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1. Introduction

This chapter is the analogue of the corresponding chapter for schemes, see Duality
for Schemes, Section[I} The development is similar to the development in the papers

[Nee96], [LNOT], [Lip09], and [Neeld].

2. Dualizing complexes on algebraic spaces

Let U be a locally Noetherian scheme. Let Og¢tqie be the structure sheaf of U on
the small étale site of U. We will say an object K € Dgcon(O¢tale) is a dualizing
complex on U if K = €*(wy;) for some dualizing complex wy; in the sense of Duality
for Schemes, Section [2| Here €* : Dgcon(Ov) = Dgcon(Oétaie) is the equivalence
of Derived Categories of Spaces, Lemma Most of the properties of wg; studied
in Duality for Schemes, Section [2| are inherited by K via the discussion in Derived
Categories of Spaces, Sections [4] and

We define a dualizing complex on a locally Noetherian algebraic space to be a
complex which étale locally comes from a dualizing complex on the corresponding
scheme.

Lemma 2.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be an object of Dgcon(Ox). The following are equivalent

(1) For every étale morphism U — X where U is a scheme the restriction K|y
is a dualizing complex for U (as discussed above).
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(2) There exists a surjective étale morphism U — X where U is a scheme such
that K|y is a dualizing complex for U.

Proof. Assume U — X is surjective étale where U is a scheme. Let V' — X be an
étale morphism where V' is a scheme. Then

U+—UxxV—=>V

are étale morphisms of schemes with the arrow to V surjective. Hence we can use
Duality for Schemes, Lemma to see that if K|y is a dualizing complex for U,
then K|y is a dualizing complex for V. (]

Definition 2.2. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. An object K of Dgcon(Ox) is called a dualizing complez if K satisfies the
equivalent conditions of Lemma [2.1

Lemma 2.3. Let A be a Noetherian ring and let X = Spec(A). Let Ogtare be the
structure sheaf of X on the small étale site of X. Let K, L be objects of D(A). If
K € Dgon(A) and L has finite injective dimension, then

¢*RHomyu (K, L) = RHomo,,,, (€K, " L)

in D(O¢tale) where € : (Xetate, Octate) — (X, Ox) is as in Derived Categories of
Spaces, Section [{

Proof. By Duality for Schemes, Lemma [2.3] we have a canonical isomorphism

RHomy (K, L) = RHome, (K, L)
in D(Ox). There is a canonical map
e*RHome, (K, L) — RHomo,,,,. ('K, L)

in D(Ogtaie), see Cohomology on Sites, Remark [28.11] We will show the left and
right hand side of this arrow have isomorphic cohomology sheaves, but we will omit
the verification that the isomorphism is given by this arrow.

We may assume that L is given by a finite complex I°® of injective A-modules.
By induction on the length of I® and compatibility of the constructions with dis-
tinguished triangles, we reduce to the case that L = I[0] where I is an injective
A-module. Recall that the cohomology sheaves of R Homop,,,,. (e*K,e*L)) are the
sheafifications of the presheaf sending U étale over X to the ith ext group between
the restrictions of ¢* K and ¢*L to Ugtate- See Cohomology on Sites, Lemmam
If U = Spec(B) is affine, then this ext group is equal to Extly (K ®4 B,L ®4 B)
by the equivalence of Derived Categories of Spaces, Lemma and Derived Cate-
gories of Schemes, Lemma (this also uses the compatibilities detailed in Derived
Categories of Spaces, Remark . Since A — B is étale, we see that I ® 4 B is an
injective B-module by Dualizing Complexes, Lemma [26.4] Hence we see that

Ext (K ®4 B,1 ®4 B) = Homp(H "(K ®4 B),I ®4 B)
= Hom, (H "(K)®4 B,I ©4 B)
= Homu(H "™(K),I) ®4 B
= Ext’(K,I)®4 B
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The penultimate equality because H™(K) is a finite A-module, see More on Al-
gebra, Remark [62.20] Therefore the cohomology sheaves of the left and right hand
side of the equality in the lemma are the same. O

Lemma 2.4. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be a dualizing complex on X. Then K is an object of Dcon(Ox)
and D = RHomo, (—, K) induces an anti-equivalence

D : Deon(Ox) — Deoon(Ox)

which comes equipped with a canonical isomorphism id — D o D. If X is quasi-
compact, then D exchanges D, (Ox) and D¢, (Ox) and induces an equivalence
DbCoh(OX) - DbCoh(OX)'

Proof. Let U — X be an étale morphism with U affine. Say U = Spec(A) and
let w$ be a dualizing complex for A corresponding to K|y as in Lemma and
Duality for Schemes, Lemma By Lemma [2.3] the diagram

D con(A) — D con(Oétaie)
RHomA(,wz)l \Ll’?’Hm’noémze (—,K|v)
D con(A) — D(O¢taic)

commutes where Og;qe is the structure sheaf of the small étale site of U. Since for-
mation of R Hom commutes with restriction, we conclude that D sends D ¢on(Ox)
into Dgon(Ox). Moreover, the canonical map

L — RHomo, (RHomo, (L, K), K)

(Cohomology on Sites, Lemma [28.5)) is an isomorphism for all L in Dgon(Ox)
because this is true over all U as above by Dualizing Complexes, Lemma The
statement on boundedness properties of the functor D in the quasi-compact case

also follows from the corresponding statements of Dualizing Complexes, Lemma
15.2 O

Let (C,O) be a ringed site. We will say that an object L of D(Q) is invertible
if for every object U of C there is a covering {U; — U} of U in C such that
L|y, = Oy,[—n;] for some integers n;.

Let S be a scheme and let X be an algebraic space over S. If L in D(Ox) is
invertible, then there is a disjoint union decomposition X = [], .z X, such that
L|x, is an invertible module sitting in degree n. In particular, it follows that
L = @ H™(L)[—n] which gives a well defined complex of Ox-modules (with zero
differentials) representing L. Moreover, we see that L is a perfect object of D(Ox).

Lemmal 2.5. Let S be a scheme. Let X be a locally Noetherian algebraic space

over S. If K and K' are dualizing complexes on X, then K' is isomorphic to
K ®%X L for some invertible object L of D(Ox).

Proof. Set

L =RHomo, (K,K')
This is an invertible object of D(QOx), because affine locally this is true. Use
Lemma [2:3] and Dualizing Complexes, Lemma [I5.5] and its proof. The evaluation
map L ®%X K — K’ is an isomorphism for the same reason. (I
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Lemma 2.6. Let S be a scheme. Let X be a locally Noetherian quasi-separated
algebraic space over S. Let wg be a dualizing complex on X. Then X the function
| X| — Z defined by

x> 6(x) such that wg z[—d(x)] is a normalized dualizing complex over Ox 7
is a dimension function on | X]|.

