F))p≥0
is universal. The functor Mod(O) → Ab(C), F 7→ Fab is exact. Hence (F 7→
Hp(U,Fab))p≥0 is a δ-functor also. Suppose we show that (F 7→ Hp(U,Fab))p≥0 is
also universal. This will imply the second statement of the lemma by uniqueness
of universal δ-functors, see Homology, Lemma 12.5. Since Mod(O) has enough
injectives, it suffices to show that Hi(U, Iab) = 0 for any injective object I in
Mod(O), see Homology, Lemma 12.4.

Let I be an injective object of Mod(O). Apply Lemma 10.9 with F = I, B = C
and Cov = CovC . Assumption (3) of that lemma holds by Lemma 12.3. Hence we
see that Hi(U, Iab) = 0 for every object U of C.

If C has a final object then this also implies the first equality. If not, then according
to Sites, Lemma 29.5 we see that the ringed topos (Sh(C),O) is equivalent to a
ringed topos where the underlying site does have a final object. Hence the lemma
follows. □

Lemma 12.5.060L Let C be a site. Let I be a set. For i ∈ I let Fi be an abelian sheaf
on C. Let U ∈ Ob(C). The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sites, Lemma 10.1. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By

locality of cohomology, see Lemma 7.3, there exists a covering U = {Uj → U}
such that ξ|Uj

= 0 for all j. By Lemma 10.4 this means ξ comes from an element
ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 10.4), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏

Fi we see that Č•(U ,F) is the
product of the complexes Č•(U ,Fi), hence by Homology, Lemma 32.1 we conclude
that ξ̌ = 0 as desired. □

Lemma 12.6.093X Let (C,O) be a ringed site. Let a : U ′ → U be a monomorphism
in C. Then for any injective O-module I the restriction mapping I(U) → I(U ′) is
surjective.

Proof. Let j : C/U → C and j′ : C/U ′ → C be the localization morphisms (Modules
on Sites, Section 19). Since j! is a left adjoint to restriction we see that for any
sheaf F of O-modules

HomO(j!OU ,F) = HomOU
(OU ,F|U ) = F(U)

Similarly, the sheaf j′
!OU ′ represents the functor F 7→ F(U ′). Moreover below we

describe a canonical map of O-modules

j′
!OU ′ −→ j!OU

which corresponds to the restriction mapping F(U) → F(U ′) via Yoneda’s lemma
(Categories, Lemma 3.5). It suffices to prove the displayed map of modules is
injective, see Homology, Lemma 27.2.

https://stacks.math.columbia.edu/tag/060L
https://stacks.math.columbia.edu/tag/093X
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To construct our map it suffices to construct a map between the presheaves which
assign to an object V of C the O(V )-module⊕

φ′∈MorC(V,U ′)
O(V ) and

⊕
φ∈MorC(V,U)

O(V )

see Modules on Sites, Lemma 19.2. We take the map which maps the summand
corresponding to φ′ to the summand corresponding to φ = a ◦ φ′ by the identity
map on O(V ). As a is a monomorphism, this map is injective. As sheafification is
exact, the result follows. □

13. Totally acyclic sheaves

079X Let (C,O) be a ringed site. Let K be a presheaf of sets on C (we intentionally
use a roman capital here to distinguish from abelian sheaves). Given a sheaf of
O-modules F we set

F(K) = MorPSh(C)(K,F) = MorSh(C)(K#,F)

The functor F 7→ F(K) is a left exact functor Mod(O) → Ab hence we have its
right derived functors. We will denote these Hp(K,F) so that H0(K,F) = F(K).

Here are some observations:
(1) Since F(K) = F(K#), we have Hp(K,F) = Hp(K#,F). Allowing K to

be a presheaf in the definition above is a purely notational convenience.
(2) Suppose that K = hU or K = h#

U for some object U of C. Then Hp(K,F) =
Hp(U,F), because MorSh(C)(h#

U ,F) = F(U), see Sites, Section 12.
(3) If O = Z (the constant sheaf), then the cohomology groups are functors

Hp(K,−) : Ab(C) → Ab since Mod(O) = Ab(C) in this case.
We can translate some of our already proven results using this language.

Lemma 13.1.079Y Let (C,O) be a ringed site. Let K be a presheaf of sets on C. Let
F be an O-module and denote Fab the underlying sheaf of abelian groups. Then
Hp(K,F) = Hp(K,Fab).

Proof. We may replace K by its sheafification and assume K is a sheaf. Note that
both Hp(K,F) and Hp(K,Fab) depend only on the topos, not on the underlying
site. Hence by Sites, Lemma 29.5 we may replace C by a “larger” site such that
K = hU for some object U of C. In this case the result follows from Lemma 12.4. □

Lemma 13.2.079Z Let C be a site. Let K ′ → K be a map of presheaves of sets on C
whose sheafification is surjective. Set K ′

p = K ′ ×K . . . ×K K ′ (p + 1-factors). For
every abelian sheaf F there is a spectral sequence with Ep,q1 = Hq(K ′

p,F) converging
to Hp+q(K,F).

Proof. Since sheafification is exact, we see that (K ′
p)# is equal to (K ′)# ×K#

. . .×K# (K ′)# (p+1-factors). Thus we may replaceK andK ′ by their sheafifications
and assume K → K ′ is a surjective map of sheaves. After replacing C by a “larger”
site as in Sites, Lemma 29.5 we may assume that K,K ′ are objects of C and that
U = {K ′ → K} is a covering. Then we have the Čech to cohomology spectral
sequence of Lemma 10.6 whose E1 page is as indicated in the statement of the
lemma. □

https://stacks.math.columbia.edu/tag/079Y
https://stacks.math.columbia.edu/tag/079Z
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Lemma 13.3.07A0 Let C be a site. Let K be a sheaf of sets on C. Consider the mor-
phism of topoi j : Sh(C/K) → Sh(C), see Sites, Lemma 30.3. Then j−1 preserves
injectives and Hp(K,F) = Hp(C/K, j−1F) for any abelian sheaf F on C.

Proof. By Sites, Lemmas 30.1 and 30.3 the morphism of topoi j is equivalent to
a localization. Hence this follows from Lemma 7.1. □

Keeping in mind Lemma 13.1 we see that the following definition is the “correct
one” also for sheaves of modules on ringed sites.

Definition 13.4.072Y Let C be a site. We say an abelian sheaf F is totally acyclic1 if
for every sheaf of sets K we have Hp(K,F) = 0 for all p ≥ 1.

It is clear that being totally acyclic is an intrinsic property, i.e., preserved under
equivalences of topoi. A totally acyclic sheaf has vanishing higher cohomology on
all objects of the site, but in general the condition of being totally acyclic is strictly
stronger. Here is a characterization of totally acyclic sheaves which is sometimes
useful.

Lemma 13.5.07A1 Let C be a site. Let F be an abelian sheaf. If
(1) Hp(U,F) = 0 for p > 0 and U ∈ Ob(C), and
(2) for every surjection K ′ → K of sheaves of sets the extended Čech complex

0 → H0(K,F) → H0(K ′,F) → H0(K ′ ×K K ′,F) → . . .

is exact,
then F is totally acyclic (and the converse holds too).

Proof. By assumption (1) we have Hp(h#
U , g

−1I) = 0 for all p > 0 and all objects
U of C. Note that if K =

∐
Ki is a coproduct of sheaves of sets on C then

Hp(K, g−1I) =
∏
Hp(Ki, g

−1I). For any sheaf of sets K there exists a surjection

K ′ =
∐

h#
Ui

−→ K

see Sites, Lemma 12.5. Thus we conclude that: (*) for every sheaf of sets K there
exists a surjection K ′ → K of sheaves of sets such that Hp(K ′,F) = 0 for p > 0.
We claim that (*) and condition (2) imply that F is totally acyclic. Note that
conditions (*) and (2) only depend on F as an object of the topos Sh(C) and not
on the underlying site. (We will not use property (1) in the rest of the proof.)
We are going to prove by induction on n ≥ 0 that (*) and (2) imply the following
induction hypothesis IHn: Hp(K,F) = 0 for all 0 < p ≤ n and all sheaves of sets
K. Note that IH0 holds. Assume IHn. Pick a sheaf of sets K. Pick a surjection
K ′ → K such that Hp(K ′,F) = 0 for all p > 0. We have a spectral sequence with

Ep,q1 = Hq(K ′
p,F)

covering to Hp+q(K,F), see Lemma 13.2. By IHn we see that Ep,q1 = 0 for 0 <
q ≤ n and by assumption (2) we see that Ep,02 = 0 for p > 0. Finally, we have
E0,q

1 = 0 for q > 0 because Hq(K ′,F) = 0 by choice of K ′. Hence we conclude that
Hn+1(K,F) = 0 because all the terms Ep,q2 with p+ q = n+ 1 are zero. □

1Although this terminology is is used in [AGV71, Vbis, Proposition 1.3.10] this is probably
nonstandard notation. In [AGV71, V, Definition 4.1] this property is dubbed “flasque”, but we
cannot use this because it would clash with our definition of flasque sheaves on topological spaces.
Please email stacks.project@gmail.com if you have a better suggestion.

https://stacks.math.columbia.edu/tag/07A0
https://stacks.math.columbia.edu/tag/072Y
https://stacks.math.columbia.edu/tag/07A1
mailto:stacks.project@gmail.com
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14. The Leray spectral sequence

072X The key to proving the existence of the Leray spectral sequence is the following
lemma.

Lemma 14.1.072Z Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Then for any injective object I in Mod(OC) the pushforward f∗I is totally acyclic.

Proof. Let K be a sheaf of sets on D. By Modules on Sites, Lemma 7.2 we may
replace C, D by “larger” sites such that f comes from a morphism of ringed sites
induced by a continuous functor u : D → C such that K = hV for some object V
of D.

Thus we have to show that Hq(V, f∗I) is zero for q > 0 and all objects V of D
when f is given by a morphism of ringed sites. Let V = {Vj → V } be any covering
of D. Since u is continuous we see that U = {u(Vj) → u(V )} is a covering of C.
Then we have an equality of Čech complexes

Č•(V, f∗I) = Č•(U , I)

by the definition of f∗. By Lemma 12.3 we see that the cohomology of this complex
is zero in positive degrees. We win by Lemma 10.9. □

For flat morphisms the functor f∗ preserves injective modules. In particular the
functor f∗ : Ab(C) → Ab(D) always transforms injective abelian sheaves into injec-
tive abelian sheaves.

Lemma 14.2.0730 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
If f is flat, then f∗I is an injective OD-module for any injective OC-module I.

Proof. In this case the functor f∗ is exact, see Modules on Sites, Lemma 31.2.
Hence the result follows from Homology, Lemma 29.1. □

Lemma 14.3.0731 Let (Sh(C),OC) be a ringed topos. A totally acyclic sheaf is right
acyclic for the following functors:

(1) the functor H0(U,−) for any object U of C,
(2) the functor F 7→ F(K) for any presheaf of sets K,
(3) the functor Γ(C,−) of global sections,
(4) the functor f∗ for any morphism f : (Sh(C),OC) → (Sh(D),OD) of ringed

topoi.

Proof. Part (2) is the definition of a totally acyclic sheaf. Part (1) is a consequence
of (2) as pointed out in the discussion following the definition of totally acyclic
sheaves. Part (3) is a special case of (2) where K = e is the final object of Sh(C).

To prove (4) we may assume, by Modules on Sites, Lemma 7.2 that f is given by
a morphism of sites. In this case we see that Rif∗, i > 0 of a totally acyclic sheaf
are zero by the description of higher direct images in Lemma 7.4. □

Remark 14.4.08J6 As a consequence of the results above we find that Derived Cat-
egories, Lemma 22.1 applies to a number of situations. For example, given a mor-
phism f : (Sh(C),OC) → (Sh(D),OD) of ringed topoi we have

RΓ(D, Rf∗F) = RΓ(C,F)

https://stacks.math.columbia.edu/tag/072Z
https://stacks.math.columbia.edu/tag/0730
https://stacks.math.columbia.edu/tag/0731
https://stacks.math.columbia.edu/tag/08J6


COHOMOLOGY ON SITES 23

for any sheaf of OC-modules F . Namely, for an injective OX -module I the OD-
module f∗I is totally acyclic by Lemma 14.1 and a totally acyclic sheaf is acyclic
for Γ(D,−) by Lemma 14.3.

Lemma 14.5 (Leray spectral sequence).0732 Let f : (Sh(C),OC) → (Sh(D),OD) be
a morphism of ringed topoi. Let F• be a bounded below complex of OC-modules.
There is a spectral sequence

Ep,q2 = Hp(D, Rqf∗(F•))

converging to Hp+q(C,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γ(C,−) = Γ(D,−) ◦ f∗. To see that
the assumptions of Derived Categories, Lemma 22.2 are satisfied, see Lemmas 14.1
and 14.3. □

Lemma 14.6.0733 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let F be an OC-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(C,F) = Hp(D, f∗F) for all p.
(2) If Hp(D, Rqf∗F) = 0 for all q and p > 0, then Hq(C,F) = H0(D, Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to converge. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. □

Lemma 14.7 (Relative Leray spectral sequence).0734 Let f : (Sh(C),OC) → (Sh(D),OD)
and g : (Sh(D),OD) → (Sh(E),OE) be morphisms of ringed topoi. Let F be an OC-
module. There is a spectral sequence with

Ep,q2 = Rpg∗(Rqf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OC-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see
Derived Categories, Lemma 22.2 and Lemmas 14.1 and 14.3. □

15. The base change map

0735 In this section we construct the base change map in some cases; the general case is
treated in Remark 19.3. The discussion in this section avoids using derived pullback
by restricting to the case of a base change by a flat morphism of ringed sites. Before
we state the result, let us discuss flat pullback on the derived category. Suppose
g : (Sh(C),OC) → (Sh(D),OD) is a flat morphism of ringed topoi. By Modules on
Sites, Lemma 31.2 the functor g∗ : Mod(OD) → Mod(OC) is exact. Hence it has a
derived functor

g∗ : D(OD) → D(OC)
which is computed by simply pulling back an representative of a given object in
D(OD), see Derived Categories, Lemma 16.9. It preserved the bounded (above,
below) subcategories. Hence as indicated we indicate this functor by g∗ rather
than Lg∗.

https://stacks.math.columbia.edu/tag/0732
https://stacks.math.columbia.edu/tag/0733
https://stacks.math.columbia.edu/tag/0734
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Lemma 15.1.0736 Let

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

be a commutative diagram of ringed topoi. Let F• be a bounded below complex of
OC-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(OD′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 14.2
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•. Hence
by Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to D we get

f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. □

16. Cohomology and colimits

0737 Let (C,O) be a ringed site. Let I → Mod(O), i 7→ Fi be a diagram over the
index category I, see Categories, Section 14. For each i there is a canonical map
Fi → colimi Fi which induces a map on cohomology. Hence we get a canonical map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

for every p ≥ 0 and every object U of C. These maps are in general not isomor-
phisms, even for p = 0.

The following lemma is the analogue of Sites, Lemma 17.7 for cohomology.

Lemma 16.1.0739 Let C be a site. Let CovC be the set of coverings of C (see Sites,
Definition 6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

Then the map
colimiH

p(U,Fi) −→ Hp(U, colimi Fi)
is an isomorphism for every p ≥ 0, every U ∈ B, and every filtered diagram I →
Ab(C).

https://stacks.math.columbia.edu/tag/0736
https://stacks.math.columbia.edu/tag/0739
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Proof. To prove the lemma we will argue by induction on p. Note that we require
in (1) the coverings U ∈ Cov to be finite, so that all the elements of B are quasi-
compact. Hence (2) and (1) imply that any U ∈ B satisfies the hypothesis of Sites,
Lemma 17.7 (4). Thus we see that the result holds for p = 0. Now we assume the
lemma holds for p and prove it for p+ 1.

Choose a filtered diagram F : I → Ab(C), i 7→ Fi. Since Ab(C) has functorial
injective embeddings, see Injectives, Theorem 7.4, we can find a morphism of filtered
diagrams F → I such that each Fi → Ii is an injective map of abelian sheaves
into an injective abelian sheaf. Denote Qi the cokernel so that we have short exact
sequences

0 → Fi → Ii → Qi → 0.
Since colimits of sheaves are the sheafification of colimits on the level of presheaves,
since sheafification is exact, and since filtered colimits of abelian groups are exact
(see Algebra, Lemma 8.8), we see the sequence

0 → colimi Fi → colimi Ii → colimi Qi → 0.

is also a short exact sequence. We claim that Hq(U, colimi Ii) = 0 for all U ∈ B
and all q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
p(U, Ii)

��

// colimiH
p(U,Qi)

��

// colimiH
p+1(U,Fi)

��

// 0

��
Hp(U, colimi Ii) // Hp(U, colimi Qi) // Hp+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row
is exact by an application of Algebra, Lemma 8.8. Hence by the snake lemma we
deduce the result for p+ 1.

It remains to show that the claim is true. We will use Lemma 10.9. By the result
for p = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the Uj0 ×U . . .×U Ujp are in B. By Lemma 10.2 each of the complexes in
the colimit of Čech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma
8.8 we see that also the Čech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1. In
other words we see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions
of Lemma 10.9. are satisfied and the claim follows. □

Lemma 16.2.0GN3 Let C be a site. Let S ⊂ Ob(Sh(C)) be a subset. Denote ∗ the final
object of Sh(C). Assume

(1) for some K ∈ S the map K → ∗ is surjective,
(2) given a surjective map of sheaves F → K with K ∈ S there exists a K ′ ∈ S

and a map K ′ → F such that the composition K ′ → K is surjective,
(3) given K,K ′ ∈ S there is a surjection K ′′ → K ×K ′ with K ′′ ∈ S,
(4) given a, b : K → K ′ with K,K ′ ∈ S there exists a surjection K ′′ →

Equalizer(a, b) with K ′′ ∈ S, and
(5) every K ∈ S is quasi-compact (Sites, Definition 17.4).

https://stacks.math.columbia.edu/tag/0GN3
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Then for all p ≥ 0 the map

colimλH
p(C,Fλ) −→ Hp(C, colimλ Fλ)

is an isomorphism for every filtered diagram Λ → Ab(C), λ 7→ Fλ.

Proof. We will prove this by induction on p. The base case p = 0 follows from
Sites, Lemma 17.8 part (4). We check the assumptions hold, but we urge the
reader to skip this part. Suppose F → ∗ is surjective. Choose K ∈ S and K → ∗
surjective as in (1). Then F × K → K is surjective. Choose K ′ → F × K with
K ′ ∈ S and K ′ → K surjective as in (2). Then there is a map K ′ → F and K ′ → ∗
is surjective. Hence Sites, Lemma 17.8 assumption (4)(a) is satisfied. By Sites,
Lemma 17.5, assumptions (3) and (5) we see that K × K is quasi-compact for all
K ∈ S. Hence Sites, Lemma 17.8 assumption (4)(b) is satisfied. This finishes the
proof of the base case.

Induction step. Assume the result holds for Hp for p ≤ p0 and for all topoi Sh(C)
such that a set S ⊂ Ob(Sh(C)) can be found satisfying (1) – (5). Arguing exactly as
in the proof of Lemma 16.1 we see that it suffices to show: given a filtered colimit
I = colim Iλ with Iλ injective abelian sheaves, we have Hp0+1(C, I) = 0. Choose
K → ∗ surjective with K ∈ S as in (1). Denote Kn the n-fold self product of K.
Consider the spectral sequence

Ep,q1 = Hq(Kp+1, I) ⇒ Hp+q(∗, I) = Hp+q(C, I)

of Lemma 13.2. Recall that Hq(Kp+1,F) = Hq(C/Kp+1, j−1F), for any abelian
sheaf on C, see Lemma 13.3. We have j−1I = colim j−1Iλ as j−1 commutes with
colimits. The restrictions j−1Iλ are injective abelian sheaves on C/Kp+1 by Lemma
7.1. Below we will show that the induction hypothesis applies to C/Kp+1 and hence
we see that Hq(Kp+1, I) = colimHq(Kp+1, Iλ) = 0 for q < p0 + 1 (vanishing as Iλ
is injective). It follows that

Hp0+1(C, I) = Hp0+1 (
. . . → H0(Kp0 , I) → H0(Kp0+1, I) → H0(Kp0+2, I) → . . .

)
Again using the induction hypothesis, the complex depicted on the right hand side
is the colimit over Λ of the complexes

. . . → H0(Kp0 , Iλ) → H0(Kp0+1, Iλ) → H0(Kp0+2, Iλ) → . . .

These complexes are exact as Iλ is an injective abelian sheaf (follows from the
spectral sequence for example). Since filtered colimits are exact in the category of
abelian groups we obtain the desired vanishing.

We still have to show that the induction hypothesis applies to the site C/Kn for
all n ≥ 1. Recall that Sh(C/Kn) = Sh(C)/Kn, see Sites, Lemma 30.3. Thus we
may work in Sh(C)/Kn. Denote Sn ⊂ Ob(Sh(C/Kn) the set of objects of the form
K ′ → Kn. We check each property in turn:

(1) By (3) and induction there exists a surjection K ′ → Kn with K ′ ∈ S. Then
(K ′ → Kn) → (Kn → Kn) is a surjection in Sh(C)/Kn and Kn → Kn is
the final object of Sh(C)/Kn. Hence (1) holds for Sn,

(2) Property (2) for Sn is an immediate consquence of (2) for S.
(3) Let a : K1 → Kn and b : K2 → Kn be in Sn. Then (K1 → Kn) ×

(K2 → Kn) is the object K1 ×Kn K2 → Kn of Sh(C)/Kn. The subsheaf
K1 ×Kn K2 ⊂ K1 × K2 is the equalizer of a ◦ pr1 and b ◦ pr2. Write
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a = (a1, . . . , an) and b = (b1, . . . , bn). Pick K3 → K1 × K2 surjective with
K3 ∈ S; this is possibly by assumption (3) for C. Pick

K4 −→ Equalizer(K3 → K1 ×K2
a1,b1−−−→ K)

surjective with K4 ∈ S. This is possible by assumption (4) for C. Pick

K5 −→ Equalizer(K4 → K1 ×K2
a2,b2−−−→ K)

surjective with K5 ∈ S. Again this is possible. Continue in this fashion
until we get

K3+n −→ Equalizer(K2+n → K1 ×K2
an,bn−−−→ K)

surjective with K3+n ∈ S. By construction K3+n → K1 ×Kn K2 is sur-
jective. Hence (K3+n → Kn) is in Sn and surjects onto the product
(K1 → Kn) × (K2 → Kn). Thus (3) holds for Sn.

(4) Property (4) for Sn is an immediate consequence of property (4) for S.
(5) Property (5) for Sn is a consequence of property (5) for S. Namely, an

object F → Kn of Sh(C)/Kn corresponds to a quasi-compact object of
Sh(C/Kn) if and only if F is a quasi-compact object of Sh(C).

This finishes the proof of the lemma. □

Remark 16.3.0GN4 Let C be a site. Let B ⊂ Ob(C) be a subset. Let S ⊂ Ob(Sh(C))
be the set of sheaves K which have the form

K =
∐

i=1,...,n
h#
Ui

with U1, . . . , Un ∈ B. Then we can ask: when does this set satisfy the assumptions
of Lemma 16.2? One answer is that it suffices if

(1) for some n ≥ 0, U1, . . . , Un ∈ B the map
∐
i=1,...,n h

#
Ui

→ ∗ is surjective,
(2) every covering of U ∈ B can be refined by a covering of the form {Ui →

U}i=1,...,n with Ui ∈ B,
(3) given U,U ′ ∈ B there exist n ≥ 0, U1, . . . , Un ∈ B, maps Ui → U and

Ui → U ′ such that
∐
i=1,...,n h

#
Ui

→ h#
U × h#

U ′ is surjective,
(4) given morphisms a, b : U → U ′ in C with U,U ′ ∈ B, there exist U1, . . . , Un ∈

B, maps Ui → U equalizing a, b such that
∐
i=1,...,n h

#
Ui

→ Equalizer(h#
a , h

#
b :

h#
U → h#

U ′) is surjective.
We omit the detailed verification, except to mention that part (2) above insures
that every element of B is quasi-compact and hence every K ∈ S is quasi-compact
as well by Sites, Lemma 17.6.

Lemma 16.4.0EXZ Let I be a cofiltered index category and let (Ci, fa) be an inverse
system of sites over I as in Sites, Situation 18.1. Set C = colim Ci as in Sites,
Lemmas 18.2 and 18.3. Moreover, assume given

(1) an abelian sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map φa : f−1

a Fi → Fj of abelian sheaves on Cj
such that φc = φb ◦ f−1

b φa whenever c = a ◦ b. Then there exists a map of systems
(Fi, φa) → (Gi, ψa) such that Fi → Gi is injective and Gi is an injective abelian
sheaf.

https://stacks.math.columbia.edu/tag/0GN4
https://stacks.math.columbia.edu/tag/0EXZ
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Proof. For each i we pick an injection Fi → Ai where Ai is an injective abelian
sheaf on Ci. Then we can consider the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ak = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ak.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

whose components are the canonical maps f−1
b fa◦b,∗Ak → fb,∗Ak for b : k → j.

Thus we find an injection (γi) : (Fi, φa) → (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 14.2 and
Homology, Lemma 27.3. This finishes the construction. □

Lemma 16.5.09YP In the situation of Lemma 16.4 set F = colim f−1
i Fi. Let i ∈

Ob(I), Xi ∈ Ob(Ci). Then

colima:j→iH
p(ua(Xi),Fj) = Hp(ui(Xi),F)

for all p ≥ 0.

Proof. The case p = 0 is Sites, Lemma 18.4.

Choose (Fi, φa) → (Gi, ψa) as in Lemma 16.4. Arguing exactly as in the proof of
Lemma 16.1 we see that it suffices to prove that Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every object of C

we show that the Čech cohomology of G for any covering U of C is zero (Lemma
10.9). The covering U comes from a covering Ui of Ci for some i. We have

Č•(U ,G) = colima:j→i Č•(ua(Ui),Gj)

by the case p = 0. The right hand side is acyclic in positive degrees as a filtered
colimit of acyclic complexes by Lemma 10.2. See Algebra, Lemma 8.8. □

17. Flat resolutions

06YL In this section we redo the arguments of Cohomology, Section 26 in the setting of
ringed sites and ringed topoi.

Lemma 17.1.06YM Let (C,O) be a ringed site. Let G• be a complex of O-modules. The
functors

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(G• ⊗O F•)
and

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O G•)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 10.9. □

Definition 17.2.06YN Let (C,O) be a ringed site. A complex K• of O-modules is
called K-flat if for every acyclic complex F• of O-modules the complex

Tot(F• ⊗O K•)

is acyclic.

https://stacks.math.columbia.edu/tag/09YP
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Lemma 17.3.06YP Let (C,O) be a ringed site. Let K• be a K-flat complex. Then the
functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 17.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. □

Lemma 17.4.0E8K Let (C,O) be a ringed site. Let U be an object of C. If K• is a
K-flat complex of O-modules, then K•|U is a K-flat complex of OU -modules.

Proof. Let G• be an exact complex of OU -modules. Since jU ! is exact (Modules
on Sites, Lemma 19.3) and K• is a K-flat complex of O-modules we see that the
complex

jU !(Tot(G• ⊗OU
K•|U )) = Tot(jU !G• ⊗O K•)

is exact. Here the equality comes from Modules on Sites, Lemma 27.9 and the fact
that jU ! commutes with direct sums (as a left adjoint). We conclude because jU !
reflects exactness by Modules on Sites, Lemma 19.4. □

Lemma 17.5.07A2 Let (C,O) be a ringed site. If K•, L• are K-flat complexes of
O-modules, then Tot(K• ⊗O L•) is a K-flat complex of O-modules.

Proof. Follows from the isomorphism
Tot(M• ⊗O Tot(K• ⊗O L•)) = Tot(Tot(M• ⊗O K•) ⊗O L•)

and the definition. □

Lemma 17.6.07A3 Let (C,O) be a ringed site. Let (K•
1,K•

2,K•
3) be a distinguished

triangle in K(Mod(O)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 17.1 and the fact that in a distinguished triangle in
K(Mod(O)) if two out of three are acyclic, so is the third. □

Lemma 17.7.0G7B Let (C,O) be a ringed site. Let 0 → K•
1 → K•

2 → K•
3 → 0 be a

short exact sequence of complexes such that the terms of K•
3 are flat O-modules. If

two out of three of K•
i are K-flat, so is the third.

Proof. By Modules on Sites, Lemma 28.9 for every complex L• we obtain a short
exact sequence

0 → Tot(L• ⊗O K•
1) → Tot(L• ⊗O K•

1) → Tot(L• ⊗O K•
1) → 0

of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. □

Lemma 17.8.06YQ Let (C,O) be a ringed site. A bounded above complex of flat O-
modules is K-flat.

Proof. Let K• be a bounded above complex of flat O-modules. Let L• be an acyclic
complex of O-modules. Note that L• = colimm τ≤mL• where we take termwise
colimits. Hence also

Tot(K• ⊗O L•) = colimm Tot(K• ⊗O τ≤mL•)
termwise. Hence to prove the complex on the left is acyclic it suffices to show
each of the complexes on the right is acyclic. Since τ≤mL• is acyclic this reduces

https://stacks.math.columbia.edu/tag/06YP
https://stacks.math.columbia.edu/tag/0E8K
https://stacks.math.columbia.edu/tag/07A2
https://stacks.math.columbia.edu/tag/07A3
https://stacks.math.columbia.edu/tag/0G7B
https://stacks.math.columbia.edu/tag/06YQ
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us to the case where L• is bounded above. In this case the spectral sequence of
Homology, Lemma 25.3 has

′Ep,q1 = Hp(L• ⊗R Kq)

which is zero as Kq is flat and L• acyclic. Hence we win. □

Lemma 17.9.06YR Let (C,O) be a ringed site. Let K•
1 → K•

2 → . . . be a system of
K-flat complexes. Then colimi K•

i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗O K•
i ) = Tot(F• ⊗O colimi K•

i )

Hence the lemma follows from the fact that filtered colimits are exact. □

Lemma 17.10.077J Let (C,O) be a ringed site. For any complex G• of O-modules
there exists a commutative diagram of complexes of O-modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms and
termwise surjective, (2) each K•

n is a bounded above complex whose terms are direct
sums of O-modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise

split injections whose cokernels are direct sums of O-modules of the form jU !OU .
Moreover, the map colim K•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immedi-
ately from Modules on Sites, Lemma 28.8 and Derived Categories, Lemma 29.1.
The induced map colim K•

n → G• is a quasi-isomorphism because filtered colimits
are exact. □

Lemma 17.11.06YS Let (C,O) be a ringed site. For any complex G• there exists a K-
flat complex K• whose terms are flat O-modules and a quasi-isomorphism K• → G•

which is termwise surjective.

Proof. Choose a diagram as in Lemma 17.10. Each complex K•
n is a bounded

above complex of flat modules, see Modules on Sites, Lemma 28.7. Hence K•
n is

K-flat by Lemma 17.8. Thus colim K•
n is K-flat by Lemma 17.9. The induced map

colim K•
n → G• is a quasi-isomorphism and termwise surjective by construction.

Property (3) of Lemma 17.10 shows that colim Km
n is a direct sum of flat modules

and hence flat which proves the final assertion. □

Lemma 17.12.06YT Let (C,O) be a ringed site. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of O-modules. For every complex F• of O-modules
the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗O P•) −→ Tot(F• ⊗O Q•)

is a quasi-isomorphism.

https://stacks.math.columbia.edu/tag/06YR
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Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 17.11. Consider the commutative diagram

Tot(K• ⊗O P•) //

��

Tot(K• ⊗O Q•)

��
Tot(F• ⊗O P•) // Tot(F• ⊗O Q•)

The result follows as by Lemma 17.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. □

Let (C,O) be a ringed site. Let F• be an object of D(O). Choose a K-flat resolu-
tion K• → F•, see Lemma 17.11. By Lemma 17.1 we obtain an exact functor of
triangulated categories

K(O) −→ K(O), G• 7−→ Tot(G• ⊗O K•)

By Lemma 17.3 this functor induces a functor D(O) → D(O) simply because D(O)
is the localization of K(O) at quasi-isomorphisms. By Lemma 17.12 the resulting
functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 17.13.06YU Let (C,O) be a ringed site. Let F• be an object of D(O). The
derived tensor product

− ⊗L
O F• : D(O) −→ D(O)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
O G• ∼= G• ⊗L

O F•

for G• and F• in D(O). Hence when we write F• ⊗L
O G• we will usually be agnostic

about which variable we are using to define the derived tensor product with.

Definition 17.14.08FF Let (C,O) be a ringed site. Let F , G be O-modules. The Tor’s
of F and G are defined by the formula

TorO
p (F ,G) = H−p(F ⊗L

O G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of O-modules 0 → F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗O G // F2 ⊗O G // F3 ⊗O G // 0

TorO
1 (F1,G) // TorO

1 (F2,G) // TorO
1 (F3,G)

kk

for every O-module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 17.15.08FG Let (C,O) be a ringed site. Let F be an O-module. The following
are equivalent

(1) F is a flat O-module, and
(2) TorO

1 (F ,G) = 0 for every O-module G.

https://stacks.math.columbia.edu/tag/06YU
https://stacks.math.columbia.edu/tag/08FF
https://stacks.math.columbia.edu/tag/08FG
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Proof. If F is flat, then F ⊗O − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗O G → F ⊗O H is a quotient of
TorO

1 (F ,Q) which is zero by assumption. Hence F is flat. □

Lemma 17.16.0G7C Let (C,O) be a ringed site. Let K• be a K-flat, acyclic complex
with flat terms. Then F = Ker(Kn → Kn+1) is a flat O-module.

Proof. Observe that
. . . → Kn−2 → Kn−1 → F → 0

is a flat resolution of our module F . Since a bounded above complex of flat modules
is K-flat (Lemma 17.8) we may use this resolution to compute Tori(F ,G) for any
O-module G. On the one hand K• ⊗L

O G is zero in D(O) because K• is acyclic and
on the other hand it is represented by K• ⊗O G. Hence we see that

Kn−3 ⊗O G → Kn−2 ⊗O G → Kn−1 ⊗O G

is exact. Thus Tor1(F ,G) = 0 and we conclude by Lemma 17.15. □

Lemma 17.17.0G7D Let (C,O) be a ringed space. Let a : K• → L• be a map of
complexes of O-modules. If K• is K-flat, then there exist a complex N • and maps
of complexes b : K• → N • and c : N • → L• such that

(1) N • is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N •, b, and c such that the same is
true for N •.

Proof. We will use that the homotopy category K(Mod(O)) is a triangulated cat-
egory, see Derived Categories, Proposition 10.3. Choose a distinguished triangle
K• → L• → C• → K•[1]. Choose a quasi-isomorphism M• → C• with M•

K-flat with flat terms, see Lemma 17.11. By the axioms of triangulated cate-
gories, we may fit the composition M• → C• → K•[1] into a distinguished triangle
K• → N • → M• → K•[1]. By Lemma 17.6 we see that N • is K-flat. Again using
the axioms of triangulated categories, we can choose a map N • → L• fitting into
the following morphism of distinghuised triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N • → L• by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(O) and use
Derived Categories, Lemma 4.3 if you like). This finishes the proof of (1), (2), and
(3). To prove the final assertion, we may choose N • such that Nn ∼= Mn⊕ Kn, see
Derived Categories, Lemma 10.7. Hence we get the desired flatness if the terms of
K• are flat. □

https://stacks.math.columbia.edu/tag/0G7C
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18. Derived pullback

06YV Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(O′) → D(O)

Lemma 18.1.0G7E Let f : (Sh(C′),O′) → (Sh(C),O) be a morphism of ringed topoi.
Let K• be a K-flat complex of O-modules whose terms are flat O-modules. Then
f∗K• is a K-flat complex of O′-modules whose terms are flat O′-modules.

Proof. The terms f∗Kn are flat O′-modules by Modules on Sites, Lemma 39.1.
Choose a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1K• // τ≤2K• // . . .

as in Lemma 17.10. We will use all of the properties stated in the lemma without
further mention. Each K•

n is a bounded above complex of flat modules, see Modules
on Sites, Lemma 28.7. Consider the short exact sequence of complexes

0 → M• → colim K•
n → K• → 0

defining M•. By Lemmas 17.8 and 17.9 the complex colim K•
n is K-flat and by

Modules on Sites, Lemma 28.5 it has flat terms. By Modules on Sites, Lemma 28.10
M• has flat terms, by Lemma 17.7 M• is K-flat, and by the long exact cohomology
sequence M• is acyclic (because the second arrow is a quasi-isomorphism). The
pullback f∗(colim K•

n) = colim f∗K•
n is a colimit of bounded below complexes of

flat O′-modules and hence is K-flat (by the same lemmas as above). The pullback
of our short exact sequence

0 → f∗M• → f∗(colim K•
n) → f∗K• → 0

is a short exact sequence of complexes by Modules on Sites, Lemma 39.4. Hence
by Lemma 17.7 it suffices to show that f∗M• is K-flat. This reduces us to the case
discussed in the next paragraph.

