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1. Introduction

0EDR In this chapter we first discuss Chow groups of algebraic spaces. Having defined
these, we define Chern classes of vector bundles as operators on these chow groups.
The strategy will be entirely the same as the strategy in the case of schemes.
Therefore we urge the reader to take a look at the introduction (Chow Homology,
Section 1) of the corresponding chapter for schemes.
Some related papers: [EG98] and [Kre99].

2. Setup

0EDS We first fix the category of algebraic spaces we will be working with. Please keep
in mind throughout this chapter that “decent + locally Noetherian” is the same as
“quasi-separated + locally Noetherian” according to Decent Spaces, Lemma 14.1.

Situation 2.1.0EDT Here S is a scheme and B is an algebraic space over S. We assume
B is quasi-separated, locally Noetherian, and universally catenary (Decent Spaces,
Definition 25.4). Moreover, we assume given a dimension function δ : |B| −→ Z.
We say X/B is good if X is an algebraic space over B whose structure morphism
f : X → B is quasi-separated and locally of finite type. In this case we define

δ = δX/B : |X| −→ Z
as the map sending x to δ(f(x)) plus the transcendence degree of x/f(x) (Mor-
phisms of Spaces, Definition 33.1). This is a dimension function by More on Mor-
phisms of Spaces, Lemma 32.2.

A special case is when S = B is a scheme and (S, δ) is as in Chow Homology,
Situation 7.1. Thus B might be the spectrum of a field (Chow Homology, Example
7.2) or B = Spec(Z) (Chow Homology, Example 7.3).
Many lemma, proposition, theorems, definitions on algebraic spaces are easier in the
setting of Situation 2.1 because the algebraic spaces we are working with are quasi-
separated (and thus a fortiori decent) and locally Noetherian. We will sprinkle this
chapter with remarks such as the following to point this out.

Remark 2.2.0EDU In Situation 2.1 if X/B is good, then |X| is a sober topological
space. See Properties of Spaces, Lemma 15.1 or Decent Spaces, Proposition 12.4.
We will use this without further mention to choose generic points of irreducible
closed subsets of |X|.

Remark 2.3.0EDV In Situation 2.1 if X/B is good, then X is integral (Spaces over
Fields, Definition 4.1) if and only if X is reduced and |X| is irreducible. Moreover,
for any point ξ ∈ |X| there is a unique integral closed subspace Z ⊂ X such that ξ
is the generic point of the closed subset |Z| ⊂ |X|, see Spaces over Fields, Lemma
4.7.

If B is Jacobson and δ sends closed points to zero, then δ is the function sending a
point to the dimension of its closure.

Lemma 2.4.0EDW In Situation 2.1 assume B is Jacobson and that δ(b) = 0 for every
closed point b of |B|. Let X/B be good. If Z ⊂ X is an integral closed subspace
with generic point ξ ∈ |Z|, then the following integers are the same:

(1) δ(ξ) = δX/B(ξ),

https://stacks.math.columbia.edu/tag/0EDT
https://stacks.math.columbia.edu/tag/0EDU
https://stacks.math.columbia.edu/tag/0EDV
https://stacks.math.columbia.edu/tag/0EDW
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(2) dim(|Z|),
(3) codim({z}, |Z|) for z ∈ |Z| closed,
(4) the dimension of the local ring of Z at z for z ∈ |Z| closed, and
(5) dim(OZ,z) for z ∈ |Z| closed.

Proof. Let X, Z, ξ be as in the lemma. Since X is locally of finite type over B we
see that X is Jacobson, see Decent Spaces, Lemma 23.1. Hence Xft-pts ⊂ |X| is the
set of closed points by Decent Spaces, Lemma 23.3. Given a chain T0 ⊃ . . . ⊃ Te

of irreducible closed subsets of |Z| we have Te ∩ Xft-pts nonempty by Morphisms of
Spaces, Lemma 25.6. Thus we can always assume such a chain ends with Te = {z}
for some z ∈ |Z| closed. It follows that dim(Z) = supz codim({z}, |Z|) where z runs
over the closed points of |Z|. We have codim({z}, Z) = δ(ξ) − δ(z) by Topology,
Lemma 20.2. By Morphisms of Spaces, Lemma 25.4 the image of z is a finite type
point of B, i.e., a closed point of |B|. By Morphisms of Spaces, Lemma 33.4 the
transcendence degree of z/b is 0. We conclude that δ(z) = δ(b) = 0 by assumption.
Thus we obtain equality

dim(|Z|) = codim({z}, Z) = δ(ξ)
for all z ∈ |Z| closed. Finally, we have that codim({z}, Z) is equal to the dimension
of the local ring of Z at z by Decent Spaces, Lemma 20.2 which in turn is equal to
dim(OZ,z) by Properties of Spaces, Lemma 22.4. □

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. This motivates
the following definition.

Definition 2.5.0EDX In Situation 2.1 for any good X/B and any irreducible closed
subset T ⊂ |X| we define

dimδ(T ) = δ(ξ)
where ξ ∈ T is the generic point of T . We will call this the δ-dimension of T .
If T ⊂ |X| is any closed subset, then we define dimδ(T ) as the supremum of the
δ-dimensions of the irreducible components of T . If Z is a closed subspace of X,
then we set dimδ(Z) = dimδ(|Z|).

Of course this just means that dimδ(T ) = sup{δ(t) | t ∈ T}.

3. Cycles

0EDY This is the analogue of Chow Homology, Section 8
Since we are not assuming our spaces are quasi-compact we have to be a little careful
when defining cycles. We have to allow infinite sums because a rational function
may have infinitely many poles for example. In any case, if X is quasi-compact
then a cycle is a finite sum as usual.

Definition 3.1.0EDZ In Situation 2.1 let X/B be good. Let k ∈ Z.
(1) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subspaces Z ⊂ X, each nZ ∈ Z,
and {|Z|; nZ ̸= 0} is a locally finite collection of subsets of |X| (Topology,
Definition 28.4).

https://stacks.math.columbia.edu/tag/0EDX
https://stacks.math.columbia.edu/tag/0EDZ
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(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ ̸= 0 ⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subspaces (Remark 2.3) of δ-dimension k. Addition of k-cycles
α =

∑
nZ [Z] and β =

∑
mZ [Z] is given by

α + β =
∑

(nZ + mZ)[Z],

i.e., by adding the coefficients.

4. Multiplicities

0EE0 A section with a few simple results on lengths and multiplicities.

Lemma 4.1.0EE1 Let S be a scheme and let X be an algebraic space over S. Let F be
a quasi-coherent OX-module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . , ∞}. The following
are equivalent

(1) lengthOX,x
Fx = d

(2) for some étale morphism U → X with U a scheme and u ∈ U mapping to
x we have lengthOU,u

(F|U )u = d

(3) for any étale morphism U → X with U a scheme and u ∈ U mapping to x
we have lengthOU,u

(F|U )u = d

Proof. Let U → X and u ∈ U be as in (2) or (3). Then we know that OX,x is the
strict henselization of OU,u and that

Fx = (F|U )u ⊗OU,u
OX,x

See Properties of Spaces, Lemmas 22.1 and 29.4. Thus the equality of the lengths
follows from Algebra, Lemma 52.13 the fact that OU,u → OX,x is flat and the fact
that OX,x/muOX,x is equal to the residue field of OX,x. These facts about strict
henselizations can be found in More on Algebra, Lemma 45.1. □

Definition 4.2.0EE2 Let S be a scheme and let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . , ∞}. We say
F has length d at x if the equivalent conditions of Lemma 4.1 are satisfied.

Lemma 4.3.0EE3 Let S be a scheme. Let i : Y → X be a closed immersion of
algebraic spaces over S. Let G be a quasi-coherent OY -module. Let y ∈ |Y | with
image x ∈ |X|. Let d ∈ {0, 1, 2, . . . , ∞}. The following are equivalent

(1) G has length d at y, and
(2) i∗G has length d at x.

Proof. Choose an étale morphism f : U → X with U a scheme and u ∈ U mapping
to x. Set V = Y ×X U . Denote g : V → Y and j : V → U the projections. Then
j : V → U is a closed immersion and there is a unique point v ∈ V mapping to
y ∈ |Y | and u ∈ U (use Properties of Spaces, Lemma 4.3 and Spaces, Lemma
12.3). We have j∗(G|V ) = (i∗G)|U as modules on the scheme V and j∗ the “usual”
pushforward of modules for the morphism of schemes j, see discussion surrounding

https://stacks.math.columbia.edu/tag/0EE1
https://stacks.math.columbia.edu/tag/0EE2
https://stacks.math.columbia.edu/tag/0EE3
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Cohomology of Spaces, Equation (3.0.1). In this way we reduce to the case of
schemes: if i : Y → X is a closed immersion of schemes, then

(i∗G)x = Gy

as modules over OX,x where the module structure on the right hand side is given
by the surjection i♯

y : OX,x → OY,y. Thus equality by Algebra, Lemma 52.5. □

Lemma 4.4.0EE4 Let S be a scheme and let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX-module. Let x ∈ |X|. The following are equivalent

(1) for some étale morphism U → X with U a scheme and u ∈ U mapping to
x we have u is a generic point of an irreducible component of Supp(F|U ),

(2) for any étale morphism U → X with U a scheme and u ∈ U mapping to x
we have u is a generic point of an irreducible component of Supp(F|U ),

(3) the length of F at x is finite and nonzero.
If X is decent (equivalently quasi-separated) then these are also equivalent to

(4) x is a generic point of an irreducible component of Supp(F).

Proof. Assume f : U → X is an étale morphism with U a scheme and u ∈ U maps
to x. Then F|U = f∗F is a coherent OU -module on the locally Noetherian scheme
U and in particular (F|U )u is a finite OU,u-module, see Cohomology of Spaces,
Lemma 12.2 and Cohomology of Schemes, Lemma 9.1. Recall that the support
of F|U is a closed subset of U (Morphisms, Lemma 5.3) and that the support of
(F|U )u is the pullback of the support of F|U by the morphism Spec(OU,u) → U .
Thus u is a generic point of an irreducible component of Supp(F|U ) if and only if
the support of (F|U )u is equal to the maximal ideal of OU,u. Now the equivalence
of (1), (2), (3) follows from by Algebra, Lemma 62.3.
If X is decent we choose an étale morphism f : U → X and a point u ∈ U mapping
to x. The support of F pulls back to the support of F|U , see Morphisms of Spaces,
Lemma 15.2. Also, specializations x′ ⇝ x in |X| lift to specializations u′ ⇝ u in U
and any nontrivial specialization u′ ⇝ u in U maps to a nontrivial specialization
f(u′) ⇝ f(u) in |X|, see Decent Spaces, Lemmas 12.2 and 12.1. Using that |X|
and U are sober topological spaces (Decent Spaces, Proposition 12.4 and Schemes,
Lemma 11.1) we conclude x is a generic point of the support of F if and only if u
is a generic point of the support of F|U . We conclude (4) is equivalent to (1).
The parenthetical statement follows from Decent Spaces, Lemma 14.1. □

Lemma 4.5.0EE6 In Situation 2.1 let X/B be good. Let T ⊂ |X| be a closed subset
and t ∈ T . If dimδ(T ) ≤ k and δ(t) = k, then t is a generic point of an irreducible
component of T .

Proof. We know t is contained in an irreducible component T ′ ⊂ T . Let t′ ∈ T ′

be the generic point. Then k ≥ δ(t′) ≥ δ(t). Since δ is a dimension function we see
that t = t′. □

5. Cycle associated to a closed subspace

0EE7 This section is the analogue of Chow Homology, Section 9.

Remark 5.1.0EE8 In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed subspace.
By Remarks 2.2 and 2.3 there are 1-to-1 correspondences between

(1) irreducible components T of |Y |,

https://stacks.math.columbia.edu/tag/0EE4
https://stacks.math.columbia.edu/tag/0EE6
https://stacks.math.columbia.edu/tag/0EE8
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(2) generic points of irreducible components of |Y |, and
(3) integral closed subspaces Z ⊂ Y with the property that |Z| is an irreducible

component of |Y |.
In this chapter we will call Z as in (3) an irreducible component of Y and we will
call ξ ∈ |Z| its generic point.

Definition 5.2.0EE9 In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed
subspace.

(1) For an irreducible component Z ⊂ Y with generic point ξ the length of OY

at ξ (Definition 4.2) is called the multiplicity of Z in Y . By Lemma 4.4
applied to OY on Y this is a positive integer.

(2) Assume dimδ(Y ) ≤ k. The k-cycle associated to Y is

[Y ]k =
∑

mZ,Y [Z]

where the sum is over the irreducible components Z of Y of δ-dimension k
and mZ,Y is the multiplicity of Z in Y . This is a k-cycle by Spaces over
Fields, Lemma 6.1.

It is important to note that we only define [Y ]k if the δ-dimension of Y does not
exceed k. In other words, by convention, if we write [Y ]k then this implies that
dimδ(Y ) ≤ k.

6. Cycle associated to a coherent sheaf

0EEA This is the analogue of Chow Homology, Section 10.

Definition 6.1.0EEB In Situation 2.1 let X/B be good. Let F be a coherent OX -
module.

(1) For an integral closed subspace Z ⊂ X with generic point ξ such that |Z|
is an irreducible component of Supp(F) the length of F at ξ (Definition
4.2) is called the multiplicity of Z in F . By Lemma 4.4 this is a positive
integer.

(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ,F [Z]

where the sum is over the integral closed subspaces Z ⊂ X corresponding
to irreducible components of Supp(F) of δ-dimension k and mZ,F is the
multiplicity of Z in F . This is a k-cycle by Spaces over Fields, Lemma 6.1.

It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 6.2.0EEC In Situation 2.1 let X/B be good. Let F be a coherent OX-module
with dimδ(Supp(F)) ≤ k. Let Z be an integral closed subspace of X with dimδ(Z) =
k. Let ξ ∈ |Z| be the generic point. Then the coefficient of Z in [F ]k is the length
of F at ξ.

Proof. Observe that |Z| is an irreducible component of Supp(F) if and only if
ξ ∈ Supp(F), see Lemma 4.5. Moreover, the length of F at ξ is zero if ξ ̸∈ Supp(F).
Combining this with Definition 6.1 we conclude. □

https://stacks.math.columbia.edu/tag/0EE9
https://stacks.math.columbia.edu/tag/0EEB
https://stacks.math.columbia.edu/tag/0EEC
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Lemma 6.3.0EED In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed subspace.
If dimδ(Y ) ≤ k, then [Y ]k = [i∗OY ]k where i : Y → X is the inclusion morphism.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. If Z ̸⊂ Y the
Z has coefficient zero in both [Y ]k and [i∗OY ]k. If Z ⊂ Y , then the generic point of
Z may be viewed as a point y ∈ |Y | whose image x ∈ |X|. Then the coefficient of
Z in [Y ]k is the length of OY at y and the coefficient of Z in [i∗OY ]k is the length
of i∗OY at x. Thus the equality of the coefficients follows from Lemma 4.3. □

Lemma 6.4.0EEE In Situation 2.1 let X/B be good. Let 0 → F → G → H → 0 be a
short exact sequence of coherent OX-modules. Assume that the δ-dimension of the
supports of F , G, and H are ≤ k. Then [G]k = [F ]k + [H]k.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. It suffices
to show that the coefficients of Z in [G]k, [F ]k, and [H]k satisfy the corresponding
additivity. By Lemma 6.2 it suffices to show

the length of G at x = the length of F at x + the length of H at x

for any x ∈ |X|. Looking at Definition 4.2 this follows immediately from additivity
of lengths, see Algebra, Lemma 52.3. □

7. Preparation for proper pushforward

0EEF This section is the analogue of Chow Homology, Section 11.

