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1. Introduction

00V0 The notion of a site was introduced by Grothendieck to be able to study sheaves

00V1

00v2

in the étale topology of schemes. The basic reference for this notion is perhaps
[AGVTI]. Our notion of a site differs from that in [AGVTI]; what we call a site
is called a category endowed with a pretopology in [AGVTIl Exposé II, Définition
1.3]. The reason we do this is that in algebraic geometry it is often convenient to
work with a given class of coverings, for example when defining when a property of
schemes is local in a given topology, see Descent, Section [I5] Our exposition will
closely follow [Art62]. We will not use universes.

2. Presheaves

Let C be a category. A presheaf of sets is a contravariant functor F from C to Sets
(see Categories, Remark [2.11). So for every object U of C we have a set F(U).
The elements of this set are called the sections of F over U. For every morphism
f:V — U the map F(f) : F(U) — F(V) is called the restriction map and is often
denoted f*: F(U) — F(V). Another way of expressing this is to say that f*(s) is
the pullback of s via f. Functoriality means that ¢* f*(s) = (f o g)*(s). Sometimes
we use the notation s|y := f*(s). This notation is consistent with the notion of
restriction of functions from topology because if W — V' — U are morphisms in C
and s is a section of F over U then s|w = (s|v)|w by the functorial nature of F.
Of course we have to be careful since it may very well happen that there is more
than one morphism V — U and it is certainly not going to be the case that the
corresponding pullback maps are equal.

Definition 2.1. A presheaf of sets on C is a contravariant functor from C to
Sets. Morphisms of presheaves are transformations of functors. The category of
presheaves of sets is denoted PSh(C).

Note that for any object U of C the functor of points hy, see Categories, Example
[3:4)is a presheaf. These are called the representable presheaves. These presheaves
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have the pleasing property that for any presheaf F we have
(2.1.1) Mor pgp(ey (hu, F) = F(U).
This is the Yoneda lemma (Categories, Lemma .

Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More
generally we may define a presheaf with values in a category.

Definition 2.2. Let C, A be categories. A presheaf F on C with values in A is a
contravariant functor from C to A, i.e., F : C°PP — A. A morphism of presheaves
F — G on C with values in A is a transformation of functors from F to G.

These form the objects and morphisms of the category of presheaves on C with
values in A.

Remark| 2.3. As already pointed out we may consider the category of presheaves
with values in any of the “big” categories listed in Categories, Remark These
will be “big” categories as well and they will be listed in the above mentioned
remark as we go along.

3. Injective and surjective maps of presheaves

Definition 3.1. Let C be a category, and let ¢ : F — G be a map of presheaves
of sets.

(1) We say that ¢ is injective if for every object U of C the map ¢y : F(U) —
G(U) is injective.

(2) We say that ¢ is surjective if for every object U of C the map py : F(U) —
G(U) is surjective.

Lemma 3.2. The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and
only if it is both injective and surjective.

Proof. We shall show that ¢ : F — G is injective if and only if it is a monomor-
phism of PSh(C). Indeed, the “only if” direction is straightforward, so let us show
the “if” direction. Assume that ¢ is a monomorphism. Let U € Ob(C); we need
to show that ¢y is injective. So let a,b € F(U) be such that ¢y (a) = ¢y (b); we
need to check that a = b. Under the isomorphism , the elements a and b of
F(U) correspond to two natural transformations a’,t’ € Morpgyc)(hv, F). Sim-
ilarly, under the analogous isomorphism Mor pgpc)(hy,G) = G(U), the two equal
elements ¢y (a) and oy (b) of G(U) correspond to the two natural transformations
woa’, pob’ € Mor pgyc)(hu, G), which therefore must also be equal. So poa’ = pol/,
and thus o’ = b’ (since ¢ is monic), whence a = b. This finishes (1).

We shall show that ¢ : F — G is surjective if and only if it is an epimorphism of
PSh(C). Indeed, the “only if” direction is straightforward, so let us show the “if”
direction. Assume that ¢ is an epimorphism.

For any two morphisms f : A — B and g : A — C in the category Sets, we let
inly , and inry ; denote the two canonical maps from B and C to B[], C. (Here,
the pushout is evaluated in Sets.)

Now, we define a presheaf H of sets on C by setting H(U) = G(U) {7 G(U)
(where the pushout is evaluated in Sets and induced by the map ¢y : F(U) — G(U))
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for every U € Ob(C); its action on morphisms is defined in the obvious way (by the
functoriality of pushout). Then, there are two natural transformations i1 : G — H
and 2 : G — H whose components at an object U € Ob(C) are given by the
maps inly,, », and inry,, ., respectively. The definition of a pushout shows that
i1 0 = iz 0 ¢, whence iy = iy (since ¢ is an epimorphism). Thus, for every
U € Ob(C), we have inly,, ,, = inrg, o,. Thus, gy must be surjective (since a
simple combinatorial argument shows that if f : A — B is a morphism in Sets,
then inly y = inry ¢ if and only if f is surjective). In other words, ¢ is surjective,
and (2) is proven.

We shall show that ¢ : F — G is both injective and surjective if and only if it
is an isomorphism of PSh(C). This time, the “if” direction is straightforward. To
prove the “only if” direction, it suffices to observe that if ¢ is both injective and
surjective, then ¢ is an invertible map for every U € Ob(C), and the inverses of
these maps for all U can be combined to a natural transformation G — F which is
an inverse to ¢. O

Definition 3.3. We say F is a subpresheaf of G if for every object U € Ob(C) the
set F(U) is a subset of G(U), compatibly with the restriction mappings.

In other words, the inclusion maps F(U) — G(U) glue together to give an (injective)
morphism of presheaves F — G.

Lemma 3.4. Let C be a category. Suppose that ¢ : F — G is a morphism of
presheaves of sets on C. There exists a unique subpresheaf G' C G such that ¢
factors as F — G' — G and such that the first map is surjective.

Proof. To prove existence, just set G'(U) = ¢y (F(U)) for every U € Ob(C') (and
inherit the action on morphisms from G), and prove that this defines a subpresheaf
of G and that ¢ factors as F — G’ — G with the first map being surjective.
Uniqueness is straightforward. (I

Definition 3.5. Notation as in Lemma We say that G’ is the image of .

4. Limits and colimits of presheaves

Let C be a category. Limits and colimits exist in the category PSh(C). In addition,
for any U € Ob(C) the functor

PSKh(C) — Sets, F+— F(U)

commutes with limits and colimits. Perhaps the easiest way to prove these state-
ments is the following. Given a diagram F : Z — PSh(C) define presheaves

Flim : U — lim;er F;(U) and Feolim : U — colim;ez F; (U)

There are clearly projection maps Fi, — F; and canonical maps F; — Feolim-
These maps satisfy the requirements of the maps of a limit (resp. colimit) of Cat-
egories, Definition m (resp. Categories, Definition . Indeed, they clearly
form a cone, resp. a cocone, over F. Furthermore, if (G,q; : G — F;) is another
system (as in the definition of a limit), then we get for every U a system of maps
G(U) — F;(U) with suitable functoriality requirements. And thus a unique map
G(U) = FAim(U). Tt is easy to verify these are compatible as we vary U and arise
from the desired map G — Fjj,. A similar argument works in the case of the
colimit.
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5. Functoriality of categories of presheaves

Let u : C — D be a functor between categories. In this case we denote
uP : PSh(D) — PSh(C)

the functor that associates to G on D the presheaf uPG = G o u. Note that by the
previous section this functor commutes with all limits.
For V € Ob(D) let i} denote the category with

Ob(Z}) — {(U,¢)|U€Ob(C),6: V —u(U)}
Morzy (U, ¢), (U, ¢")) = {f:U—=U' inClu(f)c¢=q¢}
We sometimes drop the subscript “ from the notation and we simply write Zy,. We

will use these categories to define a left adjoint to the functor uP. Before we do so
we prove a few technical lemmas.

(5.0.1)

Lemmal 5.1. Let u : C — D be a functor between categories. Suppose that C has
fibre products and equalizers, and that uw commutes with them. Then the categories
(Zv )PP satisfy the hypotheses of Categories, Lemma .

Proof. There are two conditions to check.

First, suppose we are given three objects ¢ : V. — u(U), ¢' : V. — u(U’), and
¢" : V= w(U") and morphisms a : U' — U, b: U" — U such that u(a) o ¢’ = ¢
and u(b)og” = ¢. We have to show there exists another object ¢ : V' — w(U"’) and
morphisms ¢ : U" — U’ and d : U"" — U” such that u(c)o ¢ = ¢, u(d) o ¢ = ¢
and aoc = bod. We take U" = U’ xy U"” with ¢ and d the projection morphisms.
This works as u commutes with fibre products; we omit the verification.

Second, suppose we are given two objects ¢ : V — w(U) and ¢’ : V. — w(U’) and
morphisms a,b : (U,¢) — (U’,¢’'). We have to find a morphism ¢ : (U",¢") —
(U, ¢) which equalizes a and b. Let ¢ : U” — U be the equalizer of a and b in the
category C. As u commutes with equalizers and since u(a) o ¢ = u(b) o ¢ = ¢' we
obtain a morphism ¢” : V. — w(U"). O

Lemmal 5.2. Let u:C — D be a functor between categories. Assume

(1) the category C has a final object X and uw(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then the index categories (I )°PP are filtered (see Categories, Definition .

Proof. The assumptions imply that the assumptions of Lemma [5.1] are satisfied
(see the discussion in Categories, Section . By Categories, Lemma we see
that Zy is a (possibly empty) disjoint union of directed categories. Hence it suffices
to show that Zy is connected.

First, we show that Zy is nonempty. Namely, let X be the final object of C, which
exists by assumption. Let V' — u(X) be the morphism coming from the fact that
u(X) is final in D by assumption. This gives an object of Zy .

Second, we show that Zy is connected. Let ¢y : V — u(U;) and ¢ : V — w(Us)
be in Ob(Zy). By assumption Uy x Uy exists and u(Uy x Us) = u(Uy) x u(Uz).
Consider the morphism ¢ : V. — w(U; x Uy) corresponding to (¢1,d2) by the
universal property of products. Clearly the object ¢ : V' — u(U; x Us) maps to
both ¢1 : V — w(Uy) and ¢3 : V — u(Us). O
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Given g : V! — V in D we get a functor g : Zyy — Zy- by setting g(U, ¢) = (U, pog)
on objects. Given a presheaf F on C we obtain a functor

Fy : TP — Sets, (U, ¢) — F(U).

In other words, Fy is a presheaf of sets on Zy,. Note that we have Fy o g = Fy.
We define
upF (V) = colimzore Fy

As a colimit we obtain for each (U,¢) € Ob(Zy) a canonical map F(U) 9,
upF (V). For g : V! — V as above there is a canonical restriction map g* :
upF (V) = up, F (V') compatible with Fy. o g = Fy by Categories, Lemma It
is the unique map so that for all (U, ¢) € Ob(Zy) the diagram

FU) " u, F(V)

id g*

FU) 220 F v
commutes. The uniqueness of these maps implies that we obtain a presheaf. This
presheaf will be denoted u,F.

Lemma 5.3. There is a canonical map F(U) — up,F(u(U)), which is compatible
with restriction maps (on F and on upF).

Proof. This is just the map c(id, () introduced above. O

Note that any map of presheaves F — F’ gives rise to compatible systems of maps
between functors Fy» — Fi,, and hence to a map of presheaves u,F — u,F'. In
other words, we have defined a functor

up, : PSh(C) — PSh(D)

Lemma 5.4. The functor u, is a left adjoint to the functor uP. In other words
the formula

Mor pgpey (F, uPG) = Mor pgppy (upF, G)
holds bifunctorially in F and G.

Proof. Let G be a presheaf on D and let F be a presheaf on C. We will show that
the displayed formula holds by constructing maps either way. We will leave it to
the reader to verify they are each others inverse.

Given a map a : upF — G we get vPa : vPu,F — uPG. Lemma says that there
is a map F — wPu,F. The composition of the two gives the desired map. (The
good thing about this construction is that it is clearly functorial in everything in
sight.)

Conversely, given a map 3 : F — uPG we get a map u,[3 : upF — upuPG. We claim
that the functor uPGy on Zy has a canonical map to the constant functor with
value G(Y'). Namely, for every object (X, ¢) of Zy, the value of uP?Gy- on this object
is G(u(X)) which maps to G(Y') by G(¢) = ¢*. This is a transformation of functors
because G is a functor itself. This leads to a map u,u’G(Y) — G(Y). Another
trivial verification shows that this is functorial in Y leading to a map of presheaves
upuPG — G. The composition upF — upuPG — G is the desired map. O
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Remark| 5.5. Suppose that A is a category such that any diagram Zy — A has
a colimit in A. In this case it is clear that there are functors u? and wu,, defined in
exactly the same way as above, on the categories of presheaves with values in A.
Moreover, the adjointness of the pair v” and u, continues to hold in this setting.

Lemma 5.6. Let u:C — D be a functor between categories. For any object U of
C we have uphy = hyv)-

Proof. By adjointness of u, and u? we have
Mor pgp(p) (uphu, G) = Mor pgpc) (hu, u’G) = u?G(U) = G(u(U))

and hence by Yoneda’s lemma we see that w,hy = hy ) as presheaves. O

6. Sites

Our notion of a site uses the following type of structures.

Definition 6.1. Let C be a category, see Conventions, Section A family of
morphisms with fized target in C is given by an object U € Ob(C), a set I and
for each ¢ € I a morphism U; — U of C with target U. We use the notation
{U; — U};er to indicate this.

It can happen that the set I is empty! This notation is meant to suggest an open
covering as in topology.

Definition 6.2. A sz'tcﬂ is given by a category C and a set Cov(C) of families
of morphisms with fixed target {U; — U}ier, called coverings of C, satisfying the
following axioms
(1) f V — U is an isomorphism then {V — U} € Cov(C).
(2) If {U; = U}ier € Cov(C) and for each i we have {V;; — U;};jes, € Cov(C),
then {Vj; = U}ier,jes, € Cov(C).
(3) If {U; — U}ier € Cov(C) and V' — U is a morphism of C then U; xy V
exists for all 4 and {U; xy V — V}ier € Cov(C).

Clarifications. In axiom (1) we require there should be a covering {U; — U};cr of
C such that I = {i} is a singleton set and such that the morphism U; — U is equal
to the morphism V' — U given in (1). In the following we often denote {V — U}
a family of morphisms with fixed target whose index set is a singleton. In axiom
(3) we require the existence of the covering for some choice of the fibre products
U, xyVforiel.

Remark 6.3. (On set theoretic issues — skip on a first reading.) The main reason
for introducing sites is to study the category of sheaves on a site, because it is
the generalization of the category of sheaves on a topological space that has been
so important in algebraic geometry. In order to avoid thinking about things like
“classes of classes” and so on, we will not allow sites to be “big” categories, in
contrast to what we do for categories and 2-categories.

Suppose that C is a category and that Cov(C) is a proper class of coverings satisfying
(1), (2) and (3) above. We will not allow this as a site either, mainly because we
are going to take limits over coverings. However, there are several natural ways to
replace Cov(C) by a set of coverings or a slightly different structure that give rise
to the same category of sheaves. For example:

IThis notation differs from that of [AGV7I], as explained in the introduction.
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(1) In Sets, Section [L1| we show how to pick a suitable set of coverings that
gives the same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition
. The resulting topology on C has the same category of sheaves. Two
topologies have the same categories of sheaves if and only if they are equal,
see Theorem[50.2] A topology on a category is given by a choice of sieves on
objects. The collection of all possible sieves and even all possible topologies
on C is a set.

(3) We could also slightly modify the notion of a site, see Remark below,
and end up with a canonical set of coverings.

Each of these solutions has some minor drawback. For the first, one has to check
that constructions later on do not depend on the choice of the set of coverings. For
the second, one has to learn about topologies and redo many of the arguments for
sites. For the third, see the last sentence of Remark [48:4]

Our approach will be to work with sites as in Definition [6.2]above. Given a category
C with a proper class of coverings as above, we will replace this by a set of coverings
producing a site using Sets, Lemma It is shown in Lemma [B.8] below that the
resulting category of sheaves (the topos) is independent of this choice. We leave
it to the reader to use one of the other two strategies to deal with these issues if
he/she so desires.

Example 6.4. Let X be a topological space. Let Xz, be the category whose
objects consist of all the open sets U in X and whose morphisms are just the
inclusion maps. That is, there is at most one morphism between any two objects in
X zar- Now define {U; — U}ier € Cov(Xza,) if and only if | JU; = U. Conditions
(1) and (2) above are clear, and (3) is also clear once we realize that in Xz,
we have U x V = U N V. Note that in particular the empty set has to be an
element of Xz, since otherwise this would not work in general. Furthermore, it
is equally important, as we will see later, to allow the empty covering of the empty
set as a covering! We turn Xz, into a site by choosing a suitable set of coverings
Cov(Xzar)r.a as in Sets, Lemma Presheaves and sheaves (as defined below)
on the site Xz, agree exactly with the usual notion of a presheaves and sheaves
on a topological space, as defined in Sheaves, Section

Example|6.5. Let G be a group. Consider the category G-Sets whose objects are
sets X with a left G-action, with G-equivariant maps as the morphisms. An impor-
tant example is ¢G which is the G-set whose underlying set is G and action given
by left multiplication. This category has fiber products, see Categories, Section
We declare {¢; : U; — U}ier to be a covering if | J;.; i (U;) = U. This gives a class
of coverings on G-Sets which is easily seen to satisfy conditions (1), (2), and (3) of
Definition [6.2] The result is not a site since both the collection of objects of the
underlying category and the collection of coverings form a proper class. We first
replace by G-Sets by a full subcategory G-Sets, as in Sets, Lemma[I0.1] After this
the site (G-Sets,, Cov, o (G-Setsy)) gotten by suitably restricting the collection of
coverings as in Sets, Lemma will be denoted 7¢.

As a special case, if the group G is countable, then we can let T be the category
of countable G-sets and coverings those jointly surjective families of morphisms
{¢i : Uy = U}ier such that I is countable.
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Example| 6.6. Let C be a category. There is a canonical way to turn this into a
site where {f : V' — U | f is an isomorphism} are the coverings of U. Sheaves on
this site are the presheaves on C. This corresponding topology is called the chaotic
or indiscrete topology.

7. Sheaves

Let C be a site. Before we introduce the notion of a sheaf with values in a category
we explain what it means for a presheaf of sets to be a sheaf. Let F be a presheaf
of sets on C and let {U; — U},;cr be an element of Cov(C). By assumption all the
fibre products U; xy U; exist in C. There are two natural maps

prg
[ier F(U) 2 g anyerxs FUip v Uiy)
pry
which we will denote pr}, ¢ = 0,1 as indicated in the displayed equation. Namely,
an element of the left hand side corresponds to a family (s;);cr, where each s; is a
section of F over U;. For each pair (ig,41) € I x I we have the projection morphisms

(30,i1)
i1

prz(-zo’il) 1 U,y xu Uiy, — U, and pr Uy, xu Uiy — U,y

Thus we may pull back either the section s;, via the first of these maps or the
section s;, via the second. Explicitly the maps we referred to above are

(i0,31),%

0 (8i)ier — : i
e < (so)er = (o™ i)
and o

pry : (8i)ier — (Prl('im“)’*(siln
Finally consider the natural map

FO)—1I._, FW), s (s

(i0,i1)EIXT

Ui)iEI

where we have used the notation s|y, to indicate the pullback of s via the map
U; — U. It is clear from the functorial nature of F and the commutativity of the
fibre product diagrams that pr§((s|u,)ier) = pri((s|v,)ier)-

Definition 7.1. Let C be a site, and let F be a presheaf of sets on C. We say F
is a sheaf if for every covering {U; — U};cr € Cov(C) the diagram

pry
(711) ]:(U) —_— Hiel ]:(Uz) o H(io,il)EIXI ]:(Ulo XU U“)

pri
represents the first arrow as the equalizer of prj and prj.

Loosely speaking this means that given sections s; € F(U;) such that

Si U71><UU_7‘ = sj UiXUUJ‘
in F(U; xy Uj) for all pairs (¢,5) € I x I then there exists a unique s € F(U) such

that s; = s|y,.

Remark 7.2. If the covering {U; — U}ics is the empty family (this means that
I = (), then the sheaf condition signifies that F(U) = {x} is a singleton set. This
is because in the second and third sets are empty products in the category
of sets, which are final objects in the category of sets, hence singletons.
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Example 7.3. Let X be a topological space. Let Xz, be the site constructed in
Example @ The notion of a sheaf on Xz,, coincides with the notion of a sheaf
on X introduced in Sheaves, Definition

Example 7.4. Let X be a topological space. Let us consider the site X7 . which
is the same as the site Xz, of Example except that we disallow the empty
covering of the empty set. In other words, we do allow the covering {# — @} but
we do not allow the covering whose index set is empty. It is easy to show that this
still defines a site. However, we claim that the sheaves on X7, . are different from
the sheaves on X z,,.. For example, as an extreme case consider the situation where
X = {p} is a singleton. Then the objects of X/, . are (), X and every covering of
0 can be refined by {# — (0} and every covering of X by {X — X}. Clearly, a
sheaf on this is given by any choice of a set F()) and any choice of a set F(X),
together with any restriction map F(X) — F(0). Thus sheaves on X/, are the
same as usual sheaves on the two point space {7, p} with open sets {0, {n}, {p,n}}.
In general sheaves on X/, . are the same as sheaves on the space X II {n}, with
opens given by the empty set and any set of the form U U {n} for U C X open.

Definition 7.5. The category Sh(C) of sheaves of sets is the full subcategory of
the category PSh(C) whose objects are the sheaves of sets.

Let A be a category. If products indexed by I, and I x I exist in A for any I that
occurs as an index set for covering families then Definition above makes sense,
and defines a notion of a sheaf on C with values in .A. Note that the diagram in A

*
pry

FU) —ILie; F(Us) H(io,il)eIxI‘F(Uio xu Ui, )

- o
w
pry

is an equalizer diagram if and only if for every object X of A the diagram of sets

Mor (X, (7)) —— [T Mora(X, F(U)) % [[Mora(X, (U, o Us,)

pry
is an equalizer diagram.

Suppose A is arbitrary. Let F be a presheaf with values in A. Choose any object
X € Ob(A). Then we get a presheaf of sets Fx defined by the rule

Fx(U) =Mor4(X, F(U)).

From the above it follows that a good definition is obtained by requiring all the
presheaves Fx to be sheaves of sets.

Definition 7.6. Let C be a site, let A be a category and let F be a presheaf on
C with values in A. We say that F is a sheaf if for all objects X of A the presheaf
of sets Fx (defined above) is a sheaf.

8. Families of morphisms with fixed target

This section is meant to introduce some notions regarding families of morphisms
with the same target.

Definition 8.1. Let C be a category. Let U = {U; — U}icr be a family of
morphisms of C with fixed target. Let V = {V; — V},c; be another.
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(1) A morphism of families of maps with fized target of C from U to V, or
simply a morphism from U to V is given by a morphism U — V', a map of
sets a : I — J and for each i € I a morphism U; — V,;) such that the
diagram

—Vag)

al?
v
is commutative.

(2) In the special case that U = V and U — V is the identity we call U a
refinement of the family V.

S<—85

_—

A trivial but important remark is that if V = {V; — V};¢; is the empty family of
maps, i.e., if J = (), then no family U = {U; — V };c5 with I # 0 can refine V!
Definition 8.2. Let C be a category. Let U = {¢; : U; = Ulier, and V = {¢; :
Vj = U}jes be two families of morphisms with fixed target.
(1) We say U and V are combinatorially equivalent if there exist maps a : [ — J
and 3 :J — I such that p; = ¥, and ¥; = ©g(;)-
(2) We say U and V are tautologically equivalent if there exist maps a: [ — J
and f:J — I and for all i € I and j € J commutative diagrams

Uy———— Vi

N~ N

with 1somorphlsms as horizontal arrows.

Lemma 8.3. Let C be a category. LetU = {p; : U; = Uticr, andV = {¢; : V; —
U}jes be two families of morphisms with the same fized target.
(1) IfU and V are combinatorially equivalent then they are tautologically equiv-
alent.
(2) If U and V are tautologically equivalent then U is a refinement of V and V
is a refinement of U.
(3) The relation “being combinatorially equivalent” is an equivalence relation
on all families of morphisms with fixed target.
(4) The relation “being tautologically equivalent” is an equivalence relation on
all families of morphisms with fixed target.
(5) The relation “U refines V and V refines U7 is an equivalence relation on
all families of morphisms with fixed target.

Proof. Omitted. O

In the following lemma, given a category C, a presheaf F on C, a family U = {U; —
U}ier such that all fibre products U; xy Uy exist, we say that the sheaf condition
for F with respect to U holds if the diagram (7.1.1) is an equalizer diagram.

Lemma 8.4. Let C be a category. Let U = {¢; : U; = Ulier, and V = {¢; :
Vi = U}jes be two families of morphisms with the same fized target. Assume that
the fibre products U; xy Uy and V; xy Vj exist. If U and V are tautologically
equivalent, then for any presheaf F on C the sheaf condition for F with respect to
U is equivalent to the sheaf condition for F with respect to V.
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Proof. First, note that if ¢ : A — B is an isomorphism in the category C, then
©* : F(B) — F(A) is an isomorphism. Let 5 :J — I be a map and let x; : V; —
Us(;) be isomorphisms over U which are assumed to exist by hypothesis. Let us
show that the sheaf condition for V implies the sheaf condition for &. Suppose
given sections s; € F(U;) such that

Si UiXuU,i/ = Si/ UiXUUi/
in F(U; xp Uir) for all pairs (i,i") € I x I. Then we can define s; = x}sg(;). For
any pair (j,j') € J x J the morphism x; Xia, xjv : V; Xv Vjr = Usy) v Ug(jry is

an isomorphism as well. Hence by transport of structure we see that
$ilvixuvy = sj'lvixuv,

as well. The sheaf condition w.r.t. V implies there exists a unique s such that
s|ly, = s; for all j € J. By the first remark of the proof this implies that s|y, = s;
for all ¢ € Im(5) as well. Suppose that ¢ € I, i € Im(8). For such an ¢ we
have isomorphisms U; — Vi) — Upg(a()) over U. This gives a morphism U; —
Ui Xu Ug(a(i)) which is a section of the projection. Because s; and sg(q(s)) restrict
to the same element on the fibre product we conclude that sg.(;)) pulls back to s;
via U; = Ug(qa(i))- Thus we see that also s; = s|y, as desired. ([

Lemma 8.5. Let C be a category. Let V = {V; = U}ljc; = U = {U; — Utier
be a morphism of families of maps with fixed target of C given by id : U — U,
a:J =TI and f;: Vy = Uy Let F be a presheaf on C. If F(U) — [;c; F(V))
is injective then F(U) — [[,c; F(Us) is injective.

Proof. Omitted. O

Lemma 8.6. Let C be a category. Let V = {V; = U}ljc;s = U = {U; = Utier
be a morphism of families of maps with fixed target of C given by id : U — U,
a:J — 1 and f;: V; — Uyy)- Let F be a presheaf on C. If

(1) the fibre products U; xy Uy, Uy Xy Vj, V; xy Vj exist,

(2) F satisfies the sheaf condition with respect to V, and

(3) for everyi € I the map F(U;) — [1;c; F(Vj xu Us) is injective.
Then F satisfies the sheaf condition with respect to U.

Proof. By Lemma the map F(U) — [[F(U;) is injective. Suppose given
s; € F(U;) such that si|u,x v, = sirlv,xyv, forall 4,7’ € I. Set s; = f1(sa(j)) €
F(V}). Since the morphisms f; are morphisms over U we obtain induced morphisms
figr o Vi xu Vi — Uqiy Xu Uq(iry compatible with the f;, f;» via the projection
maps. It follows that

8ilvixovy = Fij (Sa) Ve xvUan) = Jij (Sai) Ve xuUagn) = Silvixuvy
for all j,5' € J. Hence, by the sheaf condition for F with respect to V, we get
a section s € F(U) which restricts to s; on each V;. We are done if we show s
restricts to s; on U; for any ¢ € I. Since F satisfies (3) it suffices to show that s
and s; restrict to the same element over U; xy Vj for all j € J. To see this we use

sluixpv; = 8iluixpv; = (X [5) Sa()|vixpUag, = (X [3) silv,xpU.,, = Silvixov;
as desired. O

Lemmal 8.7. Let C be a category. Let Cov;, i = 1,2 be two sets of families of
morphisms with fized target which each define the structure of a site on C.
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(1) If every U € Covy is tautologically equivalent to some V € Couvy, then
Sh(C, Covy) C Sh(C, Covy). If also, every U € Cowy is tautologically equiv-
alent to some V € Covy then the category of sheaves are equal.

(2) Suppose that for each U € Covy there exists a V € Covs such that V refines
U. In this case Sh(C, Covy) C Sh(C, Covy). If also for everyU € Couvy there
exists a V € Covy such that V refines U, then the categories of sheaves are
equal.

Proof. Part (1) follows directly from Lemma and the definitions.

Proof of (2). Let F be a sheaf of sets for the site (C,Covy). Let U € Covy, say
U ={U; — U}icr. By assumption we may choose a refinement V € Covy of U, say
V = {V; = U}jes and refinement given by o : J — I and f; : Vj — Ugj). Observe
that F satisfies the sheaf condition for V and for the coverings {V; xy U; — U, }jes
as these are in Covy. Hence F satisfies the sheaf condition for ¢/ by Lemmal[8:6] O

Lemma 8.8. Let C be a category. Let Cou(C) be a proper class of coverings
satisfying conditions (1), (2) and (3) of Definition[6.4 Let Covy, Covy C Cou(C)
be two subsets of Cov(C) which endow C with the structure of a site. If every covering
U € Cov(C) is combinatorially equivalent to a covering in Covy and combinatorially
equivalent to a covering in Covq, then Sh(C, Covy) = Sh(C, Couvs).

Proof. This is clear from Lemmas[3.7] and [8.3]above as the hypothesis implies that
every covering U € Covy C Cov(C) is combinatorially equivalent to an element of
Cova, and similarly with the roles of Covy; and Covsy reversed. O

9. The example of G-sets

As an example, consider the site Tg of Example [6.5] We will describe the category
of sheaves on Tg. The answer will turn out to be independent of the choices made
in defining 7g. In fact, during the proof we will need only the following properties
of the site T¢:
(a) T is a full subcategory of G-Sets,
(b) T¢ contains the G-set oG,
(¢) T has fibre products and they are the same as in G-Sets,
(d) given U € Ob(7T¢) and a G-invariant subset O C U, there exists an object
of Tg isomorphic to O, and
(e) any surjective family of maps {U; — U }iey, with U, U; € Ob(7¢) is combi-
natorially equivalent to a covering of 7T¢.

These properties hold by Sets, Lemmas and
Remark that the map
Homg (G, cG) — GPP o — (1)

is an isomorphism of groups. The inverse map sends g € G to the map R, : s — sg
(i.e. right multiplication). Note that Ry, 4, = Ry, © Ry, so the opposite is necessary.

This implies that for every presheaf F on T¢ the value F(¢G) inherits the structure
of a G-set as follows: ¢g-s for g € G and s € F(¢G) defined by F(R,)(s). This is
a left action because

(9192) - 5 = F(Rgy4,)(5) = F(Ry, © Ry, )(3) = F(Rg,)(F(Ryg,)(5)) = 91 - (92 - ).
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Here we’ve used that F is contravariant. Note that if 7/ — G is a morphism of
presheaves of sets on T then we get a map F(¢G) — G(¢G) which is compatible
with the G-actions we have just defined. All in all we have constructed a functor

PSWh(Tg) — G-Sets, F+— F(cG).

We leave it to the reader to verify that this construction has the pleasing property
that the representable presheaf hy is mapped to something canonically isomorphic
to U. In a formula hy(¢G) = Homg (G, U) = U.

Suppose that S is a G-set. We define a presheaf Fg by the formulaﬂ
fs(U) = MorG—Sets(Ua S)

This is clearly a presheaf. On the other hand, suppose that {U; — U}ier is a
covering in 7. This implies that ]| , Ui — U is surjective. Thus it is clear that the
map

Fs(U) = Morg.sers(U, §) — [ [ Fs(Ui) = [ [ Morg-sets(Ui, S)

is injective. And, given a family of G-equivariant maps s; : U; — S, such that all
the diagrams

U, xu UjHUvj

Lk

U —>"—=38
commute, there is a unique G-equivariant map s : U — S such that s; is the
composition U; — U — S. Namely, we just define s(u) = s;(u;) where ¢ € [ is any
index such that there exists some u; € U; mapping to u under the map U; — U.
The commutativity of the diagrams above implies exactly that this construction is
well defined. All in all we have constructed a functor

G-Sets — Sh(Tg), S+— Fs.

We now have the following diagram of categories and functors

PSW(Te) — 227D G gets
~, 7
Sh(Te)

It is immediate from the definitions that Fg(¢G) = Morg(¢G,S) = S, the last
equality by evaluation at 1. This almost proves the following.

Proposition| 9.1. The functors F — F(gG) and S — Fgs define quasi-inverse
equivalences between Sh(Tq) and G-Sets.

Proof. We have already seen that composing the functors one way around is iso-
morphic to the identity functor. In the other direction, for any sheaf H there is a
natural map of sheaves

can: H — ‘F'H(GG)'

214 may appear this is the representable presheaf defined by S. This may not be the case
because S may not be an object of 7o which was chosen to be a sufficiently large set of G-sets.
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Namely, for any object U of Tg we let cany be the map

H(U) — fH(Gg)(U) = Morg(U,'H(GG))
s — (u— als).

Here a,, : ¢G — U is the map a,(g9) = gu and o : H(U) — H(cG) is the
pullback map. A trivial but confusing verification shows that this is indeed a map
of presheaves. We have to show that can is an isomorphism. We do this by showing
cany is an isomorphism for all U € Ob(7¢). We leave the (important but easy) case
that U = G to the reader. A general object U of 7 is a disjoint union of G-orbits:
U = [1;c; Os. The family of maps {O; — U}ier is tautologically equivalent to a
covering in T¢ (by the properties of 7¢ listed at the beginning of this section). Hence
by Lemmathe sheaf H satisfies the sheaf property with respect to {O; — U},er.
The sheaf property for this covering implies #(U) = [[, H(O;). Hence it suffices to
show that cany is an isomorphism when U consists of a single G-orbit. Let u € U
and let H C G be its stabilizer. Clearly, Morg(U, H(cG)) = H(cG)? equals the
subset of H-invariant elements. On the other hand consider the covering {¢G — U}
given by g — gu (again it is just combinatorially equivalent to some covering of T¢;,
and again this doesn’t matter). Note that the fibre product (¢G) xv (¢G) is equal
to {(g9,9h),9 € G,h € H} =[],y ¢G. Hence the sheaf property for this covering
reads as
prg
HU) ——=H(cG) ___ Ilhen H(cG).

