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1. Introduction

0839 In this chapter we study divisors on algebraic spaces and related topics. A basic
reference for algebraic spaces is [Knu71].

2. Associated and weakly associated points

0CTV In the case of schemes we have introduced two competing notions of associated
points. Namely, the usual associated points (Divisors, Section 2) and the weakly
associated points (Divisors, Section 5). For a general algebraic space the notion of
an associated point is basically useless and we don’t even bother to introduce it. If
the algebraic space is locally Noetherian, then we allow ourselves to use the phrase
“associated point” instead of “weakly associated point” as the notions are the same
for Noetherian schemes (Divisors, Lemma 5.8). Before we make our definition, we
need a lemma.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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Lemma 2.1.0CTW Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module. Let x ∈ |X|. The following are equivalent

(1) for some étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is weakly associated to f∗F ,

(2) for every étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is weakly associated to f∗F ,

(3) the maximal ideal of OX,x is a weakly associated prime of the stalk Fx.
If X is locally Noetherian, then these are also equivalent to

(4) for some étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is associated to f∗F ,

(5) for every étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is associated to f∗F ,

(6) the maximal ideal of OX,x is an associated prime of the stalk Fx.

Proof. Choose a scheme U with a point u and an étale morphism f : U → X
mapping u to x. Lift x to a geometric point of U over u. Recall that OX,x = OshU,u
where the strict henselization is with respect to our chosen lift of x, see Properties
of Spaces, Lemma 22.1. Finally, we have

Fx = (f∗F)u ⊗OU,u
OX,x = (f∗F)u ⊗OU,u

OshU,u
by Properties of Spaces, Lemma 29.4. Hence the equivalence of (1), (2), and (3)
follows from More on Flatness, Lemma 2.9. If X is locally Noetherian, then any
U as above is locally Noetherian, hence we see that (1), resp. (2) are equivalent to
(4), resp. (5) by Divisors, Lemma 5.8. On the other hand, in the locally Noetherian
case the local ring OX,x is Noetherian too (Properties of Spaces, Lemma 24.4).
Hence the equivalence of (3) and (6) by the same lemma (or by Algebra, Lemma
66.9). □

Definition 2.2.0CTX Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent sheaf on X. Let x ∈ |X|.

(1) We say x is weakly associated to F if the equivalent conditions (1), (2), and
(3) of Lemma 2.1 are satisfied.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points of OX .

If X is locally Noetherian we will say x is associated to F if and only if x is weakly
associated to F and we set Ass(F) = WeakAss(F). Finally (still assuming X is
locally Noetherian), we will say x is an associated point of X if and only if x is a
weakly associated point of X.

At this point we can prove the obligatory lemmas.

Lemma 2.3.0CTY Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module. Then WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. The support of an abelian sheaf on
X is defined in Properties of Spaces, Definition 20.3. □

Lemma 2.4.0CTZ Let S be a scheme. Let X be an algebraic space over S. Let 0 →
F1 → F2 → F3 → 0 be a short exact sequence of quasi-coherent sheaves on X. Then
WeakAss(F2) ⊂WeakAss(F1) ∪WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).

https://stacks.math.columbia.edu/tag/0CTW
https://stacks.math.columbia.edu/tag/0CTX
https://stacks.math.columbia.edu/tag/0CTY
https://stacks.math.columbia.edu/tag/0CTZ


DIVISORS ON ALGEBRAIC SPACES 3

Proof. For every geometric point x ∈ X the sequence of stalks 0→ F1,x → F2,x →
F3,x → 0 is a short exact sequence of OX,x-modules. Hence the lemma follows from
Algebra, Lemma 66.4. □

Lemma 2.5.0CU0 Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module. Then

F = (0)⇔WeakAss(F) = ∅

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Then F
is zero if and only if f∗F is zero. Hence the lemma follows from the definition and
the lemma in the case of schemes, see Divisors, Lemma 5.5. □

Lemma 2.6.0CUL Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module. Let x ∈ |X|. If

(1) x ∈ Supp(F)
(2) x is a codimension 0 point of X (Properties of Spaces, Definition 10.2).

Then x ∈ WeakAss(F). If F is a finite type OX-module with scheme theoretic
support Z (Morphisms of Spaces, Definition 15.4) and x is a codimension 0 point
of Z, then x ∈WeakAss(F).

Proof. Since x ∈ Supp(F) the stalk Fx is not zero. Hence WeakAss(Fx) is
nonempty by Algebra, Lemma 66.5. On the other hand, the spectrum of OX,x
is a singleton. Hence x is a weakly associated point of F by definition. The fi-
nal statement follows as OX,x → OZ,z is a surjection, the spectrum of OZ,z is a
singleton, and Fx is a nonzero module over OZ,z. □

Lemma 2.7.0CUM Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module. Let x ∈ |X|. If

(1) X is decent (for example quasi-separated or locally separated),
(2) x ∈ Supp(F)
(3) x is not a specialization of another point in Supp(F).

Then x ∈WeakAss(F).

Proof. (A quasi-separated algebraic space is decent, see Decent Spaces, Section
6. A locally separated algebraic space is decent, see Decent Spaces, Lemma 15.2.)
Choose a scheme U , a point u ∈ U , and an étale morphism f : U → X mapping u
to x. By Decent Spaces, Lemma 12.1 if u′ ⇝ u is a nontrivial specialization, then
f(u′) ̸= x. Hence we see that u ∈ Supp(f∗F) is not a specialization of another
point of Supp(f∗F). Hence u ∈WeakAss(f∗F) by Divisors, Lemma 2.6. □

Lemma 2.8.0CUN Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX-module. Then Ass(F) ∩ W is finite for every
quasi-compact open W ⊂ |X|.

Proof. Choose a quasi-compact scheme U and an étale morphism U → X such
that W is the image of |U | → |X|. Then U is a Noetherian scheme and we may
apply Divisors, Lemma 2.5 to conclude. □

Lemma 2.9.0CUP Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX-module. If U → X is an étale morphism such that
WeakAss(F) ⊂ Im(|U | → |X|), then Γ(X,F)→ Γ(U,F) is injective.

https://stacks.math.columbia.edu/tag/0CU0
https://stacks.math.columbia.edu/tag/0CUL
https://stacks.math.columbia.edu/tag/0CUM
https://stacks.math.columbia.edu/tag/0CUN
https://stacks.math.columbia.edu/tag/0CUP


DIVISORS ON ALGEBRAIC SPACES 4

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then F ′|U = 0. This implies that
WeakAss(F ′) ∩ Im(|U | → |X|) = ∅ (by the definition of weakly associated points).
On the other hand, WeakAss(F ′) ⊂ WeakAss(F) by Lemma 2.4. We conclude
WeakAss(F ′) = ∅. Hence F ′ = 0 by Lemma 2.5. □

Lemma 2.10.0CUQ Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let F be a quasi-coherent
OX-module. Let y ∈ |Y | be a point which is not in the image of |f |. Then y is not
weakly associated to f∗F .

Proof. By Morphisms of Spaces, Lemma 11.2 theOY -module f∗F is quasi-coherent
hence the lemma makes sense. Choose an affine scheme V , a point v ∈ V , and an
étale morphism V → Y mapping v to y. We may replace f : X → Y , F , y by
X×Y V → V , F|X×Y V , v. Thus we may assume Y is an affine scheme. In this case
X is quasi-compact, hence we can choose an affine scheme U and a surjective étale
morphism U → X. Denote g : U → Y the composition. Then f∗F ⊂ g∗(F|U ). By
Lemma 2.4 we reduce to the case of schemes which is Divisors, Lemma 5.9. □

Lemma 2.11.0CUR Let S be a scheme. Let X be an algebraic space over S. Let
φ : F → G be a map of quasi-coherent OX-modules. Assume that for every x ∈ |X|
at least one of the following happens

(1) Fx → Gx is injective, or
(2) x ̸∈WeakAss(F).

Then φ is injective.

Proof. The assumptions imply that WeakAss(Ker(φ)) = ∅ and hence Ker(φ) = 0
by Lemma 2.5. □

Lemma 2.12.0EN1 Let S be a scheme. Let X be a reduced algebraic space over S.
Then the weakly associated point of X are exactly the codimension 0 points of X.

Proof. Working étale locally this follows from Divisors, Lemma 5.12 and Properties
of Spaces, Lemma 11.1. □

3. Morphisms and weakly associated points

0CU1
Lemma 3.1.0CU2 Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX-module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
X ×Y V . Then U → V is an affine morphism of schemes. By our definition
of weakly associated points the problem is reduced to the morphism of schemes
U → V . This case is treated in Divisors, Lemma 6.1. □

Lemma 3.2.0CU8 Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX-module. If X is locally
Noetherian, then we have

WeakAssY (f∗F) = f(WeakAssX(F))

https://stacks.math.columbia.edu/tag/0CUQ
https://stacks.math.columbia.edu/tag/0CUR
https://stacks.math.columbia.edu/tag/0EN1
https://stacks.math.columbia.edu/tag/0CU2
https://stacks.math.columbia.edu/tag/0CU8
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Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = X×Y
V . Then U → V is an affine morphism of schemes and U is locally Noetherian. By
our definition of weakly associated points the problem is reduced to the morphism
of schemes U → V . This case is treated in Divisors, Lemma 6.2. □

Lemma 3.3.0CU9 Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Then WeakAss(f∗F) =
f(WeakAss(F)).
Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
X×Y V . Then U → V is a finite morphism of schemes. By our definition of weakly
associated points the problem is reduced to the morphism of schemes U → V . This
case is treated in Divisors, Lemma 6.3. □

Lemma 3.4.0CUA Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let G be a quasi-coherent OY -module. Let x ∈ |X| and y = f(x) ∈ |Y |. If

(1) y ∈WeakAssS(G),
(2) f is flat at x, and
(3) the dimension of the local ring of the fibre of f at x is zero (Morphisms of

Spaces, Definition 33.1),
then x ∈WeakAss(f∗G).
Proof. Choose a scheme V , a point v ∈ V , and an étale morphism V → Y mapping
v to y. Choose a scheme U , a point u ∈ U , and an étale morphism U → V ×Y X
mapping v to a point lying over v and x. This is possible because there is a
t ∈ |V ×Y X| mapping to (v, y) by Properties of Spaces, Lemma 4.3. By definition
we see that the dimension of OUv,u is zero. Hence u is a generic point of the fiber
Uv. By our definition of weakly associated points the problem is reduced to the
morphism of schemes U → V . This case is treated in Divisors, Lemma 6.4. □

Lemma 3.5.0CUS Let K/k be a field extension. Let X be an algebraic space over k.
Let F be a quasi-coherent OX-module. Let y ∈ XK with image x ∈ X. If y is a
weakly associated point of the pullback FK , then x is a weakly associated point of
F .
Proof. This is the translation of Divisors, Lemma 6.5 into the language of algebraic
spaces. We omit the details of the translation. □

Lemma 3.6.0CUT Let S be a scheme. Let f : X → Y be a finite flat morphism of
algebraic spaces. Let G be a quasi-coherent OY -module. Let x ∈ |X| be a point with
image y ∈ |Y |. Then

x ∈WeakAss(g∗G)⇔ y ∈WeakAss(G)
Proof. Follows immediately from the case of schemes (More on Flatness, Lemma
2.7) by étale localization. □

Lemma 3.7.0CUU Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces. Let G be a quasi-coherent OY -module. Let x ∈ |X| be a point with image
y ∈ |Y |. Then

x ∈WeakAss(f∗G)⇔ y ∈WeakAss(G)
Proof. This is immediate from the definition of weakly associated points and in
fact the corresponding lemma for the case of schemes (More on Flatness, Lemma
2.8) is the basis for our definition. □

https://stacks.math.columbia.edu/tag/0CU9
https://stacks.math.columbia.edu/tag/0CUA
https://stacks.math.columbia.edu/tag/0CUS
https://stacks.math.columbia.edu/tag/0CUT
https://stacks.math.columbia.edu/tag/0CUU
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4. Relative weak assassin

0CUV We need a couple of lemmas to define this gadget.

Lemma 4.1.0CUW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. The following are equivalent

(1) for some scheme V , point v ∈ V , and étale morphism V → Y mapping v
to y, the algebraic space Xv is locally Noetherian,

(2) for every scheme V , point v ∈ V , and étale morphism V → Y mapping v
to y, the algebraic space Xv is locally Noetherian, and

(3) there exists a field k and a morphism Spec(k)→ Y representing y such that
Xk is locally Noetherian.

If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then
these are also equivalent to

(4) the algebraic space Xk0 is locally Noetherian.