Assume K• is acyclic as well as K-flat and with flat terms. Then Lemma 17.16
guarantees that all terms of τ≤nK• are flat O-modules. We choose a diagram as
above and we will use all the properties proven above for this diagram. Denote
M•

n the kernel of the map of complexes K•
n → τ≤nK• so that we have short exact

sequences of complexes

0 → M•
n → K•

n → τ≤nK• → 0

By Modules on Sites, Lemma 28.10 we see that the terms of the complex M•
n are

flat. Hence we see that M = colim M•
n is a filtered colimit of bounded below

complexes of flat modules in this case. Thus f∗M• is K-flat (same argument as
above) and we win. □

Lemma 18.2.06YY Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
There exists an exact functor

Lf∗ : D(O′) −→ D(O)

https://stacks.math.columbia.edu/tag/0G7E
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of triangulated categories so that Lf∗K• = f∗K• for any K-flat complex K• with
flat terms and in particular for any bounded above complex of flat O′-modules.

Proof. To see this we use the general theory developed in Derived Categories,
Section 14. Set D = K(O′) and D′ = D(O). Let us write F : D → D′ the
exact functor of triangulated categories defined by the rule F (G•) = f∗G•. We
let S be the set of quasi-isomorphisms in D = K(O′). This gives a situation
as in Derived Categories, Situation 14.1 so that Derived Categories, Definition
14.2 applies. We claim that LF is everywhere defined. This follows from Derived
Categories, Lemma 14.15 with P ⊂ Ob(D) the collection of K-flat complexes K•

with flat terms. Namely, (1) follows from Lemma 17.11 and to see (2) we have
to show that for a quasi-isomorphism K•

1 → K•
2 between elements of P the map

f∗K•
1 → f∗K•

2 is a quasi-isomorphism. To see this write this as

f−1K•
1 ⊗f−1O′ O −→ f−1K•

2 ⊗f−1O′ O

The functor f−1 is exact, hence the map f−1K•
1 → f−1K•

2 is a quasi-isomorphism.
The complexes f−1K•

1 and f−1K•
2 are K-flat complexes of f−1O′-modules by Lemma

18.1 because we can consider the morphism of ringed topoi (Sh(C), f−1O′) →
(Sh(C′),O′). Hence Lemma 17.12 guarantees that the displayed map is a quasi-
isomorphism. Thus we obtain a derived functor

LF : D(O′) = S−1D −→ D′ = D(O)

see Derived Categories, Equation (14.9.1). Finally, Derived Categories, Lemma
14.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is in P. The proof
is finished by observing that bounded above complexes of flat modules are in P by
Lemma 17.8. □

Lemma 18.3.0D6D Consider morphisms of ringed topoi f : (Sh(C),OC) → (Sh(D),OD)
and g : (Sh(D),OD) → (Sh(E),OE). Then Lf∗ ◦ Lg∗ = L(g ◦ f)∗ as functors
D(OE) → D(OC).

Proof. Let E be an object of D(OE). We may represent E by a K-flat complex
K• with flat terms, see Lemma 17.11. By construction Lg∗E is computed by g∗K•,
see Lemma 18.2. By Lemma 18.1 the complex g∗K• is K-flat with flat terms.
Hence Lf∗Lg∗E is represented by f∗g∗K•. Since also L(g ◦ f)∗E is represented by
(g ◦ f)∗K• = f∗g∗K• we conclude. □

Lemma 18.4.07A4 Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
O′ G•) = Lf∗F• ⊗L

O Lf∗G•

for F•,G• ∈ Ob(D(O′)).

Proof. By our construction of derived pullback in Lemma 18.2. and the existence
of resolutions in Lemma 17.11 we may replace F• and G• by complexes of O′-
modules which are K-flat and have flat terms. In this case F•⊗L

O′ G• is just the total
complex associated to the double complex F• ⊗O′ G•. The complex Tot(F• ⊗O′ G•)
is K-flat with flat terms by Lemma 17.5 and Modules on Sites, Lemma 28.12. Hence
the isomorphism of the lemma comes from the isomorphism

Tot(f∗F• ⊗O f∗G•) −→ f∗Tot(F• ⊗O′ G•)

https://stacks.math.columbia.edu/tag/0D6D
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whose constituents are the isomorphisms f∗Fp ⊗O f∗Gq → f∗(Fp ⊗O′ Gq) of Mod-
ules on Sites, Lemma 26.2. □

Lemma 18.5.08I6 Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

F• ⊗L
O Lf∗G• = F• ⊗L

f−1OY
f−1G•

for F• in D(O) and G• in D(O′).

Proof. Let F be an O-module and let G be an O′-module. Then F ⊗O f∗G =
F ⊗f−1O′ f−1G because f∗G = O ⊗f−1O′ f−1G. The lemma follows from this and
the definitions. □

Lemma 18.6.0DEN Let (C,O) be a ringed site. Let K• be a complex of O-modules.
(1) If K• is K-flat, then for every point p of the site C the complex of Op-

modules K•
p is K-flat in the sense of More on Algebra, Definition 59.1

(2) If C has enough points, then the converse is true.

Proof. Proof of (2). If C has enough points and K•
p is K-flat for all points p of

C then we see that K• is K-flat because ⊗ and direct sums commute with taking
stalks and because we can check exactness at stalks, see Modules on Sites, Lemma
14.4.

Proof of (1). Assume K• is K-flat. Choose a quasi-isomorphism a : L• → K• such
that L• is K-flat with flat terms, see Lemma 17.11. Any pullback of L• is K-flat,
see Lemma 18.1. In particular the stalk L•

p is a K-flat complex of Op-modules.
Thus the cone C(a) on a is a K-flat (Lemma 17.6) acyclic complex of O-modules
and it suffuces to show the stalk of C(a) is K-flat (by More on Algebra, Lemma
59.5). Thus we may assume that K• is K-flat and acyclic.

Assume K• is acyclic and K-flat. Before continuing we replace the site C by another
one as in Sites, Lemma 29.5 to insure that C has all finite limits. This implies the
category of neighbourhoods of p is filtered (Sites, Lemma 33.2) and the colimit
defining the stalk of a sheaf is filtered. Let M be a finitely presented Op-module.
It suffices to show that K• ⊗Op M is acyclic, see More on Algebra, Lemma 59.9.
Since Op is the filtered colimit of O(U) where U runs over the neighbourhoods of p,
we can find a neighbourhood (U, x) of p and a finitely presented O(U)-module M ′

whose base change to Op is M , see Algebra, Lemma 127.6. By Lemma 17.4 we may
replace C,O,K• by C/U,OU ,K•|U . We conclude that we may assume there exists
an O-module F such that M ∼= Fp. Since K• is K-flat and acyclic, we see that
K•⊗O F is acyclic (as it computes the derived tensor product by definition). Taking
stalks is an exact functor, hence we get that K• ⊗Op

M is acyclic as desired. □

Lemma 18.7.0DEP Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
If C has enough points, then the pullback of a K-flat complex of O′-modules is a
K-flat complex of O-modules.

Proof. This follows from Lemma 18.6, Modules on Sites, Lemma 36.4, and More
on Algebra, Lemma 59.3. □
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Lemma 18.8.0FPH Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K• and M• be complexes of OD-modules. The diagram

Lf∗(K• ⊗L
OD

M•) //

��

Lf∗Tot(K• ⊗OD M•)

��
Lf∗K• ⊗L

OC
Lf∗M•

��

f∗Tot(K• ⊗OD M•)

��
f∗K• ⊗L

OC
f∗M• // Tot(f∗K• ⊗OC f

∗M•)

commutes.

Proof. We will use the existence of K-flat resolutions with flat terms (Lemma
17.11), we will use that derived pullback is computed by such complexes (Lemma
18.2), and that pullbacks preserve these properties (Lemma 18.1). If we choose
such resolutions P• → K• and Q• → M•, then we see that

Lf∗Tot(P• ⊗OD Q•) //

��

Lf∗Tot(K• ⊗OD M•)

��
f∗Tot(P• ⊗OD Q•)

��

// f∗Tot(K• ⊗OD M•)

��
Tot(f∗P• ⊗OC f

∗Q•) // Tot(f∗K• ⊗OC f
∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of
the diagram by our choice of P• and Q• and Lemma 17.5. □

19. Cohomology of unbounded complexes

07A5 Let (C,O) be a ringed site. The category Mod(O) is a Grothendieck abelian cate-
gory: it has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U∈Ob(C)
jU !OU ,

see Modules on Sites, Section 14 and Lemmas 28.7 and 28.8. By Injectives, Theorem
12.6 for every complex F• of O-modules there exists an injective quasi-isomorphism
F• → I• to a K-injective complex of O-modules and moreover this embedding can
be chosen functorial in F•. It follows from Derived Categories, Lemma 31.7 that

(1) any exact functor F : K(Mod(O)) → D into a trianguated category D has
a right derived functor RF : D(O) → D,

(2) for any additive functor F : Mod(O) → A into an abelian category A we
consider the exact functor F : K(Mod(O)) → D(A) induced by F and we
obtain a right derived functor RF : D(O) → K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.
Here are some examples of the above:

(1) The functor Γ(C,−) : Mod(O) → ModΓ(C,O) gives rise to

RΓ(C,−) : D(O) −→ D(Γ(C,O))

https://stacks.math.columbia.edu/tag/0FPH
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We shall use the notation Hi(C,K) = Hi(RΓ(C,K)) for cohomology.
(2) For an object U of C we consider the functor Γ(U,−) : Mod(O) → ModΓ(U,O).

This gives rise to

RΓ(U,−) : D(O) → D(Γ(U,O))

We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.
(3) For a morphism of ringed topoi f : (Sh(C),O) → (Sh(D),O′) we consider

the functor f∗ : Mod(O) → Mod(O′) which gives rise to the total direct
image

Rf∗ : D(O) −→ D(O′)

on unbounded derived categories.

Lemma 19.1.07A6 Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
The functor Rf∗ defined above and the functor Lf∗ defined in Lemma 18.2 are
adjoint:

HomD(O)(Lf∗G•,F•) = HomD(O′)(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(O)) and G• ∈ Ob(D(O′)).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 30.3. □

Lemma 19.2.0D6E Let f : (Sh(C),OC) → (Sh(D),OD) and g : (Sh(D),OD) →
(Sh(E),OE) be morphisms of ringed topoi. Then Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors
D(OC) → D(OE).

Proof. By Lemma 19.1 we see that Rg∗ ◦ Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗ ◦Lg∗ = L(g ◦ f)∗ by Lemma 18.3 and hence by uniqueness of adjoint functors
we have Rg∗ ◦Rf∗ = R(g ◦ f)∗. □

Remark 19.3.07A7 The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K be an object of D(OC). Then
there exists a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K

in D(OD′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K.
Since L(f ′)∗◦Lg∗ = L(g′)∗◦Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗K →
L(g′)∗K which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.

https://stacks.math.columbia.edu/tag/07A6
https://stacks.math.columbia.edu/tag/0D6E
https://stacks.math.columbia.edu/tag/07A7
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Remark 19.4.0E46 Consider a commutative diagram

(Sh(B′),OB′)
k
//

f ′

��

(Sh(B),OB)

f

��
(Sh(C′),OC′) l //

g′

��

(Sh(C),OC)

g

��
(Sh(D′),OD′) m // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 19.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

is the base change map for the rectangle. We omit the verification.

Remark 19.5.0E47 Consider a commutative diagram

(Sh(C′′),OC′′)
g′
//

f ′′

��

(Sh(C′),OC′)
g
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′′),OD′′) h′

// (Sh(D′),OD′) h // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 19.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.

Lemma 19.6.0FPI Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K• be a complex of OC-modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction
Lf∗ ◦Rf∗ → id commutes in D(OC).

https://stacks.math.columbia.edu/tag/0E46
https://stacks.math.columbia.edu/tag/0E47
https://stacks.math.columbia.edu/tag/0FPI
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Proof. We will use the existence of K-flat resolutions and K-injective resolutions,
see Lemmas 17.11, 18.2, and 18.1 and the discussion above. Choose a quasi-
isomorphism K• → I• where I• is K-injective as a complex of OC-modules. Choose
a quasi-isomorphism Q• → f∗I• where Q• is a K-flat complex of OD-modules with
flat terms. We can choose a K-flat complex of OD-modules P• with flat terms and
a diagram of morphisms of complexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes
and then we can choose a resolution of P• by a K-flat complex with flat terms.
Taking pullbacks we obtain a diagram of morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

commutative up to homotopy. The outer rectangle witnesses the truth of the state-
ment in the lemma. □

Remark 19.7.0B6C Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
The adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OD

Rf∗L −→ Rf∗(K ⊗L
OC

L)

inD(OD) for allK,L inD(OC). Namely, this map is adjoint to a map Lf∗(Rf∗K⊗L
OD

Rf∗L) → K ⊗L
OC

L for which we can take the composition of the isomorphism
Lf∗(Rf∗K ⊗L

OD
Rf∗L) = Lf∗Rf∗K ⊗L

OC
Lf∗Rf∗L (Lemma 18.4) with the map

Lf∗Rf∗K ⊗L
OC

Lf∗Rf∗L → K ⊗L
OC

L coming from the counit Lf∗ ◦Rf∗ → id.

Lemma 19.8.0DD7 Let C be a site. Let A ⊂ Ab(C) denote the Serre subcategory
consisting of torsion abelian sheaves. Then the functor D(A) → DA(C) is an
equivalence.

Proof. A key observation is that an injective abelian sheaf I is divisible. Namely,
if s ∈ I(U) is a local section, then we interpret s as a map s : jU !Z → I and we
apply the defining property of an injective object to the injective map of sheaves
n : jU !Z → jU !Z to see that there exists an s′ ∈ I(U) with ns′ = s.
For a sheaf F denote Ftor its torsion subsheaf. We claim that if I• is a complex of
injective abelian sheaves whose cohomology sheaves are torsion, then

I•
tor → I•

is a quasi-isomorphism. Namely, by flatness of Q over Z we have
Hp(I•) ⊗Z Q = Hp(I• ⊗Z Q)

which is zero because the cohomology sheaves are torsion. By divisibility (shown
above) we see that I• → I• ⊗Z Q is surjective with kernel I•

tor. The claim follows

https://stacks.math.columbia.edu/tag/0B6C
https://stacks.math.columbia.edu/tag/0DD7
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from the long exact sequence of cohomology sheaves associated to the short exact
sequence you get.

To prove the lemma we will construct right adjoint T : D(C) → D(A). Namely,
given K in D(C) we can represent K by a K-injective complex I• whose cohomology
sheaves are injective, see Injectives, Theorem 12.6. Then we set T (K) = I•

tor, in
other words, T is the right derived functor of taking torsion. The functor T is a
right adjoint to i : D(A) → DA(C). This readily follows from the observation that
if F• is a complex of torsion sheaves, then

HomK(A)(F•, I•
tor) = HomK(Ab(C))(F•, I•)

in particular I•
tor is a K-injective complex of A. Some details omitted; in case of

doubt, it also follows from the more general Derived Categories, Lemma 30.3. Our
claim above gives that L = T (i(L)) for L in D(A) and i(T (K)) = K if K is in
DA(C). Using Categories, Lemma 24.4 the result follows. □

20. Some properties of K-injective complexes

08FH Let (C,O) be a ringed site. Let U be an object of C. Denote j : (Sh(C/U),OU ) →
(Sh(C),O) the corresponding localization morphism. The pullback functor j∗ is
exact as it is just the restriction functor. Thus derived pullback Lj∗ is computed
on any complex by simply restricting the complex. We often simply denote the
corresponding functor

D(O) → D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU ) → Mod(O) (see Modules on Sites, Defi-
nition 19.1) is an exact functor (Modules on Sites, Lemma 19.3). Thus it induces
a functor

j! : D(OU ) → D(O), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 20.1.08FI Let (C,O) be a ringed site. Let U be an object of C. The restriction
of a K-injective complex of O-modules to C/U is a K-injective complex of OU -
modules.

Proof. Follows immediately from Derived Categories, Lemma 31.9 and the fact
that the restriction functor has the exact left adjoint j!. See discussion above. □

Lemma 20.2.0D6F Let (C,O) be a ringed site. Let U ∈ Ob(C). For K in D(O) we
have Hp(U,K) = Hp(C/U,K|C/U ).

Proof. Let I• be a K-injective complex of O-modules representing K. Then

Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(C/U, I•|C/U ))

by construction of cohomology. By Lemma 20.1 the complex I•|C/U is a K-injective
complex representing K|C/U and the lemma follows. □

Lemma 20.3.0BKV Let (C,O) be a ringed site. Let K be an object of D(O). The
sheafification of

U 7→ Hq(U,K) = Hq(C/U,K|C/U )
is the qth cohomology sheaf Hq(K) of K.

https://stacks.math.columbia.edu/tag/08FI
https://stacks.math.columbia.edu/tag/0D6F
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Proof. The equality Hq(U,K) = Hq(C/U,K|C/U ) holds by Lemma 20.2. Choose
a K-injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U) → Iq+1(U))
Im(Iq−1(U) → Iq(U)) .

by our construction of cohomology. Since Hq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 →
Iq) the result is clear. □

Lemma 20.4.0D6G Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. Given V ∈ D, set U = u(V ) and
denote g : (C/U,OU ) → (D/V,OV ) the induced morphism of ringed sites (Modules
on Sites, Lemma 20.1). Then (Rf∗E)|D/V = Rg∗(E|C/U ) for E in D(OC).

Proof. Represent E by a K-injective complex I• of OC-modules. Then Rf∗(E) =
f∗I• andRg∗(E|C/U ) = g∗(I•|C/U ) by Lemma 20.1. Since it is clear that (f∗F)|D/V =
g∗(F|C/U ) for any sheaf F on C (see Modules on Sites, Lemma 20.1 or the more
basic Sites, Lemma 28.1) the result follows. □

Lemma 20.5.0D6H Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. Then RΓ(D,−) ◦ Rf∗ = RΓ(C,−)
as functors D(OC) → D(Γ(OD)). More generally, for V ∈ D with U = u(V ) we
have RΓ(U,−) = RΓ(V,−) ◦Rf∗.

Proof. Consider the punctual topos pt endowed with Opt given by the ring Γ(OD).
There is a canonical morphism (D,OD) → (pt,Opt) of ringed topoi inducing the
identification on global sections of structure sheaves. Then D(Opt) = D(Γ(OD)).
The assertion RΓ(D,−) ◦Rf∗ = RΓ(C,−) follows from Lemma 19.2 applied to

(C,OC) → (D,OD) → (pt,Opt)

The second (more general) statement follows from the first statement after applying
Lemma 20.4. □

Lemma 20.6.0D6I Let f : (C,OC) → (D,OD) be a morphism of ringed sites cor-
responding to the continuous functor u : D → C. Let K be in D(OC). Then
Hi(Rf∗K) is the sheaf associated to the presheaf

V 7→ Hi(u(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(u(V ),K) = Hi(V,Rf∗K) follows upon taking cohomology
from the second statement in Lemma 20.5. Then the statement on sheafification
follows from Lemma 20.3. □

Lemma 20.7.0D6J Let (C,OC) be a ringed site. Let K be an object of D(OC) and
denote Kab its image in D(ZC).

(1) There is a canonical map RΓ(C,K) → RΓ(C,Kab) which is an isomorphism
in D(Ab).

(2) For any U ∈ C there is a canonical map RΓ(U,K) → RΓ(U,Kab) which is
an isomorphism in D(Ab).

(3) Let f : (C,OC) → (D,OD) be a morphism of ringed sites. There is a
canonical map Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZD).

https://stacks.math.columbia.edu/tag/0D6G
https://stacks.math.columbia.edu/tag/0D6H
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Proof. The map is constructed as follows. Choose a K-injective complex I• repre-
senting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex
of abelian groups. Then the map in (1) is given by Γ(C, I•) → Γ(C,J •) (2) is given
by Γ(U, I•) → Γ(U,J •) and the map in (3) is given by f∗I• → f∗J •. To show
that these maps are isomorphisms, it suffices to prove they induce isomorphisms on
cohomology groups and cohomology sheaves. By Lemmas 20.2 and 20.6 it suffices
to show that the map

H0(C,K) −→ H0(C,Kab)
is an isomorphism. Observe that

H0(C,K) = HomD(OC)(OC ,K)
and similarly for the other group. Choose any complex K• of OC-modules repre-
senting K. By construction of the derived category as a localization we have

HomD(OC)(OC ,K) = colims:F•→OC HomK(OC)(F•,K•)
where the colimit is over quasi-isomorphisms s of complexes of OC-modules. Simi-
larly, we have

HomD(ZC)(ZC ,K) = colims:G•→ZC
HomK(ZC)(G•,K•)

Next, we observe that the quasi-isomorphisms s : G• → ZC with G• bounded above
complex of flat ZC-modules is cofinal in the system. (This follows from Modules on
Sites, Lemma 28.8 and Derived Categories, Lemma 15.4; see discussion in Section
17.) Hence we can construct an inverse to the map H0(C,K) −→ H0(C,Kab) by
representing an element ξ ∈ H0(C,Kab) by a pair

(s : G• → ZC , a : G• → K•)
with G• a bounded above complex of flat ZC-modules and sending this to

(G• ⊗ZC
OC → OC ,G• ⊗ZC

OC → K•)
The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas
17.12 and 17.8. We omit the detailed verification that this construction is indeed
an inverse. □

Lemma 20.8.08FJ Let (C,O) be a ringed site. Let U be an object of C. Denote
j : (Sh(C/U),OU ) → (Sh(C),O) the corresponding localization morphism. The
restriction functor D(O) → D(OU ) is a right adjoint to extension by zero j! :
D(OU ) → D(O).

Proof. We have to show that
HomD(O)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 20.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(O)(j!E•, I•) = HomD(OU )(E•, I•|U )
which holds as |U and j! are adjoint functors (Modules on Sites, Lemma 19.2) and
Derived Categories, Lemma 31.2. □

Lemma 20.9.0GL1 Let (C,O) be a ringed site. Let U ∈ Ob(C). For L in D(OU ) and
K in D(O) we have j!L⊗L

O K = j!(L⊗L
OU

K|U ).

https://stacks.math.columbia.edu/tag/08FJ
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Proof. Represent L by a complex of OU -modules and K by a K-flat complexe of
O-modules and apply Modules on Sites, Lemma 27.9. Details omitted. □

Lemma 20.10.093Y Let f : (Sh(C),OC) → (Sh(D),OD) be a flat morphism of ringed
topoi. If I• is a K-injective complex of OC-modules, then f∗I• is K-injective as a
complex of OD-modules.

Proof. This is true because

HomK(OD)(F•, f∗I•) = HomK(OC)(f∗F•, I•)

by Modules on Sites, Lemma 13.2 and the fact that f∗ is exact as f is assumed to
be flat. □

Lemma 20.11.093Z Let C be a site. Let O → O′ be a map of sheaves of rings. If I•

is a K-injective complex of O-modules, then HomO(O′, I•) is a K-injective complex
of O′-modules.

Proof. This is true because HomK(O′)(G•,HomO(O′, I•)) = HomK(O)(G•, I•) by
Modules on Sites, Lemma 27.8. □

21. Localization and cohomology

0EYZ Let C be a site. Let f : X → Y be a morphism of C. Then we obtain a morphism
of topoi

jX/Y : Sh(C/X) −→ Sh(C/Y )

See Sites, Sections 25 and 27. Some questions about cohomology are easier for this
type of morphisms of topoi. Here is an example where we get a trivial type of base
change theorem.

Lemma 21.1.0EZ0 Let C be a site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j−1
Y ′/Y ◦RjX/Y,∗ = RjX′/Y ′,∗ ◦ j−1

X′/X as
functors D(C/X) → D(C/Y ′).

Proof. Let E ∈ D(C/X). Choose a K-injective complex I• of abelian sheaves
on C/X representing E. By Lemma 20.1 we see that j−1

X′/XI• is K-injective too.
Hence we may compute RjX′/Y ′(j−1

X′/XE) by jX′/Y ′,∗j
−1
X′/XI•. Thus we see that

the equality holds by Sites, Lemma 27.5. □

If we have a ringed site (C,O) and a morphism f : X → Y of C, then jX/Y becomes
a morphism of ringed topoi

jX/Y : (Sh(C/X),OX) −→ (Sh(C/Y ),OY )

See Modules on Sites, Lemma 19.5.

https://stacks.math.columbia.edu/tag/093Y
https://stacks.math.columbia.edu/tag/093Z
https://stacks.math.columbia.edu/tag/0EZ0


COHOMOLOGY ON SITES 44

Lemma 21.2.0FN5 Let (C,O) be a ringed site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j∗
Y ′/Y ◦RjX/Y,∗ = RjX′/Y ′,∗ ◦ j∗

X′/X as
functors D(OX) → D(OY ′).

Proof. Since j−1
Y ′/Y OY = OY ′ we have j∗

Y ′/Y = Lj∗
Y ′/Y = j−1

Y ′/Y . Similarly we
have j∗

X′/X = Lj∗
X′/X = j−1

X′/X . Thus by Lemma 20.7 it suffices to prove the result
on derived categories of abelian sheaves which we did in Lemma 21.1. □

22. Inverse systems and cohomology

0GYP We prove some results on inverse systems of sheaves of modules.

Lemma 22.1.0GYQ Let I be an ideal of a ring A. Let C be a site. Let

. . . → F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp+1(C, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition2.

Proof. Set Nn = Hp+1(C, InFn+1) and let δn : Mn → Nn be the boundary map on
cohomology coming from the short exact sequence 0 → InFn+1 → Fn+1 → Fn → 0.
Then

⊕
Im(δn) ⊂

⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im,

then we have a commutative diagram

0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0

The middle vertical map is given by lifting a local section of Fn+1 to a section of
Fn+m+1 and then multiplying by f ; similarly for the other vertical arrows. We
conclude that δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj

, j =
1, . . . , N such that δnj

(sj) generate
⊕

Im(δn) as a graded module. Let n > c =
max(nj). Let s ∈ Mn. Then we can find fj ∈ In−nj such that δn(s) =

∑
fjδnj

(sj).
We conclude that δ(s −

∑
fjsj) = 0, i.e., we can find s′ ∈ Mn+1 mapping to

s−
∑
fjsj in Mn. It follows that

Im(Mn+1 → Mn−c) = Im(Mn → Mn−c)

Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. □

2In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.

https://stacks.math.columbia.edu/tag/0FN5
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Lemma 22.2.0GYR Let I be an ideal of a ring A. Let C be a site. Let
. . . → F3 → F2 → F1

be an inverse system of A-modules on C such that Fn = Fn+1/I
nFn+1. Let p ≥ 0.

Given n define

Nn =
⋂

m≥n
Im

(
Hp+1(C, InFm+1) → Hp+1(C, InFn+1)

)
If

⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition3.
Proof. The proof is exactly the same as the proof of Lemma 22.1. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that the boundary

maps δn : Mn → Hp+1(C, InFn+1) have image contained in Nn.
Suppose that ξ ∈ Nn and f ∈ Ik. Choosem ≫ n+k. Choose ξ′ ∈ Hp+1(C, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0

constructed as in the proof of Lemma 22.1. We get an induced map on cohomology
and we see that fξ′ ∈ Hp+1(C, In+kFm+1) maps to fξ. Since this is true for all
m ≫ n+ k we see that fξ is in Nn+k as desired.
To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

for m ≥ n. Looking at the induced maps on cohomology we conclude. □

Lemma 22.3.0GYS Let I be an ideal of a ring A. Let C be a site. Let
. . . → F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp(C, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = limHp(C,Fn) is the I-adic topology.
Proof. Set Fn = Ker(M → Hp(C,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the
limit topology. For the converse, we will show that given n there exists an m ≥ n
such that Fm ⊂ InM4. We have injective maps

Fn/Fn+1 −→ Hp(C,Fn+1)

3In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
4In fact, there exist a c ≥ 0 such that F n+c ⊂ InM for all n.

https://stacks.math.columbia.edu/tag/0GYR
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whose image is contained in the image of Hp(C, InFn+1) → Hp(C,Fn+1). Denote

En ⊂ Hp(C, InFn+1)

the inverse image of Fn/Fn+1. Then
⊕
En is a graded

⊕
In/In+1-submodule of⊕

Hp(C, InFn+1) and
⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded mod-

ules; details omitted. By assumption
⊕
En is generated by finitely many homoge-

neous elements over
⊕
In/In+1. Since En → Fn/Fn+1 is surjective, we see that

the same thing is true of
⊕
Fn/Fn+1. Hence we can find r and c1, . . . , cr ≥ 0 and

ai ∈ F ci whose images in
⊕
Fn/Fn+1 generate. Set c = max(ci).

For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is
a linear combination of our ai. Therefore a−

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument
gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1.
Choose generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in
Fm+1 for all m ≥ n. By the open mapping lemma (More on Algebra, Lemma 36.5)
we find that u is open. Hence u is surjective. Hence IFn = Fn+1 for n ≥ c. This
concludes the proof. □

Lemma 22.4.0GYT Let I be an ideal of a ring A. Let C be a site. Let

. . . → F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(C, InFm+1) → Hp(C, InFn+1))

If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the limit topology on M = limHp(C,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 22.3. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that Fn/Fn+1 ⊂

Hp(C,Fn+1) is contained in the image of Nn → Hp(C,Fn+1). In the proof of
Lemma 22.2 we have seen the statement on the module structure.

Let t ∈ Fn. Choose an element s ∈ Hp(C, InFn+1) which maps to the image of
t in Hp(C,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of
the map from M → Hp(C,Fn) hence for all m ≥ n we can map t to an element
tm ∈ Hp(C,Fm+1) which maps to zero in Hp(C,Fn). Consider the cohomology
sequence

Hp−1(C,Fn) → Hp(C, InFm+1) → Hp(C,Fm+1) → Hp(C,Fn)

coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We
can choose sm ∈ Hp(C, InFm+1) mapping to tm. Comparing the sequence above
with the one for m = n we see that sm maps to s up to an element in the image

https://stacks.math.columbia.edu/tag/0GYT
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of Hp−1(C,Fn) → Hp(C, InFn+1). However, this map factors through the map
Hp(C, InFm+1) → Hp(C, InFn+1) and we see that s is in the image as desired. □

23. Derived and homotopy limits

0940 Let C be a site. Consider the category C × N with Mor((U, n), (V,m)) = ∅ if n > m
and Mor((U, n), (V,m)) = Mor(U, V ) else. We endow this with the structure of a
site by letting coverings be families {(Ui, n) → (U, n)} such that {Ui → U} is a
covering of C. Then the reader verifies immediately that sheaves on C × N are the
same thing as inverse systems of sheaves on C. In particular Ab(C × N) is inverse
systems of abelian sheaves on C. Consider now the functor

lim : Ab(C × N) → Ab(C)

which takes an inverse system to its limit. This is nothing but g∗ where g : Sh(C ×
N) → Sh(C) is the morphism of topoi associated to the continuous and cocontinuous
functor C × N → C. (Observe that g−1 assigns to a sheaf on C the corresponding
constant inverse system.)

By the general machinery explained above we obtain a derived functor

R lim = Rg∗ : D(C × N) → D(C).

As indicated this functor is often denoted R lim.

On the other hand, the continuous and cocontinuous functors C → C × N, U 7→
(U, n) define morphisms of topoi in : Sh(C) → Sh(C ×N). Of course i−1

n is the func-
tor which picks the nth term of the inverse system. Thus there are transformations
of functors i−1

n+1 → i−1
n . Hence given K ∈ D(C × N) we get Kn = i−1

n K ∈ D(C)
and maps Kn+1 → Kn. In Derived Categories, Definition 34.1 we have defined the
notion of a homotopy limit

R limKn ∈ D(C)
We claim the two notions agree (as far as it makes sense).

Lemma 23.1.0941 Let C be a site. Let K be an object of D(C × N). Set Kn = i−1
n K

as above. Then
R limK ∼= R limKn

in D(C).

Proof. To calculate R lim on an object K of D(C × N) we choose a K-injective
representative I• whose terms are injective objects of Ab(C × N), see Injectives,
Theorem 12.6. We may and do think of I• as an inverse system of complexes (I•

n)
and then we see that

R limK = lim I•
n

where the right hand side is the termwise inverse limit.

Let J = (Jn) be an injective object of Ab(C × N). The morphisms (U, n) →
(U, n+ 1) are monomorphisms of C × N, hence J (U, n+ 1) → J (U, n) is surjective
(Lemma 12.6). It follows that Jn+1 → Jn is surjective as a map of presheaves.

Note that the functor i−1
n has an exact left adjoint in,!. Namely, in,!F is the inverse

system . . . 0 → 0 → F → . . . → F . Thus the complexes i−1
n I• = I•

n are K-injective
by Derived Categories, Lemma 31.9.

https://stacks.math.columbia.edu/tag/0941
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Because we chose our K-injective complex to have injective terms we conclude that

0 → lim I•
n →

∏
I•
n →

∏
I•
n → 0

is a short exact sequence of complexes of abelian sheaves as it is a short exact
sequence of complexes of abelian presheaves. Moreover, the products in the middle
and the right represent the products in D(C), see Injectives, Lemma 13.4 and its
proof (this is where we use that I•

n is K-injective). Thus R limK is a homotopy
limit of the inverse system (Kn) by definition of homotopy limits in triangulated
categories. □

Lemma 23.2.0D6K Let (C,O) be a ringed site. The functors RΓ(C,−) and RΓ(U,−)
for U ∈ Ob(C) commute with R lim. Moreover, there are short exact sequences

0 → R1 limHm−1(U,Kn) → Hm(U,R limKn) → limHm(U,Kn) → 0

for any inverse system (Kn) in D(O) and m ∈ Z. Similar for Hm(C, R limKn).

Proof. The first statement follows from Injectives, Lemma 13.6. Then we may
apply More on Algebra, Remark 86.10 to R limRΓ(U,Kn) = RΓ(U,R limKn) to
get the short exact sequences. □

Lemma 23.3.0A07 Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Then Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.

Proof. Let (Kn) be an inverse system of objects of D(O). By induction on n we
may choose actual complexes K•

n of O-modules and maps of complexes K•
n+1 → K•

n

representing the maps Kn+1 → Kn in D(O). In other words, there exists an object
K in D(C × N) whose associated inverse system is the given one. Next, consider
the commutative diagram

Sh(C × N)
g

//

f×1
��

Sh(C)

f

��
Sh(C′ × N) g′

// Sh(C′)

of morphisms of topoi. It follows that R limR(f × 1)∗K = Rf∗R limK. Working
through the definitions and using Lemma 23.1 we obtain that R lim(Rf∗Kn) =
Rf∗(R limKn).

Alternate proof in case C has enough points. Consider the defining distinguished
triangle

R limKn →
∏

Kn →
∏

Kn

in D(O). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn) → Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(O′). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 13.4). However, since Rf∗ is a right adjoint by Lemma 19.1
this follows formally (see Categories, Lemma 24.5). Caution: Note that we cannot
apply Categories, Lemma 24.5 directly as R limKn is not a limit in D(O). □

https://stacks.math.columbia.edu/tag/0D6K
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Remark 23.4.0BKW Let (C,O) be a ringed site. Let (Kn) be an inverse system in
D(O). Set K = R limKn. For each n and m let Hm

n = Hm(Kn) be the mth
cohomology sheaf of Kn and similarly set Hm = Hm(K). Let us denote Hm

n the
presheaf

U 7−→ Hm
n (U) = Hm(U,Kn)

Similarly we set Hm(U) = Hm(U,K). By Lemma 20.3 we see that Hm
n is the

sheafification of Hm
n and Hm is the sheafification of Hm. Here is a diagram

K Hm

��

// Hm

��
R limKn lim Hm

n
// lim Hm

n

In general it may not be the case that lim Hm
n is the sheafification of lim Hm

n . If
U ∈ C, then we have short exact sequences

(23.4.1)0BKX 0 → R1 lim Hm−1
n (U) → Hm(U) → lim Hm

n (U) → 0

by Lemma 23.2.

The following lemma applies to an inverse system of quasi-coherent modules with
surjective transition maps on an algebraic space or an algebraic stack.

Lemma 23.5.0BKY Let (C,O) be a ringed site. Let (Fn) be an inverse system of
O-modules. Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R lim Fn = lim Fn and we have Hp(U, lim Fn) = 0 for p > 0 and U ∈ B.