Lemma 7.1.0EEG In Situation 2.1 let X, Y/B be good and let f : X → Y be a morphism
over B. If Z ⊂ X is an integral closed subspace, then there exists a unique integral
closed subspace Z ′ ⊂ Y such that there is a commutative diagram

Z //

��

X

f

��
Z ′ // Y

with Z → Z ′ dominant. If f is proper, then Z → Z ′ is proper and surjective.

Proof. Let ξ ∈ |Z| be the generic point. Let Z ′ ⊂ Y be the integral closed subspace
whose generic point is ξ′ = f(ξ), see Remark 2.3. Since ξ ∈ |f−1(Z ′)| = |f |−1(|Z ′|)
by Properties of Spaces, Lemma 4.3 and since Z is the reduced with |Z| = {ξ} we
see that Z ⊂ f−1(Z ′) as closed subspaces of X (see Properties of Spaces, Lemma
12.4). Thus we obtain our morphism Z → Z ′. This morphism is dominant as the
generic point of Z maps to the generic point of Z ′. Uniqueness of Z ′ is clear. If f is
proper, then Z → Y is proper as a composition of proper morphisms (Morphisms
of Spaces, Lemmas 40.3 and 40.5). Then we conclude that Z → Z ′ is proper by
Morphisms of Spaces, Lemma 40.6. Surjectivity then follows as the image of a
proper morphism is closed. □

Remark 7.2.0ENW In Situation 2.1 let X/B be good. Every x ∈ |X| can be represented
by a (unique) monomorphism Spec(k) → X where k is a field, see Decent Spaces,
Lemma 11.1. Then k is the residue field of x and is denoted κ(x). Recall that X
has a dense open subscheme U ⊂ X (Properties of Spaces, Proposition 13.3). If
x ∈ U , then κ(x) agrees with the residue field of x on U as a scheme. See Decent
Spaces, Section 11.

https://stacks.math.columbia.edu/tag/0EED
https://stacks.math.columbia.edu/tag/0EEE
https://stacks.math.columbia.edu/tag/0EEG
https://stacks.math.columbia.edu/tag/0ENW
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Remark 7.3.0ENX In Situation 2.1 let X/B be good. Assume X is integral. In this
case the function field R(X) of X is defined and is equal to the residue field of X
at its generic point. See Spaces over Fields, Definition 4.3. Combining this with
Remark 2.3 we find that for any x ∈ X the residue field κ(x) is the function field
of the unique integral closed subspace Z ⊂ X whose generic point is x.

Lemma 7.4.0ENY In Situation 2.1 let X, Y/B be good and let f : X → Y be a mor-
phism over B. Assume X, Y integral and dimδ(X) = dimδ(Y ). Then either f
factors through a proper closed subspace of Y , or f is dominant and the extension
of function fields R(X)/R(Y ) is finite.

Proof. By Lemma 7.1 there is a unique integral closed subspace Z ⊂ Y such
that f factors through a dominant morphism X → Z. Then Z = Y if and only if
dimδ(Z) = dimδ(Y ). On the other hand, by our construction of dimension functions
(see Situation 2.1) we have dimδ(X) = dimδ(Z) + r where r the transcendence de-
gree of the extension R(X)/R(Z). Combining this with Spaces over Fields, Lemma
5.1 the lemma follows. □

Lemma 7.5.0ENZ In Situation 2.1 let X, Y/B be good. Let f : X → Y be a morphism
over B. Assume f is quasi-compact, and {Ti}i∈I is a locally finite collection of
closed subsets of |X|. Then {|f |(Ti)}i∈I is a locally finite collection of closed subsets
of |Y |.

Proof. Let V ⊂ |Y | be a quasi-compact open subset. Then |f |−1(V ) ⊂ |X| is quasi-
compact by Morphisms of Spaces, Lemma 8.3. Hence the set {i ∈ I : Ti∩|f |−1(V ) ̸=
∅} is finite by a simple topological argument which we omit. Since this is the same
as the set

{i ∈ I : |f |(Ti) ∩ V ̸= ∅} = {i ∈ I : |f |(Ti) ∩ V ̸= ∅}
the lemma is proved. □

8. Proper pushforward

0EP0 This section is the analogue of Chow Homology, Section 12.

Definition 8.1.0EP1 In Situation 2.1 let X, Y/B be good. Let f : X → Y be a
morphism over B. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subspace with dimδ(Z) = k. Let Z ′ ⊂ Y
be the image of Z as in Lemma 7.1. We define

f∗[Z] =
{

0 if dimδ(Z ′) < k,
deg(Z/Z ′)[Z ′] if dimδ(Z ′) = k.

The degree of Z over Z ′ is defined and finite if dimδ(Z ′) = dimδ(Z) by
Lemma 7.4 and Spaces over Fields, Definition 5.2.

(2) Let α =
∑

nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
7.5 above.

By definition the proper pushforward of cycles
f∗ : Zk(X) −→ Zk(Y )

https://stacks.math.columbia.edu/tag/0ENX
https://stacks.math.columbia.edu/tag/0ENY
https://stacks.math.columbia.edu/tag/0ENZ
https://stacks.math.columbia.edu/tag/0EP1
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is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant
functor on the category whose object are good algebraic spaces over B and whose
morphisms are proper morphisms over B.

Lemma 8.2.0EP2 In Situation 2.1 let X, Y, Z/B be good. Let f : X → Y and g : Y → Z
be proper morphisms over B. Then g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X) → Zk(Z).

Proof. Let W ⊂ X be an integral closed subspace of dimension k. Consider the
integral closed subspaces W ′ ⊂ Y and W ′′ ⊂ Z we get by applying Lemma 7.1 to
f and W and then to g and W ′. Then W → W ′ and W ′ → W ′′ are surjective and
proper. We have to show that g∗(f∗[W ]) = (f ◦ g)∗[W ]. If dimδ(W ′′) < k, then
both sides are zero. If dimδ(W ′′) = k, then we see W → W ′ and W ′ → W ′′ both
satisfy the hypotheses of Lemma 7.4. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (f ◦ g)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Spaces over Fields, Lemma 5.3 to conclude. □

Lemma 8.3.0EP3 In Situation 2.1 let f : X → Y be a proper morphism of good
algebraic spaces over B.

(1) Let Z ⊂ X be a closed subspace with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Spaces, Lemma 20.2.

Proof. Part (1) follows from (2) and Lemma 6.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Spaces, Lemma 12.7
there exists a closed immersion i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
image of f |Z : Z → Y , see Morphisms of Spaces, Definition 16.2. Consider the
commutative diagram

Z
i
//

f |Z

��

X

f

��
Z ′ i′

// Y

of algebraic spaces over B. Observe that f |Z is surjective (follows from Morphisms
of Spaces, Lemma 16.3 and the fact that |f | is closed) and proper (follows from
Morphisms of Spaces, Lemmas 40.3, 40.5, and 40.6). We have f∗F = f∗i∗G =
i′
∗(f |Z)∗G by going around the diagram in two ways. Suppose we know the result

holds for closed immersions and for f |Z . Then we see that

f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion follows from Lemma 4.3 and the defi-
nitions. Thus we have reduced to the case where dimδ(X) ≤ k and f : X → Y is
proper and surjective.

https://stacks.math.columbia.edu/tag/0EP2
https://stacks.math.columbia.edu/tag/0EP3
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Assume dimδ(X) ≤ k and f : X → Y is proper and surjective. For every irreducible
component Z ⊂ Y with generic point η there exists a point ξ ∈ X such that
f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ ̸= 0, or mZ ̸= 0 the integral closed subspace Z is actually an irre-
ducible component of Y of δ-dimension k (see Lemma 4.5). Pick such an integral
closed subspace Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X
with f(ξ) = η we have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible
component of X of δ-dimension k as well (see Lemma 4.5). By Spaces over Fields,
Lemma 3.2 there exists an open subspace η ∈ V ⊂ Y such that f−1(V ) → V is
finite. Since η is a generic point of an irreducible component of |Y | we may assume
V is an affine scheme, see Properties of Spaces, Proposition 13.3. Replacing Y
by V and X by f−1(V ) we reduce to the case where Y is affine, and f is finite.
In particular X and Y are schemes and we reduce to the corresponding result for
schemes, see Chow Homology, Lemma 12.4 (applied with S = Y ). □

9. Preparation for flat pullback

0EP4 This section is the analogue of Chow Homology, Section 13.

Recall that a morphism of algebraic spaces is said to have relative dimension r if
étale locally on the source and the target we get a morphism of schemes which
has relative dimension r. The precise definition is equivalent, but in fact slightly
different, see Morphisms of Spaces, Definition 33.2.

Lemma 9.1.0EP5 In Situation 2.1 let X, Y/B be good. Let f : X → Y be a morphism
over B. Assume f is flat of relative dimension r. For any closed subset T ⊂ |Y |
we have

dimδ(|f |−1(T )) = dimδ(T ) + r.

provided |f |−1(T ) is nonempty. If Z ⊂ Y is an integral closed subscheme and
Z ′ ⊂ f−1(Z) is an irreducible component, then Z ′ dominates Z and dimδ(Z ′) =
dimδ(Z) + r.

Proof. Since the δ-dimension of a closed subset is the supremum of the δ-dimensions
of the irreducible components, it suffices to prove the final statement. We may re-
place Y by the integral closed subscheme Z and X by f−1(Z) = Z ×Y X. Hence
we may assume Z = Y is integral and f is a flat morphism of relative dimension
r. Since Y is locally Noetherian the morphism f which is locally of finite type,
is actually locally of finite presentation. Hence Morphisms of Spaces, Lemma 30.6
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η
of Z = Y . Thus Z ′ dominates Z = Y . Finally, we see that ξ and η are in the
schematic locus of X and Y by Properties of Spaces, Proposition 13.3. Since ξ is a
generic point of X we see that OX,ξ = OXη,ξ has only one prime ideal and hence
has dimension 0 (we may use usual local rings as ξ and η are in the schematic loci
of X and Y ). Thus by Morphisms of Spaces, Lemma 34.1 (and the definition of
morphisms of given relative dimension) we conclude that the transcendence degree
of κ(ξ) over κ(η) is r. In other words, δ(ξ) = δ(η) + r as desired. □

https://stacks.math.columbia.edu/tag/0EP5
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Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.
Lemma 9.2.0EP6 In Situation 2.1 let X, Y/B be good. Let f : X → Y be a morphism
over B. Assume {Ti}i∈I is a locally finite collection of closed subsets of |Y |. Then
{|f |−1(Ti)}i∈I is a locally finite collection of closed subsets of X.
Proof. Let U ⊂ |X| be a quasi-compact open subset. Since the image |f |(U) ⊂ |Y |
is a quasi-compact subset there exists a quasi-compact open V ⊂ |Y | such that
|f |(U) ⊂ V . Note that

{i ∈ I : |f |−1(Ti) ∩ U ̸= ∅} ⊂ {i ∈ I : Ti ∩ V ̸= ∅}.

Since the right hand side is finite by assumption we win. □

10. Flat pullback

0EP7 This section is the analogue of Chow Homology, Section 14.
Let S be a scheme and let f : X → Y be a morphism of algebraic spaces over S. Let
Z ⊂ Y be a closed subspace. In this chapter we will sometimes use the terminology
scheme theoretic inverse image for the inverse image f−1(Z) of Z constructed in
Morphisms of Spaces, Definition 13.2. The scheme theoretic inverse image is the
fibre product

f−1(Z) //

��

X

��
Z // Y

If I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in Y , then
f−1(I)OX is the quasi-coherent sheaf of ideals corresponding to f−1(Z) in X.
Definition 10.1.0EP8 In Situation 2.1 let X, Y/B be good. Let f : X → Y be a
morphism over B. Assume f is flat of relative dimension r.

(1) Let Z ⊂ Y be an integral closed subspace of δ-dimension k. We define f∗[Z]
to be the (k+r)-cycle on X associated to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f−1(Z)) = k + r by Lemma 9.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
9.2.

(3) We denote f∗ : Zk(Y ) → Zk+r(X) the map of abelian groups so obtained.
An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)
are all surjective. The reason is that given any integral closed subspace Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subspace
of X (see Properties of Spaces, Definition 12.5). And clearly Z ∩ U = Z ′, in other
words j∗[Z] = [Z ′] whence the surjectivity. In fact a little bit more is true.

https://stacks.math.columbia.edu/tag/0EP6
https://stacks.math.columbia.edu/tag/0EP8
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Lemma 10.2.0EP9 In Situation 2.1 let X/B be good. Let U ⊂ X be an open subspace.
Let Y be the reduced closed subspace of X with |Y | = |X|\|U | and denote i : Y → X
the inclusion morphism. For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.
Proof. Surjectivity of j∗ we saw above. First assume X is quasi-compact. Then
Zk(X) is a free Z-module with basis given by the elements [Z] where Z ⊂ X is
integral closed of δ-dimension k. Such a basis element maps either to the basis
element [Z ∩ U ] of Zk(U) or to zero if Z ⊂ Y . Hence the lemma is clear in this
case. The general case is similar and the proof is omitted. □

Lemma 10.3.0EPY In Situation 2.1 let f : X → Y be an étale morphism of good
algebraic spaces over B. If Z ⊂ Y is an integral closed subspace, then f∗[Z] =

∑
[Z ′]

where the sum is over the irreducible components (Remark 5.1) of f−1(Z).
Proof. The meaning of the lemma is that the coefficient of [Z ′] is 1. This follows
from the fact that f−1(Z) is a reduced algebraic space because it is étale over the
integral algebraic space Z. □

Lemma 10.4.0EPA In Situation 2.1 let X, Y, Z/B be good. Let f : X → Y and
g : Y → Z be flat morphisms of relative dimensions r and s over B. Then g ◦ f is
flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z) → Zk+r+s(X).
Proof. The composition is flat of relative dimension r +s by Morphisms of Spaces,
Lemmas 34.2 and 30.3. Suppose that

(1) A ⊂ Z is a closed integral subspace of δ-dimension k,
(2) A′ ⊂ Y is a closed integral subspace of δ-dimension k+s with A′ ⊂ g−1(A),

and
(3) A′′ ⊂ Y is a closed integral subspace of δ-dimension k + s + r with A′′ ⊂

f−1(W ′).
We have to show that the coefficient n of [A′′] in (g◦f)∗[A] agrees with the coefficient
m of [A′′] in f∗(g∗[A]). We may choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

where U, V, W are schemes, the vertical arrows are étale, and there exist points
u ∈ U , v ∈ V , w ∈ W such that u 7→ v 7→ w and such that u, v, w map to
the generic points of A′′, A′, A. (Details omitted.) Then we have flat local ring
homorphisms OW,w → OV,v, OV,v → OU,u, and repeatedly using Lemma 4.1 we
find

n = lengthOU,u
(OU,u/mwOU,u)

and
m = lengthOV,v

(OV,v/mwOV,v)lengthOU,u
(OU,u/mvOU,u)

Hence the equality follows from Algebra, Lemma 52.14. □

https://stacks.math.columbia.edu/tag/0EP9
https://stacks.math.columbia.edu/tag/0EPY
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Lemma 10.5.0EPB In Situation 2.1 let X, Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subspace with dimδ(Z) ≤ k. Then we have dimδ(f−1(Z)) ≤
k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. Part (1) follows from part (2) by Lemma 6.3 and the fact that f∗OZ =
Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Spaces,
Lemma 12.2 to see that F is of finite type, hence f∗F is of finite type (Modules on
Sites, Lemma 23.4), hence f∗F is coherent (Cohomology of Spaces, Lemma 12.2
again). Thus the lemma makes sense. Let W ⊂ Y be an integral closed subspace of
δ-dimension k, and let W ′ ⊂ X be an integral closed subspace of dimension k + r
mapping into W under f . We have to show that the coefficient n of [W ′] in f∗[F ]k
agrees with the coefficient m of [W ′] in [f∗F ]k+r. We may choose a commutative
diagram

U

��

// V

��
X // Y

where U, V are schemes, the vertical arrows are étale, and there exist points u ∈ U ,
v ∈ V such that u 7→ v and such that u, v map to the generic points of W ′, W .
(Details omitted.) Consider the stalk M = (F|V )v as an OV,v-module. (Note that
M has finite length by our dimension assumptions, but we actually do not need to
verify this. See Lemma 4.4.) We have (f∗F|U )u = OU,u ⊗OV,v

M . Thus we see
that

n = lengthOU,u
(OU,u⊗OV,v

M) and m = lengthOV,v
(M)lengthOV,v

(OU,u/mvOU,u)

Thus the equality follows from Algebra, Lemma 52.13. □

11. Push and pull

0EPC This section is the analogue of Chow Homology, Section 14.