Proof. Observe that Xv = v×Y X = Spec(κ(v))×Y X. Hence the implications (2)
⇒ (1)⇒ (3) are clear. Assume that Spec(k)→ Y is a morphism from the spectrum
of a field such that Xk is locally Noetherian. Let V → Y be an étale morphism from
a scheme V and let v ∈ V a point mapping to y. Then the scheme v×Y Spec(k) is
nonempty. Choose a point w ∈ v ×Y Spec(k). Consider the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k), we see
that κ(w)/k is a finite separable extension of fields (Morphisms, Lemma 36.7). Thus
Xw → Xk is a finite étale morphism as a base change of w → Spec(k). Hence Xw is
locally Noetherian (Morphisms of Spaces, Lemma 23.5). The morphism Xw → Xv

is a surjective, affine, flat morphism as a base change of the surjective, affine, flat
morphism w → v. Then the fact that Xw is locally Noetherian implies that Xv is
locally Noetherian. This can be seen by picking a surjective étale morphism U → X
and then using that Uw → Uv is surjective, affine, and flat. Working affine locally
on the scheme Uv we conclude that Uw is locally Noetherian by Algebra, Lemma
164.1.
Finally, it suffices to prove that (3) implies (4) in case we have a monomorphism
Spec(k0) → Y in the class of y. Then Spec(k) → Y factors as Spec(k) →
Spec(k0) → Y . The argument given above then shows that Xk being locally Noe-
therian impies that Xk0 is locally Noetherian. □

Definition 4.2.0CUX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. We say the fibre of f over y is locally Noetherian if the
equivalent conditions (1), (2), and (3) of Lemma 4.1 are satisfied. We say the fibres
of f are locally Noetherian if this holds for every y ∈ |Y |.

Of course, the usual way to guarantee locally Noetherian fibres is to assume the
morphism is locally of finite type.

Lemma 4.3.0CUY Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type, then the fibres of f are locally Noetherian.

Proof. This follows from Morphisms of Spaces, Lemma 23.5 and the fact that the
spectrum of a field is Noetherian. □

https://stacks.math.columbia.edu/tag/0CUW
https://stacks.math.columbia.edu/tag/0CUX
https://stacks.math.columbia.edu/tag/0CUY
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Lemma 4.4.0CUZ Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X| and y = f(x) ∈ |Y |. Let F be a quasi-coherent OX-module.
Consider commutative diagrams

X

��

X ×Y V

��

oo Xv

��

oo

Y Voo voo

X

��

U

��

oo Uv

��

oo

Y Voo voo

x_

��

x′
_

��

�oo u?

��

�oo

y v�oo

where V and U are schemes, V → Y and U → X×Y V are étale, v ∈ V , x′ ∈ |Xv|,
u ∈ U are points related as in the last diagram. Denote F|Xv

and F|Uv
the pullbacks

of F . The following are equivalent
(1) for some V, v, x′ as above x′ is a weakly associated point of F|Xv

,
(2) for every V → Y, v, x′ as above x′ is a weakly associated point of F|Xv

,
(3) for some U, V, u, v as above u is a weakly associated point of F|Uv

,
(4) for every U, V, u, v as above u is a weakly associated point of F|Uv ,
(5) for some field k and morphism Spec(k) → Y representing y and some

t ∈ |Xk| mapping to x, the point t is a weakly associated point of F|Xk
.

If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then
these are also equivalent to

(6) x0 is a weakly associated point of F|Xk0
where x0 ∈ |Xk0 | is the unique

point mapping to x.
If the fibre of f over y is locally Noetherian, then in conditions (1), (2), (3), (4),
and (6) we may replace “weakly associated” with “associated”.

Proof. Observe that given V, v, x′ as in the lemma we can find U → X ×Y V and
u ∈ U mapping to x′ and then the morphism Uv → Xv is étale. Thus it is clear
that (1) and (3) are equivalent as well as (2) and (4). Each of these implies (5).
We will show that (5) implies (2). Suppose given V, v, x′ as well as Spec(k) → X
and t ∈ |Xk| such that the point t is a weakly associated point of F|Xk

. We can
choose a point w ∈ v ×Y Spec(k). Then we obtain the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k), we
see that κ(w)/k is a finite separable extension of fields (Morphisms, Lemma 36.7).
Thus Xw → Xk is a finite étale morphism as a base change of w → Spec(k). Thus
any point x′′ of Xw lying over t is a weakly associated point of F|Xw

by Lemma 3.7.
We may pick x′′ mapping to x′ (Properties of Spaces, Lemma 4.3). Then Lemma
3.5 implies that x′ is a weakly associated point of F|Xv .
To finish the proof it suffices to show that the equivalent conditions (1) – (5) imply
(6) if we are given Spec(k0)→ Y as in (6). In this case the morphism Spec(k)→ Y
of (5) factors uniquely as Spec(k) → Spec(k0) → Y . Then x0 is the image of t
under the morphism Xk → Xk0 . Hence the same lemma as above shows that (6) is
true. □

Definition 4.5.0CV0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. The relative weak assassin
of F in X over Y is the set WeakAssX/Y (F) ⊂ |X| consisting of those x ∈ |X|
such that the equivalent conditions of Lemma 4.4 are satisfied. If the fibres of f
are locally Noetherian (Definition 4.2) then we use the notation AssX/Y (F).

https://stacks.math.columbia.edu/tag/0CUZ
https://stacks.math.columbia.edu/tag/0CV0
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With this notation we can formulate some of the results already proven for schemes.

Lemma 4.6.0CV1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Let G be a quasi-coherent
OY -module. Assume

(1) F is flat over Y ,
(2) X and Y are locally Noetherian, and
(3) the fibres of f are locally Noetherian.

Then

AssX(F ⊗OX
f∗G) = {x ∈ AssX/Y (F) such that f(x) ∈ AssY (G)}

Proof. Via étale localization, this is an immediate consequence of the result for
schemes, see Divisors, Lemma 3.1. The result for schemes is more general only
because we haven’t defined associated points for non-Noetherian algebraic spaces
(hence we need to assume X and the fibres of X → Y are locally Noetherian to
even be able to formulate this result). □

Lemma 4.7.0CV2 Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent OX-
module and set F ′ = (g′)∗F . If f is locally of finite type, then

(1) x′ ∈ AssX′/Y ′(F ′)⇒ g′(x′) ∈ AssX/Y (F)
(2) if x ∈ AssX/Y (F), then given y′ ∈ |Y ′| with f(x) = g(y′), there exists an

x′ ∈ AssX′/Y ′(F ′) with g′(x′) = x and f ′(x′) = y′.

Proof. This follows from the case of schemes by étale localization. We write out
the details completely. Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme
V ′ and a surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′×V U is a scheme
and the morphism U ′ → X ′ is surjective and étale.

Proof of (1). Choose u′ ∈ U ′ mapping to x′. Denote v′ ∈ V ′ the image of u′.
Then x′ ∈ AssX′/Y ′(F ′) is equivalent to u′ ∈ Ass(F|U ′

v′
) by definition (writing Ass

instead of WeakAss makes sense as U ′
v′ is locally Noetherian). Applying Divisors,

Lemma 7.3 we see that the image u ∈ U of u′ is in Ass(F|Uv
) where v ∈ V is the

image of u. This in turn means g′(x′) ∈ AssX/Y (F).

Proof of (2). Choose u ∈ U mapping to x. Denote v ∈ V the image of u. Then
x ∈ AssX/Y (F) is equivalent to u ∈ Ass(F|Uv

) by definition. Choose a point
v′ ∈ V ′ mapping to y′ ∈ |Y ′| and to v ∈ V (possible by Properties of Spaces,
Lemma 4.3). Let t ∈ Spec(κ(v′) ⊗κ(v) κ(u)) be a generic point of an irreducible
component. Let u′ ∈ U ′ be the image of t. Applying Divisors, Lemma 7.3 we see
that u′ ∈ Ass(F ′|U ′

v′
). This in turn means x′ ∈ AssX′/Y ′(F ′) where x′ ∈ |X ′| is the

image of u′. □

https://stacks.math.columbia.edu/tag/0CV1
https://stacks.math.columbia.edu/tag/0CV2
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Lemma 4.8.0CV3 With notation and assumptions as in Lemma 4.7. Assume g is
locally quasi-finite, or more generally that for every y′ ∈ |Y ′| the transcendence
degree of y′/g(y′) is 0. Then AssX′/Y ′(F ′) is the inverse image of AssX/Y (F).

Proof. The transcendence degree of a point over its image is defined in Morphisms
of Spaces, Definition 33.1. Let x′ ∈ |X ′| with image x ∈ |X|. Choose a scheme V
and a surjective étale morphism V → Y . Choose a scheme U and a surjective étale
morphism U → V ×Y X. Choose a scheme V ′ and a surjective étale morphism
V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme and the morphism U ′ → X ′ is
surjective and étale. Choose u ∈ U mapping to x. Denote v ∈ V the image of
u. Then x ∈ AssX/Y (F) is equivalent to u ∈ Ass(F|Uv ) by definition. Choose a
point u′ ∈ U ′ mapping to x′ ∈ |X ′| and to u ∈ U (possible by Properties of Spaces,
Lemma 4.3). Let v′ ∈ V ′ be the image of u′. Then x′ ∈ AssX′/Y ′(F ′) is equivalent
to u′ ∈ Ass(F ′|U ′

v′
) by definition. Now the lemma follows from the discussion in

Divisors, Remark 7.4 applied to u′ ∈ Spec(κ(v′)⊗κ(v) κ(u)). □

Lemma 4.9.0CV4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let i : Z → X be a finite morphism. Let G be a quasi-coherent
OZ-module. Then WeakAssX/Y (i∗G) = i(WeakAssZ/Y (G)).

Proof. Follows from the case of schemes (Divisors, Lemma 8.3) by étale localiza-
tion. Details omitted. □

Lemma 4.10.0CVV Let Y be a scheme. Let X be an algebraic space of finite presen-
tation over Y . Let F be a quasi-coherent OX-module of finite presentation. Let
U ⊂ X be an open subspace such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ |Uy|}
is locally constructible in Y .

Proof. Note that since Y is a scheme, it makes sense to take the fibres Xy =
Spec(κ(y))×Y X. (Also, by our definitions, the set AssXy

(Fy) is exactly the fibre
of AssX/Y (F) → Y over y, but we won’t need this.) The question is local on
Y , indeed, we have to show that E is constructible if Y is affine. In this case
X is quasi-compact. Choose an affine scheme W and a surjective étale morphism
φ : W → X. Then AssXy (Fy) is the image of AssWy (φ∗Fy) for all y ∈ Y . Hence
the lemma follows from the case of schemes for the open φ−1(U) ⊂ W and the
morphism W → Y . The case of schemes is More on Morphisms, Lemma 25.5. □

5. Fitting ideals

0CZ3 This section is the continuation of the discussion in Divisors, Section 9. Let S be a
scheme. Let X be an algebraic space over S. Let F be a finite type, quasi-coherent
OX -module. In this situation we can construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OX
as the sequence of quasi-coherent sheaves ideals characterized by the following prop-
erty: for every affine U = Spec(A) étale over X if F|U corresponds to the A-module
M , then Fiti(F)|U corresponds to the ideal Fiti(M) ⊂ A. This is well defined and
a quasi-coherent sheaf of ideals because if A→ B is an étale ring map, then the ith
Fitting ideal of M ⊗AB over B is equal to Fiti(M)B by More on Algebra, Lemma
8.4 part (3). More precisely (perhaps), the existence of the quasi-coherent sheaves

https://stacks.math.columbia.edu/tag/0CV3
https://stacks.math.columbia.edu/tag/0CV4
https://stacks.math.columbia.edu/tag/0CVV
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of ideals Fit0(OX) follows (for example) from the description of quasi-coherent
sheaves in Properties of Spaces, Lemma 29.3 and the pullback property given in
Divisors, Lemma 9.1.

The advantage of constructing the Fitting ideals in this way is that we see immedi-
ately that formation of Fitting ideals commutes with étale localization hence many
properties of the Fitting ideals immediately reduce to the corresponding properties
in the case of schemes. Often we will use the discussion in Properties of Spaces,
Section 30 to do the translation between properties of quasi-coherent sheaves on
schemes and on algebraic spaces.

Lemma 5.1.0CZ4 Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a finite type, quasi-coherent OY -module. Then f−1Fiti(F) ·OX =
Fiti(f∗F).

Proof. Reduces to Divisors, Lemma 9.1 by étale localization. □

Lemma 5.2.0CZ5 Let S be a scheme. Let X be an algebraic space over S. Let F be a
finitely presented OX-module. Then Fitr(F) is a quasi-coherent ideal of finite type.