Proof. Set Kn = Fn and K = R lim Fn. Using the notation of Remark 23.4
and assumption (2) we see that for U ∈ B we have Hm

n (U) = 0 when m ̸= 0
and H0

n(U) = Fn(U). From Equation (23.4.1) and assumption (3) we see that
Hm(U) = 0 when m ̸= 0 and equal to lim Fn(U) when m = 0. Sheafifying using
(1) we find that Hm = 0 when m ̸= 0 and equal to lim Fn when m = 0. Hence
K = lim Fn. Since Hm(U,K) = Hm(U) = 0 for m > 0 (see above) we see that the
second assertion holds. □

Lemma 23.6.0D6L Let (C,O) be a ringed site. Let (Kn) be an inverse system in D(O).
Let V ∈ Ob(C) and m ∈ Z. Assume there exist an integer n(V ) and a cofinal system
CovV of coverings of V such that for {Vi → V } ∈ CovV

(1) R1 limHm−1(Vi,Kn) = 0, and
(2) Hm(Vi,Kn) → Hm(Vi,Kn(V )) is injective for n ≥ n(V ).

Then the map on sections Hm(R limKn)(V ) → Hm(Kn(V ))(V ) is injective.

Proof. Let γ ∈ Hm(R limKn)(V ) map to zero inHm(Kn(V ))(V ). SinceHm(R limKn)
is the sheafification of U 7→ Hm(U,R limKn) (by Lemma 20.3) we can choose
{Vi → V } ∈ CovV and elements γ̃i ∈ Hm(Vi, R limKn) mapping to γ|Vi

. Then γ̃i
maps to γ̃i,n(V ) ∈ Hm(Vi,Kn(V )). Using that Hm(Kn(V )) is the sheafification of
U 7→ Hm(U,Kn(V )) (by Lemma 20.3 again) we see that after replacing {Vi → V }

https://stacks.math.columbia.edu/tag/0BKW
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by a refinement we may assume that γ̃i,n(V ) = 0 for all i. For this covering we
consider the short exact sequences

0 → R1 limHm−1(Vi,Kn) → Hm(Vi, R limKn) → limHm(Vi,Kn) → 0
of Lemma 23.2. By assumption (1) the group on the left is zero and by assumption
(2) the group on the right maps injectively into Hm(Vi,Kn(V )). We conclude γ̃i = 0
and hence γ = 0 as desired. □

Lemma 23.7.0D6M Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a
subset. Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist a function p(V,−) : Z → Z and a cofinal system

CovV of coverings of V such that
Hp(Vi, Hm−p(E)) = 0

for all {Vi → V } ∈ CovV and all integers p,m satisfying p > p(V,m).
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K
induces an isomorphism Hm(E) → Hm(K) of cohomology sheaves. In the rest
of the proof we fix m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an
isomorphism Hm(E) → Hm(Kn). To finish the proof it suffices to show that for
every V ∈ B there exists an integer n(V ) ≥ −m such that the map Hm(K)(V ) →
Hm(Kn(V ))(V ) is injective. Namely, then the composition

Hm(E)(V ) → Hm(K)(V ) → Hm(Kn(V ))(V )
is a bijection and the second arrow is injective, hence the first arrow is bijective.
By property (1) this will imply Hm(E) → Hm(K) is an isomorphism. Set
n(V ) = 1 + max{−m, p(V,m− 1) −m,−1 + p(V,m) −m,−2 + p(V,m+ 1) −m}.
so that in any case n(V ) ≥ −m. Claim: the maps

Hm−1(Vi,Kn+1) → Hm−1(Vi,Kn) and Hm(Vi,Kn+1) → Hm(Vi,Kn)
are isomorphisms for n ≥ n(V ) and {Vi → V } ∈ CovV . The claim implies con-
ditions (1) and (2) of Lemma 23.6 are satisfied and hence implies the desired in-
jectivity. Recall (Derived Categories, Remark 12.4) that we have distinguished
triangles

H−n−1(E)[n+ 1] → Kn+1 → Kn → H−n−1(E)[n+ 2]
Looking at the asssociated long exact cohomology sequence the claim follows if
Hm+n(Vi, H−n−1(E)), Hm+n+1(Vi, H−n−1(E)), Hm+n+2(Vi, H−n−1(E))

are zero for n ≥ n(V ) and {Vi → V } ∈ CovV . This follows from our choice of n(V )
and the assumption in the lemma. □

Lemma 23.8.0D6N Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a
subset. Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist an integer dV ≥ 0 and a cofinal system CovV

of coverings of V such that
Hp(Vi, Hq(E)) = 0 for {Vi → V } ∈ CovV , p > dV , and q < 0

https://stacks.math.columbia.edu/tag/0D6M
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Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. This follows from Lemma 23.7 with p(V,m) = dV + max(0,m). □

Lemma 23.9.08U3 Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists a
function p(−) : Z → Z and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hm−p(E)) = 0 for p > p(m) and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 23.7 with p(V,m) = p(m) and CovV equal to the set of
coverings {Vi → V } with Vi ∈ B for all i. □

Lemma 23.10.0D6P Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists
an integer d ≥ 0 and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hq(E)) = 0 for p > d, q < 0, and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 23.8 with dV = d and CovV equal to the set of coverings
{Vi → V } with Vi ∈ B for all i. □

The lemmas above can be used to compute cohomology in certain situations.

Lemma 23.11.0BKZ Let (C,O) be a ringed site. Let K be an object of D(O). Let
B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.

Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

Proof. Observe that K = R lim τ≥−nK by Lemma 23.10 with d = 0. Let U ∈ B.
By Equation (23.4.1) we get a short exact sequence

0 → R1 limHq−1(U, τ≥−nK) → Hq(U,K) → limHq(U, τ≥−nK) → 0

Condition (2) implies Hq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the
spectral sequence of Derived Categories, Lemma 21.3. The spectral sequence con-
verges because τ≥−nK is bounded below. If n > −q then we have Hq(τ≥−nK) =
Hq(K). Thus the systems on the left and the right of the displayed short exact
sequence are eventually constant with values H0(U,Hq−1(K)) and H0(U,Hq(K))
and the lemma follows. □

Here is another case where we can describe the derived limit.

Lemma 23.12.0A09 Let (C,O) be a ringed site. Let (Kn) be an inverse system of
objects of D(O). Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.
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Proof. Set K = R limKn. We will use notation as in Remark 23.4. Let U ∈ B.
By Lemma 23.11 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that the
functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))
where the final equality follows from More on Algebra, Remark 86.10 and assump-
tion (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves Hq(Kn)
over U . Since limHq(Kn) is a sheaf we find using assumption (1) that Hq(K),
which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to limHq(Kn).
This proves the lemma. □

24. Producing K-injective resolutions

070N Let (C,O) be a ringed site. Let F• be a complex of O-modules. The category
Mod(O) has enough injectives, hence we can use Derived Categories, Lemma 29.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes of O-modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.

The category of O-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lem-
mas 31.4 and 31.8 this is a K-injective complex. In general the canonical map
(24.0.1)070P F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 24.1.070Q In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 05.

Then (24.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 34.4 it suffices to show that the canonical
map F• → R lim τ≥−nF• is an isomorphism. This follows from Lemma 23.10. □

Here is a technical lemma about cohomology sheaves of termwise limits of inverse
systems of complexes of modules. We should avoid using this lemma as much as
possible and instead use arguments with derived inverse limits.

Lemma 24.2.08CT Let (C,O) be a ringed site. Let (F•
n) be an inverse system of

complexes of O-modules. Let m ∈ Z. Suppose given B ⊂ Ob(C) and an integer n0
such that

(1) every object of C has a covering whose members are elements of B,

5It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 23.9.
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(2) for every U ∈ B
(a) the systems of abelian groups Fm−2

n (U) and Fm−1
n (U) have vanishing

R1 lim (for example these have the Mittag-Leffler property),
(b) the system of abelian groups Hm−1(F•

n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler property), and

(c) we have Hm(F•
n(U)) = Hm(F•

n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•
n) → Hm(F•

n0
) are isomorphisms of sheaves

where F• = lim F•
n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U) → limn Fm−1

n (U) → limn Fm
n (U) → limn Fm+1

n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•
n(U))

for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. □

25. Bounded cohomological dimension

0D6Q In this section we ask when a functor Rf∗ has bounded cohomological dimension.
This is a rather subtle question when we consider unbounded complexes.

Situation 25.1.0D6R Let C be a site. Let O be a sheaf of rings on C. Let A ⊂ Mod(O)
be a weak Serre subcategory. We assume the following is true: there exists a subset
B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are in B, and
(2) for every V ∈ B there exists an integer dV and a cofinal system CovV of

coverings of V such that

Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(A)

Lemma 25.2.0D6S This is [LO08,
Proposition 2.1.4]
with slightly
changed hypotheses;
it is the analogue of
[Spa88, Proposition
3.13] for sites.

In Situation 25.1 for any E ∈ DA(O) the canonical map E →
R lim τ≥−nE is an isomorphism in D(O).

Proof. Follows immediately from Lemma 23.8. □

Lemma 25.3.0D6T In Situation 25.1 let (Kn) be an inverse system in D+
A(O). Assume

that for every j the inverse system (Hj(Kn)) in A is eventually constant with value
Hj. Then Hj(R limKn) = Hj for all j.

Proof. Let V ∈ B. Let {Vi → V } be in the set CovV of Situation 25.1. Because
Kn is bounded below there is a spectral sequence

Ep,q2 = Hp(Vi, Hq(Kn))

https://stacks.math.columbia.edu/tag/0D6R
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converging to Hp+q(Vi,Kn). See Derived Categories, Lemma 21.3. Observe that
Ep,q2 = 0 for p > dV by assumption. Pick n0 such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)

for all n ≥ n0. Comparing the spectral sequences above for Kn and Kn0 , we see that
for n ≥ n0 the cohomology groups Hj−1(Vi,Kn) and Hj(Vi,Kn) are independent of
n. It follows that the map on sections Hj(R limKn)(V ) → Hj(Kn)(V ) is injective
for n large enough (depending on V ), see Lemma 23.6. Since every object of C
can be covered by elements of B, we conclude that the map Hj(R limKn) → Hj is
injective.

Surjectivity is shown in a similar manner. Namely, pick U ∈ Ob(C) and γ ∈ Hj(U).
We want to lift γ to a section of Hj(R limKn) after replacing U by the members
of a covering. Hence we may assume U = V ∈ B by property (1) of Situation 25.1.
Pick n0 such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)
for all n ≥ n0. Choose an element {Vi → V } of CovV such that γ|Vi

∈ Hj(Vi) =
Hj(Kn0)(Vi) lifts to an element γn0,i ∈ Hj(Vi,Kn0). This is possible because
Hj(Kn0) is the sheafification of U 7→ Hj(U,Kn0) by Lemma 20.3. By the discussion
in the first paragraph of the proof we have that Hj−1(Vi,Kn) and Hj(Vi,Kn) are
independent of n ≥ n0. Hence γn0,i lifts to an element γi ∈ Hj(Vi, R limKn) by
Lemma 23.2. This finishes the proof. □

Lemma 25.4.0D6U This is a version of
[LO08, Lemma
2.1.10] with slightly
changed hypotheses.

Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume there is
an integer N such that

(1) C,O,A satisfy the assumption of Situation 25.1,
(2) C′,O′,A′ satisfy the assumption of Situation 25.1,
(3) Rpf∗F ∈ Ob(A′) for p ≥ 0 and F ∈ Ob(A),
(4) Rpf∗F = 0 for p > N and F ∈ Ob(A),

Then for K in DA(O) we have
(a) Rf∗K is in DA′(O′),
(b) the map Hj(Rf∗K) → Hj(Rf∗(τ≥−nK)) is an isomorphism for j ≥ N−n.

Proof. By Lemma 25.2 we have K = R lim τ≥−nK. By Lemma 23.3 we have
Rf∗K = R limRf∗τ≥−nK. The complexes Rf∗τ≥−nK are bounded below. The
spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging toHp+q(Rf∗τ≥−nK) (Derived Categories, Lemma 21.3) and assumption
(3) show that Rf∗τ≥−nK lies in D+

A′(O′), see Homology, Lemma 24.11. Observe
that for m ≥ n the map

Rf∗(τ≥−mK) −→ Rf∗(τ≥−nK)

https://stacks.math.columbia.edu/tag/0D6U
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induces an isomorphism on cohomology sheaves in degrees j ≥ −n + N by the
spectral sequences above. Hence we may apply Lemma 25.3 to conclude. □

It turns out that we sometimes need a variant of the lemma above where the
assumptions are sligthly different.

Situation 25.5.0D6V Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let
u : C′ → C be the corresponding continuous functor of sites. Let A ⊂ Mod(O) be
a weak Serre subcategory. We assume the following is true: there exists a subset
B′ ⊂ Ob(C′) such that

(1) every object of C′ has a covering whose members are in B′, and
(2) for every V ′ ∈ B′ there exists an integer dV ′ and a cofinal system CovV ′ of

coverings of V ′ such that

Hp(u(V ′
i ),F) = 0 for {V ′

i → V ′} ∈ CovV ′ , p > dV ′ , and F ∈ Ob(A)

Lemma 25.6.0D6W This is a version of
[LO08, Lemma
2.1.10] with slightly
changed hypotheses.

Let f : (C,O) → (C′,O′) be a morphism of ringed sites. assume
moreover there is an integer N such that

(1) C,O,A satisfy the assumption of Situation 25.1,
(2) f : (C,O) → (C′,O′) and A satisfy the assumption of Situation 25.5,
(3) Rpf∗F = 0 for p > N and F ∈ Ob(A),

Then for K in DA(O) the map Hj(Rf∗K) → Hj(Rf∗(τ≥−nK)) is an isomorphism
for j ≥ N − n.

Proof. Let K be in DA(O). By Lemma 25.2 we have K = R lim τ≥−nK. By
Lemma 23.3 we have Rf∗K = R limRf∗(τ≥−nK). Let V ′ ∈ B′ and let {V ′

i → V ′}
be an element of CovV ′ . Then we consider

Hj(V ′
i , Rf∗K) = Hj(u(V ′

i ),K) and Hj(V ′
i , Rf∗(τ≥−nK)) = Hj(u(V ′

i ), τ≥−nK)

The assumption in Situation 25.5 implies that the last group is independent of n
for n large enough depending on j and dV ′ . Some details omitted. We apply this
for j and j − 1 and via Lemma 23.2 this gives that

Hj(V ′
i , Rf∗K) = limHj(V ′

i , Rf∗(τ≥−nK))

and the system on the right is constant for n larger than a constant depending only
on dV ′ and j. Thus Lemma 23.6 implies that

Hj(Rf∗K)(V ′) −→
(
limHj(Rf∗(τ≥−nK))

)
(V ′)

is injective. Since the elements V ′ ∈ B′ cover every object of C′ we conclude that
the map Hj(Rf∗K) → limHj(Rf∗(τ≥−nK)) is injective. The spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging to Hp+q(Rf∗(τ≥−nK)) (Derived Categories, Lemma 21.3) and assump-
tion (3) show that Hj(Rf∗(τ≥−nK)) is constant for n ≥ N−j. Hence Hj(Rf∗K) →
Hj(Rf∗(τ≥−nK)) is injective for j ≥ N − n.

Thus we proved the lemma with “isomorphism” in the last line of the lemma re-
placed by “injective”. However, now choose j and n with j ≥ N −n. Then consider
the distinguished triangle

τ≤−n−1K → K → τ≥−nK → (τ≤−n−1K)[1]

https://stacks.math.columbia.edu/tag/0D6V
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See Derived Categories, Remark 12.4. Since τ≥−nτ≤−n−1K = 0, the injectivity
already proven for τ−n−1K implies

0 = Hj(Rf∗(τ≤−n−1K)) = Hj+1(Rf∗(τ≤−n−1K)) = Hj+2(Rf∗(τ≤−n−1K)) = . . .

By the long exact cohomology sequence associated to the distinguished triangle

Rf∗(τ≤−n−1K) → Rf∗K → Rf∗(τ≥−nK) → Rf∗(τ≤−n−1K)[1]

this implies that Hj(Rf∗K) → Hj(Rf∗(τ≥−nK)) is an isomorphism. □

26. Mayer-Vietoris

0EVX For the usual statement and proof of Mayer-Vietoris, please see Cohomology, Sec-
tion 8.

Let (C,O) be a ringed site. Consider a commutative diagram

E

��

// Y

��
Z // X

in the category C. In this situation, given an object K of D(O) we get what looks
like the beginning of a distinguished triangle

RΓ(X,K) → RΓ(Z,K) ⊕RΓ(Y,K) → RΓ(E,K)

In the following lemma we make this more precise.

Lemma 26.1.0F16 In the situation above, choose a K-injective complex I• of O-
modules representing K. Using −1 times the canonical map for one of the four
arrows we get maps of complexes

I•(X) α−→ I•(Z) ⊕ I•(Y ) β−→ I•(E)

with β ◦ α = 0. Thus a canonical map

cKX,Z,Y,E : I•(X) −→ C(β)•[−1]

This map is canonical in the sense that a different choice of K-injective complex
representing K determines an isomorphic arrow in the derived category of abelian
groups. If cKX,Z,Y,E is an isomorphism, then using its inverse we obtain a canonical
distinguished triangle

RΓ(X,K) → RΓ(Z,K) ⊕RΓ(Y,K) → RΓ(E,K) → RΓ(X,K)[1]

All of these constructions are functorial in K.

Proof. This lemma proves itself. For example, if J • is a second K-injective com-
plex representing K, then we can choose a quasi-isomorphism I• → J • which
determines quasi-isomorphisms between all the complexes in sight. Details omit-
ted. For the construction of cones and the relationship with distinguished triangles
see Derived Categories, Sections 9 and 10. □

Lemma 26.2.0EWP In the situation above, let K1 → K2 → K3 → K1[1] be a dis-
tinguished triangle in D(O). If cKi

X,Z,Y,E is a quasi-isomorphism for two i out of
{1, 2, 3}, then it is a quasi-isomorphism for the third i.

https://stacks.math.columbia.edu/tag/0F16
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Proof. By rotating the triangle we may assume cK1
X,Z,Y,E and cK2

X,Z,Y,E are quasi-
isomorphisms. Choose a map f : I•

1 → I•
2 of K-injective complexes of O-modules

representing K1 → K2. Then K3 is represented by the K-injective complex C(f)•,
see Derived Categories, Lemma 31.3. Then the morphism cK3

X,Z,Y,E is an isomor-
phism as it is the third leg in a map of distinguished triangles in K(Ab) whose
other two legs are quasi-isomorphisms. Some details omitted; use Derived Cate-
gories, Lemma 4.3. □

Let us give a criterion for when this does produce a distinguished triangle.

Lemma 26.3.0EVY In the situation above assume
(1) h#

X = h#
Y ⨿h#

E
h#
Z , and

(2) h#
E → h#

Y is injective.
Then the construction of Lemma 26.1 produces a distinguished triangle

RΓ(X,K) → RΓ(Z,K) ⊕RΓ(Y,K) → RΓ(E,K) → RΓ(X,K)[1]
functorial for K in D(C).

Proof. We can represent K by a K-injective complex whose terms are injective
abelian sheaves, see Section 19. Thus it suffices to show: if I is an injective abelian
sheaf, then

0 → I(X) → I(Z) ⊕ I(Y ) → I(E) → 0
is a short exact sequence. The first arrow is injective because by condition (1)
the map hY ⨿ hZ → hX becomes surjective after sheafification, which means that
{Y → X,Z → X} can be refined by a covering of X. The last arrow is surjective
because I(Y ) → I(E) is surjective. Namely, we have I(E) = Hom(Z#

E , I), I(Y ) =
Hom(Z#

Y , I), the map Z#
E → Z#

Y is injective by (2), and I is an injective abelian
sheaf. Please compare with Modules on Sites, Section 5. Finally, suppose we have
s ∈ I(Y ) and t ∈ F(Z) mapping to the same element of I(E). Then s and t define
a map

s⨿ t : h#
Y ⨿ h#

Z −→ I
which by assumption factors through h#

Y ⨿h#
E
h#
Z . Thus by assumption (1) we obtain

a unique map h#
X → I which corresponds to an element of I(X) restricting to s on

Y and t on Z. □

Lemma 26.4.0EVZ Let C be a site. Consider a commutative diagram

D //

��

F

��
E // G

of presheaves of sets on C and assume that
(1) G# = E# ⨿D# F#, and
(2) D# → F# is injective.

Then there is a canonical distinguished triangle
RΓ(G,K) → RΓ(E ,K) ⊕RΓ(F ,K) → RΓ(D,K) → RΓ(G,K)[1]

functorial in K ∈ D(C) where RΓ(G,−) is the cohomology discussed in Section 13.
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Proof. Since sheafification is exact and since RΓ(G,−) = RΓ(G#,−) we may as-
sume D, E ,F ,G are sheaves of sets. Moreover, the cohomology RΓ(G,−) only de-
pends on the topos, not on the underlying site. Hence by Sites, Lemma 29.5 we
may replace C by a “larger” site with a subcanonical topology such that G = hX ,
F = hY , E = hZ , and D = hE for some objects X,Y, Z,E of C. In this case the
result follows from Lemma 26.3. □

27. Comparing two topologies

0EWK Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the struc-
ture of a site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology
corresponding to Cov′(C). Then the identity functor on C defines a morphism of
sites

ϵ : Cτ −→ Cτ ′

where ϵ∗ is the identity functor on underlying presheaves and where ϵ−1 is the
τ -sheafification of a τ ′-sheaf. See Sites, Examples 14.3 and 22.3. In the situation
above we have the following

(1) ϵ∗ : Sh(Cτ ) → Sh(Cτ ′) is fully faithful and ϵ−1 ◦ ϵ∗ = id,
(2) ϵ∗ : Ab(Cτ ) → Ab(Cτ ′) is fully faithful and ϵ−1 ◦ ϵ∗ = id,
(3) Rϵ∗ : D(Cτ ) → D(Cτ ′) is fully faithful and ϵ−1 ◦Rϵ∗ = id,
(4) if O is a sheaf of rings for the τ -topology, then O is also a sheaf for the

τ ′-topology and ϵ becomes a flat morphism of ringed sites

ϵ : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)

(5) ϵ∗ : Mod(Oτ ) → Mod(Oτ ′) is fully faithful and ϵ∗ ◦ ϵ∗ = id
(6) Rϵ∗ : D(Oτ ) → D(Oτ ′) is fully faithful and ϵ∗ ◦Rϵ∗ = id.

Here are some explanations.

Ad (1). Let F be a sheaf of sets in the τ -topology. Then ϵ∗F is just F viewed as
a sheaf in the τ ′-topology. Applying ϵ−1 means taking the τ -sheafification of F ,
which doesn’t do anything as F is already a τ -sheaf. Thus ϵ−1(ϵ∗F)) = F . The
fully faithfulness follows by Categories, Lemma 24.4.

Ad (2). This is a consequence of (1) since pullback and pushforward of abelian
sheaves is the same as doing those operations on the underlying sheaves of sets.

Ad (3). Let K be an object of D(Cτ ). To compute Rϵ∗K we choose a K-injective
complex I• representing K and we set Rϵ∗K = ϵ∗I•. Since ϵ−1 : D(Cτ ′) → D(Cτ )
is computed on an object L by applying the exact functor ϵ−1 to any complex of
abelian sheaves representing L, we find that ϵ−1Rϵ∗K is represented by ϵ−1ϵ∗I•.
By Part (1) we have I• = ϵ−1ϵ∗I•. In other words, we have ϵ−1 ◦Rϵ∗ = id and we
conclude as before.

Ad (4). Observe that ϵ−1Oτ ′ = Oτ , see discussion in part (1). Hence ϵ is a flat
morphism of ringed sites, see Modules on Sites, Definition 31.1. Not only that, it
is moreover clear that ϵ∗ = ϵ−1 on Oτ ′-modules (the pullback as a module has the
same underlying abelian sheaf as the pullback of the underlying abelian sheaf).

Ad (5). This is clear from (2) and what we said in (4).

Ad (6). This is analogous to (3). We omit the details.
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28. Formalities on cohomological descent

0D7N In this section we discuss only to what extent a morphism of ringed topoi deter-
mines an embedding from the derived category downstairs to the derived category
upstairs. Here is a typical result.

Lemma 28.1.0D7Q Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Consider the full subcategory D′ ⊂ D(OD) consisting of objects K such that

K −→ Rf∗Lf
∗K

is an isomorphism. Then D′ is a saturated triangulated strictly full subcategory of
D(OD) and the functor Lf∗ : D′ → D(OC) is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in
this setting. See Derived Categories, Lemma 4.16 for a discussion of triangulated
subcategories. The canonical map of the lemma is the unit of the adjoint pair
of functors (Lf∗, Rf∗), see Lemma 19.1. Having said this the proof that D′ is a
saturated triangulated subcategory is omitted; it follows formally from the fact that
Lf∗ and Rf∗ are exact functors of triangulated categories. The final part follows
formally from fact that Lf∗ and Rf∗ are adjoint; compare with Categories, Lemma
24.4. □

Lemma 28.2.0D7R Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Consider the full subcategory D′ ⊂ D(OC) consisting of objects K such that

Lf∗Rf∗K −→ K

is an isomorphism. Then D′ is a saturated triangulated strictly full subcategory of
D(OC) and the functor Rf∗ : D′ → D(OD) is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in
this setting. See Derived Categories, Lemma 4.16 for a discussion of triangulated
subcategories. The canonical map of the lemma is the counit of the adjoint pair
of functors (Lf∗, Rf∗), see Lemma 19.1. Having said this the proof that D′ is a
saturated triangulated subcategory is omitted; it follows formally from the fact that
Lf∗ and Rf∗ are exact functors of triangulated categories. The final part follows
formally from fact that Lf∗ and Rf∗ are adjoint; compare with Categories, Lemma
24.4. □

Lemma 28.3.0D7S Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K be an object of D(OC). Assume

(1) f is flat,
(2) K is bounded below,
(3) f∗Rf∗H

q(K) → Hq(K) is an isomorphism.
Then f∗Rf∗K → K is an isomorphism.

Proof. Observe that f∗Rf∗K → K is an isomorphism if and only if it is an isomor-
phism on cohomology sheaves Hj . Observe that Hj(f∗Rf∗K) = f∗Hj(Rf∗K) =
f∗Hj(Rf∗τ≤jK) = Hj(f∗Rf∗τ≤jK). Hence we may assume that K is bounded.
Then property (3) tells us the cohomology sheaves are in the triangulated subcat-
egory D′ ⊂ D(OC) of Lemma 28.2. Hence K is in it too. □

Lemma 28.4.0D7T Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K be an object of D(OD). Assume
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(1) f is flat,
(2) K is bounded below,
(3) Hq(K) → Rf∗f

∗Hq(K) is an isomorphism.
Then K → Rf∗f

∗K is an isomorphism.

Proof. Observe that K → Rf∗f
∗K is an isomorphism if and only if it is an isomor-

phism on cohomology sheavesHj . Observe thatHj(Rf∗f
∗K) = Hj(Rf∗τ≤jf

∗K) =
Hj(Rf∗f

∗τ≤jK). Hence we may assume that K is bounded. Then property (3)
tells us the cohomology sheaves are in the triangulated subcategory D′ ⊂ D(OD)
of Lemma 28.1. Hence K is in it too. □

Lemma 28.5.0D7U Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′).
Then f∗ : D+

A′(O′) → D+
A(O) is an equivalence of categories with quasi-inverse

given by Rf∗ : D+
A(O) → D+

A′(O′).

Proof. By assumptions (2) and (3) and Lemmas 28.4 and 28.1 we see that f∗ :
D+

A′(O′) → D+
A(O) is fully faithful. Let F ∈ Ob(A). Then we can write F = f∗F ′.

Then Rf∗F = Rf∗f
∗F ′ = F ′. In particular, we have Rpf∗F = 0 for p > 0 and

f∗F ∈ Ob(A′). Thus for any K ∈ D+
A(O) we see, using the spectral sequence

Ep,q2 = Rpf∗H
q(K) converging to Rp+qf∗K, that Rf∗K is in D+

A′(O′). Of course,
it also follows from Lemmas 28.3 and 28.2 that Rf∗ : D+

A(O) → D+
A′(O′) is fully

faithful. Since f∗ and Rf∗ are adjoint we then get the result of the lemma, for
example by Categories, Lemma 24.4. □

Lemma 28.6.0D7V This is analogous to
[LO08, Theorem
2.2.3].

Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 25.1,
(5) C′,O′,A′ satisfy the assumption of Situation 25.1.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse
given by Rf∗ : DA(O) → DA′(O′).

Proof. Since f∗ is exact, it is clear that f∗ defines a functor f∗ : DA′(O′) →
DA(O) as in the statement of the lemma and that moreover this functor commutes
with the truncation functors τ≥−n. We already know that f∗ and Rf∗ are quasi-
inverse equivalence on the corresponding bounded below categories, see Lemma
28.5. By Lemma 25.4 with N = 0 we see that Rf∗ indeed defines a functor Rf∗ :
DA(O) → DA′(O′) and that moreover this functor commutes with the truncation
functors τ≥−n. Thus for K in DA(O) the map f∗Rf∗K → K is an isomorphism as
this is true on trunctions. Similarly, for K ′ in DA′(O′) the map K ′ → Rf∗f

∗K ′ is
an isomorphism as this is true on trunctions. This finishes the proof. □

Lemma 28.7.0D7W This is analogous to
[LO08, Theorem
2.2.3].

Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let
A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume
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(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 25.1,
(5) f : (C,O) → (C′,O′) and A satisfy the assumption of Situation 25.5.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse
given by Rf∗ : DA(O) → DA′(O′).

Proof. The proof of this lemma is exactly the same as the proof of Lemma 28.6
except the reference to Lemma 25.4 is replaced by a reference to Lemma 25.6. □

29. Comparing two topologies, II

0F17 Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the struc-
ture of a site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology
corresponding to Cov′(C). Then the identity functor on C defines a morphism of
sites

ϵ : Cτ −→ Cτ ′

where ϵ∗ is the identity functor on underlying presheaves and where ϵ−1 is the τ -
sheafification of a τ ′-sheaf (hence clearly exact). Let O be a sheaf of rings for the
τ -topology. Then O is also a sheaf for the τ ′-topology and ϵ becomes a morphism
of ringed sites

ϵ : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)
For more discussion, see Section 27.

Lemma 29.1.07A8 With ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let B ⊂ Ob(C) be a
subset. Let A ⊂ PMod(O) be a full subcategory. Assume

(1) every object of A is a sheaf for the τ -topology,
(2) A is a weak Serre subcategory of Mod(Oτ ),
(3) every object of C has a τ ′-covering whose members are elements of B, and
(4) for every U ∈ B we have Hp

τ (U,F) = 0, p > 0 for all F ∈ A.
Then A is a weak Serre subcategory of Mod(Oτ ′) and there is an equivalence of
triangulated categories DA(Oτ ) = DA(Oτ ′) given by ϵ∗ and Rϵ∗.

Proof. Since ϵ−1Oτ ′ = Oτ we see that ϵ is a flat morphism of ringed sites and
that in fact ϵ−1 = ϵ∗ on sheaves of modules. By property (1) we can think of every
object of A as a sheaf of Oτ -modules and as a sheaf of Oτ ′ -modules. In other words,
we have fully faithful inclusion functors

A → Mod(Oτ ) → Mod(Oτ ′)

To avoid confusion we will denote A′ ⊂ Mod(Oτ ′) the image of A. Then it is clear
that ϵ∗ : A → A′ and ϵ∗ : A′ → A are quasi-inverse equivalences (see discussion
preceding the lemma and use that objects of A′ are sheaves in the τ topology).

Conditions (3) and (4) imply that Rpϵ∗F = 0 for p > 0 and F ∈ Ob(A). This
is true because Rpϵ∗ is the sheaf associated to the presheave U 7→ Hp

τ (U,F), see
Lemma 7.4. Thus any exact complex in A (which is the same thing as an exact
complex in Mod(Oτ ) whose terms are in A, see Homology, Lemma 10.3) remains
exact upon applying the functor ϵ∗.
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Consider an exact sequence
F ′

0 → F ′
1 → F ′

2 → F ′
3 → F ′

4

in Mod(Oτ ′) with F ′
0,F ′

1,F ′
3,F ′

4 in A′. Apply the exact functor ϵ∗ to get an exact
sequence

ϵ∗F ′
0 → ϵ∗F ′

1 → ϵ∗F ′
2 → ϵ∗F ′

3 → ϵ∗F ′
4

in Mod(Oτ ). Since A is a weak Serre subcategory and since ϵ∗F ′
0, ϵ

∗F ′
1, ϵ

∗F ′
3, ϵ

∗F ′
4

are in A, we conclude that ϵ∗F2 is in A by Homology, Definition 10.1. Consider
the map of sequences

F ′
0

//

��

F ′
1

//

��

F ′
2

//

��

F ′
3

//

��

F ′
4

��
ϵ∗ϵ

∗F ′
0

// ϵ∗ϵ∗F ′
1

// ϵ∗ϵ∗F ′
2

// ϵ∗ϵ∗F ′
3

// ϵ∗ϵ∗F ′
4

The lower row is exact by the discussion in the preceding paragraph. The ver-
tical arrows with index 0, 1, 3, 4 are isomorphisms by the discussion in the first
paragraph. By the 5 lemma (Homology, Lemma 5.20) we find that F ′

2
∼= ϵ∗ϵ

∗F ′
2

and hence F ′
2 is in A′. In this way we see that A′ is a weak Serre subcategory of

Mod(Oτ ′), see Homology, Definition 10.1.
At this point it makes sense to talk about the derived categories DA(Oτ ) and
DA′(Oτ ′), see Derived Categories, Section 17. To finish the proof we show that
conditions (1) – (5) of Lemma 28.7 apply. We have already seen (1), (2), (3) above.
Note that since every object has a τ ′-covering by objects of B, a fortiori every object
has a τ -covering by objects of B. Hence condition (4) of Lemma 28.7 is satisfied.
Similarly, condition (5) is satisfied as well. □

Lemma 29.2.0F18 With ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let A be a set and for
α ∈ A let

Eα

��

// Yα

��
Zα // Xα

be a commutative diagram in the category C. Assume that
(1) a τ ′-sheaf F ′ is a τ -sheaf if F ′(Xα) = F ′(Zα) ×F ′(Eα) F ′(Yα) for all α,
(2) for K ′ in D(Oτ ′) in the essential image of Rϵ∗ the maps cK′

Xα,Zα,Yα,Eα
of

Lemma 26.1 are isomorphisms for all α.
Then K ′ ∈ D+(Oτ ′) is in the essential image of Rϵ∗ if and only if the maps
cK

′

Xα,Zα,Yα,Eα
are isomorphisms for all α.

Proof. The “only if” direction is implied by assumption (2). On the other hand,
if K ′ has a unique nonzero cohomology sheaf, then the “if” direction follows from
assumption (1). In general we will use an induction argument to prove the “if”
direction. Let us say an object K ′ of D+(Oτ ′) satisfies (P) if the maps cK′

Xα,Zα,Yα,Eα

are isomorphisms for all α ∈ A.
Namely, let K ′ be an object of D+(Oτ ′) satisfying (P). Choose a distinguished
triangle

K ′ → Rϵ∗ϵ
−1K ′ → M ′ → K ′[1]
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in D+(Oτ ′) where the first arrow is the adjuntion map. By (2) and Lemma 26.2 we
see that M ′ has (P). On the other hand, applying ϵ−1 and using that ϵ−1Rϵ∗ = id
by Section 27 we find that ϵ−1M ′ = 0. In the next paragraph we will show M ′ = 0
which finishes the proof.

Let K ′ be an object of D+(Oτ ′) satisfying (P) with ϵ−1K ′ = 0. We will show
K ′ = 0. Namely, given n ∈ Z such that Hi(K ′) = 0 for i < n we will show that
Hn(K ′) = 0. For α ∈ A we have a distinguished triangle

RΓτ ′(Xα,K
′) → RΓτ ′(Zα,K ′)⊕RΓτ ′(Yα,K ′) → RΓτ ′(Eα,K ′) → RΓτ ′(Xα,K

′)[1]

by Lemma 26.1. Taking cohomology in degree n and using the assumed vanishing
of cohomology sheaves of K ′ we obtain an exact sequence

0 → Hn
τ ′(Xα,K

′) → Hn
τ ′(Zα,K ′) ⊕Hn

τ ′(Yα,K ′) → Hn
τ ′(Eα,K ′)

which is the same as the exact sequence

0 → Γ(Xα, H
n(K ′)) → Γ(Zα, Hn(K ′)) ⊕ Γ(Yα, Hn(K ′)) → Γ(Eα, Hn(K ′))

We conclude that Hn(K ′) is a a τ -sheaf by assumption (1). However, since the
τ -sheafification ϵ−1Hn(K ′) = Hn(ϵ−1K ′) is 0 as ϵ−1K ′ = 0 we conclude that
Hn(K ′) = 0 as desired. □

Lemma 29.3.0F19 With ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let

E

��

// Y

��
Z // X

be a commutative diagram in the category C such that
(1) h#

X = h#
Y ⨿h#

E
h#
Z , and

(2) h#
E → h#

Y is injective
where # denotes τ -sheafification. Then for K ′ ∈ D(Oτ ′) in the essential image of
Rϵ∗ the map cK′

X,Z,Y,E of Lemma 26.1 (using the τ ′-topology) is an isomorphism.