In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 11.1.0EPD In Situation 2.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

https://stacks.math.columbia.edu/tag/0EPB
https://stacks.math.columbia.edu/tag/0EPD
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be a fibre product diagram of good algebraic spaces over B. Assume f : X → Y
proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and g′

is flat of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′
∗(g′)∗α

in Zk+r(Y ′).

Proof. The assertion that f ′ is proper follows from Morphisms of Spaces, Lemma
40.3. The assertion that g′ is flat of relative dimension r follows from Morphisms
of Spaces, Lemmas 34.3 and 30.4. It suffices to prove the equality of cycles when
α = [W ] for some integral closed subspace W ⊂ X of δ-dimension k. Note that
in this case we have α = [OW ]k, see Lemma 6.3. By Lemmas 8.3 and 10.5 it
therefore suffices to show that f ′

∗(g′)∗OW is isomorphic to g∗f∗OW . This follows
from cohomology and base change, see Cohomology of Spaces, Lemma 11.2. □

Lemma 11.2.0EPE In Situation 2.1 let X, Y/B be good. Let f : X → Y be a finite
locally free morphism of degree d (see Morphisms of Spaces, Definition 46.2). Then
f is both proper and flat of relative dimension 0, and

f∗f∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms of Spaces,
Lemma 46.6, and a finite morphism is proper by Morphisms of Spaces, Lemma
45.9. We omit showing that a finite morphism has relative dimension 0. Thus the
formula makes sense. To prove it, let Z ⊂ Y be an integral closed subscheme of
δ-dimension k. It suffices to prove the formula for α = [Z]. Since the base change
of a finite locally free morphism is finite locally free (Morphisms of Spaces, Lemma
46.5) we see that f∗f∗OZ is a finite locally free sheaf of rank d on Z. Thus clearly
f∗f∗OZ has length d at the generic point of Z. Hence

f∗f∗[Z] = f∗f∗[OZ ]k = [f∗f∗OZ ]k = d[Z]

where we have used Lemmas 10.5 and 8.3. □

12. Preparation for principal divisors

0EPF This section is the analogue of Chow Homology, Section 16. Some of the material
in this section partially overlaps with the discussion in Spaces over Fields, Section
6.

Lemma 12.1.0EPZ In Situation 2.1 let X/B be good. Assume X is integral.
(1) If Z ⊂ X is an integral closed subspace, then the following are equivalent:

(a) Z is a prime divisor,
(b) |Z| has codimension 1 in |X|, and
(c) dimδ(Z) = dimδ(X) − 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimδ(Z) = dimδ(X) − 1.

Proof. Part (1) follows from the definition of a prime divisor (Spaces over Fields,
Definition 6.2), Decent Spaces, Lemma 20.2, and the definition of a dimension
function (Topology, Definition 20.1).

https://stacks.math.columbia.edu/tag/0EPE
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Let D ⊂ X be an effective Cartier divisor. Let Z ⊂ D be an irreducible component
and let ξ ∈ |Z| be the generic point. Choose an étale neighbourhood (U, u) → (X, ξ)
where U = Spec(A) and D ×X U is cut out by a nonzerodivisor f ∈ A, see Divisors
on Spaces, Lemma 6.2. Then u is a generic point of V (f) by Decent Spaces,
Lemma 20.1. Hence OU,u has dimension 1 by Krull’s Hauptidealsatz (Algebra,
Lemma 60.11). Thus ξ is a codimension 1 point on X and Z is a prime divisor as
desired. □

13. Principal divisors

0EQ0 This section is the analogue of Chow Homology, Section 17. The following definition
is the analogue of Spaces over Fields, Definition 6.7 in our current setup.

Definition 13.1.0EQ1 In Situation 2.1 let X/B be good. Assume X is integral with
dimδ(X) = n. Let f ∈ R(X)∗. The principal divisor associated to f is the (n − 1)-
cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

defined in Spaces over Fields, Definition 6.7. This makes sense because prime
divisors have δ-dimension n − 1 by Lemma 12.1.

In the situation of the definition for f, g ∈ R(X)∗ we have

divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Spaces over Fields, Lemma 6.8. The following lemma will allow
us to reduce statements about principal divisors to the case of schemes.

Lemma 13.2.0EQ2 In Situation 2.1 let f : X → Y be an étale morphism of good
algebraic spaces over B. Assume Y is integral. Let g ∈ R(Y )∗. As cycles on X we
have

f∗(divY (g)) =
∑

X′
(X ′ → X)∗divX′(g ◦ f |X′)

where the sum is over the irreducible components of X (Remark 5.1).

Proof. The map |X| → |Y | is open. The set of irreducible components of |X|
is locally finite in |X|. We conclude that f |X′ : X ′ → Y is dominant for every
irreducible component X ′ ⊂ X. Thus g ◦ f |X′ is defined (Morphisms of Spaces,
Section 47), hence divX′(g ◦ f |X′) is defined. Moreover, the sum is locally finite
and we find that the right hand side indeed is a cycle on X. The left hand side
is defined by Definition 10.1 and the fact that an étale morphism is flat of relative
dimension 0.

Since f is étale we see that δX(x) = δy(f(x)) for all x ∈ |X|. Thus if dimδ(Y ) = n,
then dimδ(X ′) = n for every irreducible component X ′ of X (since generic points
of X map to the generic point of Y , see above). Thus both left and right hand side
are (n − 1)-cycles.

Let Z ⊂ X be an integral closed subspace with dimδ(Z) = n − 1. To prove the
equality, we need to show that the coefficients of Z are the same. Let Z ′ ⊂ Y be
the integral closed subspace constructed in Lemma 7.1. Then dimδ(Z ′) = n − 1

https://stacks.math.columbia.edu/tag/0EQ1
https://stacks.math.columbia.edu/tag/0EQ2
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too. Let ξ ∈ |Z| be the generic point. Then ξ′ = f(ξ) ∈ |Z ′| is the generic point.
Consider the commutative diagram

Spec(Oh
X,ξ) //

��

X

��
Spec(Oh

Y,ξ′) // Y

of Decent Spaces, Remark 11.11. We have to be slightly careful as the reduced
Noetherian local rings Oh

X,ξ and Oh
Y,ξ′ need not be domains. Thus we work with

total rings of fractions Q(−) rather than fraction fields. By definition, to get the
coefficient of Z ′ in divY (g) we write the image of g in Q(Oh

Y,ξ′) as a/b with a, b ∈
Oh

Y,ξ′ nonzerodivisors and we take

ordZ′(g) = lengthOh
Y,ξ′

(Oh
Y,ξ′/aOh

Y,ξ′) − lengthOh
Y,ξ′

(Oh
Y,ξ′/bOh

Y,ξ′)

Observe that the coefficient of Z in f∗divY (G) is the same integer, see Lemma 10.3.
Suppose that ξ ∈ X ′. Then we can consider the maps

Oh
Y,ξ′ → Oh

X,ξ → Oh
X′,ξ

The first arrow is flat and the second arrow is a surjective map of reduced local
Noetherian rings of dimension 1. Therefore both these maps send nonzerodivisors
to nonzerodivisors and we conclude the coefficient of Z ′ in divX′(g ◦ f |X′) is

ordZ(g ◦ f |X′) = lengthOh
X′,ξ

(Oh
X′,ξ/aOh

X′,ξ) − lengthOh
Y,ξ′

(Oh
X′,ξ/bOh

X′,ξ)

by the same prescription as above. Thus it suffices to show

lengthOh
Y,ξ′

(Oh
Y,ξ′/aOh

Y,ξ′) =
∑

ξ∈|X′|
lengthOh

X′,ξ
(Oh

X′,ξ/aOh
X′,ξ)

First, since the ring map Oh
Y,ξ′ → Oh

X,ξ is flat and unramified, we have

lengthOh
Y,ξ′

(Oh
Y,ξ′/aOh

Y,ξ′) = lengthOh
X,ξ

(Oh
X,ξ/aOh

X,ξ)

by Algebra, Lemma 52.13. Let q1, . . . , qt be the nonmaximal primes of Oh
X,ξ and

set Rj = Oh
X,ξ/qj . For X ′ as above, denote J(X ′) ⊂ {1, . . . , t} the set of indices

such that qj corresponds to a point of X ′, i.e., such that under the surjection
Oh

X,ξ → OX′,ξ the prime qj corresponds to a prime of OX′,ξ. By Chow Homology,
Lemma 3.2 we get

lengthOh
X,ξ

(Oh
X,ξ/aOh

X,ξ) =
∑

j
lengthRj

(Rj/aRj)

and
lengthOh

X′,ξ
(Oh

X′,ξ/aOh
X′,ξ) =

∑
j∈J(X′)

lengthRj
(Rj/aRj)

Thus the result of the lemma holds because {1, . . . , t} is the disjoint union of the
sets J(X ′): each point of codimension 0 on X lies on a unique X ′. □
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14. Principal divisors and pushforward

0EQ3 This section is the analogue of Chow Homology, Section 18.

Lemma 14.1.0EQ4 In Situation 2.1 let X, Y/B be good. Assume X, Y are integral
and n = dimδ(X) = dimδ(Y ). Let p : X → Y be a dominant proper morphism. Let
f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).

Then we have p∗div(f) = div(g).

Proof. We are going to deduce this from the case of schemes by étale localization.
Let Z ⊂ Y be an integral closed subspace of δ-dimension n − 1. We want to show
that the coefficient of [Z] in p∗div(f) and div(g) are equal. Apply Spaces over
Fields, Lemma 3.2 to the morphism p : X → Y and the generic point ξ ∈ |Z|.
We find that we may replace Y by an open subspace containing ξ and assume that
p : X → Y is finite. Pick an étale neighbourhood (V, v) → (Y, ξ) where V is an
affine scheme. By Lemma 10.3 it suffices to prove the equality of cycles after pulling
back to V . Set U = V ×Y X and consider the commutative diagram

U
a
//

p′

��

X

p

��
V

b // Y

Let Vj ⊂ V , j = 1, . . . , m be the irreducible components of V . For each i, let
Uj,i, i = 1, . . . , nj be the irreducible components of U dominating Vj . Denote
p′

j,i : Uj,i → Vj the restriction of p′ : U → V . By the case of schemes (Chow
Homology, Lemma 18.1) we see that

p′
j,i,∗divUj,i(fj,i) = divVj (gj,i)

where fj,i is the restriction of f to Uj,i and gj,i is the norm of fj,i along the finite
extension R(Uj,i)/R(Vj). We have

b∗p∗divX(f) = p′
∗a∗divX(f)

= p′
∗

(∑
j,i

(Uj,i → U)∗divUj,i
(fj,i)

)
=

∑
j,i

(Vj → V )∗p′
j,i,∗divUj,i(fj,i)

=
∑

j
(Vj → V )∗

(∑
i
divVj

(gj,i)
)

=
∑

j
(Vj → V )∗divVj

(
∏

i
gj,i)

by Lemmas 11.1, 13.2, and 8.2. To finish the proof, using Lemma 13.2 again, it
suffices to show that

g ◦ b|Vj
=

∏
i
gj,i

as elements of the function field of Vj . In terms of fields this is the following
statement: let L/K be a finite extension. Let M/K be a finite separable extension.
Write M ⊗K L =

∏
Mi. Then for t ∈ L with images ti ∈ Mi the image of

NormL/K(t) in M is
∏

NormMi/M (ti). We omit the proof. □

https://stacks.math.columbia.edu/tag/0EQ4
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15. Rational equivalence

0EQ5 This section is the analogue of Chow Homology, Section 19. In this section we
define rational equivalence on k-cycles. We will allow locally finite sums of images
of principal divisors (under closed immersions). This leads to some pretty strange
phenomena (see examples in the chapter on schemes). However, if we do not allow
these then we do not know how to prove that capping with Chern classes of line
bundles factors through rational equivalence.
Definition 15.1.0EQ6 In Situation 2.1 let X/B be good. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subspaces
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑

(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of the
form displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α − β is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles on X. This is sometimes called the Chow
group of k-cycles modulo rational equivalence on X.

There are many other interesting equivalence relations. Rational equivalence is the
coarsest of them all. A very simple but important lemma is the following.
Lemma 15.2.0EQ7 In Situation 2.1 let X/B be good. Let U ⊂ X be an open subspace.
Let Y be the reduced closed subspace of X with |Y | = |X|\|U | and denote i : Y → X
the inclusion morphism. Let k ∈ Z. Suppose α, β ∈ Zk(X). If α|U ∼rat β|U then
there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.
Proof. Let {Wj}j∈J be a locally finite collection of integral closed subspaces of
U of δ-dimension k + 1, and let fj ∈ R(Wj)∗ be elements such that (α − β)|U =∑

(ij)∗div(fj) as in the definition. Let W ′
j ⊂ X be the corresponding integral closed

subspace of X, i.e., having the same generic point as Wj . Suppose that V ⊂ X
is a quasi-compact open. Then also V ∩ U is quasi-compact open in U as V is
Noetherian. Hence the set {j ∈ J | Wj ∩ V ̸= ∅} = {j ∈ J | W ′

j ∩ V ̸= ∅} is finite
since {Wj} is locally finite. In other words we see that {W ′

j} is also locally finite.
Since R(Wj) = R(W ′

j) we see that

α − β −
∑

(i′
j)∗div(fj)

is a cycle on X whose restriction to U is zero. The lemma follows by applying
Lemma 10.2. □

https://stacks.math.columbia.edu/tag/0EQ6
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Remark 15.3.0EQ8 In Situation 2.1 let X/B be good. Suppose we have infinite
collections αi, βi ∈ Zk(X), i ∈ I of k-cycles on X. Suppose that the supports of αi

and βi form locally finite collections of closed subsets of X so that
∑

αi and
∑

βi

are defined as cycles. Moreover, assume that αi ∼rat βi for each i. Then it is not
clear that

∑
αi ∼rat

∑
βi. Namely, the problem is that the rational equivalences

may be given by locally finite families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji
but the union

{Wi,j}i∈I,j∈Ji
may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I

of |X| such that αi, βi are supported on Ti and such that αi ∼rat βi “on” Ti.
More precisely, the families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji

consist of integral closed
subspaces Wi,j with |Wi,j | ⊂ Ti. In this case it is true that

∑
αi ∼rat

∑
βi on X,

simply because the family {Wi,j}i∈I,j∈Ji is automatically locally finite in this case.