Proof. Let U be a scheme and let U — X be a surjective étale morphism. Let wy;
be the dualizing complex on U associated to w%|y. If u € U maps to x € | X/, then
Ox z is the strict henselization of Oy ,. By Dualizing Complexes, Lemma we
see that if w® is a normalized dualizing complex for Oy, then w*®* ®o,, , Oxz is a
normalized dualizing complex for Ox z. Hence we see that the dimension function
U — Z of Duality for Schemes, Lemma for the scheme U and the complex wy;
is equal to the composition of U — | X | with d. Using the specializations in |X| lift
to specializations in U and that nontrivial specializations in U map to nontrivial
specializations in X (Decent Spaces, Lemmas and an easy topological
argument shows that J is a dimension function on | X]|. ]

3. Right adjoint of pushforward
This is the analogue of Duality for Schemes, Section

Lemma 3.1. Let S be a scheme. Let f : X — Y be a morphism between
quasi-separated and quasi-compact algebraic spaces over S. The functor Rf, :
Docon(X) = Dgcon(Y') has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition First off, the category Dgcon(Ox) has direct sums,
see Derived Categories of Spaces, Lemma The category Dgcon(Ox) is com-
pactly generated by Derived Categories of Spaces, Theorem Since X and Y
are quasi-compact and quasi-separated, so is f, see Morphisms of Spaces, Lem-
mas and Hence the functor Rf, commutes with direct sums, see Derived
Categories of Spaces, Lemma [6.2] This finishes the proof. O

Lemma 3.2. Notation and assumptions as in Lemma . Let a : Dgcon(Oy) —

D gcon(Ox) be the right adjoint to Rf.. Then a maps D—CSCoh (Oy) into Dgcoh((’)x).

In fact, there exists an integer N such that H'(K) = 0 fori < c implies H'(a(K)) =
0 fori<c— N.

Proof. By Derived Categories of Spaces, Lemma the functor Rf, has finite
cohomological dimension. In other words, there exist an integer N such that
Hi(Rf*L) = 0fori > N+cif H(L) = 0 for i > ¢. Say K € D{,,(Oy)
has H*(K) =0 for ¢ < ¢. Then

HOIDD(@X) (TSC_N(I(K), CL(K)) = HOIDD(@Y) (Rf*TSC_Na(K), K) =0
by what we said above. Clearly, this implies that H'(a(K)) =0fori <c—N. O

Let S be a scheme. Let f : X — Y be a morphism of quasi-separated and
quasi-compact algebraic spaces over S. Let a denote the right adjoint to Rf, :
DQCoh(OX) — DQCOh(Oy). For every K € DQCO}L(Oy) and L € DQCoh(OX) we
obtain a canonical map

(3.2.1) Rf.RHomoy (L,a(K)) — RHomo, (Rf.L, K)

This is almost the
same as [Nee96l
Example 4.2].
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Namely, this map is constructed as the composition
Rf.RHomoy (L,a(K)) = RHomo, (Rf.L, Rf.a(K)) = RHomo, (Rf.L, K)

where the first arrow is Cohomology on Sites, Remark [28.10| and the second arrow
is the counit Rf.a(K) — K of the adjunction.

0E58 Lemma 3.3. Let S be a scheme. Let f : X — Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let a be the right adjoint to

Rf.: Dgcon(Ox) — Dgcoon(Oy). Then
Rf.RHomo, (L,a(K)) — RHomo, (Rf.L, K)
is an isomorphism for all L € Dgcon(Ox) and K € Dgcon(Oy).
Proof. Let M € Dgcon(Oy). Then we have the following
Homy (M, Rf.RHomo, (L,a(K))) = Homx (Lf*M, R Homo, (L, a(K)))

= Homx (L f* M®0X L,a(K))
= Homy (Rf.(Lf*M ®%, L), K)
= Homy (M ®%, Rf.L,K)
= Homy (M, R Homo, (Rf.L, K))

The first equality holds by Cohomology on Sites, Lemma [20.1] The second equality
by Cohomology on Sites, Lemma[28.2] The third equality by construction of a. The
fourth equality by Derived Categories of Spaces, Lemma (this is the important
step). The fifth by Cohomology on Sites, Lemma Thus the result holds by
the Yoneda lemma. O

0E59 Lemma 3.4. Let S be a scheme. Let f : X — Y be a morphism of quasi-separated
and quasi- compact algebraic spaces over S. For all L € Dgcon(Ox) and K €

Docon(Oy) (3 induces an isomorphism RHomx (L, a(K)) - RHomy (Rf.L, K)
of global demved homs.

Proof. By construction (Cohomology on Sites, Section the complexes
RHomy (L,a(K)) = RT'(X, RHomo, (L,a(K))) = RI(Y, Rf.RHomo, (L,a(K)))

and
RHomy (Rf.L,K) = RI'(Y, RHomo, (Rf.L,a(K)))

Thus the lemma is a consequence of Lemma [3.3] O

4. Right adjoint of pushforward and base change, I

OE5A Let us define the base change map between right adjoints of pushforward. Let S
be a scheme. Consider a cartesian diagram

X' ——X
O0E5B  (4.0.1) f/l ’ lf
N

where Y/ and X are Tor independent over Y. Denote

a: DQCOh(Oy) — DQCoh(OX) and a' : DQCoh(Oy/) — DQCoh(OX’)
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the right adjoints to Rf. and Rf, (Lemma [3.I). The base change map of Coho-
mology on Sites, Remark gives a transformation of functors

Lg* o Rf. — Rf. o L(g')"

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

ao Rg, +— Rgl.od
Lemma 4.1. In diagram the map a o Ry, <+ Ry, oa’ is an isomorphism.

Proof. The base change map Lg* o Rf.K — Rf. o L(¢")*K is an isomorphism for
every K in Dgcon(Ox) by Derived Categories of Spaces, Lemma (this uses the
assumption of Tor independence). Thus the corresponding transformation between
adjoint functors is an isomorphism as well. O

Then we can consider the morphism of functors D gcon(Oy) = Dgcon(Ox-) given
by the composition

(4.1.1) L(¢Y*oa— L(¢)*oao Rg, o Lg* < L(¢')* o Rg, oa’ o Lg* — a' o Lg*

The first arrow comes from the adjunction map id — Rg.Lg* and the last arrow
from the adjunction map L(¢')*Rg, — id. We need the assumption on Tor inde-
pendence to invert the arrow in the middle, see Lemma Alternatively, we can
think of by adjointness of L(g’)* and R(g¢'). as a natural transformation

a— aoRg,oLg* <+ Rg.oad oLg*

were again the second arrow is invertible. If M € Dgcon(Ox) and K € Dgcon(Oy)
then on Yoneda functors this map is given by

Homx (M, a(K)) = Homy (Rf.M, K)
— Homy (Rf. M, Rg.Lg*K)
= Homy/(Lg*Rf .M, Lg*K)
< Homy/(Rf;L(¢g")"M, Lg"K)
= Homx/(L(¢")*M,d' (Lg*K))
= Homx (M, Rg.a'(Lg*K))

(were the arrow pointing left is invertible by the base change theorem given in
Derived Categories of Spaces, Lemma [20.4) which makes things a little bit more
explicit.