Proof. This helper lemma is an almost immediate consequence of Lemma 26.3 and
we strongly urge the reader skip the proof. Say K ′ = Rϵ∗K. Choose a K-injective
complex of Oτ -modules J • representing K. Then ϵ∗J • is a K-injective complex of
Oτ ′ -modules representing K ′, see Lemma 20.10. Next,

0 → J •(X) α−→ J •(Z) ⊕ J •(Y ) β−→ J •(E) → 0

is a short exact sequence of complexes of abelian groups, see Lemma 26.3 and its
proof. Since this is the same as the sequence of complexes of abelian groups which
is used to define cK′

X,Z,Y,E , we conclude. □

30. Comparing cohomology

0EZ1
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We develop some general theory which will help us compare cohomology in different
topologies. Given C, τ , and τ ′ as in Section 27 and a morphism f : X → Y in C we
obtain a commutative diagram of morphisms of topoi

(30.0.1)0EZ2

Sh(Cτ/X)
fτ

//

ϵX

��

Sh(Cτ/Y )

ϵY

��
Sh(Cτ ′/X)

fτ′ // Sh(Cτ ′/X)

Here the morphism ϵX , resp. ϵY is the comparison morphism of Section 27 for the
category C/X endowed with the two topologies τ and τ ′. The morphisms fτ and
fτ ′ are “relocalization” morphisms (Sites, Lemma 25.8). The commutativity of the
diagram is a special case of Sites, Lemma 28.1 (applied with C = Cτ/Y , D = Cτ ′/Y ,
u = id, U = X, and V = X). We also get ϵX,∗ ◦ f−1

τ = f−1
τ ′ ◦ ϵY,∗ either from the

lemma or because it is obvious.

Situation 30.1.0EZ3 With C, τ , and τ ′ as in Section 27. Assume we are given a subset
P ⊂ Arrows(C) and for every object X of C we are given a weak Serre subcategory
A′
X ⊂ Ab(Cτ ′/X). We make the following assumption:

(1)0EZ4 given f : X → Y in P and Y ′ → Y general, then X ×Y Y ′ exists and
X ×Y Y

′ → Y ′ is in P,
(2)0EZ5 f−1

τ ′ sends A′
Y into A′

X for any morphism f : X → Y of C,
(3)0EZ6 given X in C and F ′ in A′

X , then F ′ satisfies the sheaf condition for τ -
coverings, i.e., F ′ = ϵX,∗ϵ

−1
X F ′,

(4)0EZ7 if f : X → Y in P and F ′ ∈ Ob(A′
X), then Rifτ ′,∗F ′ ∈ Ob(A′

Y ) for i ≥ 0.
(5)0EZ8 if {Ui → U}i∈I is a τ -covering, then there exist

(a) a τ ′-covering {Vj → U}j∈J ,
(b) a τ -covering {fj : Wj → Vj} consisting of a single fj ∈ P, and
(c) a τ ′-covering {Wjk → Wj}k∈Kj

such that {Wjk → U}j∈J,k∈Kj
is a refinement of {Ui → U}i∈I .

Lemma 30.2.0EZ9 In Situation 30.1 for X in C denote AX the objects of Ab(Cτ/X)
of the form ϵ−1

X F ′ with F ′ in A′
X . Then

(1) for F in Ab(Cτ/X) we have F ∈ AX ⇔ ϵX,∗F ∈ A′
X , and

(2) f−1
τ sends AY into AX for any morphism f : X → Y of C.

Proof. Part (1) follows from (3) and part (2) follows from (2) and the commuta-
tivity of (30.0.1) which gives ϵ−1

X ◦ f−1
τ ′ = f−1

τ ◦ ϵ−1
Y . □

Our next goal is to prove Lemmas 30.10 and 30.9. We will do this by an induction
argument using the following induction hypothesis.

(Vn) For X in C and F in AX we have RiϵX,∗F = 0 for 1 ≤ i ≤ n.

Lemma 30.3.0EZA In Situation 30.1 assume (Vn) holds. For f : X → Y in P and F
in AX we have Rifτ ′,∗ϵX,∗F = ϵY,∗R

ifτ,∗F for i ≤ n.

Proof. We will use the commutative diagram (30.0.1) without further mention. In
particular have

Rfτ ′,∗RϵX,∗F = RϵY,∗Rfτ,∗F

https://stacks.math.columbia.edu/tag/0EZ3
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Assumption (Vn) tells us that ϵX,∗F → RϵX,∗F is an isomorphism in degrees ≤
n. Hence Rfτ ′,∗ϵX,∗F → Rfτ ′,∗RϵX,∗F is an isomorphism in degrees ≤ n. We
conclude that

Rifτ ′,∗ϵX,∗F → Hi(RϵY,∗Rfτ,∗F)
is an isomorphism for i ≤ n. We will prove the lemma by looking at the second
page of the spectral sequence of Lemma 14.7 for RϵY,∗Rfτ,∗F . Here is a picture:

. . . . . . . . . . . .
ϵY,∗R

2fτ,∗F R1ϵY,∗R
2fτ,∗F R2ϵY,∗R

2fτ,∗F . . .
ϵY,∗R

1fτ,∗F R1ϵY,∗R
1fτ,∗F R2ϵY,∗R

1fτ,∗F . . .
ϵY,∗fτ,∗F R1ϵY,∗fτ,∗F R2ϵY,∗fτ,∗F . . .

Let (Cm) be the hypothesis: Rifτ ′,∗ϵX,∗F = ϵY,∗R
ifτ,∗F for i ≤ m. Observe that

(C0) holds. We will show that (Cm−1) ⇒ (Cm) for m < n. Namely, if (Cm−1)
holds, then for n ≥ p > 0 and q ≤ m− 1 we have

RpϵY,∗R
qfτ,∗F = RpϵY,∗ϵ

−1
Y ϵY,∗R

qfτ,∗F
= RpϵY,∗ϵ

−1
Y Rqfτ ′,∗ϵX,∗F = 0

First equality as ϵ−1
Y ϵY,∗ = id, the second by (Cm−1), and the final by by (Vn)

because ϵ−1
Y Rqfτ ′,∗ϵX,∗F is in AY by (4). Looking at the spectral sequence we see

that E0,m
2 = ϵY,∗R

mfτ,∗F is the only nonzero term Ep,q2 with p + q = m. Recall
that dp,qr : Ep,qr → Ep+r,q−r+1

r . Hence there are no nonzero differentials dp,qr , r ≥ 2
either emanating or entering this spot. We conclude that Hm(RϵY,∗Rfτ,∗F) =
ϵY,∗R

mfτ,∗F which implies (Cm) by the discussion above.

Finally, assume (Cn−1). The same analysis shows that E0,n
2 = ϵY,∗R

nfτ,∗F is the
only nonzero term Ep,q2 with p + q = n. We do still have no nonzero differentials
entering this spot, but there can be a nonzero differential emanating it. Namely,
the map d0,n

n+1 : ϵY,∗Rnfτ,∗F → Rn+1ϵY,∗fτ,∗F . We conclude that there is an exact
sequence

0 → Rnfτ ′,∗ϵX,∗F → ϵY,∗R
nfτ,∗F → Rn+1ϵY,∗fτ,∗F

By (4) and (3) the sheaf Rnfτ ′,∗ϵX,∗F satisfies the sheaf property for τ -coverings
as does ϵY,∗Rnfτ,∗F (use the description of ϵ∗ in Section 27). However, the τ -
sheafification of the τ ′-sheaf Rn+1ϵY,∗fτ,∗F is zero (by locality of cohomology; use
Lemmas 7.3 and 7.4). Thus Rnfτ ′,∗ϵX,∗F → ϵY,∗R

nfτ,∗F has to be an isomorphism
and the proof is complete. □

If E′, resp. E is an object ofD(Cτ ′/X), resp.D(Cτ/X) then we will writeHn
τ ′(U,E′),

resp. Hn
τ (U,E) for the cohomology of E′, resp. E over an object U of C/X.

Lemma 30.4.0EZB In Situation 30.1 if (Vn) holds, then for X in C and L ∈ D(Cτ ′/X)
with Hi(L) = 0 for i < 0 and Hi(L) in A′

X for 0 ≤ i ≤ n we have Hn
τ ′(X,L) =

Hn
τ (X, ϵ−1

X L).

Proof. By Lemma 20.5 we have Hn
τ (X, ϵ−1

X L) = Hn
τ ′(X,RϵX,∗ϵ−1

X L). There is a
spectral sequence

Ep,q2 = RpϵX,∗ϵ
−1
X Hq(L)

converging to Hp+q(RϵX,∗ϵ−1
X L). By (Vn) we have the vanishing of Ep,q2 for 0 <

p ≤ n and 0 ≤ q ≤ n. Thus E0,q
2 = ϵX,∗ϵ

−1
X Hq(L) = Hq(L) are the only nonzero
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terms Ep,q2 with p+ q ≤ n. It follows that the map

L −→ RϵX,∗ϵ
−1
X L

is an isomorphism in degrees ≤ n (small detail omitted). Hence we find that
Hi
τ ′(X,L) = Hi

τ ′(X,RϵX,∗ϵ−1
X L) for i ≤ n. Thus the lemma is proved. □

Lemma 30.5.0EZC In Situation 30.1 if (Vn) holds, then for X in C and F in AX the
map Hn+1

τ ′ (X, ϵX,∗F) → Hn+1
τ (X,F) is injective with image those classes which

become trivial on a τ ′-covering of X.

Proof. Recall that ϵ−1
X ϵX,∗F = F hence the map is given by pulling back coho-

mology classes by ϵX . The Leray spectral sequence (Lemma 14.5)

Ep,q2 = Hp
τ ′(X,RqϵX,∗F) ⇒ Hp+q

τ (X,F)

combined with the assumed vanishing gives an exact sequence

0 → Hn+1
τ ′ (X, ϵX,∗F) → Hn+1

τ (X,F) → H0
τ ′(X,Rn+1ϵX,∗F)

This is a restatement of the lemma. □

Lemma 30.6.0EZD In Situation 30.1 let f : X → Y be in P such that {X → Y } is a
τ -covering. Let F ′ be in A′

Y . If n ≥ 0 and

θ ∈ Equalizer
(
Hn+1
τ ′ (X,F ′) //

// H
n+1
τ ′ (X ×Y X,F ′)

)
then there exists a τ ′-covering {Yi → Y } such that θ restricts to zero in Hn+1

τ ′ (Yi×Y

X,F ′).

Proof. Observe that X ×Y X exists by (1). For Z in C/Y denote F ′|Z the restric-
tion of F ′ to Cτ ′/Z. Recall that Hn+1

τ ′ (X,F ′) = Hn+1(Cτ ′/X,F ′|X), see Lemma
7.1. The lemma asserts that the image θ ∈ H0(Y,Rn+1fτ ′,∗F ′|X) of θ is zero.
Consider the cartesian diagram

X ×Y X

pr1

��

pr2
// X

f

��
X

f // Y

By trivial base change (Lemma 21.1) we have

f−1
τ ′ R

n+1fτ ′,∗(F ′|X) = Rn+1pr1,τ ′,∗(F ′|X×Y X)

If pr−1
1 θ = pr−1

2 θ, then the section f−1
τ ′ θ of f−1

τ ′ Rn+1fτ ′,∗(F ′|X) is zero, because it
is clear that pr−1

1 θ maps to the zero element in H0(X,Rn+1pr1,τ ′,∗(F ′|X×Y X)). By
(2) we have F ′|X in A′

X . Thus G′ = Rn+1fτ ′,∗(F ′|X) is an object of A′
Y by (4).

Thus G′ satisfies the sheaf property for τ -coverings by (3). Since {X → Y } is a
τ -covering we conclude that restriction G′(Y ) → G′(X) is injective. It follows that
θ is zero. □

Lemma 30.7.0EZE In Situation 30.1 we have (Vn) ⇒ (Vn+1).

Proof. Let X in C and F in AX . Let ξ ∈ Hn+1
τ (U,F) for some U/X. We have to

show that ξ restricts to zero on the members of a τ ′-covering of U . See Lemma 7.4.
It follows from this that we may replace U by the members of a τ ′-covering of U .
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By locality of cohomology (Lemma 7.3) we can choose a τ -covering {Ui → U} such
that ξ restricts to zero on Ui. Choose {Vj → V }, {fj : Wj → Vj}, and {Wjk → Wj}
as in (5). After replacing both U by Vj and F by its restriction to Cτ/Vj , which is
allowed by (1), we reduce to the case discussed in the next paragraph.
Here f : X → Y is an element of P such that {X → Y } is a τ -covering, F
is an object of AY , and ξ ∈ Hn+1

τ (Y,F) is such that there exists a τ ′-covering
{Xi → X}i∈I such that ξ restricts to zero on Xi for all i ∈ I. Problem: show that
ξ restricts to zero on a τ ′-covering of Y .
By Lemma 30.5 there exists a unique τ ′-cohomology class θ ∈ Hn+1

τ ′ (X, ϵX,∗F)
whose image is ξ|X . Since ξ|X pulls back to the same class on X ×Y X via the two
projections, we find that the same is true for θ (by uniqueness). By Lemma 30.6
we see that after replacing Y by the members of a τ ′-covering, we may assume that
θ = 0. Consequently, we may assume that ξ|X is zero.
Let f : X → Y be an element of P such that {X → Y } is a τ -covering, F is an
object of AY , and ξ ∈ Hn+1

τ (Y,F) maps to zero in Hn+1
τ (X,F). Problem: show

that ξ restricts to zero on a τ ′-covering of Y .
The assumptions tell us ξ maps to zero under the map

F −→ Rfτ,∗f
−1
τ F

Use Lemma 20.5. A simple argument using the distinguished triangle of truncations
(Derived Categories, Remark 12.4) shows that ξ maps to zero under the map

F −→ τ≤nRfτ,∗f
−1
τ F

We will compare this with the map ϵY,∗F → K where
K = τ≤nRfτ ′,∗f

−1
τ ′ ϵY,∗F = τ≤nRfτ ′,∗ϵX,∗f

−1
τ F

The equality ϵX,∗f−1
τ = f−1

τ ′ ϵY,∗ is a property of (30.0.1). Consider the map
Rfτ ′,∗ϵX,∗f

−1
τ F −→ Rfτ ′,∗RϵX,∗f

−1
τ F = RϵY,∗Rfτ,∗f

−1
τ F

used in the proof of Lemma 30.3 which induces by adjunction a map
ϵ−1
Y Rfτ ′,∗ϵX,∗f

−1
τ F → Rfτ,∗f

−1
τ F

Taking trunctions we find a map
ϵ−1
Y K −→ τ≤nRfτ,∗f

−1
τ F

which is an isomorphism by Lemma 30.3; the lemma applies because f−1
τ F is in

AX by Lemma 30.2. Choose a distinguished triangle
ϵY,∗F → K → L → ϵY,∗F [1]

The map F → fτ,∗f
−1
τ F is injective as {X → Y } is a τ -covering. Thus ϵY,∗F →

ϵY,∗fτ,∗f
−1
τ F = fτ ′,∗f

−1
τ ′ ϵY,∗F is injective too. Hence L only has nonzero coho-

mology sheaves in degrees 0, . . . , n. As fτ ′,∗f
−1
τ ′ ϵY,∗F is in A′

Y by (2) and (4) we
conclude that

H0(L) = Coker(ϵY,∗F → fτ ′,∗f
−1
τ ′ ϵY,∗F)

is in the weak Serre subcategory A′
Y . For 1 ≤ i ≤ n we see that Hi(L) =

Rifτ ′,∗f
−1
τ ′ ϵY,∗F is in A′

Y by (2) and (4). Pulling back the distinguished trian-
gle above by ϵY we get the distinguished triangle

F → τ≤nRfτ,∗f
−1
τ F → ϵ−1

Y L → F [1]
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Since ξ maps to zero in the middle term we find that ξ is the image of an element
ξ′ ∈ Hn

τ (Y, ϵ−1
Y L). By Lemma 30.4 we have

Hn
τ ′(Y,L) = Hn

τ (Y, ϵ−1
Y L),

Thus we may lift ξ′ to an element ofHn
τ ′(Y,L) and take the boundary intoHn+1

τ ′ (Y, ϵY,∗F)
to see that ξ is in the image of the canonical map Hn+1

τ ′ (Y, ϵY,∗F) → Hn+1
τ (Y,F).

By locality of cohomology for Hn+1
τ ′ (Y, ϵY,∗F), see Lemma 7.3, we conclude. □

Lemma 30.8.0EZF In Situation 30.1 we have that (Vn) is true for all n. Moreover:
(1) For X in C and K ′ ∈ D+

A′
X

(Cτ ′/X) the map K ′ → RϵX,∗(ϵ−1
X K ′) is an

isomorphism.
(2) For f : X → Y in P and K ′ ∈ D+

A′
X

(Cτ ′/X) we have Rfτ ′,∗K
′ ∈ D+

A′
X

(Cτ ′/Y )
and ϵ−1

Y (Rfτ ′,∗K
′) = Rfτ,∗(ϵ−1

X K ′).

Proof. Observe that (V0) holds as it is the empty condition. Then we get (Vn) for
all n by Lemma 30.7.

Proof of (1). The object K = ϵ−1
X K ′ has cohomology sheaves Hi(K) = ϵ−1

X Hi(K ′)
in AX . Hence the spectral sequence

Ep,q2 = RpϵX,∗H
q(K) ⇒ Hp+q(RϵX,∗K)

degenerates by (Vn) for all n and we find

Hn(RϵX,∗K) = ϵX,∗H
n(K) = ϵX,∗ϵ

−1
X Hi(K ′) = Hi(K ′).

again because Hi(K ′) is in A′
X . Thus the canonical map K ′ → RϵX,∗(ϵ−1

X K ′) is an
isomorphism.

Proof of (2). Using the spectral sequence

Ep,q2 = Rpfτ ′,∗H
q(K ′) ⇒ Rp+qfτ ′,∗K

′

the fact that Rpfτ ′,∗H
q(K ′) is in A′

Y by (4), the fact that A′
Y is a weak Serre sub-

category of Ab(Cτ ′/Y ), and Homology, Lemma 24.11 we conclude that Rfτ ′,∗K
′ ∈

D+
A′

X
(Cτ ′/X). To finish the proof we have to show the base change map

ϵ−1
Y (Rfτ ′,∗K

′) −→ Rfτ,∗(ϵ−1
X K ′)

is an isomorphism. Comparing the spectral sequence above to the spectral sequence

Ep,q2 = Rpfτ,∗H
q(ϵ−1

X K ′) ⇒ Rp+qfτ,∗ϵ
−1
X K ′

we reduce this to the case where K ′ has a single nonzero cohomology sheaf F ′ in
A′
X ; details omitted. Then Lemma 30.3 gives ϵ−1

Y Rifτ ′,∗F ′ = Rifτ,∗ϵ
−1
X F ′ for all i

and the proof is complete. □

Lemma 30.9.0EZG In Situation 30.1. For any X in C the category AX ⊂ Ab(Cτ/X)
is a weak Serre subcategory and the functor

RϵX,∗ : D+
AX

(Cτ/X) −→ D+
A′

X
(Cτ ′/X)

is an equivalence with quasi-inverse given by ϵ−1
X .

https://stacks.math.columbia.edu/tag/0EZF
https://stacks.math.columbia.edu/tag/0EZG
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Proof. We need to check the conditions listed in Homology, Lemma 10.3 for AX .
If φ : F → G is a map in AX , then ϵX,∗φ : ϵX,∗F → ϵX,∗G is a map in A′

X . Hence
Ker(ϵX,∗φ) and Coker(ϵX,∗φ) are objects of A′

X as this is a weak Serre subcategory
of Ab(Cτ ′/X). Applying ϵ−1

X we obtain an exact sequence

0 → ϵ−1
X Ker(ϵX,∗φ) → F → G → ϵ−1

X Coker(ϵX,∗φ) → 0

and we see that Ker(φ) and Coker(φ) are in AX . Finally, suppose that

0 → F1 → F2 → F3 → 0

is a short exact sequence in Ab(Cτ/X) with F1 and F3 in AX . Then applying ϵX,∗
we obtain an exact sequence

0 → ϵX,∗F1 → ϵX,∗F2 → ϵX,∗F3 → R1ϵX,∗F1 = 0

Vanishing by Lemma 30.8. Hence ϵX,∗F2 is in A′
X as this is a weak Serre subcate-

gory of Ab(Cτ ′/X). Pulling back by ϵX we conclude that F2 is in AX .

Thus AX is a weak Serre subcategory of Ab(Cτ/X) and it makes sense to consider
the category D+

AX
(Cτ/X). Observe that ϵ−1

X : A′
X → AX is an equivalence and

that F ′ → RϵX,∗ϵ
−1
X F ′ is an isomorphism for F ′ in A′

X since we have (Vn) for all
n by Lemma 30.8. Thus we conclude by Lemma 28.5. □

Lemma 30.10.0EZH In Situation 30.1. Let X be in C.
(1) for F ′ in A′

X we have Hn
τ ′(X,F ′) = Hn

τ (X, ϵ−1
X F ′),

(2) for K ′ ∈ D+
A′

X
(Cτ ′/X) we have Hn

τ ′(X,K ′) = Hn
τ (X, ϵ−1

X K ′).

Proof. This follows from Lemma 30.8 by Remark 14.4. □

31. Cohomology on Hausdorff and locally quasi-compact spaces

09WY We continue our convention to say “Hausdorff and locally quasi-compact” instead
of saying “locally compact” as is often done in the literature. Let LC denote the
category whose objects are Hausdorff and locally quasi-compact topological spaces
and whose morphisms are continuous maps.

Lemma 31.1.09WZ The category LC has fibre products and a final object and hence
has arbitrary finite limits. Given morphisms X → Z and Y → Z in LC with X
and Y quasi-compact, then X ×Z Y is quasi-compact.

Proof. The final object is the singleton space. Given morphisms X → Z and
Y → Z of LC the fibre product X ×Z Y is a subspace of X × Y . Hence X ×Z Y is
Hausdorff as X × Y is Hausdorff by Topology, Section 3.

If X and Y are quasi-compact, then X×Y is quasi-compact by Topology, Theorem
14.4. Since X ×Z Y is a closed subset of X × Y (Topology, Lemma 3.4) we find
that X ×Z Y is quasi-compact by Topology, Lemma 12.3.

Finally, returning to the general case, if x ∈ X and y ∈ Y we can pick quasi-
compact neighbourhoods x ∈ E ⊂ X and y ∈ F ⊂ Y and we find that E ×Z F is
a quasi-compact neighbourhood of (x, y) by the result above. Thus X ×Z Y is an
object of LC by Topology, Lemma 13.2. □

We can endow LC with a stronger topology than the usual one.

https://stacks.math.columbia.edu/tag/0EZH
https://stacks.math.columbia.edu/tag/09WZ
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Definition 31.2.09X0 Let {fi : Xi → X} be a family of morphisms with fixed target
in the category LC. We say this family is a qc covering6 if for every x ∈ X there
exist i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a

neighbourhood of x.

Observe that an open covering X =
⋃
Ui of an object of LC gives a qc covering

{Ui → X} because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 31.3.09X1 Let X be a Hausdorff and locally quasi-compact space, in other
words, an object of LC.

(1) If X ′ → X is an isomorphism in LC then {X ′ → X} is a qc covering.
(2) If {fi : Xi → X}i∈I is a qc covering and for each i we have a qc covering

{gij : Xij → Xi}j∈Ji
, then {Xij → X}i∈I,j∈Ji

is a qc covering.
(3) If {Xi → X}i∈I is a qc covering and X ′ → X is a morphism of LC then

{X ′ ×X Xi → X ′}i∈I is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings.
Proof of (2). Let x ∈ X. Choose i1, . . . , in ∈ I and Ea ⊂ Xia quasi-compact such
that

⋃
fia(Ea) is a neighbourhood of x. For every e ∈ Ea we can find a finite

subset Je ⊂ Jia and quasi-compact Fe,j ⊂ Xij , j ∈ Je such that
⋃
gij(Fe,j) is a

neighbourhood of e. Since Ea is quasi-compact we find a finite collection e1, . . . , ema

such that
Ea ⊂

⋃
k=1,...,ma

⋃
j∈Jek

gij(Fek,j)

Then we find that ⋃
a=1,...,n

⋃
k=1,...,ma

⋃
j∈Jek

fi(gij(Fek,j))

is a neighbourhood of x.
Proof of (3). Let x′ ∈ X ′ be a point. Let x ∈ X be its image. Choose i1, . . . , in ∈ I
and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbourhood of

x. Choose a quasi-compact neighbourhood F ⊂ X ′ of x′ which maps into the
quasi-compact neighbourhood

⋃
fij (Ej) of x. Then F ×X Ej ⊂ X ′ ×X Xij is a

quasi-compact subset and F is the image of the map
∐
F ×X Ej → F . Hence the

base change is a qc covering and the proof is finished. □

Since all objects of LC are Hausdorff any morphism f : X → Y of LC is a separated
continuous map of topological spaces. Hence f is a proper map of topological spaces
if and only if f is universally closed. See discussion in Topology, Section 17.

Lemma 31.4.09X5 Let f : X → Y be a morphism of LC. If f is proper and surjective,
then {f : X → Y } is a qc covering.

Proof. Let y ∈ Y be a point. For each x ∈ Xy choose a quasi-compact neigh-
bourhood Ex ⊂ X. Choose x ∈ Ux ⊂ Ex open. Since f is proper the fibre Xy

is quasi-compact and we find x1, . . . , xn ∈ Xy such that Xy ⊂ Ux1 ∪ . . . ∪ Uxn
.

We claim that f(Ex1) ∪ . . . ∪ f(Exn
) is a neighbourhood of y. Namely, as f is

closed (Topology, Theorem 17.5) we see that Z = f(X \Ux1 ∪ . . .∪Uxn
) is a closed

subset of Y not containing y. As f is surjective we see that Y \ Z is contained in
f(Ex1) ∪ . . . ∪ f(Exn) as desired. □

6This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.

https://stacks.math.columbia.edu/tag/09X0
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Besides some set theoretic issues Lemma 31.3 shows that LC with the collection of
qc coverings forms a site. We will denote this site (suitably modified to overcome
the set theoretical issues) LCqc.

Remark 31.5 (Set theoretic issues).09X2 The category LC is a “big” category as its
objects form a proper class. Similarly, the coverings form a proper class. Let
us define the size of a topological space X to be the cardinality of the set of
points of X. Choose a function Bound on cardinals, for example as in Sets,
Equation (9.1.1). Finally, let S0 be an initial set of objects of LC, for example
S0 = {(R, euclidean topology)}. Exactly as in Sets, Lemma 9.2 we can choose a
limit ordinal α such that LCα = LC ∩ Vα contains S0 and is preserved under all
countable limits and colimits which exist in LC. Moreover, if X ∈ LCα and if
Y ∈ LC and size(Y ) ≤ Bound(size(X)), then Y is isomorphic to an object of LCα.
Next, we apply Sets, Lemma 11.1 to choose set Cov of qc covering on LCα such
that every qc covering in LCα is combinatorially equivalent to a covering this set.
In this way we obtain a site (LCα,Cov) which we will denote LCqc.

There is a second topology on the site LCqc of Remark 31.5. Namely, given an
object X we can consider all coverings {Xi → X} of LCqc such that Xi → X is an
open immersion. We denote this site LCZar. The identity functor LCZar → LCqc
is continuous and defines a morphism of sites

ϵ : LCqc −→ LCZar
See Section 27. For a Hausdorff and locally quasi-compact topological space X,
more precisely for X ∈ Ob(LCqc), we denote the induced morphism

ϵX : LCqc/X −→ LCZar/X
(see Sites, Lemma 28.1). Let XZar be the site whose objects are opens of X, see
Sites, Example 6.4. There is a morphism of sites

πX : LCZar/X −→ XZar

given by the continuous functor XZar → LCZar/X, U 7→ U . Namely, XZar has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 14.7 applies. We often think of π as a morphism of topoi

πX : Sh(LCZar/X) −→ Sh(X)
using the equality Sh(XZar) = Sh(X).

Lemma 31.6.09X3 Let X be an object of LCqc. Let F be a sheaf on X. The rule

LCqc/X −→ Sets, (f : Y → X) 7−→ Γ(Y, f−1F)

is a sheaf and a fortiori also a sheaf on LCZar/X. This sheaf is equal to π−1
X F on

LCZar/X and ϵ−1
X π−1

X F on LCqc/X.

Proof. Denote G the presheaf given by the formula in the lemma. Of course the
pullback f−1 in the formula denotes usual pullback of sheaves on topological spaces.
It is immediate from the definitions that G is a sheaf for the Zar topology.
Let Y → X be a morphism in LCqc. Let V = {gi : Yi → Y }i∈I be a qc covering. To
prove G is a sheaf for the qc topology it suffices to show that G(Y ) → H0(V,G) is
an isomorphism, see Sites, Section 10. We first point out that the map is injective
as a qc covering is surjective and we can detect equality of sections at stalks (use

https://stacks.math.columbia.edu/tag/09X2
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Sheaves, Lemmas 11.1 and 21.4). Thus G is a separated presheaf on LCqc hence it
suffices to show that any element (si) ∈ H0(V,G) maps to an element in the image
of G(Y ) after replacing V by a refinement (Sites, Theorem 10.10).
Identifying sheaves on Yi,Zar and sheaves on Yi we find that G|Yi,Zar

is the pullback
of f−1F under the continuous map gi : Yi → Y . Thus we can choose an open
covering Yi =

⋃
Vij such that for each j there is an open Wij ⊂ Y and a section

tij ∈ G(Wij) such that Vij maps into Wij and such that s|Vij
is the pullback of

tij . In other words, after refining the covering {Yi → Y } we may assume there
are opens Wi ⊂ Y such that Yi → Y factors through Wi and sections ti of G over
Wi which restrict to the given sections si. Moreover, if y ∈ Y is in the image of
both Yi → Y and Yj → Y , then the images ti,y and tj,y in the stalk f−1Fy agree
(because si and sj agree over Yi ×Y Yj). Thus for y ∈ Y there is a well defined
element ty of f−1Fy agreeing with ti,y whenever y is in the image of Yi → Y . We
will show that the element (ty) comes from a global section of f−1F over Y which
will finish the proof of the lemma.
It suffices to show that this is true locally on Y , see Sheaves, Section 17. Let y0 ∈ Y .
Pick i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Yij such that

⋃
gij (Ej) is a

neighbourhood of y0. Let V ⊂ Y be an open neighbourhood of y0 contained in⋃
gij (Ej) and contained in Wi1 ∩ . . . ∩ Win . Since ti1,y0 = . . . = tin,y0 , after

shrinking V we may assume the sections tij |V , j = 1, . . . , n of f−1F agree. As
V ⊂

⋃
gij (Ej) we see that (ty)y∈V comes from this section.

We still have to show that G is equal to ϵ−1
X π−1

X F on LCqc, resp. π−1
X F on LCZar.

In both cases the pullback is defined by taking the presheaf
(f : Y → X) 7−→ colimf(Y )⊂U⊂X F(U)

and then sheafifying. Sheafifying in the Zar topology exactly produces our sheaf G
and the fact that G is a qc sheaf, shows that it works as well in the qc topology. □

Let X ∈ Ob(LCZar) and let H be an abelian sheaf on LCZar/X. Then we will
write Hn

Zar(U,H) for the cohomology of H over an object U of LCZar/X.

Lemma 31.7.0DCU Let X be an object of LCZar. Then
(1) for F ∈ Ab(X) we have Hn

Zar(X,π
−1
X F) = Hn(X,F),

(2) πX,∗ : Ab(LCZar/X) → Ab(X) is exact,
(3) the unit id → πX,∗ ◦ π−1

X of the adjunction is an isomorphism, and
(4) for K ∈ D(X) the canonical map K → RπX,∗π

−1
X K is an isomorphism.

Let f : X → Y be a morphism of LCZar. Then
(5) there is a commutative diagram

Sh(LCZar/X)
fZar

//

πX

��

Sh(LCZar/Y )

πY

��
Sh(XZar)

f // Sh(YZar)

of topoi,
(6) for L ∈ D+(Y ) we have Hn

Zar(X,π
−1
Y L) = Hn(X, f−1L),

(7) if f is proper, then we have
(a) π−1

Y ◦ f∗ = fZar,∗ ◦ π−1
X as functors Sh(X) → Sh(LCZar/Y ),

https://stacks.math.columbia.edu/tag/0DCU
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(b) π−1
Y ◦Rf∗ = RfZar,∗ ◦ π−1

X as functors D+(X) → D+(LCZar/Y ).

Proof. Proof of (1). The equality Hn
Zar(X,π

−1
X F) = Hn(X,F) is a general fact

coming from the trivial observation that coverings of X in LCZar are the same
thing as open coverings of X. The reader who wishes to see a detailed proof should
apply Lemma 7.2 to the functor XZar → LCZar.

Proof of (2). This is true because πX,∗ = τ−1
X for some morphism of topoi τX :

Sh(XZar) → Sh(LCZar) as follows from Sites, Lemma 21.8 applied to the functor
XZar → LCZar/X used to define πX .

Proof of (3). This is true because τ−1
X ◦π−1

X is the identity functor by Sites, Lemma
21.8. Or you can deduce it from the explicit description of π−1

X in Lemma 31.6.

Proof of (4). Apply (3) to an complex of abelian sheaves representing K.

Proof of (5). The morphism of topoi fZar comes from an application of Sites,
Lemma 25.8 and in our case comes from the continuous functor Z/Y 7→ Z×Y X/X
by Sites, Lemma 27.3. The diagram commutes simply because the corresponding
continuous functors compose correctly (see Sites, Lemma 14.4).

Proof of (6). We have Hn
Zar(X,π

−1
Y G) = Hn

Zar(X, f
−1
Zarπ

−1
Y G) for G in Ab(Y ),

see Lemma 7.1. This is equal to Hn
Zar(X,π

−1
X f−1G) by the commutativity of the

diagram in (5). Hence we conclude by (1) in the case L consists of a single sheaf in
degree 0. The general case follows by representing L by a bounded below complex
of abelian sheaves.

Proof of (7a). Let F be a sheaf on X. Let g : Z → Y be an object of LCZar/Y .
Consider the fibre product

Z ′
f ′
//

g′

��

Z

g

��
X

f // Y

Then we have

(fZar,∗π−1
X F)(Z/Y ) = (π−1

X F)(Z ′/X) = Γ(Z ′, (g′)−1F) = Γ(Z, f ′
∗(g′)−1F)

the second equality by Lemma 31.6. On the other hand

(π−1
Y f∗F)(Z/Y ) = Γ(Z, g−1f∗F)

again by Lemma 31.6. Hence by proper base change for sheaves of sets (Coho-
mology, Lemma 18.3) we conclude the two sets are canonically isomorphic. The
isomorphism is compatible with restriction mappings and defines an isomorphism
π−1
Y f∗F = fZar,∗π

−1
X F . Thus an isomorphism of functors π−1

Y ◦ f∗ = fZar,∗ ◦ π−1
X .

Proof of (7b). Let K ∈ D+(X). By Lemma 20.6 the nth cohomology sheaf of
RfZar,∗π

−1
X K is the sheaf associated to the presheaf

(g : Z → Y ) 7−→ Hn
Zar(Z ′, π−1

X K)
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with notation as above. Observe that
Hn
Zar(Z ′, π−1

X K) = Hn(Z ′, (g′)−1K)
= Hn(Z,Rf ′

∗(g′)−1K)
= Hn(Z, g−1Rf∗K)
= Hn

Zar(Z, π−1
Y Rf∗K)

The first equality is (6) applied to K and g′ : Z ′ → X. The second equality
is Leray for f ′ : Z ′ → Z (Cohomology, Lemma 13.1). The third equality is the
proper base change theorem (Cohomology, Theorem 18.2). The fourth equality is
(6) applied to g : Z → Y and Rf∗K. Thus RfZar,∗π−1

X K and π−1
Y Rf∗K have the

same cohomology sheaves. We omit the verification that the canonical base change
map π−1

Y Rf∗K → RfZar,∗π
−1
X K induces this isomorphism. □

In the situation of Lemma 31.6 the composition of ϵ and π and the equality Sh(X) =
Sh(XZar) determine a morphism of topoi

aX : Sh(LCqc/X) −→ Sh(X)

Lemma 31.8.0D92 Let f : X → Y be a morphism of LCqc. Then there are commutative
diagrams of topoi

Sh(LCqc/X)
fqc

//

ϵX

��

Sh(LCqc/Y )

ϵY

��
Sh(LCZar/X) fZar // Sh(LCZar/Y )

and

Sh(LCqc/X)
fqc

//

aX

��

Sh(LCqc/Y )

aY

��
Sh(X) f // Sh(Y )

with aX = πX ◦ ϵX , aY = πX ◦ ϵX . If f is proper, then a−1
Y ◦ f∗ = fqc,∗ ◦ a−1

X .

