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1. Introduction

0E4W This chapter is the analogue of the corresponding chapter for schemes, see Duality
for Schemes, Section 1. The development is similar to the development in the
papers [Nee96], [LN07], [Lip09], and [Nee14].

2. Dualizing complexes on algebraic spaces

0E4X Let U be a locally Noetherian scheme. Let Oétale be the structure sheaf of U on
the small étale site of U . We will say an object K ∈ DQCoh(Oétale) is a dualizing
complex on U if K = ϵ∗(ω•

U ) for some dualizing complex ω•
U in the sense of Duality

for Schemes, Section 2. Here ϵ∗ : DQCoh(OU ) → DQCoh(Oétale) is the equivalence
of Derived Categories of Spaces, Lemma 4.2. Most of the properties of ω•

U studied
in Duality for Schemes, Section 2 are inherited by K via the discussion in Derived
Categories of Spaces, Sections 4 and 13.

We define a dualizing complex on a locally Noetherian algebraic space to be a
complex which étale locally comes from a dualizing complex on the corresponding
scheme.

Lemma 2.1.0E4Y Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be an object of DQCoh(OX). The following are equivalent

(1) For every étale morphism U → X where U is a scheme the restriction K|U
is a dualizing complex for U (as discussed above).

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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(2) There exists a surjective étale morphism U → X where U is a scheme such
that K|U is a dualizing complex for U .

Proof. Assume U → X is surjective étale where U is a scheme. Let V → X be an
étale morphism where V is a scheme. Then

U ← U ×X V → V

are étale morphisms of schemes with the arrow to V surjective. Hence we can use
Duality for Schemes, Lemma 26.1 to see that if K|U is a dualizing complex for U ,
then K|V is a dualizing complex for V . □

Definition 2.2.0E4Z Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. An object K of DQCoh(OX) is called a dualizing complex if K satisfies the
equivalent conditions of Lemma 2.1.

Lemma 2.3.0E50 Let A be a Noetherian ring and let X = Spec(A). Let Oétale be the
structure sheaf of X on the small étale site of X. Let K, L be objects of D(A). If
K ∈ DCoh(A) and L has finite injective dimension, then

ϵ∗ ˜R HomA(K, L) = RHomOétale
(ϵ∗K̃, ϵ∗L̃)

in D(Oétale) where ϵ : (Xétale,Oétale) → (X,OX) is as in Derived Categories of
Spaces, Section 4.

Proof. By Duality for Schemes, Lemma 2.3 we have a canonical isomorphism

˜R HomA(K, L) = RHomOX
(K̃, L̃)

in D(OX). There is a canonical map

ϵ∗R HomOX
(K̃, L̃) −→ RHomOétale

(ϵ∗K̃, ϵ∗L̃)

in D(Oétale), see Cohomology on Sites, Remark 35.11. We will show the left and
right hand side of this arrow have isomorphic cohomology sheaves, but we will omit
the verification that the isomorphism is given by this arrow.

We may assume that L is given by a finite complex I• of injective A-modules.
By induction on the length of I• and compatibility of the constructions with dis-
tinguished triangles, we reduce to the case that L = I[0] where I is an injective
A-module. Recall that the cohomology sheaves of RHomOétale

(ϵ∗K̃, ϵ∗L̃)) are the
sheafifications of the presheaf sending U étale over X to the ith ext group between
the restrictions of ϵ∗K̃ and ϵ∗L̃ to Uétale. See Cohomology on Sites, Lemma 35.1.
If U = Spec(B) is affine, then this ext group is equal to Exti

B(K ⊗A B, L ⊗A B)
by the equivalence of Derived Categories of Spaces, Lemma 4.2 and Derived Cate-
gories of Schemes, Lemma 3.5 (this also uses the compatibilities detailed in Derived
Categories of Spaces, Remark 6.3). Since A→ B is étale, we see that I ⊗A B is an
injective B-module by Dualizing Complexes, Lemma 26.4. Hence we see that

Extn
B(K ⊗A B, I ⊗A B) = HomB(H−n(K ⊗A B), I ⊗A B)

= HomAf
(H−n(K)⊗A B, I ⊗A B)

= HomA(H−n(K), I)⊗A B

= Extn
A(K, I)⊗A B

https://stacks.math.columbia.edu/tag/0E4Z
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The penultimate equality because H−n(K) is a finite A-module, see More on Al-
gebra, Lemma 65.4. Therefore the cohomology sheaves of the left and right hand
side of the equality in the lemma are the same. □

Lemma 2.4.0E51 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be a dualizing complex on X. Then K is an object of DCoh(OX)
and D = RHomOX

(−, K) induces an anti-equivalence

D : DCoh(OX) −→ DCoh(OX)

which comes equipped with a canonical isomorphism id → D ◦ D. If X is quasi-
compact, then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence

Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U → X be an étale morphism with U affine. Say U = Spec(A) and
let ω•

A be a dualizing complex for A corresponding to K|U as in Lemma 2.1 and
Duality for Schemes, Lemma 2.1. By Lemma 2.3 the diagram

DCoh(A) //

R HomA(−,ω•
A)
��

DCoh(Oétale)

R HomOétale
(−,K|U )

��
DCoh(A) // D(Oétale)

commutes where Oétale is the structure sheaf of the small étale site of U . Since for-
mation of RHom commutes with restriction, we conclude that D sends DCoh(OX)
into DCoh(OX). Moreover, the canonical map

L −→ RHomOX
(RHomOX

(L, K), K)

(Cohomology on Sites, Lemma 35.5) is an isomorphism for all L in DCoh(OX)
because this is true over all U as above by Dualizing Complexes, Lemma 15.3. The
statement on boundedness properties of the functor D in the quasi-compact case
also follows from the corresponding statements of Dualizing Complexes, Lemma
15.3. □

Let (C,O) be a ringed site. Recall that an object L of D(O) is invertible if it is an
invertible object for the symmetric monoidal structure on D(OX) given by derived
tensor product. In Cohomology on Sites, Lemma 49.2 we we have seen this means
L is perfect and if (C,O) is a locally ringed site, then for every object U of C there
is a covering {Ui → U} of U in C such that L|Ui

∼= OUi
[−ni] for some integers ni.