Proof. Reduces to Divisors, Lemma 9.2 by étale localization. □

Lemma 5.3.0CZ6 Let S be a scheme. Let X be an algebraic space over S. Let F be a
finite type, quasi-coherent OX-module. Let Z0 ⊂ X be the closed subspace cut out
by Fit0(F). Let Z ⊂ X be the scheme theoretic support of F . Then

(1) Z ⊂ Z0 ⊂ X as closed subspaces,
(2) |Z| = |Z0| = Supp(F) as closed subsets of |X|,
(3) there exists a finite type, quasi-coherent OZ0-module G0 with

(Z0 → X)∗G0 = F .

Proof. Recall that formation of Z commutes with étale localization, see Morphisms
of Spaces, Definition 15.4 (which uses Morphisms of Spaces, Lemma 15.3 to define
Z). Hence (1) and (2) follow from the case of schemes, see Divisors, Lemma 9.3.
To get G0 as in part (3) we can use that we have G on Z as in Morphisms of Spaces,
Lemma 15.3 and set G0 = (Z → Z0)∗G. □

Lemma 5.4.0CZ7 Let S be a scheme. Let X be an algebraic space over S. Let F be a
finite type, quasi-coherent OX-module. Let x ∈ |X|. Then F can be generated by r
elements in an étale neighbourhood of x if and only if Fitr(F)x = OX,x.

Proof. Reduces to Divisors, Lemma 9.4 by étale localization (as well as the de-
scription of the local ring in Properties of Spaces, Section 22 and the fact that the
strict henselization of a local ring is faithfully flat to see that the equality over the
strict henselization is equivalent to the equality over the local ring). □

Lemma 5.5.0CZ8 Let S be a scheme. Let X be an algebraic space over S. Let F be a
finite type, quasi-coherent OX-module. Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OX , and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OX for k ≥ r.

Proof. Reduces to Divisors, Lemma 9.5 by étale localization. □

https://stacks.math.columbia.edu/tag/0CZ4
https://stacks.math.columbia.edu/tag/0CZ5
https://stacks.math.columbia.edu/tag/0CZ6
https://stacks.math.columbia.edu/tag/0CZ7
https://stacks.math.columbia.edu/tag/0CZ8
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Lemma 5.6.0CZ9 Let S be a scheme. Let X be an algebraic space over S. Let F be a
finite type, quasi-coherent OX-module. The closed subspaces

X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties
(1) The intersection

⋂
Zr is empty.

(2) The functor (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subspace X \ Zr.
(3) The functor Fr : (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subspace Zr−1 \ Zr of X.
If F is of finite presentation, then Zr → X, X \ Zr → X, and Zr−1 \ Zr → X are
of finite presentation.

Proof. Reduces to Divisors, Lemma 9.6 by étale localization. □

Lemma 5.7.0CZA Let S be a scheme. Let X be an algebraic space over S. Let F be an
OX-module of finite presentation. Let X = Z−1 ⊂ Z0 ⊂ Z1 ⊂ . . . be as in Lemma
5.6. Set Xr = Zr−1 \ Zr. Then X ′ =

∐
r≥0 Xr represents the functor

Fflat : Sch/X −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

Moreover, F|Xr
is locally free of rank r and the morphisms Xr → X and X ′ → X

are of finite presentation.

Proof. Reduces to Divisors, Lemma 9.7 by étale localization. □

6. Effective Cartier divisors

083A For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else. Note that in Morphisms of Spaces, Section 13 we
discussed the correspondence between closed subspaces and quasi-coherent sheaves
of ideals. Moreover, in Properties of Spaces, Section 30, we discussed properties
of quasi-coherent modules, in particular “locally generated by 1 element”. These
references show that the following definition is compatible with the definition for
schemes.

Definition 6.1.083B Let S be a scheme. Let X be an algebraic space over S.
(1) A locally principal closed subspace of X is a closed subspace whose sheaf of

ideals is locally generated by 1 element.
(2) An effective Cartier divisor on X is a closed subspace D ⊂ X such that the

ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subspace, but the
converse is not always true. Effective Cartier divisors are closed subspaces of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.

https://stacks.math.columbia.edu/tag/0CZ9
https://stacks.math.columbia.edu/tag/0CZA
https://stacks.math.columbia.edu/tag/083B
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Lemma 6.2.083C Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be a closed subspace. The following are equivalent:

(1) The subspace D is an effective Cartier divisor on X.
(2) For some scheme U and surjective étale morphism U → X the inverse

image D ×X U is an effective Cartier divisor on U .
(3) For every scheme U and every étale morphism U → X the inverse image

D ×X U is an effective Cartier divisor on U .
(4) For every x ∈ |D| there exists an étale morphism (U, u)→ (X,x) of pointed

algebraic spaces such that U = Spec(A) and D ×X U = Spec(A/(f)) with
f ∈ A not a zerodivisor.

Proof. The equivalence of (1) – (3) follows from Definition 6.1 and the references
preceding it. Assume (1) and let x ∈ |D|. Choose a scheme W and a surjective
étale morphism W → X. Choose w ∈ D ×X W mapping to x. By (3) D ×X W is
an effective Cartier divisor on W . Hence we can find affine étale neighbourhood U
by choosing an affine open neighbourhood of w in W as in Divisors, Lemma 13.2.
Assume (4). Then we see that ID|U is invertible by Divisors, Lemma 13.2. Since
we can find an étale covering of X by the collection of all such U and X \ D, we
conclude that ID is an invertible OX -module. □

Lemma 6.3.083D Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a locally principal closed subspace. Let U = X \ Z. Then U → X is an affine
morphism.

Proof. The question is étale local on X, see Morphisms of Spaces, Lemmas 20.3
and Lemma 6.2. Thus this follows from the case of schemes which is Divisors,
Lemma 13.3. □

Lemma 6.4.083S Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Let U = X \D. Then U → X is an affine morphism
and U is scheme theoretically dense in X.

Proof. Affineness is Lemma 6.3. The density question is étale local on X by
Morphisms of Spaces, Definition 17.3. Thus this follows from the case of schemes
which is Divisors, Lemma 13.4. □

Lemma 6.5.083T Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Let x ∈ |D|. If dimx(X) < ∞, then dimx(D) <
dimx(X).

Proof. Both the definition of an effective Cartier divisor and of the dimension
of an algebraic space at a point (Properties of Spaces, Definition 9.1) are étale
local. Hence this lemma follows from the case of schemes which is Divisors, Lemma
13.5. □

Definition 6.6.083U Let S be a scheme. Let X be an algebraic space over S. Given
effective Cartier divisors D1, D2 on X we set D = D1 + D2 equal to the closed
subspace of X corresponding to the quasi-coherent sheaf of ideals ID1ID2 ⊂ OS .
We call this the sum of the effective Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

https://stacks.math.columbia.edu/tag/083C
https://stacks.math.columbia.edu/tag/083D
https://stacks.math.columbia.edu/tag/083S
https://stacks.math.columbia.edu/tag/083T
https://stacks.math.columbia.edu/tag/083U
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Lemma 6.7.083V The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Étale locally this reduces to the following simple algebra fact: if
f1, f2 ∈ A are nonzerodivisors of a ring A, then f1f2 ∈ A is a nonzerodivisor. □

Lemma 6.8.083W Let S be a scheme. Let X be an algebraic space over S. Let Z, Y be
two closed subspaces of X with ideal sheaves I and J . If IJ defines an effective
Cartier divisor D ⊂ X, then Z and Y are effective Cartier divisors and D = Z+Y .

Proof. By Lemma 6.2 this reduces to the case of schemes which is Divisors, Lemma
13.9. □

Recall that we have defined the inverse image of a closed subspace under any mor-
phism of algebraic spaces in Morphisms of Spaces, Definition 13.2.

Lemma 6.9.083X Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a locally principal closed subspace. Then the inverse
image f−1(Z) is a locally principal closed subspace of X ′.

Proof. Omitted. □

Definition 6.10.083Y Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D ⊂ X be an effective Cartier divisor. We say the pullback of D
by f is defined if the closed subspace f−1(D) ⊂ X ′ is an effective Cartier divisor.
In this case we denote it either f∗D or f−1(D) and we call it the pullback of the
effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice.

Lemma 6.11.083Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ Y be an effective Cartier divisor. The pullback of D by f
is defined in each of the following cases:

(1) f(x) ̸∈ |D| for any weakly associated point x of X,
(2) f is flat, and
(3) add more here as needed.

Proof. Working étale locally this lemma reduces to the case of schemes, see Divi-
sors, Lemma 13.13. □

Lemma 6.12.0840 Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D1, D2 be effective Cartier divisors on X. If the pullbacks of
D1 and D2 are defined then the pullback of D = D1 + D2 is defined and f∗D =
f∗D1 + f∗D2.

Proof. Omitted. □

7. Effective Cartier divisors and invertible sheaves

0CPG Since an effective Cartier divisor has an invertible ideal sheaf (Definition 6.1) the
following definition makes sense.

Definition 7.1.0841 Let S be a scheme. Let X be an algebraic space over S and let
D ⊂ X be an effective Cartier divisor with ideal sheaf ID.

https://stacks.math.columbia.edu/tag/083V
https://stacks.math.columbia.edu/tag/083W
https://stacks.math.columbia.edu/tag/083X
https://stacks.math.columbia.edu/tag/083Y
https://stacks.math.columbia.edu/tag/083Z
https://stacks.math.columbia.edu/tag/0840
https://stacks.math.columbia.edu/tag/0841
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(1) The invertible sheaf OX(D) associated to D is defined by
OX(D) = HomOX

(ID,OX) = I⊗−1
D .

(2) The canonical section, usually denoted 1 or 1D, is the global section of
OX(D) corresponding to the inclusion mapping ID → OX .

(3) We write OX(−D) = OX(D)⊗−1 = ID.
(4) Given a second effective Cartier divisor D′ ⊂ X we define OX(D −D′) =
OX(D)⊗OX

OX(−D′).

Some comments. We will see below that the assignment D 7→ OX(D) turns addition
of effective Cartier divisors (Definition 6.6) into addition in the Picard group of X
(Lemma 7.3). However, the expression D − D′ in the definition above does not
have any geometric meaning. More precisely, we can think of the set of effective
Cartier divisors on X as a commutative monoid EffCart(X) whose zero element is
the empty effective Cartier divisor. Then the assignment (D,D′) 7→ OX(D −D′)
defines a group homomorphism

EffCart(X)gp −→ Pic(X)
where the left hand side is the group completion of EffCart(X). In other words,
when we write OX(D−D′) we may think of D−D′ as an element of EffCart(X)gp.

Lemma 7.2.0B4F Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X be
an effective Cartier divisor. Then for the conormal sheaf we have CD/X = ID|D =
OX(D)⊗−1|D.

Proof. Omitted. □

Lemma 7.3.0842 Let S be a scheme. Let X be an algebraic space over S. Let D1,
D2 be effective Cartier divisors on X. Let D = D1 + D2. Then there is a unique
isomorphism

OX(D1)⊗OX
OX(D2) −→ OX(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. □

Definition 7.4.0843 Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible sheaf on X. A global section s ∈ Γ(X,L) is called a regular section
if the map OX → L, f 7→ fs is injective.

Lemma 7.5.0844 Let S be a scheme. Let X be an algebraic space over S. Let f ∈
Γ(X,OX). The following are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.
(3) for any affine U = Spec(A) étale over X the restriction f |U is a nonzero-

divisor of A, and
(4) there exists a scheme U and a surjective étale morphism U → X such that

f |U is a regular section of OU .

Proof. Omitted. □

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules on Sites, Lemma 32.4 for the dual invertible sheaf.)

https://stacks.math.columbia.edu/tag/0B4F
https://stacks.math.columbia.edu/tag/0842
https://stacks.math.columbia.edu/tag/0843
https://stacks.math.columbia.edu/tag/0844
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Definition 7.6.0845 Let S be a scheme. Let X be an algebraic space over S. Let L be
an invertible sheaf. Let s ∈ Γ(X,L). The zero scheme of s is the closed subspace
Z(s) ⊂ X defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image
of the map s : L⊗−1 → OX .

Lemma 7.7.0846 Let S be a scheme. Let X be an algebraic space over S. Let L be
an invertible OX-module. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of this
ordered set.

(2) For any morphism of algebraic spaces f : Y → X over S we have f∗s = 0
in Γ(Y, f∗L) if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subspace of X.
(4) The zero scheme Z(s) is an effective Cartier divisor on X if and only if s

is a regular section of L.

Proof. Omitted. □

Lemma 7.8.0847 Let S be a scheme. Let X be an algebraic space over S.
(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique iso-
morphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔

{
pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. □

8. Effective Cartier divisors on Noetherian spaces

0CPH In the locally Noetherian setting most of the discussion of effective Cartier divisors
and regular sections simplifies somewhat.