P
pry

The two maps pr} into the factor H(¢G) differ by multiplication by h. Now the
result follows from this and the fact that can is an isomorphism for U = ¢G. O

10. Sheafification

In order to define the sheafification we study the zeroth Cech cohomology group of
a covering and its functoriality properties.

Let F be a presheaf of sets on C, and let U = {U; — U};ecr be a covering of C. Let
us use the notation F(U) to indicate the equalizer

HO(U,J—") = {(Si)ieI € HZ ]:.(Ul) ‘ 5i|Uz‘><UUj = Sj‘UiXUUj VZ,] € I}

As we will see later, this is the zeroth Cech cohomology of F over U with respect
to the covering U. A small remark is that we can define H°(U, F) as soon as all
the morphisms U; — U are representable, i.e., U need not be a covering of the
site. There is a canonical map F(U) — H°(U,F). It is clear that a morphism of
coverings U — V induces commutative diagrams

~

Ui XU Uj

Va@) xv Vag)

/
/
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This in turn produces a map H°(V, F) — H°(U,F), compatible with the map
F(V)—= FU).

By construction, a presheaf F is a sheaf if and only if for every covering U of C the
natural map F(U) — H°(U, F) is bijective. We will use this notion to prove the
following simple lemma about limits of sheaves.

Lemma 10.1. Let F : Z — Sh(C) be a diagram. Then limz F exists and is equal
to the limit in the category of presheaves.

Proof. Let lim; F; be the limit as a presheaf. We will show that this is a sheaf and
then it will trivially follow that it is a limit in the category of sheaves. To prove the
sheaf property, let V = {V; — V};cs be a covering. Let (s;),;es be an element of
HO(V,lim; F;). Using the projection maps we get elements (s;;)jes in H'(V, F;).
By the sheaf property for F; we see that there is a unique s; € F;(V) such that
554 = silv;. Let ¢ 14 — 4’ be a morphism of the index category. We would like to
show that F(¢) : F; — Fir maps s; to sy. We know this is true for the sections
si,; and sy ; for all j and hence by the sheaf property for F;s this is true. At this
point we have an element s = (s;);cob(z) of (lim; 3)(V). We leave it to the reader
to see this element has the required property that s; = s|y,. O

Example 10.2. A particular example is the limit over the empty diagram. This
gives the final object in the category of (pre)sheaves. It is the presheaf that asso-
ciates to each object U of C a singleton set, with unique restriction mappings and
moreover this presheaf is a sheaf. We often denote this sheaf by *.

Let Jy be the category of all coverings of U. In other words, the objects of J are
the coverings of U in C, and the morphisms are the refinements. By our conventions
on sites this is indeed a category, i.e., the collection of objects and morphisms forms
a set. Note that Ob(Jy) is not empty since {idy } is an object of it. According to
the remarks above the construction U — H°(U, F) is a contravariant functor on
Ju. We define
f+(U) = COlil’IlJ;pP HO(Z/I,.F)

See Categories, Section [I4] for a discussion of limits and colimits. We point out that
later we will see that F*(U) is the zeroth Cech cohomology of F over U.

Before we say more about the structure of the colimit, we turn the collection of
sets FT(U), U € Ob(C) into a presheaf. Namely, let V — U be a morphism of C.
By the axioms of a site there is a functor]

Jo — Jv, {Ui—=Uyr—{U;xgV =V}

Note that the projection maps furnish a functorial morphism of coverings {U; Xy
V — V} — {U; — U} and hence, by the construction above, a functorial map
of sets HO{U; — U}, F) — H°({U; xy V. — V},F). In other words, there

is a transformation of functors from H%(—, F) : J¥ — Sets to the composition

o
T — TP M Sets. Hence by generalities of colimits we obtain a canonical
map FT(U) — F* (V). In terms of the description of the set F*(U) above, it just
takes the element associated with s = (s;) € H°({U; — U}, F) to the element

associated with (s;|v«,v,) € HO({U; xy V — V}, F).

3This construction actually involves a choice of the fibre products U; Xy V' and hence the
axiom of choice. The resulting map does not depend on the choices made, see below.
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Lemma 10.3. The constructions above define a presheaf F+ together with a
canonical map of presheaves F — FT.

Proof. All we have to do is to show that given morphisms W — V — U the
composition FT(U) — FH(V) — FT(W) equals the map F*(U) — FT(W).
This can be shown directly by verifying that, given a covering {U; — U} and
s = (s;) € H'({U; — U}, F), we have canonically W xy U; & W xy (V xy U;),
and s;|w U, corresponds to (si|vx,u,)|wxy (vx,u;) via this isomorphism. O

More indirectly, the result of Lemma shows that we may pullback an element
s as above via any morphism from any covering of W to {U; — U} and we will
always end up with the same element in F*(W).

Lemma 10.4. The association F — (F — F 1) is a functor.

Proof. Instead of proving this we state exactly what needs to be proven. Let
F — G be a map of presheaves. Prove the commutativity of:

F——F*

|

G——=g*

O

The next two lemmas imply that the colimits above are colimits over a directed set.

Lemmal 10.5. Given a pair of coverings {U; — U} and {V; — U} of a given
object U of the site C, there exists a covering which is a common refinement.

Proof. Since C is a site we have that for every i the family {V; xy U; — U;}; is a
covering. And, then another axiom implies that {V; xy U; — U}, ; is a covering of
U. Clearly this covering refines both given coverings. O

Lemma 10.6. Any two morphisms f,g : U — V of coverings inducing the same
morphism U — V induce the same map H°(V,F) — H°(U, F).

Proof. Let Y = {U; = Utier and V = {V; — V},c;. The morphism f consists of
amap U — V,amap a: I — J and maps f; : U; — V,(;). Likewise, g determines
amap : 1 — J and maps g; : U; — Vg(;). As f and g induce the same map

U — V, the diagram
0)
N
U, Vv
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is commutative for every ¢ € I. Hence f and g factor through the fibre product

.

U; —2 > Vo) Xv Vi)

Via(i)-
Now let s = (s;); € H(V, F). Then for all i € I:
(f*s)i = £ (Sa(i) = ©"Pr1(5a()) = ¢ Pra(sp)) = 9; (sp@:)) = (978)i;

where the middle equality is given by the definition of H°(V, F). This shows that
the maps H°(V, F) — H°(U, F) induced by f and g are equal. O

Remark|/10.7. In particular this lemma shows that if I/ is a refinement of V, and if
V is a refinement of U, then there is a canonical identification H(U, F) = H(V, F).

From these two lemmas, and the fact that [Jy is nonempty, it follows that the
diagram H°(—, F) : J "7 — Sets is filtered, see Categories, Deﬁnitionm Hence,
by Categories, Section the colimit F*(U) may be described in the following
straightforward manner. Namely, every element in the set FT(U) arises from an
element s € H°(U,F) for some covering U of U. Given a second element s’ €
HO(U', F) then s and s’ determine the same element of the colimit if and only if
there exists a covering V of U and refinements f : V — U and f' : V — U’ such
that f*s = (f')*s’ in H°(V, F). Since the trivial covering {idy} is an object of Jis
we get a canonical map F(U) — F(U).

Lemma 10.8. The map 0 : F — F+ has the following property: For every object
U of C and every section s € F+(U) there exists a covering {U; — U} such that
slu, is in the image of 0 : F(U;) — F(U;).

Proof. Namely, let {U; — U} be a covering such that s arises from the element
(si) € H'({U; — U}, F). According to Lemma we may consider the covering
{U; — U,} and the (obvious) morphism of coverings {U; — U;} — {U; — U} to
compute the pullback of s to an element of 7 (U;). And indeed, using this covering
we get exactly 6(s;) for the restriction of s to Uj. O

Definition 10.9. We say that a presheaf of sets F on a site C is separated if, for
all coverings of {U; — U}, the map F(U) — [[ F(U;) is injective.

Theorem 10.10. With F as above

(1) The presheaf F* is separated.

(2) If F is separated, then FT is a sheaf and the map of presheaves F — FT
18 injective.

(3) If F is a sheaf, then F — F7T is an isomorphism.

(4) The presheaf F*T is always a sheaf.

Proof. Proof of . Suppose that s,s' € FT(U) and suppose that there exists
some covering {U; — U} such that s|y, = §'|y, for all . We now have three
coverings of U: the covering {U; — U} above, a covering U for s as in Lemma
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10.8} and a similar covering ¢’ for s’. By Lemma we can find a common
refinement, say {W; — U}. This means we have s;, s} € F(W;) such that s|lw, =
0(s;), similarly for s'|y;, and such that 6(s;) = 6(s;). This last equality means
that there exists some covering {W;; — W;} such that s;|lw,, = sj|lw,,. Then

since {Wj, — U} is a covering we see that s,s’ map to the same element of
HO({W;, — U}, F) as desired.

Proof of . It is clear that F — FT is injective because all the maps F(U) —
H°(U, F) are injective. It is also clear that, if Y — U’ is a refinement, then
H(U', F) — H°(U, F) is injective. Now, suppose that {U; — U} is a covering, and
let (s;) be a family of elements of F*(U;) satisfying the sheaf condition s;|y, x, v, =
silu,xyu, for all4,i" € I. Choose coverings (as in Lemma {U;; = U} such
that s;|y,; is the image of the (unique) element s;; € F(U;j). The sheaf condition
implies that s;; and s;/; agree over U;; X Uy j» because it maps to U; xy Uy and we
have the equality there. Hence (s;;) € H°({U;; — U}, F) gives rise to an element
s € FT(U). We leave it to the reader to verify that s|y, = s;.

Proof of . This is immediate from the definitions because the sheaf property
says exactly that every map F — H°(U, F) is bijective (for every covering U of U).

Statement is now obvious. O

Definition 10.11. Let C be a site and let F be a presheaf of sets on C. The sheaf
F7# := F*7 together with the canonical map F — F7 is called the sheaf associated
to F.

Proposition 10.12. The canonical map F — F# has the following universal
property: For any map F — G, where G is a sheaf of sets, there is a unique map
F# — G such that F — F# — G equals the given map.

Proof. By Lemma we get a commutative diagram

F > Ft > Ftt

L

g4>g+4>g++

and by Theorem [10.10]the lower horizontal maps are isomorphisms. The uniqueness
follows from Lemma which says that every section of F# locally comes from
sections of F. (]

It is clear from this result that the functor F + (F — F7#) is unique up to unique
isomorphism of functors. Actually, let us temporarily denote ¢ : Sh(C) — PSh(C)
the functor of inclusion. The result above actually says that

Mor p(c) (F,i(G)) = Morgyc) (F#, G).
In other words, the functor of sheafification is the left adjoint to the inclusion

functor i. We finish this section with a couple of lemmas.

Lemma 10.13. Let F : T — Sh(C) be a diagram. Then colimz F exists and is
the sheafification of the colimit in the category of presheaves.

Proof. Since the sheafification functor is a left adjoint it commutes with all colim-
its, see Categories, Lemmam Hence, since PSh(C) has colimits, we deduce that
Sh(C) has colimits (which are the sheafifications of the colimits in presheaves). [
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Lemma 10.14. The functor PSh(C) — Sh(C), F ~ F7# is evact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma On
the other hand, by Lemmas and Lemma [T0.0] the colimits in the construction
of FT are really over the directed set Ob(Jy) where U > U’ if and only if U is a
refinement of ¢’. Hence by Categories, Lemma[19.2 we see that F — F T commutes
with finite limits (as a functor from presheaves to presheaves). Then we conclude
using Lemma [10.1 O

Lemmal 10.15. Let C be a site. Let F be a presheaf of sets on C. Denote 02 :
F — F7 the canonical map of F into its sheafification. Let U be an object of C.
Let s € F#(U). There exists a covering {U; — U} and sections s; € F(U;) such
that
(1) sly, = 0%(s;), and
(2) for every i,j there exists a covering {U;jr — U; Xy Uj} of C such that the
pullback of s; and s; to each Uyji, agree.

Conversely, given any covering {U; — U}, elements s; € F(U;) such that (2) holds,
then there exists a unique section s € F#(U) such that (1) holds.

Proof. Omitted. O
11. Injective and surjective maps of sheaves

Definition 11.1. Let C be a site, and let ¢ : F — G be a map of sheaves of sets.

(1) We say that ¢ is injective if for every object U of C the map ¢ : F(U) —
G(U) is injective.

(2) We say that ¢ is surjective if for every object U of C and every section
s € G(U) there exists a covering {U; — U} such that for all i the restriction
sly, is in the image of ¢ : F(U;) — G(Uj;).

Lemma 11.2. The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of the category Sh(C). A map of sheaves is
an isomorphism if and only if it is both injective and surjective.

Proof. Omitted. |

Lemmal 11.3. Let C be a site. Let F — G be a surjection of sheaves of sets. Then
the diagram

FxgF __ _F——=G
represents G as a coequalizer.

Proof. Let H be a sheaf of sets and let ¢ : F — H be a map of sheaves equalizing
the two maps F xg F — F. Let G’ C G be the presheaf image of the map F — G.
As the product F xg F may be computed in the category of presheaves we see
that it is equal to the presheaf product F xg/ F. Hence ¢ induces a unique map
of presheaves ¢’ : G’ — H. Since G is the sheafification of G’ by Lemma we
conclude that 1)’ extends uniquely to a map of sheaves ¢ : G — H. We omit the
verification that ¢ is equal to the composition of i) and the given map. O
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12. Representable sheaves

Let C be a category. The canonical topology is the finest topology such that all
representable presheaves are sheaves (it is formally defined in Definition but
we will not need this). This topology is not always the topology associated to
the structure of a site on C. We will give a collection of coverings that generates
this topology in case C has fibered products. First we give the following general
definition.

Definition 12.1. Let C be a category. We say that a family {U; — U}¢cr is an ef-
fective epimorphism if all the morphisms U; — U are representable (see Categories,
Definition [6.4), and for any X € Ob(C) the sequence

Morc(U, X) —— [[,.; More(U;, X) [1,jyer2 More (Ui xu Uy, X)

el e
is an equalizer diagram. We say that a family {U; — U} is a universal effective
epimorphism if for any morphism V' — U the base change {U; xy V — V} is an

effective epimorphism.

The class of families which are universal effective epimorphisms satisfies the axioms
of Definition If C has fibre products, then the associated topology is the
canonical topology. (In this case, to get a site argue as in Sets, Lemma [11.1])

Conversely, suppose that C is a site such that all representable presheaves are
sheaves. Then clearly, all coverings are universal effective epimorphisms. Thus
the following definition is the “correct” one in the setting of sites.

Definition 12.2. We say that the topology on a site C is weaker than the canonical
topology, or that the topology is subcanonical if all the coverings of C are universal
effective epimorphisms.

A representable sheaf is a representable presheaf which is also a sheaf. Since it is
perhaps better to avoid this terminology when the topology is not subcanonical,
we only define it formally in that case.

Definition 12.3. Let C be a site whose topology is subcanonical. The Yoneda
embedding h (see Categories, Section [3)) presents C as a full subcategory of the
category of sheaves of C. In this case we call sheaves of the form hy with U €
Ob(C) representable sheaves on C. Notation: Sometimes, the representable sheaf
hy associated to U is denoted U.

Note that we have in the situation of the definition
Mor gy(¢y (hv, F) = F(U)

for every sheaf F, since it holds for presheaves, see (2.1.1)). In general the presheaves
hy are not sheaves and to get a sheaf you have to sheafify them. In this case we
still have

(12.3.1) Morgyc)(hf, F) = Mor psu(e) (hu, F) = F(U)
for every sheaf F. Namely, the first equality holds by the adjointness property of
# and the second is (2.1.1]).

Lemma 12.4. Let C be a site. If {U; — Ulicr s a covering of the site C, then
the morphism of presheaves of sets

Hie] ho, = hy
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becomes surjective after sheafification.

Proof. By Lemma above we have to show that ], ; hi — hfj is an epimor-
phism. Let F be a sheaf of sets. A morphism h# — JF corresponds to a section
s € F(U). Hence the injectivity of Mor(hﬁ, F) =1L Mor(hﬁ, F) follows directly
from the sheaf property of F. ]

The next lemma says, in the case the topology is weaker than the canonical topology,
that every sheaf is made up out of representable sheaves in a way.

Lemma 12.5. Let C be a site. Let E C Ob(C) be a subset such that every object
of C has a covering by elements of E. Let F be a sheaf of sets. There exists a
diagram of sheaves of sets

Fi___ Fo——>F
which represents F as a coequalizer, such that F;, i = 0,1 are coproducts of sheaves
of the form hﬁ with U € E.

Proof. First we show there is an epimorphism Fy — F of the desired type. Namely,
just take

_ #
Fo = HUEE,se]-'(U)(hU) — 7

Here the arrow restricted to the component corresponding to (U, s) maps the ele-
ment idy € hﬁ(U) to the section s € F(U). This is an epimorphism according to
Lemma [11.2| and our condition on E. To construct F; first set G = Fo X 7 Fo and
then construct an epimorphism F; — G as above. See Lemma, [11.3 O

Lemmal 12.6. Let C be a site. Let F be a sheaf of sets on C. Then there exists a
diagram T — C, i — U; such that

F = colim;cr h?}i

Moreover, if EC Ob(C) is a subset such that every object of C has a covering by
elements of E, then we may assume U; is an element of E for all i € Ob(Z).

Proof. Let 7 be the category whose objects are pairs (U, s) with U € Ob(C) and
s € F(U) and whose morphisms (U, s) — (U’,s’) are morphisms f : U — U’ in
C with f*s’ = s. For each object (U, s) of Z the element s defines by the Yoneda
lemma a map s : hy — JF of presheaves. Hence by the universal property of
sheafification a map hi — F. These maps are immediately seen to be compatible
with the morphisms in the category Z. Hence we obtain a map colimy s hy — F
of presheaves (where the colimit is taken in the category of presheaves) and a
map colim(ys)(hy)# — F of sheaves (where the colimit is taken in the cate-
gory of sheaves). Since sheafification is the left adjoint to the inclusion functor
Sh(C) — PSh(C) (Proposition we have colim(hy)# = (colim hy)# by Cate-
gories, Lemma Thus it suffices to show that colimy ) hy — F is an isomor-
phism of presheaves. To see this we show that for every object X of C the map
colimy ¢y hyy (X) — F(X) is bijective. Namely, it has an inverse sending the ele-
ment ¢ € F(X) to the element of the set colim (g s hy(X) corresponding to (X, 1)
and idy € hx(X)

We omit the proof of the final statement. O
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13. Continuous functors

Definition 13.1. Let C and D be sites. A functor v : C — D is called continuous
if for every {V; — V}ier € Cov(C) we have the following

(1) {u(V;) = u(V)}ier is in Cov(D), and
(2) for any morphism 7" — V" in C the morphism u(T xv V;) = u(T') X (vyu(V;)
is an isomorphism.

Recall that given a functor u as above, and a presheaf of sets F on D we have
defined u? F to be simply the presheaf F o u, in other words

wF(V) = Fu(V))
for every object V of C.

Lemma 13.2. Let C and D be sites. Let u : C — D be a continuous functor. If F
is a sheaf on D then uPF is a sheaf as well.

Proof. Let {V; — V} be a covering. By assumption {u(V;) — u(V)} is a covering
in D and u(V; xv V;) = uw(V;) Xy u(V;). Hence the sheaf condition for u?F and
the covering {V; — V'} is precisely the same as the sheaf condition for F and the
covering {u(V;) — u(V)}. O

In order to avoid confusion we sometimes denote
u® : Sh(D) — Sh(C)

the functor u” restricted to the subcategory of sheaves of sets. Recall that «” has
a left adjoint u, : PSh(C) — PSh(D), see Section

Lemma 13.3. In the situation of Lemma . The functor us : G — (up,G)* is
a left adjoint to u®.

Proof. Follows directly from Lemma and Proposition [10.12 (]
Here is a technical lemma.

Lemma) 13.4. In the situation of Lemma . For any presheaf G on C we have
(upg)# = (up(g#))#-
Proof. For any sheaf F on D we have
Mor g,y (us(G%), F) = Morgyc)(G%, u®F)
= Morpgu(c)(G7, uP F)
= Morpgyc)(G,ul F)
= Morpgyp)(upG, F)
= Morgp)((upG)*, F)

and the result follows from the Yoneda lemma. O

Lemmal 13.5. Let u : C — D be a continuous functor between sites. For any

object U of C we have ushéﬁ = hf(U),

Proof. Follows from Lemmas [5.6] and [[3.4] O
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Remark 13.6. (Skip on first reading.) Let C and D be sites. Let us use the defi-
nition of tautologically equivalent families of maps, see Definition to (slightly)
weaken the conditions defining continuity. Let u : C — D be a functor. Let us call
u quasi-continuous if for every V = {V; = V}icr € Cov(C) we have the following
(1’) the family of maps {u(V;) — u(V)}ics is tautologically equivalent to an
element of Cov(D), and
(2) for any morphism 7" — V in C the morphism u(T xv V;) — u(T') X vy u(V;)
is an isomorphism.
We are going to see that Lemmas [[3.2] and [[3.3] hold in case u is quasi-continuous
as well.

We first remark that the morphisms u(V;) — u(V') are representable, since they are
isomorphic to representable morphisms (by the first condition). In particular, the
family w(V) = {u(Vi) — uw(V)}ier gives rise to a zeroth Cech cohomology group
HOu(V),F) for any presheaf F on D. Let U = {U; — u(V)}jes be an element
of Cov(D) tautologically equivalent to {u(V;) — w(V)}ier. Note that u(V) is a
refinement of U and vice versa. Hence by Remark we see that HO(u(V), F) =
HOU,F). In particular, if F is a sheaf, then F(u(V)) = HO(u(V), F) because
of the sheaf property expressed in terms of zeroth Cech cohomology groups. We
conclude that uPF is a sheaf if F is a sheaf, since H*(V,u?F) = H°(u(V), F) which
we just observed is equal to F(u(V)) = u?F(V). Thus Lemma holds. Lemma
follows immediately.

14. Morphisms of sites

Definition 14.1. Let C and D be sites. A morphism of sites f : D — C is given
by a continuous functor u : C — D such that the functor u is exact.

Notice how the functor v goes in the direction opposite the morphism f. If f <> u
is a morphism of sites then we use the notation f~! = u, and f. = u°. The functor
f~1 is called the pullback functor and the functor f. is called the pushforward
functor. As in topology we have the following adjointness property

Morgy,p)(f G, F) = Morgu(c)(G, f+.F)

The motivation for this definition comes from the following example.

Example 14.2. Let f : X — Y be a continuous map of topological spaces.
Recall that we have sites Xz, and Yz, see Example @ Consider the functor
Ui Yzar = Xzgar, Vo f _1(V). This functor is clearly continuous because inverse
images of open coverings are open coverings. (Actually, this depends on how you
chose sets of coverings for Xz, and Yz,.. But in any case the functor is quasi-
continuous, see Remark ) It is easy to verify that the functor u® equals the
usual pushforward functor f, from topology. Hence, since us is an adjoint and since
the usual topological pullback functor f~! is an adjoint as well, we get a canonical
isomorphism f~! = wu,. Since f! is exact we deduce that u, is exact. Hence u
defines a morphism of sites f : Xz4 — Yzqr, which we may denote f as well since
we’ve already seen the functors us, u® agree with their usual notions anyway.

Example| 14.3. Let C be a category. Let
Cov(C) D Cov'(C)
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be two sets of families of morphisms with fixed target which turn C into a site. De-
note C, the site corresponding to Cov(C) and C, the site corresponding to Cov’(C).
We claim the identity functor on C defines a morphism of sites

€:Cr — Cp

Namely, observe that id : C;» — C, is continuous as every 7/'-covering is a 7-covering.
Thus the functor €, = id® is the identity functor on underlying presheaves. Hence
the left adjoint e~! of €, sends a 7/-sheaf F to the 7-sheafification of F (by the
universal property of sheafification). Finite limits of 7/-sheaves agree with finite
limits of presheaves (Lemma and 7-sheafification commutes with finite limits
(Lemma [10.14)). Thus e~! is left exact. Since e~! is a left adjoint it is also right
exact (Categories, Lemma . Thus €' is exact and we have checked all the
conditions of Definition {411

Lemma 14.4. Let C;, i = 1,2,3 be sites. Let u : Co — C; and v : C3 — Coy be
continuous functors which induce morphisms of sites. Then the functor uov : C3 —
Cy is continuous and defines a morphism of sites C; — Cs.

Proof. It is immediate from the definitions that w o v is a continuous functor. In
addition, we clearly have (u o v)? = v? o uP, and hence (u o v)* = v® o u®. Hence
functors (uov)s and usov, are both left adjoints of (wov)®. Therefore (uov)s = usov,
and we conclude that (u o v), is exact as a composition of exact functors. d

Definition 14.5. Let C;, i = 1,2,3 be sites. Let f : C; — C3 and g : C; — C3 be
morphisms of sites given by continuous functors u : Co — C; and v : C3 — Cs. The
composition g o f is the morphism of sites corresponding to the functor u o v.

In this situation we have (go f). = g. o fx and (go f)™' = f~L o g1 (see proof of
Lemma [14.4]).

Lemmal 14.6. Let C and D be sites. Let u : C — D be continuous. Assume all
the categories (Z{)°PP of Section@ are filtered. Then u defines a morphism of sites
D — C, in other words us is exact.

Proof. Since u; is the left adjoint of u® we see that us is right exact, see Categories,
Lemma Hence it suffices to show that wu, is left exact. In other words we
have to show that u, commutes with finite limits. Because the categories Zy” are
filtered we see that u, commutes with finite limits, see Categories, Lemma (this
also uses the description of limits in PSh, see Section . And since sheafification
commutes with finite limits as well (Lemma we conclude because us = # o
Up. (]
Proposition 14.7. Let C and D be sites. Let u : C — D be continuous. Assume

furthermore the following:

(1) the category C has a final object X and uw(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then u defines a morphism of sites D — C, in other words us is eract.
Proof. This follows from Lemmas [5.2 and [4.6l O

Remark| 14.8. The conditions of Proposition above are equivalent to saying
that u is left exact, i.e., commutes with finite limits. See Categories, Lemmas [18.4
and It seems more natural to phrase it in terms of final objects and fibre
products since this seems to have more geometric meaning in the examples.
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Lemma [19.4] will provide another way to prove a continuous functor gives rise to a
morphism of sites.

Remark 14.9. (Skip on first reading.) Let C and D be sites. Analogously to
Definition [14.1] we say that a quasi-morphism of sites f : D — C is given by a
quasi-continuous functor v : C — D (see Remark such that u, is exact.
The analogue of Proposition [I4.7] in this setting is obtained by replacing the word
“continuous” by the word “quasi-continuous”, and replacing the word “morphism”
by “quasi-morphism”. The proof is literally the same.

In Definition [I4.1] the condition that u, be exact cannot be omitted. For example,
the conclusion of the following lemma need not hold if one only assumes that u is
continuous.

Lemma 14.10. Let f : D — C be a morphism of sites given by the functor
u:C — D. Given any object V of D there exists a covering {V; — V'} such that
for every j there exists a morphism V; — uw(U;) for some object U; of C.

Proof. Since f~! = u, is exact we have f~!x = * where * denotes the final object
of the category of sheaves (Example . Since f~'% = u,* is the sheafification
of u,* we see there exists a covering {V; — V'} such that (up*)(V;) is nonempty.
Since (up*)(V;) is a colimit over the category Zy; whose objects are morphisms
V; = w(U) the lemma follows. O

15. Topoi

Here is a definition of a topos which is suitable for our purposes. Namely, a topos
is the category of sheaves on a site. In order to specify a topos you just specify
the site. The real difference between a topos and a site lies in the definition of
morphisms. Namely, it turns out that there are lots of morphisms of topoi which
do not come from morphisms of the underlying sites.

Definition 15.1 (Topoi). A topos is the category Sh(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f from Sh(D) to Sh(C) is given by
a pair of functors f. : Sh(D) — Sh(C) and f~!: Sh(C) — Sh(D) such that
(a) we have

Morgy(p)(f71G, F) = Morgyc)(G, £+ F)

bifunctorially, and
(b) the functor f~! commutes with finite limits, i.e., is left exact.
(2) Let C, D, &€ be sites. Given morphisms of topoi f : Sh(D) — Sh(C) and
g : Sh(E) — Sh(D) the composition f o g is the morphism of topoi defined
by the functors (fog). = foogs and (fog) ! =g to fL.

Suppose that « : S — Ss is an equivalence of (possibly “big”) categories. If Sy,
S, are topoi, then setting f, = o and f~! equal to a quasi-inverse of a gives a
morphism f : §§ — Ss of topoi. Moreover this morphism is an equivalence in the
2-category of topoi (see Section . Thus it makes sense to say “S is a topos” if S
is equivalent to the category of sheaves on a site (and not necessarily equal to the
category of sheaves on a site). We will occasionally use this abuse of notation.

The empty topos is topos of sheaves on the site C, where C is the empty category.
We will sometimes write () for this site. This is a site which has a unique sheaf
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(since () has no objects). Thus Sh(()) is equivalent to the category having a single
object and a single morphism.

The punctual topos is the topos of sheaves on the site C which has a single object
pt and one morphism id,; and whose only covering is the covering {id,;}. We will
simply write pt for this site. It is clear that the category of sheaves = the category
of presheaves = the category of sets. In a formula Sh(pt) = Sets.

Let C and D be sites. Let f : Sh(D) — Sh(C) be a morphism of topoi. Note that f.
commutes with all limits and that f~! commutes with all colimits, see Categories,
Lemma In particular, the condition on f~! in the definition above guarantees
that f~! is exact. Morphisms of topoi are often constructed using either Lemma
[213] or the following lemma.

Lemma 15.2. Given a morphism of sites f : D — C corresponding to the functor
u: C — D the pair of functors (f =1 = us, f« = u®) is a morphism of topoi.

Proof. This is obvious from Definition [[4.1] O

Remark 15.3. There are many sites that give rise to the topos Sh(pt). A useful
example is the following. Suppose that S is a set (of sets) which contains at least
one nonempty element. Let S be the category whose objects are elements of S and
whose morphisms are arbitrary set maps. Assume that S has fibre products. For
example this will be the case if S = P(infinite set) is the power set of any infinite
set (exercise in set theory). Make S into a site by declaring surjective families of
maps to be coverings (and choose a suitable sufficiently large set of covering families
as in Sets, Section [L1]). We claim that Sh(S) is equivalent to the category of sets.

We first prove this in case S contains e € S which is a singleton. In this case, there
is an equivalence of topoi i : Sh(pt) — Sh(S) given by the functors

(15.3.1) i F =F(e), i.E = (U Morges(U, E))

Namely, suppose that F is a sheaf on §. For any U € Ob(S) = S we can find
a covering {y, : e = U}y,cu, where ¢, maps the unique element of e to u €
U. The sheaf condition implies in this case that F(U) = [[,cy F(e). In other
words F(U) = Morgets (U, F(e)). Moreover, this rule is compatible with restriction
mappings. Hence the functor

is 1 Sets = Sh(pt) — Sh(S), E +—— (U~ Morges(U, E))
is an equivalence of categories, and its inverse is the functor i~ given above.

If S does not contain a singleton, then the functor i, as defined above still makes
sense. To show that it is still an equivalence in this case, choose any nonempty
€ € S and a map ¢ : € — € whose image is a singleton. For any sheaf F set

F(e) :=Im(F(p): F(e) — F(é))
and show that this is a quasi-inverse to i,. Details omitted.

Remark 15.4. (Set theoretical issues related to morphisms of topoi. Skip on
a first reading.) A morphism of topoi as defined above is not a set but a class.
In other words it is given by a mathematical formula rather than a mathematical
object. Although we may contemplate the collection of all morphisms between two
given topoi, it is not a good idea to introduce it as a mathematical object. On the
other hand, suppose C and D are given sites. Consider a functor ® : C — Sh(D).
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Such a thing is a set, in other words, it is a mathematical object. We may, in
succession, ask the following questions on .

(1) Is it true, given a sheaf 7 on D, that the rule U +— Morg,p)(®(U), F)
defines a sheaf on C? If so, this defines a functor ®, : Sh(D) — Sh(C).

(2) Is it true that ®, has a left adjoint? If so, write @~ for this left adjoint.

(3) Is it true that ®~! is exact?
If the last question still has the answer “yes”, then we obtain a morphism of topoi
(®,,®~1). Moreover, given any morphism of topoi (f., f~!) we may set ®(U) =
f_l(h’g) and obtain a functor ® as above with f, = ®, and f~! = ®~! (compatible
with adjoint property). The upshot is that by working with the collection of ®
instead of morphisms of topoi, we (a) replaced the notion of a morphism of topoi
by a mathematical object, and (b) the collection of ® forms a class (and not a
collection of classes). Of course, more can be said, for example one can work out
more precisely the significance of conditions (2) and (3) above; we do this in the
case of points of topoi in Section

Remark 15.5. (Skip on first reading.) Let C and D be sites. A quasi-morphism
of sites f : D — C (see Remark [14.9) gives rise to a morphism of topoi f from
Sh(D) to Sh(C) exactly as in Lemma [15.2

16. G-sets and morphisms

Let ¢ : G — H be a homomorphism of groups. Choose (suitable) sites Tg and Ty
as in Example [6.5] and Section [9] Let u : Ty — T be the functor which assigns to
a H-set U the G-set U, which has the same underlying set but G action defined by
g-£=(g)¢ for g € G and £ € U. Tt is clear that u commutes with finite limits and
is continuou&ﬂ Applying Proposition and Lemma we obtain a morphism
of topoi
f : Sh(TG) — Sh(TH)
associated with ¢. Using Proposition we see that we get a pair of adjoint
functors
fv : G-Sets — H-Sets, f~1': H-Sets — G-Sets.

Let’s work out what are these functors in this case.