16. Rational equivalence and push and pull

0EQ9 This section is the analogue of Chow Homology, Section 20. In this section we show
that flat pullback and proper pushforward commute with rational equivalence.

Lemma 16.1.0EQA In Situation 2.1 let X, Y/B be good. Assume Y integral with
dimδ(Y ) = k. Let f : X → Y be a flat morphism of relative dimension r. Then for
g ∈ R(Y )∗ we have

f∗divY (g) =
∑

mX′,X(X ′ → X)∗divX′(g ◦ f |X′)

as (k + r − 1)-cycles on X where the sum is over the irreducible components X ′ of
X and mX′,X is the multiplicity of X ′ in X.

Proof. Observe that any irreducible component of X dominates Y (Lemma 9.1)
and hence the composition g ◦ f |X′ is defined (Morphisms of Spaces, Section 47).
We will reduce this to the case of schemes. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme U and a surjective étale morphism
U → V ×Y X. Picture

U
a
//

h
��

X

f

��
V

b // Y

Since a is surjective and étale it follows from Lemma 10.3 that it suffices to prove
the equality of cycles after pulling back by a. We can use Lemma 13.2 to write

b∗divY (g) =
∑

(V ′ → V )∗divV ′(g ◦ b|V ′)

where the sum is over the irreducible components V ′ of V . Using Lemma 11.1 we
find

h∗b∗divY (g) =
∑

(V ′ ×V U → U)∗(h′)∗divV ′(g ◦ b|V ′)
where h′ : V ′ ×V U → V ′ is the projection. We may apply the lemma in the case
of schemes (Chow Homology, Lemma 20.1) to the morphism h′ : V ′ ×V U → V ′ to
see that we have

(h′)∗divV ′(g ◦ b|V ′) =
∑

mU ′,V ′×V U (U ′ → V ′ ×V U)∗divU ′(g ◦ b|V ′ ◦ h′|U ′)

where the sum is over the irreducible components U ′ of V ′ ×V U . Each U ′ occur-
ring in this sum is an irreducible component of U and conversely every irreducible

https://stacks.math.columbia.edu/tag/0EQ8
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component U ′ of U is an irreducible component of V ′ ×V U for a unique irreducible
component V ′ ⊂ V . Given an irreducible component U ′ ⊂ U , denote a(U ′) ⊂ X
the “image” in X (Lemma 7.1); this is an irreducible component of X for example
by Lemma 9.1. The muplticity mU ′,V ′×V U is equal to the multiplicity m

a(U ′),X
.

This follows from the equality h∗a∗[Y ] = b∗f∗[Y ] (Lemma 10.4), the definitions,
and Lemma 10.3. Combining all of what we just said we obtain

a∗f∗divY (g) = h∗b∗divY (g) =
∑

m
a(U ′),X

(U ′ → U)∗divU ′(g ◦ (f ◦ a)|U ′)

Next, we analyze what happens with the right hand side of the formula in the
statement of the lemma if we pullback by a. First, we use Lemma 11.1 to get

a∗
∑

mX′,X(X ′ → X)∗divX′(g◦f |X′) =
∑

mX′,X(X ′×XU → U)∗(a′)∗divX′(g◦f |X′)

where a′ : X ′ ×X U → X ′ is the projection. By Lemma 13.2 we get

(a′)∗divX′(g ◦ f |X′) =
∑

(U ′ → X ′ ×X U)∗divU ′(g ◦ (f ◦ a)|U ′)

where the sum is over the irreducible components U ′ of X ′ ×X U . These U ′ are
irreducible components of U and in fact are exactly the irreducible components of U
such that a(U ′) = X ′. Comparing with what we obtained above we conclude. □

Lemma 16.2.0EQB In Situation 2.1 let X, Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let α ∼rat β be rationally equivalent k-cycles
on Y . Then f∗α ∼rat f∗β as (k + r)-cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions gj ∈ R(Wj)∗. Moreover, assume that the collection {|ij |(|Wj |)}j∈J is
locally finite in |Y |. Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)

is rationally equivalent to zero on X. The sum on the right makes sense by Lemma
9.2.

Consider the fibre products

i′
j : W ′

j = Wj ×Y X −→ X.

and denote fj : W ′
j → Wj the first projection. By Lemma 11.1 we can write the

sum above as ∑
i′
j,∗(f∗

j div(gj))

By Lemma 16.1 we see that each f∗
j div(gj) is rationally equivalent to zero on W ′

j .
Hence each i′

j,∗(f∗
j div(gj)) is rationally equivalent to zero. Then the same is true

for the displayed sum by the discussion in Remark 15.3. □

Lemma 16.3.0EQC In Situation 2.1 let X, Y/B be good. Let p : X → Y be a proper
morphism. Suppose α, β ∈ Zk(X) are rationally equivalent. Then p∗α is rationally
equivalent to p∗β.

https://stacks.math.columbia.edu/tag/0EQB
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Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.
Note that the sum is equal to ∑

p∗ij,∗div(fj).

Let W ′
j ⊂ Y be the integral closed subspace which is the image of p◦ ij , see Lemma

7.1. The collection {W ′
j} is locally finite in Y by Lemma 7.5. Hence it suffices to

show, for a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′
j,∗div(gj)

for some gj ∈ R(W ′
j)∗.

The arguments above therefore reduce us to the case of a since integral closed
subspace W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as above.
We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′

// Y

Note that p∗i∗div(f) = i′
∗(p′)∗div(f) by Lemma 8.2. As explained above we have

to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero. There
are three cases to distinguish.
The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is
nothing to prove.
The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Since
(p′)∗div(f) is a k-cycle, we see that (p′)∗div(f) = n[W ′] for some n ∈ Z. In order
to prove that n = 0 we may replace W ′ by a nonempty open subspace. In particular,
we may and do assume that W ′ is a scheme. Let η ∈ W ′ be the generic point. Let
K = κ(η) = R(W ′) be the function field. Consider the base change diagram

Wη
//

c

��

W

p′

��
Spec(K) η // W ′

Observe that c is proper. Also |Wη| has dimension 1: use Decent Spaces, Lemma
18.6 to identify |Wη| as the subspace of |W | of points mapping to η and note that
since dimδ(W ) = k + 1 and δ(η) = k points of Wη must have δ-value either k or
k + 1. Thus the local rings have dimension ≤ 1 by Decent Spaces, Lemma 20.2.
By Spaces over Fields, Lemma 9.3 we find that Wη is a scheme. Since Spec(K) is
the limit of the nonempty affine open subschemes of W ′ we conclude that we may
assume that W is a scheme by Limits of Spaces, Lemma 5.11. Then finally by the
case of schemes (Chow Homology, Lemma 20.3) we find that n = 0.
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The case dimδ(W ′) = k + 1. In this case Lemma 14.1 applies, and we see that
indeed p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. □

17. The divisor associated to an invertible sheaf

0EQD This section is the analogue of Chow Homology, Section 24. The following definition
is the analogue of Spaces over Fields, Definition 7.4 in our current setup.

Definition 17.1.0EQE In Situation 2.1 let X/B be good. Assume X is integral and
n = dimδ(X). Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s is the (n − 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Spaces over Fields, Definition 7.4. This makes sense because
Weil divisors have δ-dimension n − 1 by Lemma 12.1.

(2) We define Weil divisor associated to L as
c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Spaces over Fields, Lemma 7.3.

The zero scheme of a nonzero section is an effective Cartier divisor whose Weil
divisor class computes the Weil divisor associated to the invertible module.

Lemma 17.2.0EQF In Situation 2.1 let X/B be good. Assume X is integral and
n = dimδ(X). Let L be an invertible OX-module. Let s ∈ Γ(X, L) be a nonzero
global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).

Proof. Let Z ⊂ X be an integral closed subspace of δ-dimension n−1. Let ξ ∈ |Z|
be its generic point. To prove the first equality we compare the coefficients of Z on
both sides. Choose an elementary étale neighbourhood (U, u) → (X, ξ), see Decent
Spaces, Section 11 and recall that Oh

X,ξ = Oh
U,u in this case. After replacing U by

an open neighbourhood of u we may assume there is a trivializing section sU of
L|U . Write s|U = fsU for some f ∈ Γ(U, OU ). Then Z ×X U is equal to V (f)
as a closed subscheme of U , see Divisors on Spaces, Definition 7.6. As in Spaces
over Fields, Section 7 denote Lξ the pullback of L under the canonical morphism
cξ : Spec(Oh

X,ξ) → X. Denote sξ the pullback of sU ; it is a trivialization of Lξ.
Then we see that c∗

ξ(s) = fsξ. The coefficient of Z in [Z(s)]n−1 is by definition

lengthOU,u
(OU,u/fOU,u)

Since OU,u → Oh
X,ξ is flat and identifies residue fields this is equal to

lengthOh
X,ξ

(Oh
X,ξ/fOh

X,ξ)

by Algebra, Lemma 52.13. This final quantity is equal to ordZ,L(s) by Spaces over
Fields, Definition 7.1, i.e., to the coefficient of Z in divL(s) as desired. □

https://stacks.math.columbia.edu/tag/0EQE
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Lemma 17.3.0EQG In Situation 2.1 let X/B be good. Let L be an invertible OX-
module. The morphism

q : T = Spec
(⊕

n∈Z
L⊗n

)
−→ X

has the following properties:
(1) q is surjective, smooth, affine, of relative dimension 1,
(2) there is an isomorphism α : q∗L ∼= OT ,
(3) formation of (q : T → X, α) commutes with base change,
(4) q∗ : Zk(X) → Zk+1(T ) is injective,
(5) if Z ⊂ X is an integral closed subspace, then q−1(Z) ⊂ T is an integral

closed subspace,
(6) if Z ⊂ X is a closed subspace of X of δ-dimension ≤ k, then q−1(Z) is a

closed subspace of T of δ-dimension ≤ k + 1 and q∗[Z]k = [q−1(Z)]k+1,
(7) if ξ′ ∈ |T | is the generic point of the fibre of |T | → |X| over ξ, then the

ring map Oh
X,ξ → Oh

T,ξ′ is flat, we have mh
ξ′ = mh

ξ Oh
T,ξ′ , and the residue

field extension is purely transcendental of transcendence degree 1, and
(8) add more here as needed.

Proof. Let U → X be an étale morphism such that L|U is trivial. Then T ×X U →
U is isomorphic to the projection morphism Gm × U → U , where Gm is the
multipliciative group scheme, see Groupoids, Example 5.1. Thus (1) is clear.
To see (2) observe that q∗q∗L =

⊕
n∈Z L⊗n+1. Thus there is an obvious isomor-

phism q∗q∗L → q∗OT of q∗OT -modules. By Morphisms of Spaces, Lemma 20.10
this determines an isomorphism q∗L → OT .
Part (3) holds because forming the relative spectrum commutes with arbitrary base
change and the same thing is clearly true for the isomorphism α.
Part (4) follows immediately from (1) and the definitions.
Part (5) follows from the fact that if Z is an integral algebraic space, then Gm × Z
is an integral algebraic space.
Part (6) follows from the fact that lengths are preserved: if (A,m) is a local ring and
B = A[x]mA[x] and if M is an A-module, then lengthA(M) = lengthB(M ⊗A B).
This implies that if F is a coherent OX -module and ξ ∈ |X| with ξ′ ∈ |T | the
generic point of the fibre over ξ, then the length of F at ξ is the same as the length
of q∗F at ξ′. Tracing through the definitions this gives (6) and more.
The map in part (7) comes from Decent Spaces, Remark 11.11. However, in our
case we have

Spec(Oh
X,ξ) ×X T = Gm × Spec(Oh

X,ξ) = Spec(Oh
X,ξ[t, t−1])

and ξ′ corresponds to the generic point of the special fibre of this over Spec(Oh
X,ξ).

Thus Oh
T,ξ′ is the henselization of the localization of Oh

X,ξ[t, t−1] at the correspond-
ing prime. Part (7) follows from this and some commutative algebra; details omit-
ted. □

Lemma 17.4.0EQH In Situation 2.1 let X/B be good. Let L be an invertible OX-
module. Assume X is integral. Let s be a nonzero meromorphic section of L. Let
q : T → X be the morphism of Lemma 17.3. Then

q∗divL(s) = divT (q∗(s))

https://stacks.math.columbia.edu/tag/0EQG
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where we view the pullback q∗(s) as a nonzero meromorphic function on T using
the isomorphism q∗L → OT

Proof. Observe that divT (q∗(s)) = divOT
(q∗(s)) by the compatibility between

the constructions given in Spaces over Fields, Sections 6 and 7. We will show
the agreement with divOT

(q∗(s)) in this proof. We will use all the properties of
q : T → X stated in Lemma 17.3 without further mention. Let Z ⊂ T be a prime
divisor. Then either Z → X is dominant or Z = q−1(Z ′) for some prime divisor
Z ′ ⊂ X. If Z → X is dominant, then the coefficient of Z in either side of the
equality of the lemma is zero. Thus we may assume Z = q−1(Z ′) where Z ′ ⊂ X is
a prime divisor. Let ξ′ ∈ |Z ′| and ξ ∈ |Z| be the generic points. Then we obtain a
commutative diagram

Spec(Oh
T,ξ)

cξ

//

h

��

T

q

��
Spec(Oh

X,ξ′)
cξ′
// X

see Decent Spaces, Remark 11.11. Choose a trivialization sξ′ of Lξ′ = c∗
ξ′L. Then

we can use the pullback sξ of sξ′ via h as our trivialization of Lξ = c∗
ξq∗L. Write

s/sξ′ = a/b for a, b ∈ OX,ξ′ nonzerodivisors. By definition the coefficient of Z ′ in
divL(s) is

lengthOh
X,ξ′

(Oh
X,ξ′/aOh

X,ξ′) − lengthOh
X,ξ′

(Oh
X,ξ′/bOh

X,ξ′)

Since Z = q−1(Z ′), this is also the coefficient of Z in q∗divL(s). Since Oh
X,ξ′ → Oh

T,ξ

is flat the elements a, b map to nonzerodivisors in Oh
T,ξ. Thus q∗(s)/sξ = a/b in the

total quotient ring of Oh
T,ξ. By definition the coefficient of Z in divT (q∗(s)) is

lengthOh
T,ξ

(Oh
T,ξ/aOh

T,ξ) − lengthOh
T,ξ

(Oh
T,ξ/bOh

T,ξ)

The proof is finished because these lengths are the same as before by Algebra,
Lemma 52.13 and the fact that mh

ξ = mh
ξ′Oh

T,ξ shown in Lemma 17.3. □

18. Intersecting with an invertible sheaf

0EQI This section is the analogue of Chow Homology, Section 25. In this section we
study the following construction.

Definition 18.1.0EQJ In Situation 2.1 let X/B be good. Let L be an invertible OX -
module. We define, for every integer k, an operation

c1(L) ∩ − : Zk+1(X) → CHk(X)

called intersection with the first Chern class of L.
(1) Given an integral closed subspace i : W → X with dimδ(W ) = k + 1 we

define
c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])

where the right hand side is defined in Definition 17.1.
(2) For a general (k + 1)-cycle α =

∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

https://stacks.math.columbia.edu/tag/0EQJ
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Write each c1(L) ∩ Wi =
∑

j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral
closed subspaces of Wi. Since {Wi} is a locally finite collection of integral closed
subspaces on X, it follows easily that {Zi,j}i,j is a locally finite collection of closed
subspaces of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another, often more

convenient, way to think about this is to observe that the morphism
∐

Wi →
X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
CHk(

∐
Wi) =

∏
CHk(Wi). This also explains why the result is well defined up to

rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence. This is not a triviality.