Proof. The morphism of topoi fqc is the one from Sites, Lemma 25.8 which in our
case comes from the continuous functor Z/Y 7→ Z×Y X/X, see Sites, Lemma 27.3.
The diagram on the left commutes because the corresponding continuous functors
compose correctly (see Sites, Lemma 14.4). The diagram on the right commutes
because the one on the left does and because of part (5) of Lemma 31.7.
Proof of the final assertion. The reader may repeat the proof of part (7a) of
Lemma 31.7; we will instead deduce this from it. As ϵY,∗ is the identity func-
tor on underlying presheaves, it reflects isomorphisms. The description in Lemma
31.6 shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical

map a−1
Y f∗F → fqc,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y f∗F = ϵY,∗a

−1
Y f∗F → ϵY,∗fqc,∗a

−1
X F = fZar,∗ϵX,∗a

−1
X F = fZar,∗π

−1
X F

is an isomorphism. This is part (7a) of Lemma 31.7. □

Lemma 31.9.0EZI Consider the comparison morphism ϵ : LCqc → LCZar. Let P
denote the class of proper maps of topological spaces. For X in LCZar denote
A′
X ⊂ Ab(LCZar/X) the full subcategory consisting of sheaves of the form π−1

X F
with F in Ab(X). Then (1), (2), (3), (4), and (5) of Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab(LCZar/X) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2),
(3) are immediate as π−1

X is exact and fully faithful by Lemma 31.7 part (3). If
0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in Ab(LCZar/X) then

https://stacks.math.columbia.edu/tag/0D92
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0 → F → πX,∗G → F ′ → 0 is exact by Lemma 31.7 part (2). Hence G = π−1
X πX,∗G

is in A′
X which checks the final condition.

Property (1) holds by Lemma 31.1 and the fact that the base change of a proper
map is a proper map (see Topology, Theorem 17.5 and Lemma 4.4).

Property (2) follows from the commutative diagram (5) in Lemma 31.7.

Property (3) is Lemma 31.6.

Property (4) is Lemma 31.7 part (7)(b).

Proof of (5). Suppose given a qc covering {Ui → U}. For u ∈ U pick i1, . . . , im ∈ I
and quasi-compact subsets Ej ⊂ Uij such that

⋃
fij (Ej) is a neighbourhood of

u. Observe that Y =
∐
j=1,...,mEj → U is proper as a continuous map between

Hausdorff quasi-compact spaces (Topology, Lemma 17.7). Choose an open neigh-
bourhood u ∈ V contained in

⋃
fij (Ej). Then Y ×U V → V is a surjective proper

morphism and hence a qc covering by Lemma 31.4. Since we can do this for every
u ∈ U we see that (5) holds. □

Lemma 31.10.0DCY With notation as above.
(1) For X ∈ Ob(LCqc) and an abelian sheaf F on X we have ϵX,∗a−1

X F = π−1
X F

and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in LCqc and abelian sheaf F on X we
have a−1

Y (Rif∗F) = Rifqc,∗(a−1
X F) for all i.

(3) For X ∈ Ob(LCqc) and K in D+(X) the map π−1
X K → RϵX,∗(a−1

X K) is
an isomorphism.

(4) For a proper morphism f : X → Y in LCqc and K in D+(X) we have
a−1
Y (Rf∗K) = Rfqc,∗(a−1

X K).

Proof. By Lemma 31.9 the lemmas in Section 30 all apply to our current setting.
To translate the results observe that the category AX of Lemma 30.2 is the essential
image of a−1

X : Ab(X) → Ab(LCqc/X).

Part (1) is equivalent to (Vn) for all n which holds by Lemma 30.8.

Part (2) follows by applying ϵ−1
Y to the conclusion of Lemma 30.3.

Part (3) follows from Lemma 30.8 part (1) because π−1
X K is in D+

A′
X

(LCZar/X)
and a−1

X = ϵ−1
X ◦ a−1

X .

Part (4) follows from Lemma 30.8 part (2) for the same reason. □

Lemma 31.11.0D91 Let X be an object of LCqc. For K ∈ D+(X) the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh(LCqc/X) → Sh(X) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F•. By the case
of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero
for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) applied
to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .

https://stacks.math.columbia.edu/tag/0DCY
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By Lemma 31.6 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral se-
quence Lemma 14.7. By Lemma 31.10 we have RiϵX,∗(a−1

X F) = 0 for i > 0 and
ϵX,∗a

−1
X F = π−1

X F . By Lemma 31.7 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. □

Lemma 31.12.09X4 With X ∈ Ob(LCqc) and aX : Sh(LCqc/X) → Sh(X) as above:
(1) for an abelian sheaf F on X we have Hn(X,F) = Hn

qc(X, a−1
X F),

(2) for K ∈ D+(X) we have Hn(X,K) = Hn
qc(X, a−1

X K).
For example, if A is an abelian group, then we have Hn(X,A) = Hn

qc(X,A).

Proof. This follows from Lemma 31.11 by Remark 14.4. □

32. Spectral sequences for Ext

07A9 In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of complexes G•,F• of complexes of modules on a
ringed site (C,O) we denote

ExtnO(G•,F•) = HomD(O)(G•,F•[n])

according to our general conventions in Derived Categories, Section 27.

Example 32.1.07AA Let (C,O) be a ringed site. Let K• be a bounded above complex
of O-modules. Let F be an O-module. Then there is a spectral sequence with
E2-page

Ei,j2 = ExtiO(H−j(K•),F) ⇒ Exti+jO (K•,F)
and another spectral sequence with E1-page

Ei,j1 = ExtjO(K−i,F) ⇒ Exti+jO (K•,F).

To construct these spectral sequences choose an injective resolution F → I• and
consider the two spectral sequences coming from the double complex HomO(K•, I•),
see Homology, Section 25.

33. Cup product

0FPJ Let (C,O) be a ringed site. Let K,M be objects of D(O). Set A = Γ(C,O). The
(global) cup product in this setting is a map

RΓ(C,K) ⊗L
A RΓ(C,M) −→ RΓ(C,K ⊗L

O M)

in D(A). We define it as the relative cup product for the morphism of ringed topoi
(Sh(C),O) → (Sh(pt), A) as in Remark 19.7.

Let us formulate and prove a natural compatibility of the relative cup product.
Namely, suppose that we have a morphism f : (Sh(C),OC) → (Sh(D),OD) of
ringed topoi. Let K• and M• be complexes of OC-modules. There is a naive cup
product

Tot(f∗K• ⊗OD f∗M•) −→ f∗Tot(K• ⊗OC M•)
We claim that this is related to the relative cup product.

https://stacks.math.columbia.edu/tag/09X4
https://stacks.math.columbia.edu/tag/07AA


COHOMOLOGY ON SITES 77

Lemma 33.1.0FPK In the situation above the following diagram commutes

f∗K• ⊗L
OD

f∗M• //

��

Rf∗K• ⊗L
OD

Rf∗M•

Remark 19.7
��

Tot(f∗K• ⊗OD f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OC

M•)

��
f∗Tot(K• ⊗OC M•) // Rf∗Tot(K• ⊗OC M•)

Proof. By the construction in Remark 19.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OD

f∗M• −→ Rf∗Tot(K• ⊗OC M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OD

Lf∗Rf∗M•

→ K• ⊗L
OD

M•

→ Tot(K• ⊗OC M•)

By Lemma 19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ f∗f∗K• ⊗L
OD

f∗f∗M•

→ K• ⊗L
OD

M•

→ Tot(K• ⊗OC M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•) → Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ Lf∗Rf∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

By Lemma 19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•) → Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ f∗f∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

https://stacks.math.columbia.edu/tag/0FPK
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Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OD

f∗M•)

��

// Lf∗f∗K• ⊗L
OC

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OD f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OD f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OC

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OC M•)

��
f∗f∗Tot(K• ⊗OC M•)

**

Tot(f∗f∗K• ⊗OC f
∗f∗M•)

��

K• ⊗L
OC

M•

tt
Tot(K• ⊗OC M•)

All of the polygons in this diagram commute. The top one commutes by Lemma
18.8. The square with the two naive cup products commutes because Lf∗ → f∗

is functorial in the complex of modules. Similarly with the square involving the
two maps A• ⊗L B• → Tot(A• ⊗ B•). Finally, the commutativity of the remaining
square is true on the level of complexes and may be viewed as the definiton of the
naive cup product (by the adjointness of f∗ and f∗). The proof is finished because
going around the diagram on the outside are the two maps given above. □

Lemma 33.2.0FPL Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
The relative cup product of Remark 19.7 is associative in the sense that the diagram

Rf∗K ⊗L
O′ Rf∗L⊗L

O′ Rf∗M //

��

Rf∗(K ⊗L
O L) ⊗L

O′ Rf∗M

��
Rf∗K ⊗L

O′ Rf∗(L⊗L
O M) // Rf∗(K ⊗L

O L⊗L
O M)

is commutative in D(O′) for all K,L,M in D(O).
Proof. Going around either side we obtain the map adjoint to the obvious map
Lf∗(Rf∗K ⊗L

O′ Rf∗L⊗L
O′ Rf∗M) = Lf∗(Rf∗K) ⊗L

O Lf∗(Rf∗L) ⊗L
O Lf∗(Rf∗M)

→ K ⊗L
O L⊗L

O M

in D(O). □

Lemma 33.3.0FPM Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
The relative cup product of Remark 19.7 is commutative in the sense that the dia-
gram

Rf∗K ⊗L
O′ Rf∗L //

ψ

��

Rf∗(K ⊗L
O L)

Rf∗ψ

��
Rf∗L⊗L

O′ Rf∗K // Rf∗(L⊗L
O K)

is commutative in D(O′) for all K,L in D(O). Here ψ is the commutativity con-
straint on the derived category (Lemma 48.5).

https://stacks.math.columbia.edu/tag/0FPL
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Proof. Omitted. □

Lemma 33.4.0FPN Let f : (Sh(C),O) → (Sh(C′),O′) and f ′ : (Sh(C′),O′) → (Sh(C′′),O′′)
be morphisms of ringed topoi. The relative cup product of Remark 19.7 is compatible
with compositions in the sense that the diagram

R(f ′ ◦ f)∗K ⊗L
O′′ R(f ′ ◦ f)∗L

��

Rf ′
∗Rf∗K ⊗L

O′′ Rf ′
∗Rf∗L

��
R(f ′ ◦ f)∗(K ⊗L

O L) Rf ′
∗Rf∗(K ⊗L

O L) Rf ′
∗(Rf∗K ⊗L

O′ Rf∗L)oo

is commutative in D(O′′) for all K,L in D(O).

Proof. This is true because going around the diagram either way we obtain the
map adjoint to the map

L(f ′ ◦ f)∗ (
R(f ′ ◦ f)∗K ⊗L

O′′ R(f ′ ◦ f)∗L
)

= L(f ′ ◦ f)∗R(f ′ ◦ f)∗K ⊗L
O L(f ′ ◦ f)∗R(f ′ ◦ f)∗L)

→ K ⊗L
O L

in D(O). To see this one uses that the composition of the counits like so
L(f ′ ◦ f)∗R(f ′ ◦ f)∗ = Lf∗L(f ′)∗Rf ′

∗Rf∗ → Lf∗Rf∗ → id
is the counit for L(f ′ ◦ f)∗ and R(f ′ ◦ f)∗. See Categories, Lemma 24.9. □

34. Hom complexes

0A8X Let (C,O) be a ringed site. Let L• and M• be two complexes of O-modules. We
construct a complex of O-modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomO(L−q,Mp)

It is a good idea to think of Homn as the sheaf of O-modules of all O-linear maps
from L• to M• (viewed as graded O-modules) which are homogenous of degree n.
In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
O(L•,M•). We omit the verification that d2 = 0. This construction is

a special case of Differential Graded Algebra, Example 26.6. It follows immediately
from the construction that we have
(34.0.1)0A8Y Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•|U ,M•[n]|U )
for all n ∈ Z and every U ∈ Ob(C). Similarly, we have
(34.0.2)0A8Z Hn(Γ(C,Hom•(L•,M•))) = HomK(O)(L•,M•[n])
for the complex of global sections.

Lemma 34.1.0A90 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗O L•),M•)
of complexes of O-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.1. □

https://stacks.math.columbia.edu/tag/0FPN
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Lemma 34.2.0A91 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot (Hom•(L•,M•) ⊗O Hom•(K•,L•)) −→ Hom•(K•,M•)

of complexes of O-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.3. □

Lemma 34.3.0BYT Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot (K• ⊗O Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗O L•))

of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.4. □

Lemma 34.4.0A93 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗O L•))

of complexes of O-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.5. □

Lemma 34.5.0A92 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot(Hom•(L•,M•) ⊗O K•) −→ Hom•(Hom•(K•,L•),M•)

of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.6. □

Lemma 34.6.0A94 Let (C,O) be a ringed site. Let L and M be objects of D(O). Let
I• be a K-injective complex of O-modules representing M . Let L• be a complex of
O-modules representing L. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ∈ Ob(C). Similarly, H0(Γ(C,Hom•(L•, I•))) = HomD(O)(L,M).

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )
= HomD(OU )(L|U ,M |U )

The first equality is (34.0.1). The second equality is true because I•|U is K-injective
by Lemma 20.1. The proof of the last equation is similar except that it uses
(34.0.2). □
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Lemma 34.7.0A95 Let (C,O) be a ringed site. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of O-modules. Let (L′)• → L• be a quasi-isomorphism of
complexes of O-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)

is a quasi-isomorphism.

Proof. Let M be the object of D(O) represented by I• and (I ′)•. Let L be the
object of D(O) represented by L• and (L′)•. By Lemma 34.6 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )

Thus the map is a quasi-isomorphism. □

Lemma 34.8.0A96 Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a K-flat complex of O-modules. Then Hom•(L•, I•) is a
K-injective complex of O-modules.

Proof. Namely, if K• is an acyclic complex of O-modules, then

HomK(O)(K•,Hom•(L•, I•)) = H0(Γ(C,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(C,Hom•(Tot(K• ⊗O L•), I•)))
= HomK(O)(Tot(K• ⊗O L•), I•)
= 0

The first equality by (34.0.2). The second equality by Lemma 34.1. The third
equality by (34.0.2). The final equality because Tot(K• ⊗O L•) is acyclic because
L• is K-flat (Definition 17.2) and because I• is K-injective. □

35. Internal hom in the derived category

08J7 Let (C,O) be a ringed site. Let L,M be objects of D(O). We would like to construct
an object RHom(L,M) of D(O) such that for every third object K of D(O) there
exists a canonical bijection

(35.0.1)08J8 HomD(O)(K,RHom(L,M)) = HomD(O)(K ⊗L
O L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 3.5).

To construct such an object, choose a K-injective complex of O-modules I• repre-
senting M and any complex of O-modules L• representing L. Then we set Then
we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of O-modules constructed in Section 34.
This is well defined by Lemma 34.7. We get a functor

D(O)opp ×D(O) −→ D(O), (K,L) 7−→ RHom(K,L)

As a prelude to proving (35.0.1) we compute the cohomology groups ofRHom(K,L).

https://stacks.math.columbia.edu/tag/0A95
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Lemma 35.1.08JA Let (C,O) be a ringed site. Let K,L be objects of D(O). For every
object U of C we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )
and we have H0(C, RHom(L,M)) = HomD(O)(L,M).

Proof. Choose a K-injective complex I• of O-modules representing M and a K-
flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma 34.8.
Hence we can compute cohomology over U by simply taking sections over U and
the result follows from Lemma 34.6. □

Lemma 35.2.08J9 Let (C,O) be a ringed site. Let K,L,M be objects of D(O). With
the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
O L,M)

in D(O) functorial in K,L,M which recovers (35.0.1) on taking H0(C,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
O-modules L• representing L. For any complex of O-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗O L•), I•)
by Lemma 34.1. Note that the left hand side represents RHom(K,RHom(L,M))
(use Lemma 34.8) and that the right hand side represents RHom(K ⊗L

O L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 35.1 we obtain (35.0.1). □

Lemma 35.3.08JB Let (C,O) be a ringed site. Let K,L be objects of D(O). The
construction of RHom(K,L) commutes with restrictions, i.e., for every object U of
C we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 20.1. □

Lemma 35.4.08JC Let (C,O) be a ringed site. The bifunctor RHom(−,−) transforms
distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment
(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. □

Lemma 35.5.0A97 Let (C,O) be a ringed site. Let K,L,M be objects of D(O). There
is a canonical morphism

RHom(L,M) ⊗L
O K −→ RHom(RHom(K,L),M)

in D(O) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•) ⊗O K•) −→ Hom•(Hom•(K•,J •), I•)
of Lemma 34.5. By our particular choice of complexes the left hand side represents
RHom(L,M) ⊗L

O K and the right hand side represents RHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(O). □
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Lemma 35.6.0A98 Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

RHom(L,M) ⊗L
O RHom(K,L) −→ RHom(K,M)

in D(O).

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and any complex of O-modules K• representing K. By Lemma
34.2 there is a map of complexes

Tot (Hom•(J •, I•) ⊗O Hom•(K•,J •)) −→ Hom•(K•, I•)
The complexes of O-modules Hom•(J •, I•), Hom•(K•,J •), and Hom•(K•, I•) rep-
resent RHom(L,M), RHom(K,L), and RHom(K,M). If we choose a K-flat com-
plex H• and a quasi-isomorphism H• → Hom•(K•,J •), then there is a map

Tot (Hom•(J •, I•) ⊗O H•) −→ Tot (Hom•(J •, I•) ⊗O Hom•(K•,J •))
whose source represents RHom(L,M) ⊗L

O RHom(K,L). Composing the two dis-
played arrows gives the desired map. We omit the proof that the construction is
functorial. □

Lemma 35.7.0BYU Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

K ⊗L
O RHom(M,L) −→ RHom(M,K ⊗L

O L)
in D(O) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K, and a K-injective complex I•

representing L, and choose any complex of O-modules M• representing M . Choose
a quasi-isomorphism Tot(K• ⊗OX

I•) → J • where J • is K-injective. Then we use
the map

Tot (K• ⊗O Hom•(M•, I•)) → Hom•(M•,Tot(K• ⊗O I•)) → Hom•(M•,J •)
where the first map is the map from Lemma 34.3. □

Lemma 35.8.0A99 Let (C,O) be a ringed site. Given K,L in D(O) there is a canonical
morphism

K −→ RHom(L,K ⊗L
O L)

in D(O) functorial in both K and L.

Proof. Choose a K-flat complex K• representing K and any complex of O-modules
L• representing L. Choose a K-injective complex J • and a quasi-isomorphism
Tot(K• ⊗O L•) → J •. Then we use

K• → Hom•(L•,Tot(K• ⊗O L•)) → Hom•(L•,J •)
where the first map comes from Lemma 34.4. □

Lemma 35.9.08JD Let (C,O) be a ringed site. Let L be an object of D(O). Set
L∨ = RHom(L,O). For M in D(O) there is a canonical map
(35.9.1)08JE M ⊗L

O L∨ −→ RHom(L,M)
which induces a canonical map

H0(C,M ⊗L
O L∨) −→ HomD(O)(L,M)

functorial in M in D(O).
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Proof. The map (35.9.1) is a special case of Lemma 35.6 using the identification
M = RHom(O,M). □

Remark 35.10.0B6D Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K,L be objects of D(OC). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)

Namely, by (35.0.1) this is the same thing as a map Rf∗RHom(L,K)⊗L
OD

Rf∗L →
Rf∗K. For this we can use the composition

Rf∗RHom(L,K) ⊗L
OD

Rf∗L → Rf∗(RHom(L,K) ⊗L
OC

L) → Rf∗K

where the first arrow is the relative cup product (Remark 19.7) and the second
arrow is Rf∗ applied to the canonical map RHom(L,K) ⊗L

OC
L → K coming from

Lemma 35.6 (with OC in one of the spots).

Remark 35.11.08JF Let h : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let K,L be objects of D(O′). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(O). Namely, by (35.0.1) proved in Lemma 35.2 such a map is the same thing
as a map

Lh∗RHom(K,L) ⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 18.4 hence it suffices
to construct a canonical map

RHom(K,L) ⊗L K −→ L.

For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (35.0.1).

Remark 35.12.08JG Suppose that

(Sh(C′),OC′)
h
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K,L be objects of D(OC). We claim
there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OD′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 35.11.

https://stacks.math.columbia.edu/tag/0B6D
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36. Global derived hom

0B6E Let (Sh(C),O) be a ringed topos. Let K,L ∈ D(O). Using the construction of the
internal hom in the derived category we obtain a well defined object

RHomO(K,L) = RΓ(C, RHom(K,L))
in D(Γ(C,O)). By Lemma 35.1 we have

H0(RHomO(K,L)) = HomD(O)(K,L)
and

Hp(RHomO(K,L)) = ExtpD(O)(K,L)
If f : (C′,O′) → (C,O) is a morphism of ringed topoi, then there is a canonical map

RHomO(K,L) −→ RHomO′(Lf∗K,Lf∗L)
in D(Γ(O)) by taking global sections of the map defined in Remark 35.11.

37. Derived lower shriek

07AB In this section we study morphisms g of ringed topoi where besides Lg∗ and Rg∗
there also exists a derived functor Lg!.

Lemma 37.1.0D6X Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf
of rings and let I be an injective OD-module. Then Hp(U, g−1I) = 0 for all p > 0
and U ∈ Ob(C).

Proof. The vanishing of the lemma follows from Lemma 10.9 if we can prove
vanishing of all higher Čech cohomology groups Ȟp(U , g−1I) for any covering U =
{Ui → U} of C. Since u is continuous, u(U) = {u(Ui) → u(U)} is a covering of D,
and u(Ui0 ×U . . .×U Uin) = u(Ui0) ×u(U) . . .×u(U) u(Uin). Thus we have

Ȟp(U , g−1I) = Ȟp(u(U), I)
because g−1 = up by Sites, Lemma 21.5. Since I is an injective OD-module these
Čech cohomology groups vanish, see Lemma 12.3. □

Lemma 37.2.07AC Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf
of rings and set OC = g−1OD. The functor g! : Mod(OC) → Mod(OD) (see Modules
on Sites, Lemma 41.1) has a left derived functor

Lg! : D(OC) −→ D(OD)
which is left adjoint to g∗. Moreover, for U ∈ Ob(C) we have

Lg!(jU !OU ) = g!jU !OU = ju(U)!Ou(U).

where jU ! and ju(U)! are extension by zero associated to the localization morphism
jU : C/U → C and ju(U) : D/u(U) → D.

Proof. We are going to use Derived Categories, Proposition 29.2 to construct
Lg!. To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that
proposition. First, since g! is a left adjoint we see that it is right exact and commutes
with all colimits, so (5) holds. Conditions (3) and (4) hold because the category of
modules on a ringed site is a Grothendieck abelian category. Let P ⊂ Ob(Mod(OC))
be the collection of OC-modules which are direct sums of modules of the form

https://stacks.math.columbia.edu/tag/0D6X
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jU !OU . Note that g!jU !OU = ju(U)!Ou(U), see proof of Modules on Sites, Lemma
41.1. Every OC-module is a quotient of an object of P, see Modules on Sites,
Lemma 28.8. Thus (1) holds. Finally, we have to prove (2). Let K• be a bounded
above acyclic complex of OC-modules with Kn ∈ P for all n. We have to show that
g!K• is exact. To do this it suffices to show, for every injective OD-module I that

HomD(OD)(g!K•, I[n]) = 0

for all n ∈ Z. Since I is injective we have

HomD(OD)(g!K•, I[n]) = HomK(OD)(g!K•, I[n])
= Hn(HomOD (g!K•, I))
= Hn(HomOC (K•, g−1I))

the last equality by the adjointness of g! and g−1.

The vanishing of this group would be clear if g−1I were an injective OC-module.
But g−1I isn’t necessarily an injective OC-module as g! isn’t exact in general. We
do know that

ExtpOC
(jU !OU , g

−1I) = Hp(U, g−1I) = 0 for p ≥ 1

Here the first equality follows from HomOC (jU !OU ,H) = H(U) and taking derived
functors and the vanishing of Hp(U, g−1I) for p > 0 and U ∈ Ob(C) follows from
Lemma 37.1. Since each K−q is a direct sum of modules of the form jU !OU we see
that

ExtpOC
(K−q, g−1I) = 0 for p ≥ 1 and all q

Let us use the spectral sequence (see Example 32.1)

Ep,q1 = ExtpOC
(K−q, g−1I) ⇒ Extp+q

OC
(K•, g−1I) = 0.

Note that the spectral sequence abuts to zero as K• is acyclic (hence vanishes in
the derived category, hence produces vanishing ext groups). By the vanishing of
higher exts proved above the only nonzero terms on the E1 page are the terms
E0,q

1 = HomOC (K−q, g−1I). We conclude that the complex HomOC (K•, g−1I) is
acyclic as desired.

Thus the left derived functor Lg! exists. It is left adjoint to g−1 = g∗ = Rg∗ = Lg∗,
i.e., we have

(37.2.1)07AD HomD(OC)(K, g∗L) = HomD(OD)(Lg!K,L)

by Derived Categories, Lemma 30.3. This finishes the proof. □

Remark 37.3.07AE Warning! Let u : C → D, g, OD, and OC be as in Lemma 37.2. In
general it is not the case that the diagram

D(OC)
Lg!

//

forget

��

D(OD)

forget

��
D(C)

LgAb
! // D(D)

commutes where the functor LgAb! is the one constructed in Lemma 37.2 but using
the constant sheaf Z as the structure sheaf on both C and D. In general it isn’t even
the case that g! = gAb! (see Modules on Sites, Remark 41.2), but this phenomenon

https://stacks.math.columbia.edu/tag/07AE
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can occur even if g! = gAb! ! Namely, the construction of Lg! in the proof of
Lemma 37.2 shows that Lg! agrees with LgAb

! if and only if the canonical maps
LgAb! jU !OU −→ ju(U)!Ou(U)

are isomorphisms in D(D) for all objects U in C. In general all we can say is that
there exists a natural transformation

LgAb! ◦ forget −→ forget ◦ Lg!

Lemma 37.4.0D6Y Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf
of rings and let I be an injective OD-module. If gSh! : Sh(C) → Sh(D) commutes
with fibre products7, then g−1I is totally acyclic.

Proof. We will use the criterion of Lemma 13.5. Condition (1) holds by Lemma
37.1. Let K ′ → K be a surjective map of sheaves of sets on C. Since gSh! is a left
adjoint, we see that gSh! K ′ → gSh! K is surjective. Observe that

H0(K ′ ×K . . .×K K ′, g−1I) = H0(gSh! (K ′ ×K . . .×K K ′), I)
= H0(gSh! K ′ ×gSh

! K . . .×gSh
! K gSh! K ′, I)

by our assumption on gSh! . Since I is an injective module it is totally acyclic by
Lemma 14.1 (applied to the identity). Hence we can use the converse of Lemma
13.5 to see that the complex

0 → H0(K, g−1I) → H0(K ′, g−1I) → H0(K ′ ×K K ′, g−1I) → . . .

is exact as desired. □

Lemma 37.5.0DD8 Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let U ∈ Ob(C).

(1) For M in D(D) we have RΓ(U, g−1M) = RΓ(u(U),M).
(2) If OD is a sheaf of rings and OC = g−1OD, then for M in D(OD) we have

RΓ(U, g∗M) = RΓ(u(U),M).

Proof. In the bounded below case (1) and (2) can be seen by representing K by
a bounded below complex of injectives and using Lemma 37.1 as well as Leray’s
acyclicity lemma. In the unbounded case, first note that (1) is a special case of (2).
For (2) we can use
RΓ(U, g∗M) = RHomOC (jU !OU , g

∗M) = RHomOD (ju(U)!Ou(U),M) = RΓ(u(U),M)
where the middle equality is a consequence of Lemma 37.2. □

Lemma 37.6.0FN6 Assume given a commutative diagram

(Sh(C′),OC′)
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi. Assume
(1) f , f ′, g, and g′ correspond to cocontinuous functors u, u′, v, and v′ as in

Sites, Lemma 21.1,

7Holds if C has finite connected limits and u commutes with them, see Sites, Lemma 21.6.

https://stacks.math.columbia.edu/tag/0D6Y
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(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous,
(4) for any object V ′ of D′ the functor u′

V ′I → u
v(V ′)I given by v is cofinal,

(5) g−1OD = OD′ and (g′)−1OC = OC′ , and
(6) g′

! : Ab(C′) → Ab(C) is exact8.
Then we have Rf ′

∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC) → D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5). By
Lemma 20.7 it suffices to prove the result on the derived category D(C) of abelian
sheaves. Choose an object K ∈ D(C). Let I• be a K-injective complex of abelian
sheaves on C representing K. By Derived Categories, Lemma 31.9 and assumption
(6) we find that (g′)−1I• is a K-injective complex of abelian sheaves on C′. By
Modules on Sites, Lemma 41.3 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since f∗I•

represents Rf∗K and since f ′
∗(g′)−1I• represents Rf ′

∗(g′)−1K we conclude. □

Lemma 37.7.0FN7 Consider a commutative diagram

(Sh(C′),OC′
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi and suppose we have functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

such that (with notation as in Sites, Sections 14 and 21) we have
(1) u and u′ are continuous and give rise to the morphisms f and f ′,
(2) v and v′ are cocontinuous giving rise to the morphisms g and g′,
(3) u ◦ v = v′ ◦ u′,
(4) v and v′ are continuous as well as cocontinuous, and
(5) g−1OD = OD′ and (g′)−1OC = OC′ .

Then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D+(OC) → D+(OD′). If in addition

(6) g′
! : Ab(C′) → Ab(C) is exact9,

then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC) → D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5). By
Lemma 20.7 it suffices to prove the result on the derived category D+(C) or D(C)
of abelian sheaves.
Choose an object K ∈ D+(C). Let I• be a bounded below complex of injective
abelian sheaves on C representingK. By Lemma 37.1 we see thatHp(U ′, (g′)−1Iq) =
0 for all p > 0 and any q and any U ′ ∈ Ob(C′). Recall that Rpf ′

∗(g′)−1Iq is the sheaf
associated to the presheaf V ′ 7→ Hp(u′(V ′), (g′)−1Iq), see Lemma 7.4. Thus we see

8Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules
on Sites, Lemma 16.3.

9Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules
on Sites, Lemma 16.3.

https://stacks.math.columbia.edu/tag/0FN7
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that (g′)−1Iq is right acyclic for the functor f ′
∗. By Leray’s acyclicity lemma (De-

rived Categories, Lemma 16.7) we find that f ′
∗(g′)∗I• represents Rf ′

∗(g′)−1K. By
Modules on Sites, Lemma 41.4 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since g−1f∗I•

represents g−1Rf∗K we conclude.
Choose an object K ∈ D(C). Let I• be a K-injective complex of abelian sheaves
on C representing K. By Derived Categories, Lemma 31.9 and assumption (6) we
find that (g′)−1I• is a K-injective complex of abelian sheaves on C′. By Modules
on Sites, Lemma 41.4 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since f∗I• represents
Rf∗K and since f ′

∗(g′)−1I• represents Rf ′
∗(g′)−1K we conclude. □

38. Derived lower shriek for fibred categories

08RV In this section we work out some special cases of the situation discussed in Section
37. We make sure that we have equality between lower shriek on modules and
sheaves of abelian groups. We encourage the reader to skip this section on a first
reading.

Situation 38.1.08P8 Here (D,OD) be a ringed site and p : C → D is a fibred category.
We endow C with the topology inherited from D (Stacks, Section 10). We denote
π : Sh(C) → Sh(D) the morphism of topoi associated to p (Stacks, Lemma 10.3).
We set OC = π−1OD so that we obtain a morphism of ringed topoi

π : (Sh(C),OC) −→ (Sh(D),OD)

Lemma 38.2.08P9 Assumptions and notation as in Situation 38.1. For U ∈ Ob(C)
consider the induced morphism of topoi

πU : Sh(C/U) −→ Sh(D/p(U))
Then there exists a morphism of topoi

σ : Sh(D/p(U)) → Sh(C/U)
such that πU ◦ σ = id and σ−1 = πU,∗.

Proof. Observe that πU is the restriction of π to the localizations, see Sites, Lemma
28.4. For an object V → p(U) of D/p(U) denote V ×p(U) U → U the strongly
cartesian morphism of C over D which exists as p is a fibred category. The functor

v : D/p(U) → C/U, V/p(U) 7→ V ×p(U) U/U

is continuous by the definition of the topology on C. Moreover, it is a right adjoint to
p by the definition of strongly cartesian morphisms. Hence we are in the situation
discussed in Sites, Section 22 and we see that the sheaf πU,∗F is equal to V 7→
F(V ×p(U) U) (see especially Sites, Lemma 22.2).
But here we have more. Namely, the functor v is also cocontinuous (as all mor-
phisms in coverings of C are strongly cartesian). Hence v defines a morphism σ
as indicated in the lemma. The equality σ−1 = πU,∗ is immediate from the def-
inition. Since π−1

U G is given by the rule U ′/U 7→ G(p(U ′)/p(U)) it follows that
σ−1 ◦ π−1

U = id which proves the equality πU ◦ σ = id. □

Situation 38.3.08PA Let (D,OD) be a ringed site. Let u : C′ → C be a 1-morphism
of fibred categories over D (Categories, Definition 33.9). Endow C and C′ with
their inherited topologies (Stacks, Definition 10.2) and let π : Sh(C) → Sh(D),
π′ : Sh(C′) → Sh(D), and g : Sh(C′) → Sh(C) be the corresponding morphisms of

https://stacks.math.columbia.edu/tag/08P8
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topoi (Stacks, Lemma 10.3). Set OC = π−1OD and OC′ = (π′)−1OD. Observe that
g−1OC = OC′ so that

(Sh(C′),OC′)

π′
''

g
// (Sh(C),OC)

π
ww

(Sh(D),OD)

is a commutative diagram of morphisms of ringed topoi.

Lemma 38.4.08PB Assumptions and notation as in Situation 38.3. For U ′ ∈ Ob(C′)
set U = u(U ′) and V = p′(U ′) and consider the induced morphisms of ringed topoi

(Sh(C′/U ′),OU ′)

π′
U′ ))

g′
// (Sh(C),OU )

πUvv
(Sh(D/V ),OV )

Then there exists a morphism of topoi

σ′ : Sh(D/V ) → Sh(C′/U ′),

such that setting σ = g′ ◦ σ′ we have π′
U ′ ◦ σ′ = id, πU ◦ σ = id, (σ′)−1 = π′

U ′,∗, and
σ−1 = πU,∗.

Proof. Let v′ : D/V → C′/U ′ be the functor constructed in the proof of Lemma
38.2 starting with p′ : C′ → D′ and the object U ′. Since u is a 1-morphism of fibred
categories over D it transforms strongly cartesian morphisms into strongly cartesian
morphisms, hence the functor v = u ◦ v′ is the functor of the proof of Lemma 38.2
relative to p : C → D and U . Thus our lemma follows from that lemma. □

Lemma 38.5.08PC Assumption and notation as in Situation 38.3.
(1) There are left adjoints g! : Mod(OC′) → Mod(OC) and gAb

! : Ab(C′) → Ab(C)
to g∗ = g−1 on modules and on abelian sheaves.

(2) The diagram
Mod(OC′)

��

g!
// Mod(OC)

��
Ab(C′)

gAb
! // Ab(C)

commutes.
(3) There are left adjoints Lg! : D(OC′) → D(OC) and LgAb

! : D(C′) → D(C)
to g∗ = g−1 on derived categories of modules and abelian sheaves.

(4) The diagram
D(OC′)

��

Lg!

// D(OC)

��
D(C′)

LgAb
! // D(C)

commutes.

https://stacks.math.columbia.edu/tag/08PB
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Proof. The functor u is continuous and cocontinuous Stacks, Lemma 10.3. Hence
the existence of the functors g!, gAb

! , Lg!, and LgAb
! can be found in Modules on

Sites, Sections 16 and 41 and Section 37.