We first work out a formula for f,.. Recall that given a G-set S the corresponding
sheaf Fs on 7¢ is given by the rule Fg(U) = Morg (U, S). And on the other hand,
given a sheaf G on Ty the corresponding H-set is given by the rule G(y H). Hence
we see that

f*S = MorG-Sets((HH)<pa S)

If we work this out a little bit more then we get
fo8 ={a: H — S|a(gh) = ga(h)}
with left H-action given by (h-a)(h') = a(h'h) for any element a € f.S.
Next, we explicitly compute f~!. Note that since the topology on T¢ and Ty is

subcanonical, all representable presheaves are sheaves. Moreover, given an object
V of Ty we see that f~1hy is equal to hy vy (see Lemma|13.5). Hence we see that

4Set theoretical remark: First choose Tz7. Then choose Tg to contain u(Tz) and such that
every covering in 7Ty corresponds to a covering in 7. This is possible by Sets, Lemmas[10.1]

and
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f~1S = S, for representable sheaves. Since every sheaf on Ty is a coproduct of
representable sheaves we conclude that this is true in general. Hence we see that
for any H-set T" we have

T =1,
The adjunction between f~! and f, is evidenced by the formula

MorG—SetS(TLpa S) = MorH—Sets(Ta fs S)

with f.S as above. This can be proved directly. Moreover, it is then clear that
(f~1, f.) form an adjoint pair and that f~! is exact. So alternatively to the above
the morphism of topoi f : G-Sets — H-Sets can be defined directly in this manner.

17. Quasi-compact objects and colimits

To be able to use the same language as in the case of topological spaces we introduce
the following terminology.

Definition 17.1. Let C be a site. An object U of C is quasi-compact if given a
covering U = {U; — U}ies in C there exists another covering V = {V; — U}jcy
and a morphism V — U of families of maps with fixed target given by id : U — U,
a:J — I, and Vj — U,(j (see Definition such that the image of « is a finite
subset of I.

Of course the usual notion is sufficient to conclude that U is quasi-compact.

Lemmal 17.2. Let C be a site. Let U be an object of C. Consider the following
conditions
(1) U is quasi-compact,
(2) for every covering {U; — Ulicr in C there exists a finite covering {V; —
U}j=t,...m of C refining U, and
(3) for every covering {U; — U}ier in C there exists a finite subset I' C I such
that {U; — U}ier s a covering in C.

Then we always have (3) = (2) = (1) but the reverse implications do not hold in
general.

Proof. The implications are immediate from the definitions. Let X = [0,1] C R
as a topological space (with the usual e-0 topology). Let C be the category of open
subspaces of X with inclusions as morphisms and usual open coverings (compare
with Example . However, then we change the notion of covering in C to exclude
all finite coverings, except for the coverings of the form {U — U}. It is easy to see
that this will be a site as in Definition In this site the object X = U =[0,1] is
quasi-compact in the sense of Deﬁnitio but U does not satisfy (2). We leave
it to the reader to make an example where (2) holds but not (3). O

Here is the topos theoretic meaning of a quasi-compact object.

Lemmal|17.3. Let C be a site. Let U be an object of C. The following are equivalent
(1) U is quasi-compact, and
(2) for every surjection of sheaves [[;c; Fi — hfj there is a finite subset J C I

such that [1;c; Fi — h*g is surjective.
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Proof. Assume (1) and let [[,;

of hfﬁ over U. Hence there exists a covering {U, — U},ca and for each a € A a
section s, of [[,.; Fi over U, mapping to idy. By the construction of coproducts
as sheafification of coproducts of presheaves (Lemma , for each a there exists
a covering {Uap — Ua}vep, and for all b € B, an «(b) € I and a section sy, of F, )
over U, mapping to idy|y,,. Thus after replacing the covering {U, — U}sca by
{Uab = Utacapen, we may assume we have a map ¢ : A — I and for cach a € A
a section s, of F,(4) over U, mapping to idy. Since U is quasi-compact, there is
a covering {V. = U}cec, a map a : C — A with finite image, and V. — Uy,
over U. Then we see that J = Im(: o a) C I works because [[ ..o h‘#/c — hﬁ is
surjective (Lemma and factors through [[..; F; — h?}é. (Here we use that the

icJ
oL Sa(e
composition hﬁc — hy ) #

Fi — hﬁ be a surjection. Then idy is a section

wey — Fu(a(e)) = by is the map h‘#,i — hﬁ coming from
the morphism V. — U because s, maps to idv|u, ., -)

Assume (2). Let {U; — Ul}ier be a covering. By Lemma we see that
[icr hﬁ — h# is surjective. Thus we find a finite subset J C I such that
H]—GJ hﬁj — hf; is surjective. Then arguing as above we find a covering {V, —
Utecec of U in C and a map ¢ : C'— J such that idy lifts to a section of s, of hﬁ ©
over V.. Refining the covering even further we may assume s. € hy, (V.) mapping
to idy. Then s.: V. — U, ) is a morphism over U and we conclude. O
The lemma above motivates the following definition.

Definition 17.4. An object F of a topos Sh(C) is quasi-compact if for any sur-
jective map [[;c; Fi — F of Sh(C) there exists a finite subset J C I such that
[;c; Fi — F is surjective. A topos Sh(C) is said to be quasi-compact if its final
object x is a quasi-compact object.

By Lemma if the site C has a final object X, then Sh(C) is quasi-compact if
and only if X is quasi-compact.

Lemma 17.5. Let C be a site.

(1) If U — V is a morphism of C such that hﬁ — hfﬁ is surjective and U is
quasi-compact, then V' is quasi-compact.

(2) If F — G is a surjection of sheaves of sets and F is quasi-compact, then G
18 quasi-compact.

Proof. Omitted. O

Lemma 17.6. Let C be a site. If n > 1 and F1,...,F, are quasi-compact sheaves
on C, then [[;,_, , Fi is quasi-compact.

Proof. Omitted. (]
The following two lemmas form the analogue of Sheaves, Lemma for sites.

Lemma 17.7. Let C be a site. Let T — Sh(C), i — F; be a filtered diagram of
sheaves of sets. Let U € Ob(C). Consider the canonical map

U : colim; F;(U) — (colim; F;) (U)
With the terminology introduced above:
(1) If all the transition maps are injective then W is injective for any U.
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(2) If U is quasi-compact, then ¥ is injective.

(3) If U is quasi-compact and all the transition maps are injective then U is an
isomorphism.

(4) If U has a cofinal system of coverings {U; — U}jcy with J finite and
U; xuy Uy quasi-compact for all j, 5" € J, then U is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F': Vs colim; F;(V) is separated (see Definition . By Lemmawe have
(F")# = colim; F;. By Theorem we see that F' — (F')# is injective. This
proves (1).

Assume U is quasi-compact. Suppose that s € F;(U) and s’ € F;/(U) give rise to
elements on the left hand side which have the same image under ¥. This means
we can choose a covering {U, — U}qeca and for each a € A an index i, € 1, i, > 1,
iq > 1’ such that ¢ (s) = @i, (s"). Because U is quasi-compact we can choose
a covering {V, — U}pep, a map « : B — A with finite image, and morphisms
Vo — Uy over U. Pick i € I to be > than all of the iy) which is possible
because the image of « is finite. We conclude that o;;~(s) and @, (s) agree on V;
for all b € B and hence that ¢ (s) = @i (s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of W. There exists a covering {U, — U}qsca and for each a € A
an index i, € I and a section s, € F;, (U,) such that s|y, comes from s, for all
a € A. Because U is quasi-compact we can choose a covering {V, — U },cp, a map
a: B — A with finite image, and morphisms V, — U,y over U. Pick i € I to be
> than all of the i) which is possible because the image of « is finite. By (1) the
sections s, = @ia(b)i(sa(b))‘Vb agree over V, Xy Vir. Hence they glue to a section
s' € F;(U) which maps to s under . This proves (3).

Assume the hypothesis of (4). By Lemmathe object U is quasi-compact, hence
¥ is injective by (2). To prove surjectivity, let s be an element of the target of V.
By assumption there exists a finite covering {U; — U}j=1, m, with U; xy Uy
quasi-compact for all 1 < 7,7 < m and for each j an index i; € I and s; € F;,(Uj)
such that s|y, is the image of s; for all j. Since U; xy Uy is quasi-compact we can
apply (2) and we see that there exists an ;5 € I, i;5 > 4;, 4,7 > i, such that
gOijijj/(Sj) and (pij,ijj,(s‘j/) agree over U; xy Uj. Choose an index ¢ € I wich is
bigger or equal than all the i;;,. Then we see that the sections ;;;(s;) of F; glue
to a section of F; over U. This section is mapped to the element s as desired. [

Lemma 17.8. Let C be a site. Let T — Sh(C), i — F; be a filtered diagram of
sheaves of sets. Consider the canonical map

U : colim; I'(C, F;) — T'(C, colim; F;)
We have the following:

(1) If all the transition maps are injective then W is injective.
(2) If Sh(C) is quasi-compact, then ¥ is injective.
(3) If Sh(C) is quasi-compact and all the transition maps are injective then ¥
is an isomorphism.
(4) Assume there exists a set S C Ob(Sh(C)) with the following properties:
(a) for every surjection F — x there exists a K € S and a map K — F
such that IC — * is surjective,
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(b) for K € S the product KK x K is quasi-compact.
Then V¥ is bijective.

Proof. Proof of (1). Assume all the transition maps are injective. In this case the
presheaf F/ : V + colim; F;(V) is separated (see Definition [10.9)). By Lemma
we have (F')# = colim; ;. By Theorem we see that F/ — (F')# is injective.
This proves (1).

Proof of (2). Assume Sh(C) is quasi-compact. Recall that I'(C, F) = Mor(*, F)
for all F in Sh(C). Let a;,b; : * — F; and for ¢/ > i denote ay,by : * — Fy
the composition with the transition maps of the system. Set a = colim;/>; a; and
similary for b. For ¢’ > 4 denote

E;; = Equalizer(a;,b;) C * and FE = Equalizer(a,b) C *

By Categories, Lemma we have E = colim;/>; Ey. It follows that [[,,~, By —
F is a surjective map of sheaves. Hence, if E = x, i.e., if a = b, then because x is
quasi-compact, we see that E;; = * for some i’ > ¢, and we conclude a;; = b; for
some i’ > 4. This proves (2).

Proof of (3). Assume Sh(C) is quasi-compact and all transition maps are injective.
Let a : * — colim F; be a map. Then E; = a~!(F;) C  is a subsheaf and we have
colim E; = « (by the reference above). Hence for some ¢ we have E; = % and we see
that the image of a is contained in F; as desired.

Proof of (4). Let S C Ob(Sh(C)) satisfy (4)(a), (b). Applying (4)(a) toid : * — * we
find there exists a K € S such that L — x is surjective. The maps K x K — K — *
are surjective. By (4)(b) and Lemma [17.5] we conclude that K and Sh(C) are quasi-
compact. Thus ¥ is injective by (2). Set F = colim F;. Let s: * — F be a global
section of the colimit. Since [[F; — F is surjective, we see that the projection

H *XS]:]:i_>*
el ’

is surjective. By (4)(a) we obtain IC € S and a map IC — ], * x5 7 F; with I — *
surjective. Since K is quasi-compact we obtain a factorization K& — [ [, < * ¥ 7 Fir
for some finite subset I’ C I. Let ¢ € I be an upper bound for the finite subset I’.
The transition maps define a map [[, ., Fir — F;. This in turn produces a map
K — * x5, 7 F;. In other words, we obtain K € S with K — * surjective and a
commutative diagram

R

KxK K

—>

|

Fi—F

colim F;

Observe that the top row of this diagram is a coequalizer. Hence it suffices to show
that after increasing 7 the two induced maps a;,b; : K x K — F; are equal. This is
done shown in the next paragraph using the exact same argument as in the proof
of (2) and we urge the reader to skip the rest of the proof.

For i’ > ¢ denote a;, by : K x K — F; the composition of a;, b; with the transition
maps of the system. Set a = colim;/>; a;r : K x K — F and similary for b. We have
a = b by the commutativity of the diagram above. For i’ > ¢ denote

E; = Equalizer(a;,b;y) CK x K and E = Equalizer(a,b) C K x K



0GMS

0GS0

SITES AND SHEAVES 33

By Categories, Lemma we have E = colim;>; Ey. It follows that [[,,~, By —
FE is a surjective map of sheaves. Since a = b we have £ = K x K. As K x K is
quasi-compact by (4)(b), we see that E; = K x K for some ¢’ > 4, and we conclude
a; = by for some i’ > 3. ]

Remark| 17.9. Let C be a site. There are several ways to ensure that the hy-
potheses of part (4) of Lemma are satisfied. Here are a few.
(1) Assume there exists a set B C Ob(C) with the following properties:
(a) for every surjection F — # there exist m > 0 and Uy, ..., U,, € B with
F(U;) nonempty and J] h#j — % surjective,
(b) for U,U’ € B the sheaf hz‘}’ﬁ X hﬁ, is quasi-compact.
(2) Assume there exists a set B C Ob(C) with the following properties:
(a) there exist m > 0 and Uy,...,U,, € B with Hhﬁj — * surjective,
(b) for U € B any covering of U can be refined by a finite covering {U; —
U}j=1,..m with U; € B, and
(c) for U, U’ € B there exist m > 0, Uy,...,U, € B, and morphisms
U;j = U and U; — U’ such that ]_[hﬁ7 — hf]ﬁ X hf]ﬁ, is surjective.
(3) Suppose that '
(a) Sh(C) is quasi-compact,
(b) every object of C has a covering whose members are quasi-compact
objects,
(¢) if U and U’ are quasi-compact, then the sheaf h?j X hﬁ, is quasi-
compact.
In cases (1) and (2) we set S C Ob(Sh(C)) equal to the set of finite coproducts of
the sheaves hﬁ for U € B. In case (3) we set S C Ob(Sh(C)) equal to the set of
finite coproducts of the sheaves hﬁ for U € Ob(C) quasi-compact.

Later we will need a bound on what can happen with colimits as follows.

Lemma 17.10. Let C be a site. Let 8 be an ordinal. Let 8 — Sh(C), a — F, be
a system of sheaves over 3. For U € Ob(C) consider the canonical map

colimy<g Fo(U) — (colimy<p Fo) (U)
If the cofinality of B is large enough, then this map is bijective for all U.

Proof. The left hand side is the value on U of the colimit F.oim taken in the
category of presheaves, see Section@ Recall that colimy<pg Fq is the sheafification

]—"ihm of Feolim, see Lemma |10.13] Let U = {U; — U};er be an element of the set

Cov(C) of coverings of C. If the cofinality of § is larger than the cardinality of I,
then we claim

H(U, Feotim) = colim H*(U, F,,) = colim Fo(U) = Feotim(U)

The second and third equality signs are clear. For the first, say s = (s;) €
H(U, Feolim). Then for each i the element s; comes from an element s; o, € Fa, (U;)
for some «; < . By the assumption on cofinality, we can choose «; = « indepen-
dent of 4. Then s; and s; map to the same element of F, (U; xu Uj) for some
ajj < . Since the cardinality if I x I is also less than the cofinality of 3, we
see that we may after increasing a assume a; ; = o for all 4,j. This proves that
the natural map colim H°(U, F,) — H®(U, Feotim) is surjective. A very similar
argument shows that it is injective. In particular, we see that Fom satisfies the
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sheaf condition for &. Thus if the cofinality of § is larger than the supremum of
the cardinalities of the set of index sets I of coverings, then we conclude. ([

18. Colimits of sites

We need an analogue of Lemma in the case that the site is the limit of an
inverse system of sites. For simplicity we only explain the construction in case the
index sets of coverings are finite.

Situation 18.1. Here we are given

(1) a cofiltered index category Z,
(2) for i € Ob(Z) a site C; such that every covering in C; has a finite index set,
(3) for a morphism a : 4 — j in Z a morphism of sites f, : C; — C; given by a
continuous functor u, : C; — C;,
such that f, o f, = f. whenever c=aob in Z.

Lemma 18.2. In Situation we can construct a site (C, Cov(C)) as follows
(1) as a category C = colimC;, and
(2) Cou(C) is the union of the images of Cov(C;) by u; : C; — C.

Proof. Our definition of composition of morphisms of sites implies that u,ou, = u,
whenever ¢ = aob in Z. The formula C = colim C; means that Ob(C) = colim Ob(C;)
and Arrows(C) = colim Arrows(C;). Then source, target, and composition are in-
herited from the source, target, and composition on Arrows(C;). In this way we
obtain a category. Denote u; : C; — C the obvious functor. Remark that given
any finite diagram in C there exists an ¢ such that this diagram is the image of a
diagram in C;.

Let {U" — U} be a covering of C. We first prove that if V — U is a morphism
of C, then U! xy V exists. By our remark above and our definition of coverings,
we can find an i, a covering {U/ — U;} of C; and a morphism V; — U; whose
image by wu; is the given data. We claim that U? x¢ V is the image of U} xy, V;
by w;. Namely, for every a : j — ¢ in Z the functor u, is continuous, hence
ua (U} xu, Vi) = ua(Uf) X4, ;) a(Vi). In particular we can replace i by j, if we
so desire. Thus, if W is another object of C, then we may assume W = u;(W;) and
we see that

More (W, u; (U} %y, V;))
= colimy.j_; More, (uq (W;), uo (U} xu, Vi)
= colimg;;j—; Morg, (ua(W;), uq (U})) X More, (ua (Wi)ua (U3)) MOTC, (uq(W3),uq (V7))
= Mor¢ (W, U") X More (W,u) More (W, V)
as filtered colimits commute with finite limits (Categories, Lemma [19.2). It also

follows that {U" xy V — V'} is a covering in C. In this way we see that axiom (3)
of Definition [6.2] holds.

To verify axiom (2) of Definition let {U" — U}ier be a covering of C and for
each t let {U" — U'} be a covering of C. Then we can find an i and a covering
{U} = Ui }ier of C; whose image by u; is {U? — U}. Since T is finite we may
choose an a : j — i in Z and coverings {U}* — u4(Uf)} of C; whose image by u;
gives {U' — U'}. Then we conclude that {U* — U} is a covering of C by an
application of axiom (2) to the site C;.
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We omit the proof of axiom (1) of Definition O

Lemma 18.3. In Situation let u; : C; — C be as constructed in Lemma .
Then u; defines a morphism of sites f; : C — C;. For U; € Ob(C;) and sheaf F on
C; we have

(18.3.1) fi F(ui(U)) = colimagjsi fo ' F(ua(Us))

Proof. It is immediate from the arguments in the proof of Lemma that the
functors u,; are continuous. To finish the proof we have to show that f; " 1= u; s is
an exact functor Sh(C;) — Sh(C). In fact it suffices to show that f; ' is left exact,
because it is right exact as a left adjoint (Categories, Lemma . We first prove

(18.3.1) and then we deduce exactness.

For an arbitrary object V' of C we can pick a a : 5 — ¢ and an object V; € Ob(C)
with V' = u;(V;). Then we can set

G(V) = colimpij frop F(us(V5))

The value G(V') of the colimit is independent of the choice of b : j — 4 and of the
object V; with u;(V;) = V; we omit the verification. Moreover, if « : V — V' is a
morphism of C, then we can choose b : j — i and a morphism «; : V; — Vj’ with
uj(a;) = a. This induces a map G(V') — G(V') by using the restrictions along the
morphisms up(a;) : up(Vj) = up(V)). A check shows that G is a presheaf (omitted).
In fact, G satisfies the sheaf condition. Namely, any covering U = {U' — U} in
C comes from a finite level. Say U; = {U} — Uj} is mapped to U by wu; for some
a:j—1inZ. Then we have

H°(U, G) = colimpgeyj H (up(Uy), froqF) = colimyos; frogF (un(Us)) = G(U)
as desired. The first equality holds because filtered colimits commute with finite

limits (Categories, Lemma [19.2). By construction G(U) is given by the right hand
side of (|18.3.1]). Hence ({18.3.1)) is true if we can show that G is equal to fi_l}'.

In this paragraph we check that G is canonically isomorphic to f[l}" . We strongly
encourage the reader to skip this paragraph. To check this we have to show there
is a bijection Morgy(cy (G, H) = Morgp(c,)(F, fi«H) functorial in the sheaf H on C
where f; . =u?. A map G — H is the same thing as a compatible system of maps

Pab vy ¢ faopF (un(V;)) — H(u;(V)))
foralla:j —i,b:k— jand V; € Ob(C;). The compatibilities force the maps
®a,b,v; to be equal to Yaobid,u,(v;)- Given a : j — i, the family of maps ¢qa,v;

corresponds to a map of sheaves ¢, : f, ' F — f; . H. The compatibilities between
the ¢4 id,u, (v;) and the piq,iq,v; implies that ¢, is the adjoint of the map ;g4 via

Morgpc,) (fa ' Fs finH) = Morgpc,) (F, fafiM) = Morgnc,) (F, finH)

Thus finally we see that the whole system of maps ¢ v, is determined by the
map @;q : F — fi«H. Conversely, given such a map ¢ : F — f; . H we can read
the argument just given backwards to construct the family of maps ¢4 p,v;. This
finishes the proof that G = f; ' F.

Assume (18.3.1) holds. Then the functor F ~ f; ' F(U) commutes with finite
limits because finite limits of sheaves are computed in the category of presheaves
(Lemma [10.1)), the functors f; ' commutes with finite limits, and filtered colimits
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commute with finite limits. To see that F — f;"*F(V) commutes with finite limits
for a general object V' of C, we can use the same argument using the formula for
71 F(V) = G(V) given above. Thus f; ' is left exact and the proof of the lemma
is complete. [

Lemmal 18.4. In Situation assume given

(1) a sheaf F; on C; for alli € Ob(Z),
(2) fora:j—iamapp,: [ Fi— F; of sheaves on C;

such that . = pp 0 fb_lcpa whenever ¢ = aob. Set F = colim fi_l]:i on the site C
of Lemma[18.9 Let i € Ob(Z) and X; € Ob(C;). Then

COhIna;j_n' fj (Ua(Xl)) = f(uz (Xl))
Proof. A formal argument shows that
COliIIla;j_”' E(ua (Xz)) = COhHla:j_M' COlimb:k_n‘ fb_lfj (Uaob(Xi))

By (|18.3.1) we see that the inner colimit is equal to f;lfj(ui(Xi)) hence we con-
clude by Lemma [17.7] O

Lemma 18.5. In Situation assume we have a sheaf F on C. Then

F = colim f; ' fi . F
where the transition maps are f;1<pa fora:j—i where pq : fitfi F = fiF is
a canonical map satisfying a cocycle condition as in Lemma[187)

Proof. For the morphism
Cat fo finF = finF
we choose the adjoint to the identity map
JinF = faufjsF

Hence ¢, is the counit for the adjunction given by (f; !, fa.«). We must prove that
foralla:j — i and b: k — i with composition ¢ = a o b we have ¢, = @} 0 fb_lgoa.
This follows from Categories, Lemma Lastly, we must prove that the map
given by adjunction

colimier f7 ' fiuF — F
is an isomorphism. For an object U of C we need to show the map
(colimyer f; 1 F)(U) — F(U)

is bijective. Choose an ¢ and an object U; of C; with u;(U;) = U. Then the left
hand side is equal to

(COhmiej fl_l]'—z)(U) = COlima:j_”' ij*]-"(ua(Ui))

by Lemma [18.4] Since u;(uqa(U;)) = U we have f;.F(uqa(Us)) = F(U) for all
a : j — i by definition. Hence the value of the colimit is F(U) and the proof is
complete. ([l
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19. More functoriality of presheaves

In this section we revisit the material of Section Bl Let u : C — D be a functor
between categories. Recall that

uP : PSh(D) —s PSh(C)

is the functor that associates to G on D the presheaf u?G = G ow. It turns out that
this functor not only has a left adjoint (namely u,) but also a right adjoint.

Namely, for any V € Ob(D) we define a category vZ = %“Z. Tts objects are pairs
(U, : u(U) — V). Note that the arrow is in the opposite direction from the arrow
we used in defining the category Z{; in Section [5| A morphism (U, ) — (U’,9")
is given by a morphism « : U — U’ such that ¢ = ¢’ o u(a). In addition, given
any presheaf of sets F on C we introduce the functor . F : Z°PP — Sets, which is
defined by the rule v F(U, ) = F(U). We define

pW(F)(V) :=lim, zorr v F

As a limit there are projection maps c(¢) : pu(F)(V) — F(U) for every object
(U, %) of vZ. In fact,

collections sy,y) € F(U)
pU(F)(V) = VB : (Ur, 1) — (Uz,1po) in I
we have ﬂ*s(Ubwz) = S(U1 )

where the correspondence is given by s — s ) = c(¢)(s). We leave it to the
reader to define the restriction mappings ,u(F)(V) — ,u(F)(V’) associated to any
morphism V' — V of D. The resulting presheaf will be denoted ,uF.

Lemma 19.1. There is a canonical map puF (u(U)) — F(U), which is compatible
with restriction maps.

Proof. This is just the projection map c(id, ) above. O

Note that any map of presheaves F — F’ gives rise to compatible systems of maps
between functors v F — v F’, and hence to a map of presheaves yuF — ,uF’. In
other words, we have defined a functor

pU : PSh(C) — PSKh(D)
Lemma 19.2. The functor yu is a right adjoint to the functor u”. In other words
the formula
Mor pgi(c) (uPG, F) = Mor pgi(p) (G, puF)
holds bifunctorially in F and G.

Proof. This is proved in exactly the same way as the proof of Lemma We
note that the map v’puF — F from Lemma is the map that is used to go
from the right to the left.

Alternately, think of a presheaf of sets F on C as a presheaf F’ on C°PP with values in
Sets”PP, and similarly on D. Check that (,uF)" = u,(F’), and that (uPG)" = uP(G’).
By Remark |5;5| we have the adjointness of u, and u? for presheaves with values in
Sets®PP. The result then follows formally from this. a
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Thus given a functor u : C — D of categories we obtain a sequence of functors
Up, U, pu

between categories of presheaves where in each consecutive pair the first is left
adjoint to the second.

Lemma 19.3. Letu :C — D and v : D — C be functors of categories. Assume
that v is right adjoint to u. Then we have
(1) wPhy = hyeyy for any V in D,
(2) the category I} has an initial object,
(3) the category \-T has a final object,
(4) pu=1P, and
(5) uP = vy.
Proof. Proof of (1). Let V' be an object of D. We have uPhy = h, ) because
uPhy (U) = Morp (u(U), V) = More(U,v(V)) by assumption.
Proof of (2). Let U be an object of C. Let n: U — v(u(U)) be the map adjoint
to the map id : u(U) — w(U). Then we claim (u(U),n) is an initial object of Z}.
Namely, given an object (V,¢ : U — v(V)) of I}, the morphism ¢ is adjoint to a
map v : u(U) — V which then defines a morphism (u(U),n) — (V, ¢).
Proof of (3). Let V' be an object of D. Let £ : u(v(V)) — V be the map adjoint
to the map id : v(V) — v(V). Then we claim (v(V),§) is a final object of 7.
Namely, given an object (U,¢ : w(U) — V) of {/Z the morphism ¢ is adjoint to a
map ¢ : U — v(V) which then defines a morphism (U, ) — (v(V),§).
Hence for any presheaf F on C we have
PFV) = F(V))
Mor psic) (ho(v), F)
= Morpgpc)(u’hv, F)
= Morpgyp)(hv, puF)
= puf(V)
which proves part (4). Part (5) follows by the uniqueness of adjoint functors. O

Lemma 19.4. A continuous functor of sites which has a continuous left adjoint
defines a morphism of sites.

Proof. Let u : C — D be a continuous functor of sites. Let w : D — C be a
continuous left adjoint. Then u, = w? by Lemma m Hence us = w® has a left
adjoint, namely w, (Lemma . Thus us has both a right and a left adjoint,
whence is exact (Categories, Lemma [24.6)). O

20. Cocontinuous functors

There is another way to construct morphisms of topoi. This involves using cocon-
tinuous functors between sites defined as follows.

Definition 20.1. Let C and D be sites. Let u : C — D be a functor. The functor u
is called cocontinuous if for every U € Ob(C) and every covering {V; — w(U)};es of
D there exists a covering {U; — U},er of C such that the family of maps {u(U;) —
u(U) }ier refines the covering {V; — u(U)}je.
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Note that {u(U;) — w(U)}ier is in general not a covering of the site D.

Lemma 20.2. Let C and D be sites. Let u : C — D be cocontinuous. Let F be a
sheaf on C. Then puF is a sheaf on D, which we will denote juF.

Proof. Let {V; — V};c; be a covering of the site D. We have to show that
puF (V) —— [T puF(Vj) [[puF (V; xv Vj)

R

is an equalizer diagram. Since ,u is right adjoint to u” we have
pu]-"(V) = MOI'PSh(D) (hv, pu]-") = MorPSh(C) (uphv, .7:) = MOI‘Sh(c)((Uphv)#, .7:)
Hence it suffices to show that

(20.2.1) Huphvjvaj/ Hupth 4>uphv

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in
the category of sheaves is the sheafification of the coproduct in the category of

presheaves, see Lemma [10.13])

We first show that the second arrow of becomes surjective after sheafifi-
cation. To do this we use Lemma Thus it suffices to show a section s of
uPhy over U lifts to a section of [ ] uPhy; on the members of a covering of U. Note
that s is a morphism s : w(U) — V. Then {V; xv s w(U) = u(U)} is a cover-
ing of D. Hence, as u is cocontinuous, there is a covering {U; — U} such that
{u(U;) = u(U)} refines {V; xv,s w(U) = w(U)}. This means that each restriction
sly, : w(U;) — V factors through a morphism s; : u(U;) — V; for some j, i.e., s|y,
is in the image of uPhy, (U;) — uPhy (U;) as desired.

Let s,s" € ([JuPhy,)#(U) map to the same element of (uhy )#(U). To finish the
proof of the lemma we show that after replacing U by the members of a covering
that s, s’ are the image of the same section of ]_[uphvjxvvj, by the two maps of
(20.2.1). We may first replace U by the members of a covering and assume that
s € uPhy;(U) and s" € uPhy,, (U). A second such replacement guarantees that s
and s’ have the same image in uPhy (U) instead of in the sheafification. Hence
s:u(U) = Vj and s’ : w(U) — Vjs are morphisms of D such that

u(U) ——=Vy

S

1

V,——V

is commutative. Thus we obtain ¢ = (s,s") : w(U) — V; xy Vj, ie., a section
t € uPhy; x v, (U) which maps to s, s’ as desired. O

Lemmal 20.3. Let C and D be sites. Let u: C — D be cocontinuous. The functor
Sh(D) — Sh(C), G — (uPG)¥ is a left adjoint to the functor su introduced in
Lemma |20.4 above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows
Morgy(c)(u?G)*, F) = Morpgpc)(u”G, F)
= Morpgyp) (G, puF)
= Morgypy (G, suF).
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Thus it is a left adjoint and hence right exact, see Categories, Lemma [24.6, We
have seen that sheafification is left exact, see Lemma|[I0.14] Moreover, the inclusion
i : Sh(D) — PSh(D) is left exact by Lemmal[10.1] Finally, the functor u? is left exact
because it is a right adjoint (namely to u,). Thus the functor is the composition
# o uP o of left exact functors, hence left exact. O

We finish this section with a technical lemma.

Lemma) 20.4. In the situation of Lemma W For any presheaf G on D we have
(wPG)* = (uP(G7))*.

Proof. For any sheaf F on C we have

Mor gy ey (WP (GF)#, F) = Morgp)(G*, suF)
= Morgy(p) (9#7 puF)
= Morpgpp)(G, puF)
= Morpgye)(u?G, F)
= Morgye)((uPG)*, F)

and the result follows from the Yoneda lemma. O

Remark| 20.5. Let u : C — D be a functor between categories. Given morphisms
g:u(U) = Vand f: W — V in D we can consider the functor

CoPP — Sets, T +— Morc (T, U) XMorp (u(T),v) Morp (u(T), W)

If this functor is representable, denote U X, v ¢ W the corresponding object of
C. Assume that C and D are sites. Consider the property P: for every covering
{f; : V; = V} of D and any morphism g : uw(U) — V we have

(1) U xg,v,1, Vi exists for all i, and

(2) {U xg4,v,5; Vi = U} is a covering of C.
Please note the similarity with the definition of continuous functors. If v has P
then u is cocontinuous (details omitted). Many of the cocontinuous functors we
will encounter satisfy P.

21. Cocontinuous functors and morphisms of topoi

It is clear from the above that a cocontinuous functor w gives a morphism of topoi in
the same direction as w. Thus this is in the opposite direction from the morphism
of topoi associated (under certain conditions) to a continuous v as in Definition

[[43] Proposition [[4.7] and Lemma [I5.2]

Lemma 21.1. Let C and D be sites. Let u : C — D be cocontinuous. The functors
gs = su and g~ = (uP )# define a morphism of topoi g from Sh(C) to Sh(D).

Proof. This is exactly the content of Lemma [20.3 O
Lemma 21.2. Letu :C — D, and v : D — & be cocontinuous functors. Then
v owu is cocontinuous and we have h = g o f where f : Sh(C) — Sh(D), resp.

g : Sh(D) — Sh(E), resp. h: Sh(C) — Sh(E) is the morphism of topoi associated to
u, Tesp. v, TeSp. vV o u.
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Proof. Let U € Ob(C). Let {E; — v(u(U))} be a covering of U in £. By as-
sumption there exists a covering {D; — u(U)} in D such that {v(D;) — v(u(U))}
refines {E; — v(u(U))}. Also by assumption there exists a covering {C; — U}
in C such that {u(C;) — w(U)} refines {D; — w(U)}. Then it is true that
{v(u(C})) = v(u(U))} refines the covering {E; — v(u(U))}. This proves that vou
is cocontinuous. To prove the last assertion it suffices to show that svosu = s(vou).
It suffices to prove that ,v 0 ,u = ,(vou), see Lemma Since pu, resp. pv,
resp. p(v o u) is right adjoint to u?, resp. vP, resp. (v o u)? it suffices to prove that
uP ovP = (vowu)P. And this is direct from the definitions. O

Examplel 21.3. Let X be a topological space. Let j : U — X be the inclusion
of an open subspace. Recall that we have sites X 74, and Ug,,, see Example [6.4]
Recall that we have the functor u : Xz, — Uza, associated to j which is continuous
and gives rise to a morphism of sites Uzq, — Xzar, see Example @ This also
gives a morphism of topoi (j*,j_l). Next, consider the functor v : Uzer — Xzar,
V = v(V) =V (just the same open but now thought of as an object of Xz4,).
This functor is cocontinuous. Namely, if v(V') = (J;c ; W; is an open covering in X,
then each W; must be a subset of U and hence is of the form v(V;), and trivially
Vv= I V; is an open covering in U. We conclude by Lemma above that
there is a morphism of topoi associated to v

Sh(U) — Sh(X)

given by ;v and (v )#. We claim that actually (v )# = j~! and that v = j,,
in other words, that this is the same morphism of topoi as the one given above.
Perhaps the easiest way to see this is to realize that for any sheaf G on X we have
vPG(V) = G(V) which according to Sheaves, Lemma is a description of j~1G
(and hence sheafification is superfluous in this case). The equality of sv and j,
follows by uniqueness of adjoint functors (but may also be computed directly).