In this section we first prove that the base change map satisfies some natural com-
patibilities with regards to stacking squares as in Cohomology on Sites, Remarks
and for the usual base change map. We suggest the reader skip the rest
of this section on a first reading.
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OESE Lemma 4.2. Let S be a scheme. Consider a commutative diagram

X ——X

A

y Loy

d )

7 -2sz

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and l as well as g and m are Tor independent. Then the
maps for the two squares compose to give the base change map for the outer
rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that g o f and m are Tor independent
(details omitted), hence the statement makes sense. In this proof we write k* in
place of Lk* and f, instead of Rf,. Let a, b, and ¢ be the right adjoints of Lemma
[Bd)for f, g, and go f and similarly for the primed versions. The arrow corresponding
to the top square is the composition

&to
fytop:k*oa%k*oaol*ol*(ik*ok*oa'ol*%a/ol*

where &op : ki 0a’ — aol, is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map * o f, — f.ok*. The outer arrows come from
the canonical maps 1 — [, ol* and k* o k, — 1. Similarly for the second square we
have

Yoot : 1*0b— 1" obom, om* &Z*OI*Ob’om* — b om*
For the outer rectangle we get

x Erect

Vreet 1 k*0c— k*ocom,om* & k*ok,ocd om* = om*

We have (g o f)« = g« o f« and hence ¢ = a o b and similarly ¢/ = a’ o b/. The
statement of the lemma is that 7, is equal to the composition

vt b
k*oc=k*oaob—%a ol*ob 2% ad obom*=c om*
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To see this we contemplate the following diagram:

k*oaob

k*oaol,ol*ob

/ €iop
k*oaobomy,om* ——=Fk*oaol,ol*obom,om* k*ok,oa ol*ob
T&op /
Erect k*ok,oa ol*obom,om* a’ol*ob
T&m \
k*ok,oad oblom*<——Fk*ok,od ol*ol,ob om* a' ol* obom, om*
\ Evot

a' ol*ol,ob om*

a ob om*

Going down the right hand side we have the composition and going down the left
hand side we have v,.¢.:. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma or more simply the discussion preceding
Categories, Definition Hence we see that it suffices to show the diagram

aol,ol*obom,<——aobom,

e

ki.oa ol*obom, Erect

N

kroa ol*ol,ob ——=k,oad ob/

becomes commutative if we invert the arrows &op, {pot, and &reer (note that this is
different from asking the diagram to be commutative). However, the diagram

aol,ol*obom,

% \

aol,ol*ol, ol k.oa ol*obom,

\X%

k.oad ol*ol,ob
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commutes by Categories, Lemma Since the diagrams

aol,ol*obomy,~<——aobom aol,ol*ol,obl ———aqaol,ob
T I |
aol,ol*ol,ob)l <——aol,ob krooa ol*ol,ob ——=k,o0a' ol

commute (see references cited) and since the composition of I, — [, ol*ol, — I, is
the identity, we find that it suffices to prove that

ot Sto
koa’ob'&’—’>a0l*0bl>a0bom*

is equal to0 &;.cc¢ (via the identifications aob = ¢ and a’ob’ = ¢’). This is the statement
dual to Cohomology on Sites, Remark and the proof is complete. O

Lemmal 4.3. Let S be a scheme. Consider a commutative diagram

X//HX/HX

q g
f ”\L f’l lf
y L> vy oy
of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and h as well as f' and h' are Tor independent. Then
the maps for the two squares compose to give the base change map for the
outer rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that f and h o h' are Tor independent
(details omitted), hence the statement makes sense. In this proof we write ¢g* in
place of Lg* and f, instead of Rf.. Let a, a’, and a” be the right adjoints of
Lemma for f, f/, and f”. The arrow corresponding to the right square is the
composition
Yright 1 9° 0a —> g*oaoh, oh” éii'—q;ig*og*oa'oh* —a' oh*

where &right © g« © @ — a o h, is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h* o f, — fl o g*. The outer arrows come
from the canonical maps 1 — h, o h* and ¢g* o g, — 1. Similarly for the left square
we have

* * * Sleft * * *
Viept : (g') 0d = (¢)) 0d o (h)so (W) <L (¢') o (g))uoa” o (W) — a” o (W)
For the outer rectangle we get

Erect

" "
Yreet - KT 0a — k¥ oaom, om® k*ok,oa" om™ = a”" om*

where k = go g’ and m = hoh/. We have k* = (¢')* o g* and m* = (h/)* o h*. The
statement of the lemma is that 7, is equal to the composition

k*oa:(g')*og*oaM(g')*oa'oh*Ma”o(h’)*oh*:a”om*
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To see this we contemplate the following diagram

() egroa

(¢/) 09" 0aoh, oh®

/ gright

(¢) 09" oaoh.o (W) o (W) o h* (¢) 09”0 g.0d o h*

Tgmight /

(¢) 0 g% 0 g. a0 (). o (W) o (¢ od’ oh*

o

() 09" 0gso(g)woa” o (k) oh” (g') oa o (R).o(h)" oh

\ Eleft

(g/)* o (gl)* oa// o (h/)* o h*

a// o (h/)* o h*

Going down the right hand side we have the composition and going down the left
hand side we have v;.c.;. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma [27.2] or more simply the discussion preceding
Categories, Definition Hence we see that it suffices to show that

geo(g)od 25 g od o (1), S aohy o ().

is equal to &pect. This is the statement dual to Cohomology, Remark and the
proof is complete. O

Remark| 4.4. Let S be a scheme. Consider a commutative diagram

X”HX/HX

K’ k
f”l f’l lf

y v y! . Y

140

gn_m g M7

of quasi-compact and quasi-separated algebraic spaces over S where all squares
are cartesian and where (f,1), (g,m), (f',1’), (¢’,m') are Tor independent pairs of
maps. Let a, a’, a”, b, b, b be the right adjoints of Lemma [3.1] for f, f’, f”, g, ¢',
g”. Let us label the squares of the diagram A, B, C, D as follows