Lemma 18.2.0EQK In Situation 2.1 let X/B be good. Let L, N be an invertible sheaves
on X. Then

c1(L) ∩ α + c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk−1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Spaces over Fields, Lemma 7.5 and the
definitions. To see that c1(OX) ∩ α = 0 consider the section 1 ∈ Γ(X, OX). This
restricts to an everywhere nonzero section on any integral closed subspace W ⊂ X.
Hence c1(OX) ∩ [W ] = 0 as desired. □

Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on an algebraic space X, see Divisors on Spaces, Definition 7.6.

Lemma 18.3.0EQL In Situation 2.1 let Y/B be good. Let L be an invertible OY -
module. Let s ∈ Γ(Y, L) be a regular section and assume dimδ(Y ) ≤ k + 1. Write
[Y ]k+1 =

∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of δ-dimension

k + 1. Set si = s|Yi ∈ Γ(Yi, L|Yi). Then

(18.3.1)0EQM [Z(s)]k =
∑

ni[Z(si)]k

as k-cycles on Y .

Proof. Let φ : V → Y be a surjective étale morphism where V is a scheme. It
suffices to prove the equality after pulling back by φ, see Lemma 10.3. That same
lemma tells us that φ∗[Yi] = [φ−1(Yi)] =

∑
[Vi,j ] where Vi,j are the irreducible

components of V lying over Yi. Hence if we first apply the case of schemes (Chow
Homology, Lemma 25.3) to φ∗si on Yi ×Y V we find that φ∗[Z(si)]k = [Z(φ∗si)] =∑

[Z(si,j)]k where si,j is the pullback of s to Vi,j . Applying the case of schemes to
φ∗s we get

φ∗[Z(s)]k = [Z(φ∗s)]k =
∑

ni[Z(si,j)]k

by our remark on multiplicities above. Combining all of the above the proof is
complete. □

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 14.8.

https://stacks.math.columbia.edu/tag/0EQK
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Lemma 18.4.0EQN In Situation 2.1 let X/B be good. Let L be an invertible OX-module.
Let Y ⊂ X be a closed subscheme with dimδ(Y ) ≤ k + 1 and let s ∈ Γ(Y, L|Y ) be a
regular section. Then

c1(L) ∩ [Y ]k+1 = [Z(s)]k
in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k +1 and ni > 0.
By assumption the restriction si = s|Yi

∈ Γ(Yi, L|Yi
) is not zero, and hence is a

regular section. By Lemma 17.2 we see that [Z(si)]k represents c1(L|Yi
). Hence by

definition
c1(L) ∩ [Y ]k+1 =

∑
ni[Z(si)]k

Thus the result follows from Lemma 18.3. □

19. Intersecting with an invertible sheaf and push and pull

0EQP This section is the analogue of Chow Homology, Section 26. In this section we prove
that the operation c1(L) ∩ − commutes with flat pullback and proper pushforward.

Lemma 19.1.0EQQ In Situation 2.1 let X, Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on Y . Assume Y is
integral and n = dimδ(Y ). Let s be a nonzero meromorphic section of L. Then we
have

f∗divL(s) =
∑

nidivf∗L|Xi
(si)

in Zn+r−1(X). Here the sum is over the irreducible components Xi ⊂ X of δ-
dimension n + r, the section si = f |∗Xi

(s) is the pullback of s, and ni = mXi,X is
the multiplicity of Xi in X.

Proof. Using sleight of hand we will deduce this from Lemma 16.1. (An alternative
is to redo the proof of that lemma in the setting of meromorphic sections of invertible
modules.) Namely, let q : T → Y be the morphism of Lemma 17.3 constructed using
L on Y . We will use all the properties of T stated in this lemma. Consider the
fibre product diagram

T ′
q′
//

h

��

X

f

��
T

q // Y

Then q′ : T ′ → X is the morphism constructed using f∗L on X. Then it suffices
to prove

(q′)∗f∗divL(s) =
∑

ni(q′)∗divf∗L|Xi
(si)

Observe that T ′
i = q−1(Xi) are the irreducible components of T ′ and that ni is the

multiplicity of T ′
i in T ′. The left hand side is equal to

h∗q∗divL(s) = h∗divT (q∗(s))
by Lemma 17.4 (and Lemma 10.4). On the other hand, denoting q′

i : T ′
i → Xi the

restriction of q′ we find that Lemma 17.4 also tells us the right hand side is equal
to ∑

nidivTi((q′
i)∗(si))

https://stacks.math.columbia.edu/tag/0EQN
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CHOW GROUPS OF SPACES 27

In these two formulas the expressions q∗(s) and (q′
i)∗(si) represent the rational func-

tions corresponding to the pulled back meromorphic sections of q∗L and (q′
i)∗f∗L|Xi

via the isomorphism α : q∗L → OT and its pullbacks to spaces over T . With this
convention it is clear that (q′

i)∗(si) is the composition of the rational function q∗(s)
on T and the morphism h|T ′

i
: T ′

i → T . Thus Lemma 16.1 exactly says that

h∗divT (q∗(s)) =
∑

nidivTi((q′
i)∗(si))

as desired. □

Lemma 19.2.0EQR In Situation 2.1 let X, Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on Y . Let α be a
k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

Proof. Write α =
∑

ni[Wi]. We will show that

f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]

in CHk+r−1(X) by producing a rational equivalence on the closed subspace f−1(Wi)
of X. By the discussion in Remark 15.3 this will prove the equality of the lemma
is true.

Let W ⊂ Y be an integral closed subspace of δ-dimension k. Consider the closed
subspace W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero
meromorphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of
δ-dimension k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in

W ′ as per definition. So f∗[W ] =
∑

ni[W ′
i ] in Zk+r(X). Since each W ′

i → W is
dominant we see that si = s|W ′

i
is a nonzero meromorphic section for each i. By

Lemma 19.1 we have the following equality of cycles

h∗divL|W
(s) =

∑
nidivf∗L|W ′

i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′

which pushes to f∗(c1(L) ∩ [W ]) in CHk+r−1(X) and the right hand side is a cycle
on W ′ which pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). □

Lemma 19.3.0EQS In Situation 2.1 let X, Y/B be good. Let f : X → Y be a proper
morphism. Let L be an invertible sheaf on Y . Assume X, Y integral, f dominant,
and dimδ(X) = dimδ(Y ). Let s be a nonzero meromorphic section s of L on Y .
Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).
as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = c1(L) ∩ f∗[Y ].

https://stacks.math.columbia.edu/tag/0EQR
https://stacks.math.columbia.edu/tag/0EQS
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Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ] by
definition. Proof of the first equaltion. Let q : T → Y be the morphism of Lemma
17.3 constructed using L on Y . We will use all the properties of T stated in this
lemma. Consider the fibre product diagram

T ′
q′
//

h

��

X

f

��
T

q // Y

Then q′ : T ′ → X is the morphism constructed using f∗L on X. It suffices to prove
the equality after pulling back to T ′. The left hand side pulls back to

q∗f∗ (divf∗L(f∗s)) = h∗(q′)∗divf∗L(f∗s)
= h∗div(q′)∗f∗L((q′)∗f∗s)
= h∗divh∗q∗L(h∗q∗s)

The first equality by Lemma 11.1. The second by Lemma 19.1 using that T ′ is
integral. The third because the displayed diagram commutes. The right hand side
pulls back to

[R(X) : R(Y )]q∗divL(s) = [R(T ′) : R(T )]divq∗L(q∗s)

This follows from Lemma 19.1, the fact that T is integral, and the equality [R(T ′) :
R(T )] = [R(X) : R(Y )] whose proof we omit (it follows from Lemma 11.1 but that
would be a silly way to prove the equality). Thus it suffices to prove the lemma
for h : T ′ → T , the invertible module qL and the section q∗s. Since q∗L = OT we
reduce to the case where L ∼= O discussed in the next paragraph.

Assume that L = OY . In this case s corresponds to a rational function g ∈ R(Y ).
Using the embedding R(Y ) ⊂ R(X) we may think of g as a rational on X and we
are simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of Lemma 14.1 we see this true since NmR(X)/R(Y )(g) =
g[R(X):R(Y )] as g ∈ R(Y )∗. □

Lemma 19.4.0EQT In Situation 2.1 let X, Y/B be good. Let p : X → Y be a proper
morphism. Let α ∈ Zk+1(X). Let L be an invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

Proof. Suppose that p has the property that for every integral closed subspace
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑

ni[Wi]
with ni ̸= 0 and Wi pairwise distinct. Let W ′

i ⊂ Y be the “image” of Wi as in

https://stacks.math.columbia.edu/tag/0EQT


CHOW GROUPS OF SPACES 29

Lemma 7.1. Consider the diagram

X ′ =
∐

Wi q
//

p′

��

X

p

��
Y ′ =

∐
W ′

i

q′
// Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′
i } is locally finite on

Y and that q, q′, p′ are also proper morphisms. We may think of
∑

ni[Wi] also as a
k-cycle α′ ∈ Zk(X ′). Clearly q∗α′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α′

and (q′)∗(c1((q′)∗L) ∩ p′
∗α′) = c1(L) ∩ q′

∗p′
∗α′ by the initial remark of the proof.

Hence it suffices to prove the lemma for the morphism p′ and the cycle
∑

ni[Wi].
Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 19.3. □

20. The key formula

0EQU This section is the analogue of Chow Homology, Section 27. We strongly urge the
reader to read the proof in that case first.
In Situation 2.1 let X/B be good. Assume X is integral and dimδ(X) = n. Let
L and N be invertible OX -modules. Let s be a nonzero meromorphic section of L
and let t be a nonzero meromorphic section of N . Let Z ⊂ X be a prime divisor
with generic point ξ ∈ |Z|. Consider the morphism

cξ : Spec(Oh
X,ξ) −→ X

used in Spaces over Fields, Section 7. We denote Lξ and Nξ the pullbacks of L and
N by cξ; we often think of Lξ and Nξ as the rank 1 free Oh

X,ξ-modules they give
rise to. Note that the pullback of s, resp. t is a regular meromorphic section of Lξ,
resp. Nξ.
Let Zi ⊂ X, i ∈ I be a locally finite set of prime divisors with the following
property: If Z ̸∈ {Zi}, then s is a generator for Lξ and t is a generator for Nξ.
Such a set exists by Spaces over Fields, Lemma 7.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]

and similarly
divN (t) =

∑
ordZi,N (t)[Zi]

Unwinding the definitions more, we pick for each i generators si ∈ Lξi
and ti ∈ Nξi

where ξi is the generic point of Zi. Then we can write
s = fisi and t = giti

with fi, gi invertible elements of the total ring of fractions Q(Oh
X,ξi

). We abbreviate
Bi = Oh

X,ξi
. Let us denote

ordBi
: Q(Bi)∗ −→ Z, a/b 7−→ lengthBi

(Bi/aBi) − lengthBi
(Bi/bBi)

In other words, we temporarily extend Algebra, Definition 121.2 to these reduced
Noetherian local rings of dimension 1. Then by definition

ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)
Since ξi is the generic point of Zi we see that the residue field κ(ξi) is the function
field of Zi. Moreover κ(ξi) is the residue field of Bi, see Decent Spaces, Lemma
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11.10. Since ti is a generator of Nξi
we see that its image in the fibre Nξi

⊗Bi
κ(ξi)

is a nonzero meromorphic section of N |Zi . We will denote this image ti|Zi . From
our definitions it follows that

c1(N ) ∩ divL(s) =
∑

ordBi
(fi)(Zi → X)∗divN |Zi

(ti|Zi
)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi
(gi)(Zi → X)∗divL|Zi

(si|Zi
)

in CHn−2(X). We are going to find a rational equivalence between these two cycles.
To do this we consider the tame symbol

∂Bi
(fi, gi) ∈ κ(ξi)∗ = R(Zi)∗

see Chow Homology, Section 5.

Lemma 20.1 (Key formula).0EQV In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi

(ti|Zi) − ordBi(gi)divL|Zi
(si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. The strategy of the proof will be: first reduce to the case where L and N
are trivial invertible modules, then change our choices of local trivializations, and
then finally use étale localization to reduce to the case of schemes1.

First step. Let q : T → X be the morphism constructed in Lemma 17.3. We will
use all properties stated in that lemma without further mention. In particular,
it suffices to show that the cycles are equal after pulling back by q. Denote s′

and t′ the pullbacks of s and t to meromorphic sections of q∗L and q∗N . Denote
Z ′

i = q−1(Zi), denote ξ′
i ∈ |Z ′

i| the generic point, denote B′
i = Oh

T,ξ′
i
, denote Lξ′

i

and Nξ′
i

the pullbacks of L and N to Spec(B′
i). Recall that we have commutative

diagrams
Spec(B′

i) cξ′
i

//

��

T

q

��
Spec(Bi)

cξi // X

see Decent Spaces, Remark 11.11. Denote s′
i and t′

i the pullbacks of si and ti which
are generators of Lξ′

i
and Nξ′

i
. Then we have

s′ = f ′
is

′
i and t′ = g′

it
′
i

where f ′
i and g′

i are the images of fi, gi under the map Q(Bi) → Q(B′
i) induced by

Bi → B′
i. By Algebra, Lemma 52.13 we have

ordBi
(fi) = ordB′

i
(f ′

i) and ordBi
(gi) = ordB′

i
(g′

i)

By Lemma 19.1 applied to q : Z ′
i → Zi we have

q∗divN |Zi
(ti|Zi

) = divq∗N |Z′
i

(t′
i|Z′

i
) and q∗divL|Zi

(si|Zi
) = divq∗L|Z′

i

(s′
i|Z′

i
)

1It is possible that a shorter proof can be given by immediately applying étale localization.

https://stacks.math.columbia.edu/tag/0EQV
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This already shows that the first cycle in the statement of the lemma pulls back to
the corresponding cycle for s′, t′, Z ′

i, s′
i, t′

i. To see the same is true for the second,
note that by Chow Homology, Lemma 5.4 we have

∂Bi(fi, gi) 7→ ∂B′
i
(f ′

i , g′
i) via κ(ξi) → κ(ξ′

i)

Hence the same lemma as before shows that

q∗div(∂Bi
(fi, gi)) = div(∂B′

i
(f ′

i , g′
i))

Since q∗L ∼= OT we find that it suffices to prove the equality in case L is trivial.
Exchanging the roles of L and N we see that we may similarly assume N is trivial.
This finishes the proof of the first step.

Second step. Assume L = OX and N = OX . Denote 1 the trivializing section of L.
Then si = u · 1 for some unit u ∈ Bi. Let us examine what happens if we replace
si by 1. Then fi gets replaced by ufi. Thus the first part of the first expression of
the lemma is unchanged and in the second part we add

ordBi(gi)div(u|Zi)

where u|Zi is the image of u in the residue field by Spaces over Fields, Lemma 7.3
and in the second expression we add

div(∂Bi(u, gi))

by bi-linearity of the tame symbol. These terms agree by the property of the tame
symbol given in Chow Homology, Equation (6).

Let Y ⊂ X be an integral closed subspace with dimδ(Y ) = n − 2. To show that
the coefficients of Y of the two cycles of the lemma is the same, we may do a
replacement of si by 1 as in the previous paragraph. In exactly the same way one
shows that we may do a replacement of ti by 1. Since there are only a finite number
of Zi such that Y ⊂ Zi we may assume si = 1 and ti = 1 for all these Zi.