Examplel 21.4. This example is a slight generalization of Example Let
f : X — Y be a continuous map of topological spaces. Assume that f is open.
Recall that we have sites Xz, and Yz,,, see Example Recall that we have
the functor w : Yz4 — Xza, associated to f which is continuous and gives rise to
a morphism of sites X 74 — Yz4r, see Example [[4:2] This also gives a morphism
of topoi (fs, f~1). Next, consider the functor v : X4 — Yzar, U — v(U) = f(U).
This functor is cocontinuous. Namely, if f(U) = Uje ;V; is an open covering in
Y, then setting U; = f~1(V;) N U we get an open covering U = |JU; such that
f(U) = U f(Uj) is a refinement of f(U) = [JV;. We conclude by Lemma
above that there is a morphism of topoi associated to v

Sh(X) — Sh(Y)

given by sv and (v? )#. We claim that actually (vP )# = f~! and that ;v = f., in
other words, that this is the same morphism of topoi as the one given above. For
any sheaf G on Y we have vPG(U) = G(f(U)). On the other hand, we may compute
upG(U) = colimynycv G(V) = G(f(U)) because clearly (f(U), U C f~1(f(U))) is
an initial object of the category Zj} of Section 5} Hence u, = v” and we conclude
f~!' = us = (v )#. The equality of v and f, follows by uniqueness of adjoint
functors (but may also be computed directly).

In the first Example 21.3] the functor v is also continuous. But in the second
Example it is generally not continuous because condition (2) of Definition [13.]]
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may fail. Hence the following lemma applies to the first example, but not to the
second.
Lemma 21.5. Let C and D be sites. Let u: C — D be a functor. Assume that

(a) w is cocontinuous, and
(b) w is continuous.

Let g : Sh(C) — Sh(D) be the associated morphism of topoi. Then
(1) sheafification in the formula g=' = (uP )# is unnecessary, in other words
971 (G)(U) = G(u(V)),
(2) g7 has a left adjoint g = (u, )#, and
(3) g~ commutes with arbitrary limits and colimits.
Proof. By Lemma for any sheaf G on D the presheaf uPG is a sheaf on C. And
then we see the adjointness by the following string of equalities
Mor g ey (F,97'G) Mor pgp(c) (F, u"G)
= Morpgy(p)(upF,G)
= Morgyp)(9F,G)

The statement on limits and colimits follows from the discussion in Categories,
Section 241 O

In the situation of Lemma [21.5 above we see that we have a sequence of adjoint
functors
9 9 ge

The functor gy is not exact in general, because it does not transform a final object
of Sh(C) into a final object of Sh(D) in general. See Sheaves, Remark On
the other hand, in the topological setting of Example 2I.3] the functor ji is ex-
act on abelian sheaves, see Modules, Lemma The following lemma gives the
generalization to the case of sites.

Lemmal 21.6. Let C and D be sites. Let u:C — D be a functor. Assume that

(a) u is cocontinuous,
(b) w is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor gi above commutes with fibre products and equalizers (and
more generally with finite connected limits).

Proof. Assume (a), (b), and (c). We have g = (u, )#. Recall (Lemma
that limits of sheaves are equal to the corresponding limits as presheaves. And
sheafification commutes with finite limits (Lemma [10.14)). Thus it suffices to show
that u, commutes with fibre products and equalizers. To do this it suffices that
colimits over the categories (Z{%)°PP of Section [5| commute with fibre products and
equalizers. This follows from Lemma [5.1]and Categories, Lemma [19.9 (]

The following lemma deals with a case that is even more like the morphism associ-
ated to an open immersion of topological spaces.

Lemma 21.7. Let C and D be sites. Let uw: C — D be a functor. Assume that

(a) u is cocontinuous,
(b) w is continuous, and

(¢c) w is fully faithful.
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For 1,971, g« as above the canonical maps F — g 'qF and g 'g.F — F are
isomorphisms for all sheaves F on C.

Proof. Let X be an object of C. In Lemmas and we have seen that
sheafification is not necessary for the functors g=! = (u? )# and g, = (,u )¥. We
may compute (g7 g.F)(X) = g.F(u(X)) = lim F(Y). Here the limit is over the
category of pairs (Y, u(Y) — w(X)) where the morphisms u(Y) — u(X) are not
required to be of the form u(a) with o a morphism of C. By assumption (c) we see
that they automatically come from morphisms of C and we deduce that the limit

is the value on (X,u(idx)), i.e., F(X). This proves that g~ 'g.F = F.

On the other hand, (¢~ g F)(X) = g F(u(X)) = (upF)# (u(X)), and u, F(u(X)) =
colim F(Y'). Here the colimit is over the category of pairs (Y, u(X) — u(Y")) where
the morphisms u(X) — u(Y) are not required to be of the form u(«a) with « a
morphism of C. By assumption (c¢) we see that they automatically come from
morphisms of C and we deduce that the colimit is the value on (X, u(idx)), i.e.,
F(X). Thus for every X € Ob(C) we have u,F(u(X)) = F(X). Since u is co-
continuous and continuous any covering of «(X) in D can be refined by a covering
(N {u(X;) = u(X)} of D where {X; — X} is a covering in C. This implies that
(upF) T (u(X)) = F(X) also, since in the colimit defining the value of (u,F)" on
u(X) we may restrict to the cofinal system of coverings {u(X;) — u(X)} as above.
Hence we see that (u,F)"(u(X)) = F(X) for all objects X of C as well. Repeat-
ing this argument one more time gives the equality (u,F)# (u(X)) = F(X) for all
objects X of C. This produces the desired equality g~ g F = F. O

Finally, here is a case that does not have any corresponding topological example.
We will use this lemma to see what happens when we enlarge a “partial universe”
of schemes keeping the same topology. In the situation of the lemma, the morphism
of topoi g : Sh(C) — Sh(D) identifies Sh(C) as a subtopos of Sh(D) (Section
and moreover, the given embedding has a retraction.

Lemma 21.8. Let C and D be sites. Let u:C — D be a functor. Assume that

(a) w is cocontinuous,

(b) w is continuous,

(¢c) w is fully faithful,

(d) fibre products exist in C and u commutes with them, and

(e) there exist final objects ec € Ob(C), ep € Ob(D) such that u(ec) = ep.

Let gi,g7 ', g. be as above. Then, u defines a morphism of sites f : D — C with
fe=9"", f~' = g. The composition

Sh(C) —2> Sh(D) —L~ sK(C)
is isomorphic to the identity morphism of the topos Sh(C). Moreover, the functor
F~L is fully faithful.

Proof. By assumption the functor u satisfies the hypotheses of Proposition [14.7]
Hence u defines a morphism of sites and hence a morphism of topoi f as in Lemma
15.20 The formulas f, = g~! and f~! = g are clear from the lemma cited and
Lemma We have f,og, =g 'og, 2id,and g lo f7! =g log 2id by
Lemma 2T.7
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We still have to show that f~! is fully faithful. Let 7, G € Ob(Sh(C)). We have to
show that the map

Mor gp(c)(F,G) — Morgyp)(f ' F, f71G)
is bijective. But the right hand side is equal to

Mor gp,py (f ' F, f71G) = Morgye) (F, fo f ')
= Morgyc)(F, g ' f'G)
= Morgyc)(F, )

(the first equality by adjunction) which proves what we want. ([

Example 21.9. Let X be a topological space. Let i : Z — X be the inclusion
of a subset (with induced topology). Cousider the functor v : Xz4r — Zzar,
Uw—u(U)=2ZnNU. At first glance it may appear that this functor is cocontinuous
as well. After all, since Z has the induced topology, shouldn’t any covering of UNZ
it come from a covering of U in X? Not so! Namely, what if UNZ = ()7 In that case,
the empty covering is a covering of UNZ, and the empty covering can only be refined
by the empty covering. Thus we conclude that u cocontinuous = every nonempty
open U of X has nonempty intersection with Z. But this is not sufficient. For
example, if X = R the real number line with the usual topology, and Z = R\ {0},
then there is an open covering of Z, namely Z = {z < 0} UJ,,{1/n < z} which
cannot be refined by the restriction of any open covering of X.

22. Cocontinuous functors which have a right adjoint

It may happen that a cocontinuous functor u has a right adjoint v. In this case it
is often the case that v is continuous, and if so, then it defines a morphism of topoi
(which is the same as the one defined by u).

Lemma 22.1. Let C and D be sites. Let u:C — D, and v : D — C be functors.
Assume that u is cocontinuous, and that v is a right adjoint to u. Let g : Sh(C) —
Sh(D) be the morphism of topoi associated to u, see Lemma . Then g« F 1is
equal to the presheaf vPF, in other words, (g.F)(V) = F(v(V)).

Proof. We have uPhy = h,(yy by Lemma[19.3] By Lemma this implies that
g_l(hﬁ) = (uph‘#f)# = (uPhy)¥ = v#(V)' Hence for any sheaf F on C we have

(g F)(V) = MOTSh(D)(hxﬁ/&,g*J:)
Mor ey (9" (h), F)
= MorSh(C)(hf(v),]:)
= F(V))
which proves the lemma. (Il
In the situation of Lemma P22.1] we see that vP transforms sheaves into sheaves.
Hence we can define v* = vP restricted to sheaves. Just as in Lemma we see

that vs : G — (vpg)# is a left adjoint to v*. On the other hand, we have v°® = g,
and g~! is a left adjoint of g, as well. We conclude that ¢g~! = v, is exact.


https://stacks.math.columbia.edu/tag/00XV
https://stacks.math.columbia.edu/tag/00XX

00XY

0EWJ

08NG
08NH

09YW

SITES AND SHEAVES 45

Lemma 22.2. In the situation of Lemma W We have g, = v° = vP and
g L =wvs = (v, )#. If v is continuous then v defines a morphism of sites f from
C to D whose associated morphism of topoi is equal to the morphism g associated
to the cocontinuous functor u. In other words, a continuous functor which has a
cocontinuous left adjoint defines a morphism of sites.

Proof. Clear from the discussion above the lemma and Definitions[I4.1]and Lemma
115.2] O

Example|22.3. This example continues the discussion of Example from which
we borrow the notation C,7,7’,e. Observe that the identity functor v : C;» — C;
is a continuous functor and the identity functor w : C, — C,/ is a cocontinuous
functor. Moreover u is left adjoint to v. Hence the results of Lemmas and
apply and we conclude v defines a morphism of sites, namely

€:Cr —Cp

whose corresponding morphism of topoi is the same as the morphism of topoi
associated to the cocontinuous functor w.

23. Cocontinuous functors which have a left adjoint
It may happen that a cocontinuous functor u has a left adjoint w.

Lemma 23.1. Let C and D be sites. Let g : Sh(C) — Sh(D) be the morphism of
topoi associated to a continuous and cocontinuous functor u : C — D, see Lemmas

(211 and 213
(1) If w: D — C is a left adjoint to u, then
(a) g F is the sheaf associated to the presheaf wPF, and
(b) g is ezact.
(2) if w is a continuous left adjoint, then g has a left adjoint.
(3) If w is a cocontinuous left adjoint, then gy = h™' and g~
h: Sh(D) — Sh(C) is the morphism of topoi associated to w.

L = h, where

Proof. Recall that gi.F is the sheafification of u,F. Hence (1)(a) follows from the
fact that u, = w? by Lemma [19.3]

To see (1)(b) note that gr commutes with all colimits as g is a left adjoint (Cat-
egories, Lemma [24.5). Let i — F; be a finite diagram in Sh(C). Then lim F; is
computed in the category of presheaves (Lemma . Since wP is a right ad-
joint (Lemma we see that wP lim F; = lim wPF;. Since sheafification is exact
(Lemma [10.14)) we conclude by (1)(a).

Assume w is continuous. Then g = (wP )# = w*® but sheafification isn’t necessary
and one has the left adjoint w;, see Lemmas [13.2] and [[3.3]

Assume w is cocontinuous. The equality g1 = h~! follows from (1)(a) and the defi-
nitions. The equality g~ = h, follows from the equality ¢i = A~' and uniqueness
of adjoint functor. Alternatively one can deduce it from Lemma [22.1 O

24. Existence of lower shriek

In this section we discuss some cases of morphisms of topoi f for which f~! has a
left adjoint fi.
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09YX |Lemma 24.1. Let C, D be two sites. Let f : Sh(D) — Sh(C) be a morphism of
topoi. Let E C Ob(D) be a subset such that

(1) forV € E there exists a sheaf G on C such that f~'F(V) = Morgycy (G, F)
functorially for F in Sh(C),
(2) every object of D has a covering by objects of E.

Then f~1 has a left adjoint fi.

Proof. By the Yoneda lemma (Categories, Lemma the sheaf Gy correspond-
ing to V € FE is defined up to unique isomorphism by the formula f='F(V) =
Morgy(cy(Gv, F). Recall that f~'F (V) = Morgypy (his, f~'F). Denote iy : hjr —
f71Gy the map corresponding to id in Mor(Gy, Gy). Functoriality in (1) implies
that the bijection is given by

Morgu(cy(Gv, F) = Morgpy (hir, 1 F), o flpoiy

For any V1, V5 € E there is a canonical map
MOTSh(D)(h\#/27 hf’/&l) — Homgyc)(Gva, Gvi), @ = fi(p)

which is characterized by f=1(fi(p)) o iy, = iy, o ¢. Note that ¢ — fi(yp) is
compatible with composition; this can be seen directly from the characterization.
Hence h?\% — Gy and ¢ — fip is a functor from the full subcategory of Sh(D) whose

objects are the h?,é.

Let J be aset and let J — E, j — Vj be a map. Then we have a functorial bijection

Mor gp(c) (H Gv,, F) — MOFSh(D)(H hij fTUF)

using the product of the bijections above. Hence we can extend the functor f; to
the full subcategory of Sh(D) whose objects are coproducts of hff with V € F.

Given an arbitrary sheaf { on D we choose a coequalizer diagram

7‘[04>’H

Hy ;

where H; =[] h‘#f _is a coproduct with V; ; € E. This is possible by assumption
(2), see Lemma (for those worried about set theoretical issues, note that the
construction given in Lemma is canonical). Define fi(#) to be the sheaf on C
which makes

fiHy o — fiH
a coequalizer diagram. Then
Mor( fiH, F) = Equalizer( Mor(fiHo, F) —___ Mor(fiH1,F) )
= Equalizer( Mor(Ho, f~*F) —___ Mor(H1, f~1F))
= Hom(H, f~'F)

Hence we see that we can extend fi to the whole category of sheaves on D. [
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25. Localization

Let C be a site. Let U € Ob(C). See Categories, Example for the definition of
the category C/U of objects over U. We turn C/U into a site by declaring a family
of morphisms {V; — V'} of objects over U to be a covering of C/U if and only if it
is a covering in C. Consider the forgetful functor

ju:C/U —C.
This is clearly cocontinuous and continuous. Hence by the results of the previous
sections we obtain a morphism of topoi
ju : Sh(C/U) — Sh(C)
given by j;;' and jy., as well as a functor ji.

Definition 25.1. Let C be a site. Let U € Ob(C).

(1) The site C/U is called the localization of the site C at the object U.

(2) The morphism of topoi jy : Sh(C/U) — Sh(C) is called the localization
morphism.

(3) The functor jy. is called the direct image functor.

(4) For a sheaf F on C the sheaf j;;' F is called the restriction of F to C/U.

(5) For a sheaf G on C/U the sheaf ji1G is called the extension of G by the
empty set.

The restriction j;'F is the sheaf defined by the rule j;'F(X/U) = F(X) as
expected. The extension by the empty set also has a very easy description in this
case; here it is.

Lemma 25.2. Let C be a site. Let U € Ob(C). Let G be a presheaf on C/U. Then
Ju1(G™) is the sheaf associated to the presheaf

Vi— GV 5 U)

HgﬂGMorc(V,U)
with obvious restriction mappings.

Proof. By Lemma we have ji1(G*) = ((ju)p,G7)*. By Lemma this is
equal to ((jir),G)#. Hence it suffices to prove that (ji), is given by the formula

above for any presheaf G on C/U. OK, and by the definition in Section [5| we have

(Ju)pG (V) = colimw v —w) G(W)

Now it is clear that the category of pairs (W/U,V — W) has an object O, = (¢ :
V - U,id:V — V) for every ¢ : V — U, and moreover for any object there is a
unique morphism from one of the O, into it. The result follows. ([l

Lemma 25.3. Let C be a site. Let U € Ob(C). Let X/U be an object of C/U.
Then we have jU!(hﬁ/U) = hﬁ.

Proof. Denote p : X — U the structure morphism of X. By Lemma [25.2] we see
jUg(h’;/U) is the sheaf associated to the presheaf

Vi— {Y: V=X |poyp=p}

HgoeMorc(V,U)
This is clearly the same thing as Mor¢(V, X). Hence the lemma follows. g


https://stacks.math.columbia.edu/tag/00Y0
https://stacks.math.columbia.edu/tag/03CD
https://stacks.math.columbia.edu/tag/03HU

00Y1

SITES AND SHEAVES 48

We have jyi(x) = hﬁ by either of the two lemmas above. Hence for every sheaf

G over C/U there is a canonical map of sheaves ji1G — hﬁ This characterizes
sheaves in the essential image of jy.

Lemma 25.4. Let C be a site. Let U € Ob(C). The functor juyi gives an equiva-
lence of categories

Sh(C/U) —s Sh(C)/hit

Proof. Let us denote objects of C/U as pairs (X, a) where X is an object of C and
a : X — U is a morphism of C. Similarly, objects of Sh(C)/hZ£ are pairs (F,®).
The functor Sh(C/U) — Sh(C)/hﬁ sends G to the pair (ji1G,v) where « is the
composition of jiG — jyix with the identification jy*x = hﬁ

Let us construct a functor from Sh(C)/hﬁ to Sh(C/U). Suppose that (F, ¢) is given.
For an object (X, a) of C/U we consider the set F,(X,a) of elements s € F(X)
which under ¢ map to the image of a € Mor¢(X,U) = hy(X) in hﬁ (X). Tt is easy
to see that (X,a) — F,(X,a) is a sheaf on C/U. Clearly, the rule (F,¢) — F,
defines a functor Sh(C)/hf; — Sh(C/U).

Consider also the functor PSh(C)/hy — PSh(C/U), (F,¢) — F, where F (X, a)
is defined as the set of elements of F(X) mapping to a € hy(X). We claim that
the diagram

PSh(C)/hiy — PSh(C/U)

| |

Sh(C)/hf; — Sh(C/U)

commutes, where the vertical arrows are given by sheafification. To see thisﬂ, it
suffices to prove that the construction commutes with the functor F — F* of
Lemmas [10.3] and [10.4] and Theorem [10.100 Commutation with F — FT follows
from the fact that given (X,a) the categories of coverings of (X,a) in C/U and
coverings of X in C are canonically identified.

Next, let PSh(C/U) — PSh(C)/hy send G to the pair (j5°"G,~) where j5"G
the presheaf defined by the formula in Lemma [25.2] and v is the composition of
JEehG — juyix with the identification j7 "+ = hy (obvious from the formula).
Then it is immediately clear that the diagram

PSh(C/U) — PSh(C)/his

| |

Sh(C/U) Sh(C)/nf;

5An alternative is to describe F, by the cartesian diagram

Fp——— Fop——>%
l \L for presheaves and i \L
Fleyjuv —=huvleu Fleyg —=h¥le/v

for sheaves and use that restriction to C/U commutes with sheafification.
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commutes, where the vertical arrows are sheafification. Putting everything to-
gether it suffices to show there are functorial isomorphisms ( jf?!‘ghg),Y =@ for G in
PSh(C/U) and jEo"F, = F for (F,¢) in PSh(C)/hy. The value of the presheaf
(j&P"G), on (X, a) is the fibre of the map

!
IIMXHUg@&a)A»anxXJD
over a which is G(X,a). This proves the first equality. The value of the presheaf
jg,Sh]{p ison X is
I ., FoXa)=F(X)

because given a set map S — S’ the set S is the disjoint union of its fibres. O

Lemma [25.4] says the functor jy is the composition
Sh(C/U) — Sh(C)/h¥ — Sh(C)
where the first arrow is an equivalence.

Lemma 25.5. Let C be a site. Let U € Ob(C). The functor jun commutes
with fibre products and equalizers (and more generally finite connected limits). In
particular, if F C F' in Sh(C/U), then jinF C juF .

Proof. Via Lemma and the fact that an equivalence of categories commutes
with all limits, this reduces to the fact that the functor Sh(C)/ h# — Sh(C) com-
mutes with fibre products and equalizers. Alternatively, one can prove this directly
using the description of jy in Lemma using that sheafification is exact. (Also,
in case C has fibre products and equalizers, the result follows from Lemmam) O

Lemma 25.6. Let C be a site. Let U € Ob(C). The functor ju reflects injections
and surjections.

Proof. We have to show jy reflects monomorphisms and epimorphisms, see Lemma
Via Lemma this reduces to the fact that the functor Sh(C)/hff — Sh(C)
reflects monomorphisms and epimorphisms. 0

Lemma 25.7. Let C be a site. Let U € Ob(C). For any sheaf F on C we have
juijp ' F = F x hf;.

Proof. This is clear from the description of ji in Lemma [25.2 ]

Lemma) 25.8. Let C be a site. Let f:V — U be a morphism of C. Then there
exists a commutative diagram

eV ———c¢/

\/

of continuous and cocontinuous functors. The functor j : C/V — C/U, (a: W —
V)= (foa: W — U) is identified with the functor jy,u : (C/U)/(V/U) = C/U
via the identification (C/U)/(V/U) = C/V. Moreover we have jyi = ju o ji,

Jyt =" oyt and jve = jus o j.
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Proof. The commutativity of the diagram is immediate. The agreement of j with
Jvyu follows from the definitions. By Lemma@we see that the following diagram
of morphisms of topoi

Sh(C/V) Sh(C/U)

(25.8.1) XS;(C) %

is commutative. This proves that j;l =j- oj[}1 and jy« = ju« 0 J«. The equality
Jvi = jur o 7 follows formally from adjointness properties. ]

Lemmal 25.9. Notation C, f:V — U, ju, jv, and j as in Lemma . Via the
identifications Sh(C/V') = Sh(C)/h¥ and Sh(C/U) = Sh(C)/h} of Lemma we

have

(1) the functor j=' has the following description
. ®
JTHH S h?j) =(H X on# .t hi — hi).
(2) the functor ji has the following description
IH S 1) = (225 )

Proof. Proof of (2). Recall that the identification Sh(C/V) — Sh(C)/h‘#f sends
G to jviG — jyi(x) = hi and similarly for SK(C/U) — Sh(C)/hf;. Thus ;G is
mapped to ju1(jH1G) — jui(x) = hﬁ and (2) follows because jy1ji = jy1 by Lemma

The reader can now prove (1) by using that j~! is the right adjoint to ji and using

that the rule in (1) is the right adjoint to the rule in (2). Here is a direct proof.
Suppose that ¢ : H — hﬁ is an object of Sh(C)/h#. By the proof of Lemma
this corresponds to the sheaf H, on C/U defined by the rule

(a: W =U)r—{seH(W) | p(s) =a}
on C/U. The pullback j~'H, to C/V is given by the rule
(a:W—=V)r—{seHW)]|p(s)=foa}

by the description of j~! = jg/lv as the restriction of H, to C/V. On the other
hand, applying the rule to the object

’_ # ¢’ #
H=Hx gy ————hy

of Sh(C)/h¥ we get H., given by
(a:W = V)r—{s eH'W)| () =a}
={(s,a’) € H(W) x h#t(W) | a’ = a and ¢(s) = foa'}

which is exactly the same rule as the one describing j 717—[“, above. [
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0494 |Remark 25.10. Localization and presheaves. Let C be a category. Let U be an
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object of C. Strictly speaking the functors j; ! ju. and jyi have not been defined
for presheaves. But of course, we can think of a presheaf as a sheaf for the chaotic
topology on C (see Example . Hence we also obtain a functor

jgt: PSh(C) — PSK(C/U)
and functors
jU*,jUg : PSh(C/U) — PSh(C)
which are right, left adjoint to j; ! By Lemma we see that jinG is the presheaf

Vi— GV 5 U)

H(,DGMorc(V,U)
In addition the functor jy; commutes with fibre products and equalizers.
Remark|25.11. Let C be asite. Let U — V be a morphism of C. The cocontinuous
functors C/U — C and j : C/U — C/V (Lemma|25.8)) satisfy property P of Remark
20.5] For example, if we have objects (X/U), (W/V), a morphism g : j(X/U) —
(W/V), and a covering {f; : (W;/V) — (W/V)} then (X xw W;/U) is an avatar of
(X/U) % g, (wyv),5; (Wi/V) and the family {(X xw W;/U) — (X/U)} is a covering
of C/U.

26. Glueing sheaves

This section is the analogue of Sheaves, Section
Lemma 26.1. Let C be a site. Let {U; — U} be a covering of C. Let F, G be

sheaves on C. Given a collection

¢i: Fleyu, — Gleyw,
of maps of sheaves such that for all i,5 € I the maps ;,; restrict to the same
map @;j : ~7:|C/UixUUj — g|c/U1.XUU]. then there exists a unique map of sheaves

¢ : Fleyy — Gleyw
whose restriction to each C/U; agrees with ¢;.
Proof. The restrictions used in the lemma are those of Lemma Let V/U
be an object of C/U. Set V; = U; xy V and denote V = {V; — V}. Observe
that (U; xy Uj) xuy V. = Vi xy Vj. Then we have Flc,y, (Vi/U;) = F(V;) and

Fleyvixpu, (Vi xv Vi /Ui xu U;) = F(V; xv V) and similarly for G. Thus we can
define ¢ on sections over V as the dotted arrows in the diagram

FV)=—H'W,F) —=TIIFVi) ___TIF(Vixv V)
v H%l H‘Pijl
G(V)=——=H'V,G) ——=T16(V;) ___TIG(Vi xv V)

The equality signs come from the sheaf condition; see Section [I0] for the nota-
tion H°(V, —). We omit the verification that these maps are compatible with the
restriction maps. [
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The previous lemma implies that given two sheaves F, G on a site C the rule
U +—— Morgyc vy (Fleju,Glesv)

defines a sheaf Hom(F,G). This is a kind of internal hom sheaf. It is seldom used in
the setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules on Sites, Section

Lemma 26.2. Let C be a site. Let F, G and H be sheaves on C. There is a
canonical bijection

Morgpc)(F % G,H) = Morgy ey (F, Hom(G, H))
which is functorial in all three entries.

Proof. The lemma says that the functors — x G and Hom(G, —) are adjoint to each
other. To show this, we use the notion of unit and counit, see Categories, Section
24 The unit

nr: F — Hom(G,F x G)
sends s € F(U) to the map Glc,u — Flc/u X Gle/u which over V/U is given by
GV)— F(V)xG(V), tr— (s|v,t).
The counit
ey : Hom(G, H) x G — H
is the evaluation map. It is given by the rule
Morgnc/v)(Glesvs Hleyu) X GU) — H(U), (v, 5) — »(s).

Then for each ¢ : F x G — H, the corresponding morphism F — Hom(G, H) is
given by mapping each section s € F(U) to the morphism of sheaves on C/U which
on sections over V/U is given by

GV) —H(V), tr—p(slv,t).
Conversely, for each ¢ : F — Hom(G,H), the corresponding morphism F x G — H

is given by

F(U) xGU) — HU), (s,) — 9(s)(t)
on sections over an object U. We omit the details of the proof showing that these
constructions are mutually inverse. O
Lemma 26.3. Let C be a site and U € Ob(C). Then Hom(h, F) = J«(Fleyv)
for F in Sh(C).

Proof. This can be shown by directly constructing an isomorphism of sheaves.
Instead we argue as follows. Let G be a sheaf on C. Then

Mor(G, j«(Flejv)) = Mor(Gle v, Fleyv)
= Mor(ji(Glc/v), F)
= Mor(G x hi, F)
= Mor(G, Hom(h;, F))
and we conclude by the Yoneda lemma. Here we used Lemmas 26.2 and 25.7] O
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Let C be a site. Let {U; — Ulier be a covering of C. For each i € I let F; be a
sheaf of sets on C/U;. For each pair i,j € I, let

vij + Fileyuixou; — Fileyvixou,
be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices 1, j, k € I the following diagram is commutative

File v xuu; vy, " FrlevixuU; xuUs

fj|c/Ui><UUj><UUk

We will call such a collection of data (F;, ;) a glueing data for sheaves of sets with
respect to the covering {U; — U}ier.

Lemma 26.4. Let C be a site. Let {U; — U}icr be a covering of C. Given any
glueing data (F;i, ;) for sheaves of sets with respect to the covering {U; — U}ier
there exists a sheaf of sets F on C/U together with isomorphisms

@i+ Fleyu, = Fi
such that the diagrams

‘7:|C/Ui><UUj ©; ‘Fi|c/UiXuUj

®j
‘F|C/Ui><UUj fj|C/Ui><UUj
are commutative.

Proof. Let us describe how to construct the sheaf F on C/U. Let a : V — U be
an object of C/U. Then

FV/U) = {(si)icr € [[Fi(Ui xv VIU) | @i (silv,xpu, xov) = 8iluixpv, xov
iel
We omit the construction of the restriction mappings. We omit the verification
that this is a sheaf. We omit the construction of the isomorphisms ¢;, and we omit
proving the commutativity of the diagrams of the lemma. O

Let C be a site. Let {U; — U}ier be a covering of C. Let F be a sheaf on C/U.
Associated to F we have its canonical glueing data given by the restrictions F|¢,
and the canonical isomorphisms

(Fleyv:) leyvixwu; = (Flew,) leyvixou,

coming from the fact that the composition of the functors C/U; xy U; — C/U; —
C/U and C/U; xy U; — C/U; — C/U are equal.

Lemma 26.5. Let C be a site. Let {U; — U}ier be a covering of C. The category
Sh(C/U) is equivalent to the category of glueing data via the functor that associates
to F on C/U the canonical glueing data.

Proof. In Lemma [26.1] we saw that the functor is fully faithful, and in Lemma [26.4]
we proved that it is essentially surjective (by explicitly constructing a quasi-inverse
functor). O
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Let C be a site. We are going to discuss a version of glueing sheaves on the entire
site C. For each object U in C, let Fy be a sheaf on C/U. Recall that there is a
functor j; : C/V — C/U associated to each morphism f : V — U in C, given by
(a:W —=V)—= (foa: W — U). For each such f, let

cy Zj;IfU — Fv
be an isomorphism of sheaves. Assume that given any two arrows f : V — U and
g : W — V in C, the composition ¢4 o jg’lcf is equal to cfoq. We will call such
a collection of data (Fy,cy) an absolute glueing data for sheaves of sets on C. A

morphism of absolute glueing data (Fu, c¢y) — (Gu, ¢}) is given by a collection (pr)
of morphisms of sheaves ¢y : Fy — Gy, such that

i; ' Fu - Fv

jflwui Ls@v
/

—1 Cr
Jy Gy — Gy
commutes for every morphism f:V — U in C.

Associated to any sheaf F on C is its canonical absolute glueing data (Flc,u,cy),
where the canonical isomorphisms cy : j;l]:|C/U — Fleyy for f:V — U come
from the relation jy = jy o jf as in Lemma Any morphism ¢ : F — G of
sheaves of C induces a morphism (¢|¢/r7) of canonical absolute glueing data.

Lemma 26.6. Let C be a site. The category Sh(C) is equivalent to the category
of absolute glueing data via the functor that associates to F on C the canonical
absolute glueing data.

Proof. Given an absolute glueing data (Fy,cs), we construct a sheaf F on C by
setting F(U) = Fy(U), where restriction along f : V — U given by the commuta-
tive diagram

Fo(U) — Fu (V) —L= Fp(V

(V)

The compatibility condition ¢4 0 j;lc = Cfoq ensures that F is a presheaf, and also
ensures that the maps cy : Fy(V) — F(V) define an isomorphism Fyy — Fle/u
for each U. Since each Fy; is a sheaf, this implies that F is a sheaf as well. The
functor (Fy,cy) — F just constructed is quasi-inverse to the functor which takes
a sheaf on C to its canonical glueing data. Further details omitted. 0

Remark| 26.7. There is a variant of Lemma @ which comes up in algebraic
geometry. Namely, suppose that C is a site with all fibre products and for each
U € Ob(C) we are given a full subcategory U, C C/U with the following properties
(1) U/U is in Uy,
(2) for V/U in U, and covering {V; — V} of C we have V;/U in U, and
(3) for a morphism U’ — U of C and V/U in U, the base change V' =V xy U’
is in U..
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In this setting U, is a site for all U in C and the base change functor U, — U.
defines a morphism f, : U, — U. of sites for all morphisms f : U’ — U of C. The
glueing statement we obtain then reads as follows: A sheaf F on C is given by the
following data:

(1) for every U € Ob(C) a sheaf Fyy on Uy,
(2) for every f: U’ — U in C amap cs : f7 *Fy — Fur.
These data are subject to the following conditions:
(a) given f: U’ — U and g: U” — U’ in C the composition ¢, o g; ey is equal
t0 Cfog, and
(b) if f:U" — U is in U, then ¢y is an isomorphism.
If we ever need this we will precisely state and prove this here. (Note that this

result is slightly different from the statements above as we are not requiring all the
maps ¢y to be isomorphisms!)

27. More localization

In this section we prove a few lemmas on localization where we impose some addi-
tional hypotheses on the site on or the object we are localizing at.