Let S be a scheme and let X be an algebraic space over S. If L in D(OX) is
invertible, then there is a disjoint union decomposition X =

∐
n∈Z Xn such that

L|Xn is an invertible module sitting in degree n. In particular, it follows that
L =

⊕
Hn(L)[−n] which gives a well defined complex of OX -modules (with zero

differentials) representing L.

Lemma 2.5.0E52 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. If K and K ′ are dualizing complexes on X, then K ′ is isomorphic to
K ⊗L

OX
L for some invertible object L of D(OX).

Proof. Set
L = RHomOX

(K, K ′)

https://stacks.math.columbia.edu/tag/0E51
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This is an invertible object of D(OX), because affine locally this is true. Use
Lemma 2.3 and Dualizing Complexes, Lemma 15.5 and its proof. The evaluation
map L⊗L

OX
K → K ′ is an isomorphism for the same reason. □

Lemma 2.6.0E53 Let S be a scheme. Let X be a locally Noetherian quasi-separated
algebraic space over S. Let ω•

X be a dualizing complex on X. Then X the function
|X| → Z defined by

x 7−→ δ(x) such that ω•
X,x[−δ(x)] is a normalized dualizing complex over OX,x

is a dimension function on |X|.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. Let ω•
U

be the dualizing complex on U associated to ω•
X |U . If u ∈ U maps to x ∈ |X|, then

OX,x is the strict henselization of OU,u. By Dualizing Complexes, Lemma 22.1 we
see that if ω• is a normalized dualizing complex for OU,u, then ω• ⊗OU,u

OX,x is a
normalized dualizing complex for OX,x. Hence we see that the dimension function
U → Z of Duality for Schemes, Lemma 2.7 for the scheme U and the complex ω•

U

is equal to the composition of U → |X| with δ. Using the specializations in |X| lift
to specializations in U and that nontrivial specializations in U map to nontrivial
specializations in X (Decent Spaces, Lemmas 12.2 and 12.1) an easy topological
argument shows that δ is a dimension function on |X|. □

3. Right adjoint of pushforward

0E54 This is the analogue of Duality for Schemes, Section 3.

Lemma 3.1.0E55 This is almost the
same as [Nee96,
Example 4.2].

Let S be a scheme. Let f : X → Y be a morphism between
quasi-separated and quasi-compact algebraic spaces over S. The functor Rf∗ :
DQCoh(X)→ DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 38.2. First off, the category DQCoh(OX) has direct sums,
see Derived Categories of Spaces, Lemma 5.3. The category DQCoh(OX) is com-
pactly generated by Derived Categories of Spaces, Theorem 15.4. Since X and Y
are quasi-compact and quasi-separated, so is f , see Morphisms of Spaces, Lem-
mas 4.10 and 8.9. Hence the functor Rf∗ commutes with direct sums, see Derived
Categories of Spaces, Lemma 6.2. This finishes the proof. □

Lemma 3.2.0E56 Notation and assumptions as in Lemma 3.1. Let a : DQCoh(OY )→
DQCoh(OX) be the right adjoint to Rf∗. Then a maps D+

QCoh(OY ) into D+
QCoh(OX).

In fact, there exists an integer N such that Hi(K) = 0 for i ≤ c implies Hi(a(K)) =
0 for i ≤ c−N .

Proof. By Derived Categories of Spaces, Lemma 6.1 the functor Rf∗ has finite
cohomological dimension. In other words, there exist an integer N such that
Hi(Rf∗L) = 0 for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+

QCoh(OY )
has Hi(K) = 0 for i ≤ c. Then

HomD(OX )(τ≤c−N a(K), a(K)) = HomD(OY )(Rf∗τ≤c−N a(K), K) = 0

by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . □

https://stacks.math.columbia.edu/tag/0E53
https://stacks.math.columbia.edu/tag/0E55
https://stacks.math.columbia.edu/tag/0E56
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Let S be a scheme. Let f : X → Y be a morphism of quasi-separated and
quasi-compact algebraic spaces over S. Let a denote the right adjoint to Rf∗ :
DQCoh(OX) → DQCoh(OY ). For every K ∈ DQCoh(OY ) and L ∈ DQCoh(OX) we
obtain a canonical map
(3.2.1)0E57 Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L, K)

Namely, this map is constructed as the composition
Rf∗RHomOX

(L, a(K))→ RHomOY
(Rf∗L, Rf∗a(K))→ RHomOY

(Rf∗L, K)
where the first arrow is Cohomology on Sites, Remark 35.10 and the second arrow
is the counit Rf∗a(K)→ K of the adjunction.