Third step. Here we prove the coefficients of Y in the cycles of the lemma agree for
an integral closed subspace Y with dimδ(Y ) = n − 2 such that moreover L = OX

and N = OX and si = 1 and ti = 1 for all Zi such that Y ⊂ Zi. After replacing X
by a smaller open subspace we may in fact assume that si and ti are equal to 1 for
all i. In this case the first cycle is zero. Our task is to show that the coefficient of
Y in the second cycle is zero as well.

First, since L = OX and N = OX we may and do think of s, t as rational functions
f, g on X. Since si and ti are equal to 1 we find that fi, resp. gi is the image of
f , resp. g in Q(Bi) for all i. Let ζ ∈ |Y | be the generic point. Choose an étale
neighbourhood

(U, u) −→ (X, ζ)
and denote Y ′ = {u} ⊂ U . Since an étale morphism is flat, we can pullback f and
g to regular meromorphic functions on U which we will also denote f and g. For
every prime divisor Y ⊂ Z ⊂ X the scheme Z ×X U is a union of prime divisors
of U . Conversely, given a prime divisor Y ′ ⊂ Z ′ ⊂ U , there is a prime divisor
Y ⊂ Z ⊂ X such that Z ′ is a component of Z ×X U . Given such a pair (Z, Z ′) the
ring map

Oh
X,ξ → Oh

U,ξ′
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is étale (in fact it is finite étale). Hence we find that
∂Oh

X,ξ
(f, g) 7→ ∂Oh

U,ξ′
(f, g) via κ(ξ) → κ(ξ′)

by Chow Homology, Lemma 5.4. Thus Lemma 13.2 applies to show

(Z ×X U → Z)∗divZ(∂Oh
X,ξ

(f, g)) =
∑

Z′⊂Z×X U
divZ′(∂Oh

U,ξ′
(f, g))

Since flat pullback commutes with pushforward along closed immersions (Lemma
11.1) we see that it suffices to prove that the coefficient of Y ′ in∑

Z′⊂U
(Z ′ → U)∗divZ′(∂Oh

U,ξ′
(f, g))

is zero.
Let A = OU,u. Then f, g ∈ Q(A)∗. Thus we can write f = a/b and g = c/d with
a, b, c, d ∈ A nonzerodivisors. The coefficient of Y ′ in the expression above is∑

q⊂A height 1
ordA/q(∂Aq

(f, g))

By bilinearity of ∂A it suffices to prove∑
q⊂A height 1

ordA/q(∂Aq
(a, c))

is zero and similarly for the other pairs (a, d), (b, c), and (b, d). This is true by
Chow Homology, Lemma 6.2. □

21. Intersecting with an invertible sheaf and rational equivalence

0EQW This section is the analogue of Chow Homology, Section 28. Applying the key
lemma we obtain the fundamental properties of intersecting with invertible sheaves.
In particular, we will see that c1(L) ∩ − factors through rational equivalence and
that these operations for different invertible sheaves commute.

Lemma 21.1.0EQX In Situation 2.1 let X/B be good. Assume X integral and dimδ(X) =
n. Let L, N be invertible on X. Choose a nonzero meromorphic section s of L and
a nonzero meromorphic section t of N . Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β

in CHn−2(X).

Proof. Immediate from the key Lemma 20.1 and the discussion preceding it. □

Lemma 21.2.0EQY In Situation 2.1 let X/B be good. Let L be invertible on X. The
operation α 7→ c1(L) ∩ α factors through rational equivalence to give an operation

c1(L) ∩ − : CHk+1(X) → CHk(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 18.1 is zero. By Definition 15.1 there exists a locally finite family
{Wj} of integral closed subspaces with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)∗ such that

α =
∑

(ij)∗divWj (fj)
Note that p :

∐
Wj → X is a proper morphism, and hence α = p∗α′ where α′ ∈

Zk+1(
∐

Wj) is the sum of the principal divisors divWj
(fj). By Lemma 19.4 we have

c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj
)∩divWj

(fj)

https://stacks.math.columbia.edu/tag/0EQX
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is zero. In other words we may assume that X is integral and α = divX(f) for some
f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose a
meromorphic section s of L and denote β = divL(s). By Lemma 21.1 we conclude
that

c1(L) ∩ α = c1(OX) ∩ β.

However, by Lemma 18.2 we see that the right hand side is zero in CHk(X) as
desired. □

In Situation 2.1 let X/B be good. Let L be invertible on X. We will denote

c1(L)s ∩ − : CHk+s(X) → CHk(X)

the operation c1(L)∩−. This makes sense by Lemma 21.2. We will denote c1(Ls∩−
the s-fold iterate of this operation for all s ≥ 0.

Lemma 21.3.0EQZ In Situation 2.1 let X/B be good. Let L, N be invertible on X.
For any α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α

as elements of CHk(X).

Proof. Write α =
∑

mj [Zj ] for some locally finite collection of integral closed
subspaces Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐

Zj → X. Set α′ =
∑

mj [Zj ] as a (k + 2)-cycle on
∐

Zj . By several applications
of Lemma 19.4 we see that c1(L) ∩ c1(N ) ∩ α = p∗(c1(p∗L) ∩ c1(p∗N ) ∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 21.1 and the definitions. □

22. Intersecting with effective Cartier divisors

0ER0 This section is the analogue of Chow Homology, Section 29. Please read the intro-
duction of that section we motivation.

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of
pairs (L, s) where L is an invertible sheaf and s is a global section, see Divisors on
Spaces, Lemma 7.8. If D corresponds to (L, s), then L = OX(D). Please keep this
in mind while reading this section.

Definition 22.1.0ER1 In Situation 2.1 let X/B be good. Let (L, s) be a pair consisting
of an invertible sheaf and a global section s ∈ Γ(X, L). Let D = Z(s) be the
vanishing locus of s, and denote i : D → X the closed immersion. We define, for
every integer k, a (refined) Gysin homomorphism

i∗ : Zk+1(X) → CHk(D).

by the following rules:
(1) Given a integral closed subspace W ⊂ X with dimδ(W ) = k + 1 we define

(a) if W ̸⊂ D, then i∗[W ] = [D ∩ W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′

∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the
induced closed immersion.

https://stacks.math.columbia.edu/tag/0EQZ
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(2) For a general (k + 1)-cycle α =
∑

nj [Wj ] we set

i∗α =
∑

nji∗[Wj ]

(3) If D is an effective Cartier divisor, then we denote D · α = i∗i∗α the
pushforward of the class to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Remark 22.2.0ER2 Let S, B, X, L, s, i : D → X be as in Definition 22.1 and assume
that L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X) → Zk(D)
on cycles, by requiring that i∗[W ] = 0 whenever W ⊂ D. The possibility to do this
will be useful later on.

Remark 22.3.0ER3 Let f : X ′ → X be a morphism of good algebraic spaces over B
as in Situation 2.1. Let (L, s, i : D → X) be a triple as in Definition 22.1. Then we
can set L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This gives a commutative
diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 22.4.0ER4 In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. Let α be a (k +1)-cycle on X. Then i∗i∗α = c1(L)∩α in CHk(X).
In particular, if D is an effective Cartier divisor, then D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑

nj [Wj ] where ij : Wj → X are integral closed subspaces
with dimδ(Wj) = k. Since D is the vanishing locus of s we see that D ∩ Wj is the
vanishing locus of the restriction s|Wj

. Hence for each j such that Wj ̸⊂ D we have
c1(L) ∩ [Wj ] = [D ∩ Wj ]k by Lemma 18.4. So we have

c1(L) ∩ α =
∑

Wj ̸⊂D
nj [D ∩ Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj
) ∩ [Wj ])

in CHk(X) by Definition 18.1. The right hand side matches (termwise) the push-
forward of the class i∗α on D from Definition 22.1. Hence we win. □

Lemma 22.5.0ER5 In Situation 2.1. Let f : X ′ → X be a proper morphism of good
algebraic spaces over B. Let (L, s, i : D → X) be as in Definition 22.1. Form the
diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 22.3. For any (k + 1)-cycle α′ on X ′ we have i∗f∗α′ = g∗(i′)∗α′ in
CHk(D) (this makes sense as f∗ is defined on the level of cycles).

https://stacks.math.columbia.edu/tag/0ER2
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Proof. Suppose α = [W ′] for some integral closed subspace W ′ ⊂ X ′. Let W ⊂ X
be the “image” of W ′ as in Lemma 7.1. In case W ′ ̸⊂ D′, then W ̸⊂ D and we see
that

[W ′ ∩ D′]k = divL′|W ′ (s′|W ′) and [W ∩ D]k = divL|W
(s|W )

and hence f∗ of the first cycle equals the second cycle by Lemma 19.3. Hence the
equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′) ∩ [W ′])
is equal to c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 19.3. By
Remark 15.3 the result follows for general α′. □

Lemma 22.6.0ER6 In Situation 2.1. Let f : X ′ → X be a flat morphism of relative
dimension r of good algebraic spaces over B. Let (L, s, i : D → X) be as in
Definition 22.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 22.3. For any (k + 1)-cycle α on X we have (i′)∗f∗α = g∗i∗α′ in
CHk+r(D) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ] for some integral closed subspace W ⊂ X. Let W ′ =
f−1(W ) ⊂ X ′. In case W ̸⊂ D, then W ′ ̸⊂ D′ and we see that

W ′ ∩ D′ = g−1(W ∩ D)

as closed subspaces of D′. Hence the equality holds as cycles, see Lemma 10.5.
In case W ⊂ D, then W ′ ⊂ D′ and W ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and
equality holds in CHk+r(D′) by Lemma 19.2. By Remark 15.3 the result follows
for general α′. □

Lemma 22.7.0ER7 In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k + 1 and
such that D ∩ Z is an effective Cartier divisor on Z. Then i∗([Z]k+1) = [D ∩ Z]k.

Proof. The assumption means that s|Z is a regular section of L|Z . Thus D ∩ Z =
Z(s) and we get

[D ∩ Z]k =
∑

ni[Z(si)]k
as cycles where si = s|Zi

, the Zi are the irreducible components of δ-dimension k+1,
and [Z]k+1 =

∑
ni[Zi]. See Lemma 18.3. We have D ∩ Zi = Z(si). Comparing

with the definition of the gysin map we conclude. □

23. Gysin homomorphisms

0ER8 This section is the analogue of Chow Homology, Section 30. In this section we
use the key formula to show the Gysin homomorphism factor through rational
equivalence.

Lemma 23.1.0ER9 In Situation 2.1 let X/B be good. Assume X integral and n =
dimδ(X). Let i : D → X be an effective Cartier divisor. Let N be an invertible
OX-module and let t be a nonzero meromorphic section of N . Then i∗divN (t) =
c1(N ) ∩ [D]n−1 in CHn−2(D).
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Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subspaces Zi ⊂
X of δ-dimension n − 1. We may assume that the family {Zi} is locally finite,
that t ∈ Γ(U, N |U ) is a generator where U = X \

⋃
Zi, and that every irreducible

component of D is one of the Zi, see Spaces over Fields, Lemmas 6.1, 6.6, and 7.2.
Set L = OX(D). Denote s ∈ Γ(X, OX(D)) = Γ(X, L) the canonical section. We
will apply the discussion of Section 20 to our current situation. For each i let
ξi ∈ |Zi| be its generic point. Let Bi = Oh

X,ξi
. For each i we pick generators si

of Lξi
and ti of Nξi

over Bi but we insist that we pick si = s if Zi ̸⊂ D. Write
s = fisi and t = giti with fi, gi ∈ Bi. Then ordZi,N (t) = ordBi

(gi). On the other
hand, we have fi ∈ Bi and

[D]n−1 =
∑

ordBi
(fi)[Zi]

because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi
(gi)divL|Zi

(si|Zi
)

as cycles. More precisely, the right hand side is a cycle representing the left
hand side. Namely, this is clear by our formula for divN (t) and the fact that
divL|Zi

(si|Zi
) = [Z(si|Zi

)]n−2 = [Zi ∩ D]n−2 when Zi ̸⊂ D because in that case
si|Zi

= s|Zi
is a regular section, see Lemma 17.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi
(fi)divN |Zi

(ti|Zi
)

The key formula (Lemma 20.1) gives the equality∑ (
ordBi(fi)divN |Zi

(ti|Zi) − ordBi(gi)divL|Zi
(si|Zi)

)
=

∑
divZi(∂Bi(fi, gi))

of cycles. If Zi ̸⊂ D, then fi = 1 and hence divZi
(∂Bi

(fi, gi)) = 0. Thus we
get a rational equivalence between our specific cycles representing i∗divN (t) and
c1(N ) ∩ [D]n−1 on D. This finishes the proof. □

Lemma 23.2.0ERA In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. The Gysin homomorphism factors through rational equivalence to
give a map i∗ : CHk+1(X) → CHk(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subspaces Wj ⊂ X of δ-dimension k + 2
and fj ∈ R(Wj)∗ such that α =

∑
ij,∗divWj

(fj). Set X ′ =
∐

Wi and consider the
diagram

D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 22.3. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma 22.5.
As we know that q∗ factors through rational equivalence (Lemma 16.3), it suffices
to prove the result for α′ =

∑
divWj (fj) on X ′. Clearly this reduces us to the case

where X is integral and α = div(f) for some f ∈ R(X)∗.
Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we see
that i∗α is equal to c1(L) ∩ α. This is rationally equivalent to zero by Lemma 21.2.
If D ̸= X, then we see that i∗divX(f) is equal to c1(OD) ∩ [D]n−1 in CHk(D) by
Lemma 23.1. Of course capping with c1(OD) is the zero map. □
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CHOW GROUPS OF SPACES 37

Lemma 23.3.0ERB In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be a triple
as in Definition 22.1. Let N be an invertible OX-module. Then i∗(c1(N ) ∩ α) =
c1(i∗N ) ∩ i∗α in CHk−2(D) for all α ∈ CHk(Z).

Proof. With exactly the same proof as in Lemma 23.2 this follows from Lemmas
19.4, 21.3, and 23.1. □

Lemma 23.4.0ERC In Situation 2.1 let X/B be good. Let (L, s, i : D → X) and
(L′, s′, i′ : D′ → X) be two triples as in Definition 22.1. Then the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

��
CHk−1(D′) // CHk−2(D ∩ D′)

commutes where each of the maps is a gysin map.

Proof. Denote j : D ∩ D′ → D and j′ : D ∩ D′ → D′ the closed immersions cor-
responding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α
for all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k.
We will prove the equality in case α = [W ]. The general case will then follow from
the observation in Remark 15.3 (and the specific shape of our rational equivalence
produced below). We will deduce the equality for α = [W ] from the key formula.