To prove (2) it suffices to show that the canonical map

gAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism for all objects U ′ of C′, see Modules on Sites, Remark 41.2.
Similarly, to prove (4) it suffices to show that the canonical map

LgAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism in D(C) for all objects U ′ of C′, see Remark 37.3. This will also
imply the previous formula hence this is what we will show.

We will use that for a localization morphism j the functors j! and jAb
! agree (see

Modules on Sites, Remark 19.6) and that j! is exact (Modules on Sites, Lemma
19.3). Let us adopt the notation of Lemma 38.4. Since LgAb

! ◦ jU ′! = jU ! ◦ L(g′)Ab
!

(by commutativity of Sites, Lemma 28.4 and uniqueness of adjoint functors) it
suffices to prove that L(g′)Ab

! OU ′ = OU . Using the results of Lemma 38.4 we have
for any object E of D(C/u(U ′)) the following sequence of equalities

HomD(C/U)(L(g′)Ab
! OU ′ , E) = HomD(C′/U ′)(OU ′ , (g′)−1E)

= HomD(C′/U ′)((π′
U ′)−1OV , (g′)−1E)

= HomD(D/V )(OV , Rπ
′
U ′,∗(g′)−1E)

= HomD(D/V )(OV , (σ′)−1(g′)−1E)
= HomD(D/V )(OV , σ

−1E)
= HomD(D/V )(OV , πU,∗E)
= HomD(C/U)(π−1

U OV , E)
= HomD(C/U)(OU , E)

By Yoneda’s lemma we conclude. □

Remark 38.6.09CY Assumptions and notation as in Situation 38.1. Note that setting
C′ = D and u equal to the structure functor of C gives a situation as in Situation
38.3. Hence Lemma 38.5 tells us we have functors π!, πAb

! , Lπ!, and LπAb
! such that

forget ◦ π! = πAb
! ◦ forget and forget ◦ Lπ! = LπAb

! ◦ forget.

Remark 38.7.08PD Assumptions and notation as in Situation 38.3. Let F be an
abelian sheaf on C, let F ′ be an abelian sheaf on C′, and let t : F ′ → g−1F be a
map. Then we obtain a canonical map

Lπ′
!(F ′) −→ Lπ!(F)

by using the adjoint g!F ′ → F of t, the map Lg!(F ′) → g!F ′, and the equality
Lπ′

! = Lπ! ◦ Lg!.

Lemma 38.8.08PE Assumptions and notation as in Situation 38.1. For F in Ab(C)
the sheaf π!F is the sheaf associated to the presheaf

V 7−→ colimCopp
V

F|CV

with restriction maps as indicated in the proof.

https://stacks.math.columbia.edu/tag/09CY
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Proof. Denote H be the rule of the lemma. For a morphism h : V ′ → V of D there
is a pullback functor h∗ : CV → CV ′ of fibre categories (Categories, Definition 33.6).
Moreover for U ∈ Ob(CV ) there is a strongly cartesian morphism h∗U → U covering
h. Restriction along these strongly cartesian morphisms defines a transformation
of functors

F|CV
−→ F|CV ′ ◦ h∗.

Hence a map H(V ) → H(V ′) between colimits, see Categories, Lemma 14.8.
To prove the lemma we show that

MorPSh(D)(H,G) = MorSh(C)(F , π−1G)
for every sheaf G on C. An element of the left hand side is a compatible system of
maps F(U) → G(p(U)) for all U in C. Since π−1G(U) = G(p(U)) by our choice of
topology on C we see the same thing is true for the right hand side and we win. □

39. Homology on a category

08RW In the case of a category over a point we will baptize the left derived lower shriek
functors the homology functors.

Example 39.1 (Category over point).08PF Let C be a category. Endow C with the
chaotic topology (Sites, Example 6.6). Thus presheaves and sheaves agree on C. The
functor p : C → ∗ where ∗ is the category with a single object and a single morphism
is cocontinuous and continuous. Let π : Sh(C) → Sh(∗) be the corresponding
morphism of topoi. Let B be a ring. We endow ∗ with the sheaf of rings B and C
with OC = π−1B which we will denote B. In this way

π : (Sh(C), B) → (Sh(∗), B)
is an example of Situation 38.1. By Remark 38.6 we do not need to distinguish
between π! on modules or abelian sheaves. By Lemma 38.8 we see that π!F =
colimCopp F . Thus Lnπ! is the nth left derived functor of taking colimits. In the
following, we write

Hn(C,F) = Lnπ!(F)
and we will name this the nth homology group of F on C.

Example 39.2 (Computing homology).08PG In Example 39.1 we can compute the
functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the chain complex

K•(F) : . . . →
⊕

U2→U1→U0
F(U0) →

⊕
U1→U0

F(U0) →
⊕

U0
F(U0)

where the transition maps are given by
(U2 → U1 → U0, s) 7−→ (U1 → U0, s) − (U2 → U0, s) + (U2 → U1, s|U1)

and similarly in other degrees. By construction
H0(C,F) = colimCopp F = H0(K•(F)),

see Categories, Lemma 14.12. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.1 and Lemma 13.12. For F = jU !ZU the complex K•(F) is the
complex associated to the free Z-module on the simplicial set X• with terms

Xn =
∐

Un→...→U1→U0
MorC(U0, U)

https://stacks.math.columbia.edu/tag/08PF
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This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . . → U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 26.2) defining the homotopy between the two maps X• → X•
are given by the rule

hn,i : (Un → . . . → U0, f) 7−→ (Un → . . . → Ui → U → . . . → U, id)
for i > 0 and hn,0 = id. Verifications omitted. This implies that K•(jU !ZU ) has
trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark
26.4 and the result of Simplicial, Lemma 27.1). Thus K•(F) computes the left
derived functors Hn(C,−) of H0(C,−) for example by (the duals of) Homology,
Lemma 12.4 and Derived Categories, Lemma 16.6.

Example 39.3.08PH Let u : C′ → C be a functor. Endow C′ and C with the chaotic
topology as in Example 39.1. The functors u, C′ → ∗, and C → ∗ where ∗ is
the category with a single object and a single morphism are cocontinuous and
continuous. Let g : Sh(C′) → Sh(C), π′ : Sh(C′) → Sh(∗), and π : Sh(C) → Sh(∗),
be the corresponding morphisms of topoi. Let B be a ring. We endow ∗ with the
sheaf of rings B and C′, C with the constant sheaf B. In this way

(Sh(C′), B)

π′
''

g
// (Sh(C), B)

π
xx

(Sh(∗), B)

is an example of Situation 38.3. Thus Lemma 38.5 applies to g so we do not need
to distinguish between g! on modules or abelian sheaves. In particular Remark 38.7
produces canonical maps

Hn(C′,F ′) −→ Hn(C,F)
whenever we have F in Ab(C), F ′ in Ab(C′), and a map t : F ′ → g−1F . In terms of
the computation of homology given in Example 39.2 we see that these maps come
from a map of complexes

K•(F ′) −→ K•(F)
given by the rule

(U ′
n → . . . → U ′

0, s
′) 7−→ (u(U ′

n) → . . . → u(U ′
0), t(s′))

with obvious notation.

Remark 39.4.08Q6 Notation and assumptions as in Example 39.1. Let F• be a
bounded complex of abelian sheaves on C. For any object U of C there is a canonical
map

F•(U) −→ Lπ!(F•)
in D(Ab). If F• is a complex of B-modules then this map is in D(B). To prove
this, note that we compute Lπ!(F•) by taking a quasi-isomorphism P• → F• where
P• is a complex of projectives. However, since the topology is chaotic this means
that P•(U) → F•(U) is a quasi-isomorphism hence can be inverted in D(Ab),
resp. D(B). Composing with the canonical map P•(U) → π!(P•) coming from the
computation of π! as a colimit we obtain the desired arrow.

https://stacks.math.columbia.edu/tag/08PH
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Lemma 39.5.08Q7 Notation and assumptions as in Example 39.1. If C has either an
initial or a final object, then Lπ! ◦ π−1 = id on D(Ab), resp. D(B).

Proof. If C has an initial object, then π! is computed by evaluating on this object
and the statement is clear. If C has a final object, then Rπ∗ is computed by
evaluating on this object, hence Rπ∗ ◦ π−1 ∼= id on D(Ab), resp. D(B). This
implies that π−1 : D(Ab) → D(C), resp. π−1 : D(B) → D(B) is fully faithful, see
Categories, Lemma 24.4. Then the same lemma implies that Lπ! ◦ π−1 = id as
desired. □

Lemma 39.6.08Q8 Notation and assumptions as in Example 39.1. Let B → B′ be a
ring map. Consider the commutative diagram of ringed topoi

(Sh(C), B)

π

��

(Sh(C), B′)

π′

��

h
oo

(∗, B) (∗, B′)foo

Then Lπ! ◦ Lh∗ = Lf∗ ◦ Lπ′
!.

Proof. Both functors are right adjoint to the obvious functor D(B′) → D(B). □

Lemma 39.7.08Q9 Notation and assumptions as in Example 39.1. Let U• be a cosim-
plicial object in C such that for every U ∈ Ob(C) the simplicial set MorC(U•, U) is
homotopy equivalent to the constant simplicial set on a singleton. Then

Lπ!(F) = F(U•)
in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. As Lπ! agrees for modules and abelian sheaves by Lemma 38.5 it suffices
to prove this when F is an abelian sheaf. For U ∈ Ob(C) the abelian sheaf jU !ZU
is a projective object of Ab(C) since Hom(jU !ZU ,F) = F(U) and taking sections
is an exact functor as the topology is chaotic. Every abelian sheaf is a quotient of
a direct sum of jU !ZU by Modules on Sites, Lemma 28.8. Thus we can compute
Lπ!(F) by choosing a resolution

. . . → G−1 → G0 → F → 0
whose terms are direct sums of sheaves of the form above and taking Lπ!(F) =
π!(G•). Consider the double complex A•,• = G•(U•). The map G0 → F gives a
map of complexes A0,• → F(U•). Since π! is computed by taking the colimit over
Copp (Lemma 38.8) we see that the two compositions Gm(U1) → Gm(U0) → π!Gm
are equal. Thus we obtain a canonical map of complexes

Tot(A•,•) −→ π!(G•) = Lπ!(F)
To prove the lemma it suffices to show that the complexes

. . . → Gm(U1) → Gm(U0) → π!Gm → 0
are exact, see Homology, Lemma 25.4. Since the sheaves Gm are direct sums of the
sheaves jU !ZU we reduce to G = jU !ZU . The complex jU !ZU (U•) is the complex of
abelian groups associated to the free Z-module on the simplicial set MorC(U•, U)
which we assumed to be homotopy equivalent to a singleton. We conclude that

jU !ZU (U•) → Z

https://stacks.math.columbia.edu/tag/08Q7
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is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial,
Remark 26.4 and Lemma 27.1). This finishes the proof since π!jU !ZU = Z as was
shown in the proof of Lemma 38.5. □

Lemma 39.8.08QA Notation and assumptions as in Example 39.3. If there exists a
cosimplicial object U ′

• of C′ such that Lemma 39.7 applies to both U ′
• in C′ and

u(U ′
•) in C, then we have Lπ′

! ◦ g−1 = Lπ! as functors D(C) → D(Ab), resp.
D(C, B) → D(B).

Proof. Follows immediately from Lemma 39.7 and the fact that g−1 is given by
precomposing with u. □

Lemma 39.9.08QB Let Ci, i = 1, 2 be categories. Let ui : C1 × C2 → Ci be the
projection functors. Let B be a ring. Let gi : (Sh(C1 × C2), B) → (Sh(Ci), B) be the
corresponding morphisms of ringed topoi, see Example 39.3. For Ki ∈ D(Ci, B) we
have

L(π1 × π2)!(g−1
1 K1 ⊗L

B g
−1
2 K2) = Lπ1,!(K1) ⊗L

B Lπ2,!(K2)
in D(B) with obvious notation.

Proof. As both sides commute with colimits, it suffices to prove this for K1 =
jU !BU and K2 = jV !BV for U ∈ Ob(C1) and V ∈ Ob(C2). See construction of Lπ!
in Lemma 37.2. In this case

g−1
1 K1 ⊗L

B g
−1
2 K2 = g−1

1 K1 ⊗B g
−1
2 K2 = j(U,V )!B(U,V )

Verification omitted. Hence the result follows as both the left and the right hand
side of the formula of the lemma evaluate to B, see construction of Lπ! in Lemma
37.2. □

Lemma 39.10.08QC Notation and assumptions as in Example 39.1. If there exists a
cosimplicial object U• of C such that Lemma 39.7 applies, then

Lπ!(K1 ⊗L
B K2) = Lπ!(K1) ⊗L

B Lπ!(K2)

for all Ki ∈ D(B).

Proof. Consider the diagram of categories and functors

C

C u // C × C
u2

""

u1

<<

C
where u is the diagonal functor and ui are the projection functors. This gives
morphisms of ringed topoi g, g1, g2. For any object (U1, U2) of C we have

MorC×C(u(U•), (U1, U2)) = MorC(U•, U1) × MorC(U•, U2)
which is homotopy equivalent to a point by Simplicial, Lemma 26.10. Thus Lemma
39.8 gives Lπ!(g−1K) = L(π × π)!(K) for any K in D(C × C, B). Take K =
g−1

1 K1 ⊗L
B g

−1
2 K2. Then g−1K = K1 ⊗L

B K2 because g−1 = g∗ = Lg∗ commutes
with derived tensor product (Lemma 18.4). To finish we apply Lemma 39.9. □

https://stacks.math.columbia.edu/tag/08QA
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Remark 39.11 (Simplicial modules).08QD Let C = ∆ and let B be any ring. This is a
special case of Example 39.1 where the assumptions of Lemma 39.7 hold. Namely,
let U• be the cosimplicial object of ∆ given by the identity functor. To verify the
condition we have to show that for [m] ∈ Ob(∆) the simplicial set ∆[m] : n 7→
Mor∆([n], [m]) is homotopy equivalent to a point. This is explained in Simplicial,
Example 26.7.
In this situation the category Mod(B) is just the category of simplicial B-modules
and the functor Lπ! sends a simplicial B-moduleM• to its associated complex s(M•)
of B-modules. Thus the results above can be reinterpreted in terms of results on
simplicial modules. For example a special case of Lemma 39.10 is: if M•, M ′

• are
flat simplicial B-modules, then the complex s(M• ⊗B M ′

•) is quasi-isomorphic to
the total complex associated to the double complex s(M•) ⊗B s(M ′

•). (Hint: use
flatness to convert from derived tensor products to usual tensor products.) This is
a special case of the Eilenberg-Zilber theorem which can be found in [EZ53].

Lemma 39.12.08RX Let C be a category (endowed with chaotic topology). Let O → O′

be a map of sheaves of rings on C. Assume
(1) there exists a cosimplicial object U• in C as in Lemma 39.7, and
(2) Lπ!O → Lπ!O′ is an isomorphism.

For K in D(O) we have
Lπ!(K) = Lπ!(K ⊗L

O O′)
in D(Ab).

Proof. Note: in this proof Lπ! denotes the left derived functor of π! on abelian
sheaves. Since Lπ! commutes with colimits, it suffices to prove this for bounded
above complexes of O-modules (compare with argument of Derived Categories,
Proposition 29.2 or just stick to bounded above complexes). Every such complex
is quasi-isomorphic to a bounded above complex whose terms are direct sums of
jU !OU with U ∈ Ob(C), see Modules on Sites, Lemma 28.8. Thus it suffices to
prove the lemma for jU !OU . By assumption

S• = MorC(U•, U)
is a simplicial set homotopy equivalent to the constant simplicial set on a singleton.
Set Pn = O(Un) and P ′

n = O′(Un). Observe that the complex associated to the
simplicial abelian group

X• : n 7−→
⊕

s∈Sn

Pn

computes Lπ!(jU !OU ) by Lemma 39.7. Since jU !OU is a flat O-module we have
jU !OU ⊗L

O O′ = jU !O′
U and Lπ! of this is computed by the complex associated to

the simplicial abelian group

X ′
• : n 7−→

⊕
s∈Sn

P ′
n

As the rule which to a simplicial set T• associated the simplicial abelian group with
terms

⊕
t∈Tn

Pn is a functor, we see that X• → P• is a homotopy equivalence of
simplicial abelian groups. Similarly, the rule which to a simplicial set T• associates
the simplicial abelian group with terms

⊕
t∈Tn

P ′
n is a functor. Hence X ′

• → P ′
• is

a homotopy equivalence of simplicial abelian groups. By assumption P• → P ′
• is

a quasi-isomorphism (since P•, resp. P ′
• computes Lπ!O, resp. Lπ!O′ by Lemma

39.7). We conclude that X• and X ′
• are quasi-isomorphic as desired. □

https://stacks.math.columbia.edu/tag/08QD
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Remark 39.13.09CZ Let C and B be as in Example 39.1. Assume there exists a
cosimplicial object as in Lemma 39.7. Let O → B be a map sheaf of rings on C
which induces an isomorphism Lπ!O → Lπ!B. In this case we obtain an exact
functor of triangulated categories

Lπ! : D(O) −→ D(B)

Namely, for any object K of D(O) we have LπAb
! (K) = LπAb

! (K ⊗L
O B) by Lemma

39.12. Thus we can define the displayed functor as the composition of −⊗L
OB with

the functor Lπ! : D(B) → D(B). In other words, we obtain a B-module structure
on Lπ!(K) coming from the (canonical, functorial) identification of Lπ!(K) with
Lπ!(K ⊗L

O B) of the lemma.

40. Calculating derived lower shriek

08P7 In this section we apply the results from Section 39 to compute Lπ! in Situation
38.1 and Lg! in Situation 38.3.

Lemma 40.1.08PI Assumptions and notation as in Situation 38.1. For F in PAb(C)
and n ≥ 0 consider the abelian sheaf Ln(F) on D which is the sheaf associated to
the presheaf

V 7−→ Hn(CV ,F|CV
)

with restriction maps as indicated in the proof. Then Ln(F) = Ln(F#).

Proof. For a morphism h : V ′ → V of D there is a pullback functor h∗ : CV → CV ′

of fibre categories (Categories, Definition 33.6). Moreover for U ∈ Ob(CV ) there
is a strongly cartesian morphism h∗U → U covering h. Restriction along these
strongly cartesian morphisms defines a transformation of functors

F|CV
−→ F|CV ′ ◦ h∗.

By Example 39.3 we obtain the desired restriction map

Hn(CV ,F|CV
) −→ Hn(CV ′ ,F|CV ′ )

Let us denote Ln,p(F) this presheaf, so that Ln(F) = Ln,p(F)#. The canonical map
γ : F → F+ (Sites, Theorem 10.10) defines a canonical map Ln,p(F) → Ln,p(F+).
We have to prove this map becomes an isomorphism after sheafification.

Let us use the computation of homology given in Example 39.2. Denote K•(F|CV
)

the complex associated to the restriction of F to the fibre category CV . By the
remarks above we obtain a presheaf K•(F) of complexes

V 7−→ K•(F|CV
)

whose cohomology presheaves are the presheaves Ln,p(F). Thus it suffices to show
that

K•(F) −→ K•(F+)
becomes an isomorphism on sheafification.

Injectivity. Let V be an object of D and let ξ ∈ Kn(F)(V ) be an element which
maps to zero in Kn(F+)(V ). We have to show there exists a covering {Vj → V }
such that ξ|Vj is zero in Kn(F)(Vj). We write

ξ =
∑

(Ui,n+1 → . . . → Ui,0, σi)

https://stacks.math.columbia.edu/tag/09CZ
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with σi ∈ F(Ui,0). We arrange it so that each sequence of morphisms Un →
. . . → U0 of CV occurs are most once. Since the sums in the definition of the
complex K• are direct sums, the only way this can map to zero in K•(F+)(V )
is if all σi map to zero in F+(Ui,0). By construction of F+ there exist coverings
{Ui,0,j → Ui,0} such that σi|Ui,0,j

is zero. By our construction of the topology
on C we can write Ui,0,j → Ui,0 as the pullback (Categories, Definition 33.6) of
some morphisms Vi,j → V and moreover each {Vi,j → V } is a covering. Choose a
covering {Vj → V } dominating each of the coverings {Vi,j → V }. Then it is clear
that ξ|Vj

= 0.
Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. □

Lemma 40.2.08PJ Assumptions and notation as in Situation 38.1. For F in Ab(C)
and n ≥ 0 the sheaf Lnπ!(F) is equal to the sheaf Ln(F) constructed in Lemma
40.1.

Proof. Consider the sequence of functors F 7→ Ln(F) from PAb(C) → Ab(C).
Since for each V ∈ Ob(D) the sequence of functors Hn(CV ,−) forms a δ-functor so
do the functors F 7→ Ln(F). Our goal is to show these form a universal δ-functor.
In order to do this we construct some abelian presheaves on which these functors
vanish.
For U ′ ∈ Ob(C) consider the abelian presheaf FU ′ = jPAb

U ′! ZU ′ (Modules on Sites,
Remark 19.7). Recall that

FU ′(U) =
⊕

MorC(U,U ′)
Z

If U lies over V = p(U) in D) and U ′ lies over V ′ = p(U ′) then any morphism
a : U → U ′ factors uniquely as U → h∗U ′ → U ′ where h = p(a) : V → V ′ (see
Categories, Definition 33.6). Hence we see that

FU ′ |CV
=

⊕
h∈MorD(V,V ′)

jh∗U ′!Zh∗U ′

where jh∗U ′ : Sh(CV /h∗U ′) → Sh(CV ) is the localization morphism. The sheaves
jh∗U ′!Zh∗U ′ have vanishing higher homology groups (see Example 39.2). We con-
clude that Ln(FU ′) = 0 for all n > 0 and all U ′. It follows that any abelian presheaf
F is a quotient of an abelian presheaf G with Ln(G) = 0 for all n > 0 (Modules on
Sites, Lemma 28.8). Since Ln(F) = Ln(F#) we see that the same thing is true for
abelian sheaves. Thus the sequence of functors Ln(−) is a universal delta functor on
Ab(C) (Homology, Lemma 12.4). Since we have agreement with H−n(Lπ!(−)) for
n = 0 by Lemma 38.8 we conclude by uniqueness of universal δ-functors (Homology,
Lemma 12.5) and Derived Categories, Lemma 16.6. □

Lemma 40.3.08PK Assumptions and notation as in Situation 38.3. For an abelian
sheaf F ′ on C′ the sheaf Lng!(F ′) is the sheaf associated to the presheaf

U 7−→ Hn(IU ,F ′
U )

For notation and restriction maps see proof.

Proof. Say p(U) = V . The category IU is the category of pairs (U ′, φ) where
φ : U → u(U ′) is a morphism of C with p(φ) = idV , i.e., φ is a morphism of
the fibre category CV . Morphisms (U ′

1, φ1) → (U ′
2, φ2) are given by morphisms

a : U ′
1 → U ′

2 of the fibre category C′
V such that φ2 = u(a) ◦ φ1. The presheaf F ′

U

sends (U ′, φ) to F ′(U ′). We will construct the restriction mappings below.

https://stacks.math.columbia.edu/tag/08PJ
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Choose a factorization

C′
u′
// C′′ u′′

//
w
oo C

of u as in Categories, Lemma 33.14. Then g! = g′′
! ◦ g′

! and similarly for derived
functors. On the other hand, the functor g′

! is exact, see Modules on Sites, Lemma
16.6. Thus we get Lg!(F ′) = Lg′′

! (F ′′) where F ′′ = g′
!F ′. Note that F ′′ = h−1F ′

where h : Sh(C′′) → Sh(C′) is the morphism of topoi associated to w, see Sites,
Lemma 23.1. The functor u′′ turns C′′ into a fibred category over C, hence Lemma
40.2 applies to the computation of Lng′′

! . The result follows as the construction
of C′′ in the proof of Categories, Lemma 33.14 shows that the fibre category C′′

U

is equal to IU . Moreover, h−1F ′|C′′
U

is given by the rule described above (as w is
continuous and cocontinuous by Stacks, Lemma 10.3 so we may apply Sites, Lemma
21.5). □

41. Simplicial modules

09D0 Let A• be a simplicial ring. Recall that we may think of A• as a sheaf on ∆
(endowed with the chaotic topology), see Simplicial, Section 4. Then a simplicial
module M• over A• is just a sheaf of A•-modules on ∆. In other words, for every
n ≥ 0 we have an An-module Mn and for every map φ : [n] → [m] we have a
corresponding map

M•(φ) : Mm −→ Mn

which is A•(φ)-linear such that these maps compose in the usual manner.

Let C be a site. A simplicial sheaf of rings A• on C is a simplicial object in the
category of sheaves of rings on C. In this case the assignment U 7→ A•(U) is a sheaf
of simplicial rings and in fact the two notions are equivalent. A similar discussion
holds for simplicial abelian sheaves, simplicial sheaves of Lie algebras, and so on.

However, as in the case of simplicial rings above, there is another way to think
about simplicial sheaves. Namely, consider the projection

p : ∆ × C −→ C

This defines a fibred category with strongly cartesian morphisms exactly the mor-
phisms of the form ([n], U) → ([n], V ). We endow the category ∆ × C with the
topology inherited from C (see Stacks, Section 10). The simple description of the
coverings in ∆×C (Stacks, Lemma 10.1) immediately implies that a simplicial sheaf
of rings on C is the same thing as a sheaf of rings on ∆ × C.

By analogy with the case of simplicial modules over a simplicial ring, we define
simplicial modules over simplicial sheaves of rings as follows.

Definition 41.1.09D1 Let C be a site. Let A• be a simplicial sheaf of rings on C. A
simplicial A•-module F• (sometimes called a simplicial sheaf of A•-modules) is a
sheaf of modules over the sheaf of rings on ∆ × C associated to A•.

We obtain a category Mod(A•) of simplicial modules and a corresponding derived
category D(A•). Given a map A• → B• of simplicial sheaves of rings we obtain a
functor

− ⊗L
A•

B• : D(A•) −→ D(B•)

https://stacks.math.columbia.edu/tag/09D1
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Moreover, the material of the preceding sections determines a functor

Lπ! : D(A•) −→ D(C)

Given a simplicial module F• the object Lπ!(F•) is represented by the associated
chain complex s(F•) (Simplicial, Section 23). This follows from Lemmas 40.2 and
39.7.

Lemma 41.2.09D2 Let C be a site. Let A• → B• be a homomorphism of simplicial
sheaves of rings on C. If Lπ!A• → Lπ!B• is an isomorphism in D(C), then we have

Lπ!(K) = Lπ!(K ⊗L
A•

B•)

for all K in D(A•).

Proof. Let ([n], U) be an object of ∆ × C. Since Lπ! commutes with colimits, it
suffices to prove this for bounded above complexes of O-modules (compare with
argument of Derived Categories, Proposition 29.2 or just stick to bounded above
complexes). Every such complex is quasi-isomorphic to a bounded above complex
whose terms are flat modules, see Modules on Sites, Lemma 28.8. Thus it suffices
to prove the lemma for a flat A•-module F . In this case the derived tensor product
is the usual tensor product and is a sheaf also. Hence by Lemma 40.2 we can
compute the cohomology sheaves of both sides of the equation by the procedure of
Lemma 40.1. Thus it suffices to prove the result for the restriction of F to the fibre
categories (i.e., to ∆ × U). In this case the result follows from Lemma 39.12. □

Remark 41.3.09D3 Let C be a site. Let ϵ : A• → O be an augmentation (Simplicial,
Definition 20.1) in the category of sheaves of rings. Assume ϵ induces a quasi-
isomorphism s(A•) → O. In this case we obtain an exact functor of triangulated
categories

Lπ! : D(A•) −→ D(O)
Namely, for any object K of D(A•) we have Lπ!(K) = Lπ!(K ⊗L

A•
O) by Lemma

41.2. Thus we can define the displayed functor as the composition of −⊗L
A•

O with
the functor Lπ! : D(∆ × C, π−1O) → D(O) of Remark 38.6. In other words, we
obtain a O-module structure on Lπ!(K) coming from the (canonical, functorial)
identification of Lπ!(K) with Lπ!(K ⊗L

A•
O) of the lemma.

42. Cohomology on a category

08RY In the situation of Example 39.1 in addition to the derived functor Lπ!, we also have
the functor Rπ∗. For an abelian sheaf F on C we have Hn(C,F) = H−n(Lπ!F) and
Hn(C,F) = Hn(Rπ∗F).

Example 42.1 (Computing cohomology).08RZ In Example 39.1 we can compute the
functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the cochain complex

K•(F) :
∏

U0
F(U0) →

∏
U0→U1

F(U0) →
∏

U0→U1→U2
F(U0) → . . .

where the transition maps are given by

(sU0→U1) 7−→ ((U0 → U1 → U2) 7→ sU0→U1 − sU0→U2 + sU1→U2 |U0)

and similarly in other degrees. By construction

H0(C,F) = limCopp F = H0(K•(F)),

https://stacks.math.columbia.edu/tag/09D2
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see Categories, Lemma 14.11. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.1 and Lemma 13.12. For an object U of C denote pU : Sh(∗) → Sh(C)
the corresponding point with p−1

U equal to evaluation at U , see Sites, Example 33.8.
Let A be an abelian group and set F = pU,∗A. In this case the complex K•(F) is
the complex with terms Map(Xn, A) where

Xn =
∐

U0→...→Un−1→Un

MorC(U,U0)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . . → U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 26.2) defining the homotopy between the two maps X• → X•
are given by the rule

hn,i : (U0 → . . . → Un, f) 7−→ (U → . . . → U → Ui → . . . → Un, id)

for i > 0 and hn,0 = id. Verifications omitted. Since Map(−, A) is a contravariant
functor, implies that K•(pU,∗A) has trivial cohomology in positive degrees (by the
functoriality of Simplicial, Remark 26.4 and the result of Simplicial, Lemma 28.6).
This implies that K•(F) is acyclic in positive degrees also if F is a product of
sheaves of the form pU,∗A. As every abelian sheaf on C embeds into such a product
we conclude that K•(F) computes the left derived functors Hn(C,−) of H0(C,−)
for example by Homology, Lemma 12.4 and Derived Categories, Lemma 16.6.

Example 42.2 (Computing Exts).08S0 In Example 39.1 assume we are moreover given
a sheaf of rings O on C. Let F , G be O-modules. Consider the complex K•(G,F)
with degree n term ∏

U0→U1→...→Un

HomO(Un)(G(Un),F(U0))

and transition map given by

(φU0→U1) 7−→ ((U0 → U1 → U2) 7→ φU0→U1 ◦ ρU2
U1

− φU0→U2 + ρU1
U0

◦ φU1→U2

and similarly in other degrees. Here the ρ’s indicate restriction maps. By construc-
tion

HomO(G,F) = H0(K•(G,F))
for all pairs of O-modules F ,G. The assignment (G,F) 7→ K•(G,F) is a bifunctor
which transforms direct sums in the first variable into products and commutes with
products in the second variable. We claim that

ExtiO(G,F) = Hi(K•(G,F))

for i ≥ 0 provided either
(1) G(U) is a projective O(U)-module for all U ∈ Ob(C), or
(2) F(U) is an injective O(U)-module for all U ∈ Ob(C).

Namely, case (1) the functor K•(G,−) is an exact functor from the category of
O-modules to the category of cochain complexes of abelian groups. Thus, arguing

https://stacks.math.columbia.edu/tag/08S0
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as in Example 42.1, it suffices to show that K•(G,F) is acyclic in positive degrees
when F is pU,∗A for an O(U)-module A. Choose a short exact sequence

(42.2.1)08S1 0 → G′ →
⊕

jUi!OUi → G → 0

see Modules on Sites, Lemma 28.8. Since (1) holds for the middle and right sheaves,
it also holds for G′ and evaluating (42.2.1) on an object of C gives a split exact
sequence of modules. We obtain a short exact sequence of complexes

0 → K•(G,F) →
∏

K•(jUi!OUi ,F) → K•(G′,F) → 0

for any F , in particular F = pU,∗A. On H0 we obtain

0 → Hom(G, pU,∗A) → Hom(
∏

jUi!OUi
, pU,∗A) → Hom(G′, pU,∗A) → 0

which is exact as Hom(H, pU,∗A) = HomO(U)(H(U), A) and the sequence of sections
of (42.2.1) over U is split exact. Thus we can use dimension shifting to see that
it suffices to prove K•(jU ′!OU ′ , pU,∗A) is acyclic in positive degrees for all U,U ′ ∈
Ob(C). In this case Kn(jU ′!OU ′ , pU,∗A) is equal to∏

U→U0→U1→...→Un→U ′
A

In other words, K•(jU ′!OU ′ , pU,∗A) is the complex with terms Map(X•, A) where

Xn =
∐

U0→...→Un−1→Un

MorC(U,U0) × MorC(Un, U ′)

This simplicial set is homotopy equivalent to the constant simplicial set on a single-
ton {∗} as can be proved in exactly the same way as the corresponding statement
in Example 42.1. This finishes the proof of the claim.
The argument in case (2) is similar (but dual).

43. Modules on a category

0GYU The material in this section will be used to define a variant of the derived category
of quasi-coherent modules on a stack in groupoids over the category of schemes.
See Sheaves on Stacks, Section 26.
Let C be a category. We think of C as a site with the chaotic topology. As in
Example 42.2 we let O be a sheaf of rings on C. In other words, O is a presheaf of
rings on the category C, see Categories, Definition 3.3.

Definition 43.1.0GYV In the situation above, we denote QC (C,O) or simply QC (O)
the full subcategory of D(O) = D(C,O) consisting of objects K such that for all
U → V in C the canonical map

RΓ(V,K) ⊗L
O(V ) O(U) −→ RΓ(U,K)

is an isomorphism in D(O(U)).

Lemma 43.2.0GYW In the situation above, the subcategory QC (O) is a strictly full,
saturated, triangulated subcategory of D(O) preserved by arbitrary direct sums.

Proof. Let U be an object of C. Since the topology on C is chaotic, the functor
F 7→ F(U) is exact and commutes with direct sums. Hence the exact functor
K 7→ RΓ(U,K) is computed by representing K by any complex F• of O-modules
and taking F•(U). Thus RΓ(U,−) commutes with direct sums, see Injectives,
Lemma 13.4. Similarly, given a morphism U → V of C the derived tensor product
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functor − ⊗L
O(V ) O(U) : D(O(V )) → D(O(U)) is exact and commutes with direct

sums. The lemma follows from these observations in a straightforward manner;
details omitted. □

Lemma 43.3.0GZQ In the situation above, suppose that M is an object of QC (O) and
b ∈ Z such that Hi(M) = 0 for all i > b. Then Hb(M) is a quasi-coherent module
on (C,O) in the sense of Modules on Sites, Definition 23.1.

Proof. By Modules on Sites, Lemma 24.2 it suffices to show that for every mor-
phism U → V of C the map

Hp(M)(V ) ⊗O(V ) O(U) → Hb(M)(U)
is an isomorphism. We are given that the map

RΓ(V,M) ⊗L
O(V ) O(U) → RΓ(U,M)

is an isomorphism. Thus the result by the Tor spectral sequence for example.
Details omitted. □

Lemma 43.4.0H0R In the situation above, suppose that C has a final object X. Set
R = O(X) and denote f : (C,O) → (pt,R) the obvious morphism of sites. Then
QC (O) = D(R) given by Lf∗ and Rf∗.

Proof. Omitted. □

Lemma 43.5.0H0S In the situation above, suppose that K is an object of QC (O) and
M arbitrary in D(O). For every object U of C we have

HomD(OU )(K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We may replace C by C/U . Thus we may assume U = X is a final object
of C. By Lemma 43.4 we see that K = Lf∗P where P = RΓ(U,K) = RΓ(X,K) =
Rf∗K. Thus the result because Lf∗ is the left adjoint to Rf∗(−) = RΓ(U,−). □

Let (C,O) be as above. For a complex F• of O-modules we define the size |F•| of
F• as

|F•| =
∣∣∣∣∐i∈Z, U∈Ob(C)

F i(U)
∣∣∣∣

For an object K of D(O) we define the size |K| of K to be the cardinal
|K| = min {|F•| where F• represents K}

By properties of cardinals the minimum exists.

Lemma 43.6.0GYX In the situation above, there exists a cardinal κ with the following
property: given a complex F• of O-modules and subsets ΩiU ⊂ F i(U) there exists a
subcomplex H• ⊂ F• with ΩiU ⊂ Hi(U) and |H•| ≤ max(κ, |

⋃
ΩiU |).