Lemma 3.3.0E58 Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let a be the right adjoint to
Rf∗ : DQCoh(OX) → DQCoh(OY ). Let L ∈ DQCoh(OX) and K ∈ DQCoh(OY ).
Then the map (3.2.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L, K)
becomes an isomorphism after applying the functor DQY : D(OY ) → DQCoh(OY )
discussed in Derived Categories of Spaces, Section 19.

Proof. The statement makes sense as DQY exists by Derived Categories of Spaces,
Lemma 19.1. Since DQY is the right adjoint to the inclusion functor DQCoh(OY )→
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the
map (3.2.1) induces an bijection

HomY (M, Rf∗RHomOX
(L, a(K))) −→ HomY (M, RHomOY

(Rf∗L, K))
To see this we use the following string of equalities

HomY (M, Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M, RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L), K)
= HomY (M ⊗L

OY
Rf∗L, K)

= HomY (M, RHomOY
(Rf∗L, K))

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality
by Cohomology on Sites, Lemma 35.2. The third equality by construction of a. The
fourth equality by Derived Categories of Spaces, Lemma 20.1 (this is the important
step). The fifth by Cohomology on Sites, Lemma 35.2. □

Example 3.4.0GG3 The statement of Lemma 3.3 is not true without applying the
“coherator” DQY . See Duality for Schemes, Example 3.7.

Remark 3.5.0GG4 In the situation of Lemma 3.3 we have
DQY (Rf∗RHomOX

(L, a(K))) = Rf∗DQX(RHomOX
(L, a(K)))

by Derived Categories of Spaces, Lemma 19.2. Thus if RHomOX
(L, a(K)) ∈

DQCoh(OX), then we can “erase” the DQY on the left hand side of the arrow.
On the other hand, if we know that RHomOY

(Rf∗L, K) ∈ DQCoh(OY ), then we
can “erase” the DQY from the right hand side of the arrow. If both are true then
we see that (3.2.1) is an isomorphism. Combining this with Derived Categories of

https://stacks.math.columbia.edu/tag/0E58
https://stacks.math.columbia.edu/tag/0GG3
https://stacks.math.columbia.edu/tag/0GG4
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Spaces, Lemma 13.10 we see that Rf∗RHomOX
(L, a(K)) → RHomOY

(Rf∗L, K)
is an isomorphism if

(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma 3.2.

Example 3.6.0GG5 Let S be a scheme. Let f : X → Y be a proper morphism of
Noetherian algebraic spaces over S, L ∈ D−

Coh(X) and K ∈ D+
QCoh(OY ). Then the

map Rf∗RHomOX
(L, a(K)) → RHomOY

(Rf∗L, K) is an isomorphism. Namely,
the complexes L and Rf∗L are pseudo-coherent by Derived Categories of Spaces,
Lemmas 13.7 and 8.1 and the discussion in Remark 3.5 applies.

Lemma 3.7.0E59 Let S be a scheme. Let f : X → Y be a morphism of quasi-separated
and quasi-compact algebraic spaces over S. For all L ∈ DQCoh(OX) and K ∈
DQCoh(OY ) (3.2.1) induces an isomorphism R HomX(L, a(K))→ R HomY (Rf∗L, K)
of global derived homs.

Proof. By construction (Cohomology on Sites, Section 36) the complexes

R HomX(L, a(K)) = RΓ(X, RHomOX
(L, a(K))) = RΓ(Y, Rf∗RHomOX

(L, a(K)))

and
R HomY (Rf∗L, K) = RΓ(Y, RHomOX

(Rf∗L, a(K)))
Thus the lemma is a consequence of Lemma 3.3. Namely, a map E → E′ in
D(OY ) which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-
isomorphism RΓ(Y, E) → RΓ(Y, E′). Indeed we have Hi(Y, E) = Exti

Y (OY , E) =
Hom(OY [−i], E) = Hom(OY [−i], DQY (E)) because OY [−i] is in DQCoh(OY ) and
DQY is the right adjoint to the inclusion functor DQCoh(OY )→ D(OY ). □

4. Right adjoint of pushforward and base change, I

0E5A Let us define the base change map between right adjoints of pushforward. Let S
be a scheme. Consider a cartesian diagram

(4.0.1)0E5B

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where Y ′ and X are Tor independent over Y . Denote

a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)

the right adjoints to Rf∗ and Rf ′
∗ (Lemma 3.1). The base change map of Coho-

mology on Sites, Remark 19.3 gives a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′
∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 4.1.0E5C In diagram (4.0.1) the map a ◦Rg∗ ← Rg′
∗ ◦ a′ is an isomorphism.

https://stacks.math.columbia.edu/tag/0GG5
https://stacks.math.columbia.edu/tag/0E59
https://stacks.math.columbia.edu/tag/0E5C
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Proof. The base change map Lg∗ ◦Rf∗K → Rf ′
∗ ◦L(g′)∗K is an isomorphism for

every K in DQCoh(OX) by Derived Categories of Spaces, Lemma 20.4 (this uses the
assumption of Tor independence). Thus the corresponding transformation between
adjoint functors is an isomorphism as well. □

Then we can consider the morphism of functors DQCoh(OY )→ DQCoh(OX′) given
by the composition
(4.1.1)0E5D L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦ Lg∗ ← L(g′)∗ ◦Rg′

∗ ◦ a′ ◦ Lg∗ → a′ ◦ Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg∗ and the last arrow
from the adjunction map L(g′)∗Rg′

∗ → id. We need the assumption on Tor inde-
pendence to invert the arrow in the middle, see Lemma 4.1. Alternatively, we can
think of (4.1.1) by adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M, a(K)) = HomY (Rf∗M, K)
→ HomY (Rf∗M, Rg∗Lg∗K)
= HomY ′(Lg∗Rf∗M, Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M, Lg∗K)
= HomX′(L(g′)∗M, a′(Lg∗K))
= HomX(M, Rg′

∗a′(Lg∗K))
(were the arrow pointing left is invertible by the base change theorem given in
Derived Categories of Spaces, Lemma 20.4) which makes things a little bit more
explicit.
In this section we first prove that the base change map satisfies some natural com-
patibilities with regards to stacking squares as in Cohomology on Sites, Remarks
19.4 and 19.5 for the usual base change map. We suggest the reader skip the rest
of this section on a first reading.