We let σ be a nonzero meromorphic section of L|W which we require to be equal
to s|W if W ̸⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we
require to be equal to s′|W if W ̸⊂ D′. Write

divL|W
(σ) =

∑
ordZi,L|W

(σ)[Zi] =
∑

ni[Zi]

and similarly

divL′|W
(σ′) =

∑
ordZi,L′|W

(σ′)[Zi] =
∑

n′
i[Zi]

as in the discussion in Section 20. Then we see that Zi ⊂ D if ni ̸= 0 and Z ′
i ⊂ D′

if n′
i ̸= 0. For each i, let ξi ∈ |Zi| be the generic point. As in Section 20 we choose

for each i an element σi ∈ Lξi
, resp. σ′

i ∈ L′
ξi

which generates over Bi = Oh
W,ξi

and
which is equal to the image of s, resp. s′ if Zi ̸⊂ D, resp. Zi ̸⊂ D′. Write σ = fiσi

and σ′ = f ′
iσ

′
i so that ni = ordBi(fi) and n′

i = ordBi(f ′
i). From our definitions it

follows that
(j′)∗i∗[W ] =

∑
ordBi

(fi)divL′|Zi
(σ′

i|Zi
)

as cycles and
j∗(i′)∗[W ] =

∑
ordBi

(f ′
i)divL|Zi

(σi|Zi
)

The key formula (Lemma 20.1) now gives the equality∑ (
ordBi

(fi)divL′|Zi
(σ′

i|Zi
) − ordBi

(f ′
i)divL|Zi

(σi|Zi
)
)

=
∑

divZi
(∂Bi

(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 if Zi ̸⊂ D ∩D′ because in this case either

fi = 1 or f ′
i = 1. Thus we get a rational equivalence between our specific cycles

representing (j′)∗i∗[W ] and j∗(i′)∗[W ] on D ∩ D′ ∩ W . □
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24. Relative effective Cartier divisors

0ERD This section is the analogue of Chow Homology, Section 31. Relative effective
Cartier divisors are defined in Divisors on Spaces, Section 9. To develop the basic
results on Chern classes of vector bundles we only need the case where both the
ambient scheme and the effective Cartier divisor are flat over the base.

Lemma 24.1.0ERE In Situation 2.1. Let X, Y/B be good. Let p : X → Y be a flat mor-
phism of relative dimension r. Let i : D → X be a relative effective Cartier divisor
(Divisors on Spaces, Definition 9.2). Let L = OX(D). For any α ∈ CHk+1(Y ) we
have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).

Proof. Let W ⊂ Y be an integral closed subspace of δ-dimension k+1. By Divisors
on Spaces, Lemma 9.1 we see that D∩p−1W is an effective Cartier divisor on p−1W .
By Lemma 22.7 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D ∩ p−1(W ) = (p|D)−1(W ) as algebraic spaces. Since
by definition p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles.
If α =

∑
mj [Wj ] is a general k + 1 cycle, then we get i∗α =

∑
mji∗p∗[Wj ] =∑

mj(p|D)∗[Wj ] as cycles. This proves then first equality. To deduce the second
from the first apply Lemma 22.4. □

25. Affine bundles

0ERF This section is the analogue of Chow Homology, Section 32. For an affine bundle
the pullback map is surjective on Chow groups.

Lemma 25.1.0ERG In Situation 2.1 let X, Y/B be good. Let f : X → Y be a quasi-
compact flat morphism over B of relative dimension r. Assume that for every y ∈ Y
we have Xy

∼= Ar
κ(y). Then f∗ : CHk(Y ) → CHk+r(X) is surjective for all k ∈ Z.

Proof. Let α ∈ CHk+r(X). Write α =
∑

mj [Wj ] with mj ̸= 0 and Wj pairwise
distinct integral closed subspaces of δ-dimension k + r. Then the family {Wj} is
locally finite in X. Let Zj ⊂ Y be the integral closed subspace such that we obtain
a dominant morphism Wj → Zj as in Lemma 7.1. For any quasi-compact open
V ⊂ Y we see that f−1(V ) ∩ Wj is nonempty only for finitely many j. Hence the
collection Zj of closures of images is a locally finite collection of integral closed
subspaces of Y .
Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj

// Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑

mjβj will be a k-cycle on Y and f∗β =
∑

mjf∗
j βj
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will be rationally equivalent to α (see Remark 15.3). This reduces us to the case Y
integral, and α = [W ] for some integral closed subscheme of X dominating Y . In
particular we may assume that d = dimδ(Y ) < ∞.

Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
V ⊂ Y . Suppose that we can show that α|f−1(V ) = f∗β for some β ∈ Zk(V ). By
Lemma 10.2 we see that β = β′|V for some β′ ∈ Zk(Y ). By the exact sequence
CHk(f−1(Y \V )) → CHk(X) → CHk(f−1(V )) of Lemma 15.2 we see that α−f∗β′

comes from a cycle α′ ∈ CHk+r(f−1(Y \ V )). Since dimδ(Y \ V ) < d we win by
induction on d.

In particular, by replacing Y by a suitable open we may assume Y is a scheme
with generic point η. The isomorphism Yη

∼= Ar
η extends to an isomorphism over

a nonempty open V ⊂ Y , see Limits of Spaces, Lemma 7.1. This reduces us to the
case of schemes which is Chow Homology, Lemma 32.1. □

Lemma 25.2.0ERH In Situation 2.1 let X/B be good. Let L be an invertible OX-
module. Let

p : L = Spec(Sym∗(L)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+1(L) is an
isomorphism for all k.

Proof. For surjectivity see Lemma 25.1. Let o : X → L be the zero section of
L → X, i.e., the morphism corresponding to the surjection Sym∗(L) → OX which
maps L⊗n to zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier
divisor on L. Hence by Lemma 24.1 we see that o∗ ◦ p∗ = id and we conclude that
p∗ is injective too. □

26. Bivariant intersection theory

0ERI This section is the analogue of Chow Homology, Section 33. In order to intelligently
talk about higher Chern classes of vector bundles we introduce the following notion,
following [FM81]. It follows from [Ful98, Theorem 17.1] that our definition agrees
with that of [Ful98] modulo the caveat that we are working in different settings.

Definition 26.1.0ERJ Similar to [Ful98,
Definition 17.1]

In Situation 2.1 let f : X → Y be a morphism of good algebraic
spaces over B. Let p ∈ Z. A bivariant class c of degree p for f is given by a rule
which assigns to every morphism Y ′ → Y of good algebraic spaces over B and every
k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)
where X ′ = Y ′ ×Y X, satisfying the following conditions

(1) if Y ′′ → Y ′ is a proper morphism, then c ∩ (Y ′′ → Y ′)∗α′′ = (X ′′ →
X ′)∗(c ∩ α′′) for all α′′ on Y ′′,

(2) if Y ′′ → Y ′ a morphism of good algebraic spaces over B which is flat of
relative dimension r, then c ∩ (Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c ∩ α′) for all
α′ on Y ′,

(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 22.1 with pullback (N ′, t′, j′ :
E′ → X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.

The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).
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In Situation 2.1 let X → Y and Y → Z be morphisms of good algebraic spaces
over B. Let p ∈ Z. It is clear that Ap(X → Y ) is an abelian group. Moreover, it
is clear that we have a bilinear composition

Ap(X → Y ) × Aq(Y → Z) → Ap+q(X → Z)
which is associative. We will be most interested in Ap(X) = Ap(X → X), which
will always mean the bivariant cohomology classes for idX . Namely, that is where
Chern classes will live.

Definition 26.2.0ERK In Situation 2.1 let X/B be good. The Chow cohomology of X
is the graded Z-algebra A∗(X) whose degree p component is Ap(X → X).

Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative,
but we will see that Chern classes live in its center.

Remark 26.3.0ERL In Situation 2.1 let f : X → Y be a morphism of good algebraic
spaces over B. Then there is a canonical Z-algebra map A∗(Y ) → A∗(X). Namely,
given c ∈ Ap(Y ) and X ′ → X, then we can let f∗c be defined by the map c ∩ − :
CHk(X ′) → CHk−p(X ′) which is given by thinking of X ′ as an algebraic space over
Y .

Lemma 26.4.0ERM In Situation 2.1 let X/B be good. Let L be an invertible OX-module.
Then the rule that to f : X ′ → X assigns c1(f∗L) ∩ − : CHk(X ′) → CHk−1(X ′) is
a bivariant class of degree 1.

Proof. This follows from Lemmas 21.2, 19.4, 19.2, and 23.3. □

Lemma 26.5.0ERN In Situation 2.1 let f : X → Y be a morphism of good algebraic
spaces over B which is flat of relative dimension r. Then the rule that to Y ′ → Y
assigns (f ′)∗ : CHk(Y ′) → CHk+r(X ′) where X ′ = X ×Y Y ′ is a bivariant class of
degree −r.

Proof. This follows from Lemmas 16.2, 10.4, 11.1, and 22.6. □

Lemma 26.6.0ERP In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be a triple
as in Definition 22.1. Then the rule that to f : X ′ → X assigns (i′)∗ : CHk(X ′) →
CHk−1(D′) where D′ = D ×X X ′ is a bivariant class of degree 1.

Proof. This follows from Lemmas 23.2, 22.5, 22.6, and 23.4. □

Lemma 26.7.0ERQ In Situation 2.1 let f : X → Y and g : Y → Z be morphisms of
good algebraic spaces over B. Let c ∈ Ap(X → Z) and assume f is proper. Then
the rule that to X ′ → X assigns α 7−→ f∗(c ∩ α) is a bivariant class of degree p.

Proof. This follows from Lemmas 8.2, 11.1, and 22.5. □

Here we see that c1(L) is in the center of A∗(X).

Lemma 26.8.0ERR In Situation 2.1 let X/B be good. Let L be an invertible OX-
module. Then c1(L) ∈ A1(X) commutes with every element c ∈ Ap(X).

Proof. Let p : L → X be as in Lemma 25.2 and let o : X → L be the zero section.
Observe that p∗L⊗−1 has a canonical section whose vanishing locus is exactly the
effective Cartier divisor o(X). Let α ∈ CHk(X). Then we see that

p∗(c1(L⊗−1) ∩ α) = c1(p∗L⊗−1) ∩ p∗α = o∗o∗p∗α
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by Lemmas 19.2 and 24.1. Since c is a bivariant class we have
p∗(c ∩ c1(L⊗−1) ∩ α) = c ∩ p∗(c1(L⊗−1) ∩ α)

= c ∩ o∗o∗p∗α

= o∗o∗p∗(c ∩ α)
= p∗(c1(L⊗−1) ∩ c ∩ α)

(last equality by the above applied to c ∩ α). Since p∗ is injective by a lemma cited
above we get that c1(L⊗−1) is in the center of A∗(X). This proves the lemma. □

Here a criterion for when a bivariant class is zero.

Lemma 26.9.0ERS In Situation 2.1 let X/B be good. Let c ∈ Ap(X). Then c is zero
if and only if c ∩ [Y ] = 0 in CH∗(Y ) for every integral algebraic space Y locally of
finite type over X.

Proof. The if direction is clear. For the converse, assume that c ∩ [Y ] = 0 in
CH∗(Y ) for every integral algebraic space Y locally of finite type over X. Let
X ′ → X be locally of finite type. Let α ∈ CHk(X ′). Write α =

∑
ni[Yi] with

Yi ⊂ X ′ a locally finite collection of integral closed subschemes of δ-dimension k.
Then we see that α is pushforward of the cycle α′ =

∑
ni[Yi] on X ′′ =

∐
Yi under

the proper morphism X ′′ → X ′. By the properties of bivariant classes it suffices
to prove that c ∩ α′ = 0 in CHk−p(X ′′). We have CHk−p(X ′′) =

∏
CHk−p(Yi)

as follows immediately from the definitions. The projection maps CHk−p(X ′′) →
CHk−p(Yi) are given by flat pullback. Since capping with c commutes with flat
pullback, we see that it suffices to show that c ∩ [Yi] is zero in CHk−p(Yi) which is
true by assumption. □

27. Projective space bundle formula

0ERT In Situation 2.1 let X/B be good. Consider a finite locally free OX -module E of
rank r. Our convention is that the projective bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X, OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).

Lemma 27.1.0ERU In Situation 2.1 let X/B be good. Let E be a finite locally free OX-
module E of rank r. Let (π : P → X, OP (1)) be the projective bundle associated to
E. For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)
is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subspace of δ-dimension k. We will prove
the lemma for α = [Z]. We omit the argument deducing the general case from this
special case; hint: argue as in Remark 15.3.
Let PZ = P ×X Z be the base change; of course πZ : PZ → Z is the projective
bundle associated to E|Z and OP (1) pulls back to the corresponding invertible
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module on PZ . Since c1(OP (1) ∩ −, and π∗ are bivariant classes by Lemmas 26.4
and 26.5 we see that

π∗ (c1(OP (1))s ∩ π∗[Z]) = (Z → X)∗πZ,∗ (c1(OPZ
(1))s ∩ π∗

Z [Z])
Hence it suffices to prove the lemma in case X is integral and α = [X].
Assume X is integral, dimδ(X) = k, and α = [X]. Note that π∗[X] = [P ] as P is
integral of δ-dimension r − 1. If s < r − 1, then by construction c1(OP (1))s ∩ [P ]
a (k + r − 1 − s)-cycle. Hence the pushforward of this cycle is zero for dimension
reasons.
Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩[P ]) = n[X]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons as
above it suffices to prove this result after replacing X by a dense open. Thus we
may assume X is a scheme and the result follows from Chow Homology, Lemma
36.1. □

Lemma 27.2 (Projective space bundle formula).0ERV Let (S, δ) be as in Situation 2.1.
Let X be locally of finite type over S. Let E be a finite locally free OX-module E of
rank r. Let (π : P → X, OP (1)) be the projective bundle associated to E. The map⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . . + c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.

Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 27.1 we see that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . . + c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that
0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.
To prove the map is surjective, we will argue exactly as in the proof of Lemma 25.1
to reduce to the case of schemes. We urge the reader to skip the proof.
Let β ∈ CHk+r−1(P ). Write β =

∑
mj [Wj ] with mj ̸= 0 and Wj pairwise distinct

integral closed subspaces of δ-dimension k+r. Then the family {Wj} is locally finite
in P . Let Zj ⊂ X be the “image” of Wj as in Lemma 7.1. For any quasi-compact
open U ⊂ X we see that π−1(U) ∩ Wj is nonempty only for finitely many j. Hence
the collection Zj of images is a locally finite collection of integral closed subspaces
of X.
Consider the fibre product diagrams

Pj
//

πj

��

P

π

��
Zj

// X

Suppose that [Wj ] ∈ Zk+r−1(Pj) is rationally equivalent to
π∗

j αj,0 + c1(O(1)) ∩ π∗
j αj,1 + . . . + c1(O(1))r−1 ∩ π∗

j αj,r−1
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for some (k + i)-cycle αj,i ∈ CHk+i(Zj). Then αi =
∑

mjβj,i will be a (k + i)-cycle
on X and

π∗α0 + c1(O(1)) ∩ π∗α1 + . . . + c1(O(1))r−1 ∩ π∗αr−1

will be rationally equivalent to β (see Remark 15.3). This reduces us to the case X
integral, and α = [W ] for some integral closed subscheme of P dominating X. In
particular we may assume that d = dimδ(X) < ∞.

Hence we can use induction on d = dimδ(X). If d < k, then CHk+r−1(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
U ⊂ X. Suppose that we can show that

β|π−1(U) = π∗α0 + c1(O(1)) ∩ π∗α1 + . . . + c1(O(1))r−1 ∩ π∗αr−1

for some αi ∈ Zk+i(U). By Lemma 10.2 we see that αi = α′
i|U for some α′

i ∈
Zk+i(X). By the exact sequences CHk+i(π−1(X\U)) → CHk+i(P ) → CHk+i(π−1(U))
of Lemma 15.2 we see that

β −
(
π∗α′

0 + c1(O(1)) ∩ π∗α′
1 + . . . + c1(O(1))r−1 ∩ π∗α′

r−1
)

comes from a cycle β′ ∈ CHk+r(π−1(X \ U)). Since dimδ(X \ U) < d we win by
induction on d.