A B
C D
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Then the maps (4.1.1) for the squares are (where we use k* = Lk*, etc)
va:(K)*oad —a"o(l')* ~vp:k*oa—d ol
Yo : (") o = b o(m')* ~Ap:l*ob—b om*
For the 2 x 1 and 1 x 2 rectangles we have four further base change maps
Yarp: (kok Y oa—a"o(lol)*
Yoip : (lol)*ob— V"o (mom/)*
’YA+C . (kl)* o (a/ o b/) N (a// o b//) o (m/)*
Yatc :k*o(aob) — (a' ob') om*
By Lemma [£.3] we have

YA+B =7YA°7YB, 7YC+D =7C°7D
and by Lemma [£.2] we have

YA+C =VC °7YA, VB+D = 7TD B
Here it would be more correct to write Y445 = (yaxid; )o(id(k/)**wg) with notation
as in Categories, Section [27] and similarly for the others. However, we continue the
abuse of notation used in the proofs of Lemmas [{.2 and [£.3] of dropping * products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Having said all of this we find (a priori) two
transformations
(k‘/)* ok*oaob—a’ob o (m/)* om®

namely

YC OYACTYD ©VB = YA+C ©VB+D
and

YC ©VYD °©YACYB = YC+D ©YA+B
The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

(k’)*oa’OI*Ob?(kz’)*oa’Ob’om*

a’ o (l/)* ol*o bi>a” o (l/)* ob om*

commutes. This is true by Categories, Lemma [27.2] or more simply the discussion
preceding Categories, Definition

5. Right adjoint of pushforward and base change, II

In this section we prove that the base change map of Section [f]is an isomorphism
in some cases.

Lemma 5.1. In diagram assume in addition g : Y' — Y is a morphism
of affine schemes and f : X — Y is proper. Then the base change map
induces an isomorphism

L(g)"a(K) — a/(Lg"K)
in the following cases

(1) for all K € Dgcon(Ox) if f is flat of finite presentation,
(2) for all K € Dgcon(Ox) if f is perfect and Y Noetherian,
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(3) for K € D—cgcoh(OX) if g has finite Tor dimension andY Noetherian.

Proof. Write Y = Spec(A4) and Y’ = Spec(4’). As a base change of an affine
morphism, the morphism ¢’ is affine. Let M be a perfect generator for Dgcon(Ox),
see Derived Categories of Spaces, Theorem Then L(g')*M is a generator for
Dgcon(Oxr), see Derived Categories of Spaces, Remark Hence it suffices to
show that induces an isomorphism

(5.1.1) RHomx/ (L(¢')*M, L(¢')*a(K)) — RHomx/(L(¢")*M,d'(Lg*K))

of global hom complexes, see Cohomology on Sites, Section as this will imply
the cone of L(¢")*a(K) — a/(Lg*K) is zero. The structure of the proof is as follows:
we will first show that these Hom complexes are isomorphic and in the last part of
the proof we will show that the isomorphism is induced by .

The left hand side. Because M is perfect, the canonical map
RHomy (M, a(K)) ®% A" — RHomx/(L(g')*M, L(¢')*a(K))

is an isomorphism by Derived Categories of Spaces, Lemma We can combine
this with the isomorphism RHomy (Rf,M, K) = RHomx (M, a(K)) of Lemma [3.4]
to get that the left hand side equals R Homy (Rf. M, K) @% A’.

The right hand side. Here we first use the isomorphism
RHomy (L(¢')*M,d’ (Lg*K)) = RHomy (Rf.L(¢')*M, Lg*K)

of Lemmal[3.4] Since f and g are Tor independent the base change map Lg*Rf M —
Rf/L(¢')*M is an isomorphism by Derived Categories of Spaces, Lemma [20.4]
Hence we may rewrite this as R Homy/(Lg*Rf.M, Lg*K). Since Y, Y’ are affine
and K, Rf.M are in Dgcon(Oy) (Derived Categories of Spaces, Lemma we
have a canonical map

B : RHomy (Rf.M,K)®Y% A" — RHomy-(Lg*Rf.M, Lg*K)

in D(A’). This is the arrow More on Algebra, Equation (87.1.1)) where we have
used Derived Categories of Schemes, Lemmas and to translate back and
forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf.M is perfect on Y
by Derived Categories of Spaces, Lemma and [ is an isomorphism by
More on Algebra, Lemma part (1).

(2) If f is perfect and Y Noetherian, the complex Rf.M is perfect on Y by
More on Morphisms of Spaces, Lemma and 3 is an isomorphism as
before.

(3) If g has finite tor dimension and Y is Noetherian, the complex Rf.M is
pseudo-coherent on Y (Derived Categories of Spaces, Lemmas and
and 3 is an isomorphism by More on Algebra, Lemma part (4).

We conclude that we obtain the same answer as in the previous paragraph.

In the rest of the proof we show that the identifications of the left and right hand

side of ((5.1.1]) given in the second and third paragraph are in fact given by (5.1.1]).
To make our formulas manageable we will use (—, —)x = RHomx(—, —), use —® A4’
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in stead of — ®% A’, and we will abbreviate g* = Lg* and f. = Rf.. Consider the
following commutative diagram

()M, (g") a(K))x = (M,a(K))x ® A =——= (. M,K)y @ A’
((¢")* M, (g")*a(gs9"K))x' =5— (M,a(9:9" K))x ® A’ == (fu M, g.g" K)y @ A’

((9)" M, (g") g.a' (¢" K)) xr <5— (M, gid' (¢" K))x @ A” ' ( (M, K) @ A’

= |
((¢)*M,ad (9" K))x» =—= (fi(¢')* M, 9" K)yr ———— (§" f M, 9" K)y

The arrows labeled a are the maps from Derived Categories of Spaces, Lemma
for the diagram with corners X', X, Y’ Y. The upper part of the diagram
is commutative as the horizontal arrows are functorial in the entries. The middle
vertical arrows come from the invertible transformation ¢, o a’ — a o g, of Lemma
and therefore the middle square is commutative. Going down the left hand
side is . The upper horizontal arrows provide the identifications used in the
second paragraph of the proof. The lower horizontal arrows including 8 provide
the identifications used in the third paragraph of the proof. Given E € D(A),
E' € D(A'), and ¢ : E — E' in D(A) we will denote p. : E® A" — E’ the map
induced by ¢ and the adjointness of restriction and base change; if ¢ is clear we
write 4 = fi, i.e., we drop ¢ from the notation. The map p in the diagram is of
this form with ¢ given by the identification (M, gLa(¢*K))x = ((¢')*M,a’(¢*K)) x-
; the triangle involving p is commutative by Derived Categories of Spaces, Remark
20.0!