Lemma 4.2.0E5E Let S be a scheme. Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and l as well as g and m are Tor independent. Then the
maps (4.1.1) for the two squares compose to give the base change map for the outer
rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that g ◦ f and m are Tor independent
(details omitted), hence the statement makes sense. In this proof we write k∗ in
place of Lk∗ and f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma

https://stacks.math.columbia.edu/tag/0E5E
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3.1 for f , g, and g◦f and similarly for the primed versions. The arrow corresponding
to the top square is the composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗ ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map l∗ ◦f∗ → f ′

∗ ◦k∗. The outer arrows come from
the canonical maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we
have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗

We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b
γtop−−→ a′ ◦ l∗ ◦ b

γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗

To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma 28.2 or more simply the discussion preceding
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Categories, Definition 28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is
different from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55

commutes by Categories, Lemma 28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is
the identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a◦b = c and a′◦b′ = c′). This is the statement
dual to Cohomology on Sites, Remark 19.4 and the proof is complete. □

Lemma 4.3.0E5F Let S be a scheme. Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and h as well as f ′ and h′ are Tor independent. Then
the maps (4.1.1) for the two squares compose to give the base change map for the
outer rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that f and h ◦ h′ are Tor independent
(details omitted), hence the statement makes sense. In this proof we write g∗ in
place of Lg∗ and f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of

https://stacks.math.columbia.edu/tag/0E5F
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Lemma 3.1 for f , f ′, and f ′′. The arrow corresponding to the right square is the
composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗

where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come
from the canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square
we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a
γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗

To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this dia-
gram commute by Categories, Lemma 28.2 or more simply the discussion preceding
Categories, Definition 28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 28.5 and the
proof is complete. □
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Remark 4.4.0E5G Let S be a scheme. Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′

//

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where all squares
are cartesian and where (f, l), (g, m), (f ′, l′), (g′, m′) are Tor independent pairs of
maps. Let a, a′, a′′, b, b′, b′′ be the right adjoints of Lemma 3.1 for f , f ′, f ′′, g, g′,
g′′. Let us label the squares of the diagram A, B, C, D as follows

A B
C D

Then the maps (4.1.1) for the squares are (where we use k∗ = Lk∗, etc)

γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗

γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps

γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γA+C : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 4.3 we have

γA+B = γA ◦ γB , γC+D = γC ◦ γD

and by Lemma 4.2 we have

γA+C = γC ◦ γA, γB+D = γD ◦ γB

Here it would be more correct to write γA+B = (γA⋆idl∗)◦(id(k′)∗ ⋆γB) with notation
as in Categories, Section 28 and similarly for the others. However, we continue the
abuse of notation used in the proofs of Lemmas 4.2 and 4.3 of dropping ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Having said all of this we find (a priori) two
transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

https://stacks.math.columbia.edu/tag/0E5G
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The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD

//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗

commutes. This is true by Categories, Lemma 28.2 or more simply the discussion
preceding Categories, Definition 28.1.

5. Right adjoint of pushforward and base change, II

0E5H In this section we prove that the base change map of Section 4 is an isomorphism
in some cases.

Lemma 5.1.0E5I In diagram (4.0.1) assume in addition g : Y ′ → Y is a morphism
of affine schemes and f : X → Y is proper. Then the base change map (4.1.1)
induces an isomorphism

L(g′)∗a(K) −→ a′(Lg∗K)

in the following cases
(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
(3) for K ∈ D+

QCoh(OX) if g has finite Tor dimension and Y Noetherian.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX),
see Derived Categories of Spaces, Theorem 15.4. Then L(g′)∗M is a generator for
DQCoh(OX′), see Derived Categories of Spaces, Remark 15.5. Hence it suffices to
show that (4.1.1) induces an isomorphism

(5.1.1)0E5J R HomX′(L(g′)∗M, L(g′)∗a(K)) −→ R HomX′(L(g′)∗M, a′(Lg∗K))

of global hom complexes, see Cohomology on Sites, Section 36, as this will imply
the cone of L(g′)∗a(K)→ a′(Lg∗K) is zero. The structure of the proof is as follows:
we will first show that these Hom complexes are isomorphic and in the last part of
the proof we will show that the isomorphism is induced by (5.1.1).

The left hand side. Because M is perfect, the canonical map

R HomX(M, a(K))⊗L
A A′ −→ R HomX′(L(g′)∗M, L(g′)∗a(K))

is an isomorphism by Derived Categories of Spaces, Lemma 20.5. We can combine
this with the isomorphism R HomY (Rf∗M, K) = R HomX(M, a(K)) of Lemma 3.7
to get that the left hand side equals R HomY (Rf∗M, K)⊗L

A A′.