Lemma 8.1.0B4G Let S be a scheme and let X be a locally Noetherian algebraic space
over S. Let D ⊂ X be an effective Cartier divisor. If X is (Sk), then D is (Sk−1).

Proof. By our definition of the property (Sk) for algebraic spaces (Properties of
Spaces, Section 7) and Lemma 6.2 this follows from the case of schemes (Divisors,
Lemma 15.5). □

Lemma 8.2.0B4H Let S be a scheme and let X be a locally Noetherian normal algebraic
space over S. Let D ⊂ X be an effective Cartier divisor. Then D is (S1).

Proof. By our definition of normality for algebraic spaces (Properties of Spaces,
Section 7) and Lemma 6.2 this follows from the case of schemes (Divisors, Lemma
15.6). □

The following lemma can sometimes be used to produce effective Cartier divisors.

Lemma 8.3.0DML Let S be a scheme. Let X be a regular Noetherian separated algebraic
space over S. Let U ⊂ X be a dense affine open. Then there exists an effective
Cartier divisor D ⊂ X with U = X \D.

https://stacks.math.columbia.edu/tag/0845
https://stacks.math.columbia.edu/tag/0846
https://stacks.math.columbia.edu/tag/0847
https://stacks.math.columbia.edu/tag/0B4G
https://stacks.math.columbia.edu/tag/0B4H
https://stacks.math.columbia.edu/tag/0DML
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Proof. We claim that the reduced induced algebraic space structure D on X \
U (Properties of Spaces, Definition 12.5) is the desired effective Cartier divisor.
The construction of D commutes with étale localization, see proof of Properties of
Spaces, Lemma 12.3. Let X ′ → X be a surjective étale morphism with X ′ affine.
Since X is separated, we see that U ′ = X ′×X U is affine. Since |X ′| → |X| is open,
we see that U ′ is dense in X ′. Since D′ = X ′ ×X D is the reduced induced scheme
structure on X ′ \U ′, we conclude that D′ is an effective Cartier divisor by Divisors,
Lemma 16.6 and its proof. This is what we had to show. □

Lemma 8.4.0DMM Let S be a scheme. Let X be a regular Noetherian separated algebraic
space over S. Then every invertible OX-module is isomorphic to

OX(D −D′) = OX(D)⊗OX
OX(D′)⊗−1

for some effective Cartier divisors D,D′ in X.

Proof. Let L be an invertible OX -module. Choose a dense affine open U ⊂ X such
that L|U is trivial. This is possible because X has a dense open subspace which
is a scheme, see Properties of Spaces, Proposition 13.3. Denote s : OU → L|U the
trivialization. The complement of U is an effective Cartier divisor D. We claim
that for some n > 0 the map s extends uniquely to a map

s : OX(−nD) −→ L
The claim implies the lemma because it shows that L ⊗OX

OX(nD) has a regular
global section hence is isomorphic to OX(D′) for some effective Cartier divisor D′

by Lemma 7.8. To prove the claim we may work étale locally. Thus we may assume
X is an affine Noetherian scheme. Since OX(−nD) = In where I = OX(−D) is
the ideal sheaf of D in X, this case follows from Cohomology of Schemes, Lemma
10.5. □

The following lemma really belongs to a different section.

Lemma 8.5.0DMC Let R be a valuation ring with fraction field K. Let X be an algebraic
space over R such that X → Spec(R) is smooth. For every effective Cartier divisor
D ⊂ XK there exists an effective Cartier divisor D′ ⊂ X with D′

K = D.

Proof. Let D′ ⊂ X be the scheme theoretic image of D → XK → X. Since this
morphism is quasi-compact, formation of D′ commutes with flat base change, see
Morphisms of Spaces, Lemma 30.12. In particular we find that D′

K = D. Hence,
we may assume X is affine. Say X = Spec(A). Then XK = Spec(A⊗R K) and D
corresponds to an ideal I ⊂ A⊗R K. We have to show that J = I ∩A cuts out an
effective Cartier divisor in X. First, observe that A/J is flat over R (as a torsion
free R-module, see More on Algebra, Lemma 22.10), hence J is finitely generated
by More on Algebra, Lemma 25.6 and Algebra, Lemma 5.3. Thus it suffices to
show that Jq ⊂ Aq is generated by a single element for each prime q ⊂ A. Let
p = R ∩ q. Then Rp is a valuation ring (Algebra, Lemma 50.9). Observe further
that Aq/pAq is a regular ring by Algebra, Lemma 140.3. Thus we may apply More
on Algebra, Lemma 121.3 to see that I(Aq ⊗R K) is generated by a single element
f ∈ Ap ⊗R K. After clearing denominators we may assume f ∈ Aq. Let c ⊂ Rp be
the content ideal of f (see More on Algebra, Definition 24.1 and More on Flatness,
Lemma 19.6). Since Rp is a valuation ring and since c is finitely generated (More
on Algebra, Lemma 24.2) we see c = (π) for some π ∈ Rp (Algebra, Lemma 50.15).
After relacing f by π−1f we see that f ∈ Aq and f ̸∈ pAq. Claim: Iq = (f)

https://stacks.math.columbia.edu/tag/0DMM
https://stacks.math.columbia.edu/tag/0DMC
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which finishes the proof. To see the claim, observe that f ∈ Iq. Hence we have a
surjection Aq/(f) → Aq/Iq which is an isomorphism after tensoring over R with
K. Thus we are done if Aq/(f) is Rp-flat. This follows from Algebra, Lemma 128.5
and our choice of f . □

9. Relative effective Cartier divisors

0EPM The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.
Lemma 9.1.0EPN Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ X be a closed subspace. Assume

(1) D is an effective Cartier divisor, and
(2) D → Y is a flat morphism.

Then for every morphism of schemes g : Y ′ → Y the pullback (g′)−1D is an effective
Cartier divisor on X ′ = Y ′ ×Y X where g′ : X ′ → X is the projection.
Proof. Using Lemma 6.2 the property of being an effective Cartier divisor is étale
local. Thus this lemmma immediately reduces to the case of schemes which is
Divisors, Lemma 18.1. □

This lemma is the motivation for the following definition.
Definition 9.2.0EPP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. A relative effective Cartier divisor on X/Y is an effective Cartier
divisor D ⊂ X such that D → Y is a flat morphism of algebraic spaces.

10. Meromorphic functions and sections

0EN2 This section is the analogue of Divisors, Section 23. Beware: it is even easier to
make mistakes with this material in the case of algebraic space, than it is in the
case of schemes!
Let S be a scheme. Let X be an algebraic space over S. For any scheme U étale
over X we have defined the set S(U) ⊂ OX(U) of regular sections of OX over U , see
Definition 7.4. The restriction of a regular section to V/U étale is regular. Hence
S : U 7→ S(U) is a subsheaf (of sets) of OX . We sometimes denote S = SX if we
want to indicate the dependence on X. Moreover, S(U) is a multiplicative subset
of the ring OX(U) for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),
on Xétale and its sheafification, see Modules on Sites, Section 44.
Definition 10.1.0EN3 Let S be a scheme. Let X be an algebraic space over S. The
sheaf of meromorphic functions on X is the sheaf KX on Xétale associated to the
presheaf displayed above. A meromorphic function on X is a global section of KX .
Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the nat-
ural map of sheaves of rings OX → KX is injective. Moreover, by the compatibility
of sheafification and taking stalks we see that

KX,x = S−1
x OX,x

for any geometric point x of X. The set Sx is a subset of the set of nonzerodivisors
of OX,x, but in general not equal to this.

https://stacks.math.columbia.edu/tag/0EPN
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Lemma 10.2.0EN4 Let S be a scheme. Let X be an algebraic space over S. For U
affine and étale over X the set SX(U) is the set of nonzerodivisors in OX(U).

Proof. Follows from Lemma 7.5. □

Next, let F be a sheaf of OX -modules on Xétale. Consider the presheaf U 7→
S(U)−1F(U). Its sheafification is the sheaf F ⊗OX

KX , see Modules on Sites,
Lemma 44.2.

Definition 10.3.0EN5 Let S be a scheme. Let X be an algebraic space over S. Let F
be a sheaf of OX -modules on Xétale.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX

KX (see
above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have
KX(F)x = Fx ⊗OX,x

KX,x = S−1
x Fx

for any geometric point x of X. However, one has to be careful since it may not
be the case that Sx is the set of nonzerodivisors in the étale local ring OX,x as we
pointed out above. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Lemma 10.4.0EN6 Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1.

Then
(1) KX is a quasi-coherent sheaf of OX-algebras,
(2) for U ∈ Xétale affine KX(U) is the total ring of fractions of OX(U),
(3) for a geometric point x the set Sx the set of nonzerodivisors of OX,x, and
(4) for a geometric point x the ring KX,x is the total ring of fractions of OX,x.

Proof. By Lemma 7.5 we see that U ∈ Xétale affine SX(U) ⊂ OX(U) is the set of
nonzerodivisors in OX(U). Thus the presheaf S−1OX is equal to

U 7−→ Q(OX(U))
on Xaffine,étale, with notation as in Algebra, Example 9.8. Observe that the codi-
mension 0 points of X correspond to the generic points of U , see Properties of
Spaces, Lemma 11.1. Hence if U = Spec(A), then A is a ring with finitely many
minimal primes such that any weakly associated prime of A is minimal. The same is
true for any étale extension of A (because the spectrum of such is an affine scheme
étale over X hence can play the role of A in the previous sentence). In order to
show that our presheaf is a sheaf and quasi-coherent it suffices to show that

Q(A)⊗A B −→ Q(B)
is an isomorphism when A → B is an étale ring map, see Properties of Spaces,
Lemma 29.3. (To define the displayed arrow, observe that since A → B is flat it
maps nonzerodivisors to nonzerodivisors.) By Algebra, Lemmas 25.4 and 66.7. we
have

Q(A) =
∏

p⊂A minimal
Ap and Q(B) =

∏
q⊂B minimal

Bq

https://stacks.math.columbia.edu/tag/0EN4
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Since A → B is étale, the minimal primes of B are exactly the primes of B lying
over the minimal primes of A (for example by More on Algebra, Lemma 44.2). By
Algebra, Lemmas 153.10, 153.3 (13), and 153.5 we see that Ap ⊗A B is a finite
product of local rings finite étale over Ap. This cleary implies that Ap ⊗A B =∏

q lies over pBq as desired.
At this point we know that (1) and (2) hold. Proof of (3). Let s ∈ OX,x be a
nonzerodivisor. Then we can find an étale neighbourhood (U, u) → (X,x) and
f ∈ OX(U) mapping to s. Let u ∈ U be the point determined by u. Since
OU,u → OX,x is faithfully flat (as a strict henselization), we see that f maps to a
nonzerodivisor in OU,u. By Divisors, Lemma 23.6 after shrinking U we find that
f is a nonzerodivisor and hence a section of SX(U). Part (4) follows from (3) by
computing stalks. □

Lemma 10.5.0EN7 Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1.
(c) X is representable by a scheme X0 (awkward but temporary notation).

Then the sheaf of meromorphic functions KX is the quasi-coherent sheaf of OX-
algebras associated to the quasi-coherent sheaf of meromorphic functions KX0 .

Proof. For the equivalence between QCoh(OX) and QCoh(OX0), please see Prop-
erties of Spaces, Section 29. The lemma is true because KX and KX0 are quasi-
coherent and have the same value on corresponding affine opens of X and X0 by
Lemma 10.4 and Divisors, Lemma 23.6. □

Definition 10.6.0EN8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that pullbacks of meromorphic functions are defined for f if
for every commutative diagram

U //

��

X

��
V // Y

with U ∈ Xétale and V ∈ Yétale and any section s ∈ SY (V ) the pullback f ♯(s) ∈
OX(U) is an element of SX(U).

In this case there is an induced map f ♯ : f−1
smallKY → KX , in other words we obtain

a commutative diagram of morphisms of ringed topoi

(Sh(Xétale),KX) //

fsmall

��

(Sh(Xétale),OX)

fsmall

��
(Sh(Yétale),KY ) // (Sh(Yétale),OY )

We sometimes denote f∗(s) = f ♯(s) for a section s ∈ Γ(Y,KY ).

Lemma 10.7.0EN9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Pullbacks of meromorphic sections are defined in each of the follow-
ing cases

(1) weakly associated points of X are mapped to points of codimension 0 on Y ,
(2) f is flat,

https://stacks.math.columbia.edu/tag/0EN7
https://stacks.math.columbia.edu/tag/0EN8
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(3) add more here as needed.