In particular, by replacing X by a suitable open we may assume X is a scheme and
we have reduced our problem to Chow Homology, Lemma 36.2. □

Lemma 27.3.0ERW In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf
of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+r(E) is an
isomorphism for all k.

Proof. (For the case of linebundles, see Lemma 25.2.) For surjectivity see Lemma
25.1. Let (π : P → X, OP (1)) be the projective space bundle associated to the finite
locally free sheaf E ⊕ OX . Let s ∈ Γ(P, OP (1)) correspond to the global section
(0, 1) ∈ Γ(X, E ⊕ OX). Let D = Z(s) ⊂ P . Note that (π|D : D → X, OP (1)|D) is
the projective space bundle associated to E . We denote πD = π|D and OD(1) =
OP (1)|D. Moreover, D is an effective Cartier divisor on P . Hence OP (D) = OP (1)
(see Divisors on Spaces, Lemma 7.8). Also there is an isomorphism E ∼= P \ D.
Denote j : E → P the corresponding open immersion. For injectivity we use that
the kernel of

j∗ : CHk+r(P ) −→ CHk+r(E)
are the cycles supported in the effective Cartier divisor D, see Lemma 15.2. So if
p∗α = 0, then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 27.2 we may write

β = π∗
Dβ0 + . . . + c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 24.1 and 19.4 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . . + c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 19.4 unless all α and all
βi are zero. □
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28. The Chern classes of a vector bundle

0ERX This section is the analogue of Chow Homology, Sections 37 and 38. However,
contrary to what is done there, we directly define the Chern classes of a vector
bundle as bivariant classes. This saves a considerable amount of work.

Lemma 28.1.0ERY In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf
of rank r on X. Let (π : P → X, OP (1)) be the projective space bundle associated
to E. For every morphism X ′ → X of good algebraic spaces over B there are unique
maps

ci(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), i = 0, . . . , r

such that for α ∈ CHk(X ′) we have c0(E) ∩ α = α and∑
i=0,...,r

(−1)ic1(OP ′(1))i ∩ (π′)∗ (cr−i(E) ∩ α) = 0

where π′ : P ′ → X ′ is the base change of π. Moreover, these maps define a bivariant
class ci(E) of degree i on X.

Proof. Uniqueness and existence of the maps ci(E) ∩ − follows immediately from
Lemma 27.2 and the given description of c0(E). For every i ∈ Z the rule which to
every morphism X ′ → X of good algebraic spaces over B assigns the map

ti(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), α 7−→ π′
∗(c1(OP ′(1))r−1+i ∩ (π′)∗α)

is a bivariant class2 by Lemmas 26.4, 26.5, and 26.7. By Lemma 27.1 we have
ti(E) = 0 for i < 0 and t0(E) = 1. Applying pushforward to the equation in the
statement of the lemma we find from Lemma 27.1 that

(−1)rt1(E) + (−1)r−1c1(E) = 0

In particular we find that c1(E) is a bivariant class. If we multiply the equation in
the statement of the lemma by c1(OP ′(1)) and push the result forward to X ′ we
find

(−1)rt2(E) + (−1)r−1t1(E) ∩ c1(E) + (−1)r−2c2(E) = 0
As before we conclude that c2(E) is a bivariant class. And so on. □

Definition 28.2.0ERZ In Situation 2.1 let X/B be good. Let E be a finite locally free
sheaf of rank r on X. For i = 0, . . . , r the ith Chern class of E is the bivariant class
ci(E) ∈ Ai(X) of degree i constructed in Lemma 28.1. The total Chern class of E
is the formal sum

c(E) = c0(E) + c1(E) + . . . + cr(E)
which is viewed as a nonhomogeneous bivariant class on X.

For convenience we often set ci(E) = 0 for i > r and i < 0. By definition we have
c0(E) = 1 ∈ A0(X). Here is a sanity check.

Lemma 28.3.0ES0 In Situation 2.1 let X/B be good. Let L be an invertible OX-
module. The first Chern class of L on X of Definition 28.2 is equal to the bivariant
class of Lemma 26.4.

2Up to signs these are the Segre classes of E.
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Proof. Namely, in this case P = P(L) = X with OP (1) = L by our normalization
of the projective bundle, see Section 27. Hence the equation in Lemma 28.1 reads

(−1)0c1(L)0 ∩ cnew
1 (L) ∩ α + (−1)1c1(L)1 ∩ cnew

0 (L) ∩ α = 0
where cnew

i (L) is as in Definition 28.2. Since cnew
0 (L) = 1 and c1(L)0 = 1 we

conclude. □

Next we see that Chern classes are in the center of the bivariant Chow cohomology
ring A∗(X).

Lemma 28.4.0ES1 In Situation 2.1 let X/B be good. Let E be a locally free OX-
module of rank r. Then cj(L) ∈ Aj(X) commutes with every element c ∈ Ap(X).
In particular, if F is a second locally free OX-module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α

as elements of CHk−i−j(X) for all α ∈ CHk(X).

Proof. Let X ′ → X be a morphism of good algebraic spaces over B. Let α ∈
CHk(X ′). Write αj = cj(E) ∩ α, so α0 = α. By Lemma 28.1 we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(αr−i) = 0

in the chow group of the projective bundle (π′ : P ′ → X ′, OP ′(1)) associated to
(X ′ → X)∗E . Applying c∩− and using Lemma 26.8 and the properties of bivariant
classes we obtain ∑r

i=0
(−1)ic1(OP ′(1))i ∩ π∗(c ∩ αr−i) = 0

in the Chow group of P ′. Hence we see that c ∩ αj is equal to cj(E) ∩ (c ∩ α) by
the uniqueness in Lemma 28.1. This proves the lemma. □

Remark 28.5.0ES2 In Situation 2.1 let X/B be good. Let E be a finite locally free
OX -module. If the rank of E is not constant then we can still define the Chern
classes of E . Namely, in this case we can write

X = X0 ⨿ X1 ⨿ X2 ⨿ . . .

where Xr ⊂ X is the open and closed subspace where the rank of E is r. If X ′ → X
is a morphism of good algebraic spaces over B, then we obtain by pullback a
corresponding decomposition of X ′ and we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then we simply define ci(E) to be the bivariant class which
preserves these direct product decompositions and acts by the already defined op-
erations ci(E|Xr

) ∩ − on the factors. Observe that in this setting it may happen
that ci(E) is nonzero for infinitely many i.

29. Polynomial relations among Chern classes

0ES3 In Situation 2.1 let X/B be good. Let Ei be a finite collection of finite locally free
OX -modules. By Lemma 28.4 we see that the Chern classes

cj(Ei) ∈ A∗(X)
generate a commutative (and even central) Z-subalgebra of the Chow cohomology
A∗(X). Thus we can say what it means for a polynomial in these Chern classes
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to be zero, or for two polynomials to be the same. As an example, saying that
c1(E1)5 + c2(E2)c3(E3) = 0 means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α + c2(E2) ∩ c3(E3) ∩ α

are zero for all morphisms f : Y → X of good algebraic spaces over B. By Lemma
26.9 this is equivalent to the requirement that given any morphism f : Y → X
where Y is an integral algebraic space locally of finite type over X the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]

is zero in CHdim(Y )−5(Y ).

A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 18.2. More generally, here is what happens when we tensor an
arbitrary locally free sheaf by an invertible sheaf.

Lemma 29.1.0ES4 In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf
of rank r on X. Let L be an invertible sheaf on X. Then we have

(29.1.1)0ES5 ci(E ⊗ L) =
∑i

j=0

(
r − i + j

j

)
ci−j(E)c1(L)j

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 39.1 replac-
ing the lemmas used there by Lemmas 26.9 and 28.1. □

30. Additivity of Chern classes

0ES6 This section is the analogue of Chow Homology, Section 40.

Lemma 30.1.0ES7 In Situation 2.1 let X/B be good. Let E, F be finite locally free
sheaves on X of ranks r, r − 1 which fit into a short exact sequence

0 → OX → E → F → 0

Then we have
cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.1 replac-
ing the lemmas used there by Lemmas 26.9, 24.1, 19.4, and 28.1. □

Lemma 30.2.0ES8 In Situation 2.1 let X/B be good. Let E, F be finite locally free
sheaves on X of ranks r, r − 1 which fit into a short exact sequence

0 → L → E → F → 0

where L is an invertible sheaf. Then

c(E) = c(L)c(F)

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.2 replac-
ing the lemmas used there by Lemmas 30.1 and 29.1. □
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Lemma 30.3.0ES9 In Situation 2.1 let X/B be good. Suppose that E sits in an exact
sequence

0 → E1 → E → E2 → 0
of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)
in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.3 replac-
ing the lemmas used there by Lemmas 26.9, 30.2, and 28.1. □

Lemma 30.4.0ESA In Situation 2.1 let X/B be good. Let Li, i = 1, . . . , r be invertible
OX-modules. Let E be a locally free rank OX-module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 30.2 and induction. □

31. The splitting principle

0ESB This section is the analogue of Chow Homology, Section 40.

Lemma 31.1.0ESC In Situation 2.1 let X/B be good. Let Ei be a finite collection
of locally free OX-modules of rank ri. There exists a projective flat morphism
π : P → X of relative dimension d such that

(1) for any morphism f : Y → X of good algebraic spaces over B the map
π∗

Y : CH∗(Y ) → CH∗+d(Y ×X P ) is injective, and
(2) each π∗Ei has a filtration whose successive quotients Li,1, . . . , Li,ri are in-

vertible OP -modules.

Proof. We prove this by induction on the integer r =
∑

ri. If r = 0 we can
take π = idX . If ri = 1 for all i, then we can also take π = idX . Assume that
ri0 > 1 for some i0. Let (π : P → X, OP (1)) be the projective bundle associated
to Ei0 . The canonical map π∗Ei0 → OP (1) is surjective and hence its kernel E ′

i0
is

finite locally free of rank ri0 − 1. Observe that π∗
Y is injective for any morphism

f : Y → X of good algebraic spaces over B, see Lemma 27.2. Thus it suffices to
prove the lemma for P and the locally free sheaves π∗Ei. However, because we
have the subbundle Ei0 ⊂ π∗Ei0 with invertible quotient, it now suffices to prove
the lemma for the collection {Ei}i ̸=i0 ∪ {E ′

i0
}. This decreases r by 1 and we win by

induction hypothesis. □

Rather than explaining what the splitting principle says, let us use it in the proof
of some lemmas.

Lemma 31.2.0ESD In Situation 2.1 let X/B be good. Let E be a finite locally free
OX-module with dual E∨. Then

ci(E∨) = (−1)ici(E)
in Ai(X).
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Proof. Choose a morphism π : P → X as in Lemma 31.1. By the injectivity of π∗

(after any base change) it suffices to prove the relation between the Chern classes
of E and E∨ after pulling back to P . Thus we may assume there exist invertible
OX -modules Li, i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma

18.2. By Lemma 30.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1 − xi)

in A∗(X). The result follows from a formal computation which we omit. □

Lemma 31.3.0ESE In Situation 2.1 let X/B be good. Let E and F be a finite locally
free OX-modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = r2c2(F) + rsc1(F)c1(E) + s2c2(E)
and so on (see proof).

Proof. Arguing exactly as in the proof of Lemma 31.2 we may assume we have
invertible OX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F

such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexico-
graphically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗ Fj + Ei−1 ⊗ F ⊂ . . . ⊂ E ⊗ F

with successive quotients

L1 ⊗ N1, L1 ⊗ N2, . . . , L1 ⊗ Ns, L2 ⊗ N1, . . . , Lr ⊗ Ns

By Lemma 30.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(F) =
∏

(1 + xi + yj),

in A∗(X). The result follows from a formal computation which we omit. □

32. Degrees of zero cycles

0ESF This section is the analogue of Chow Homology, Section 41. We start with defining
the degree of a zero cycle on a proper algebraic space over a field.

Definition 32.1.0ESG Let k be a field. Let p : X → Spec(k) be a proper morphism of
algebraic spaces. The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X) −→ CH0(Spec(k)) −→ Z

(Lemma 16.3) composed with the natural isomorphism CH0(Spec(k)) → Z which
maps [Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.
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Lemma 32.2.0ESH Let k be a field. Let X be a proper algebraic space over k. Let
α =

∑
ni[Zi] be in Z0(X). Then

deg(α) =
∑

ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi, OZi
).

Proof. This is the definition of proper pushforward (Definition 8.1). □

Lemma 32.3.0ESI Let k be a field. Let X be a proper algebraic space over k. Let
Z ⊂ X be a closed subspace of dimension d. Let L1, . . . , Ld be invertible OX-
modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(L1) ∩ [Z]d)
where the left hand side is defined in Spaces over Fields, Definition 18.3.

Proof. Let Zi ⊂ Z, i = 1, . . . , t be the irreducible components of dimension d. Let
mi be the multiplicity of Zi in Z. Then [Z]d =

∑
mi[Zi] and c1(L1)∩ . . .∩c1(Ld)∩

[Z]d is the sum of the cycles mic1(L1) ∩ . . . ∩ c1(Ld) ∩ [Zi]. Since we have a similar
decomposition for (L1 · · · Ld · Z) by Spaces over Fields, Lemma 18.2 it suffices to
prove the lemma in case Z = X is a proper integral algebraic space over k.
By Chow’s lemma there exists a proper morphism f : X ′ → X which is an isomor-
phism over a dense open U ⊂ X such that X ′ is a scheme. See More on Morphisms
of Spaces, Lemma 40.5. Then X ′ is a proper scheme over k. After replacing X ′ by
the scheme theoretic closure of f−1(U) we may assume that X ′ is integral. Then

(f∗L1 · · · f∗Ld · X ′) = (L1 · · · Ld · X)
by Spaces over Fields, Lemma 18.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 19.4. Thus we may replace X by X ′ and assume that X is a proper
scheme over k. This case was proven in Chow Homology, Lemma 41.4. □

33. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra

(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes

https://stacks.math.columbia.edu/tag/0ESH
https://stacks.math.columbia.edu/tag/0ESI


CHOW GROUPS OF SPACES 50

(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces

(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHOW GROUPS OF SPACES 51

References
[EG98] Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131

(1998), no. 3, 595–634.
[FM81] William Fulton and Robert MacPherson, Categorical framework for the study of singular

spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165.
[Ful98] William Fulton, Intersection theory, 2 ed., Ergebnisse der Mathematik und ihrer Gren-

zgebiete, 3. Folge, vol. 2, Springer-Verlag, 1998.
[Kre99] Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536.


	1. Introduction
	2. Setup
	3. Cycles
	4. Multiplicities
	5. Cycle associated to a closed subspace
	6. Cycle associated to a coherent sheaf
	7. Preparation for proper pushforward
	8. Proper pushforward
	9. Preparation for flat pullback
	10. Flat pullback
	11. Push and pull
	12. Preparation for principal divisors
	13. Principal divisors
	14. Principal divisors and pushforward
	15. Rational equivalence
	16. Rational equivalence and push and pull
	17. The divisor associated to an invertible sheaf
	18. Intersecting with an invertible sheaf
	19. Intersecting with an invertible sheaf and push and pull
	20. The key formula
	21. Intersecting with an invertible sheaf and rational equivalence
	22. Intersecting with effective Cartier divisors
	23. Gysin homomorphisms
	24. Relative effective Cartier divisors
	25. Affine bundles
	26. Bivariant intersection theory
	27. Projective space bundle formula
	28. The Chern classes of a vector bundle
	29. Polynomial relations among Chern classes
	30. Additivity of Chern classes
	31. The splitting principle
	32. Degrees of zero cycles
	33. Other chapters
	References