The right hand side. Here we first use the isomorphism

R HomX′(L(g′)∗M, a′(Lg∗K)) = R HomY ′(Rf ′
∗L(g′)∗M, Lg∗K)

of Lemma 3.7. Since f and g are Tor independent the base change map Lg∗Rf∗M →
Rf ′

∗L(g′)∗M is an isomorphism by Derived Categories of Spaces, Lemma 20.4.
Hence we may rewrite this as R HomY ′(Lg∗Rf∗M, Lg∗K). Since Y , Y ′ are affine

https://stacks.math.columbia.edu/tag/0E5I
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and K, Rf∗M are in DQCoh(OY ) (Derived Categories of Spaces, Lemma 6.1) we
have a canonical map

β : R HomY (Rf∗M, K)⊗L
A A′ −→ R HomY ′(Lg∗Rf∗M, Lg∗K)

in D(A′). This is the arrow More on Algebra, Equation (99.1.1) where we have
used Derived Categories of Schemes, Lemmas 3.5 and 10.8 to translate back and
forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y
by Derived Categories of Spaces, Lemma 25.4 and β is an isomorphism by
More on Algebra, Lemma 99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by
More on Morphisms of Spaces, Lemma 47.5 and β is an isomorphism as
before.

(3) If g has finite tor dimension and Y is Noetherian, the complex Rf∗M is
pseudo-coherent on Y (Derived Categories of Spaces, Lemmas 8.1 and 13.7)
and β is an isomorphism by More on Algebra, Lemma 99.2 part (4).

We conclude that we obtain the same answer as in the previous paragraph.
In the rest of the proof we show that the identifications of the left and right hand
side of (5.1.1) given in the second and third paragraph are in fact given by (5.1.1).
To make our formulas manageable we will use (−,−)X = R HomX(−,−), use −⊗A′

in stead of −⊗L
A A′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the

following commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M, a(K))X ⊗A′
α

oo

��

(f∗M, K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g∗K))X′ (M, a(g∗g∗K))X ⊗A′

α
oo (f∗M, g∗g∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a′(g∗K))X′

OO

��

(M, g′
∗a′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M, K)⊗A′

β

��
((g′)∗M, a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Spaces, Lemma
20.5 for the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram
is commutative as the horizontal arrows are functorial in the entries. The middle
vertical arrows come from the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma
4.1 and therefore the middle square is commutative. Going down the left hand
side is (5.1.1). The upper horizontal arrows provide the identifications used in the
second paragraph of the proof. The lower horizontal arrows including β provide
the identifications used in the third paragraph of the proof. Given E ∈ D(A),
E′ ∈ D(A′), and c : E → E′ in D(A) we will denote µc : E ⊗ A′ → E′ the map
induced by c and the adjointness of restriction and base change; if c is clear we
write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is of
this form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M, a′(g∗K))X′

; the triangle involving µ is commutative by Derived Categories of Spaces, Remark
20.6.
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Observe that
(M, a(g∗g∗K))X (f∗M, g∗g∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a′(g∗K))X

OO

((g′)∗M, a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗ ◦a′ → a◦g∗. Letting

µ′ be as above corresponding to the identification (f∗M, g∗g∗K)X = (g∗f∗M, g∗K)Y ′ ,
then the hexagon commutes as well. Thus it suffices to show that β is equal to the
composition of (f∗M, K)Y ⊗A′ → (f∗M, g∗g∗K)X ⊗A′ and µ′. To do this, it suf-
fices to prove the two induced maps (f∗M, K)Y → (g∗f∗M, g∗K)Y ′ are the same.
In other words, it suffices to show the diagram

R HomA(E, K)
induced by β

//

))

R HomA′(E ⊗L
A A′, K ⊗L

A A′)

R HomA(E, K ⊗L
A A′)

44

commutes for all E, K ∈ D(A). Since this is how β is constructed in More on
Algebra, Section 99 the proof is complete. □

6. Right adjoint of pushforward and trace maps

0E5K Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : DQCoh(OY )→ DQCoh(OX) be the right
adjoint as in Lemma 3.1. By Categories, Section 24 we obtain a transformation of
functors

Trf : Rf∗ ◦ a −→ id
The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L, K)
for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

φ 7−→ Trf,K ◦Rf∗φ

The canonical map (3.2.1)
Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L, K)

comes about by composition with Trf,K . Every trace map we are going to consider
in this section will be a special case of this trace map. Before we discuss some
special cases we show that formation of the trace map commutes with base change.

Lemma 6.1 (Trace map and base change).0E5L Suppose we have a diagram (4.0.1).
Then the maps 1 ⋆ Trf : Lg∗ ◦ Rf∗ ◦ a → Lg∗ and Trf ′ ⋆ 1 : Rf ′

∗ ◦ a′ ◦ Lg∗ → Lg∗

agree via the base change maps β : Lg∗ ◦Rf∗ → Rf ′
∗ ◦L(g′)∗ (Cohomology on Sites,

Remark 19.3) and α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (4.1.1). More precisely, the diagram

Lg∗ ◦Rf∗ ◦ a

β⋆1
��

1⋆Trf

// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a

1⋆α // Rf ′
∗ ◦ a′ ◦ Lg∗

Trf′ ⋆1

OO

https://stacks.math.columbia.edu/tag/0E5L
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of transformations of functors commutes.
Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an
isomorphism and that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗
which is the adjoint of β, see Lemma 4.1 and its proof. First we note that the top
horizontal arrow of the diagram in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third
arrow is the counit for (g∗, g∗). This is a simple consequence of the fact that the
composition g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the
diagram

g∗ ◦ f∗ ◦ a

β

uu ��

Trf

// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo

In this diagram the two squares commute Categories, Lemma 28.2 or more simply
the discussion preceding Categories, Definition 28.1. The triangle commutes by the
discussion above. By Categories, Lemma 24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
Trf ◦ α ◦ β by definition this proves the lemma. □

Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : DQCoh(OY ) → DQCoh(OX) be the
right adjoint of Rf∗ as in Lemma 3.1. By Categories, Section 24 we obtain a
transformation of functors

ηf : id→ a ◦Rf∗

which is called the unit of the adjunction.
Lemma 6.2.0E5M Suppose we have a diagram (4.0.1). Then the maps 1⋆ηf : L(g′)∗ →
L(g′)∗ ◦ a ◦ Rf∗ and ηf ′ ⋆ 1 : L(g′)∗ → a′ ◦ Rf ′

∗ ◦ L(g′)∗ agree via the base change
maps β : Lg∗ ◦ Rf∗ → Rf ′

∗ ◦ L(g′)∗ (Cohomology on Sites, Remark 19.3) and
α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (4.1.1). More precisely, the diagram

L(g′)∗
1⋆ηf

//

ηf′ ⋆1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

https://stacks.math.columbia.edu/tag/0E5M
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of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 6.1. In this proof we write f∗ for
Rf∗ and g∗ for Lg∗ and we drop ⋆ products with identities as one can figure out
which ones to add as long as the source and target of the transformation is known.
Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and that α is defined using
the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 4.1 and
its proof. First we note that the left vertical arrow of the diagram in the lemma is
equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗

where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the

third arrow is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact

that the composition (g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the
identity. Consider the diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf

55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 28.2 or more simply
the discussion preceding Categories, Definition 28.1. The triangle commutes by the
discussion above. By the dual of Categories, Lemma 24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
β ◦ α ◦ ηf by definition this proves the lemma. □

7. Right adjoint of pushforward and pullback

0E5N Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a be the right adjoint of pushforward as in
Lemma 3.1. For K, L ∈ DQCoh(OY ) there is a canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)

Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L
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(equality by Derived Categories of Spaces, Lemma 20.1) for which we use the trace
map Rf∗a(L)→ L. When L = OY we obtain a map

(7.0.1)0E5P Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles.

Lemma 7.1.0E5Q Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. The map Lf∗K ⊗L

OX
a(L)→

a(K⊗L
OY

L) defined above for K, L ∈ DQCoh(OY ) is an isomorphism if K is perfect.
In particular, (7.0.1) is an isomorphism if K is perfect.

Proof. Let K∨ be the “dual” to K, see Cohomology on Sites, Lemma 48.4. For
M ∈ DQCoh(OX) we have

HomD(OY )(Rf∗M, K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX )(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX )(M, Lf∗K ⊗L
OX

a(L))

Second equality by the definition of a and the projection formula (Cohomology on
Sites, Lemma 50.1) or the more general Derived Categories of Spaces, Lemma 20.1.
Hence the result by the Yoneda lemma. □

Lemma 7.2.0E5R Suppose we have a diagram (4.0.1). Let K ∈ DQCoh(OY ). The
diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (7.0.1) for K and Lg∗K and
the vertical maps are constructed using Cohomology on Sites, Remark 19.3 and
(4.1.1).

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (7.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomology on
Sites, Equation (50.0.1) which is an isomorphism by Derived Categories of Spaces,
Lemma 20.1, the third arrow is a applied to idK ⊗ Trf , and the fourth arrow is
a applied to the isomorphism K ⊗ OY = K. The proof of the lemma consists
in showing that each of these maps gives rise to a commutative square as in the
statement of the lemma. For ηf and Trf this is Lemmas 6.2 and 6.1. For the arrow
using Cohomology on Sites, Equation (50.0.1) this is Cohomology on Sites, Remark
50.2. For the multiplication map it is clear. This finishes the proof. □

https://stacks.math.columbia.edu/tag/0E5Q
https://stacks.math.columbia.edu/tag/0E5R
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8. Right adjoint of pushforward for proper flat morphisms

0E5S For proper, flat, and finitely presented morphisms of quasi-compact and quasi-
separated algebraic spaces the right adjoint of pushforward enjoys some remarkable
properties.

Lemma 8.1.0E5T Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a morphism of algebraic spaces which
is proper, flat, and of finite presentation. Let a be the right adjoint for Rf∗ :
DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By Derived Categories of Spaces,
Lemma 25.4 the complex Rf∗P is perfect on Y . Let Ki be a family of objects of
DQCoh(OY ). Then

HomD(OX )(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P, Ki)

=
⊕

HomD(OX )(P, a(Ki))

because a perfect object is compact (Derived Categories of Spaces, Proposition
16.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Spaces,
Theorem 15.4) we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism,

i.e., a commutes with direct sums. □

Lemma 8.2.0E5U Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a morphism of algebraic spaces which
is proper, flat, and of finite presentation. The map (7.0.1) is an isomorphism for
every object K of DQCoh(OY ).