Observe that

(M, a(g+9"K))x === (f«M, 99" K)y === (9" f-M, 9" K)y"
(M, g.d' (9" K))x == ((¢')*M,d'(¢"K)) x’ (fi(g")*M,g"K)y

is commutative by the very definition of the transformation ¢, oa’ — aog,. Letting
1/ be as above corresponding to the identification (f« M, g.g*K)x = (¢* [« M, 9*K)y~,
then the hexagon commutes as well. Thus it suffices to show that g is equal to the
composition of (fu M, K)y @ A’ = (feM,g.9"K)x ® A" and p’. To do this, it suf-
fices to prove the two induced maps (f. M, K)y — (¢*f« M, g*K)y are the same.
In other words, it suffices to show the diagram

RHom(E, K) TN RHomu (E ®% A", K @45 A’)
RHoma(E, K @% A)

commutes for all £, K € D(A). Since this is how § is constructed in More on
Algebra, Section [87] the proof is complete. O
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6. Right adjoint of pushforward and trace maps

Let S be a scheme. Let f : X — Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : Dgcon(Oy) = Dgcon(Ox) be the right
adjoint as in Lemma [3.1] By Categories, Section 24 we obtain a transformation of
functors

Try: Rfioa —id

The corresponding map Try i : Rfva(K) — K for K € Dgcon(Oy) is sometimes
called the trace map. This is the map which has the property that the bijection

Homx (L, a(K)) — Homy (Rf.L, K)
for L € Dgcon(Ox) which characterizes the right adjoint is given by
pr— Tryx o Rfup
The isomorphism
Rf.RHomo, (L,a(K)) — RHomo, (Rf.L, K)

of Lemma @ comes about by composition with Try g. Every trace map we are
going to consider in this section will be a special case of this trace map. Before we
discuss some special cases we show that formation of the trace map commutes with
base change.

Lemma 6.1 (Trace map and base change). Suppose we have a diagram .
Then the maps 1% Try : Lg* o Rf, oa — Lg* and Try x1: Rf, oa’ o Lg* — Lg*
agree via the base change maps 3 : Lg* o Rf. — Rf.oL(g")* (Cohomology on Sites,
Remark[20.3) and o : L(g')* o a — a’ o Lg* . More precisely, the diagram

Lg*oRf.oa Lg*

B*ll TTT‘W*I

RfloL(g)* oa—*~Rf.od o Lg*

1x T‘I‘f

of transformations of functors commutes.

Proof. In this proof we write f. for Rf, and ¢* for Lg* and we drop * products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Recall that 8 : g* o f, — fL o (¢')* is an
isomorphism and that « is defined using the isomorphism 3V : g, o ad’ — a o g,
which is the adjoint of 3, see Lemma [4.1] and its proof. First we note that the top
horizontal arrow of the diagram in the lemma is equal to the composition

g'ofioa—g'oficaogiogt — g ogiogt =g
where the first arrow is the unit for (¢*, g.), the second arrow is Try, and the third

arrow is the counit for (¢g*, g.). This is a simple consequence of the fact that the
composition g* — ¢g* 0 g, 0 g* — ¢* of unit and counit is the identity. Consider the
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g0 f.oa
6 / N

fio(g’)*oa g of*oaog*og <79 ofiogiod og”

e

fio(g)roaogiog<——flo(g) ogioad og”

diagram

In this diagram the two squares commute Categories, Lemma or more simply
the discussion preceding Categories, Definition The triangle commutes by the
discussion above. By Categories, Lemma [24.7] the square

grofiogiod —=fio(g) og.od

’| |

gtofioaog, —>id

commutes which implies the pentagon in the big diagram commutes. Since 5 and
BV are isomorphisms, and since going on the outside of the big diagram equals
Try o o 3 by definition this proves the lemma. O

Let S be a scheme. Let f : X — Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : Dgcon(Oy) = Dgcoon(Ox) be the
right adjoint of Rf, as in Lemma By Categories, Section we obtain a
transformation of functors

¢ iid = aoRf,

which is called the unit of the adjunction.

Lemmal 6.2. Suppose we have a diagram . Then the maps 1xny : L(g')*
L(¢g')*ocaoRf. and ng 1 : L(¢')* — a’ o Rf, o L(¢')* agree via the base change
maps B : Lg* o Rf. — Rf. o L(¢')* (Cohomology on Sites, Remark and
a:L(g)*oa—d oLg* {{.1.1). More precisely, the diagram

L(g")* Ty L(g")*oao Rf.

nf/*ll ia

o' o Rf. o L(g)* <—— d’ o Lg" o RY.
of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma In this proof we write f, for
Rf, and ¢g* for Lg* and we drop x products with identities as one can figure out
which ones to add as long as the source and target of the transformation is known.
Recall that 8 : g* o f« — fL o (¢’)* is an isomorphism and that « is defined using
the isomorphism 8" : g, o a’ — a o g, which is the adjoint of 3, see Lemma and
its proof. First we note that the left vertical arrow of the diagram in the lemma is
equal to the composition

*

(9) = (g) ogio(g) = (g) ogiod oflo(g) —adofio(g)

a'oyg
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where the first arrow is the unit for ((g’ )*,g.), the second arrow is n, and the
third arrow is the counit for ((¢’)*, g.). ThlS is a simple consequence of the fact
that the composition (¢')* = (¢')* o (¢')« 0 (¢')* — (¢')* of unit and counit is the
identity. Consider the diagram

Y*oao fy ——— *oaog.ogof,
oa,og*of* *ogloa og*of,
5! (9')*ogioa o fio(g) a’og*o f.

%
a'o fio(g)

In this diagram the two squares commute Categories, Lemma or more simply
the discussion preceding Categories, Definition The triangle commutes by the
discussion above. By the dual of Categories, Lemma the square

id ——————gloa' og o f,

P

good ogtofi——aog.ofio(g)

commutes which implies the pentagon in the big diagram commutes. Since 5 and
BV are isomorphisms, and since going on the outside of the big diagram equals
B o aons by definition this proves the lemma. (|

7. Right adjoint of pushforward and pullback

Let S be a scheme. Let f : X — Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a be the right adjoint of pushforward as in
Lemma For K, L € Dgcon(Oy) there is a canonical map

Lf*K ®%_ a(L) — a(K ®%, L)

Namely, this map is adjoint to a map

Rf.(Lf"K @6, a(L)) = K @6, Rf.(a(L)) — K 3, L
(equality by Derived Categories of Spaces, Lemma for which we use the trace
map Rf.a(L) — L. When L = Oy we obtain a map
(7.0.1) Lf*K @6, a(Oy) — a(K)
functorial in K and compatible with distinguished triangles.
Lemmal 7.1. Let S be a scheme. Let f : X — Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. The map Lf*K ®%X a(L) —

a(K@%Y L) defined above for K, L € Dgcon(Oy) is an isomorphism if K is perfect.
In particular, (7.0.1]) is an isomorphism if K is perfect.
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Proof. Let KV be the “dual” to K, see Cohomology on Sites, Lemma For
M e DQCoh(OX) we have