Proof. Define Hi(U) to be the O(U)-submodule of F i(U) generated by the images
of ΩiV and d(Ωi−1

U ) by restriction along any morphism f : U → V . The cardinality
of Hi(U) is bounded by the maximum of ℵ0, the cardinality of the O(U), the
cardinality of Arrows(C), and |

⋃
ΩiU |. Details omitted. □

Lemma 43.7.0GYY In the situation above, there exists a cardinal κ with the following
property: given a complex F• of O-modules representing an object K of D(O) there
exists a subcomplex H• ⊂ F• such that H• represents K and such that |H•| ≤
max(κ, |K|).
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Proof. First, for every i and U we choose a subset ΩiU ⊂ Ker(d : F i(U) →
F i+1(U)) mapping bijectively onto Hi(K)(U) = Hi(F•(U)). Hence |ΩiU | ≤ |K| as
we may represent K by a complex whose size is |K|. Applying Lemma 43.6 we find
a subcomplex S• ⊂ F• of size at most max(κ, |K|) containing ΩiU and hence such
that Hi(S•) → Hi(F•) is a surjection of sheaves.
We are going to inductively construct subcomplexes

S• = S•
0 ⊂ S•

1 ⊂ S•
2 ⊂ . . . ⊂ F•

of size ≤ max(κ, |K|) such that the kernel of Hi(S•
n) → Hi(F•) is the same as the

kernel of Hi(S•
n) → Hi(S•

n+1). Once this is done we can take H• =
⋃

S•
n as our

solution.
Construction of S•

n+1 given S•
n. For ever U and i let Ωi−1

U ⊂ F i−1(U) be a subset
such that d : F i−1(U) → F i(U) maps Ωi−1

U bijectively onto

Sin(U) ∩ Im(d : F i−1(U) → F i(U))
Observe that |ΩiU | ≤ |K| because Sin(U) is so bounded. Then we get S•

n+1 by an
application of Lemma 43.6 to the subsets

Si(U) ∪ ΩiU ⊂ F i(U)
and everything is clear. □

Lemma 43.8.0GYZ In the situation above, there exists a cardinal κ with the following
properties:

(1) for every nonzero object K of QC (O) there exists a nonzero morphism
E → K of QC (O) such that |E| ≤ κ,

(2) for every morphism α : E →
⊕

nKn of QC (O) such that |E| ≤ κ, there
exist morphisms En → Kn in QC (O) with |En| ≤ κ such that α factors
through

⊕
En →

⊕
Kn.

Proof. Let κ be an upper bound for the following set of cardinals:
(1) |

∐
V jU !OU (V )| for all U ∈ Ob(C),

(2) the cardinals κ(O(V ) → O(U)) found in More on Algebra, Lemma 102.5
for all morphisms U → V in C,

(3) the cardinal found in Lemma 43.7.
We claim that for any complex F• representing an object of QC (O) and any sub-
complex S• ⊂ F• with |S•| ≤ κ there exists a subcomplex H• of F• containing S•

such that H• represents an object of QC (O) and such that |H•| ≤ κ. In the next
two paragraphs we show that the claim implies the lemma.
As in (1) let K be a nonzero object of QC (O). Say K is represented by the complex
of O-modules F•. Then Hi(F•) is nonzero for some i. Hence there exists an object
U of C and a section s ∈ F i(U) with d(s) = 0 which determines a nonzero section of
Hi(F•) over U . Then the image of s : jU !OU [−i] → F• is a subcomplex S• ⊂ F•

with |S•| ≤ κ. Applying the claim we get H• → F• in QC (O) nonzero with
|H•| ≤ κ. Thus (1) holds.
Let α : E →

⊕
Kn be as in (2). Choose any complexes K•

n representing Kn.
Then

⊕
K•
n represents

⊕
Kn. By the construction of the derived category we can

represent E by a complex E• such that α is represented by a morphism a : E• →⊕
K•
n of complexes. By Lemma 43.7 and our choice of κ above we may assume

https://stacks.math.columbia.edu/tag/0GYZ
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|E•| ≤ κ. By the claim we get subcomplexes E•
n ⊂ K•

n representing objects En of
QC (O) with |En| ≤ κ containing the image of an : E• → K•

n as desired.
Proof of the claim. Let F• be a complex representing an object of QC (O) and
let S• ⊂ F• be a subcomplex of size ≤ κ. We are going to inductively construct
subcomplexes

S• = S•
0 ⊂ S•

1 ⊂ S•
2 ⊂ . . . ⊂ F•

of size ≤ κ such that for every morphism f : U → V of C and every i ∈ Z
(1) the kernel of the arrow Hi(S•

n(V ) ⊗L
O(V ) O(U)) → Hi(S•

n(U)) maps to zero
in Hi(S•

n+1(V ) ⊗L
O(V ) O(U)),

(2) the image of the arrow Hi(S•
n(U)) → Hi(S•

n+1(U)) is contained in the
image of Hi(S•

n+1(V ) ⊗L
O(V ) O(U)) → Hi(S•

n+1(U)),
Once this is done we can set H• =

⋃
S•
n. Namely, since derived tensor product

and taking cohomology of complexes of modules over rings commute with filtered
colimits, the conditions (1) and (2) together will guarantee that

H•(V ) ⊗L
O(V ) O(U) −→ H•(U)

is an isomorphism on cohomology in all degrees and hence an isomorphism in
D(O(U)) for all f : U → V in C. Hence H• represents an object of QC (O) as
desired.
Construction of Sn+1 given Sn. For every morphism f : U → V of C we consider
the commutative diagram

S•
n(V ) //

��

S•
n(U)

��
F•(V ) // F•(U)

This is a diagram as in More on Algebra, Lemma 102.5 for the ring map O(V ) →
O(U), i.e., the bottom row induces an isomorphism

F•(V ) ⊗L
O(V ) O(U) −→ F•(U)

in D(O(U)). Thus we may choose subcomplexes
S•
n(V ) ⊂ M•

f ⊂ F•(V ) and S•
n(U) ⊂ N•

f ⊂ F•(U)

as in More on Algebra, Lemma 102.5 and in particular we see that |N i
f |, |M i

f | ≤ κ.
Next, we apply Lemma 43.6 using the subsets

Sin(U) ⨿
∐

f :U→V
N i
f ⨿

∐
g:W→U

M i
g ⊂ F i(U)

to find a subcomplex
S•
n ⊂ S•

n+1 ⊂ F•

with containing those subsets and such that |S•
n+1| ≤ κ. Conditions (1) and (2) hold

because the corresponding statements hold for S•
n(V ) ⊂ M•

f and S•
n(U) ⊂ N•

f by
the construction in More on Algebra, Lemma 102.5. Thus the proof is complete. □

Proposition 43.9.0GZ0 Let C be a category viewed as a site with the chaotic topology.
Let O be a sheaf of rings on C. With QC (O) as in Definition 43.1 we have

(1) QC (O) is a strictly full, saturated, triangulated subcategory of D(O) pre-
served by arbitrary direct sums,
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(2) any contravariant cohomological functor H : QC (O) → Ab which trans-
forms direct sums into products is representable,

(3) any exact functor F : QC (O) → D of triangulated categories which trans-
forms direct sums into direct sums has an exact right adjoint, and

(4) the inclusion functor QC (O) → D(O) has an exact right adjoint.

Proof. Part (1) is Lemma 43.2. Part (2) follows from Lemma 43.8 and Derived
Categories, Lemma 39.1. Part (3) follows from Lemma 43.8 and Derived Categories,
Proposition 39.2. Part (4) is a special case of (3). □

Let u : C′ → C be a functor between categories. If we view C and C′ as sites with the
chaotic topology, then u is a continuous and cocontinuous functor. Hence we obtain
a morphism g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 21.1. Additionally,
suppose given sheaves of rings O on C and O′ on C′ and a map g♯ : g−1O → O′.
We denote the corresponding morphism of ringed topoi simply g : (Sh(C′),O′) →
(Sh(C),O), see Modules on Sites, Section 7.

Lemma 43.10.0GZ1 Let g : (Sh(C′),O′) → (Sh(C),O) be as above. Then the functor
Lg∗ : D(O) → D(O′) maps QC (O) into QC (O′).

Proof. Let U ′ ∈ Ob(C′) with image U = u(U ′) in C. Let pt denote the cat-
egory with a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and
(Sh(pt),O(U)) the ringed topoi as indicated. Of course we identify the derived
category of modules on these ringed topoi with D(O′(U ′)) and D(O(U)). Then we
have a commutative diagram of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

Pullback along the lower horizontal morphism sends K in D(O) to RΓ(U,K). Pull-
back by the left vertical arrow sends M to M ⊗L

O(U) O′(U ′). Going around the
diagram either direction produces the same result (Lemma 18.3) and hence we
conclude

RΓ(U ′, Lg∗K) = RΓ(U,K) ⊗L
O(U) O′(U ′)

Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′) →
V = u(V ′) the image in C. If K is in QC (O) then we have

RΓ(V ′, Lg∗K) ⊗L
O′(V ′) O′(U ′) = RΓ(V,K) ⊗L

O(V ) O′(V ′) ⊗L
O′(V ′) O′(U ′)

= RΓ(V,K) ⊗L
O(V ) O′(U ′)

= RΓ(V,K) ⊗L
O(V ) O(U) ⊗L

O(U) O′(U ′)

= RΓ(U,K) ⊗L
O(U) O′(U ′)

= RΓ(U ′, Lg∗K)
as desired. Here we have used the observation above both for U ′ and V ′. □

Lemma 43.11.0GZR Let C be a category viewed as a site with the chaotic topology. Let
O be a sheaf of rings on C. Assume for all U → V in C the restriction map O(V ) →
O(U) is a flat ring map. Then QC (O) agrees with the subcategory DQCoh(O) ⊂
D(O) of complexes whose cohomology sheaves are quasi-coherent.

https://stacks.math.columbia.edu/tag/0GZ1
https://stacks.math.columbia.edu/tag/0GZR


COHOMOLOGY ON SITES 107

Proof. Recall that QCoh(O) ⊂ Mod(O) is a weak Serre subcategory under our
assumptions, see Modules on Sites, Lemma 24.3. Thus taking the full subcategory

DQCoh(O) = DQCoh(O)(Mod(O))
of D(O) makes sense, see Derived Categories, Section 17. (Strictly speaking we
don’t need this in the proof of the lemma.)
Let M be an object of QC (O). Since for every morphism U → V in C the restriction
map O(V ) → O(U) is flat, we see that

Hi(M)(U) = Hi(RΓ(U,M))
= Hi(RΓ(V,M) ⊗L

O(V ) O(U))

= Hi(RΓ(V,M)) ⊗O(V ) O(U)
= Hi(M)(V ) ⊗O(V ) O(U)

and hence Hi(M) is quasi-coherent by Modules on Sites, Lemma 24.2. The first
and last equality above follow from the fact that taking sections over an object of
C is an exact functor due to the fact that the topology on C is chaotic.
Conversely, if M is an object of DQCoh(O), then due to Modules on Sites, Lemma
24.2 we see that the mapRΓ(V,M) → RΓ(U,M) induces isomorphismsHi(M)(U) →
Hi(M)(V ) ⊗O(V ) O(U). Whence RΓ(V,K) ⊗L

O(V ) O(U) → RΓ(U,K) is an isomor-
phism in D(O(U)) by the flatness of O(V ) → O(U) and we conclude that M is in
QC (O). □

Lemma 43.12.0GZS Let ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) be as in Section 27. Assume
(1) τ ′ is the chaotic topology on the category C,
(2) for all U ∈ Ob(C) and all K-flat complexes of O(U)-modules M• the map

M• −→ RΓ((C/U)τ , (M• ⊗O(U) OU )#)
is a quasi-isomorphism (see proof for an explanation).

Then ϵ∗ and Rϵ∗ define mutually quasi-inverse equivalences between QC (O) and
the full subcategory of D(Cτ ,Oτ ) consisting of objects K such that Rϵ∗K is in
QC (O)10.
Proof. We will use the observations made in Section 27 without further mention.
Since Rϵ∗ is fully faithful and ϵ∗ ◦ Rϵ∗ = id, to prove the lemma it suffices to
show that for M in QC (O) we have Rϵ∗(ϵ∗M) = M . Condition (2) is exactly
the condition needed to see this. Namely, we choose a K-flat complex M• of O-
modules with flat terms representing M . Then we see that ϵ∗M is represented by
the τ -sheafification (M•)# of M•. Let U ∈ Ob(C). By Leray we get

RΓ(U,Rϵ∗(ϵ∗M)) = RΓ((C/U)τ , (M•)#|C/U ) = RΓ((C/U)τ , (M•|C/U )#)
The last equality since sheafification commutes with restriction to C/U . As usual,
denote OU the restriction of O to C/U . Consider the map

M•(U) ⊗O(U) OU −→ M•|C/U
of complexes of OU -modules (in τ ′-topology). By our choice of M• the com-
plex M•(U) is a K-flat complex of O(U)-modules; see Lemma 18.1 and use that
the inclusion of U into C defines a morphism of ringed topoi (Sh(pt),O(U)) →

10This means that RΓ(V, K) ⊗L
O(V ) O(U) → RΓ(U, K) is an isomorphism for all U → V in C.
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(Sh(Cτ ′),O). Since M is in QC (O) we conclude that the displayed arrow is a
quasi-isomorphism. Since sheafification is exact, we see that the same remains true
after sheafification. Hence

RΓ(U,Rϵ∗(ϵ∗M)) = RΓ((C/U)τ , (M• ⊗O(U) OU )#)
and assumption (2) tells us this is equal to RΓ(U,M) = M•(U) as desired. □

Lemma 43.13.0H0T Notation and assumptions as in Lemma 43.12. Suppose that K
is an object of QC (O) and M arbitrary in D(Oτ ). For every object U of C we have

HomD((OU )τ )(ϵ∗K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We have
HomD((OU )τ )(ϵ∗K|U ,M |U ) = HomD((OU )τ′ )(K|U , Rϵ∗M |U )

by adjunction. Hence the result by Lemma 43.5 and the fact that
RΓ(U,M) = RΓ(U,Rϵ∗M)

by Leray. □

44. Strictly perfect complexes

08FK This section is the analogue of Cohomology, Section 46.

Definition 44.1.08FL Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct
summand of a finite free O-module for all i.

Let U be an object of C. We will often say “Let E• be a strictly perfect complex
of OU -modules” to mean E• is a strictly perfect complex of modules on the ringed
site (C/U,OU ), see Modules on Sites, Definition 19.1.

Lemma 44.2.08FM The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. □

Lemma 44.3.09J8 The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. □

Lemma 44.4.08H3 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed topoi.
If F• is a strictly perfect complex of OD-modules, then f∗F• is a strictly perfect
complex of OC-modules.

Proof. We have seen in Modules on Sites, Lemma 17.2 that the pullback of a finite
free module is finite free. The functor f∗ is additive functor hence preserves direct
summands. The lemma follows. □

Lemma 44.5.08FN Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of OU -modules

E

��

// F

G

p

OO
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with E a direct summand of a finite free OU -module and p surjective, then there
exists a covering {Ui → U} such that a dotted arrow making the diagram commute
exists over each Ui.

Proof. We may assume E = O⊕n
U for some n. In this case finding the dotted

arrow is equivalent to lifting the images of the basis elements in Γ(U,F). This is
locally possible by the characterization of surjective maps of sheaves (Sites, Section
11). □

Lemma 44.6.08FP Let (C,O) be a ringed site. Let U be an object of C.
(1) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly

perfect and F• acyclic. Then there exists a covering {Ui → U} such that
each α|Ui

is homotopic to zero.
(2) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly

perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then there exists a
covering {Ui → U} such that each α|Ui is homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free O-module and integer n ≥ a, then the result
follows from Lemma 44.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is surjective
by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b], then we
have a split exact sequence of complexes

0 → Eb[−b] → E• → σ≤b−1E• → 0
which determines a distinguished triangle in K(OU ). Hence an exact sequence

HomK(OU )(σ≤b−1E•,F•) → HomK(OU )(E•,F•) → HomK(OU )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is homo-
topic to zero on the members of a covering of U by the above, whence we may
assume our map comes from an element in the left hand side of the displayed ex-
act sequence above. This element is zero on the members of a covering of U by
induction hypothesis. □

Lemma 44.7.08FQ Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of complexes of OU -modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then there exists a covering {Ui → U} and for each i a dotted
arrow over Ui making the diagram commute up to homotopy.

Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 44.6 guarantees there is a covering {Ui → U}
such that the composition E• → F• → C(f)• is homotopic to zero over Ui. Since

G• → F• → C(f)• → G•[1]
restricts to a distinguished triangle in K(OUi

) we see that we can lift α|Ui
up to

homotopy to a map αi : E•|Ui
→ G•|Ui

as desired. □
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Lemma 44.8.08FR Let (C,O) be a ringed site. Let U be an object of C. Let E•, F• be
complexes of OU -modules with E• strictly perfect.

(1) For any element α ∈ HomD(OU )(E•,F•) there exists a covering {Ui → U}
such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OU )(E•,F•) is zero, there exists a covering {Ui → U} such that α|Ui

is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 44.7. We omit the proof of (2). □

Lemma 44.9.08JH Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with E• strictly perfect. Then the internal hom RHom(E•,F•) is represented by
the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 35.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomO(L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 35. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an object U of C we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U ) → H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 44.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification
of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology
sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. □

Lemma 44.10.08JI Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with

(1) Fn = 0 for n ≪ 0,
(2) En = 0 for n ≫ 0, and
(3) En isomorphic to a direct summand of a finite free O-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 35.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 31.4).
Hence the construction in Section 35 shows that RHom(E•,F•) is represented by
the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomO(E−q, Ip) =

⊕
n=p+q

HomO(E−q, Ip)

https://stacks.math.columbia.edu/tag/08FR
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(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomO(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 25.3)

′Ep,q1 = Hp(HomO(E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomO(E ,F•)) −→ Hp(HomO(E , I•))
on cohomology sheaves whenever E is a direct summand of a finite free O-module.
Since this is clear when E is finite free the result follows. □

45. Pseudo-coherent modules

08FS In this section we discuss pseudo-coherent complexes.
Definition 45.1.08FT Let (C,O) be a ringed site. Let E• be a complex of O-modules.
Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if for every object U of C there exists a
covering {Ui → U} and for each i a morphism of complexes αi : E•

i → E•|Ui

where Ei is a strictly perfect complex of OUi-modules and Hj(αi) is an
isomorphism for j > m and Hm(αi) is surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(O) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of O-modules.

If C has a final object X which is quasi-compact (for example if every covering of
X can be refined by a finite covering), then an m-pseudo-coherent object of D(O)
is in D−(O). But this need not be the case in general.
Lemma 45.2.08FU Let (C,O) be a ringed site. Let E be an object of D(O).

(1) If C has a final object X and if there exist a covering {Ui → X}, strictly
perfect complexes E•

i of OUi
-modules, and maps αi : E•

i → E|Ui
in D(OUi

)
with Hj(αi) an isomorphism for j > m and Hm(αi) surjective, then E is
m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex of O-modules representing E
is m-pseudo-coherent.

(3) If for every object U of C there exists a covering {Ui → U} such that E|Ui

is m-pseudo-coherent, then E is m-pseudo-coherent.
Proof. Let F• be any complex representing E and let X, {Ui → X}, and αi :
Ei → E|Ui be as in (1). We will show that F• is m-pseudo-coherent as a complex,
which will prove (1) and (2) in case C has a final object. By Lemma 44.8 we can
after refining the covering {Ui → X} represent the maps αi by maps of complexes
αi : E•

i → F•|Ui
. By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi)

is surjective whence F• is m-pseudo-coherent.
Proof of (2). By the above we see that F•|U is m-pseudo-coherent as a complex
of OU -modules for all objects U of C. It is a formal consequence of the definitions
that F• is m-pseudo-coherent.

https://stacks.math.columbia.edu/tag/08FT
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Proof of (3). Follows from the definitions and Sites, Definition 6.2 part (2). □

Lemma 45.3.08H4 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OC). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Say f is given by the functor u : D → C. Let U be an object of C. By
Sites, Lemma 14.10 we can find a covering {Ui → U} and for each i a morphism
Ui → u(Vi) for some object Vi of D. By Lemma 45.2 it suffices to show that
Lf∗E|Ui

is m-pseudo-coherent. To do this it is enough to show that Lf∗E|u(Vi)
is m-pseudo-coherent, since Lf∗E|Ui is the restriction of Lf∗E|u(Vi) to C/Ui (via
Modules on Sites, Lemma 19.5). By the commutative diagram of Modules on
Sites, Lemma 20.1 it suffices to prove the lemma for the morphism of ringed sites
(C/u(Vi),Ou(Vi)) → (D/Vi,OVi). Thus we may assume D has a final object Y such
that X = u(Y ) is a final object of C.

Let {Vi → Y } be a covering such that for each i there exists a strictly perfect
complex F•

i of OVi
-modules and a morphism αi : F•

i → E|Vi
of D(OVi

) such
that Hj(αi) is an isomorphism for j > m and Hm(αi) is surjective. Arguing as
above it suffices to prove the result for (C/u(Vi),Ou(Vi)) → (D/Vi,OVi

). Hence we
may assume that there exists a strictly perfect complex F• of OD-modules and a
morphism α : F• → E of D(OD) such that Hj(α) is an isomorphism for j > m
and Hm(α) is surjective. In this case, choose a distinguished triangle

F• → E → C → F•[1]

The assumption on α means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Applying Lf∗ we obtain the distinguished triangle

Lf∗F• → Lf∗E → Lf∗C → Lf∗F•[1]

By the construction of Lf∗ as a left derived functor we see that Hj(Lf∗C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 16.1). Hence Hj(Lf∗α) is
an isomorphism for j > m and Hm(Lf∗α) is surjective. On the other hand, since
F• is a bounded above complex of flat OD-modules we see that Lf∗F• = f∗F•.
Applying Lemma 44.4 we conclude. □

Lemma 45.4.08FV Let (C,O) be a ringed site and m ∈ Z. Let (K,L,M, f, g, h) be a
distinguished triangle in D(O).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. Choose a covering {Ui → U} and
maps αi : K•

i → K|Ui
in D(OUi

) with K•
i strictly perfect and Hj(αi) isomorphisms

for j > m + 1 and surjective for j = m + 1. We may replace K•
i by σ≥m+1K•

i

and hence we may assume that Kj
i = 0 for j < m + 1. After refining the covering

we may choose maps βi : L•
i → L|Ui

in D(OUi
) with L•

i strictly perfect such that
Hj(β) is an isomorphism for j > m and surjective for j = m. By Lemma 44.7 we
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can, after refining the covering, find maps of complexes γi : K• → L• such that the
diagrams

K|Ui
// L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative in D(OUi
) (this requires representing the maps αi, βi and K|Ui

→
L|Ui

by actual maps of complexes; some details omitted). The cone C(γi)• is strictly
perfect (Lemma 44.2). The commutativity of the diagram implies that there exists
a morphism of distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui
, L|Ui

,M |Ui
).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)• → M |Ui

induces an isomorphism on cohomology
in degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by
Lemma 45.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. □

Lemma 45.5.09J9 Let (C,O) be a ringed site. Let K,L be objects of D(O).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K ⊗L
O L is t-pseudo-coherent with

t = max(m+ a, n+ b).
(2) If K and L are pseudo-coherent, then K ⊗L

O L is pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. By replacing U by the members
of a covering and replacing C by the localization C/U we may assume there exist
strictly perfect complexes K• and L• and maps α : K• → K and β : L• → L with
Hi(α) and isomorphism for i > n and surjective for i = n and with Hi(β) and
isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗O L•) → K ⊗L
O L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). Let U be an object of C. We may first replace U by the members of
a covering and C by the localization C/U to reduce to the case that K and L are
bounded above. Then the statement follows immediately from case (1). □

Lemma 45.6.08FW Let (C,O) be a ringed site. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(O) so are K and L.

Proof. Assume that K ⊕ L is m-pseudo-coherent. Let U be an object of C. After
replacing U by the members of a covering we may assume K⊕L ∈ D−(OU ), hence
L ∈ D−(OU ). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0) ⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 4.10. By Lemma 45.4 we see that L ⊕ L[1] is
m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n] ⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
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m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n] ⊕ L[n− 1], L[n− 1])
we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. □

Lemma 45.7.08FX Let (C,O) be a ringed site. Let K be an object of D(O). Let m ∈ Z.
(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a

finite type O-module.
(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m + 1, then Hm+1(K)

is a finitely presented O-module.

Proof. Proof of (1). Let U be an object of C. We have to show that Hm(K) is can
be generated by finitely many sections over the members of a covering of U (see
Modules on Sites, Definition 23.1). Thus during the proof we may (finitely often)
choose a covering {Ui → U} and replace C by C/Ui and U by Ui. In particular,
by our definitions we may assume there exists a strictly perfect complex E• and a
map α : E• → K which induces an isomorphism on cohomology in degrees > m
and a surjection in degree m. It suffices to prove the result for E•. Let n be the
largest integer such that En ̸= 0. If n = m, then Hm(E•) is a quotient of En and
the result is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. By
Lemma 44.5 we can (after replacing U by the members of a covering) find a section
of this surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result
for the complex (E ′)• which is the same as E• except has E ′ in degree n− 1 and 0
in degree n. We win by induction on n.

Proof of (2). Pick an object U of C. As in the proof of (1) we may work locally
on U . Hence we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. As in the proof of (1) we can reduce to the case that E i = 0
for i > m + 1. Then we see that Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1)
which is of finite presentation. □

46. Tor dimension

08FY In this section we take a closer look at resolutions by flat modules.

Definition 46.1.08FZ Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
O F) = 0 for all O-modules

F and all i ̸∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if for any object U of C there

exists a covering {Ui → U} such that E|Ui has finite tor dimension for all
i.

An O-module F has tor dimension ≤ d if F [0] viewed as an object of D(O) has
tor-amplitude in [−d, 0].

Note that if E as in the definition has finite tor dimension, then E is an object of
Db(O) as can be seen by taking F = O in the definition above.
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Lemma 46.2.08G0 Let (C,O) be a ringed site. Let E• be a bounded above complex of
flat O-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat O-module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗O F =
E• ⊗L

O F for any O-module F . Hence for every O-module F the sequence

Ea−2 ⊗O F → Ea−1 ⊗O F → Ea ⊗O F
is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat
resolution this implies that TorO

1 (Coker(da−1),F) = 0 for all O-modules F . This
means that Coker(da−1) is flat, see Lemma 17.15. □

Lemma 46.3.08G1 Let (C,O) be a ringed site. Let E be an object of D(O). Let a, b ∈ Z
with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat O-modules with E i = 0 for i ̸∈ [a, b].

Proof. If (2) holds, then we may compute E ⊗L
O F = E• ⊗O F and it is clear that

(1) holds.
Assume that (1) holds. We may represent E by a bounded above complex of flat
O-modules K•, see Section 17. Let n be the largest integer such that Kn ̸= 0. If
n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
Ker(Kn−1 → Kn) is flat (Modules on Sites, Lemma 28.10). Hence we may replace
K• by τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a
complex of flat O-modules with Ki = 0 for i > b.
Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 46.2 and the definitions. □

Lemma 46.4.0F1M Let (C,O) be a ringed site. Let E be an object of D(O). Let a ∈ Z.
The following are equivalent

(1) E has tor-amplitude in [a,∞].
(2) E can be represented by a K-flat complex E• of flat O-modules with E i = 0

for i ̸∈ [a,∞].
Moreover, we can choose E• such that any pullback by a morphism of ringed sites
is a K-flat complex with flat terms.

Proof. The implication (2) ⇒ (1) is immediate. Assume (1) holds. First we
choose a K-flat complex K• with flat terms representing E, see Lemma 17.11. For
any O-module M the cohomology of

Kn−1 ⊗O M → Kn ⊗O M → Kn+1 ⊗O M
computes Hn(E ⊗L

O M). This is always zero for n < a. Hence if we apply
Lemma 46.2 to the complex . . . → Ka−1 → Ka → Ka+1 we conclude that N =
Coker(Ka−1 → Ka) is a flat O-module. We set

E• = τ≥aK• = (. . . → 0 → N → Ka+1 → . . .)
The kernel L• of K• → E• is the complex

L• = (. . . → Ka−1 → I → 0 → . . .)
where I ⊂ Ka is the image of Ka−1 → Ka. Since we have the short exact sequence
0 → I → Ka → N → 0 we see that I is a flat O-module. Thus L• is a bounded
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above complex of flat modules, hence K-flat by Lemma 17.8. It follows that E• is
K-flat by Lemma 17.7.

Proof of the final assertion. Let f : (C′,O′) → (C,O) be a morphism of ringed sites.
By Lemma 18.1 the complex f∗K• is K-flat with flat terms. The complex f∗L• is
K-flat as it is a bounded above complex of flat O′-modules. We have a short exact
sequence of complexes of O′-modules

0 → f∗L• → f∗K• → f∗E• → 0

because the short exact sequence 0 → I → Ka → N → 0 of flat modules pulls back
to a short exact sequence. By Lemma 17.7. the complex f∗E• is K-flat and the
proof is complete. □

Lemma 46.5.08H5 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OD). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 46.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i ̸∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules on Sites, Lemma 39.1 the module f∗E i are flat.
Thus by Lemma 46.3 we conclude that Lf∗E has tor amplitude in [a, b]. □

Lemma 46.6.08G2 Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

O F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. □

Lemma 46.7.09JA Let (C,O) be a ringed site. Let K,L be objects of D(O). If K
has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

O L has tor
amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. □

Lemma 46.8.08G3 Let (C,O) be a ringed site. Let a, b ∈ Z. For K, L objects of D(O)
if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. □

Lemma 46.9.0942 Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let K
be an object of D(O).

(1) If K⊗L
O O/I is bounded above, then K⊗L

O O/In is uniformly bounded above
for all n.

(2) If K ⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b], then

K ⊗L
O O/In as an object of D(O/In) has tor amplitude in [a, b] for all n.

https://stacks.math.columbia.edu/tag/08H5
https://stacks.math.columbia.edu/tag/08G2
https://stacks.math.columbia.edu/tag/09JA
https://stacks.math.columbia.edu/tag/08G3
https://stacks.math.columbia.edu/tag/0942
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Proof. Proof of (1). Assume that K ⊗L
O O/I is bounded above, say Hi(K ⊗L

O
O/I) = 0 for i > b. Note that we have distinguished triangles

K ⊗L
O In/In+1 → K ⊗L

O O/In+1 → K ⊗L
O O/In → K ⊗L

O In/In+1[1]
and that

K ⊗L
O In/In+1 =

(
K ⊗L

O O/I
)

⊗L
O/I In/In+1

By induction we conclude that Hi(K ⊗L
O O/In) = 0 for i > b for all n.

Proof of (2). Assume K⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b].

Let F be a sheaf of O/In-modules. Then we have a finite filtration
0 ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F

whose successive quotients are sheaves of O/I-modules. Thus to prove that K ⊗L
O

O/In has tor amplitude in [a, b] it suffices to show Hi(K⊗L
O O/In⊗L

O/In G) is zero
for i ̸∈ [a, b] for all O/I-modules G. Since(

K ⊗L
O O/In

)
⊗L

O/In G =
(
K ⊗L

O O/I
)

⊗L
O/I G

for every sheaf of O/I-modules G the result follows. □

Lemma 46.10.0DJJ Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z.

(1) If E has tor amplitude in [a, b], then for every point p of the site C the
object Ep of D(Op) has tor amplitude in [a, b].

(2) If C has enough points, then the converse is true.

Proof. Proof of (1). This follows because taking stalks at p is the same as pulling
back by the morphism of ringed sites (p,Op) → (C,O) and hence we can apply
Lemma 46.5.
Proof of (2). If C has enough points, then we can check vanishing of Hi(E ⊗L

O F)
at stalks, see Modules on Sites, Lemma 14.4. Since Hi(E⊗L

O F)p = Hi(Ep⊗L
Op

Fp)
we conclude. □

47. Perfect complexes

08G4 In this section we discuss properties of perfect complexes on ringed sites.

Definition 47.1.08G5 Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is perfect if for every object U of C there exists a covering {Ui → U}
such that for each i there exists a morphism of complexes E•

i → E•|Ui which is a
quasi-isomorphism with E•

i strictly perfect. An object E of D(O) is perfect if it can
be represented by a perfect complex of O-modules.

Lemma 47.2.08G6 Let (C,O) be a ringed site. Let E be an object of D(O).
(1) If C has a final object X and there exist a covering {Ui → X}, strictly

perfect complexes E•
i of OUi

-modules, and isomorphisms αi : E•
i → E|Ui

in
D(OUi

), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 45.2. □

Lemma 47.3.08G7 Let (C,O) be a ringed site. Let E be an object of D(O). Let a ≤ b
be integers. If E has tor amplitude in [a, b] and is (a− 1)-pseudo-coherent, then E
is perfect.

https://stacks.math.columbia.edu/tag/0DJJ
https://stacks.math.columbia.edu/tag/08G5
https://stacks.math.columbia.edu/tag/08G6
https://stacks.math.columbia.edu/tag/08G7
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Proof. Let U be an object of C. After replacing U by the members of a covering
and C by the localization C/U we may assume there exists a strictly perfect complex
E• and a map α : E• → E such that Hi(α) is an isomorphism for i ≥ a. We may
and do replace E• by σ≥a−1E•. Choose a distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a− 2] with K = Ker(Ea−1 → Ea). Let F be an O-module. Applying
− ⊗L

O F the assumption that E has tor amplitude in [a, b] implies K ⊗O F →
Ea−1 ⊗O F has image Ker(Ea−1 ⊗O F → Ea⊗O F). It follows that TorO

1 (E ′,F) = 0
where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 17.15). Thus there exists
a covering {Ui → U} such that E ′|Ui

is a direct summand of a finite free module
by Modules on Sites, Lemma 29.3. Thus the complex

E ′|Ui
→ Ea−1|Ui

→ . . . → Eb|Ui

is quasi-isomorphic to E|Ui and E is perfect. □

Lemma 47.4.08G8 Let (C,O) be a ringed site. Let E be an object of D(O). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let U be an object of C. By definition there exists a covering
{Ui → U} such that E|Ui is represented by a strictly perfect complex. Thus E is
pseudo-coherent (i.e., m-pseudo-coherent for all m) by Lemma 45.2. Moreover, a
direct summand of a finite free module is flat, hence E|Ui

has finite Tor dimension
by Lemma 46.3. Thus (2) holds.

Assume (2). Let U be an object of C. After replacing U by the members of a covering
we may assume there exist integers a ≤ b such that E|U has tor amplitude in [a, b].
Since E|U is m-pseudo-coherent for all m we conclude using Lemma 47.3. □

Lemma 47.5.08H6 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OD). If E is perfect in D(OD), then Lf∗E is perfect in
D(OC).

Proof. This follows from Lemma 47.4, 46.5, and 45.3. □

Lemma 47.6.08G9 Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). If two out of three of K,L,M are perfect then the third is also
perfect.

Proof. First proof: Combine Lemmas 47.4, 45.4, and 46.6. Second proof (sketch):
Say K and L are perfect. Let U be an object of C. After replacing U by the members
of a covering we may assume that K|U and L|U are represented by strictly perfect
complexes K• and L•. After replacing U by the members of a covering we may
assume the map K|U → L|U is given by a map of complexes α : K• → L•, see
Lemma 44.8. Then M |U is isomorphic to the cone of α which is strictly perfect by
Lemma 44.2. □

Lemma 47.7.09JB Let (C,O) be a ringed site. If K,L are perfect objects of D(O),
then so is K ⊗L

O L.

https://stacks.math.columbia.edu/tag/08G8
https://stacks.math.columbia.edu/tag/08H6
https://stacks.math.columbia.edu/tag/08G9
https://stacks.math.columbia.edu/tag/09JB
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Proof. Follows from Lemmas 47.4, 45.5, and 46.7. □

Lemma 47.8.08GA Let (C,O) be a ringed site. If K ⊕ L is a perfect object of D(O),
then so are K and L.

Proof. Follows from Lemmas 47.4, 45.6, and 46.8. □

48. Duals

0FPP In this section we characterize the dualizable objects of the category of complexes
and of the derived category. In particular, we will see that an object of D(O) has a
dual if and only if it is perfect (this follows from Example 48.6 and Lemma 48.7).

Lemma 48.1.0FPQ Let (C,O) be a ringed space. The category of complexes of O-
modules with tensor product defined by F• ⊗ G• = Tot(F• ⊗O G•) is a symmetric
monoidal category.