Lemma 27.1. LetC be a site. Let U € Ob(C). If the topology on C is subcanonical,
see Deﬁnitz’on and if G is a sheaf on C/U, then

Ju(G)(V) = G(v 5 U),

H@GMorc (V,U)

in other words sheafification is not necessary in Lemma [25.3

Proof. Let V = {V; — V},cr be a covering of V in the site C. We are going to check
the sheaf condition for the presheaf H of Lemma directly. Let (s;,:)icr €
1, H(V;), This means ¢; : V; — U is a morphism in C, and s; € G(V; 2% U). The
restriction of the pair (s;, ;) to V; xy Vj is the pair (si|v,x, v, v, Pry © ¢i), and
likewise the restriction of the pair (s;, ¢;) to Vi xyv Vj is the pair (s;|v,x v, /v, Prao
¢;). Hence, if the family (s;, ;) lies in HO(V,H), then we see that pr, o ¢; =
pryow;. The condition that the topology on C is weaker than the canonical topology
then implies that there exists a unique morphism ¢ : V' — U such that ¢; is the
composition of V; — V with ¢. At this point the sheaf condition for G guarantees
that the sections s; glue to a unique section s € G(V 2 U). Hence (s, ) € H(V)
as desired. (]

Lemma 27.2. Let C be a site. Let U € Ob(C). Assume C has products of pairs of
objects. Then

(1) the functor jy has a continuous right adjoint, namely the functor v(X) =
X xU/U,

(2) the functor v defines a morphism of sites C/U — C whose associated mor-
phism of topoi equals jy : Sh(C/U) — Sh(C), and

(3) we have jy.F(X)=F(X xU/U).

Proof. The functor v being right adjoint to jy means that given Y/U and X we

More (Y, X)) = Mor¢,y(Y/U, X x U/U)
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which is clear. To check that v is continuous let {X; — X} be a covering of C. By
the third axiom of a site (Definition we see that

{Xixx (X xU) > Xxx (X xU)}={X;xU—= X xU}

is a covering of C also. Hence v is continuous. The other statements of the lemma
follow from Lemmas 22.1] and R2.2 ([l

Lemmal 27.3. Let C be a site. Let U — V be a morphism of C. Assume C has
fibre products. Let j be as in Lemma|[25.8 Then
(1) the functor j : C/U — C/V has a continuous right adjoint, namely the
functor v: (X/V)— (X xy U/U),
(2) the functor v defines a morphism of sites C/U — C/V whose associated
morphism of topoi equals j, and
(3) we have j.F(X/V)=F(X xy U/U).

Proof. Follows from Lemma since j may be viewed as a localization functor
by Lemma 25.8 O

A fundamental property of an open immersion is that the restriction of the push-
forward and the restriction of the extension by the empty set produces back the
original sheaf. This is not always true for the functors associated to jy above. It
is true when U is a “subobject of the final object”.

Lemma 27.4. Let C be a site. Let U € Ob(C). Assume that every X in C
has at most one morphism to U. Let F be a sheaf on C/U. The canonical maps
F = j&ljm}— and j[}ljU*]: — F are isomorphisms.

Proof. This is a special case of Lemma because the assumption on U is equiv-
alent to the fully faithfulness of the localization functor C/U — C. g

Lemma 27.5. Let C be a site. Let
U ——=U
Vi —V

be a commutative diagram of C. The morphisms of Lemma[25.8 produce commuta-
tive diagrams

C/U ——=CJ/U Sh(C/U") ——= Sh(C/U)
Ju’ju Jurju

Jur v \LjU/V and jU’/v’l J/jU/V

e/ ey Sh(c/v') XL shic)v)

of continuous and cocontinuous functors and of topoi. Moreover, if the initial dia-
gram of C is cartesian, then we have j;,l/v O JU Vi = JU IV Oj[;,l/U.

Proof. The commutativity of the left square in the first statement of the lemma
is immediate from the definitions. It implies the commutativity of the diagram
of topoi by Lemma 21.2] Assume the diagram is cartesian. By the uniqueness of
adjoint functors, to show j;/l/v ° Ju/Vx = Jur v © jl;,l/U is equivalent to showing
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j(;/lv o v vt = Jur o ojl;,l/v,. Via the identifications of Lemma we may think
of our diagram of topoi as

Sh(C)/hf:, — Sh(C)/hi
Sh(C)/h, —— Sh(C)/h¥

and we know how to interpret the functors j~! and j by Lemma Thus we
have to show given F — hfj, that

F Xyw hit = F 0 hi
v’ \%
as sheaves with map to hﬁ. This is true because hy = hy+ Xp,, hy and hence also
W = W o 1

as sheafification is exact. O

28. Localization and morphisms

The following lemma is important in order to understand relation between local-
ization and morphisms of sites and topoi.

Lemmal 28.1. Let f : C — D be a morphism of sites corresponding to the con-
tinuous functor u : D — C. Let V € Ob(D) and set U = w(V). Then the
functor v : D)V — CJU, V'/V — w(V')/U determines a morphism of sites
f':C/U = D/V. The morphism f’ fits into a commutative diagram of topoi

Sh(C/U) —— Sh(C)

y

Sh(D/V) Y~ Sh(D).

-
[y

Using the identifications Sh(C/U) = Sh(C)/h¥ and Sh(D/V) = Sh(D)/h% of
Lemma the functor (f')~1 is described by the rule

()M 5 ) = (FH 5 ),
Finally, we have flj;" = ji;* fe.

Proof. It is clear that v’ is continuous, and hence we get functors f, = (u’)* = (u/)?
(see Sections [5 and and an adjoint (f')~! = (u')s = ((«'), )#. The assertion

1jgt = jy ' fe follows as

Gy ABP)VV) = LFV) = Fw(V") = (g F) (V') /U) = (fLig ' F)V'/V)

-1

which holds even for presheaves. What isn’t clear a priori is that (f')~' is exact,

that the diagram commutes, and that the description of (f’)~! holds.
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Let H be a sheaf on D/V. Let us compute ji(f')"*H. We have
Jor(f)7HH = (Go)p(u, H)#)#
= ((v)pupH)*
= (Up(jV)pH)#
= f1jvH

The first equality by unwinding the definitions. The second equality by Lemma
The third equality because u o jyy = jy o u/. The fourth equality by Lemma
again. All of the equalities above are isomorphisms of functors, and hence we

may interpret this as saying that the following diagram of categories and functors
is commutative

Sh(C/U) ——= Sh(C) /i —— Sh(C)

(f’)lT flT flf[

Sh(D/V) —'= Sh(D)/h¥ — Sh(D)

The middle arrow makes sense as f*1h§ = (hu(V))# = h#, see Lemma m In
particular this proves the description of (f’)~! given in the statement of the lemma.
Since by Lemma the left horizontal arrows are equivalences and since f~! is
exact by assumption we conclude that (f)~! = v/ is exact. Namely, because it is
a left adjoint it is already right exact (Categories, Lemma . Hence we only
need to show that it transforms a final object into a final object and commutes with
fibre products (Categories, Lemma . Both are clear for the induced functor
[t Sh(D)/h%‘;/ﬁ — Sh(C)/h?f. This proves that f’ is a morphism of sites.

We still have to verify that (f’)*lj;1 = jglf’l. To see this use the formula above
and the description in Lemma [25.7] Namely, combined these give, for any sheaf G
on D, that

()N G = vt = £ NG x W) = £ < b = o' TG
Since the functor jy induces an equivalence Sh(C/U) — Sh(C)/ hﬁ we conclude. [

The following lemma is a special case of the more general Lemma [28.1] above.

Lemma 28.2. Let C, D be sites. Let u: D — C be a functor. Let V € Ob(D).
Set U = u(V). Assume that

(1) C and D have all finite limits,
(2) u is continuous, and
(3) u commutes with finite limits.

There exists a commutative diagram of morphisms of sites
C/U——C
Ju
f /l lf
D)V XD
where the right vertical arrow corresponds to u, the left vertical arrow corresponds

to the functor v’ : D)V — C/U, V')V — w(V')/u(V) and the horizontal arrows
correspond to the functorsC - C/U, X = X xU and D - D/V, Y - Y XV as
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in Lemma [27.3 Moreover, the associated diagram of morphisms of topoi is equal
to the diagram of Lemma . In particular we have f;jljl = j;lf*.

Proof. Note that u satisfies the assumptions of Proposition [14.7|and hence induces
a morphism of sites f : C — D by that proposition. It is clear that u induces a
functor v’ as indicated. It is clear that this functor also satisfies the assumptions of
Proposition[14.7] Hence we get a morphism of sites f' : C/U — D/V. The diagram
commutes by our definition of composition of morphisms of sites (see Definition
114.5) and because
w¥Y xV)=ul) xu(V)=ul)xU

which shows that the diagram of categories and functors opposite to the diagram
of the lemma commutes. (]

At this point we can localize a site, we know how to relocalize, and we can localize
a morphism of sites at an object of the site downstairs. If we combine these then
we get the following kind of diagram.

Lemma 28.3. Let f : C — D be a morphism of sites corresponding to the continu-
ous functor u:D — C. Let V € Ob(D), U € Ob(C) and ¢ : U — u(V) a morphism
of C. There exists a commutative diagram of topoi

SH(C/U) ——= Sh(C)

|

Sh(D/V) L~ Sh(D).
We have f. = f" o juuvy where f': Sh(C/u(V')) — Sh(D/V) is as in Lemma
and jyuvy : SM(C/U) — Sh(C/u(V)) is as in Lemma . Using the identifica-
tions Sh(C/U) = S’h(C)/h?}é and Sh(D/V) = S'h(’l))/lﬂ"}E of Lemma the functor
(o)™t is described by the rule
()T U D ) = (P H X g = BE).

Finally, given any morphisms b : V' =V, a :U = U and ¢ : U — uw(V') such
that
U ——u(V’)

e
U—"=u(V)
commutes, then the diagram
Sh(C/U") —— Sh(C/U)

Ju’ju
fc/l ifc

Iv)v

Sh(D/V’) —_— Sh(D/V).
commutes.

Proof. This lemma proves itself, and is more a collection of things we know at
this stage of the development of theory. For example the commutativity of the first
square follows from the commutativity of Diagram (25.8.1)) and the commutativity
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of the diagram in Lemma The description of f, ! follows on combining Lemma
[25.9| with Lemma[28.1] The commutativity of the last square then follows from the
equality

—1 —1
f H th(v)’c hﬁ Xh?j h#, = f (7‘[ Xht h‘#//) Xh# hﬁz

w(V7’),c!

thh is formal using that f*1h§ = hf(v) and f’lh‘ﬁ = hf(\/’)’ see Lemma
13.5] |

In the following lemma we find another kind of functoriality of localization, in case
the morphism of topoi comes from a cocontinuous functor. This is a kind of diagram

which is different from the diagram in Lemma [28.1] and in particular, in general
the equality f]j,; 1= j;l f« seen in Lemma does not hold in the situation of

the following lemma.

Lemmal 28.4. Let C, D be sites. Let u:C — D be a cocontinuous functor. Let U
be an object of C, and set V = u(U). We have a commutative diagram

l Ju l
D)V -2

where the left vertical arrow is v’ : C/U — DJV, U'JU — V'/V. Then u' is
cocontinuous also and we get a commutative diagram of topoi

Sh(C/U) o Sh(C)

|

Sh(D/)V) —2Y~ Sh(D)
where f (resp. f') corresponds to u (resp. u’').

Proof. The commutativity of the first diagram is clear. It implies the commuta-
tivity of the second diagram provided we show that v’ is cocontinuous.

Let U’ /U be an object of C/U. Let {V;/V — w(U’)/V };e be a covering of u(U")/V
in D/V. Since u is cocontinuous there exists a covering {U/ — U’};c such that the
family {u(U]) — w(U’)} refines the covering {V; — w(U’)} in D. In other words,
there exists a map of index sets o : I — .J and morphisms ¢; : u(Uj) — Vy;) over
U’. Think of U] as an object over U via the composition U — U’ — U. Then
{U//U — U'/U} is a covering of C/U such that {u(U])/V — w(U’)/V} refines
{V;/V = w(U")/V} (use the same « and the same maps ¢;). Hence v’ : C/U —
D/V is cocontinuous. O

Lemma 28.5. Let C, D be sites. Let u: C — D be a cocontinuous functor. Let
V' be an object of D. Let L be the category introduced in Section @ We have a
commutative diagram

%/I?C

, ) jiU) —U

“l | l WRETE (U, %) e (0 : w(U) = V)
D)V LD
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Declare a family of morphisms {(U;,;) — (U,¢)} of "I to be a covering if and
only if {U; — U} is a covering in C. Then

(1) ¥Z is a site,

(2) j is continuous and cocontinuous,

(3) ' is cocontinuous,

(4) we get a commutative diagram of topoi

Sh(Z) ——= Sh(C)

vl |1

Sh(D/V) —2Y~ Sh(D)

where f (resp. f') corresponds to u (resp. v'), and
(5) we have flj=% =, fe.

Proof. Parts (1), (2), (3), and (4) are straightforward consequences of the defini-
tions and the fact that the functor j commutes with fibre products. We omit the
details. To see (5) recall that f, is given by su = ,u. Hence the value of j;lf*]:
on V'/V is the value of ,uF on V' which is the limit of the values of F on the
category 1, Z. Clearly, there is an equivalence of categories

viL—= vyl
Since the value of f/j='F on V’'/V is given by the limit of the values of j~1F

on the category }‘,l,/VI and since the values of j7'F on objects of {"Z are just the

values of F (by Lemma as j is continuous and cocontinuous) we see that (5)
is true. g

The following two results are of a slightly different nature.
Lemmal 28.6. Assume given sites C',C,D’, D and functors
C'——C
u/l lu
D —=D
Assume
(1) u, v, v, and v' are cocontinuous giving rise to morphisms of topoi f, f’,
g, and g’ by Lemma|21.1
(2) vou =uov,
(3) v and v’ are continuous as well as cocontinuous, and
(4) for any object V' of D' the functor %/l,I =y given by v is cofinal.
Then flo(g') ' =g ofiandgio(f) ' =f"Tog.
Proof. The categories 7(,/,1 and v(‘}%)I are defined in Section The functor in
condition (4) sends the object ¥ : v/ (U’) — V' of ¥, T to the object v() : wv'(U’) =
vu'(U') = v(V') of ). Recall that g1 is given by v? (Lemma 21.5) and f. is
given by su = pu. Hence the value of g=! f,.F on V' is the value of ,uF on v(V’)
which is the limit

i) o(vryeon(, 5 o) F(U)
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By the same reasoning, the value of f.(g’)~'F on V' is given by the limit
limu’(U’)aV’EOb(;‘/',IOPP) F'(U")

Thus assumption (4) and Categories, Lemma show that these agree and the
first equality of the lemma is proved. The second equality follows from the first by
uniqueness of adjoints. O

Lemmal 28.7. Assume given sites C',C,D’, D and functors
[—
v
u'T T“
D' —=1D
With notation as in Sections[I]] and[2]] assume

(1) u and v are continuous giving rise to morphisms of sites f and f’,
(2) v and v’ are cocontinuous giving rise to morphisms of topoi g and ¢,
(3) uov =10, and

v mnu 7 .
4) v and v' are continuous as well as cocontinuous

Therf fio(g) ™" =g~ o fu and glo (f)™ = [ ogu.
Proof. Namely, we have
Fulg)TIF = (WP (W)PF)F = ()P ()P F
The first equality by definition and the second by Lemma We have
§7UF = (PP FYE = (W) 0V FE = W) () F

The first equality by definition, the second because uov = v’ ou/, the third because
we already saw that (u/)P(v')PF is a sheaf. This proves f. o (¢')"! =g~ !o f. and
the equality gf o (f')~1 = f~! o g follows by uniqueness of left adjoints. O

29. Morphisms of topoi

In this section we show that any morphism of topoi is equivalent to a morphism of
topoi which comes from a morphism of sites. Please compare with [AGV 71, Exposé
IV, Proposition 4.9.4].

Lemmal 29.1. Let C, D be sites. Let u: C — D be a functor. Assume that

(1) u is cocontinuous,

(2) u is continuous,

(3) given a,b:U" — U in C such that u(a) = u(b), then there exists a covering
{fi : U = U} inC such that ao f; =bo f;,

(4) given U',U € Ob(C) and a morphism ¢ : w(U") — u(U) in D there exists
a covering {f; : Ul — U’} in C and morphisms ¢; : U] — U such that
u(c;) = coul(f;), and

(5) given V € Ob(D) there exists a covering of V in D of the form {u(U;) —
Vi}ier-

6In this generality we don’t know f o ¢/ is equal to g o f’ as morphisms of topoi (there is a
canonical 2-arrow from the first to the second which may not be an isomorphism).
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Then the morphism of topoi
g : Sh(C) — Sh(D)
associated to the cocontinuous functor u by Lemma[21.1] is an equivalence.

Proof. Assume u satisfies properties (1) — (5). We will show that the adjunction
mappings

G—¢.9g"'G and ¢ l¢.F — F
are isomorphisms.

Note that Lemma applies and we have g~*G(U) = G(u(U)) for any sheaf G on
D. Next, let F be a sheaf on C, and let V' be an object of D. By definition we have
g+ F (V) = limy )y F(U). Hence

979 F(U) = limys ) —u(w) F(U')
where the morphisms 9 : u(U’) = u(U) need not be of the form u(«). The category
of such pairs (U’, %) has a final object, namely (U, id), which gives rise to the map
from the limit into F(U). Let (s y)) be an element of the limit. We want to
show that sy ) is uniquely determined by the value sy ;qy € F(U). By property
(4) given any (U’, ) there exists a covering {U/ — U’} such that the compositions
w(U]) = w(U’) = u(U) are of the form u(c;) for some ¢; : U/ — U in C. Hence

swwlor = ¢ (swia))-
Since F is a sheaf it follows that indeed s ) is determined by s(yiq). This
proves uniqueness. For existence, assume given any s € F(U), ¢ : u(U") — w(U),
{fi : U] - U'} and ¢; : U] — U such that 1 o u(f;) = u(c;) as above. We claim
there exists a (unique) element sy ) € F(U’) such that
swr vy = ¢ (s)-

Namely, a priori it is not clear the elements C:(3)|U7{><U/UJ’, and ¢j (S)|U{XUIU; agree,
since the diagram

Ul xu U} ——Uj

pry J
pry \L lcj
ci
Ul —% U

need not commute. But condition (3) of the lemma guarantees that there exist
coverings { f;jx Ui'jk — U! xur UJ’»}keKU. such that ¢; o pry o fij5 = ¢j o pry o fijk.
Hence

fisn (Cfé‘ U;XU/UJK> = fijk (C;S‘U{XU/U](>
Hence Cf(3)|U7{xU,U_7’. = c;(8)|U{XU'U_§ by the sheaf condition for F and hence the
existence of sy ) also by the sheaf condition for 7. The uniqueness guarantees
that the collection (s(y y)) so obtained is an element of the limit with sy ) = s.
This proves that g~ 'g,F — F is an isomorphism.

Let G be a sheaf on D. Let V be an object of D. Then we see that
9«9~ 'G(V) = limy vy v G(u(U))

By the preceding paragraph we see that the value of the sheaf g,.g~'G on an object
V of the form V = u(U) is equal to G(u(U)). (Formally, this holds because we

have g7 'g.g~! = ¢!, and the description of ¢g~! given at the beginning of the
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proof; informally just by comparing limits here and above.) Hence the adjunction
mapping G — ¢.¢~'G has the property that it is a bijection on sections over any
object of the form u(U). Since by axiom (5) there exists a covering of V' by objects
of the form u(U) we see easily that the adjunction map is an isomorphism. [

It will be convenient to give cocontinuous functors as in Lemma [29.1] a name.

Definition 29.2. Let C, D be sites. A special cocontinuous functor u from C to
D is a cocontinuous functor u : C — D satisfying the assumptions and conclusions

of Lemma [29.1]

Lemma 29.3. Let C, D be sites. Let u: C — D be a special cocontinuous functor.
For every object U of C we have a commutative diagram

¢/u Ju I’
Dju(U) 2D

as in Lemma[287) The left vertical arrow is a special cocontinuous functor. Hence
in the commutative diagram of topoi

Sh(C/U) — Sh(C)
L
Sh(D Ju(U)) 2“2 Sh(D)
the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma

We have to check hypotheses (1) — (5) of Lemma for the induced functor
w:C/U — D/u(U). This is completely mechanical.

Property (1). This is Lemma [28.4]

Property (2). Let {U//U — U’/U}ier be a covering of U’ /U in C/U. Because u is
continuous we see that {w(U])/u(U) = w(U")/u(U)}icr is a covering of u(U") /u(U)
in D/u(U). Hence (2) holds for u : C/U — D/u(U).

Property (3). Let a,b: U"/U — U’ /U in C/U be morphisms such that u(a) = u(b)
in D/u(U). Because u satisfies (3) we see there exists a covering {f; : U — U"}

in C such that ao f; = bo f;. This gives a covering {f; : U/'/U — U"/U} in C/U
such that a o f; = bo f;. Hence (3) holds for u : C/U — D/u(U).

Property (4). Let U"”/U,U’'/U € Ob(C/U) and a morphism ¢ : w(U")/u(U) —
w(U")/u(U) in D/u(U) be given. Because u satisfies property (4) there exists a
covering {f; : U/ — U"} in C and morphisms ¢; : U/ — U’ such that u(¢;) =
cou(f;). We think of U/’ as an object over U via the composition U/ — U" — U.
It may not be true that ¢; is a morphism over U! But since u(c;) is a morphism over
u(U) we may apply property (3) for u and find coverings {fir, : U/, — U/} such
that ¢ = ¢; o fix : UJ;, — U’ are morphisms over U. Hence {f; o fix : U./U —
U"/U} is a covering in C/U such that u(c;) = ¢ o u(fir). Hence (4) holds for
u:C/U — DJu(U).
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Property (5). Let h : V. — u(U) be an object of D/u(U). Because u satisfies
property (5) there exists a covering {¢; : u(U;) — V} in D. By property (4)
we can find coverings {fij Uiy — U;} and morphisms cij : Uyj — U such that
u(cij) = hoc;ou(fi;). Hence {u(U;;)/u(U) — V/u(U)} is a covering in D/u(U) of
the desired shape and we conclude that (5) holds for v : C/U — D/u(U). O

Lemma 29.4. Let C be a site. Let C' C Sh(C) be a full subcategory (with a set of
objects) such that

(1) by € Ob(C') for all U € Ob(C), and
(2) C' is preserved under fibre products in Sh(C).

Declare a covering of C' to be any family {F; — F }icr of maps such that [[,.; Fi —

F is a surjective map of sheaves. Then

(1) C' is a site (after choosing a set of coverings, see Sets, Lemma m},

(2) representable presheaves on C' are sheaves (i.e., the topology on C' is sub-
canonical, see Definition ,

(3) the functor v:C — C', U — hzé is a special cocontinuous functor, hence
induces an equivalence g : Sh(C) — Sh(C'),

(4) for any F € Ob(C") we have g~ hr = F, and

(5) for any U € Ob(C) we have g*h?}’& = hy) = hhﬁ'

el

Proof. Warning: Some of the statements above may look be a bit confusing at
first; this is because objects of C’ can also be viewed as sheaves on C! We omit the
proof that the coverings of C’ as described in the lemma satisfy the conditions of
Definition [6.2]

Suppose that {F; — F} is a surjective family of morphisms of sheaves. Let G be
another sheaf. Part (2) of the lemma says that the equalizer of

Morgpcy(IL;e Fi: ) —_ Morsne) (L ig.iyyerxs Fio X7 Firs )
is Morgp(c)(F,G). This is clear (for example use Lemma .

To prove (3) we have to check conditions (1) — (5) of Lemma [29.1] The fact that
v is cocontinuous is equivalent to the description of surjective maps of sheaves
in Lemma The functor v is continuous because U — hﬁ commutes with
fibre products, and transforms coverings into coverings (see Lemma and
Lemma . Properties (3), (4) of Lemma are statements about morphisms
f: h#, — h{;. Such a morphism is the same thing as an element of hﬁ(U’). Hence
(3) and (4) are immediate from the construction of the sheafification. Property (5)
of Lemma [29.1]is Lemma[12.5] Denote g : Sh(C) — Sh(C’) the equivalence of topoi
associated with v by Lemma

Let F be as in part (4) of the lemma. For any U € Ob(C) we have
97 hF(U) = hr(v(U)) = Morgy ) (hfr, F) = F(U)

The first equality by Lemma m Thus part (4) holds.
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Let F € Ob(C’). Let U € Ob(C). Then
g+h: (F) = Morgy(cr) (hr, g-hf})
= Morgy(c) (g~ *hr, h7)
= Morgy(c) (F, hfr)
= More/ (F, h#)
as desired (where the third equality was shown above). O
Using this we can massage any topos to live over a site having all finite limits.

Lemma 29.5. Let Sh(C) be a topos. Let {F;}icr be a set of sheaves on C. There
exists an equivalence of topoi g : Sh(C) — Sh(C’) induced by a special cocontinuous
functor u : C — C' of sites such that

(1) C’ has a subcanonical topology,

(2) @ family {V; — V'} of morphisms of C' is (combinatorially equivalent to) a

covering of C' if and only if [] hy, — hy is surjective,

(3) C' has fibre products and a final object (i.e., C' has all finite limits),

(4) every subsheaf of a representable sheaf on C' is representable, and

(5) each g.F; is a representable sheaf.

Proof. Consider the full subcategory C; C Sh(C) consisting of all h# for all U €
Ob(C), the given sheaves F; and the final sheaf * (see Example|[10.2)). We are going
to inductively define full subcategories

Ci1CCyCCeC...CSh(C)

Namely, given C,, let C,, 41 be the full subcategory consisting of all fibre products and
subsheaves of objects of C,,. (Note that C,41 has a set of objects.) Set C' = J,,~ Cn-
A covering in C’ is any family {G; — G} ;e of morphisms of objects of C’ such that
11G; — G is surjective as a map of sheaves on C. The functor v : C — C’ is given

by U +— hﬁ. Apply Lemma O

Here is the goal of the current section.

Lemma 29.6. Let C, D be sites. Let f : Sh(C) — Sh(D) be a morphism of topoi.
Then there exists a site C' and a diagram of functors

such that

(1) the functor v is a special cocontinuous functor,

(2) the functor u commutes with fibre products, is continuous and defines a
morphism of sites C' — D, and

(3) the morphism of topoi f agrees with the composition of morphisms of topoi

Sh(C) — Sh(C') — Sh(D)
where the first arrow comes from v via Lemma and the second arrow
from w via Lemma[15.3

Proof. Consider the full subcategory C; C Sh(C) consisting of all hf; and all f’lhff
for all U € Ob(C) and all V€ Ob(D). Let C,,41 be a full subcategory consisting
of all fibre products of objects of C,. Set €' = |J,,5; Cn. A covering in C’ is any

This statement is
closely related to
[AGVTI]
Proposition 4.9.4.
Exposé IV]. In order
to get the whole
result, one should
also use [AGVTI]
Remarque 4.7.4,
Exposé IV].
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family {F; — F}ier such that [[;,.; F; — F is surjective as a map of sheaves on
C. The functor v : C — C’ is given by U — h#. The functor u : D — C’ is given by
Vs fURE

Part (1) follows from Lemma

Proof of (2) and (3) of the lemma. The functor u commutes with fibre products
as both V — h‘% and f~! do. Moreover, since f~! is exact and commutes with
arbitrary colimits we see that it transforms a covering into a surjective family of
morphisms of sheaves. Hence u is continuous. To see that it defines a morphism
of sites we still have to see that u, is exact. In order to do this we will show that
¢ ' ous = f~1. Namely, then since ¢! is an equivalence and f~! is exact we will
conclude. Because g~ is adjoint to g¢., and u, is adjoint to u°, and f~! is adjoint
to f. it also suffices to prove that u® o g. = f.. Let U be an object of C and let V'
be an object of D. Then

(u*gh) (V) = g (f 7 1)
= Morgyc)(f ' hi b))
= MOTSh(D)(hﬁa f*hﬁ)
= LR (V)

The first equality because u® = uP. The second equality by Lemma m (5). The
third equality by adjointness of f. and f~! and the final equality by properties of
sheafification and the Yoneda lemma. We omit the verification that these identities
are functorial in U and V. Hence we see that we have u® o g, = f, for sheaves of
the form hﬁ. This implies that u®o g, = f. and we win (some details omitted). O

Remark| 29.7. Notation and assumptions as in Lemma If the site D has
a final object and fibre products then the functor v : D — C’ satisfies all the
assumptions of Proposition [I4.7] Namely, in addition to the properties mentioned
in the lemma wu also transforms the final object of D into the final object of C’.
This is clear from the construction of u. Hence, if we first apply Lemmas to
D and then Lemma to the resulting morphism of topoi Sh(C) — Sh(D’) we
obtain the following statement: Any morphism of topoi f : Sh(C) — Sh(D) fits into
a commutative diagram

sh(c’) — = su(p")

where the following properties hold:

(1) the morphisms e and g are equivalences given by special cocontinuous func-
tors C -+ C' and D — D/,

(2) the sites C’ and D’ have fibre products, final objects and have subcanonical
topologies,

(3) the morphism f’: C’ — D’ comes from a morphism of sites corresponding
to a functor u : D’ — C’ to which Proposition applies, and

(4) given any set of sheaves F; (resp. G;) on C (resp. D) we may assume each
of these is a representable sheaf on C’ (resp. D’).
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It is often useful to replace C and D by C' and D’.

Remark 29.8. Notation and assumptions as in Lemma Suppose that in
addition the original morphism of topoi Sh(C) — Sh(D) is an equivalence. Then
the construction in the proof of Lemma [29.6] gives two functors

C—>C «D

which are both special cocontinuous functors. Hence in this case we can actually
factor the morphism of topoi as a composition

Sh(C) = Sh(C') = Sh(D') «— Sh(D)
as in Remark but with the middle morphism an identity.

30. Localization of topoi

We repeat some of the material on localization to the apparently more general
case of topoi. In reality this is not more general since we may always enlarge the
underlying sites to assume that we are localizing at objects of the site.

Lemma 30.1. Let C be a site. Let F be a sheaf on C. Then the category Sh(C)/F
is a topos. There is a canonical morphism of topoi

jF : Sh(C)/F — Sh(C)
which is a localization as in Section [23 such that
(1) the functor j]__-1 is the functor H — H x F/F, and
(2) the functor jr is the forgetful functor G/F — G.

Proof. Apply Lemma[29.5] This means we may assume C is a site with subcanoni-
cal topology, and F = hy = hﬁ for some U € Ob(C). Hence the material of Section

applies. In particular, there is an equivalence Sh(C/U) = Sh(C)/ h# such that
the composition

Sh(C/U) — Sh(C)/h¥ — Sh(C)

is equal to jyi, see Lemma [25.4] Denote a : Sh(C)/hﬁ — Sh(C/U) the inverse
functor, so jr = jui o a, j;-l =g ! Ojljl, and jr . = ju,« o a. The description of
jz follows from the above. The description of j=' follows from Lemma O

Lemmal 30.2. In the situation of Lemma the functor jr . is the one asso-
ctates to ¢ : G — F the sheaf

Ur— {a: Flu = Glu such that « is a right inverse to o|y}.

Proof. For any ¢ : G — F, let us use the notation G/F to denote the corresponding
object of Sh(C)/F. We have

(j7.«(G/F)(U) = Morgye)(hir, jF.+(G/F)) = Morgyey, 7 (iF b, (G/F)).

By Lemma this set is the fiber over the element h,"f x F — F under the map
of sets

MOI‘Sh(c)(h# X ]-",(]) ﬁ) 1\/101‘,5%((;)(}#,&IE X .7:, f)
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By the adjunction in Lemma [26.2] we have
MOYSh(c)(hﬁ x F,G) = MOYSh(c)(thE’HOW(]:y g))
= Mor gy /vy (Fleyu, Gleyv)
Mot giycy (his x F, F) = Morgyc)(hi:, Hom(F, F))
= Morgpc/v) (Fleyvs Fleyu)s

i

and under the adjunction, the map po becomes the map

Morgpc vy (Fleyvs Gleju) — Morsuesvy (Fleyu, Fleyu), ¥+ @leju o9,
the element h?}ﬁ x F — F becomes idz|, . Therefore (jz.G/F)(U) is isomorphic
to the fiber of idr|.,, under the map

®lc/uo
Morgu(cu) (Fleyvs Glejur) ——— Morgue vy (Fleyw, Fleyu)s

which is {« : F|ly — G|u such that « is a right inverse to |y} as desired. O

Lemma 30.3. Let C be a site. Let F be a sheaf on C. Let C/F be the category
of pairs (U, s) where U € Ob(C) and s € F(U). Let a covering in C/F be a family
{(Us,8:) = (U,8)} such that {U; — U} is a covering of C. Then j : C/F — C is
a continuous and cocontinuous functor of sites which induces a morphism of topoi
j: Sh(C/F) — Sh(C). In fact, there is an equivalence Sh(C/F) = Sh(C)/F which

turns j into jr.

Proof. We omit the verification that C/F is a site and that j is continuous and
cocontinuous. By Lemma [21.5]there exists a morphism of topoi j as indicated, with
i71G(U, s) = G(U), and there is a left adjoint j, to j7'. A morphism ¢ : x — j~1G
on C/F is the same thing as a rule which assigns to every pair (U,s) a section
©o(s) € G(U) compatible with restriction maps. Hence this is the same thing as a
morphism ¢ : F — G over C. We conclude that jix = F. In particular, for every
H € Sh(C/F) there is a canonical map

le—>]|*:f

i.e., we obtain a functor j{ : Sh(C/F) — Sh(C)/F. An inverse to this functor is the
rule which assigns to an object ¢ : G — F of Sh(C)/F the sheaf

a(G/F): (Uys) — {t € G(U) | p(t) = s}
We omit the verification that a(G/F) is a sheaf and that a is inverse to ji. O

Definition 30.4. Let C be a site. Let F be a sheaf on C.

(1) The topos Sh(C)/F is called the localization of the topos Sh(C) at F.
(2) The morphism of topoi jr : Sh(C)/F — Sh(C) of Lemma is called the
localization morphism.

We are going to show that whenever the sheaf F is equal to h# for some object
U of the site, then the localization of the topos is equal to the category of sheaves
on the localization of the site at U. Moreover, we are going to check that any
functorialities are compatible with this identification.