Hompo,)(Rf: M, K ®(L9Y L) = Homp o, (Rf. M ®I(5Y KV, L)
= Homp(o,) (M &5, Lf*K",a(L))
= Hompo,) (M, Lf* K ©5, a(L))
Second equality by the definition of a and the projection formula (Cohomology on

Sites, Lemma [40.1)) or the more general Derived Categories of Spaces, Lemmam
Hence the result by the Yoneda lemma. ([

Lemma 7.2. Suppose we have a diagram . Let K € Dgcon(Oy). The
diagram

L(g")"(Lf*K @5, a(Oy)) —= L(g')*a(K)

|

L(f')*Lg* K ®g,, ' (Oy') —=a/(Lg"K)

commutes where the horizontal arrows are the maps for K and Lg*K and
the vertical maps are constructed using Cohomology on Sites, Remark and
4.1.1]).

Proof. In this proof we will write f, for Rf, and f* for Lf*, etc, and we will write
® for ®%X, etc. Let us write 1’ as the composition

fTK ®a(Oy) = a(f+(f"K @ a(Oy)))
—a(K ® f.a(Ok))
— a(K ® Oy)
— a(K)

Here the first arrow is the unit 77¢, the second arrow is a applied to Cohomology on
Sites, Equation which is an isomorphism by Derived Categories of Spaces,
Lemma the third arrow is a applied to idxg ® Try, and the fourth arrow is
a applied to the isomorphism K ® Oy = K. The proof of the lemma consists
in showing that each of these maps gives rise to a commutative square as in the
statement of the lemma. For 7y and Try this is Lemmas[6.2]and [6.1} For the arrow
using Cohomology on Sites, Equation this is Cohomology on Sites, Remark
For the multiplication map it is clear. This finishes the proof. O

8. Right adjoint of pushforward for proper flat morphisms

For proper, flat, and finitely presented morphisms of quasi-compact and quasi-
separated algebraic spaces the right adjoint of pushforward enjoys some remarkable
properties.

Lemma 8.1. Let S be a scheme. LetY be a quasi-compact and quasi-separated
algebraic space over S. Let f : X — Y be a morphism of algebraic spaces which
is proper, flat, and of finite presentation. Let a be the right adjoint for Rf, :
Dgcon(Ox) = Dgcon(Oy) of Lemma . Then a commutes with direct sums.
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Proof. Let P be a perfect object of D(Ox). By Derived Categories of Spaces,
Lemma the complex Rf,P is perfect on Y. Let K; be a family of objects of
DQCOh(Oy). Then

Homp(o, ) (P, a(@ Ki)) = Homp(o, ) (Rf. P, K;)
= P Homp(o, ) (Rf. P, K:)
= @HomD(Ox)(P7a(Ki))

because a perfect object is compact (Derived Categories of Spaces, Proposition
. Since Dgeon(Ox) has a perfect generator (Derived Categories of Spaces,
Theorem [15.4) we conclude that the map @ a(K;) — a(@ K;) is an isomorphism,
i.e., a commutes with direct sums. O

Lemma 8.2. Let S be a scheme. LetY be a quasi-compact and quasi-separated
algebraic space over S. Let f : X — Y be a morphism of algebraic spaces which
is proper, flat, and of finite presentation. The map is an isomorphism for
every object K of Dgcon(Oy).

Proof. By Lemma we know that a commutes with direct sums. Hence the
collection of objects of D gcon(Oy) for which is an isomorphism is a strictly
full, saturated, triangulated subcategory of Dgcon(Oy) which is moreover pre-
served under taking direct sums. Since Dgcon(Oy) is a module category (Derived
Categories of Spaces, Theorem [17.3) generated by a single perfect object (Derived
Categories of Spaces, Theorem [15.4)) we can argue as in More on Algebra, Remark
to see that it suffices to prove is an isomorphism for a single perfect
object. However, the result holds for perfect objects, see Lemma O

Lemma 8.3. Let Y be an affine scheme. Let f : X — Y be a morphism of
algebraic spaces which is proper, flat, and of finite presentation. Let a be the right
adjoint for Rfs : Dgcon(Ox) = Dgcon(Oy) of Lemma . Then

(1) a(Oy) is a Y-perfect object of D(Ox),

(2) Rf«a(Oy) has vanishing cohomology sheaves in positive degrees,

(3) Ox — RHomoy (a(Oy),a(Oy)) is an isomorphism.

Proof. We will repeatedly use that Rf. R Homo (L,a(K)) = RHome, (Rf.L, K),
see Lemma Let E be a perfect object of D(Ox) with dual EV, see Cohomology
on Sites, Lemma Then

Rf.(E®%, a(Oy)) = Rf.RHomoy(E",a(Oy)) = RHomo, (Rf.E",Oy)

By Derived Categories of Spaces, Lemma[25.4 the complex Rf.E" is perfect. Hence
the dual RHomoe, (Rf.EY,Oy) is perfect as well. We conclude that a(Oy) is
pseudo-coherent by Derived Categories of Spaces, Lemma amd More on Mor-
phisms of Spaces, Lemma

Let F be a quasi-coherent Oy-module. By Lemma [8.2| we have
a(F) = Lf*F @6, a(Oy) = [T F @} 10, a(Oy)

Second equality by Cohomology on Sites, Lemma By Lemma[3.2] there exists
an integer N such that H'(a(F)) = 0 for i« < —N. Looking at stalks we conclude
that a(Oy) has finite tor dimension (details omitted; hint: for y € ¥ any Oy,-
module occurs as F,, for some quasi-coherent module on the affine scheme Y').
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Combining the results of the previous two paragraphs we find that a(Oy) is Y-
perfect, see More on Morphisms of Spaces, Definition This proves (1).

Let M be an object of Dgcon(Oy ). Then

Homy (M, Rf.a(Oy)) = Homx (Lf*M,a(Oy))
= Homy(Rf*Lf*M, Oy)
= HOHIY(M ®éy Rf*OY; OY)

The first equality holds by Cohomology on Sites, Lemma[20.1} The second equality
by construction of a. The third equality by Derived Categories of Spaces, Lemma
Recall Rf.Ox is perfect of tor amplitude in [0, N] for some N, see Derived
Categories of Spaces, Lemma [25.4] Thus we can represent Rf.Ox by a complex of
finite projective modules sitting in degrees [0, N] (using More on Algebra, Lemma
and the fact that Y is affine). Hence if M = Oy [—i] for some ¢ > 0, then the
last group is zero. Since Y is affine we conclude that H*(Rf.a(Oy)) = 0 for i > 0.
This proves (2).