Proof. By Lemma 8.1 we know that a commutes with direct sums. Hence the
collection of objects of DQCoh(OY ) for which (7.0.1) is an isomorphism is a strictly
full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover pre-
served under taking direct sums. Since DQCoh(OY ) is a module category (Derived
Categories of Spaces, Theorem 17.3) generated by a single perfect object (Derived
Categories of Spaces, Theorem 15.4) we can argue as in More on Algebra, Remark
59.11 to see that it suffices to prove (7.0.1) is an isomorphism for a single perfect
object. However, the result holds for perfect objects, see Lemma 7.1. □

Lemma 8.3.0E5V Let Y be an affine scheme. Let f : X → Y be a morphism of
algebraic spaces which is proper, flat, and of finite presentation. Let a be the right
adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then

(1) a(OY ) is a Y -perfect object of D(OX),
(2) Rf∗a(OY ) has vanishing cohomology sheaves in positive degrees,
(3) OX → RHomOX

(a(OY ), a(OY )) is an isomorphism.

Proof. For a perfect object E of D(OX) we have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E∨,OY )

= (Rf∗E∨)∨

https://stacks.math.columbia.edu/tag/0E5T
https://stacks.math.columbia.edu/tag/0E5U
https://stacks.math.columbia.edu/tag/0E5V
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For the first equality, see Cohomology on Sites, Lemma 48.4. For the second equal-
ity, see Lemma 3.3, Remark 3.5, and Derived Categories of Spaces, Lemma 25.4.
The third equality is the definition of the dual. In particular these references also
show that the outcome is a perfect object of D(OY ). We conclude that ω•

X/Y is
Y -perfect by More on Morphisms of Spaces, Lemma 52.14. This proves (1).

Let M be an object of DQCoh(OY ). Then

HomY (M, Rf∗a(OY )) = HomX(Lf∗M, a(OY ))
= HomY (Rf∗Lf∗M,OY )
= HomY (M ⊗L

OY
Rf∗OY ,OY )

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality
by construction of a. The third equality by Derived Categories of Spaces, Lemma
20.1. Recall Rf∗OX is perfect of tor amplitude in [0, N ] for some N , see Derived
Categories of Spaces, Lemma 25.4. Thus we can represent Rf∗OX by a complex of
finite projective modules sitting in degrees [0, N ] (using More on Algebra, Lemma
74.2 and the fact that Y is affine). Hence if M = OY [−i] for some i > 0, then the
last group is zero. Since Y is affine we conclude that Hi(Rf∗a(OY )) = 0 for i > 0.
This proves (2).

Let E be a perfect object of DQCoh(OX). Then we have

HomX(E, RHomOX
(a(OY ), a(OY )) = HomX(E ⊗L

OX
a(OY ), a(OY ))

= HomY (Rf∗(E ⊗L
OX

a(OY )),OY )
= HomY (Rf∗(RHomOX

(E∨, a(OY ))),OY )
= HomY (RHomOY

(Rf∗E∨,OY ),OY )
= RΓ(Y, Rf∗E∨)
= HomX(E,OX)

The first equality holds by Cohomology on Sites, Lemma 35.2. The second equality
is the definition of a. The third equality comes from the construction of the dual
perfect complex E∨, see Cohomology on Sites, Lemma 48.4. The fourth equal-
ity follows from the equality Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E∨,OY )
shown in the first paragraph of the proof. The fifth equality holds by double du-
ality for perfect complexes (Cohomology on Sites, Lemma 48.4) and the fact that
Rf∗E is perfect by Derived Categories of Spaces, Lemma 25.4 The last equality
is Leray for f . This string of equalities essentially shows (3) holds by the Yoneda
lemma. Namely, the object RHom(a(OY ), a(OY )) is in DQCoh(OX) by Derived
Categories of Spaces, Lemma 13.10. Taking E = OX in the above we get a map
α : OX → RHomOX

(a(OY ), a(OY )) corresponding to idOX
∈ HomX(OX ,OX).

Since all the isomorphisms above are functorial in E we see that the cone on α is
an object C of DQCoh(OX) such that Hom(E, C) = 0 for all perfect E. Since the
perfect objects generate (Derived Categories of Spaces, Theorem 15.4) we conclude
that α is an isomorphism. □

9. Relative dualizing complexes for proper flat morphisms

0E5W Motivated by Duality for Schemes, Sections 12 and 28 and the material in Section
8 we make the following definition.
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Definition 9.1.0E5X Let S be a scheme. Let f : X → Y be a proper, flat morphism of
algebraic spaces over S which is of finite presentation. A relative dualizing complex
for X/Y is a pair (ω•

X/Y , τ) consisting of a Y -perfect object ω•
X/Y of D(OX) and a

map
τ : Rf∗ω•

X/Y −→ OY

such that for any cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where Y ′ is an affine scheme the pair (L(g′)∗ω•
X/Y , Lg∗τ) is isomorphic to the pair

(a′(OY ′), Trf ′,OY ′ ) studied in Sections 3, 4, 5, 6, 7, and 8.

There are several remarks we should make here.
(1) In Definition 9.1 one may drop the assumption that ω•

X/Y is Y -perfect.
Namely, running Y ′ through the members of an étale covering of Y by
affines, we see from Lemma 8.3 that the restrictions of ω•

X/Y to the members
of an étale covering of X are Y -perfect, which implies ω•

X/Y is Y -perfect,
see More on Morphisms of Spaces, Section 52.