Lemmal 30.5. Let C be a site. Let F = hﬁ for some object U of C. Then jr :
Sh(C)/F — Sh(C) constructed in Lemma agrees with the morphism of topoi
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ju = Sh(C/U) — Sh(C) constructed in Section[25 via the identification Sh(C/U) =
Sh(C)/hﬁ of Lemma

Proof. We have seen in Lemmathat the composition Sh(C/U) — Sh(C)/hﬁ —
Sh(C) is jurr. The functor Sh(C)/hf — Sh(C) is jz by Lemma[30.1] Hence jz = jon
via the identification. So j;-l = jal (by adjointness) and so jr . = jux (by ad-
jointness again). O
Lemmal 30.6. Let C be a site. If s : G — F is a morphism of sheaves on C then
there exists a natural commutative diagram of morphisms of topoi

Sh(C)/G j Sh(C)/F
Sh(C)

where j = jg,F is the localization of the topos Sh(C)/F at the object G/F. In
particular we have

JTHH = F)=HxrG—G)
and
J(E S F)=(€=5G).
Proof. The description of j~! and j, comes from the description of those functors
in Lemma The equality of functors jgi = jrioji is clear from the description of
these functors (as forgetful functors). By adjointness we also obtain the equalities

Jg' =3t ojF", and jg . = jF . 0 . O

Lemma 30.7. Assume C and s : G — F are as in Lemma . If G = h‘#,

and F = hﬁ and s : G — F comes from a morphism V. — U of C then the

diagram in Lemma is identified with diagram via the identifications
Sh(C/V') = Sh(C)/h%, and Sh(C/U) = Sh(C)/h}; of Lemma |25.4.

Proof. This is true because the descriptions of 57! agree. See Lemma and
Lemma [30.6)l O

31. Localization and morphisms of topoi
This section is the analogue of Section 2§ for morphisms of topoi.

Lemma 31.1. Let f: Sh(C) — Sh(D) be a morphism of topoi. Let G be a sheaf
onD. Set F = f~1G. Then there exists a commutative diagram of topoi

Sh(C)/F - Sh(C)
R
Sh(D)/G —%~ Sh(D).
The morphism ' is characterized by the property that
()M 2 G) = (1 L5 )

and we have flj7' = jg_lf*,
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Proof. Since the statement is about topoi and does not refer to the underlying sites
we may change sites at will. Hence by the discussion in Remark[29.7] we may assume
that f is given by a continuous functor u : D — C satisfying the assumptions of
Proposition between sites having all finite limits and subcanonical topologies,
and such that G = hy for some object V of D. Then F = f~lhy = hugvy by
Lemma By Lemma [28.1] we obtain a commutative diagram of morphisms of
topoi

Sh(C/U) ——> Sh(C)

o

Sh(D/V) LY~ Sh(D),

<

and we have fij[}l = j;lf*. By Lemma we may identify jr and jy and jg
and ji. The description of (f/)~! is given in Lemma [28.1] O

Lemma 31.2. Let f : C — D be a morphism of sites given by the continuous
functor w : D — C. Let V be an object of D. Set U = u(V). Set G = hi, and
F = hﬁ = f’lh?f (see Lemma m Then the diagram of morphisms of topoi of
Lemma |31.1) agrees with the diagram of morphisms of topoi of Lemma|28.1| via the
identifications jr = ju and jg = jv of Lemma[50.5

Proof. This is not a complete triviality as the choice of morphism of sites giving
rise to f made in the proof of Lemma [31.1| may be different from the morphisms of
sites given to us in the lemma. But in both cases the functor (f’)~! is described
by the same rule. Hence they agree and the associated morphism of topoi is the
same. Some details omitted. O

Lemma 31.3. Let f : Sh(C) — Sh(D) be a morphism of topoi. Let G € Sh(D),
F € Sh(C) and s : F — f~1G a morphism of sheaves. There exists a commutative
diagram of topoi

Sh(C)/F —— Sh(C)
fsl if
Sh(D)/G 2%~ Sh(D).

We have fs = f'ojr/s-1g where f': Sh(C)/f~1G — Sh(D)/F is as in Lemma|31.1
and jrp-1g « Sh(C)/F — Sh(C)/f~1G is as in Lemma . The functor (fs)~
is described by the rule

(f)7'H S5 G) = (f"H X140 -16.s F = F).

Finally, given any morphisms b : G — G, a : F' — F and s’ : F' — =G’ such
that

]_-/ f—lg/

F—=f1g
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commutes, then the diagram
Sh(C)/F —— Sh(C)/F
JIF ) F

fs/ fs
Sh(D)/¢' 2% sn(D)/g.
commutes.

Proof. The commutativity of the first square follows from the commutativity of
the diagram in Lemma [30.6] and the commutativity of the diagram in Lemma [31.1]
The description of f;! follows on combining the descriptions of (f/)~! in Lemma
with the description of (jz/-1g) " in Lemma The commutativity of the
last square then follows from the equality

FT M ) pog s Fxp Fl = [TH(H xg ') xgmrgrg F'
which is formal. O

Lemma 31.4. Let f : C — D be a morphism of sites given by the continuous
functor uw : D — C. Let V be an object of D. Let ¢ : U — u(V) be a morphism.
Set G = h‘#/ and F = hﬁ = fflh%%. Let s : F — f~1G be the map induced by c.
Then the diagram of morphisms of topoi of Lemma[28.3 agrees with the diagram of
morphisms of topoi of Lemma[31.5 via the identifications jr = ju and jg = jy of
Lemma [30.3.

Proof. This follows on combining Lemmas and O

32. Points

Definition 32.1. Let C be a site. A point of the topos Sh(C) is a morphism of
topoi p from Sh(pt) to Sh(C).

We will define a point of a site in terms of a functor u : C — Sets. It will turn out
later that u will define a morphism of sites which gives rise to a point of the topos
associated to C, see Lemma [32.8]

Let C be a site. Let p = u be a functor v : C — Sets. This curious language is
introduced because it seems funny to talk about neighbourhoods of functors; so we
think of a “point” p as a geometric thing which is given by a categorical datum,
namely the functor u. The fact that p is actually equal to u does not matter. A
neighbourhood of p is a pair (U, z) with U € Ob(C) and x € w(U). A morphism of
neighbourhoods (V,y) — (U, x) is given by a morphism « : V' — U of C such that
u(a)(y) = z. Note that the category of neighbourhoods isn’t a “big” category.

We define the stalk of a presheaf F at p as
(321.1) .Fp = Colim{(U7m)}opp .F(U)

The colimit is over the opposite of the category of neighbourhoods of p. In other
words, an element of 7, is given by a triple (U, z, s), where (U, z) is a neighbourhood
of p and s € F(U). Equality of triples is the equivalence relation generated by
(U,z,8) ~ (V,y,a*s) when « is as above.
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Note that if ¢ : F — G is a morphism of presheaves of sets, then we get a canonical
map of stalks ¢, : F, = G,. Thus we obtain a stalk functor

PSh(C) — Sets, F — Fp.

We have defined the stalk functor using any functor p = u : C — Sets. No conditions
are necessary for the definition to Workﬂ On the other hand, it is probably better
not to use this notion unless p actually is a point (see definition below), since in
general the stalk functor does not have good properties.

Definition 32.2. Let C be a site. A point p of the site C is given by a functor
u : C — Sets such that
(1) For every covering {U; — U} of C the map [Ju(U;) — u(U) is surjective.
(2) For every covering {U; — U} of C and every morphism V — U the maps
u(Us xy V) = u(Us) Xy u(V) are bijective.
(3) The stalk functor Sh(C) — Sets, F — F,, is left exact.

The conditions should be familiar since they are modeled after those of Definitions
and Note that (3) implies that %, = {x}, see Example m Hence
u(U) # 0 for at least some U (because the empty colimit produces the empty set).
We will show below (Lemma that this does give rise to a point of the topos
Sh(C). Before we do so, we prove some lemmas for general functors w.

Lemma 32.3. Let C be a site. Let p = u : C — Sets be a functor. There are
functorial isomorphisms (hy ), = w(U) for U € Ob(C).

Proof. An element of (hy), is given by a triple (V,y, f), where V € Ob(C), y €
w(V) and f € hy(V) = More(V,U). Two such (V,y, f), (V',y', f') determine the
same object if there exists a morphism ¢ : V — V' such that u(¢)(y) = 3’ and
f'o¢ = f, and in general you have to take chains of identities like this to get
the correct equivalence relation. In any case, every (V,y, f) is equivalent to the
element (U, u(f)(y),idy). If ¢ exists as above, then the triples (V,y, f), V', ¥/, )
determine the same triple (U, u(f)(y),idy) = (U,u(f")(y'),idy). This proves that
the map w(U) — (hy)p, ® — class of (U, z,idy) is bijective. O

Let C be a site. Let p = u : C — Setsbe a functor. In analogy with the constructions
in Section [5] given a set & we define a presheaf v E/ by the rule

(32.3.1) U+— v?E(U) = Morge:s(u(U), E) = Map(u(U), E).

This defines a functor u? : Sets — PSh(C), E — wPE.

Lemmal 32.4. For any functor u : C — Sets. The functor uP is a right adjoint to
the stalk functor on presheaves.

Proof. Let F be a presheaf on C. Let E be a set. A morphism F — uvPE is given
by a compatible system of maps F(U) — Map(u(U), E), i.e., a compatible system
of maps F(U) x w(U) — E. And by definition of F, a map F, — E is given by
a rule associating with each triple (U, x,0) an element in E such that equivalent
triples map to the same element, see discussion surrounding Equation . This
also means a compatible system of maps F(U) x uw(U) — E. O

In analogy with Section [13] we have the following lemma.

7One should try to avoid the case where u(U) = () for all U.
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Lemma 32.5. Let C be a site. Let p =u : C — Sets be a functor. Suppose that
for every covering {U; — U} of C

(1) the map [[w(U;) = w(U) is surjective, and

(2) the maps w(U; xy U;) — w(U;) Xy u(Uj) are surjective.
Then we have

(1) the presheaf uPE is a sheaf for all sets E, denote it u*E,

(2) the stalk functor Sh(C) — Sets and the functor u® : Sets — Sh(C) are

adjoint, and
(3) we have F, = .7:# for every presheaf of sets F.

Proof. The first assertion is immediate from the definition of a sheaf, assumptions
(1) and (2), and the definition of u? E. The second is a restatement of the adjointness
of uP and the stalk functor (Lemma restricted to sheaves. The third assertion
follows as, for any set E, we have

Map(Fy, E) = Mor pgic) (F, uP E) = Morgyc)(F*,u*E) = Map(F}, E)
by the adjointness property of sheafification. O

In particular Lemma [32.5) holds when p = u is a point. In this case we think of the
sheaf u®F as the “skyscraper” sheaf with value E at p.

Definition 32.6. Let p be a point of the site C given by the functor u. For a set
FE we define p,E = u’E the sheaf described in Lemma above. We sometimes
call this a skyscraper sheaf.

In particular we have the following adjointness property of skyscraper sheaves and
stalks:
MorSh(C)(}—7p*E) = Map(Fy, E)

This motivates the notation p~'F = F, which we will sometimes use.

Lemma 32.7. Let C be a site.

(1) Let p be a point of the site C. Then the pair of functors (p.,p~!) introduced
above define a morphism of topoi Sh(pt) — Sh(C).

(2) Let p = (ps,p~ 1Y) be a point of the topos Sh(C). Then the functor u : U
pil(hﬁ) gives rise to a point p’ of the site C whose associated morphism of
topoi (p’., (p')~1) is equal to p.

Proof. Proof of (1). By the above the functors p, and p~! are adjoint. The functor

p~ ! is required to be exact by Definition Hence the conditions imposed in
Definition are all satisfied and we see that (1) holds.

Proof of (2). Let {U; — U} be a covering of C. Then [[(hy,)* — hﬁ is surjective,
see Lemma @ Since p~! is exact (by definition of a morphism of topoi) we
conclude that [Ju(U;) — w(U) is surjective. This proves part (1) of Definition
[32:2] Sheafification is exact, see Lemma Hence if U xy W exists in C, then

# _ 7 #
hir sy w = iy X hiy

and we see that u(U xy W) = u(U) X,y u(W) since p~1is exact. This proves

part (2) of Definition Let p' = u, and let F, be the stalk functor defined
by Equation (32.1.1)) using u. There is a canonical comparison map ¢ : Fpy —
Fp, = p 'F. Namely, given a triple (U, xz,0) representing an element ¢ of F,,
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we think of o as a map o : hﬁ — F and we can set c(¢) = p~1(o)(x) since
zeull) = p_l(hﬁ). By Lemma we see that (hy), = w(U). Since conditions

(1) and (2) of Definition hold for p’ we also have (h?]é)p/ = (hy)p by Lemma
Hence we have

() = (hu)p = u(U) = p~ ' (hf)

We claim this bijection equals the comparison map c : (hﬁ)p/ — pil(hﬁ) (verifi-
cation omitted). Any sheaf on C is a coequalizer of maps of coproducts of sheaves
of the form hﬁ, see Lemma m The stalk functor F +— F,, and the functor p—*
commute with arbitrary colimits (as they are both left adjoints). We conclude c is
an isomorphism for every sheaf 7. Thus the stalk functor F +— F, is isomorphic to
p~! and we in particular see that it is exact. This proves condition (3) of Definition
holds and p’ is a point. The final assertion has already been shown above,
since we saw that p~! = (p/)~L. O

Actually a point always corresponds to a morphism of sites as we show in the
following lemma.

Lemmal 32.8. Let C be a site. Let p be a point of C given by u : C — Sets. Let
So be an infinite set such that uw(U) C Sy for all U € Ob(C). Let S be the site
constructed out of the powerset S = P(Sy) in Remark[15.3 Then

(1) there is an equivalence i : Sh(pt) — Sh(S),

(2) the functor uw:C — S induces a morphism of sites f : S — C, and

(3) the composition

Sh(pt) — Sh(S) — Sh(C)
is the morphism of topoi (p«,p~*) of Lemma|32.7,

Proof. Part (1) we saw in Remark Moreover, recall that the equivalence
associates to the set E the sheaf i, F on S defined by the rule V + Morges(V, E).
Part (2) is clear from the definition of a point of C (Definition[32.2) and the definition
of a morphism of sites (Definition . Finally, consider f.i.FE. By construction
we have

feix E(U) = i E(u(U)) = Morges(uw(U), E)
which is equal to p.E(U), see Equation (32.3.1). This proves (3). O

Contrary to what happens in the topological case it is not always true that the
stalk of the skyscraper sheaf with value E is E. Here is what is true in general.

Lemma 32.9. Let C be a site. Let p : Sh(pt) — Sh(C) be a point of the topos
associated to C. For any set E there are canonical maps

E— (p.E), — E
whose composition is idg.

Proof. There is always an adjunction map (p.E), = p~ip,E — E. This map
is an isomorphism when E = {x} because p, and p~! are both left exact, hence
transform the final object into the final object. Hence given e € E we can consider
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the map i, : {*x} — E which gives

p—lp*{*} ﬁp_lp*E
{x) B
whence the map E — (p.E), = p~'p.E as desired. O

Lemma 32.10. Let C be a site. Let p : Sh(pt) — Sh(C) be a point of the topos
associated to C. The functor p, : Sets — Sh(C) has the following properties: It
commutes with arbitrary limits, it is left exact, it is faithful, it transforms surjec-
tions into surjections, it commutes with coequalizers, it reflects injections, it reflects
surjections, and it reflects isomorphisms.

Proof. Because p, is a right adjoint it commutes with arbitrary limits and it is
left exact. The fact that p~'p.E — F is a canonically split surjection implies that
p+ is faithful, reflects injections, reflects surjections, and reflects isomorphisms.
By Lemma [32.7 we may assume that p comes from a point u : C — Sets of the
underlying site C. In this case the sheaf p. F is given by

P« E(U) = Morgess(u(U), E)

see Equation (32.3.1]) and Definition It follows immediately from this formula
that p, transforms surjections into surjections and coequalizers into coequalizers.
O

33. Constructing points

In this section we give criteria for when a functor from a site to the category of sets
defines a point of that site.

Lemma 33.1. Let C be a site. Let p=wu:C — Sets be a functor. If the category
of neighbourhoods of p is cofiltered, then the stalk functor (32.1.1|) is left ezact.

Proof. Let T — Sh(C), i — F; be a finite diagram of sheaves. We have to show
that the stalk of the limit of this system agrees with the limit of the stalks. Let
F be the limit of the system as a presheaf. According to Lemma this is a
sheaf and it is the limit in the category of sheaves. Hence we have to show that
Fp = limz F; ». Recall also that F has a simple description, see Section @ Thus
we have to show that

lim; Colim{(Uﬁﬂ)}DPP fl(U) = COlim{(U7x)}opP lim, .FZ(U)

This holds, by Categories, Lemma because the opposite of the category of
neighbourhoods is filtered by assumption. O

Lemmal 33.2. Let C be a site. Assume that C has a final object X and fibred
products. Let p=wu:C — Sets be a functor such that
(1) u(X) 4s a singleton set, and
(2) for every pair of morphisms U — W and V. — W with the same target the
map w(U xw V) = u(U) Xy u(V) is bijective.
Then the the category of neighbourhoods of p is cofiltered and consequently the stalk
functor Sh(C) — Sets, F — F, commutes with finite limits.
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Proof. Please note the analogy with Lemma [5.2] The assumptions on C imply
that C has finite limits. See Categories, Lemma Assumption (1) implies
that the category of neighbourhoods is nonempty. Suppose (U,z) and (V,y) are
neighbourhoods. Then u(U x V) = uw(U xx V) = u(U) xyx) u(V) = u(U) x
u(V) by (2). Hence there exists a neighbourhood (U X x V, z) mapping to both
(U,z) and (V,y). Let a,b: (V,y) — (U,z) be two morphisms in the category of
neighbourhoods. Let W be the equalizer of a,b : V. — U. As in the proof of
Categories, Lemma we may write W in terms of fibre products:

W = (V ><a,U,b V) X(prl,pTQ),VXV,A |4

The bijectivity in (2) guarantees there exists an element z € w(W) which maps
to ((v,y),y). Then (W,z2) — (V,y) equalizes a,b as desired. The “consequently”
clause is Lemma [33.1] O

Proposition| 33.3. Let C be a site. Assume that finite limits exist in C. (Le.,
C has fibre products, and a final object.) A point p of such a site C is given by a
functor u : C — Sets such that

(1) w commutes with finite limits, and
(2) if {U; = U} is a covering, then [, u(U;) = w(U) is surjective.

Proof. Suppose first that p is a point (Definition given by a functor u. Con-
dition (2) is satisfied directly from the definition of a point. By Lemma we
have (hy)p, = w(U). By Lemma we have (h?ﬁ)p = (hy)p. Thus we see that u
is equal to the composition of functors

¢ psnc) Zs snic) Uz sets

Each of these functors is left exact, and hence we see u satisfies (1).

Conversely, suppose that u satisfies (1) and (2). In this case we immediately see
that u satisfies the first two conditions of Definition And its stalk functor is
exact, because it is a left adjoint by Lemma [32.5]and it commutes with finite limits
by Lemma |33.2 O

Remark| 33.4. In fact, let C be a site. Assume C has a final object X and fibre
products. Let p = u : C — Sets be a functor such that

(1) w(X) = {*} a singleton, and

(2) for every pair of morphisms U — W and V' — W with the same target the

map u(U xw V) = u(U) xuw) w(V) is surjective.

(3) for every covering {U; — U} the map [[u(U;) — u(U) is surjective.
Then, in general, p is not a point of C. An example is the category C with two
objects {U, X} and exactly one non-identity arrow, namely U — X. We endow
C with the trivial topology, i.e., the only coverings are {U — U} and {X — X}.
A sheaf F is the same thing as a presheaf and consists of a triple (A, B,A — B):
namely A = F(X), B= F(U) and A — B is the restriction mapping corresponding
to U — X. Note that U xx U = U so fibre products exist. Consider the functor
u = p with u(X) = {*} and w(U) = {*1,*2}. This satisfies (1), (2), and (3), but
the corresponding stalk functor is the functor

(A,B,A— B)— B1I4 B
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which isn’t exact. Namely, consider (0,{1},0 — {1}) — ({1}, {1}.{1} — {1})
which is an injective map of sheaves, but is transformed into the noninjective map
of sets

{13 {1} — {1} Hyy {1}
by the stalk functor.

Example 33.5. Let X be a topological space. Let Xz, be the site of Example
[6-4] Let z € X be a point. Consider the functor

0 if z¢U

u: Xgar — Sets, U»—){{*} i relU

This functor commutes with product and fibred products, and turns coverings into
surjective families of maps. Hence we obtain a point p of the site Xz, It is
immediately verified that the stalk functor agrees with the stalk at z defined in
Sheaves, Section

Example 33.6. Let X be a topological space. What are the points of the topos
Sh(X)? To see this, let Xz, be the site of Example By Lemma a point
of Sh(X) corresponds to a point of this site. Let p be a point of the site Xz4
given by the functor u : Xz, — Sets. We are going to use the characterization
of such a w in Proposition This implies immediately that «(@) = (0 and
w(UNV) =ulU) xu(V). In particular we have w(U) = u(U) x u(U) via the
diagonal map which implies that u(U) is either a singleton or empty. Moreover, if
U = JU; is an open covering then

wU)=0=Vi, uw(U;) =0 and w(U) #0= 3, uw(U;) #0.

We conclude that there is a unique largest open W C X with «(W) = (), namely
the union of all the opens U with u(U) =0. Let Z = X \W. If Z = Z; U Z3 with
Z; C Z closed, then W = (X \ Z1)N (X \ Z3) so 0 = w(W) = u(X \ Z1) x w(X \ Z5)
and we conclude that u(X \ Z;) = 0 or that u(X \ Z3) = 0. This means that
X\ Zy =W or that X \ Zo = W. In other words, Z is irreducible. Now we see
that u is described by the rule

0 if ZnU=0

U Xgar — Sets, UH{{*} it 20U £0

Note that for any irreducible closed Z C X this functor satisfies assumptions (1),
(2) of Proposition and hence defines a point. In other words we see that points
of the site X z,, are in one-to-one correspondence with irreducible closed subsets of
X. In particular, if X is a sober topological space, then points of X z,, and points
of X are in one to one correspondence, see Example

Example| 33.7. Consider the site Tg described in Example and Section
The forgetful functor u : T¢ — Sets commutes with products and fibred products
and turns coverings into surjective families. Hence it defines a point of 7. We
identify Sh(7g) and G-Sets. The stalk functor

p ' : Sh(Tg) = G-Sets — Sets
is the forgetful functor. The pushforward p, is the functor
Sets — Sh(Ta) = G-Sets
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which maps a set S to the G-set Map(G, S) with action ¢ -9 = ¢ o R, where R, is
right multiplication. In particular we have p~!p,S = Map(G, S) as a set and the
maps S — Map(G, S) — S of Lemma are the obvious ones.

08RH Example| 33.8. Let C be a category endowed with the chaotic topology (Example
. For every object Uy of C the functor w : U +— Mor¢(Up, U) defines a point p
of C. Namely, conditions (1) and (2) of Definition are immediate as the only
coverings are given by identity maps. Condition (2) holds because F,, = F(Up) and
since the topology is discrete taking sections over Uy is an exact functor.

34. Points and morphisms of topoi
05V0 In this section we make a few remarks about points and morphisms of topoi.

OF4F Lemma 34.1. Letu:C — D be a functor. Let v : D — Sets be a functor and set
w = vou. Denote q, resp., p the stalk functor (32.1.1) associated to v, resp. w.
Then (upF)q = Fp functorially in the presheaf F on C.

Proof. This is a simple categorical fact. We have
(upF)q = colimy,,y colimy g.v () F(U)
= colimv,y v, ¢:v su(v)) F(U)
= colim(y, ) F(U)
The first equality holds by the definition of u, and the definition of the stalk functor.
Observe that y € v(V). In the second equality we simply combine colimits. To see

the third equality we apply Categories, Lemma to the functor F' of diagram
categories defined by the rule

F((Vy,U,¢0:V = u(U))) = (U,v()(y))-

This makes sense because w(U) = v(u(U)). Let us check the hypotheses of Cate-
gories, Lemma Observe that F has a right inverse, namely (U, z) — (u(U), 2z, U, id :
u(U) = u(U)). Again this makes sense because z € w(U) = v(u(U)). On the other
hand, there is always a morphism

Voy, U, 62V = uU)) — (u(U),v(¢)(y), U,id : uw(U) = u(U))

in the fibre category over (U,x) which shows the fibre categories are connected.
The fourth and final equality is clear. O

05V1 |Lemma 34.2. Let f: D — C be a morphism of sites given by a continuous functor
u:C — D. Let q be a point of D given by the functor v : D — Sets, see Definition
[52.3 Then the functor vou : C — Sets defines a point p of C and moreover there
is a canonical identification

(f —\F )q =Fp
for any sheaf F on C.
First proof Lemma Note that since u is continuous and since v defines a

point, it is immediate that v o u satisfies conditions (1) and (2) of Definition [32.2]
Let us prove the displayed equality. Let F be a sheaf on C. Then

(fil}-)q = (usF)g = (upF)g = Fp
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The first equality since f~! = u,, the second equality by Lemma[32.5] and the third
by Lemma Hence now we see that p also satisfies condition (3) of Definition
[32:2) because it is a composition of exact functors. This finishes the proof. O

Second proof Lemma By Lemma we may factor (q.,q 1) as
Sh(pt) > Sh(S) L Sh(D)

where the second morphism of topoi comes from a morphism of sites h : S — D
induced by the functor v : D — S (which makes sense as S C Sets is a full subcat-
egory containing every object in the image of v). By Lemma the composition
vowu :C — § defines a morphism of sites g : S — C. In particular, the functor
vou : C — § is continuous which by the definition of the coverings in S, see Remark
15.3] means that v o u satisfies conditions (1) and (2) of Definition On the
other hand, we see that

9+ E(U) = i, E(v(u(U)) = Morgets(v(u(U)), E)

by the construction of ¢ in Remark [I5.3] Note that this is the same as the formula
for which is equal to (v o u)PE, see Equation . By Lemma the functor
gxix = (vou)? = (vou)?® is right adjoint to the stalk functor F +— F,. Hence we see
that the stalk functor p~! is canonically isomorphic to i~ o g—!. Hence it is exact
and we conclude that p is a point. Finally, as we have g = f o h by construction we
see that p"! =i toh lof ' =g 1o f! ie., we have the displayed formula of
the lemma. (]

Lemma 34.3. Let f: Sh(D) — Sh(C) be a morphism of topoi. Let q : Sh(pt) —
Sh(D) be a point. Then p = f oq is a point of the topos Sh(C) and we have a
canonical identification

(f'F)g=Fp
for any sheaf F on C.
Proof. This is immediate from the definitions and the fact that we can compose
morphisms of topoi. O
35. Localization and points

In this section we show that points of a localization C/U are constructed in a simple
manner from the points of C.

Lemmal 35.1. Let C be a site. Let p be a point of C given by u : C — Sets. Let U
be an object of C and let x € w(U). The functor

v:C/U — Sets, (p:V =U)r—{yeulV)]|ulp)(y) =z}
defines a point q of the site C/U such that the diagram

Ak
Sh(C/U) 22— Sh(C)

commutes. In other words Fp = (j,;l]-')q for any sheaf on C.
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Proof. Choose S and S as in Lemma We may identify Sh(pt) = Sh(S) as in
that lemma, and we may write p = f : Sh(S) — Sh(C) for the morphism of topoi
induced by u. By Lemma [28.1] we get a commutative diagram of topoi

Sh(S/u(U)) — Sh(S)

Ju(U)
pli l

Sh(C/U) 2~ Sh(C),

where p’ is given by the functor v’ : C/U — S/u(U), V/U — u(V)/u(U). Consider
the functor j, : S = S/x obtained by assigning to a set E the set F endowed with
the constant map £ — w(U) with value x. Then j, is a fully faithful cocontinuous
functor which has a continuous right adjoint v, : (¢ : E — u(U)) — ¢~ ({x}).
Note that j,() 0 j. = ids, and v, o u’ = v. These observations imply that we have
the following commutative diagram of topoi

Sh(S)
N

) Sh(S/lu(U))mShIS) p
Sh(C/U) —2Y~ Sh(C)

Namely:

(1) The morphism a : Sh(S) — Sh(S/u(U)) is the morphism of topoi associated
to the cocontinuous functor j,, which equals the morphism associated to
the continuous functor v,, see Lemma and Section

(2) The composition p o j,y © a = p since ju ) © jo = ids.

(3) The composition p’ o a gives a morphism of topoi. Moreover, it is the
morphism of topoi associated to the continuous functor v, o v’ = v. Hence
v does indeed define a point ¢ of C/U which fits into the diagram above by
construction.

This ends the proof of the lemma. ([

Lemma 35.2. LetC, p, u, U be as in Lemma . The construction of Lemma
gives a one to one correspondence between points q of C/U lying over p and
elements x of u(U).

Proof. Let ¢ be a point of C/U given by the functor v : C/U — Sets such that
ju © g = p as morphisms of topoi. Recall that u(V) = pil(hi) for any object V'
of C, see Lemma Similarly v(V/U) = q’l(h‘#//U) for any object V/U of C/U.
Consider the following two diagrams

More 1 (W/U, V/U) —= More(W,V) b, —= i ' (h])

| L

MOI‘C/U(W/U, U/U) — Morc(W, U) h#
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The right hand diagram is the sheafification of the diagram of presheaves on C/U
which maps W/U to the left hand diagram of sets. (There is a small technical
point to make here, namely, that we have (j;'hy)# = j&l(hi) and similarly for
hy, see Lemma M) Note that the left hand diagram of sets is cartesian. Since
sheafification is exact (Lemma we conclude that the right hand diagram is
cartesian.

Apply the exact functor ¢! to the right hand diagram to get a cartesian diagram
v(V/U) ——=u(V)

.

v(U/U) ——=u(U)

1 1 1

of sets. Here we have used that ¢~ o j=! = p~!. Since U/U is a final object of
C/U we see that v(U/U) is a singleton. Hence the image of v(U/U) in u(U) is an
element z, and the top horizontal map gives a bijection v(V/U) — {y € u(V) | y —
x in w(U)} as desired. O

Lemma 35.3. Let C be a site. Let p be a point of C given by u : C — Sets. Let U
be an object of C. For any sheaf G on C/U we have

(juiG)p = Hq Yy

where the coproduct is over the points q of C/U associated to elements x € u(U) as
in Lemma[35.1]

Proof. We use the description of jinG as the sheaf associated to the presheaf

Vi H@EMorc(V,U) G(V/,U) of Lemma Also, the stalk of jinG at p is equal
to the stalk of this presheaf, see Lemma [32.5] Hence we see that

(ju1G)p = colimyy) [ | G(v/,U)

To each element (V,y, ¢, s) of this colimit, we can assign = u(p)(y) € w(U).
Hence we obtain

(JonG)p = Hwéu(U) colim (. v u,y), u(e)(y)=z G(V/U).

This is equal to the expression of the lemma by our construction of the points ¢. [

@:V—=U

Remark| 35.4. Warning: The result of Lemmam has no analogue for jy .

36. 2-morphisms of topoi
This is a brief section concerning the notion of a 2-morphism of topoi.

Definition 36.1. Let f,g : Sh(C) — Sh(D) be two morphisms of topoi. A 2-
morphism from f to g is given by a transformation of functors ¢ : f, — gx-

Pictorially we sometimes represent ¢ as follows:

f
Sh(C) @ Sh(D)
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Note that since f~! is adjoint to f, and ¢g—! is adjoint to g, we see that ¢ induces
also a transformation of functors ¢t : g—' — f~! (usually denoted by the same
symbol) uniquely characterized by the condition that the diagram

MorSh('D) (97 f*f) _— MorSh(C) (filg7 F)
to—l \L_Ot
MorSh(D) (ga g*]:) ES 1\/101'Sh(c)(‘gilg7 f)

commutes. Because of set theoretic difficulties (see Remark we do not obtain
a 2-category of topoi. But we can still define horizontal and vertical composition
and show that the axioms of a strict 2-category listed in Categories, Section [29 hold.
Namely, vertical composition of 2-morphisms is clear (just compose transformations
of functors), composition of 1-morphisms has been defined in Definition and
horizontal composition of

f f

Sh(C) Yt Sh(D) Y= Sh(E)

is defined by the transformation of functors sxt introduced in Categories, Definition
Explicitly, s xt is given by

fit

Tl F Jeg«F - g9+ F or fif*]:%gif*]:g;*t)gig*]:

(these maps are equal). Since these definitions agree with the ones in Categories,
Section it follows from Categories, Lemma that the axioms of a strict 2-
category hold with these definitions.

37. Morphisms between points

Lemmal37.1. Let C be a site. Let u,u’ : C — Sets be two functors, and let t : u' —
u be a transformation of functors. Then we obtain a canonical transformation of
stalk functors teair : Fpy — Fp which agrees with t via the identifications of Lemma

323
Proof. Omitted. O

Definition 37.2. Let C be a site. Let p,p’ be points of C given by functors
u,u’ : C — Sets. A morphism f :p — p’ is given by a transformation of functors

fu it = u.

Note how the transformation of functors goes the other way. This makes sense, as
we will see later, by thinking of the morphism f as a kind of 2-arrow pictorially as

follows:
p

Sets = Sh(pt) E Sh(C)

’

p

Namely, we will see later that f, induces a canonical transformation of functors
px — Pl between the skyscraper sheaf constructions.
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This is a fairly important notion, and deserves a more complete treatment here.
List of desiderata

(1) Describe the automorphisms of the point of 7¢ described in Example [33.7]

(2) Describe Mor(p,p’) in terms of Mor(p,, pl,).

(3) Specialization of points in topological spaces. Show that if 2’ € m in the
topological space X, then there is a morphism p — p’, where p (resp. p’) is
the point of Xz, associated to = (resp. z').

38. Sites with enough points

Definition 38.1. Let C be a site.

(1) A family of points {p;}iecr is called conservative if every map of sheaves
¢ : F — G which is an isomorphism on all the fibres F,, — G,, is an
isomorphism.

(2) We say that C has enough points if there exists a conservative family of
points.

It turns out that you can then check “exactness” at the stalks.

Lemma 38.2. Let C be a site and let {p;},cr be a conservative family of points.
Then

(1) Given any map of sheaves ¢ : F — G we have Yi,p,, injective implies ¢
injective.

(2) Given any map of sheaves ¢ : F — G we have Yi, pp, surjective implies ¢
surjective.

(3) Given any pair of maps of sheaves 1,2 : F = G we have Vi, 1.5, = @2 p,
implies o1 = @s.