Let E be a perfect object of Dgcon(Ox). Then we have

Homx (E, RHomo, (a(Oy),a(Oy)) = Homx (E @ a(Oy),a(Oy))
= Homy (Rf.(E ®%, a(Oy)),Oy)
= Homy (Rf.(RHomo, (EY,a(Oy))), Oy)
= Homy (R Homo, (Rf.EY,Oy),Oy)
= RU(Y,Rf.EY)
= Homx (F, Ox)

The first equality holds by Cohomology on Sites, Lemma [28.2] The second equality
is the definition of a. The third equality comes from the construction of the dual
perfect complex EV, see Cohomology on Sites, Lemma [39.9] The fourth equality
is given in the first line of the proof. The fifth equality holds by double duality
for perfect complexes (Cohomology on Sites, Lemma @) and the fact that Rf, F
is perfect by Derived Categories of Spaces, Lemma [25.4] The last equality is Leray
for f. This string of equalities essentially shows (3) holds by the Yoneda lemma.
Namely, the object R Hom(a(Oy),a(Oy)) is in Dgcon(Ox) by Derived Categories
of Spaces, Lemma Taking £ = Ox in the above we get a map o : Ox —
RHomo, (a(Oy),a(Oy)) corresponding to idp, € Homx(Ox,Ox). Since all the
isomorphisms above are functorial in E we see that the cone on « is an object C' of
D gcon(Ox) such that Hom(E, C) = 0 for all perfect E. Since the perfect objects
generate (Derived Categories of Spaces, Theorem we conclude that « is an
isomorphism. ([l

9. Relative dualizing complexes for proper flat morphisms

Motivated by Duality for Schemes, Sections [12] and [28] and the material in Section
[Bl we make the following definition.

Definition 9.1. Let S be a scheme. Let f: X — Y be a proper, flat morphism of
algebraic spaces over S which is of finite presentation. A relative dualizing complex
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for X/Y is a pair (w% -, T) consisting of a Y-perfect object w% ;- of D(Ox) and a
map

7: Rfwk,y — Oy

such that for any cartesian square

X —=X

g/
f/l lf
vy oy

where Y is an affine scheme the pair (L @w Lg*7) is isomorphic to the pair

(a’'(Oy+), Tryr 0, ) studied in Sections (3 ' l ' EI, andl

There are several remarks we should make here.

(1) In Definition one may drop the assumption that w$ /Yy is Y-perfect.
Namely, running Y’ through the members of an étale covering of Y by
affines, we see from Lemmathat the restrictions of w$ Jy to the members
of an étale covering of X are Y-perfect, which implies w$ /Y is Y-perfect,
see More on Morphisms of Spaces, Section

(2) Consider a relative dualizing complex (w$ T 7) and a cartesian square as
in Definition[9.1} We are going to think of the existence of the isomorphism
(L(g")* wX/Y,Lg 7) = (a/(Oy"), Trpr 0,,) as follows: it says that for any
M’ € Dgcon(Ox+) the map

HomX(M',L(g’)*w;(/Y) — Homy (Rf.M',Oy/), '+~ Lg*To RflLy

is an isomorphism. This follows from the definition of @’ and the discus-
sion in Section [} In particular, the Yoneda lemma guarantees that the
isomorphism is unique.
(3) If Y is affine itself, then a relative dualizing complex (w$ v 7) exists and is
canonically isomorphic to (a(Oy), Try0, ) where a is the right adjoint for
Rf, asin Lemma and Try is as in Section@ Namely, given a diagram as
in the definition we get an isomorphism L(g')*a(Oy) — a’(Oy+) by Lemma
which is compatible with trace maps by Lemma
This produces exactly enough information to glue the locally given relative dualizing

complexes to global ones. We suggest the reader skip the proofs of the following
lemmas.

Lemma 9.2. Let S be a scheme. Let X — Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. If (w;(/y,T) is a relative dualizing
complex, then Ox — RHomo, (w;(/y, w;(/y) s an isomorphism and Rf*w;(/y has
vanishing cohomology sheaves in positive degrees.

Proof. It suffices to prove this after base change to an affine scheme étale over Y
in which case it follows from Lemma [R.3l O

Lemmal 9.3. Let S be a scheme. Let X —'Y be a proper, flat morphism of alge-
braic spaces which is of finite presentation. If (w;,Tj), 7 =1,2 are two relative du-
alizing complezes on X/Y, then there is a unique isomorphism (w}, 1) — (w3, T2).


https://stacks.math.columbia.edu/tag/0E5Y
https://stacks.math.columbia.edu/tag/0E5Z

0E60

DUALITY FOR SPACES 21

Proof. Consider g : Y’ — Y étale with Y’ an affine scheme and denote X' =
Y’ xy X the base change. By Definition and the discussion following, there is
a unique isomorphism ¢ : (w}|x/, 71|y’) = (WS|x7, T2ly7). HY" = Y’ is a further
étale morphism of affines and X" = Y” xy X, then ¢|x~ is the unique isomorphism
(W |x, T1lyr) = (W3] x, T2]y~) (by uniqueness). Also we have

Extly, (@] |x,wilx) =0, p<0

because Ox = RHomo,, (wi|x/ wi|x/) = RHomo,, (w}|x/,ws|x’) by Lemma
9.2

Choose a étale hypercovering b : V' — Y such that each V,, = [],. 1, Yn,i with
Y, affine. This is possible by Hypercoverings, Lemma and Remark (to
replace the hypercovering produced in the lemma by the one having disjoint unions
in each degree). Denote X,,; =Y, ; xy X and U,, = V,, xy X so that we obtain an
étale hypercovering a : U — X (Hypercoverings, Lemma with U, = [[ X
The assumptions of Simplicial Spaces, Lemma [36.1] are satisfied for ¢ : U — X and
the complexes w} and w3. Hence we obtain a unique morphism ¢ : w} — w3 whose
restriction to Xo; is the unique isomorphism (w}|x, ., T1lv,,) = (W3]x0.s T2]ve.:)
We still have to see that the diagram '

Rf.w} T Rf.w}

Oy

is commutative. However, we know that Rf.w} and Rf.w3 have vanishing coho-
mology sheaves in positive degrees (Lemma [9.2) thus this commutativity may be
proved after restricting to the affines Y; ; where it holds by construction. O

Lemmal 9.4. Let S be a scheme. Let X — Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. Let (w®,T) be a pair consisting of a
Y -perfect object of D(Ox) and a map 7 : Rf.w® — Oy . Assume we have cartesian
diagrams