Proof. Working étale locally, this translates into the case of schemes, see Divisors,
Lemma 23.5. To do the translation use Lemma 7.5 (description of regular sections),
Definition 2.2 (definition of weakly associated points), and Properties of Spaces,
Lemma 11.1 (description of codimension 0 points). □

Lemma 10.8.0ENA Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1,
(c) every codimension 0 point of X can be represented by a monomorphism

Spec(k)→ X.
Let X0 ⊂ |X| be the set of codimension 0 points of X. Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η) → X is the canonical map of Schemes, Section 13; this
makes sense because X0 is contained in the schematic locus of X. Similarly, for
every quasi-coherent OX-module F we obtain the formula

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

for the sheaf of meromorphic sections of F . Finally, the ring of rational functions
of X is the ring of meromorphic functions on X, in a formula: R(X) = Γ(X,KX).

Proof. By Decent Spaces, Lemma 20.3 and Section 6 we see that X is decent1.
Thus X0 ⊂ |X| is the set of generic points of irreducible components (Decent
Spaces, Lemma 20.1) and X0 is locally finite in |X| by (b). It follows that X0 is
contained in every dense open subset of |X|. In particular, X0 is contained in the
schematic locus (Decent Spaces, Theorem 10.2). Thus the local rings OX,η and the
morphisms jη are defined.
Observe that a locally finite direct sum of sheaves of modules is equal to the product.
This and the fact that X0 is locally finite in |X| explains the equalities between
direct sums and products in the statement. Then since KX(F) = F ⊗OX

KX we
see that the second equality follows from the first.
Let j : Y =

∐
η∈X0 Spec(OX,η)→ X be the product of the morphisms jη. We have

to show that KX = j∗OY . Observe that KY = OY as Y is a disjoint union of spectra
of local rings of dimension 0: in a local ring of dimension zero any nonzerodivisor
is a unit. Next, note that pullbacks of meromorphic functions are defined for j by
Lemma 10.7. This gives a map

KX −→ j∗OY .
Let U ∈ Xétale be affine. By Lemma 10.4 the left hand side evaluates to total
ring of fractions of OX(U). On the other hand, the right hand side is equal to the
product of the local rings of U at the codimension 0 points, i.e., the generic points
of U . These two rings are equal (as we already saw in the proof of Lemma 10.4) by
Algebra, Lemmas 25.4 and 66.7. Thus our map is an isomorphism.
Finally, we have to show that R(X) = Γ(X,KX). This follows from the case of
schemes (Divisors, Lemma 23.6) applied to the schematic locus X ′ ⊂ X. Namely,

1Conversely, if X is decent, then condition (c) holds automatically.

https://stacks.math.columbia.edu/tag/0ENA
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the ring of rational functions of X is by definition the same as the ring of rational
functions on X ′ as it is a dense open subspace of X (see above). Certainly, R(X ′)
agrees with the ring of rational functions when X ′ is viewed as a scheme. On
the other hand, by our description of KX above, and the fact, seen above, that
X0 ⊂ |X ′| is contained in any dense open, we see that Γ(X,KX) = Γ(X ′,KX′).
Finally, use the compatibility recorded in Lemma 10.5. □

Definition 10.9.0ENB Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible OX -module. A meromorphic section s of L is said to be regular if
the induced map KX → KX(L) is injective.

Let us spell out when (regular) meromorphic sections can be pulled back.

Lemma 10.10.0ENC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that pullbacks of meromorphic functions are defined for f
(see Definition 10.6).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map f∗ :
Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX-module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. □

Lemma 10.11.0EPQ Let S be a scheme. Let X be an algebraic space over S satisfying
(a), (b), and (c) of Lemma 10.8. Then every invertible OX-module L has a regular
meromorphic section.

Proof. With notation as in Lemma 10.8 the stalk Lη of L at is defined for all
η ∈ X0 and it is a rank 1 free OX,η-module. Pick a generator sη ∈ Lη for all
η ∈ X0. It follows immediately from the description of KX and KX(L) in Lemma
10.8 that s =

∏
sη is a regular meromorphic section of L. □

11. Relative Proj

0848 This section revisits the construction of the relative proj in the setting of algebraic
spaces. The material in this section corresponds to the material in Constructions,
Section 16 and Divisors, Section 30 in the case of schemes.

Situation 11.1.0849 Here S is a scheme, X is an algebraic space over S, and A is a
quasi-coherent graded OX -algebra.

In Situation 11.1 we are going to define a functor F : (Sch/S)oppfppf → Sets which will
turn out to be an algebraic space. We will follow (mutatis mutandis) the procedure
of Constructions, Section 16. First, given a scheme T over S we define a quadruple
over T to be a system (d, f : T → X,L, ψ)

(1) d ≥ 1 is an integer,
(2) f : T → X is a morphism over S,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.

https://stacks.math.columbia.edu/tag/0ENB
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We say two quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent2 if and only
if we have f = f ′ and for some positive integer m = ad = a′d′ there exists an
isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and ψ′|f∗A(m)

agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn. Given a quadruple (d, f,L, ψ)
and a morphism h : T ′ → T we have the pullback (d, f ◦ h, h∗L, h∗ψ). Pullback
preserves the equivalence relation. Finally, for a quasi-compact scheme T over S we
set

F (T ) = the set of equivalence classes of quadruples over T

and for an arbitrary scheme T over S we set

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . Thus
we have defined our functor

(11.1.1)084A F : Schopp −→ Sets

There is a morphism F → X of functors sending the quadruple (d, f,L, ψ) to f .

Lemma 11.2.084B In Situation 11.1. The functor F above is an algebraic space. For
any morphism g : Z → X where Z is a scheme there is a canonical isomorphism
Proj

Z
(g∗A) = Z ×X F compatible with further base change.

Proof. It suffices to prove the second assertion, see Spaces, Lemma 11.3. Let
g : Z → X be a morphism where Z is a scheme. Let F ′ be the functor of quadru-
ples associated to the graded quasi-coherent OZ-algebra g∗A. Then there is a
canonical isomorphism F ′ = Z ×X F , sending a quadruple (d, f : T → Z,L, ψ) for
F ′ to (d, g ◦ f,L, ψ) (details omitted, see proof of Constructions, Lemma 16.1). By
Constructions, Lemmas 16.4, 16.5, and 16.6 and Definition 16.7 we see that F ′ is
representable by Proj

Z
(g∗A). □

The lemma above tells us the following definition makes sense.

Definition 11.3.084C Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of graded OX -algebras. The relative homogeneous
spectrum of A over X, or the homogeneous spectrum of A over X, or the relative
Proj of A over X is the algebraic space F over X of Lemma 11.2. We denote it
π : Proj

X
(A)→ X.

In particular the structure morphism of the relative Proj is representable by con-
struction. We can also think about the relative Proj via glueing. Let φ : U → X be
a surjective étale morphism, where U is a scheme. Set R = U ×X U with projection
morphisms s, t : R→ U . By Lemma 11.2 there exists a canonical isomorphism

γ : Proj
U

(φ∗A) −→ Proj
X

(A)×X U

2This definition is motivated by Constructions, Lemma 16.4. The advantage of choosing this
one is that it clearly defines an equivalence relation.
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over U . Let α : t∗φ∗A → s∗φ∗A be the canonical isomorphism of Properties of
Spaces, Proposition 32.1. Then the diagram

Proj
U

(φ∗A)×U,s R Proj
R

(s∗φ∗A)

induced by α

��

Proj
X

(A)×X R

s∗γ

55

t∗γ

))
Proj

U
(φ∗A)×U,t R Proj

R
(t∗φ∗A)

is commutative (the equal signs come from Constructions, Lemma 16.10). Thus,
if we denote AU , AR the pullback of A to U , R, then P = Proj

X
(A) has an

étale covering by the scheme PU = Proj
U

(AU ) and PU ×P PU is equal to PR =
Proj

R
(AR). Using these remarks we can argue in the usual fashion using étale

localization to transfer results on the relative proj from the case of schemes to the
case of algebraic spaces.

Lemma 11.4.084D In Situation 11.1. The relative Proj comes equipped with a quasi-
coherent sheaf of Z-graded algebras

⊕
n∈ZOProj

X
(A)(n) and a canonical homomor-

phism of graded algebras

ψ : π∗A −→
⊕

n≥0
OProj

X
(A)(n)

whose base change to any scheme over X agrees with Constructions, Lemma 15.5.

Proof. As in the discussion following Definition 11.3 choose a scheme U and a
surjective étale morphism U → X, set R = U ×X U with projections s, t : R→ U ,
AU = A|U , AR = A|R, and π : P = Proj

X
(A) → X, πU : PU = Proj

U
(AU )

and πR : PR = Proj
U

(AR). By the Constructions, Lemma 15.5 we have a quasi-
coherent sheaf of Z-graded OPU

-algebras
⊕

n∈ZOPU
(n) and a canonical map ψU :

π∗
UAU →

⊕
n≥0OPU

(n) and similarly for PR. By Constructions, Lemma 16.10 the
pullback of OPU

(n) and ψU by either projection PR → PU is equal to OPR
(n) and

ψR. By Properties of Spaces, Proposition 32.1 we obtain OP (n) and ψ. We omit
the verification of compatibility with pullback to arbitrary schemes over X. □

Having constructed the relative Proj we turn to some basic properties.

Lemma 11.5.085C Let S be a scheme. Let g : X ′ → X be a morphism of algebraic
spaces over S and let A be a quasi-coherent sheaf of graded OX-algebras. Then
there is a canonical isomorphism

r : Proj
X′(g∗A) −→ X ′ ×X Proj

X
(A)

as well as a corresponding isomorphism

θ : r∗pr∗
2

(⊕
d∈Z
OProj

X
(A)(d)

)
−→

⊕
d∈Z
OProj

X′ (g∗A)(d)

of Z-graded OProj
X′ (g∗A)-algebras.

Proof. Let F be the functor (11.1.1) and let F ′ be the corresponding functor
defined using g∗A on X ′. We claim there is a canonical isomorphism r : F ′ →
X ′ ×X F of functors (and of course r is the isomorphism of the lemma). It suffices

https://stacks.math.columbia.edu/tag/084D
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to construct the bijection r : F ′(T )→ X ′(T )×X(T )F (T ) for quasi-compact schemes
T over S. First, if ξ = (d′, f ′,L′, ψ′) is a quadruple over T for F ′, then we can set
r(ξ) = (f ′, (d′, g ◦ f ′,L′, ψ′)). This makes sense as (g ◦ f ′)∗A(d) = (f ′)∗(g∗A)(d).
The inverse map sends the pair (f ′, (d, f,L, ψ)) to the quadruple (d, f ′,L, ψ). We
omit the proof of the final assertion (hint: reduce to the case of schemes by étale
localization and apply Constructions, Lemma 16.10). □

Lemma 11.6.084E In Situation 11.1 the morphism π : Proj
X

(A)→ X is separated.

Proof. By Morphisms of Spaces, Lemma 4.12 and the construction of the relative
Proj this follows from the case of schemes which is Constructions, Lemma 16.9. □

Lemma 11.7.084F In Situation 11.1. If one of the following holds
(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then π : Proj
X

(A)→ X is quasi-compact.

Proof. By Morphisms of Spaces, Lemma 8.8 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.1. □

Lemma 11.8.084G In Situation 11.1. If A is of finite type as a sheaf of OX-algebras,
then π : Proj

X
(A)→ X is of finite type.

Proof. By Morphisms of Spaces, Lemma 23.4 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.2. □

Lemma 11.9.084H In Situation 11.1. If OX → A0 is an integral algebra map3 and A
is of finite type as an A0-algebra, then π : Proj

X
(A)→ X is universally closed.

Proof. By Morphisms of Spaces, Lemma 9.5 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.3. □

Lemma 11.10.084I In Situation 11.1. The following conditions are equivalent
(1) A0 is a finite type OX-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OX-module and A is of finite type as an OX-algebra.

If these conditions hold, then π : Proj
X

(A)→ X is proper.

Proof. By Morphisms of Spaces, Lemma 40.2 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.3. □

Lemma 11.11.085D Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of graded OX-modules generated as an A0-algebra by A1.
With P = Proj

X
(A) we have

(1) P represents the functor F1 which associates to T over S the set of iso-
morphism classes of triples (f,L, ψ), where f : T → X is a morphism over
S, L is an invertible OT -module, and ψ : f∗A →

⊕
n≥0 L⊗n is a map of

graded OT -algebras inducing a surjection f∗A1 → L,
(2) the canonical map π∗A1 → OP (1) is surjective, and

3In other words, the integral closure of OX in A0, see Morphisms of Spaces, Definition 48.2,
equals A0.
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(3) each OP (n) is invertible and the multiplication maps induce isomorphisms
OP (n)⊗OP

OP (m) = OP (n+m).