(4) Given a finite diagram G : J — Sh(C), a sheaf F and morphisms q; : F —
G; then (F,q;) is a limit of the diagram if and only if for each i the stalk
(‘Fpm (QJ)Pi) is one.

(5) Given a finite diagram F : J — Sh(C), a sheaf G and morphisms e; : F; —
G then (G,e;) is a colimit of the diagram if and only if for each i the stalk
(gpw (e]')iﬂi) is one.

Proof. We will use over and over again that all the stalk functors commute with
any finite limits and colimits and hence with products, fibred products, etc. We
will also use that injective maps are the monomorphisms and the surjective maps
are the epimorphisms. A map of sheaves ¢ : F — G is injective if and only if
F — F xg F is an isomorphism. Hence (1). Similarly, ¢ : F — G is surjective if
and only if G Iz G — G is an isomorphism. Hence (2). The maps a,b: F — G
are equal if and only if F X4 g4 F — F X F is an isomorphism. Hence (3). The
assertions (4) and (5) follow immediately from the definitions and the remarks at
the start of this proof. O

Lemma 38.3. Let C be a site and let {(p;,w;)}icr be a family of points. The
family is conservative if and only if for every sheaf F and every U € Ob(C) and
every pair of distinct sections s,s' € F(U), s # s’ there exists an i and x € u;(U)
such that the triples (U,z,s) and (U,x,s’) define distinct elements of Fp,.
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Proof. Suppose that the family is conservative and that F, U, and s, s’ are as in the
lemma. The sections s, s’ define maps a,a’ : (hy)# — F which are distinct. Hence,
by Lemma there is an 4 such that a,, # aj, . Recall that (hy)# = u;(U), by
Lemmas and Hence there exists an = € u;(U) such that a,, () # a;,, ()
in F,,. Unwinding the definitions you see that (U, x,s) and (U, z,s’) are as in the
statement of the lemma.

To prove the converse, assume the condition on the existence of points of the lemma.
Let ¢ : F — G be a map of sheaves which is an isomorphism at all the stalks. We
have to show that ¢ is both injective and surjective, see Lemma [I1.2] Injectivity
is an immediate consequence of the assumption. To show surjectivity we have to
show that G ITx G — G is an isomorphism (Categories, Lemma . Since this
map is clearly surjective, it suffices to check injectivity which follows as GIIxG — G
is injective on all stalks by assumption. O

In the following lemma the points ¢; , are exactly all the points of C/U lying over
the point p; according to Lemma [35.2]

Lemma 38.4. Let C be a site. Let U be an object of C. let {(pi,u;)}icr be a
family of points of C. For x € w;(U) let q;, be the point of C/U constructed in
Lemma . If {pi} is a conservative family of points, then {q; z}icr zeu, () 5 @
conservative family of points of C/U. In particular, if C has enough points, then so
does every localization C/U.

Proof. We know that jy induces an equivalence jy : Sh(C/U) — Sh(C)/hf,E, see
Lemma Moreover, we know that (jinG),, = [1, G, see Lemmam Hence
the result follows formally. [

The following lemma tells us we can check the existence of points locally on the
site.

Lemma 38.5. Let C be a site. Let {U;}icr be a family of objects of C. Assume

1) 11 h’i — % is a surjective map of sheaves, and
(2) each localization C/U; has enough points.
Then C has enough points.

Proof. For cach i € I let {p;};es, be a conservative family of points of C/U;. For
j € J; denote ¢; : Sh(pt) — Sh(C) the composition of p; with the localization
morphism Sh(C/U;) — Sh(C). Then g¢; is a point, see Lemma We claim
that the family of points {qj}je]_[ j, is conservative. Namely, let /' — G be a
map of sheaves on C such that F,, — G, is an isomorphism for all j € ] J;.
Let W be an object of C. By assumption (1) there exists a covering {W, — W}
and morphisms W, — Uj(q). Since (}—‘C/Uua))pj = Fy; and (g|C/Ui(a> )p; = Yq
by Lemma we see that Fly,, — Glu,,, is an isomorphism since the family
of points {p;}jes,,, is conservative. Hence F(W,) — G(W,) is bijective for each
a. Similarly F(W, xw Wp) — G(W, xw Wp) is bijective for each a,b. By the
sheaf condition this shows that F(W) — G(W) is bijective, i.e., F — G is an
isomorphism. (I

Lemma 38.6. Letu:C — D be a continuous functor of sites. Let {(qi,v;)}icr be
a conservative family of points of D. If each functor u; = v; o u defines a point of
C, then u defines a morphism of sites f : D — C.
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Proof. Denote p; the stalk functor on PSh(C) corresponding to the functor
u;. We have

(filf)(h' = (usF)q, = (upF)q, = Fp,
The first equality since f~! = u,, the second equality by Lemma and the third
by Lemma [34.1] Hence if p; is a point, then pulling back by f and then taking
stalks at g; is an exact functor. Since the family of points {g;} is conservative, this

implies that f~! is an exact functor and we see that f is a morphism of sites by
Definition [4.11 O

39. Criterion for existence of points

This section corresponds to Deligne’s appendix to [AGVT7I, Exposé VI]. In fact it
is almost literally the same.

Let C be a site. Suppose that (I,>) is a directed set, and that (U, fii/) is an
inverse system over I, see Categories, Deﬁnition Given the data (I,>,U;, fiir)
we define

u:C — Sets, u(V) = colim; Mor¢(U;, V)
Let F — F, be the stalk functor associated to u as in Section It is direct from
the definition that actually

Fp = colim; F(U;)

in this special case. Note that u commutes with all finite limits (I mean those
that are representable in C) because each of the functors V +— Mor¢(U;, V') do, see
Categories, Lemma, [19.2

We say that a system (I,>,U;, fi) is a refinement of (J,>,V;,g;5:) if J C I, the
ordering on J induced from that of I and V; = Uj;, g¢;i» = fj;+ (in words, the
inverse system over J is induced by that over I). Let u be the functor associated to
(I,>,U;, fiir) and let v’ be the functor associated to (J,>,V}, g;;-). This induces a
transformation of functors

w—u
simply because the colimits for v’ are over a subsystem of the systems in the colimits

for u. In particular we get an associated transformation of stalk functors F,y — F,,
see Lemma 37,11

Lemma 39.1. Let C be a site. Let (J,>,V},g;;7) be a system as above with
associated pair of functors (v',p’). Let F be a sheaf onC. Let s, s’ € Fy be distinct
elements. Let {Wy, — W} be a finite covering of C. Let f € u/(W). There exists a
refinement (I,>,U;, fiir) of (J,>,V},g,j) such that s, s’ map to distinct elements
of Fp and that the image of f in u(W) is in the image of one of the u(Wy).

Proof. There exists a jo € J such that f is defined by f’: V;, — W. For j > jo
we set Vi = Vj X o, w Wi. Then {V; — V;} is a finite covering in the site C.
Hence F(V;) C [],, F(Vjx). By Categories, Lemma once again we see that

Fp = colim; F(V;) — I—LC colim; F(Vj )

is injective. Hence there exists a k such that s and s’ have distinct image in
colimj F(Vj ). Let Jo = {j € J,j > jo} and I = J I J;. We order I so that
no element of the second summand is smaller than any element of the first, but
otherwise using the ordering on J. If j € I is in the first summand then we use V;
and if j € I is in the second summand then we use Vj ;. We omit the definition of
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the transition maps of the inverse system. By the above it follows that s,s’ have
distinct image in F,. Moreover, the restriction of f’ to Vjj factors through Wj by
construction. (]

Lemma| 39.2. Let C be a site. Let (J,>,V},g;;/) be a system as above with
assoctated pair of functors (u',p’). Let F be a sheaf onC. Let s, s’ € Fp be distinct
elements. There exists a refinement (I,>,U;, fir) of (J,>,Vj,g;;/) such that s, s
map to distinct elements of F, and such that for every finite covering {W, — W}
of the site C, and any f € v' (W) the image of [ in u(W) is in the image of one of
the u(Wy).

Proof. Let E be the set of pairs ({Wj, — W}, f € ' (W)). Consider pairs (E’ C
E,(I,>,U;, fir)) such that

(1) (I,>,U;,g4) is a refinement of (J,>,V}, g55),

(2) s,s" map to distinct elements of F,,, and
(3) for every pair ({Wy, — W}, f € v/ (W)) € E' we have that the image of f

in w(W) is in the image of one of the u(Wy).
We order such pairs by inclusion in the first factor and by refinement in the second.
Denote S the class of all pairs (E' C E,(I,>,U;, fir)) as above. We claim that
the hypothesis of Zorn’s lemma holds for §. Namely, suppose that (E!, (I, >
, Ui, fiir))aca is a totally ordered subset of S. Then we can define E" = | J,,. 4 £, and
we can set I = J,c4 o We claim that the corresponding pair (E', (I, >, U, fir))
is an element of S. Conditions (1) and (3) are clear. For condition (2) you note
that

u = colimgec 4 u, and correspondingly F, = colim,ca Fp,

The distinctness of the images of s,s’ in this stalk follows from the description
of a directed colimit of sets, see Categories, Section We will simply write
(E',(1,...) = Usea(Ey, (Ia, . ..)) in this situation.

OK, so Zorn’s Lemma would apply if S was a set, and this would, combined with
Lemma [39.1] above easily prove the lemma. It doesn’t since S is a class. In order
to circumvent this we choose a well ordering on E. For e € E set E, = {¢' € E |
¢’ < e}. Using transfinite recursion we construct pairs (E’, (I.,...)) € S such that
e1 < ey = (E.,(L,,...) <(E,,(Ie,,...)). Let e € E, say e = ({Wy, = W}, f €
u’(W)). If e has a predecessor e—1, then we let (I.,...) be a refinement of (I,_1,...)
as in Lemma with respect to the system e = ({W, — W}, f € «/(W)). If e

does not have a predecessor, then we let (I, ...) be a refinement of J,, ., (Ie/, .. .)
with respect to the system e = ({W, — W}, f € «/(W)). Finally, the union
Ue.c g Ie will be a solution to the problem posed in the lemma. O

Proposition 39.3. Let C be a site. Assume that

(1) finite limits exist in C, and

(2) every covering {U; — U}ier has a refinement by a finite covering of C.
Then C has enough points.

Proof. We have to show that given any sheaf F on C, any U € Ob(C), and any
distinct sections s,s’ € F(U), there exists a point p such that s, s have distinct
image in F,. See Lemma Consider the system (J,>,V},g;;/) with J = {1},
Vi = U, g1 = idy. Apply Lemma [39.2] By the result of that lemma we get a
system (I,>,U;, fi) refining our system such that s, # s; and such that moreover

[AGVTIl Exposé VI,
Appendix by
Deligne, Proposition
9.0]
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for every finite covering {Wj, — W} of the site C the map [[, w(Wi) — u(W) is
surjective. Since every covering of C can be refined by a finite covering we conclude
that [], w(Wy) — w(W) is surjective for any covering {Wj, — W} of the site C.
This implies that v = p is a point, see Proposition m (and the discussion at the
beginning of this section which guarantees that u commutes with finite limits). O

Lemma 39.4. Let C be a site. Let I be a set and for i € I let U; be an object of
C such that

(1) 11 hu, surjects onto the final object of Sh(C), and
(2) C/U; satisfies the hypotheses of Proposition [39.3

Then C has enough points.

Proof. By assumption (2) and the proposition C/U; has enough points. The points
of C/U; give points of C via the procedure of Lemma [34.2] Thus it suffices to show:
if  : F — G is a map of sheaves on C such that ¢|c,y, is an isomorphism for all
i, then ¢ is an isomorphism. By assumption (1) for every object W of C there is
a covering {W; — W},c; such that for j € J there is an ¢ € I and a morphism
fj + W; — U;. Then the maps F(W;) — G(W;) are bijective and similarly for
F(W; xw Wjr) = G(W; xyw Wjr). The sheaf condition tells us that F(W) — G(W)
is bijective as desired. O

40. Weakly contractible objects

A weakly contractible object of a site is one that satisfies the equivalent conditions
of the following lemma.

Lemma 40.1. Let C be a site. Let U be an object of C. The following conditions
are equivalent

(1) For every covering {U; — U} there exists a map of sheaves hﬁ — Hh#ﬁ
right inverse to the sheafification of || hy, — hu.

(2) For every surjection of sheaves of sets F — G the map F(U) — G(U) is
surjective.

Proof. Assume (1) and let F — G be a surjective map of sheaves of sets. For
s € G(U) there exists a covering {U; — U} and t; € F(U;) mapping to s|y,, see
Definition Think of t; as a map ¢; : h#j — F via . Then precomposing
11t : ]_[h — F with the map hf; =11 hﬁ we get from (1) we obtain a section
t € F(U) mapping to s. Thus (2) holds.

Assume (2) holds. Let {U; — U} be a covering. Then ]_[hﬁ — hﬁ is surjective
(Lemma(12.4]). Hence by (2) there exists a section s of [ | h#i mapping to the section

idy of h. This section corresponds to a map h?f =11 h# which is right inverse
to the sheafification of [[ hy, — hy which proves (1). O

Definition 40.2. Let C be a site.
(1) We say an object U of C is weakly contractible if the equivalent conditions
of Lemma 0.1 hold.
(2) We say a site has enough weakly contractible objects if every object U of C
has a covering {U; — U} with U; weakly contractible for all i.
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(3) More generally, if P is a property of objects of C we say that C has enough
P objects if every object U of C has a covering {U; — U} such that U; has
P for all 1.

The small étale site of Af does not have any weakly contractible objects. On the
other hand, the small pro-étale site of any scheme has enough contractible objects.

41. Exactness properties of pushforward

Let f be a morphism of topoi. The functor f, in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular
classes of morphisms of topoi. We collect them here and note some of the logical
dependencies. Some parts of the following lemma are purely category theoretical
(i.e., they do not depend on having a morphism of topoi, just having a pair of
adjoint functors is enough).

Lemma 41.1. Let f : Sh(C) — Sh(D) be a morphism of topoi. Consider the
following properties (on sheaves of sets):

2) fi is fully faithful,

3) f7Yf F — F is surjective for all F in Sh(C),

4) f. transforms surjections into surjections,

5) f« commutes with coequalizers,

6) f« commutes with pushouts,

7) f~LfoF — F is an isomorphism for all F in Sh(C),
8) [« reflects injections,

9) f. reflects surjections,

0) f« reflects bijections, and

1) for any surjection F — f~1G there exists a surjection G' — G such that
=G — f~'G factors through F — f~1G.

Then we have the following implications

(a) (2) = (1),
) (3) = (1),

) (1) = (1), (2), (3), (8), (9), (10).
) (3) = (9),

) (6) = (4) and (5) = (4),

; (4) < (11),

(g) (9) = (8), (10), and
(h) (2) = (7).
Picture
(6)\ /(9) < (8)
(4) == (11) (2) <= (7) (10)
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Proof. Proof of (a): This is immediate from the definitions.

Proof of (b). Suppose that a,b: F — F’ are maps of sheaves on C. If f.a = f.b,
then f~!f.a = f~1f.b. Consider the commutative diagram

F F!

]

JUF T AF
If the bottom two arrows are equal and the vertical arrows are surjective then the
top two arrows are equal. Hence (b) follows.

_—

Proof of (c). Suppose that a : F — F’ is a map of sheaves on C. Consider the
commutative diagram

F— s F

]

JF = [LF
If (7) holds, then the vertical arrows are isomorphisms. Hence if f.a is injective
(resp. surjective, resp. bijective) then the bottom arrow is injective (resp. surjective,
resp. bijective) and hence the top arrow is injective (resp. surjective, resp. bijective).
Thus we see that (7) implies (8), (9), (10). It is clear that (7) implies (3). The
implications (7) = (2), (1) follow from (a) and (h) which we will see below.

Proof of (d). Assume (3). Suppose that a : F — F’ is a map of sheaves on C
such that f.a is surjective. As f~! is exact this implies that f~'f.a : f 1 f,. F —
f~Lf.F' is surjective. Combined with (3) this implies that a is surjective. This
means that (9) holds. Assume (9). Let F be a sheaf on C. We have to show that
the map f~!f.F — F is surjective. It suffices to show that f,f =1 f.F — f.F is
surjective. And this is true because there is a canonical map f.F — fof L fuF
which is a one-sided inverse.

Proof of (e). We use Categories, Lemma without further mention. If ¥ — F
is surjective then F' 11z 7/ — F’ is an isomorphism. Hence (6) implies that

f*]:/ Hf*]: f*]:l = f*(]:/ H]:]:/) — f*]:/

is an isomorphism also. And this in turn implies that f,F — f.JF’ is surjective.
Hence we see that (6) implies (4). If F — F’ is surjective then F is the coequalizer
of the two projections F x 7 F — F by Lemma [11.3] Hence if (5) holds, then f,F’
is the coequalizer of the two projections

fo(F xp F) = i F X5 [+ F — fulF
which clearly means that f.F — f.F’ is surjective. Hence (5) implies (4) as well.

Proof of (f). Assume (4). Let F — f~1G be a surjective map of sheaves on C. By
(4) we see that f.F — f.f'G is surjective. Let G’ be the fibre product

f*fﬂf*filg

]

g ——G



04D7

SITES AND SHEAVES 91

so that G" — G is surjective also. Consider the commutative diagram

F——77g

| T

e I

T T

f—lg/ - o fflg
and we see the required result. Conversely, assume (11). Let a : F — F' be
surjective map of sheaves on C. Consider the fibre product diagram

F F

]

]:// f— 1 f*f/

Because the lower horizontal arrow is surjective and by (11) we can find a surjection
~v:G" — f.F' such that f~'y factors through F" — f~'f.F"

F F

]

fflg/ f_-// f—l f*]:/
Pushing this down using f, we get a commutative diagram

foF —— [.F

.

f*fflg/ - f*]:” - f*fflf*fl

| T

g/ f*]_—-/
which proves that (4) holds.
Proof of (g). Assume (9). We use Categories, Lemma without further mention.
Let a : F — F' be a map of sheaves on C such that f.a is injective. This means
that f. F — fuF Xs, 7 foF = foF xx F) is an isomorphism. Thus by (9) we see
that F — F Xz F is surjective, i.e., an isomorphism. Thus a is injective, i.e., (8)
holds. Since (10) is trivially equivalent to (8) 4+ (9) we are done with (g).

Proof of (h). This is Categories, Lemma [24.4] d

Here is a condition on a morphism of sites which guarantees that the functor f,
transforms surjective maps into surjective maps.

Lemma 41.2. Let f : D — C be a morphism of sites associated to the continuous
functor u : C — D. Assume that for any object U of C and any covering {V; —
u(U)} in D there exists a covering {U; — U} in C such that the map of sheaves

# #
7w, = bl
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factors through the map of sheaves
11 h# — hfw
Then f. transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let a: F — G be a surjective map of sheaves on D. Let U be an object of C
and let s € f,G(U) = G(u(U)). By assumption there exists a covering {V; — u(U)}
and sections s; € F(V}) with a(s;) = s|v;. Now we may think of the sections s, s;
and a as giving a commutative diagram of maps of sheaves

By assumption there exists a covering {U; — U} such that we can enlarge the
commutative diagram above as follows

P
I hu(U hf(U) : g

Because F is a sheaf the map from the left lower corner to the right upper corner
corresponds to a family of sections s; € F(u(U;)), i.e., sections s; € f . F(U;). The
commutativity of the diagram implies that a(s;) is equal to the restriction of s to
U;. In other words we have shown that f.a is a surjective map of sheaves. (I

Example| 41.3. Assume f : D — C satisfies the assumptions of Lemma
Then it is in general not the case that f, commutes with coequalizers or pushouts.
Namely, suppose that f is the morphism of sites associated to the morphism of
topological spaces X = {1,2} — Y = {x} (see Example [14.2), where Y is a
singleton space, and X = {1,2} is a discrete space with two pomts. A sheaf F on
X is given by a pair (A7, Ag) of sets. Then f.F corresponds to the set A1 x As.
Hence if a = (a1,a2),b = (b1,b2) : (A1, As) — (B, Ba) are maps of sheaves on X,
then the coequalizer of a,b is (C1,Cy) where C; is the coequalizer of a;, b;, and the
coequalizer of f.a, f,b is the coequalizer of

alxag,b1><b2:A1><A2—>Bl><BQ

which is in general different from C; x Cy. Namely, if Ay = () then A; x A; = (), and
hence the coequalizer of the displayed arrows is By x Bsg, but in general C # B;.
A similar example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor
f+ which reflects injections and surjections. Note that this also implies that f, is
faithful and that the map f~!f,F — F is always surjective.

Lemma 41.4. Let f : D — C be a morphism of sites given by the functor u : C —
D. Assume that for every object V of D there exist objects U; of C and morphisms
w(U;) = V such that {uw(U;) — V} is a covering of D. In this case the functor
fi 2 Sh(D) — Sh(C) reflects injections and surjections.
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Proof. Let a : F — G be maps of sheaves on D. By assumption for every object
V of D we get F(V) C [[F(u(U;)) =[] f+F(U;) by the sheaf condition for some
U; € Ob(C) and similarly for G. Hence it is clear that if f.« is injective, then « is
injective. In other words f, reflects injections.

Suppose that f.« is surjective. Then for V,U;,u(U;) — V as above and a section
s € G(V), there exist coverings {U;; — U} such that s|,,,) is in the image of
F(u(Usj)). Since {u(U;;) — V'} is a covering (as u is continuous and by the axioms
of a site) we conclude that s is locally in the image. Thus « is surjective. In other
words f, reflects surjections. O

Example 41.5. We construct a morphism f : D — C satisfying the assumptions of
Lemma [I1.4] Namely, let ¢ : G — H be a morphism of finite groups. Consider the
sites D = T and C = Ty of countable G-sets and H-sets and coverings countable
families of jointly surjective maps (Example . Let u : Ty — Tg be the functor
described in Section [16|and f : Tg — Ty the corresponding morphism of sites. If
 is injective, then every countable G-set is, as a G-set, the quotient of a countable
H-set (this fails if ¢ isn’t injective). Thus f satisfies the hypothesis of Lemma
If the sheaf F on T corresponds to the G-set S, then the canonical map

T — F
corresponds to the map
Maps(H,S) — S, av+— a(ly)

If ¢ is injective but not surjective, then this map is surjective (as it should according
to Lemma [41.4)) but not injective in general (for example take G = {1}, H = {1,0},
and S = {1,2}). Moreover, the functor f. does not commute with coequalizers or
pushouts (for G = {1} and H = {1,0}).

42. Almost cocontinuous functors

Let C be a site. The category PSh(C) has an initial object, namely the presheaf
which assigns the empty set to each object of C. Let us denote this presheaf by (.
It follows from the properties of sheafification that the sheafification 0# of 0 is an
initial object of the category Sh(C) of sheaves on C.

Definition 42.1. Let C be a site. We say an object U of C is sheaf theoretically
empty if 0% — h# is an isomorphism of sheaves.

The following lemma makes this notion more explicit.

Lemma 42.2. Let C be a site. Let U be an object of C. The following are
equivalent:

(1) U is sheaf theoretically empty,

(2) F(U) is a singleton for each sheaf F,

(3) 0#(U) is a singleton,

(4) 0#(U) is nonempty, and

(5) the empty family is a covering of U in C.
Moreover, if U is sheaf theoretically empty, then for any morphism U’ — U of C
the object U’ is sheaf theoretically empty.
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Proof. For any sheaf F we have F(U) = MorSh(c)(hﬁ, F). Hence, we see that (1)
and (2) are equivalent. It is clear that (2) implies (3) implies (4). If every covering
of U is given by a nonempty family, then @7 (U) is empty by definition of the plus
construction. Note that 7 = (% as @) is a separated presheaf, see Theorem
Thus we see that (4) implies (5). If (5) holds, then F(U) is a singleton for every
sheaf F by the sheaf condition for F, see Remark[7.2] Thus (5) implies (2) and (1)
— () are equivalent. The final assertion of the lemma follows from Axiom (3) of
Definition [6.2] applied the empty covering of U. O

Definition 42.3. Let C, D be sites. Let u : C — D be a functor. We say u is
almost cocontinuous if for every object U of C and every covering {V; — w(U)}jes
there exists a covering {U; — U};er in C such that for each ¢ in I we have at least
one of the following two conditions

(1) uw(Uy;) is sheaf theoretically empty, or
(2) the morphism u(U;) — u(U) factors through V; for some j € J.

The motivation for this definition comes from a closed immersion 7 : Z — X of
topological spaces. As discussed in Example 1.9 the continuous functor Xz, —
Zzar, U — Z NU is not cocontinuous. But it is almost cocontinuous in the sense
defined above. We know that i, while not exact on sheaves of sets, is exact on
sheaves of abelian groups, see Sheaves, Remark And this holds in general for

continuous and almost cocontinuous functors.

Lemma 42.4. Let C, D be sites. Let u: C — D be a functor. Assume that u is
continuous and almost cocontinuous. Let G be a presheaf on D such that G(V) is a
singleton whenever V is sheaf theoretically empty. Then (uPG)* = uP(G¥).

Proof. Let U € Ob(C). We have to show that (u?G)#(U) = uP(G#)(U). It suffices
to show that (uPG)T(U) = uP(GT)(U) since G is another presheaf for which the
assumption of the lemma holds. We have

uP(GH)(U) = G (u(U)) = colimy H(V, G)
where the colimit is over the coverings V of u(U) in D. On the other hand, we see
that
uP(G)*(U) = colimy H®(u(U), G)
where the colimit is over the category of coverings Y = {U; — U}iey of U in C and

u(l) = {u(U;) = w(U)}ier. The condition that w is continuous means that each
u(U) is a covering. Write I = I II I5, where

I, = {i € I | u(U;) is sheaf theoretically empty}
Then u(U)" = {w(U;) — w(U)}ier, is still a covering of because each of the other
pieces can be covered by the empty family and hence can be dropped by Axiom (2)
of Definition Moreover, H%(u(U),G) = H°(u(U)’',G) by our assumption on G.
Finally, the condition that w is almost cocontinuous implies that for every covering

V of u(U) there exists a covering U of U such that u(U)’ refines V. It follows that
the two colimits displayed above have the same value as desired. ([

Lemmal 42.5. Let C, D be sites. Let u: C — D be a functor. Assume that u is
continuous and almost cocontinuous. Then u® = uP : Sh(D) — Sh(C) commutes
with pushouts and coequalizers (and more generally finite connected colimits).
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Proof. Let T be a finite connected index category. Let Z — Sh(D), i — G; by a
diagram. We know that the colimit of this diagram is the sheafification of the colimit
in the category of presheaves, see Lemma [10.13] Denote colim”*" the colimit in
the category of presheaves. Since 7 is finite and connected we see that colimf sh g,
is a presheaf satisfying the assumptions of Lemma (because a finite connected
colimit of singleton sets is a singleton). Hence that lemma gives
u®(colim; G;) = u®((colim? " G;)#)

= (uP(colim!*" G;))#

= (colim? " uP(G;))*

= colim; u*(G;)
as desired. ]

Lemmal 42.6. Let f : D — C be a morphism of sites associated to the continuous
functor u : C — D. If u is almost cocontinuous then f, commutes with pushouts
and coequalizers (and more generally finite connected colimits).

Proof. This is a special case of Lemma [42.5 O

43. Subtopoi
Here is the definition.

Definition 43.1. Let C and D be sites. A morphism of topoi f : Sh(D) — Sh(C)
is called an embedding if f. is fully faithful.

According to Lemma this is equivalent to asking the adjunction map f~! f..F —
F to be an isomorphism for every sheaf F on D.

Definition 43.2. Let C be a site. A strictly full subcategory E C Sh(C) is a
subtopos if there exists an embedding of topoi f : Sh(D) — Sh(C) such that E is
equal to the essential image of the functor f,.

The subtopoi constructed in the following lemma will be dubbed "open" in the
definition later on.

Lemmal43.3. Let C be a site. Let F be a sheaf on C. The following are equivalent
(1) F is a subobject of the final object of Sh(C), and
(2) the topos Sh(C)/F is a subtopos of Sh(C).

Proof. We have seen in Lemma [30.1| that Sh(C)/F is a topos. In fact, we recall
the proof. First we apply Lemma [29.5] to see that we may assume C is a site with a
subcanonical topology, fibre products, a final object X, and an object U with F =
hy. The proof of Lemma shows that the morphism of topoi jr : Sh(C)/F —
Sh(C) is equal (modulo certain identifications) to the localization morphism jy :
Sh(C/U) — Sh(C).

Assume (2). This means that j;; 1jU,*Q — @G is an isomorphism for all sheaves G on
C/U. For any object Z/U of C/U we have

(jU,*hZ/U)(U) = Morc/U(U Xx U/U, Z/U)
by Lemma Setting G = hz/y in the equality above we obtain
MorC/U(U Xx U/U, Z/U) = MorC/U(U, Z/U)
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for all Z/U. By Yoneda’s lemma (Categories, Lemma [3.5) this implies U x x U = U.
By Categories, Lemma U — X is a monomorphism, in other words (1) holds.

Assume (1). Then j;'ju . = id by Lemmam d

Definition 43.4. Let C be a site. A strictly full subcategory E C Sh(C) is an
open subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos Sh(C)/F described in Lemma

This means there is a bijection between the collection of open subtopoi of Sh(C)
and the set of subobjects of the final object of Sh(C). Given an open subtopos there
is a "closed" complement.

Lemma 43.5. Let C be a site. Let F be a subsheaf of the final object x of Sh(C).
The full subcategory of sheaves G such that F x G — F is an isomorphism is a
subtopos of Sh(C).

Proof. We apply Lemma to see that we may assume C is a site with the
properties listed in that lemma. In particular C has a final object X (so that
* = hx) and an object U with F = hy.

Let D = C as a category but a covering is a family {V; — V} of morphisms such
that {V; - V} U{U xx V — V} is a covering. By our choice of C this means
exactly that

hUXXVHHh"/i — hV
is surjective. We claim that D is a site, i.e., the coverings satisfy the conditions

(1), (2), (3) of Definition [6.2} Condition (1) holds. For condition (2) suppose that
{Vi = V} and {V;; — V;} are coverings of D. Then the composition

H (hUxXW Hthj) — huxxv Hth — hy

is surjective. Since each of the morphisms U x x V; — V factors through U xx V'
we see that

hU><XV I Hhvij — hV
is surjective, i.e., {V;; — V'} is a covering of V in D. Condition (3) follows similarly
as a base change of a surjective map of sheaves is surjective.

Note that the (identity) functor u : C — D is continuous and commutes with
fibre products and final objects. Hence we obtain a morphism f : D — C of sites
(Proposition. Observe that f, is the identity functor on underlying presheaves,
hence fully faithful. To finish the proof we have to show that the essential image
of f is the full subcategory E C Sh(C) singled out in the lemma. To do this, note
that G € Ob(Sh(C)) is in F if and only if G(U x x V) is a singleton for all objects V'
of C. Thus such a sheaf satisfies the sheaf property for all coverings of D (argument
omitted). Conversely, if G satisfies the sheaf property for all coverings of D, then
G(U xx V) is a singleton, as in D the object U xx V is covered by the empty
covering. ([

Definition 43.6. Let C be a site. A strictly full subcategory E C Sh(C) is an
closed subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos described in Lemma [43.5]

All right, and now we can define what it means to have a closed immersion and an
open immersion of topoi.
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Definition 43.7. Let f: Sh(D) — Sh(C) be a morphism of topoi.
(1) We say f is an open immersion if f is an embedding and the essential image
of f, is an open subtopos.
(2) We say f is a closed immersion if f is an embedding and the essential image
of f, is a closed subtopos.

Lemma 43.8. Let i : Sh(D) — Sh(C) be a closed immersion of topoi. Then i,
1s fully faithful, transforms surjections into surjections, commutes with coequaliz-
ers, commutes with pushouts, reflects injections, reflects surjections, and reflects
bijections.

Proof. Let F be a subsheaf of the final object * of Sh(C) and let E C Sh(C) be the
full subcategory consisting of those G such that F x G — F is an isomorphism. By
Lemma the functor i, is isomorphic to the inclusion functor ¢ : E — Sh(C).

Let jr : Sh(C)/F — Sh(C) be the localization functor (Lemma [30.1)). Note that E
can also be described as the collection of sheaves G such that j- G = *.

Let a,b : G; — G5 be two morphism of E. To prove ¢« commutes with coequalizers it
suffices to show that the coequalizer of a, b in Sh(C) lies in E. This is clear because
the coequalizer of two morphisms * — % is % and because j;-l is exact. Similarly
for pushouts.

Thus 4, satisfies properties (5), (6), and (7) of Lemma and hence the morphism
i satisfies all properties mentioned in that lemma, in particular the ones mentioned
in this lemma. O

44. Sheaves of algebraic structures

In Sheaves, Section we introduced a type of algebraic structure to be a pair
(A, s), where A is a category, and s : A — Sets is a functor such that

(1) s is faithful,
(2) A has limits and s commutes with limits,
(3) A has filtered colimits and s commutes with them, and

(4) s reflects isomorphisms.
For such a type of algebraic structure we saw that a presheaf F with values in A on a
space X is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover,
we worked out the notion of stalk, and given a continuous map f : X — Y we
defined adjoint functors pushforward and pullback on sheaves of algebraic structures
which agrees with pushforward and pullback on the underlying sheaves of sets. In
addition extending a sheaf of algebraic structures from a basis to all opens of a
space, works as expected.

Part of this material still works in the setting of sites and sheaves. Let (A, s) be a
type of algebraic structure. Let C be a site. Let us denote PSh(C, .A), resp. Sh(C,.A)
the category of presheaves, resp. sheaves with values in A on C.

() A presheaf with values in A is a sheaf if and only if its underlying
presheaf of sets is a sheaf. See the proof of Sheaves, Lemma [9.2]

(B) Given a presheaf F with values in A the presheaf F# = (F*)T is a
sheaf. This is true since the colimits in the sheafification process are filtered,
and even colimits over directed sets (see Section especially the proof of
Lemma and since s commutes with filtered colimits.
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(v) We get the following commutative diagram

Sh(C, A) —— PSh(C, A)

Sh(C) PSh(C)

-

(8) We have F = F# if and only if F is a sheaf of algebraic structures.
(€) The functor # is adjoint to the inclusion functor:

Mor pspc,4) (G, F) = Morgyc,.4)(G#, F)

The proof is the same as the proof of Proposition [10.12]
(¢) The functor F + F7# is left exact. The proof is the same as the proof
of Lemma [0.T41

Definition 44.1. Let f : D — C be a morphism of sites given by a functor
u : C — D. We define the pushforward functor for presheaves of algebraic structures
by the rule u?F(U) = F(uU), and for sheaves of algebraic structures by the same
rule, namely f,.F(U) = F(uU).