Proof. Omitted. Hints: as unit 1 we take the complex having O in degree 0
and zero in other degrees with obvious isomorphisms Tot(1 ⊗O G•) = G• and
Tot(F• ⊗O 1) = F•. to prove the lemma you have to check the commutativity of
various diagrams, see Categories, Definitions 43.1 and 43.9. The verifications are
straightforward in each case. □

Example 48.2.0FPR Let (C,O) be a ringed site. Let F• be a complex of O-modules
such that for every U ∈ Ob(C) there exists a covering {Ui → U} such that F•|Ui is
strictly perfect. Consider the complex

G• = Hom•(F•,O)
as in Section 34. Let

η : O → Tot(F• ⊗O G•) and ϵ : Tot(G• ⊗O F•) → O
be η =

∑
ηn and ϵ =

∑
ϵn where ηn : O → Fn ⊗O G−n and ϵn : G−n ⊗O Fn → O

are as in Modules on Sites, Example 29.1. Then G•, η, ϵ is a left dual for F• as in
Categories, Definition 43.5. We omit the verification that (1 ⊗ ϵ) ◦ (η ⊗ 1) = idF•

and (ϵ⊗ 1) ◦ (1 ⊗ η) = idG• . Please compare with More on Algebra, Lemma 72.2.

Lemma 48.3.0FPS Let (C,O) be a ringed site. Let F• be a complex of O-modules. If
F• has a left dual in the monoidal category of complexes of O-modules (Categories,
Definition 43.5) then for every object U of C there exists a covering {Ui → U} such
that F•|Ui

is strictly perfect and the left dual is as constructed in Example 48.2.

Proof. By uniqueness of left duals (Categories, Remark 43.7) we get the final
statement provided we show that F• is as stated. Let G•, η, ϵ be a left dual. Write
η =

∑
ηn and ϵ =

∑
ϵn where ηn : O → Fn⊗OG−n and ϵn : G−n⊗OFn → O. Since

(1⊗ϵ)◦(η⊗1) = idF• and (ϵ⊗1)◦(1⊗η) = idG• by Categories, Definition 43.5 we see
immediately that we have (1⊗ϵn)◦(ηn⊗1) = idFn and (ϵn⊗1)◦(1⊗ηn) = idG−n . In
other words, we see that G−n is a left dual of Fn and we see that Modules on Sites,
Lemma 29.2 applies to each Fn. Let U be an object of C. There exists a covering
{Ui → U} such that for every i only a finite number of ηn|Ui

are nonzero. Thus
after replacing U by Ui we may assume only a finite number of ηn|U are nonzero
and by the lemma cited this implies only a finite number of Fn|U are nonzero.
Using the lemma again we can then find a covering {Ui → U} such that each Fn|Ui

is a direct summand of a finite free O-module and the proof is complete. □

https://stacks.math.columbia.edu/tag/08GA
https://stacks.math.columbia.edu/tag/0FPQ
https://stacks.math.columbia.edu/tag/0FPR
https://stacks.math.columbia.edu/tag/0FPS
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Lemma 48.4.08JJ Let (C,O) be a ringed site. Let K be a perfect object of D(O). Then
K∨ = RHom(K,O) is a perfect object too and (K∨)∨ ∼= K. There are functorial
isomorphisms

M ⊗L
O K∨ = RHomO(K,M)

and
H0(C,M ⊗L

O K∨) = HomD(O)(K,M)
for M in D(O).

Proof. We will us without further mention that formation of internal hom com-
mutes with restriction (Lemma 35.3). Let U be an arbitrary object of C. To check
that K∨ is perfect, it suffices to show that there exists a covering {Ui → U} such
that K∨|Ui

is perfect for all i. There is a canonical map

K = RHom(OX ,OX) ⊗L
OX

K −→ RHom(RHom(K,OX),OX) = (K∨)∨

see Lemma 35.5. It suffices to prove there is a covering {Ui → U} such that the
restriction of this map to C/Ui is an isomorphism for all i. By Lemma 35.9 to see
the final statement it suffices to check that the map (35.9.1)

M ⊗L
O K∨ −→ RHom(K,M)

is an isomorphism. This is a local question as well (in the sense above). Hence it
suffices to prove the lemma when K is represented by a strictly perfect complex.

Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 44.9 that K∨ is represented by the complex whose terms are (En)∨ =
HomO(En,O) in degree −n. Since En is a direct summand of a finite free O-
module, so is (En)∨. Hence K∨ is represented by a strictly perfect complex too and
we see that K∨ is perfect. The map K → (K∨)∨ is an isomorphism as it is given
up to sign by the evaluation maps En → ((En)∨)∨ which are isomorphisms. To see
that (35.9.1) is an isomorphism, represent M by a K-flat complex F•. By Lemma
44.9 the complex RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomO(E−q,Fp)

On the other hand, the object M ⊗L
O K∨ is represented by the complex with terms⊕

n=p+q
Fp ⊗O (E−q)∨

Thus the assertion that (35.9.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗O HomO(E ,O) −→ HomO(E ,F)
is an isomorphism when E is a direct summand of a finite free O-module and F is
any O-module. This follows immediately from the corresponding statement when
E is finite free. □

Lemma 48.5.0FPT Let (C,O) be a ringed site. The derived category D(O) is a symmet-
ric monoidal category with tensor product given by derived tensor product with usual
associativity and commutativity constraints (for sign rules, see More on Algebra,
Section 72).

Proof. Omitted. Compare with Lemma 48.1. □

https://stacks.math.columbia.edu/tag/08JJ
https://stacks.math.columbia.edu/tag/0FPT
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Example 48.6.0FPU Let (C,O) be a ringed site. Let K be a perfect object of D(O).
Set K∨ = RHom(K,O) as in Lemma 48.4. Then the map

K ⊗L
O K∨ −→ RHom(K,K)

is an isomorphism (by the lemma). Denote
η : O −→ K ⊗L

O K∨

the map sending 1 to the section corresponding to idK under the isomorphism
above. Denote

ϵ : K∨ ⊗L
O K −→ O

the evaluation map (to construct it you can use Lemma 35.6 for example). Then
K∨, η, ϵ is a left dual for K as in Categories, Definition 43.5. We omit the verifica-
tion that (1 ⊗ ϵ) ◦ (η ⊗ 1) = idK and (ϵ⊗ 1) ◦ (1 ⊗ η) = idK∨ .

Lemma 48.7.0FPV Let (C,O) be a ringed site. Let M be an object of D(O). If M has
a left dual in the monoidal category D(O) (Categories, Definition 43.5) then M is
perfect and the left dual is as constructed in Example 48.6.

Proof. Let N, η, ϵ be a left dual. Observe that for any object U of C the restriction
N |U , η|U , ϵ|U is a left dual for M |U .
Let U be an object of C. It suffices to find a covering {Ui → U}i∈I fo C such
that M |Ui

is a perfect object of D(OUi
). Hence we may replace C,O,M,N, η, ϵ by

C/U,OU ,M |U , N |U , η|U , ϵ|U and assume C has a final object X. Moreover, during
the proof we can (finitely often) replace X by the members of a covering {Ui → X}
of X.
We are going to use the following argument several times. Choose any complex M•

of O-modules representing M . Choose a K-flat complex N • representing N whose
terms are flat O-modules, see Lemma 17.11. Consider the map

η : O → Tot(M• ⊗O N •)
After replacing X by the members of a covering, we can find an integer N and for
i = 1, . . . , N integers ni ∈ Z and sections fi and gi of Mni and N −ni such that

η(1) =
∑

i
fi ⊗ gi

Let K• ⊂ M• be any subcomplex of O-modules containing the sections fi for
i = 1, . . . , N . Since Tot(K• ⊗O N •) ⊂ Tot(M• ⊗O N •) by flatness of the modules
Nn, we see that η factors through

η̃ : O → Tot(K• ⊗O N •)
Denoting K the object of D(O) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ϵ
// M

K ⊗L N ⊗L M

OO

1⊗ϵ // K

OO

Since the composition of the upper row is the identity on M we conclude that M
is a direct summand of K in D(O).
As a first use of the argument above, we can choose the subcomplex K• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(O) of a

https://stacks.math.columbia.edu/tag/0FPU
https://stacks.math.columbia.edu/tag/0FPV
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bounded complex and we conclude we may assume M is in Db(O). (Recall that
the process above involves replacing X by the members of a covering.)

Since M is in Db(O) we may choose M• to be a bounded above complex of flat
modules (by Modules, Lemma 17.6 and Derived Categories, Lemma 15.4). Then
we can choose K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument above.
Thus we find that we may assume M is a direct summand in D(O) of a bounded
complex of flat modules. In particular, we find M has finite tor amplitude.

Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going
to show that (after replacing X by the members of a covering) we may assume M
is (m− 1)-pseudo-coherent. This will finish the proof by Lemma 47.3 and the fact
that M is (b+ 1)-pseudo-coherent in any case. After replacing X by the members
of a covering we may assume there exists a strictly perfect complex E• and a map
α : E• → M in D(O) such that Hi(α) is an isomorphism for i > m and surjective
for i = m. We may and do assume that E i = 0 for i < m. Choose a distinguished
triangle

E• → M → L → E•[1]
Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L•

with Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes
L• → E•[1] which is zero in all degrees except in degree m − 1 where we obtain a
map Lm−1 → Em, see Derived Categories, Lemma 27.3. Then M is represented by
the complex

M• : . . . → Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi of
Mni for i = 1, . . . , N . For n < m let Kn ⊂ Ln be the O-submodule generated
by the sections fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En.
Clearly, we have a morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO

where all the morphisms are as indicated above. Denote K the object of D(O)
corresponding to the complex K•. By the arguments in the second paragraph of
the proof we obtain a morphism s : M → K in D(O) such that the composition
M → K → M is the identity on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M .
By Lemma 44.8 after replacing X by the members of a covering, we may assume
that s ◦ i is given by a map of complexes σ : E• → K•. By the same lemma we may
assume the composition of σ with the inclusion K• ⊂ M• is homotopic to zero by
some homotopy {hi : E i → Mi−1}. Thus, after replacing Km−1 by Km−1 +Im(hm)
(note that after doing this it is still the case that Km−1 is generated by finitely
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many global sections), we see that σ itself is homotopic to zero! This means that
we have a commutative solid diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO

By the axioms of triangulated categories we obtain a dotted arrow fitting into the
diagram. Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO

Since the vertical compositions are the identity in both the left and right column, we
conclude the vertical composition Hm−1(L•) → Hm−1(σ≤m−1K•) → Hm−1(L•) in
the middle is surjective! In particular Hm−1(σ≤m−1K•) → Hm−1(L•) is surjective.
Using the induced map of long exact sequences of cohomology sheaves from the
morphism of triangles above, a diagram chase shows this implies Hi(K) → Hi(M)
is an isomorphism for i ≥ m and surjective for i = m− 1. By construction we can
choose an r ≥ 0 and a surjection O⊕r → Km−1. Then the composition

(O⊕r → Em → Em+1 → . . .) −→ K −→ M

induces an isomorphism on cohomology sheaves in degrees ≥ m and a surjection in
degree m− 1 and the proof is complete. □

Lemma 48.8.0A0A Let (C,O) be a ringed site. Let (Kn)n∈N be a system of perfect
objects of D(O). Let K = hocolimKn be the derived colimit (Derived Categories,
Definition 33.1). Then for any object E of D(O) we have

RHom(K,E) = R limE ⊗L
O K∨

n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 48.4 we have R limE ⊗L
O K∨

n = R limRHom(Kn, E) which fits
into the distinguished triangle

R limRHom(Kn, E) →
∏

RHom(Kn, E) →
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (35.0.1) and the fact that derived tensor product commutes with
direct sums. □

https://stacks.math.columbia.edu/tag/0A0A
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49. Invertible objects in the derived category

0FPW We characterize invertible objects in the derived category of a ringed space (both
in the case of a locally ringed topos and in the general case).

Lemma 49.1.0FPX Let (C,O) be a ringed space. Set R = Γ(C,O). The category of O-
modules which are summands of finite free O-modules is equivalent to the category
of finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand
of a finite free R-module. The equivalence is given by the functor E 7→ Γ(C, E).
The inverse functor is given by the following construction. Consider the morphism
of topoi f : Sh(C) → Sh(pt) with f∗ given by taking global sections and f−1 by
sending a set S, i.e., an object of Sh(pt), to the constant sheaf with value S. We
obtain a morphism (f, f ♯) : (Sh(C),O) → (Sh(pt), R) of ringed topoi by using the
identity map R → f∗O. Then the inverse functor is given by f∗. □

Lemma 49.2.0FPY Let (C,O) be a ringed site. Let M be an object of D(O). The
following are equivalent

(1) M is invertible in D(O), see Categories, Definition 43.4, and
(2) there is a locally finite11 direct product decomposition

O =
∏

n∈Z
On

and for each n there is an invertible On-module Hn (Modules on Sites,
Definition 32.1) and M =

⊕
Hn[−n] in D(O).

If (1) and (2) hold, then M is a perfect object of D(O). If (C,O) is a locally ringed
site these condition are also equivalent to

(3) for every object U of C there exists a covering {Ui → U} and for each i an
integer ni such that M |Ui

is represented by an invertible OUi
-module placed

in degree ni.

Proof. Assume (2). Consider the object RHom(M,O) and the composition map
RHom(M,O) ⊗L

O M → O
To prove this is an isomorphism, we may work locally. Thus we may assume
O =

∏
a≤n≤b On and M =

⊕
a≤n≤b Hn[−n]. Then it suffices to show that

RHom(Hm,O) ⊗L
O Hn

is zero if n ̸= m and equal to On if n = m. The case n ̸= m follows from the
fact that On and Om are flat O-algebras with On ⊗O Om = 0. Using the local
structure of invertible O-modules (Modules on Sites, Lemma 32.2) and working
locally the isomorphism in case n = m follows in a straightforward manner; we
omit the details. Because D(O) is symmetric monoidal, we conclude that M is
invertible.
Assume (1). The description in (2) shows that we have a candidate for On, namely,
HomO(Hn(M), Hn(M)). If this is a locally finite family of sheaves of rings and
if O =

∏
On, then we immediately obtain the direct sum decomposition M =⊕

Hn(M)[−n] using the idempotents in O coming from the product decomposition.

11This means that for every object U of C there is a covering {Ui → U} such that for every i
the sheaf On|Ui

is nonzero for only a finite number of n.

https://stacks.math.columbia.edu/tag/0FPX
https://stacks.math.columbia.edu/tag/0FPY
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This shows that in order to prove (2) we may work locally in the following sense.
Let U be an object of C. We have to show there exists a covering {Ui → U} of U
such that with On as above we have the statements above and those of (2) after
restriction to C/Ui. Thus we may assume C has a final object X and during the
proof of (2) we may finitely many times replace X by the members of a covering of
X.

Choose an object N of D(O) and an isomorphism M ⊗L
O N ∼= O. Then N is a

left dual for M in the monoidal category D(O) and we conclude that M is perfect
by Lemma 48.7. By symmetry we see that N is perfect. After replacing X by
the members of a covering, we may assume M and N are represented by a strictly
perfect complexes E• and F•. Then M ⊗L

O N is represented by Tot(E• ⊗O F•).
After replacing X by the members of a covering of X we may assume the mutually
inverse isomorphisms O → M ⊗L

O N and M ⊗L
O N → O are given by maps of

complexes

α : O → Tot(E• ⊗O F•) and β : Tot(E• ⊗O F•) → O

See Lemma 44.8. Then β◦α = 1 as maps of complexes and α◦β = 1 as a morphism
in D(O). After replacing X by the members of a covering of X we may assume the
composition α ◦ β is homotopic to 1 by some homotopy θ with components

θn : Totn(E• ⊗O F•) → Totn−1(E• ⊗O F•)

by the same lemma as before. Set R = Γ(C,O). By Lemma 49.1 we find that we
obtain

(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N

•) and
b : Tot(M• ⊗R N

•) → R,
(4) θn corresponds to a map hn : Totn(M• ⊗RN

•) → Totn−1(M• ⊗RN
•), and

(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,
It follows that M• and N• define mutually inverse objects of D(R). By More
on Algebra, Lemma 126.4 we find a product decomposition R =

∏
a≤n≤bRn and

invertible Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in

D(R) can be lifted to an morphism⊕
Hn[−n] −→ M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 49.1 again, we obtain an morphism⊕

Hn ⊗R O[−n] → E•

which is an isomorphism in D(O). Here M ⊗R O denotes the functor from fi-
nite projective R-modules to O-modules constructed in the proof of Lemma 49.1.
Setting On = Rn ⊗R O we conclude (2) is true.

If (C,O) is a locally ringed site, then given an object U and a finite product decom-
position O|U =

∏
a≤n≤b On|U we can find a covering {Ui → U} such that for every

i there is at most one n with On|Ui nonzero. This follows readily from part (2) of
Modules on Sites, Lemma 40.1 and the definition of locally ringed sites as given
in Modules on Sites, Definition 40.4. From this the implication (2) ⇒ (3) is easily
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seen. The implication (3) ⇒ (2) holds without any assumptions on the ringed site.
We omit the details. □

50. Projection formula

0943 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let E ∈ D(OC)
and K ∈ D(OD). Without any further assumptions there is a map

(50.0.1)0B56 Rf∗E ⊗L
OD

K −→ Rf∗(E ⊗L
OC

Lf∗K)

Namely, it is the adjoint to the canonical map

Lf∗(Rf∗E ⊗L
OD

K) = Lf∗Rf∗E ⊗L
OC

Lf∗K −→ E ⊗L
OC

Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 18.4 and 19.1. A reasonably
general version of the projection formula is the following.

Lemma 50.1.0944 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let E ∈ D(OC) and K ∈ D(OD). If K is perfect, then

Rf∗E ⊗L
OD

K = Rf∗(E ⊗L
OC

Lf∗K)

in D(OD).

Proof. To check (50.0.1) is an isomorphism we may work locally on D, i.e., for any
object V of D we have to find a covering {Vj → V } such that the map restricts to an
isomorphism on Vj . By definition of perfect objects, this means we may assume K
is represented by a strictly perfect complex of OD-modules. Note that, completely
generally, the statement is true for K = K1 ⊕ K2, if and only if the statement is
true for K1 and K2. Hence we may assume K is a finite complex of finite free OD-
modules. In this case a simple argument involving stupid truncations reduces the
statement to the case where K is represented by a finite free OD-module. Since the
statement is invariant under finite direct summands in the K variable, we conclude
it suffices to prove it for K = OD[n] in which case it is trivial. □

Remark 50.2.0E48 The map (50.0.1) is compatible with the base change map of
Remark 19.3 in the following sense. Namely, suppose that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

https://stacks.math.columbia.edu/tag/0944
https://stacks.math.columbia.edu/tag/0E48
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is a commutative diagram of ringed topoi. Let E ∈ D(OC) and K ∈ D(OD). Then
the diagram

Lg∗(Rf∗E ⊗L
OD

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OC

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OD′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OC
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OD′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OD′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OD′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma
18.4, arrows labeled b by an application of Remark 19.3, arrows labeled p by an
application of (50.0.1), and c comes from L(g′)∗ ◦Lf∗ = L(f ′)∗ ◦Lg∗. We omit the
verification.

51. Weakly contractible objects

0945 An object U of a site is weakly contractible if every surjection F → G of sheaves of
sets gives rise to a surjection F(U) → G(U), see Sites, Definition 40.2.

Lemma 51.1.0946 Let C be a site. Let U be a weakly contractible object of C. Then
(1) the functor F 7→ F(U) is an exact functor Ab(C) → Ab,
(2) Hp(U,F) = 0 for every abelian sheaf F and all p ≥ 1, and
(3) for any sheaf of groups G any G-torsor has a section over U .

Proof. The first statement follows immediately from the definition (see also Ho-
mology, Section 7). The higher derived functors vanish by Derived Categories,
Lemma 16.9. Let F be a G-torsor. Then F → ∗ is a surjective map of sheaves.
Hence (3) follows from the definition as well. □

It is convenient to list some consequences of having enough weakly contractible
objects here.

Proposition 51.2.0947 Let C be a site. Let B ⊂ Ob(C) such that every U ∈ B is
weakly contractible and every object of C has a covering by elements of B. Let O be
a sheaf of rings on C. Then

(1) A complex F1 → F2 → F3 of O-modules is exact, if and only if F1(U) →
F2(U) → F3(U) is exact for all U ∈ B.

(2) Every object K of D(O) is a derived limit of its canonical truncations:
K = R lim τ≥−nK.

(3) Given an inverse system . . . → F3 → F2 → F1 with surjective transition
maps, the projection lim Fn → F1 is surjective.

(4) Products are exact on Mod(O).
(5) Products on D(O) can be computed by taking products of any representative

complexes.

https://stacks.math.columbia.edu/tag/0946
https://stacks.math.columbia.edu/tag/0947
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(6) If (Fn) is an inverse system of O-modules, then Rp lim Fn = 0 for all p > 1
and

R1 lim Fn = Coker(
∏

Fn →
∏

Fn)

where the map is (xn) 7→ (xn − f(xn+1)).
(7) If (Kn) is an inverse system of objects of D(O), then there are short exact

sequences

0 → R1 limHp−1(Kn) → Hp(R limKn) → limHp(Kn) → 0

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly con-
tractible element of C gives an exact sequence by Lemma 51.1. Conversely, assume
that F1(U) → F2(U) → F3(U) is exact for all U ∈ B. Let V be an object of C
and let s ∈ F2(V ) be an element of the kernel of F2 → F3. By assumption there
exists a covering {Ui → V } with Ui ∈ B. Then s|Ui

lifts to a section si ∈ F1(Ui).
Thus s is a section of the image sheaf Im(F1 → F2). In other words, the sequence
F1 → F2 → F3 is exact.

Proof of (2). This holds by Lemma 23.10 with d = 0.

Proof of (3). Let (Fn) be a system as in (2) and set F = lim Fn. If U ∈ B,
then F(U) = lim Fn(U) surjects onto F1(U) as all the transition maps Fn+1(U) →
Fn(U) are surjective. Thus F → F1 is surjective by Sites, Definition 11.1 and the
assumption that every object has a covering by elements of B.

Proof of (4). Let Fi,1 → Fi,2 → Fi,3 be a family of exact sequences of O-modules.
We want to show that

∏
Fi,1 →

∏
Fi,2 →

∏
Fi,3 is exact. We use the criterion of

(1). Let U ∈ B. Then

(
∏

Fi,1)(U) → (
∏

Fi,2)(U) → (
∏

Fi,3)(U)

is the same as ∏
Fi,1(U) →

∏
Fi,2(U) →

∏
Fi,3(U)

Each of the sequences Fi,1(U) → Fi,2(U) → Fi,3(U) are exact by (1). Thus the
displayed sequences are exact by Homology, Lemma 32.1. We conclude by (1) again.

Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma
34.2.

Proof of (6) and (7). We refer to Section 23 for a discussion of derived and homotopy
limits and their relationship. By Derived Categories, Definition 34.1 we have a
distinguished triangle

R limKn →
∏

Kn →
∏

Kn → R limKn[1]

Taking the long exact sequence of cohomology sheaves we obtain

Hp−1(
∏

Kn) → Hp−1(
∏

Kn) → Hp(R limKn) → Hp(
∏

Kn) → Hp(
∏

Kn)

Since products are exact by (4) this becomes∏
Hp−1(Kn) →

∏
Hp−1(Kn) → Hp(R limKn) →

∏
Hp(Kn) →

∏
Hp(Kn)

Now we first apply this to the case Kn = Fn[0] where (Fn) is as in (6). We conclude
that (6) holds. Next we apply it to (Kn) as in (7) and we conclude (7) holds. □
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52. Compact objects

0948 In this section we study compact objects in the derived category of modules on
a ringed site. We recall that compact objects are defined in Derived Categories,
Definition 37.1.

Lemma 52.1.094B Let A be a Grothendieck abelian category. Let S ⊂ Ob(A) be a set
of objects such that

(1) any object of A is a quotient of a direct sum of elements of S, and
(2) for any E ∈ S the functor HomA(E,−) commutes with direct sums.

Then every compact object of D(A) is a direct summand in D(A) of a finite complex
of finite direct sums of elements of S.

Proof. Assume K ∈ D(A) is a compact object. Represent K by a complex K•

and consider the map
K• −→

⊕
n≥0

τ≥nK
•

where we have used the canonical truncations, see Homology, Section 15. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).
We may represent K by a bounded above complex K• each of whose terms is a
direct sum of objects from S, see Derived Categories, Lemma 15.4. Note that we
have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 15. Hence by
Derived Categories, Lemmas 33.7 and 33.9 we see that 1 : K• → K• factors through
σ≥nK

• → K• in D(R). Thus we see that 1 : K• → K• factors as

K• φ−→ L• ψ−→ K•

in D(A) for some complex L• which is bounded and whose terms are direct sums
of elements of S. Say Li is zero for i ̸∈ [a, b]. Let c be the largest integer ≤ b + 1
such that Li a finite direct sum of elements of S for i < c. Claim: if c < b + 1,
then we can modify L• to increase c. By induction this claim will show we have a
factorization of 1K as

K
φ−→ L

ψ−→ K

in D(A) where L can be represented by a finite complex of finite direct sums of
elements of S. Note that e = φ ◦ ψ ∈ EndD(A)(L) is an idempotent. By Derived
Categories, Lemma 4.14 we see that L = Ker(e) ⊕ Ker(1 − e). The map φ : K → L
induces an isomorphism with Ker(1 − e) in D(R) and we conclude.
Proof of the claim. Write Lc =

⊕
λ∈Λ Eλ. Since Lc−1 is a finite direct sum of

elements of S we can by assumption (2) find a finite subset Λ′ ⊂ Λ such that
Lc−1 → Lc factors through

⊕
λ∈Λ′ Eλ ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
Eλ)[−i]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By our
assumption on K we see that, after possibly replacing Λ′ by a larger finite subset,
we may assume that π ◦φ = 0 in D(A). Let (L′)• ⊂ L• be the kernel of π. Since π

https://stacks.math.columbia.edu/tag/094B
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is surjective we get a short exact sequence of complexes, which gives a distinguished
triangle in D(A) (see Derived Categories, Lemma 12.1). Since HomD(A)(K,−) is
homological (see Derived Categories, Lemma 4.2) and π ◦ φ = 0, we can find a
morphism φ′ : K• → (L′)• in D(A) whose composition with (L′)• → L• gives
φ. Setting ψ′ equal to the composition of ψ with (L′)• → L• we obtain a new
factorization. Since (L′)• agrees with L• except in degree c and since (L′)c =⊕

λ∈Λ′ Eλ the claim is proved. □

Lemma 52.2.094C Let (C,O) be a ringed site. Assume every object of C has a covering
by quasi-compact objects. Then every compact object of D(O) is a direct summand
in D(O) of a finite complex whose terms are finite direct sums of O-modules of the
form j!OU where U is a quasi-compact object of C.

Proof. Apply Lemma 52.1 where S ⊂ Ob(Mod(O)) is the set of modules of the
form j!OU with U ∈ Ob(C) quasi-compact. Assumption (1) holds by Modules
on Sites, Lemma 28.8 and the assumption that every U can be covered by quasi-
compact objects. Assumption (2) follows as

HomO(j!OU ,F) = F(U)

which commutes with direct sums by Sites, Lemma 17.7. □

In the situation of the lemma above it is not always true that the modules j!OU

are compact objects of D(O) (even if U is a quasi-compact object of C). Here are
two lemmas addressing this issue.

Lemma 52.3.0G21 Let (C,O) be a ringed site. Let U be an object of C. Assume
the functors F 7→ Hp(U,F) commute with direct sums. Then O-module j!OU is
a compact object of D+(O) in the following sense: if M =

⊕
i∈IMi in D(O) is

bounded below, then Hom(jU !OU ,M) =
⊕

i∈I Hom(jU !OU ,Mi).

Proof. Since Hom(jU !OU ,−) is the same as the functor F 7→ F(U) by Modules
on Sites, Equation (19.2.1) it suffices to prove that Hp(U,M) =

⊕
Hp(U,Mi). Let

Ii, i ∈ I be a collection of injective O-modules. By assumption we have

Hp(U,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(U, Ii) = 0

for all p. Since M =
⊕
Mi is bounded below, we see that there exists an a ∈ Z such

that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective O-modues
I•
i representing Mi with Ini = 0 for n < a, see Derived Categories, Lemma 18.3.

By Injectives, Lemma 13.4 we see that the direct sum complex
⊕

I•
i represents M .

By Leray acyclicity (Derived Categories, Lemma 16.7) we see that

RΓ(U,M) = Γ(U,
⊕

I•
i ) =

⊕
Γ(U,

⊕
I•
i ) =

⊕
RΓ(U,Mi)

as desired. □

Lemma 52.4.0G22 Let (C,O) be a ringed site with set of coverings CovC. Let B ⊂
Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

https://stacks.math.columbia.edu/tag/094C
https://stacks.math.columbia.edu/tag/0G21
https://stacks.math.columbia.edu/tag/0G22
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Then for U ∈ B the object jU !OU is a compact object of D+(O) in the follow-
ing sense: if M =

⊕
i∈IMi in D(O) is bounded below, then Hom(jU !OU ,M) =⊕

i∈I Hom(jU !OU ,Mi).

Proof. This follows from Lemma 52.3 and Lemma 16.1. □

Lemma 52.5.094D Let (C,O) be a ringed site. Let U be an object of C. The O-module
j!OU is a compact object of D(O) if there exists an integer d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Recall that Hom(j!OU ,K) = RΓ(U,K) for K in
D(O). Thus we have to show that RΓ(U,−) commutes with direct sums. The first
assumption means that the functor F = H0(U,−) has finite cohomological dimen-
sion. Moreover, the second assumption implies any direct sum of injective modules
is acyclic for F . Let Ki be a family of objects of D(O). Choose K-injective represen-
tatives I•

i with injective terms representing Ki, see Injectives, Theorem 12.6. Since
we may compute RF by applying F to any complex of acyclics (Derived Categories,
Lemma 32.2) and since

⊕
Ki is represented by

⊕
I•
i (Injectives, Lemma 13.4) we

conclude that RΓ(U,
⊕
Ki) is represented by

⊕
H0(U, I•

i ). Hence RΓ(U,−) com-
mutes with direct sums as desired. □

Lemma 52.6.094E Let (C,O) be a ringed site. Let U be an object of C which is
quasi-compact and weakly contractible. Then j!OU is a compact object of D(O).

Proof. Combine Lemmas 52.5 and 51.1 with Modules on Sites, Lemma 30.3. □

Lemma 52.7.09JC Let (C,O) be a ringed site. Assume C has the following properties
(1) C has a quasi-compact final object X,
(2) every quasi-compact object of C has a cofinal system of coverings which are

finite and consist of quasi-compact objects,
(3) for a finite covering {Ui → U}i∈I with U , Ui quasi-compact the fibre prod-

ucts Ui ×U Uj are quasi-compact.
Let K be a perfect object of D(O). Then

(a) K is a compact object of D+(O) in the following sense: if M =
⊕

i∈IMi

is bounded below, then Hom(K,M) =
⊕

i∈I Hom(K,Mi).
(b) If (C,O) has finite cohomological dimension, i.e., if there exists a d such

that Hi(X,F) = 0 for i > d for any O-module F , then K is a compact
object of D(O).

Proof. Let K∨ be the dual of K, see Lemma 48.4. Then we have

HomD(O)(K,M) = H0(X,K∨ ⊗L
O M)

functorially in M in D(O). Since K∨ ⊗L
O − commutes with direct sums it suffices

to show that RΓ(X,−) commutes with the relevant direct sums.

Proof of (a). After reformulation as above this is a special case of Lemma 52.4 with
U = X.

Proof of (b). Since RΓ(X,K) = RHom(O,K) and since Hp(X,−) commutes with
direct sums by Lemma 16.1 this is a special case of Lemma 52.5. □

https://stacks.math.columbia.edu/tag/094D
https://stacks.math.columbia.edu/tag/094E
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53. Complexes with locally constant cohomology sheaves

094F Locally constant sheaves are introduced in Modules on Sites, Section 43. Let C be
a site. Let Λ be a ring. We denote D(C,Λ) the derived category of the abelian
category of Λ-modules on C.

Lemma 53.1.094G Let C be a site with final object X. Let Λ be a Noetherian ring.
Let K ∈ Db(C,Λ) with Hi(K) locally constant sheaves of Λ-modules of finite type.
Then there exists a covering {Ui → X} such that each K|Ui is represented by a
complex of locally constant sheaves of Λ-modules of finite type.

Proof. Let a ≤ b be such that Hi(K) = 0 for i ̸∈ [a, b]. By induction on b− a we
will prove there exists a covering {Ui → X} such that K|Ui can be represented by a
complex M•

Ui
with Mp a finite type Λ-module and Mp = 0 for p ̸∈ [a, b]. If b = a,

then this is clear. In general, we may replace X by the members of a covering and
assume that Hb(K) is constant, say Hb(K) = M . By Modules on Sites, Lemma
42.5 the module M is a finite Λ-module. Choose a surjection Λ⊕r → M given by
generators x1, . . . , xr of M .
By a slight generalization of Lemma 7.3 (details omitted) there exists a covering
{Ui → X} such that xi ∈ H0(X,Hb(K)) lifts to an element of Hb(Ui,K). Thus,
after replacing X by the Ui we reach the situation where there is a map Λ⊕r[−b] →
K inducing a surjection on cohomology sheaves in degree b. Choose a distinguished
triangle

Λ⊕r[−b] → K → L → Λ⊕r[−b+ 1]
Now the cohomology sheaves of L are nonzero only in the interval [a, b− 1], agree
with the cohomology sheaves of K in the interval [a, b−2] and there is a short exact
sequence

0 → Hb−1(K) → Hb−1(L) → Ker(Λ⊕r → M) → 0
in degree b − 1. By Modules on Sites, Lemma 43.5 we see that Hb−1(L) is locally
constant of finite type. By induction hypothesis we obtain an isomorphism M• → L
in D(C,Λ) with Mp a finite Λ-module and Mp = 0 for p ̸∈ [a, b − 1]. The map
L → Λ⊕r[−b+ 1] gives a map M b−1 → Λ⊕r which locally is constant (Modules on
Sites, Lemma 43.3). Thus we may assume it is given by a map M b−1 → Λ⊕r. The
distinguished triangle shows that the composition M b−2 → M b−1 → Λ⊕r is zero
and the axioms of triangulated categories produce an isomorphism

Ma → . . . → M b−1 → Λ⊕r −→ K

in D(C,Λ). □

Let C be a site. Let Λ be a ring. Using the morphism Sh(C) → Sh(pt) we see that
there is a functor D(Λ) → D(C,Λ), K 7→ K.

Lemma 53.2.09BD Let C be a site with final object X. Let Λ be a ring. Let
(1) K a perfect object of D(Λ),
(2) a finite complex K• of finite projective Λ-modules representing K,
(3) L• a complex of sheaves of Λ-modules, and
(4) φ : K → L• a map in D(C,Λ).

Then there exists a covering {Ui → X} and maps of complexes αi : K•|Ui
→ L•|Ui

representing φ|Ui
.

Proof. Follows immediately from Lemma 44.8. □

https://stacks.math.columbia.edu/tag/094G
https://stacks.math.columbia.edu/tag/09BD
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Lemma 53.3.09BE Let C be a site with final object X. Let Λ be a ring. Let K,L be
objects of D(Λ) with K perfect. Let φ : K → L be map in D(C,Λ). There exists
a covering {Ui → X} such that φ|Ui

is equal to αi for some map αi : K → L in
D(Λ).

Proof. Follows from Lemma 53.2 and Modules on Sites, Lemma 43.3. □

Lemma 53.4.094H Let C be a site. Let Λ be a Noetherian ring. Let K,L ∈ D−(C,Λ).
If the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of
finite type, then the cohomology sheaves of K ⊗L

Λ L are locally constant sheaves of
Λ-modules of finite type.

Proof. We’ll prove this as an application of Lemma 53.1. Note that Hi(K⊗L
ΛL) is

the same as Hi(τ≥i−1K ⊗L
Λ τ≥i−1L). Thus we may assume K and L are bounded.

By Lemma 53.1 we may assume that K and L are represented by complexes of
locally constant sheaves of Λ-modules of finite type. Then we can replace these
complexes by bounded above complexes of finite free Λ-modules. In this case the
result is clear. □

Lemma 53.5.094I Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.
Let K ∈ D−(C,Λ). If the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant
sheaves of Λ/I-modules of finite type, then the cohomology sheaves of K ⊗L

Λ Λ/In
are locally constant sheaves of Λ/In-modules of finite type for all n ≥ 1.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form a
weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 43.5. Thus
the subcategory of D(C,Λ) consisting of complexes whose cohomology sheaves are
locally constant sheaves of Λ-modules of finite type forms a strictly full, saturated
triangulated subcategory of D(C,Λ), see Derived Categories, Lemma 17.1. Next,
consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In → K ⊗L
Λ I

n/In+1[1]
and the isomorphisms

K ⊗L
Λ I

n/In+1 =
(
K ⊗L

Λ Λ/I
)

⊗L
Λ/I I

n/In+1

Combined with Lemma 53.4 we obtain the result. □
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