Proof. Omitted. See Constructions, Lemma 16.11 for the case of schemes. □

12. Functoriality of relative proj

085E This section is the analogue of Constructions, Section 18.

Lemma 12.1.085F Let S be a scheme. Let X be an algebraic space over S. Let
ψ : A → B be a map of quasi-coherent graded OX-algebras. Set P = Proj

X
(A)→ X

and Q = Proj
X

(B) → X. There is a canonical open subspace U(ψ) ⊂ Q and a
canonical morphism of algebraic spaces

rψ : U(ψ) −→ P

over X and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OP (d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any scheme W étale
over X the triple

(U(ψ)×X W, rψ|U(ψ)×XW : U(ψ)×X W → P ×X W, θ|U(ψ)×XW )
is equal to the triple associated to ψ : A|W → B|W of Constructions, Lemma 18.1.

Proof. This lemma follows from étale localization and the case of schemes, see
discussion following Definition 11.3. Details omitted. □

Lemma 12.2.085G Let S be a scheme. Let X be an algebraic space over S. Let A,
B, and C be quasi-coherent graded OX-algebras. Set P = Proj

X
(A), Q = Proj

X
(B)

and R = Proj
X

(C). Let φ : A → B, ψ : B → C be graded OX-algebra maps. Then
we have

U(ψ ◦ φ) = r−1
φ (U(ψ)) and rψ◦φ = rφ ◦ rψ|U(ψ◦φ).

In addition we have
θψ ◦ r∗

ψθφ = θψ◦φ

with obvious notation.

Proof. Omitted. □

Lemma 12.3.085H With hypotheses and notation as in Lemma 12.1 above. Assume
Ad → Bd is surjective for d≫ 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ R is a closed immersion, and
(3) the maps θ : r∗

ψOP (n) → OQ(n) are surjective but not isomorphisms in
general (even if A → B is surjective).

Proof. Follows from the case of schemes (Constructions, Lemma 18.3) by étale
localization. □

Lemma 12.4.085I With hypotheses and notation as in Lemma 12.1 above. Assume
Ad → Bd is an isomorphism for all d≫ 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is an isomorphism, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.
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Proof. Follows from the case of schemes (Constructions, Lemma 18.4) by étale
localization. □

Lemma 12.5.085J With hypotheses and notation as in Lemma 12.1 above. Assume
Ad → Bd is surjective for d≫ 0 and that A is generated by A1 over A0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is a closed immersion, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 18.5) by étale
localization. □

13. Invertible sheaves and morphisms into relative Proj

0D2Y It seems that we may need the following lemma somewhere. The situation is the
following:

(1) Let S be a scheme and Y an algebraic space over S.
(2) Let A be a quasi-coherent graded OY -algebra.
(3) Denote π : Proj

Y
(A)→ Y the relative Proj of A over Y .

(4) Let f : X → Y be a morphism of algebraic spaces over S.
(5) Let L be an invertible OX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of graded OX -algebras.

Given this data let U(ψ) ⊂ X be the open subspace with

|U(ψ)| =
⋃

d≥1
{locus where f∗Ad → L⊗d is surjective}

Formation of U(ψ) ⊂ X commutes with pullback by any morphism X ′ → X.

Lemma 13.1.0D2Z With assumptions and notation as above. The morphism ψ induces
a canonical morphism of algebraic spaces over Y

rL,ψ : U(ψ) −→ Proj
Y

(A)

together with a map of graded OU(ψ)-algebras

θ : r∗
L,ψ

(⊕
d≥0
OProj

Y
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:
(1) For V → Y étale and d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(V ×Y X,L⊗d)

restrict

��
Γ(V ×Y Proj

Y
(A),OProj

Y
(A)(d)) θ // Γ(V ×Y U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any morphism W → X where W is a scheme such

that ψ|W : f∗Ad|W → L⊗d|W is surjective we have (a) W → X factors
through U(ψ) and (b) composition of W → U(ψ) with rL,ψ agrees with the
morphism W → Proj

Y
(A) which exists by the construction of Proj

Y
(A),

see Definition 11.3.
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(3) Consider a commutative diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where X ′ and Y ′ are schemes, set A′ = g∗A and L′ = (g′)∗L and denote
ψ′ : (f ′)∗A →

⊕
d≥0(L′)⊗d the pullback of ψ. Let U(ψ′), rψ′,L′ , and θ′

be the open, morphism, and homomorphism constructed in Constructions,
Lemma 13.1. Then U(ψ′) = (g′)−1(U(ψ)) and rψ′,L′ agrees with the base
change of rψ,L via the isomorphism Proj

Y ′(A′) = Y ′×Y Proj
Y

(A) of Lemma
11.5. Moreover, θ′ is the pullback of θ.

Proof. Omitted. Hints: First we observe that for a quasi-compact scheme W over
X the following are equivalent

(1) W → X factors through U(ψ), and
(2) there exists a d such that ψ|W : f∗Ad|W → L⊗d|W is surjective.

This gives a description of U(ψ) as a subfunctor ofX on our base category (Sch/S)fppf .
For such a W and d we consider the quadruple (d,W → Y,L|W , ψ(d)|W ). By def-
inition of Proj

Y
(A) we obtain a morphism W → Proj

Y
(A). By our notion of

equivalence of quadruples one sees that this morphism is independent of the choice
of d. This clearly defines a transformation of functors rψ,L : U(ψ) → Proj

Y
(A),

i.e., a morphism of algebraic spaces. By construction this morphism satisfies (2).
Since the morphism constructed in Constructions, Lemma 19.1 satisfies the same
property, we see that (3) is true.
To construct θ and check the compatibility (1) of the lemma, work étale locally on
Y and X, arguing as in the discussion following Definition 11.3. □

14. Relatively ample sheaves

0D30 This section is the analogue of Morphisms, Section 37 for algebraic spaces. Our
definition of a relatively ample invertible sheaf is as follows.

Definition 14.1.0D31 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. We say L is relatively ample,
or f -relatively ample, or ample on X/Y , or f -ample if f : X → Y is representable
and for every morphism Z → Y where Z is a scheme, the pullback LZ of L to
XZ = Z ×Y X is ample on XZ/Z as in Morphisms, Definition 37.1.

We will almost always reduce questions about relatively ample invertible sheaves
to the case of schemes. Thus in this section we have mainly sanity checks.

Lemma 14.2.0D32 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX-module. Assume Y is a scheme. The
following are equivalent

(1) L is ample on X/Y in the sense of Definition 14.1, and
(2) X is a scheme and L is ample on X/Y in the sense of Morphisms, Defini-

tion 37.1.

Proof. This follows from the definitions and Morphisms, Lemma 37.9 (which says
that being relatively ample for schemes is preserved under base change). □
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Lemma 14.3.0D33 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX-module. Let Y ′ → Y be a morphism of
algebraic spaces over S. Let f ′ : X ′ → Y ′ be the base change of f and denote L′

the pullback of L to X ′. If L is f -ample, then L′ is f ′-ample.

Proof. This follows immediately from the definition! (Hint: transitivity of base
change.) □

Lemma 14.4.0D34 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If there exists an f -ample invertible sheaf, then f is representable,
quasi-compact, and separated.

Proof. This is clear from the definitions and Morphisms, Lemma 37.3. (If in doubt,
take a look at the principle of Algebraic Spaces, Lemma 5.8.) □

Lemma 14.5.0D35 Let V → U be a surjective étale morphism of affine schemes. Let X
be an algebraic space over U . Let L be an invertible OX-module. Let Y = V ×U X
and let N be the pullback of L to Y . The following are equivalent

(1) L is ample on X/U , and
(2) N is ample on Y/V .

Proof. The implication (1) ⇒ (2) follows from Lemma 14.3. Assume (2). This
implies that Y → V is quasi-compact and separated (Lemma 14.4) and Y is a
scheme. It follows that the morphism f : X → U is quasi-compact and separated
(Morphisms of Spaces, Lemmas 8.8 and 4.12). Set A =

⊕
d≥0 f∗L⊗d. This is a

quasi-coherent sheaf of graded OU -algebras (Morphisms of Spaces, Lemma 11.2).
By adjunction we have a map ψ : f∗A →

⊕
d≥0 L⊗d. Applying Lemma 13.1 we

obtain an open subspace U(ψ) ⊂ X and a morphism
rL,ψ : U(ψ)→ Proj

U
(A)

Since h : V → U is étale we have A|V = (Y → V )∗(
⊕

d≥0N⊗d), see Properties of
Spaces, Lemma 26.2. It follows that the pullback ψ′ of ψ to Y is the adjunction
map for the situation (Y → V,N ) as in Morphisms, Lemma 37.4 part (5). Since
N is ample on Y/V we conclude from the lemma just cited that U(ψ′) = Y and
that rN ,ψ′ is an open immersion. Since Lemma 13.1 tells us that the formation of
rL,ψ commutes with base change, we conclude that U(ψ) = X and that we have a
commutative diagram

Y
r′
//

��

Proj
V

(A|V )

��

// V

��
X

r // Proj
U

(A) // U

whose squares are fibre products. We conclude that r is an open immersion by
Morphisms of Spaces, Lemma 12.1. Thus X is a scheme. Then we can apply
Morphisms, Lemma 37.4 part (5) to conclude that L is ample on X/U . □

Lemma 14.6.0D36 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX-module. The following are equivalent

(1) L is ample on X/Y ,
(2) for every scheme Z and every morphism Z → Y the algebraic space XZ =

Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z,
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(3) for every affine scheme Z and every morphism Z → Y the algebraic space
XZ = Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z,

(4) there exists a scheme V and a surjective étale morphism V → Y such that
the algebraic space XV = V ×Y X is a scheme and the pullback LV is ample
on XV /V .

Proof. Parts (1) and (2) are equivalent by definition. The implication (2) ⇒ (3)
is immediate. If (3) holds and Z → Y is as in (2), then we see that XZ → Z is
affine locally on Z representable. Hence XZ is a scheme for example by Properties
of Spaces, Lemma 13.1. Then it follows that LZ is ample on XZ/Z because it holds
locally on Z and we can use Morphisms, Lemma 37.4. Thus (1), (2), and (3) are
equivalent. Clearly these conditions imply (4).

Assume (4). Let Z → Y be a morphism with Z affine. Then U = V ×Y Z → Z is a
surjective étale morphism such that the pullback of LZ by XU → XZ is relatively
ample on XU/U . Of course we may replace U by an affine open. It follows that LZ
is ample on XZ/Z by Lemma 14.5. Thus (4) ⇒ (3) and the proof is complete. □

Lemma 14.7.0GUQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is quasi-affine if and only if OX is f -relatively ample.

Proof. Follows from the case of schemes, see Morphisms, Lemma 37.6. □

15. Relative ampleness and cohomology

0D37 This section contains some results related to the results in Cohomology of Schemes,
Sections 21 and 17.

The following lemma is just an example of what we can do.

Lemma 15.1.0D38 Let R be a Noetherian ring. Let X be an algebraic space over R
such that the structure morphism f : X → Spec(R) is proper. Let L be an invertible
OX-module. The following are equivalent

(1) L is ample on X/R (Definition 14.1),
(2) for every coherent OX-module F there exists an n0 ≥ 0 such that Hp(X,F⊗
L⊗n) = 0 for all n ≥ n0 and p > 0.

Proof. The implication (1) ⇒ (2) follows from Cohomology of Schemes, Lemma
16.1 because assumption (1) implies that X is a scheme. The implication (2) ⇒
(1) is Cohomology of Spaces, Lemma 16.9. □

Lemma 15.2.0D39 Let Y be a Noetherian scheme. Let X be an algebraic space over
Y such that the structure morphism f : X → Y is proper. Let L be an invertible
OX-module. Let F be a coherent OX-module. Let y ∈ Y be a point such that Xy is
a scheme and Ly is ample on Xy. Then there exists a d0 such that for all d ≥ d0
we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.
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Proof. Note thatOY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (13.1.1). This is a flat morphism as it
identifies local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change
of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Cohomology of Spaces,
Lemma 11.2. Moreover, the fibres Xy and X ′

y are identified. Hence we may assume
that Y = Spec(A) is the spectrum of a Noetherian local ring (A,m, κ) and y ∈ Y
corresponds to m. In this case Rpf∗(F ⊗OX

L⊗d)y = Hp(X,F ⊗OX
L⊗d) for all

p ≥ 0. Denote fy : Xy → Spec(κ) the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-coherent
graded OXy

-algebras. We will use notation as in Cohomology of Spaces, Section 22
with I replaced by m. Since Xy is the closed subspace of X cut out by mOX we
may think of mnF/mn+1F as a coherent OXy

-module, see Cohomology of Spaces,
Lemma 12.8. Then

⊕
n≥0 m

nF/mn+1F is a quasi-coherent graded B-module of
finite type because it is generated in degree zero over B abd because the degree
zero part is Fy = F/mF which is a coherent OXy

-module. Hence by Cohomology
of Schemes, Lemma 19.3 part (2) there exists a d0 such that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Cohomology of Spaces, Lemma 8.3 this is
the same as the statement that Hp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0,
d ≥ d0, and n ≥ 0.

Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0

of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain
short exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude
(using induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF ⊗OX
L⊗d) → H0(Xy,Fy ⊗OXy

L⊗d
y ) is surjective for all

d ≥ d0 and n ≥ 1.
By the theorem on formal functions (Cohomology of Spaces, Theorem 22.5) we find
that the m-adic completion of Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0.
Since Hp(X,F ⊗OX

L⊗d) is a finite A-module by Cohomology of Spaces, Lemma
20.3 it follows from Nakayama’s lemma (Algebra, Lemma 20.1) that Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. For p = 0 we deduce from Cohomology of
Spaces, Lemma 22.4 part (3) that H0(X,F ⊗OX

L⊗d)→ H0(Xy,Fy ⊗OXy
L⊗d
y ) is

surjective, which gives the final statement of the lemma. □

Lemma 15.3.0D3A (For a more general version see Descent on Spaces, Lemma 13.2).
Let Y be a Noetherian scheme. Let X be an algebraic space over Y such that the
structure morphism f : X → Y is proper. Let L be an invertible OX-module. Let
y ∈ Y be a point such that Xy is a scheme and Ly is ample on Xy. Then there is
an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on f−1(V )/V (as
in Definition 14.1).
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Proof. Pick d0 as in Lemma 15.2 for F = OX . Pick d ≥ d0 so that we can find
r ≥ 0 and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion
φy = φL⊗d

y ,(sy,0,...,sy,r) : Xy → Pr
κ(y).

This is possible by Morphisms, Lemma 39.4 but we also use Morphisms, Lemma
41.7 to see that φy is a closed immersion and Constructions, Section 13 for the
description of morphisms into projective space in terms of invertible sheaves and
sections. By our choice of d0, after replacing Y by an open neighbourhood of y,
we can choose s0, . . . , sr ∈ H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi

⊂ X be
the open subspace where si is a generator of L⊗d. Since the sy,i generate L⊗d

y we
see that |Xy| ⊂ U =

⋃
|Xsi |. Since X → Y is closed, we see that there is an open

neighbourhood y ∈ V ⊂ Y such that |f |−1(V ) ⊂ U . After replacing Y by V we
may assume that the si generate L⊗d. Thus we obtain a morphism

φ = φL⊗d,(s0,...,sr) : X −→ Pr
Y

with L⊗d ∼= φ∗OPr
Y

(1) whose base change to y gives φy (strictly speaking we need
to write out a proof that the construction of morphisms into projective space given
in Constructions, Section 13 also works to describe morphisms of algebraic spaces
into projective space; we omit the details).
We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that φ is a closed immersion after base changing to an open neighbourhood
of y. Namely, by Cohomology of Spaces, Lemma 23.2 we see that φ is a finite over
an open neighbourhood of the fibre Pr

κ(y) of Pr
Y → Y above y. Using that Pr

Y → Y

is closed, after shrinking Y we may assume that φ is finite. In particular X is a
scheme. Then L⊗d ∼= φ∗OPr

Y
(1) is ample by the very general Morphisms, Lemma

37.7. □

16. Closed subspaces of relative proj

085K Some auxiliary lemmas about closed subspaces of relative proj. This section is the
analogue of Divisors, Section 31.

Lemma 16.1.085L Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent graded OX-algebra. Let π : P = Proj

X
(A) → X be the relative

Proj of A. Let i : Z → P be a closed subspace. Denote I ⊂ A the kernel of the
canonical map

A −→
⊕

d≥0
π∗ ((i∗OZ)(d))

If π is quasi-compact, then there is an isomorphism Z = Proj
X

(A/I).

Proof. The morphism π is separated by Lemma 11.6. As π is quasi-compact,
π∗ transforms quasi-coherent modules into quasi-coherent modules, see Morphisms
of Spaces, Lemma 11.2. Hence I is a quasi-coherent OX -module. In particular,
B = A/I is a quasi-coherent graded OX -algebra. The functoriality morphism
Z ′ = Proj

X
(B) → Proj

X
(A) is everywhere defined and a closed immersion, see

Lemma 12.3. Hence it suffices to prove Z = Z ′ as closed subspaces of P .
Having said this, the question is étale local on the base and we reduce to the case
of schemes (Divisors, Lemma 31.1) by étale localization. □

In case the closed subspace is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.
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Lemma 16.2.085M Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A) → X be the relative Proj of A. Let i : Z → P be a closed subscheme.

If π is quasi-compact and i of finite presentation, then there exists a d > 0 and a
quasi-coherent finite type OX-submodule F ⊂ Ad such that Z = Proj

X
(A/FA).

Proof. The reader can redo the arguments used in the case of schemes. However,
we will show the lemma follows from the case of schemes by a trick. Let I ⊂ A
be the quasi-coherent graded ideal cutting out Z of Lemma 16.1. Choose an affine
scheme U and a surjective étale morphism U → X, see Properties of Spaces, Lemma
6.3. By the case of schemes (Divisors, Lemma 31.4) there exists a d > 0 and a quasi-
coherent finite type OU -submodule F ′ ⊂ Id|U ⊂ Ad|U such that Z ×X U is equal
to Proj

U
(A|U/F ′A|U ). By Limits of Spaces, Lemma 9.2 we can find a finite type

quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|U . Let Z ′ = Proj
X

(A/FA).
Then Z ′ → P is a closed immersion (Lemma 12.5) and Z ⊂ Z ′ as FA ⊂ I. On the
other hand, Z ′ ×X U ⊂ Z ×X U by our choice of F . Thus Z = Z ′ as desired. □

Lemma 16.3.085N Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A)→ X be the relative Proj of A. Let i : Z → X be a closed subspace. Let

U ⊂ X be an open. Assume that
(1) π is quasi-compact,
(2) i of finite presentation,
(3) |U | ∩ |π|(|i|(|Z|)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OX-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OX-submodule F ⊂ Ad
with (a) Z = Proj

X
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. We use the same trick as in the proof of Lemma 16.2 to reduce to the
case of schemes. Let I ⊂ A be the quasi-coherent graded ideal cutting out Z of
Lemma 16.1. Choose an affine scheme W and a surjective étale morphism W → X,
see Properties of Spaces, Lemma 6.3. By the case of schemes (Divisors, Lemma
31.5) there exists a d > 0 and a quasi-coherent finite type OW -submodule F ′ ⊂
Id|W ⊂ Ad|W such that (a) Z ×X W is equal to Proj

W
(A|W /F ′A|W ) and (b) the

support of Ad|W /F ′ is disjoint from U ×X W . By Limits of Spaces, Lemma 9.2
we can find a finite type quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|W .
Let Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion (Lemma 12.5) and

Z ⊂ Z ′ as FA ⊂ I. On the other hand, Z ′ ×X W ⊂ Z ×X W by our choice of
F . Thus Z = Z ′. Finally, we see that Ad/F is supported on X \ U as Ad|W /F|W
is a quotient of Ad|W /F ′ which is supported on W \ U ×X W . Thus the lemma
follows. □

Lemma 16.4.0B4I Let S be a scheme and let X be an algebraic space over S. Let E
be a quasi-coherent OX-module. There is a bijection{

sections σ of the
morphism P(E)→ X

}
↔

{
surjections E → L where

L is an invertible OX-module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX
L⊗−1 −→ Cσ(X)/P(E)
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Both the bijection and isomorphism are compatible with base change.

Proof. Because the constructions are compatible with base change, it suffices to
check the statement étale locally on X. Thus we may assume X is a scheme and
the result is Divisors, Lemma 31.6. □

17. Blowing up

085P Blowing up is an important tool in algebraic geometry.

Definition 17.1.085Q Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals, and let Z ⊂ X be the closed subspace
corresponding to I (Morphisms of Spaces, Lemma 13.1). The blowing up of X
along Z, or the blowing up of X in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In

)
−→ X

The exceptional divisor of the blowup is the inverse image b−1(Z). Sometimes Z is
called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” algebraic space over X such
that the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blowup of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
which is generated in degree 1, see Lemma 11.11.

Lemma 17.2.085R Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let U = Spec(A) be an affine scheme étale over
X and let I ⊂ A be the ideal corresponding to I|U . If X ′ → X is the blowup of X
in I, then there is a canonical isomorphism

U ×X X ′ = Proj(
⊕

d≥0
Id)

of schemes over U , where the right hand side is the homogeneous spectrum of the
Rees algebra of I in A. Moreover, U ×X X ′ has an affine open covering by spectra
of the affine blowup algebras A[ Ia ].

Proof. Note that the restriction I|U is equal to the pullback of I via the morphism
U → X, see Properties of Spaces, Section 26. Thus the lemma follows on combining
Lemma 11.2 with Divisors, Lemma 32.2. □

Lemma 17.3.085S Let S be a scheme. Let X1 → X2 be a flat morphism of algebraic
spaces over S. Let Z2 ⊂ X2 be a closed subspace. Let Z1 be the inverse image of
Z2 in X1. Let X ′

i be the blowup of Zi in Xi. Then there exists a cartesian diagram

X ′
1

//

��

X ′
2

��
X1 // X2

of algebraic spaces over S.

https://stacks.math.columbia.edu/tag/085Q
https://stacks.math.columbia.edu/tag/085R
https://stacks.math.columbia.edu/tag/085S


DIVISORS ON ALGEBRAIC SPACES 34

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given mor-
phism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (see Morphisms
of Spaces, Definition 13.2 and discussion following the definition). By Lemma 11.5
we see that X1×X2 X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat the map
g∗In2 → OX1 is injective with image In1 . Thus we see that X1 ×X2 X

′
2 = X ′

1. □

Lemma 17.4.085T Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a closed subspace. The blowing up b : X ′ → X of Z in X has the following
properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,
(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 17.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 32.4. □

Lemma 17.5 (Universal property blowing up).085U Let S be a scheme. Let X be
an algebraic space over S. Let Z ⊂ X be a closed subspace. Let C be the full
subcategory of (Spaces/X) consisting of Y → X such that the inverse image of Z
is an effective Cartier divisor on Y . Then the blowing up b : X ′ → X of Z in X is
a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 17.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID
be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module.
This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe

that IdD = I⊗d
D as D is an effective Cartier divisor.) By Lemma 11.11. the triple

(f : Y → X, ID, ψ) defines a morphism Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z

is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
6.4. Thus the morphism Y → X ′ is unique by Morphisms of Spaces, Lemma 17.8
(also b is separated by Lemma 11.6). □

Lemma 17.6.085V Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be an effective Cartier divisor. The blowup of X in Z is the identity morphism of
X.

Proof. Immediate from the universal property of blowups (Lemma 17.5). □

Lemma 17.7.085W Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. If X is reduced, then the blowup X ′ of X in I
is reduced.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 17.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 32.8. □
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Lemma 17.8.0BH1 Let S be a scheme. Let X be an algebraic space over S. Let
b : X ′ → X be the blowup of X in a closed subspace. If X satisfies the equivalent
conditions of Morphisms of Spaces, Lemma 49.1 then so does X ′.

Proof. Follows immediately from the lemma cited in the statement, the étale local
description of blowing ups in Lemma 17.2, and Divisors, Lemma 32.10. □

Lemma 17.9.085X Let S be a scheme. Let X be an algebraic space over S. Let
b : X ′ → X be a blowup of X in a closed subspace. For any effective Cartier divisor
D on X the pullback b−1D is defined (see Definition 6.10).