The problem comes with trying the define the pullback. The reason is that the
colimits defining the functor u, in Section |§| may not be filtered. Thus the axioms
above are not enough in general to define the pullback of a (pre)sheaf of algebraic
structures. Nonetheless, in almost all cases the following lemma is sufficient to
define pushforward, and pullback of (pre)sheaves of algebraic structures.

Lemma 44.2. Suppose the functor u : C — D satisfies the hypotheses of Proposi-
tion[I].7}, and hence gives rise to a morphism of sites f : D — C. In this case the
pullback functor f=1 (resp. up,) and the pushforward functor f. (resp. uP) extend
to an adjoint pair of functors on the categories of sheaves (resp. presheaves) of al-
gebraic structures. Moreover, these functors commute with taking the underlying
sheaf (resp. presheaf) of sets.

Proof. We have defined f. = uP above. In the course of the proof of Proposition
we saw that all the colimits used to define u,, are filtered under the assumptions
of the proposition. Hence we conclude from the definition of a type of algebraic
structure that we may define u, by exactly the same colimits as a functor on
presheaves of algebraic structures. Adjointness of u, and u? is proved in exactly the
same way as the proof of Lemma[5.4] The discussion of sheafification of presheaves
of algebraic structures above then implies that we may define f~!(F) = (u,F)*.

O

We briefly discuss a method for dealing with pullback and pushforward for a general
morphism of sites, and more generally for any morphism of topoi.

Let C be a site. In the case A = Ab, we may think of an abelian (pre)sheaf on C as
a quadruple (F,+,0,¢). Here the data are
(D1) F is a sheaf of sets,
(D2) +: F x F — F is a morphism of sheaves of sets,
(D3) 0:* — F is a morphism from the singleton sheaf (see Example|10.2)) to F,
and
(D4) i: F — F is a morphism of sheaves of sets.
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These data have to satisfy the following axioms

(A1) + is associative and commutative,

(A2) 0is a unit for +, and

(A3) +0(1,7) =00 (F — ).
Compare Sheaves, Lemma Let f: D — C be a morphism of sites. Note that
since f~1 is exact we have f~1x = x and f~1(F x F) = f~1F x f~1F. Thus we can
define f~1F simply as the quadruple (f~'F, f~1+, 710, f~1i). The axioms are
going to be preserved because f~! is a functor which commutes with finite limits.
Finally it is not hard to check that f. and f~' are adjoint as usual.

In [AGVTI] this method is used. They introduce something called an “espéce the
structure algébrique <K définie par limites projectives finie>”. For such an espeéce
you can use the method described above to define a pair of adjoint functors f ' and
f+ as above. This clearly works for most algebraic structures that one encounters
in practice. Instead of formalizing this construction we simply list those algebraic
structures for which this method works (to be verified case by case). In fact, this
method works for any morphism of topoi.

Proposition 44.3. Let C, D be sites. Let f = (f~1, f.) be a morphism of topoi
from Sh(D) — Sh(C). The method introduced above gives rise to an adjoint pair
of functors (f=1, f.) on sheaves of algebraic structures compatible with taking the
underlying sheaves of sets for the following types of algebraic structures:

(1) pointed sets,
2) abelian groups,
) groups,
) monoids,
) rings,

) modules over a fized ring, and
(7) lie algebras over a fized field.

Moreover, in each of these cases the results above labeled (o), (B), (v), (9), (€),
and (¢) hold.

(
(3
(4
(5
(6
7

Proof. The final statement of the proposition holds simply since each of the listed
categories, endowed with the obvious forgetful functor, is indeed a type of algebraic
structure in the sense explained at the beginning of this section. See Sheaves,

Lemma [15.21

Proof of (2). We think of a sheaf of abelian groups as a quadruple (F,+,0,4)
as explained in the discussion preceding the proposition. If (F,+,0,4) lives on
C, then its pullback is defined as (f~1F, f~14, f710, f=1i). If (G,+,0,i) lives
on D, then its pushforward is defined as (f.G, f«+, [0, f«i). This works because
f+(G x G) = f.G x f.G. Adjointness follows from adjointness of the set based
functors, since

. . M
MorAb(C)((f1,+,0,l)7(f2,+,07z))={ ¢ € Morgyc)(F1, Fa) }

@ is compatible with +, 0,4
Details left to the reader.

This method also works for sheaves of rings by thinking of a sheaf of rings (with
unit) as a sextuple (O, +,0,1,-,1) satisfying a list of axioms that you can find in
any elementary algebra book.
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A sheaf of pointed sets is a pair (F,p), where F is a sheaf of sets, and p : x — F is
a map of sheaves of sets.

A sheaf of groups is given by a quadruple (F, -, 1,7) with suitable axioms.
A sheaf of monoids is given by a pair (F,-) with suitable axiom.

Let R be aring. An sheaf of R-modules is given by a quintuple (F, +, 0,7, {\; }rer),
where the quadruple (F, +,0,4) is a sheaf of abelian groups as above, and A, : F —
F is a family of morphisms of sheaves of sets such that \.00 = 0, Ao+ = +o(A, A),
Argrr = 4+ 0 X X A 0 (id, 1d), Appr = A0 Ay Ay = id, Ag = 00 (F — %). O

We will discuss the category of sheaves of modules over a sheaf of rings in Modules
on Sites, Section

Remark| 44.4. Let C, D be sites. Let u: D — C be a continuous functor which
gives rise to a morphism of sites C — D. Note that even in the case of abelian
groups we have not defined a pullback functor for presheaves of abelian groups.
Since all colimits are representable in the category of abelian groups, we certainly
may define a functor uzb on abelian presheaves by the same colimits as we have
used to define u, on presheaves of sets. It will also be the case that ugb is adjoint
to uP on the categories of abelian presheaves. However, it will not always be the

case that ugb agrees with u, on the underlying presheaves of sets.

45. Pullback maps

It sometimes happens that a site C does not have a final object. In this case we
define the global section functor as follows.

Definition 45.1. The global sections of a presheaf of sets F over a site C is the
set

['(C, F) = Morpgpcy (*, F)

where * is the final object in the category of presheaves on C, i.e., the presheaf
which associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute
global sections.

Lemma 45.2. Let C be a site. Let a,b:V — U be objects of C such that

#H —
hV4>

h?]é - > x
is a coequalizer in Sh(C). Then T'(C,F) is the equalizer of a*,b* : F(U) — F(V).
Proof. Since MorSh(c)(hﬁ,}") = F(U) this is clear from the definitions. O

Now, let f : Sh(D) — Sh(C) be a morphism of topoi. Then for any sheaf F on C
there is a pullback map

T, F) —T(D,fF)

Namely, as f~! is exact it transforms * into *. Hence a global section s of F over
C, which is a map of sheaves s : * — F, can be pulled back to f~ls:* = f~1x —
fiF.
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We can generalize this a bit by considering a pair of sheaves F, G on C, D together
with a map f~!'F — G. Then we compose the construction above with the obvious
map I'(D, f~1F) — I'(D,G) to get a map

re,F) —I(D,G)
This map is sometimes also called a pullback map.

A slightly more general construction which occurs frequently in nature is the fol-
lowing. Suppose that we have a commutative diagram of morphisms of topoi

Sh(D) - Sh(C)

Sh(B)

Next, suppose that we have a sheaf F on C. Then there is a pullback map
L F—h T F

Namely, it is just the map coming from the identification g.f.f 'F = h.f~'F
together with g, applied to the canonical map F — f,f ' F. If g is the identity,
then this map on global sections agrees with the pullback map above.

In the situation of the previous paragraph, suppose we have a pair of sheaves F, G
on C, D together with a map f~!F — G, then we compose the pullback map above
with h, applied to f~'F — G to get a map

Restricting to sections over an object of B one recovers the “pullback map” on
global sections discussed above (with suitable choices of sites).

An even more general situation is where we have a commutative diagram of topoi
Sh(D) — Sh(C)
hl l
Sh(B) —== Sh(.A)
and a sheaf G on C. Then there is a base change map
e '9.G — h.f'G.

Namely, this map is adjoint to a map g.G — e h.f~1G = (eoh),f~1G which is the
pullback map just described.

0F6X Remark 45.3. Consider a commutative diagram

Sh(B') ——= Sh(B)

(5)
ST

h(C") N Sh(C)

:

Sh(D') ™~ Sh(D)

~

92}
a
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of topoi. Then the base change maps for the two squares compose to give the base
change map for the outer rectangle. More precisely, the composition

m Vo (go e =m  og.of,
—g.ol o f,
= gloflok™
=(g o f)uok™
is the base change map for the rectangle. We omit the verification.

Remark| 45.4. Consider a commutative diagram

Sh(C") — > Sh(C') —5—> Sh(C)

s)';:(lpﬂ) LS S];(lD’) b Sht;)

of ringed topoi. Then the base change maps for the two squares compose to give
the base change map for the outer rectangle. More precisely, the composition

(hol') ™o f.= (W) oh to .
— (W) toflog!
— flo(g) tog!
=flo(gog)!

is the base change map for the rectangle. We omit the verification.

46. Comparison with SGA4

Our notation for the functors u” and w,, from Section [5|and u* and u, from Section
is taken from [Art62, pages 14 and 42]. Having made these choices, the notation
for the functor ,u in Section and su in Section seems reasonable. In this
section we compare our notation with that of SGA4.

Presheaves: Let u : C — D be a functor between categories. The functor u?
is denoted u* in [AGVTI, Exposee I, Section 5]. The functor u, is denoted w in
[AGVTIl, Exposee I, Proposition 5.1]. The functor ,u is denoted w, in [AGVTI]
Exposee I, Proposition 5.1]. In other words, we have

up,uP,pu (SP) versus w,u*,u, (SGA4)

The reader should be cautioned that different notation is used for these functors in
different parts of SGA4.

Sheaves and continuous functors: Suppose that C and D are sites and that
u:C — D is a continuous functor (Definition [I3.1)). The functor u* is denoted w,
in [AGVTIl Exposee III, 1.11]. The functor us is denoted «* in [AGVT1, Exposee
ITI, Proposition 1.2]. In other words, we have

us,u’  (SP) versus u’,us (SGA4)
When u defines a morphism of sites f : D — C (Definition [14.1)) we see that the

associated morphism of topoi (Lemma|l5.2)) is the same as that in [AGVT7I] Exposee
IV, (4.9.1.1)].
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Sheaves and cocontinuous functors: Suppose that C and D are sites and that
u : C — D is a cocontinuous functor (Definition . The functor su (Lemma
is denoted u, in [AGVTI, Exposee III, Proposition 2.3]. The functor (u? )#
is denoted w* in [AGVTIl Exposee III, Proposition 2.3]. In other words, we have

(u? Y#,u (SP) versus u*,u, (SGA4)

Thus the morphism of topoi associated to u in Lemma is the same as that in
[AGVTI1, Exposee IV, 4.7].

Morphisms of Topoi: If f is a morphism of topoi given by the functors (f~1, f.)
then the functor f~! is denoted f* in [AGVT7I], Exposee IV, Definition 3.1]. We will
use f~! to denote pullback of sheaves of sets or more generally sheaves of algebraic
structure (Section . We will use f* to denote pullback of sheaves of modules for
a morphism of ringed topoi (Modules on Sites, Definition .

47. Topologies

In this section we define what a topology on a category is as defined in [AGVTI].
One can develop all of the machinery of sheaves and topoi in this language. A
modern exposition of this material can be found in [KS06]. However, the case
of most interest for algebraic geometry is the topology defined by a site on its
underlying category. Thus we strongly suggest the first time reader skip this
section and all other sections of this chapter!

Definition 47.1. Let C be a category. Let U € Ob(C). A sieve S on U is a
subpresheaf S C hy.

In other words, a sieve on U picks out for each object T' € Ob(C) a subset S(T") of
the set of all morphisms 7" — U. In fact, the only condition on the collection of
subsets S(T") C hy(T') = Mor¢ (T, U) is the following rule

(a: T —=U)eS(T)

(47.1.1) 0T T

}=>(aog:T’—>U)€S(T’)
A good mental picture to keep in mind is to think of the map S — hy as a
“morphism from S to U”.

Lemma 47.2. Let C be a category. Let U € Ob(C).

(1) The collection of sieves on U is a set.

(2) Inclusion defines a partial ordering on this set.

(3) Unions and intersections of sieves are sieves.

(4) Given a family of morphisms {U; — U}ier of C with target U there exists
a unique smallest sieve S on U such that each U; — U belongs to S(U;).

(5) The sieve S = hy is the mazimal sieve.

(6) The empty subpresheaf is the minimal sieve.

Proof. By our definition of subpresheaf, the collection of all subpresheaves of a
presheaf F is a subset of [Ji;cqpe) P(F(U)). And this is a set. (Here P(A)
denotes the powerset of A.) Hence the collection of sieves on U is a set.

The partial ordering is defined by: S < S’ if and only if S(T) C S(T) for all
T — U. Notation: S C §'.
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Given a collection of sieves S;, i € I on U we can define |JS; as the sieve with
values (|JS:)(T) = USi(T) for all T € Ob(C). We define the intersection [)S; in
the same way.

Given {U; — U};er as in the statement, consider the morphisms of presheaves
hy, — hy. We simply define S as the union of the images (Definition [3.5) of these
maps of presheaves.

The last two statements of the lemma are obvious. O

Definition 47.3. Let C be a category. Given a family of morphisms {f; : U; —
U}tier of C with target U we say the sieve S on U described in Lemma part
is the sieve on U generated by the morphisms f;.

Definition 47.4. Let C be a category. Let f : V — U be a morphism of C. Let
S C hy be a sieve. We define the pullback of S by f to be the sieve S xy V of V
defined by the rule

(a:T=>V)e(SxyV)(T)e (foa:T—U)e ST

We leave it to the reader to see that this is indeed a sieve (hint: use Equation
47.1.1). We also sometimes call S xy V' the base change of S by f:V — U.

Lemma 47.5. Let C be a category. Let U € Ob(C). Let S be a sieve on U. If
f:V—=Uisin S, then S xy V = hy is mazimal.

Proof. Trivial from the definitions. O

Definition 47.6. Let C be a category. A topology on C is given by a rule which
assigns to every U € Ob(C) a subset J(U) of the set of all sieves on U satisfying
the following conditions
(1) For every morphism f : V. — U in C, and every element S € J(U) the
pullback S xy V is an element of J(V).
(2) If S and S’ are sieves on U € Ob(C), if S € J(U), and if for all f € S(V)
the pullback S” Xy V' belongs to J(V'), then S’ belongs to J(U).
(3) For every U € Ob(C) the maximal sieve S = hy belongs to J(U).

In this case, the sieves belonging to J(U) are called the covering sicves.

Lemma 47.7. Let C be a category. Let J be a topology on C. Let U € Ob(C).
(1) Finite intersections of elements of J(U) are in J(U).
(2) If Se JWU) and 8" D S, then S’ € J(U).

Proof. Let S,S" € J(U). Consider S” = SN S’. For every V. — U in S(U) we
have

Sl XUV:S//XUV
simply because V' — U already is in S. Hence by the second axiom of the definition
we see that S” € J(U).

Let S € J(U) and S’ D S. For every V — U in S(U) we have S’ Xy V = hy by
Lemma [47.5] Thus S’ xy V € J(V) by the third axiom. Hence S’ € J(U) by the

second axiom. O

Definition 47.8. Let C be a category. Let J, J' be two topologies on C. We say
that J is finer or stronger than J’ if and only if for every object U of C we have
J'(U) € J(U). In this case we also say that J' is coarser or weaker than J.


https://stacks.math.columbia.edu/tag/00Z1
https://stacks.math.columbia.edu/tag/00Z2
https://stacks.math.columbia.edu/tag/00Z3
https://stacks.math.columbia.edu/tag/00Z4
https://stacks.math.columbia.edu/tag/00Z5
https://stacks.math.columbia.edu/tag/00Z6

00Z7

00Z8

00Z9

SITES AND SHEAVES 105

In other words, any covering sieve of J' is a covering sieve of J. There exists a finest
topology on C, namely that topology where any sieve is a covering sieve. This is
called the discrete topology of C. There also exists a coarsest topology. Namely,
the topology where J(U) = {hy} for all objects U. This is called the chaotic or
indiscrete topology.

Lemma 47.9. Let C be a category. Let {J;}icr be a set of topologies.
(1) The rule J(U) = (J;(U) defines a topology on C.
(2) There is a coarsest topology finer than all of the topologies J;.

Proof. The first part is direct from the definitions. The second follows by taking
the intersection of all topologies finer than all of the J;. (]

At this point we can define without any motivation what a sheaf is.

Definition 47.10. Let C be a category endowed with a topology J. Let F be a
presheaf of sets on C. We say that F is a sheaf on C if for every U € Ob(C) and for
every covering sieve S of U the canonical map

Mor pgi(c)(hu, F) — Mor pspc) (S, F)
is bijective.
Recall that the left hand side of the displayed formula equals F(U). In other words,
F is a sheaf if and only if a section of F over U is the same thing as a compatible

collection of sections sy, € F(T) parametrized by (o : T — U) € S(T'), and this
for every covering sieve S on U.

Lemma 47.11. Let C be a category. Let {F;}icr be a collection of presheaves of
sets on C. For each U € Ob(C) denote J(U) the set of sieves S with the following
property: For every morphism V. — U, the maps

Mor pgp(ey (hv, Fi) — Morpgic) (S xu V, Fi)

are bijective for all i € I. Then J defines a topology on C. This topology is the
finest topology in which all of the F; are sheaves.

Proof. If we show that J is a topology, then the last statement of the lemma
immediately follows. The first and third axioms of a topology are immediately
verified. Thus, assume that we have an object U, and sieves S, S’ of U such that
S e J(U), and for all V — U in S(V) we have S’ xy V € J(V). We have to show
that S’ € J(U). In other words, we have to show that for any f : W — U, the
maps

Fi(W) = Mor pgp(c) (hw, Fi) — Mor pgye) (S xu W, Fy)
are bijective for all ¢ € I. Pick an element ¢ € I and pick an element ¢ €
Mor pgp(ey (S” xu W, F;). We will construct a section s € F;(W) mapping to ¢.
Suppose a : V. — W is an element of S xy W. According to the definition of
pullbacks we see that the composition foa:V — W — U isin S. Hence S’ xy V'
is in J(W) by assumption on the pair of sieves S, S’. Now we have a commutative
diagram of presheaves

S’ XU V——hy

|

S/XUWHhW
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The restriction of ¢ to S’ Xy V' corresponds to an element sy, € F;(V'). This we see
from the definition of J, and because S’ xy V' is in J(W). We leave it to the reader
to check that the rule (V, «) = sy, defines an element 1) € Mor pgy(c) (S xu W, F3).
Since S € J(U) we see immediately from the definition of J that ¢ corresponds to
an element s of F;(W).

We leave it to the reader to verify that the construction ¢ — s is inverse to the
natural map displayed above. O

Definition 47.12. Let C be a category. The finest topology on C such that
all representable presheaves are sheaves, see Lemma [I7.11] is called the canonical
topology of C.

48. The topology defined by a site

Suppose that C is a category, and suppose that Covy(C) and Covy(C) are sets of
coverings that define the structure of a site on C. In this situation it can happen
that the categories of sheaves (of sets) for Covy(C) and Covy(C) are the same, see
for example Lemma [8.7]

It turns out that the category of sheaves on C with respect to some topology J
determines and is determined by the topology J. This is a nontrivial statement
which we will address later, see Theorem [50.2

Accepting this for the moment it makes sense to study the topology determined by
a site.

Lemma 48.1. Let C be a site with coverings Cov(C). For every object U of C,
let J(U) denote the set of sieves S on U with the following property: there exists
a covering {f; : Uy = U}lier € Cov(C) so that the sieve S’ generated by the f; (see
Deﬁm’tz’on is contained in S.

(1) This J is a topology on C.

(2) A presheaf F is a sheaf for this topology (see Definition if and only
if it is a sheaf on the site (see Definition .

Proof. To prove the first assertion we just note that axioms (1), (2) and (3) of the
definition of a site (Definition directly imply the axioms (3), (2) and (1) of the
definition of a topology (Definition . As an example we prove J has property
(2). Namely, let U be an object of C, let S, S’ be sieves on U such that S € J(U),
and such that for every V. — U in S(V) we have S' xy V € J(V). By definition
of J(U) we can find a covering {f; : U; — U} of the site such that S the image of
hy, — hy is contained in S. Since each S’ xy U; is in J(U;) we see that there are
coverings {U;; — U;} of the site such that hy,, — hy, is contained in S” xy Uj.
By definition of the base change this means that hy,, — hy is contained in the
subpresheaf S’ C hy. By axiom (2) for sites we see that {U;; — U} is a covering
of U and we conclude that S’ € J(U) by definition of J.

Let F be a presheaf. Suppose that F is a sheaf in the topology J. We will show
that F is a sheaf on the site as well. Let {f; : U; — U};er be a covering of the site.
Let s; € F(U;) be a family of sections such that s;|y,x, v, = sj|v,x v, for all i, j.
We have to show that there exists a unique section s € F(U) restricting back to
the s; on the U;. Let S C hy be the sieve generated by the f;. Note that S € J(U)


https://stacks.math.columbia.edu/tag/00ZA
https://stacks.math.columbia.edu/tag/00ZC

00ZD

00ZE

00ZF

SITES AND SHEAVES 107

by definition. In stead of constructing s, by the sheaf condition in the topology, it
suffices to construct an element

@ € Mor pgp(ey (S, F)-

Take oo € S(T) for some object T € Y. This means exactly that a : T — U is
a morphism which factors through f; for some ¢ € I (and maybe more than 1).
Pick such an index ¢ and a factorization a = f; o ;. Define ¢(a) = afs;. If 7/,
a = f;oal, is a second choice, then afs; = (o, )*s; exactly because of our condition
silvixpu; = Sjluixpu; for all i,j. Thus p(a) is well defined. We leave it to the
reader to verify that ¢, which in turn determines s is correct in the sense that s
restricts back to s;.

Let F be a presheaf. Suppose that F is a sheaf on the site (C, Cov(C)). We will
show that F is a sheaf for the topology J as well. Let U be an object of C. Let S
be a covering sieve on U with respect to the topology J. Let

© € Mor pgp(c) (S, F).

We have to show there is a unique element in F(U) = Morpgyc)(hv, F) which
restricts back to ¢. By definition there exists a covering {f; : U; — U};er € Cov(C)
such that f; : U; € U belongs to S(U;). Hence we can set s; = ¢(f;) € F(U;).
Then it is a pleasant exercise to see that s;|y,x,u;, = 8j|v,x,v; for all 4,j. Thus
we obtain the desired section s by the sheaf condition for F on the site (C, Cov(C)).
Details left to the reader. O

Definition 48.2. Let C be a site with coverings Cov(C). The topology associated
to C is the topology J constructed in Lemma [8.1] above.

Let C be a category. Let Covy(C) and Cova(C) be two coverings defining the struc-
ture of a site on C. It may very well happen that the topologies defined by these
are the same. If this happens then we say Covy(C) and Cova(C) define the same
topology on C. And if this happens then the categories of sheaves are the same, by

Lemma [48.11

It is usually the case that we only care about the topology defined by a collection
of coverings, and we view the possibility of choosing different sets of coverings as a
tool to study the topology.

Remark 48.3. Enlarging the class of coverings. Clearly, if Cov(C) defines the
structure of a site on C then we may add to C any set of families of morphisms with
fixed target tautologically equivalent (see Definition to elements of Cov(C)
without changing the topology.

Remark| 48.4. Shrinking the class of coverings. Let C be a site. Consider the set
S = P(Arrows(C)) x Ob(C)

where P(Arrows(C)) is the power set of the set of morphisms, i.e., the set of all sets
of morphisms. Let S, C S be the subset consisting of those (T,U) € S such that
(a) all ¢ € T have target U, (b) the collection {¢},cr is tautologically equivalent
(see Definition to some covering in Cov(C). Clearly, considering the elements
of S; as the coverings, we do not get exactly the notion of a site as defined in
Definition The structure (C,S;) we get satisfies slightly modified conditions.
The modified conditions are:

(0%) Cov(C) C P(Arrows(C)) x Ob(C),
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(1) If V. — U is an isomorphism then ({V — U},U) € Cov(C).
(2) It (T,U) € Cov(C) and for f: U' — U in T we are given (T}, U’) € Cov(C),
then setting 7" = {fo f' | f €T, f' € Ty}, we get (I",U) € Cov(C).
(3) If (T,U) € Cov(C) and g : V — U is a morphism of C then
(a) U Xy, V exists for f: U — U in T, and
(b) setting T = {pry : U' %Xy 4V = V| f: U — U € T} for some choice
of fibre products we get (T7,V) € Cov(C).
And it is easy to verify that, given a structure satisfying (0’) — (3’) above, then
after suitably enlarging Cov(C) (compare Sets, Section we get a site. Obviously
there is little difference between this notion and the actual notion of a site, at least
from the point of view of the topology. There are two benefits: because of condition
(0’) above the coverings automatically form a set, and because of (0’) the totality
of all structures of this type forms a set as well. The price you pay for this is that
you have to keep writing “tautologically equivalent” everywhere.

49. Sheafification in a topology

In this section we explain the analogue of the sheafification construction in a topol-
ogy.

Let C be a category. Let J be a topology on C. Let F be a presheaf of sets. For
every U € Ob(C) we define

L.F(U) = COlimSeJ(U)opp MOTPSh(C) (S, .7:)

as a colimit. Here we think of J(U) as a partially ordered set, ordered by inclusion,
see Lemma The transition maps in the system are defined as follows. If
S C S8 are in J(U), then S — S’ is a morphism of presheaves. Hence there is a
natural restriction mapping

Mor pspc) (7, F) — Mor pgic) (S, F).

Thus we see that .S +— Mor pgy(cy (S, F) is a directed system as in Categories, Defi-
nition [21.2) provided we reverse the ordering on J(U) (which is what the superscript
°PP is supposed to indicate). In particular, since hy € J(U) there is a canonical
map

(: F(U) — LF(U)

coming from the identification F(U) = Mor pgx(cy(hy, F). In addition, the colimit
defining LF(U) is directed since for any pair of covering sieves S, 5" on U the sieve
S NS is a covering sieve too, see Lemma [47.2

Let f : V — U be a morphism in C. Let S € J(U). There is a commutative
diagram

S XU V—— hV
S———hy
We can use the left vertical map to get canonical restriction maps

Mor pgi(ey (S, F) — Morpgpc) (S xu V, F).
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Base change S — S Xy V induces an order preserving map J(U) — J(V). And
the restriction maps define a transformation of functors as in Categories, Lemma
categories-lemma-functorial-colimit. Hence we get a natural restriction map

LF(U) — LF(V).

Lemma 49.1. In the situation above.

(1) The assignment U — LF(U) combined with the restriction mappings de-
fined above is a presheaf.
The maps € glue to give a morphism of presheaves £ : F — LF.

2)
(3) The rule F — (F EN LF) is a functor.

(4) If F is a subpresheaf of G, then LF is a subpresheaf of LG.

(5) The map £ : F — LF has the following property: For every section
s € LF(U) there exists a covering sieve S on U and an element ¢ €
Mor pgp(c) (S, F) such that £(¢) equals the restriction of s to S.

Proof. Omitted. O

Definition 49.2. Let C be a category. Let J be a topology on C. We say that a
presheaf of sets F is separated if for every object U and every covering sieve S on
U the canonical map F(U) — Mor pgyc) (S, F) is injective.

Theorem 49.3. Let C be a category. Let J be a topology on C. Let F be a presheaf
of sets.

(1) The presheaf LF is separated.

(2) If F is separated, then LF is a sheaf and the map of presheaves F — LF
18 injective.

(3) If F is a sheaf, then F — LF is an isomorphism.

(4) The presheaf LLF is always a sheaf.

Proof. Part (3) is trivial from the definition of L and the definition of a sheaf
(Definition 47.10). Part (4) follows formally from the others.

We sketch the proof of (1). Suppose S is a covering sieve of the object U. Suppose
that ¢; € LF(U), i = 1,2 map to the same element in Mor pgp(c) (S, LF). We may
find a single covering sieve S’ on U such that both (; are represented by elements
@i € Morpgpc)(S', F). We may assume that S’ = S by replacing both S and S’
by S’ NS which is also a covering sieve, see Lemma Suppose V' € Ob(C),
and a : V. — U in S(V). Then we have S xy V = hy, see Lemma [I7.5] Thus
the restrictions of ¢; via V' — U correspond to sections s; v, of F over V. The
assumption is that there exist a covering sieve Sy, of V such that s; v, restrict
to the same element of Mor pgy(c)(Sv,a, F). Consider the sieve S” on U defined by
the rule

(f:T—-U)eS"(T) & 3IV,a:V—=U acSV),
(49.3.1) dg:T—=V, geSv.T),
f=aog
By axiom (2) of a topology we see that S” is a covering sieve on U. By construction
we see that ¢ and s restrict to the same element of Mor pgyc)(S”, LF) as desired.

We sketch the proof of (2). Assume that F is a separated presheaf of sets on C with
respect to the topology J. Let S be a covering sieve of the object U of C. Suppose
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that ¢ € Mor¢(S, LF). We have to find an element s € LF(U) restricting to ¢.
Suppose V € Ob(C), and a : V — U in S(V'). The value p(a) € LF(V) is given by
a covering sieve Sy, of V' and a morphism of presheaves ¢y o : Sy = F. Asin
the proof above, define a covering sieve S” on U by Equation . We define

oS — F

by the following simple rule: For every f: T — U, f € S”(T) choose V,a, g as in

Equation (49.3.1). Then set
¢"(f) = evalg)-

We claim this is independent of the choice of V,a,g. Consider a second such
choiceV’, o', ¢’. The restrictions of v, and @y o to the intersection of the fol-
lowing covering sieves on T'

(Svia xv,g T) N (Svr,ar Xvr g0 T)

agree. Namely, these restrictions both correspond to the restriction of ¢ to T (via
f) and the desired equality follows because F is separated. Denote the common
restriction . The independence of choice follows because v o(9) = ¥(idr) =
ovr.a(9'). OK, so now ¢” gives an element s € LF(U). We leave it to the reader
to check that s restricts to ¢. (I

Definition 49.4. Let C be a category endowed with a topology J. Let F be a
presheaf of sets on C. The sheaf F# := LLJF together with the canonical map
F — F7 is called the sheaf associated to F.

Proposition 49.5. Let C be a category endowed with a topology. Let F be a
presheaf of sets on C. The canonical map F — F7 has the following universal
property: For any map F — G, where G is a sheaf of sets, there is a unique map
F#* = G such that F — F# — G equals the given map.

Proof. Same as the proof of Proposition [L0.12] O

50. Topologies and sheaves

Lemma 50.1. Let C be a category endowed with a topology J. Let U be an object
of C. Let S be a sieve on U. The following are equivalent

(1) The sieve S is a covering sieve.
2) The sheafification S#* — h¥; of the map S — hy is an isomorphism.
U

Proof. First we make a couple of general remarks. We will use that S# = LLS,
and hﬁ = LLhy. In particular, by Lemma we see that S# — hﬁ is injective.
Note that idy € hy(U). Hence it gives rise to sections of Lhy and nt = LLhy
over U which we will also denote idy .

Suppose S is a covering sieve. It clearly suffices to find a morphism hy — S#
such that the composition hy — hﬁ is the canonical map. To find such a map it
suffices to find a section s € S#(U) wich restricts to idy. But since S is a covering
sieve, the element idg € Morpgp(c) (S, S) gives rise to a section of LS over U which
restricts to idy in Lhy. Hence we win.
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Suppose that S# — h¥ is an isomorphism. Let 1 € S#(U) be the element corre-
sponding to idy in hﬁ(U). Because S# = LLS there exists a covering sieve S’ on
U such that 1 comes from a

@ € Morpgi(cy (S, LS).

This in turn means that for every a : V. — U, « € S'(V) there exists a covering
sieve Sy, on V such that (e corresponds to a morphism of presheaves Sy, — S.
In other words Sy, is contained in S X7 V. By the second axiom of a topology we
see that S is a covering sieve. ([

Theorem 50.2. Let C be a category. Let J, J' be topologies on C. The following
are equivalent

(1) J=7,

(2) sheaves for the topology J are the same as sheaves for the topology J'.

Proof. It is a tautology that if J = J’ then the notions of sheaves are the same.
Conversely, Lemma characterizes covering sieves in terms of the sheafification
functor. But the sheafification functor PSh(C) — Sh(C,J) is the left adjoint of
the inclusion functor Sh(C, J) — PSh(C). Hence if the subcategories Sh(C,J) and
Sh(C, J') are the same, then the sheafification functors are the same and hence the
collections of covering sieves are the same. O

Lemma 50.3. Assumption and notation as in Theorem . Then J C J' if and
only if every sheaf for the topology J' is a sheaf for the topology J.

Proof. One direction is clear. For the other direction suppose that Sh(C,J') C
Sh(C,J). By formal nonsense this implies that if F is a presheaf of sets, and
F — F#, resp. F — F#' is the sheafification wrt .J, resp. J' then there is a
canonical map F# — F#/ such that F — F# — F#/ equals the canonical map
F — F#' Of course, F# — F#' identifies the second sheaf as the sheafification
of the first with respect to the topology J'. Apply this to the map S — hy of
Lemma We get a commutative diagram

[e—— L L

L

hyy — hi, —— hit’

And clearly, if S is a covering sieve for the topology J then the middle vertical map
is an isomorphism (by the lemma) and we conclude that the right vertical map is
an isomorphism as it is the sheafification of the one in the middle wrt J’. By the
lemma again we conclude that S is a covering sieve for J' as well. (]

51. Topologies and continuous functors

Explain how a continuous functor gives an adjoint pair of functors on sheaves.

52. Points and topologies

Recall from Section [32] that given a functor p = u : C — Sets we can define a stalk
functor
PSh(C) — Sets, F — Fp.
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00ZT |Definition 52.1. Let C be a category. Let J be a topology on C. A point p of the
topology is given by a functor u : C — Sets such that

(1) For every covering sieve S on U the map S, — (hy), is surjective.
(2) The stalk functor Sh(C) — Sets, F — F, is exact.
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