A

y, Yoy
with Y; affine such that {g; : Y; — Y} is an étale covering and isomorphisms of
pairs (W®|x,;,Tly;) = (ai(Oy;), Try, 0y,) as in Definition . Then (w®,T) is a
relative dualizing complex for X over Y.
Proof. Let g : Y’ — Y and X', f', ¢, a’ be as in Definition [0.1] Set ((w/)®,7') =
(L(g")*w®, Lg*T). We can find a finite étale covering {Y] — Y’} by affines which

refines {Y; xy Y’ — Y’} (Topologies, Lemma [£.4). Thus for each j there is an i;
and a morphism k; : Yj’ —Y;, over Y. Consider the fibre products
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Denote k) : X7 — X;; the induced morphism (base change of k; by f;,). Restricting

the given isomorphisms to Yj’ via the morphism k; we get isomorphisms of pairs

((w’)'|X§,T’|3/j/) — (aj((’)yj/),TrfJ{,oy,). After replacing f: X - Y by f/: X' =Y’/
j

we reduce to the problem solved in the next paragraph.

Assume Y is affine. Problem: show (w*®, 7) is isomorphic to (W%/y>Tr) = (a(Oy), Try 0, ).
We may assume our covering {Y; — Y} is given by a single surjective étale mor-
phism {g : Y’ — Y} of affines. Namely, we can first replace {g; : ¥; = Y} by a
finite subcovering, and then we can set g = [[g; : Y’ = [[Y; — Y; some details
omitted. Set X’ =Y’ xy X with maps f’, ¢’ as in Definition Then all we're
given is that we have an isomorphism

(w*[xr, 7lyr) = (a'(Oy1), Trp 0,,)

Since (w% v Tr) is a relative dualizing complex (see discussion following Definition
9.1)) there is a unique isomorphism

(w;(/Y|X’a Trly') — (a/(OY’)v Trf/7oy/)

Uniqueness by Lemma [0.3] for example. Combining the displayed isomorphisms we
find an isomorphism

o (Wx,Tly) = (/v lx, Trlyr)

Set Y/ =Y’ xy Y’ and X” = Y"” xy X the two pullbacks of a to X" have to
be the same by uniqueness again. Since we have vanishing negative self exts for
Wy over X " (Lemma |9.2) and since this remains true after pulling back by any
projection Y’ Xy ... Xy YY" — Y’ (small detail omitted — compare with the proof
of Lemma, we find that o descends to an isomorphism w® — w$ /y over X by
Simplicial Spaces, Lemma [36.1 O

0E61 Lemma 9.5. Let S be a scheme. Let X — Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. There exists a relative dualizing
complex (W% /y, 7).

Proof. Choose a étale hypercovering b : V' — Y such that each V,, = Hieln Yo
with Y, ; affine. This is possible by Hypercoverings, Lemma [12.2) and Remark
(to replace the hypercovering produced in the lemma by the one having disjoint
unions in each degree). Denote X, ; = Y,,; Xy X and U, = V,, xy X so that
we obtain an étale hypercovering a : U — X (Hypercoverings, Lemma with
Un = ][ Xn,i- For each n,i there exists a relative dualizing complex (wy, ;,7.i) on
Xn,i/Yn,i. See discussion following Definition For ¢ : [m] — [n] and i € I,
consider the morphisms g, ; @ Y — Y a(p) and g;,i ¢ Xni = Xon,a(e) Which
are part of the structure of the given hypercoverings (Hypercoverings, Section .
Then we have a unique isomorphisms

bnjip (L(Q;L,i)*wﬁ,ngZ,iTn,i) — (w;z,a(<p)(i)77m,a(<ﬁ)(i))

of pairs, see discussion following Definition Observe that wy, ; has vanishing
negative self exts on X, ; by Lemma Denote (wp,7,) the pair on U,/V,
constructed using the pairs (wp, ;,7,:) for i € I,,. For ¢ : [m] — [n] and i € I,
consider the morphisms g, : V5, — V,,, and g; : U, — U,, which are part of
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the structure of the simplicial algebraic spaces V and U. Then we have unique
isomorphisms
Lo+ (L(gy) wn, LgpTn) — (whyy Tim)

of pairs constructed from the isomorphisms on the pieces. The uniqueness guaran-
tees that these isomorphisms satisfy the transitivity condition as formulated in Sim-
plicial Spaces, Definition The assumptions of Simplicial Spaces, Lemma [36.2
are satisfied for a : U — X, the complexes w;, and the isomorphisms Lﬂ Thus we
obtain an object w® of Dgcon(Ox) together with an isomorphism ¢g : w®|y, — wg
compatible with the two isomorphisms L5t and ¢51. Finally, we apply Simplicial
Spaces, Lemma to find a unique morphism

7: Rfiw® — Oy

whose restriction to Vj agrees with 79; some details omitted — compare with the end
of the proof of Lemma for example to see why we have the required vanishing
of negative exts. By Lemmathe pair (w®,7) is a relative dualizing complex and
the proof is complete. O

Lemma 9.6. Let S be a scheme. Consider a cartesian square
X —X
f/l ’ lf
v sy
of algebraic spaces over S. Assume X — Y is proper, flat, and of finite presenta-

tion. Let (w%y,T) be a relative dualizing complex for f. Then (L(g’)*w;(/y, Lg*T)
18 a relative dualizing complex for f'.

Proof. Observe that L(g’)*w;{/y is Y'-perfect by More on Morphisms of Spaces,
Lemma The other condition of Definition holds by transitivity of fibre
products. ([l

10. Comparison with the case of schemes
We should add a lot more in this section.

Lemmal 10.1. Let S be a scheme. Let f: X — Y be a morphism of quasi-compact
and quasi-separated algebraic spaces over S. Assume X and Y are representable
and let fo : Xo — Yo be a morphism of schemes representing [ (awkward but
temporary notation). Let a : Dgcon(Oy) — Docon(Ox) be the right adjoint of
Rf. from Lemma . Let ap : Dgcon(Oy,) = Docon(Ox,) be the right adjoint of
Rf. from Duality for Schemes, Lemma|3.1l Then

D @) D @
QCOh( XU) Derived Categories of Spaces, Lemma[{.2] QCOh( X)
Derived Categories of Spaces, Lemma[.2]

D ocon(Oyy) D gcon(Oy)

15 commutative.

IThis lemma uses only w$ and the two maps 67, 4§ : [1] — [0]. The reader can skip the first few

lines of the proof of the referenced lemma because here we actually are already given a simplicial
system of the derived category of modules.
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Proof. Follows from uniqueness of adjoints and the compatibilities of Derived Cat-
egories of Spaces, Remark [6.3] O
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