Proof. By Lemmas 17.2 and 6.2 this reduces to the following algebra fact: Let A
be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the image of
x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then
amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an
is zero in A[ Ia ] as desired. □

Lemma 17.10.085Y Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX and J be quasi-coherent sheaves of ideals. Let b : X ′ → X be the blowing
up of X in I. Let b′ : X ′′ → X ′ be the blowing up of X ′ in b−1JOX′ . Then
X ′′ → X is canonically isomorphic to the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 17.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 17.9. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier
divisor). Consider the effective Cartier divisor E′′ = E′ +(b′)−1E. By construction
the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to Lemma 17.5
there is a canonical morphism from X ′′ to the blowup c : Y → X of X in IJ .
Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY defines an
effective Cartier divisor, see Lemma 6.8. Thus a morphism c′ : Y → X ′ over X
by Lemma 17.5. Then (c′)−1b−1JOY = c−1JOY which also defines an effective
Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the verification
that this morphism is inverse to the morphism X ′′ → Y constructed earlier. □

Lemma 17.11.085Z Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let b : X ′ → X be the blowing up of X
in the ideal sheaf I. If I is of finite type, then b : X ′ → X is a proper morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 17.3) we can prove each of
these statements after base change to U (see Morphisms of Spaces, Lemma 40.2).
This reduces us to the case of schemes. In this case the morphism b is projective
by Divisors, Lemma 32.13 hence proper by Morphisms, Lemma 43.5. □

Lemma 17.12.0860 Let S be a scheme and let X be an algebraic space over S. Assume
X is quasi-compact and quasi-separated. Let Z ⊂ X be a closed subspace of finite
presentation. Let b : X ′ → X be the blowing up with center Z. Let Z ′ ⊂ X ′ be a
closed subspace of finite presentation. Let X ′′ → X ′ be the blowing up with center
Z ′. There exists a closed subspace Y ⊂ X of finite presentation, such that

(1) |Y | = |Z| ∪ |b|(|Z ′|), and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .
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Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms of Spaces,
Lemma 28.12. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z

is a quasi-compact open subspace of X by Limits of Spaces, Lemma 14.1. Since
b−1(X \ Z)→ X \ Z is an isomorphism (Lemma 17.4) the same result shows that
b−1(X \Z) \Z ′ is quasi-compact open subspace in X ′. Hence U = X \ (Z ∪ b(Z ′))
is quasi-compact open subspace in X. By Lemma 16.3 there exist a d > 0 and a
finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA) and such that the
support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite
type quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent
confusion. Since Id/J and O/Id are supported on |X| \ |U | we see that |V (J )|
is contained in |X| \ |U |. Conversely, as J ⊂ Id we see that |Z| ⊂ |V (J )|. Over
X \Z ∼= X ′\b−1(Z) the sheaf of ideals J cuts out Z ′ (see displayed formula below).
Hence |V (J )| equals |Z| ∪ |b|(|Z ′|). It follows that also |V (IJ )| = |Z| ∪ |b|(|Z ′|).
Moreover, IJ is an ideal of finite type as a product of two such. We claim that
X ′′ → X is isomorphic to the blowing up of X in IJ which finishes the proof of
the lemma by setting Y = V (IJ ).

First, recall that the blowup of X in IJ is the same as the blowup of X ′ in
b−1JOX′ , see Lemma 17.10. Hence it suffices to show that the blowup of X ′ in
b−1JOX′ agrees with the blowup of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 17.6 and 17.10.

To see the displayed equality of the ideals we may work locally. With notation A,
I, a ∈ I as in Lemma 17.2 we see that F corresponds to an R-submodule M ⊂ Id

mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)
means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. □

18. Strict transform

0861 This section is the analogue of Divisors, Section 33. Let S be a scheme, let B be
an algebraic space over S, and let Z ⊂ B be a closed subspace. Let b : B′ → B be
the blowing up of B in Z and denote E ⊂ B′ the exceptional divisor E = b−1Z.
In the following we will often consider an algebraic space X over B and form the
cartesian diagram

pr−1
B′ E //

��

X ×B B′
prX

//

prB′

��

X

f

��
E // B′ // B

Since E is an effective Cartier divisor (Lemma 17.4) we see that pr−1
B′ E ⊂ X ×B B′

is locally principal (Lemma 6.9). Thus the inclusion morphism of the complement
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of pr−1
B′ E in X×BB′ is affine and in particular quasi-compact (Lemma 6.3). Conse-

quently, for a quasi-coherent OX×BB′ -module G the subsheaf of sections supported
on |pr−1

B′ E| is a quasi-coherent submodule, see Limits of Spaces, Definition 14.6. If
G is a quasi-coherent sheaf of algebras, e.g., G = OX×BB′ , then this subsheaf is an
ideal of G.

Definition 18.1.0862 With Z ⊂ B and f : X → B as above.
(1) Given a quasi-coherent OX -module F the strict transform of F with respect

to the blowup of B in Z is the quotient F ′ of pr∗
XF by the submodule of

sections supported on |pr−1
B′ E|.

(2) The strict transform of X is the closed subspace X ′ ⊂ X ×B B′ cut out by
the quasi-coherent ideal of sections of OX×BB′ supported on |pr−1

B′ E|.

Note that taking the strict transform along a blowup depends on the closed subspace
used for the blowup (and not just on the morphism B′ → B).

Lemma 18.2 (Étale localization and strict transform).0863 In the situation of Defi-
nition 18.1. Let

U //

��

X

��
V // B

be a commutative diagram of morphisms with U and V schemes and étale horizontal
arrows. Let V ′ → V be the blowup of V in Z ×B V . Then

(1) V ′ = V ×B B′ and the maps V ′ → B′ and U ×V V ′ → X ×B B′ are étale,
(2) the strict transform U ′ of U relative to V ′ → V is equal to X ′ ×X U where

X ′ is the strict transform of X relative to B′ → B, and
(3) for a quasi-coherent OX-module F the restriction of the strict transform
F ′ to U ×V V ′ is the strict transform of F|U relative to V ′ → V .

Proof. Part (1) follows from the fact that blowup commutes with flat base change
(Lemma 17.3), the fact that étale morphisms are flat, and that the base change of
an étale morphism is étale. Part (3) then follows from the fact that taking the sheaf
of sections supported on a closed commutes with pullback by étale morphisms, see
Limits of Spaces, Lemma 14.5. Part (2) follows from (3) applied to F = OX . □

Lemma 18.3.0864 In the situation of Definition 18.1.
(1) The strict transform X ′ of X is the blowup of X in the closed subspace

f−1Z of X.
(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically

isomorphic to the pushforward along X ′ → X×B B′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 17.5) there exists a commutative diagram

X ′′ //

��

X

��
B′ // B
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whence a morphism i : X ′′ → X ×B B′. The first assertion of the lemma is that
i is a closed immersion with image X ′. The second assertion of the lemma is that
F ′ = i∗F ′′ where F ′′ is the strict transform of F with respect to the blowing up
X ′′ → X. We can check these assertions étale locally on X, hence we reduce to the
case of schemes (Divisors, Lemma 33.2). Some details omitted. □

Lemma 18.4.0865 In the situation of Definition 18.1.
(1) If X is flat over B at all points lying over Z, then the strict transform of

X is equal to the base change X ×B B′.
(2) Let F be a quasi-coherent OX-module. If F is flat over B at all points lying

over Z, then the strict transform F ′ of F is equal to the pullback pr∗
XF .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.3)
by étale localization (Lemma 18.2). □

Lemma 18.5.0866 Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up of Z in B. Let g : X → Y
be an affine morphism of spaces over B. Let F be a quasi-coherent sheaf on X. Let
g′ : X ×B B′ → Y ×B B′ be the base change of g. Let F ′ be the strict transform of
F relative to b. Then g′

∗F ′ is the strict transform of g∗F .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.4)
by étale localization (Lemma 18.2). □

Lemma 18.6.0867 Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let D ⊂ B be an effective Cartier divisor. Let Z ′ ⊂ B be the
closed subspace cut out by the product of the ideal sheaves of Z and D. Let B′ → B
be the blowup of B in Z.

(1) The blowup of B in Z ′ is isomorphic to B′ → B.
(2) Let f : X → B be a morphism of algebraic spaces and let F be a quasi-

coherent OX-module. If the subsheaf of F of sections supported on |f−1D|
is zero, then the strict transform of F relative to the blowing up in Z agrees
with the strict transform of F relative to the blowing up of B in Z ′.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.5)
by étale localization (Lemma 18.2). □

Lemma 18.7.0868 Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up with center Z. Let Z ′ ⊂ B′

be a closed subspace. Let B′′ → B′ be the blowing up with center Z ′. Let Y ⊂ B
be a closed subscheme such that |Y | = |Z| ∪ |b|(|Z ′|) and the composition B′′ → B
is isomorphic to the blowing up of B in Y . In this situation, given any scheme X
over B and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of F with respect to the blowup B′ → B of B in Z, and

(2) the strict transform of X with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of X with respect to the blowup B′ → B of B in Z.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.6)
by étale localization (Lemma 18.2). □
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Lemma 18.8.0869 In the situation of Definition 18.1. Suppose that
0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after
any base change T → B. Then the strict transforms of F ′

i relative to any blowup
B′ → B form a short exact sequence 0→ F ′

1 → F ′
2 → F ′

3 → 0 too.
Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.7)
by étale localization (Lemma 18.2). □

Lemma 18.9.0D0P Let S be a scheme. Let B be an algebraic space over S. Let F be a
finite type quasi-coherent OB-module. Let Zk ⊂ S be the closed subscheme cut out
by Fitk(F), see Section 5. Let B′ → B be the blowup of B in Zk and let F ′ be the
strict transform of F . Then F ′ can locally be generated by ≤ k sections.
Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 35.1) by étale
localization (Lemma 18.2). □

Lemma 18.10.0D0Q Let S be a scheme. Let B be an algebraic space over S. Let F
be a finite type quasi-coherent OB-module. Let Zk ⊂ S be the closed subscheme cut
out by Fitk(F), see Section 5. Assume that F is locally free of rank k on B \ Zk.
Let B′ → B be the blowup of B in Zk and let F ′ be the strict transform of F . Then
F ′ is locally free of rank k.
Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 35.2) by étale
localization (Lemma 18.2). □

19. Admissible blowups

086A To have a bit more control over our blowups we introduce the following standard
terminology.
Definition 19.1.086B Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. A morphism X ′ → X is called a U -admissible blowup
if there exists a closed immersion Z → X of finite presentation with Z disjoint from
U such that X ′ is isomorphic to the blowup of X in Z.
We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂
OX is of finite type, see Morphisms of Spaces, Lemma 28.12. In particular, a U -
admissible blowup is a proper morphism, see Lemma 17.11. Note that there can
be multiple centers which give rise to the same morphism. Hence the requirement
is just the existence of some center disjoint from U which produces X ′. Finally,
as the morphism b : X ′ → X is an isomorphism over U (see Lemma 17.4) we will
often abuse notation and think of U as an open subspace of X ′ as well.
Lemma 19.2.086C Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let b : X ′ →
X be a U -admissible blowup. Let X ′′ → X ′ be a U -admissible blowup. Then the
composition X ′′ → X is a U -admissible blowup.
Proof. Immediate from the more precise Lemma 17.12. □

Lemma 19.3.086D Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U, V ⊂ X be quasi-compact open subspaces. Let b : V ′ → V
be a U ∩ V -admissible blowup. Then there exists a U -admissible blowup X ′ → X
whose restriction to V is V ′.
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Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩V and such that V ′ is isomorphic to the blowup of V in I. Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU and
whose restriction to V is I. By Limits of Spaces, Lemma 9.8 there exists a finite
type quasi-coherent sheaf of ideals J ⊂ OX whose restriction to U ∪ V is I ′. The
lemma follows. □

Lemma 19.4.086E Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let bi :
Xi → X, i = 1, . . . , n be U -admissible blowups. There exists a U -admissible blowup
b : X ′ → X such that (a) b factors as X ′ → Xi → X for i = 1, . . . , n and (b) each
of the morphisms X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blowup of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 17.10. □

Lemma 19.5.086F Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U, V be quasi-compact disjoint open subspaces of X.
Then there exist a U ∪ V -admissible blowup b : X ′ → X such that X ′ is a disjoint
union of open subspaces X ′ = X ′

1 ⨿X ′
2 with b−1(U) ⊂ X ′

1 and b−1(V ) ⊂ X ′
2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \ U = V (I), resp. X \ V = V (J ), see Limits of Spaces, Lemma 14.1. Then
|V (IJ )| = |X|. Hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I+J . This is U ∪V -admissible as |V (I+J )| = |X|\|U |∪|V |.
We will show that X ′ is a disjoint union of open subspaces X ′ = X ′

1⨿X ′
2 as in the

statement of the lemma.
Since |V (I + J )| is the complement of |U ∪ V | we conclude that V ∪ U is scheme
theoretically dense in X ′, see Lemmas 17.4 and 6.4. Thus if such a decomposition
X ′ = X ′

1⨿X ′
2 into open and closed subspaces exists, then X ′

1 is the scheme theoretic
closure of U in X ′ and similarly X ′

2 is the scheme theoretic closure of V in X ′. Since
U → X ′ and V → X ′ are quasi-compact taking scheme theoretic closures commutes
with étale localization (Morphisms of Spaces, Lemma 16.3). Hence to verify the
existence of X ′

1 and X ′
2 we may work étale locally on X. This reduces us to the

case of schemes which is treated in the proof of Divisors, Lemma 34.5. □
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