(2) Consider a relative dualizing complex (ω•
X/Y , τ) and a cartesian square as

in Definition 9.1. We are going to think of the existence of the isomorphism
(L(g′)∗ω•

X/Y , Lg∗τ) ∼= (a′(OY ′), Trf ′,OY ′ ) as follows: it says that for any
M ′ ∈ DQCoh(OX′) the map

HomX′(M ′, L(g′)∗ω•
X/Y ) −→ HomY ′(Rf ′

∗M ′,OY ′), φ′ 7−→ Lg∗τ ◦Rf ′
∗φ′

is an isomorphism. This follows from the definition of a′ and the discus-
sion in Section 6. In particular, the Yoneda lemma guarantees that the
isomorphism is unique.

(3) If Y is affine itself, then a relative dualizing complex (ω•
X/Y , τ) exists and is

canonically isomorphic to (a(OY ), Trf,OY
) where a is the right adjoint for

Rf∗ as in Lemma 3.1 and Trf is as in Section 6. Namely, given a diagram as
in the definition we get an isomorphism L(g′)∗a(OY )→ a′(OY ′) by Lemma
5.1 which is compatible with trace maps by Lemma 6.1.

This produces exactly enough information to glue the locally given relative dualizing
complexes to global ones. We suggest the reader skip the proofs of the following
lemmas.

Lemma 9.2.0E5Y Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. If (ω•

X/Y , τ) is a relative dualizing
complex, then OX → RHomOX

(ω•
X/Y , ω•

X/Y ) is an isomorphism and Rf∗ω•
X/Y has

vanishing cohomology sheaves in positive degrees.

Proof. It suffices to prove this after base change to an affine scheme étale over Y
in which case it follows from Lemma 8.3. □

Lemma 9.3.0E5Z Let S be a scheme. Let X → Y be a proper, flat morphism of alge-
braic spaces which is of finite presentation. If (ω•

j , τj), j = 1, 2 are two relative du-
alizing complexes on X/Y , then there is a unique isomorphism (ω•

1 , τ1)→ (ω•
2 , τ2).

https://stacks.math.columbia.edu/tag/0E5X
https://stacks.math.columbia.edu/tag/0E5Y
https://stacks.math.columbia.edu/tag/0E5Z
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Proof. Consider g : Y ′ → Y étale with Y ′ an affine scheme and denote X ′ =
Y ′ ×Y X the base change. By Definition 9.1 and the discussion following, there is
a unique isomorphism ι : (ω•

1 |X′ , τ1|Y ′) → (ω•
2 |X′ , τ2|Y ′). If Y ′′ → Y ′ is a further

étale morphism of affines and X ′′ = Y ′′×Y X, then ι|X′′ is the unique isomorphism
(ω•

1 |X′′ , τ1|Y ′′)→ (ω•
2 |X′′ , τ2|Y ′′) (by uniqueness). Also we have

Extp
X′(ω•

1 |X′ , ω•
2 |X′) = 0, p < 0

becauseOX′ ∼= RHomOX′ (ω•
1 |X′ , ω•

1 |X′) ∼= RHomOX′ (ω•
1 |X′ , ω•

2 |X′) by Lemma 9.2.

Choose a étale hypercovering b : V → Y such that each Vn =
∐

i∈In
Yn,i with

Yn,i affine. This is possible by Hypercoverings, Lemma 12.2 and Remark 12.9 (to
replace the hypercovering produced in the lemma by the one having disjoint unions
in each degree). Denote Xn,i = Yn,i×Y X and Un = Vn×Y X so that we obtain an
étale hypercovering a : U → X (Hypercoverings, Lemma 12.4) with Un =

∐
Xn,i.

The assumptions of Simplicial Spaces, Lemma 35.1 are satisfied for a : U → X and
the complexes ω•

1 and ω•
2 . Hence we obtain a unique morphism ι : ω•

1 → ω•
2 whose

restriction to X0,i is the unique isomorphism (ω•
1 |X0,i , τ1|Y0,i) → (ω•

2 |X0,i , τ2|Y0,i)
We still have to see that the diagram

Rf∗ω•
1

τ1 ##

Rf∗ι
// Rf∗ω•

1

τ2{{
OY

is commutative. However, we know that Rf∗ω•
1 and Rf∗ω•

2 have vanishing coho-
mology sheaves in positive degrees (Lemma 9.2) thus this commutativity may be
proved after restricting to the affines Y0,i where it holds by construction. □

Lemma 9.4.0E60 Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. Let (ω•, τ) be a pair consisting of a
Y -perfect object of D(OX) and a map τ : Rf∗ω• → OY . Assume we have cartesian
diagrams

Xi
g′

i

//

fi

��

X

f

��
Yi

gi // Y

with Yi affine such that {gi : Yi → Y } is an étale covering and isomorphisms of
pairs (ω•|Xi , τ |Yi) → (ai(OYi), Trfi,OYi

) as in Definition 9.1. Then (ω•, τ) is a
relative dualizing complex for X over Y .

Proof. Let g : Y ′ → Y and X ′, f ′, g′, a′ be as in Definition 9.1. Set ((ω′)•, τ ′) =
(L(g′)∗ω•, Lg∗τ). We can find a finite étale covering {Y ′

j → Y ′} by affines which
refines {Yi ×Y Y ′ → Y ′} (Topologies, Lemma 4.4). Thus for each j there is an ij

and a morphism kj : Y ′
j → Yij over Y . Consider the fibre products

X ′
j

h′
j

//

f ′
j

��

X ′

f ′

��
Y ′

j

hj // Y ′

https://stacks.math.columbia.edu/tag/0E60
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Denote k′
j : X ′

j → Xij
the induced morphism (base change of kj by fij

). Restricting
the given isomorphisms to Y ′

j via the morphism k′
j we get isomorphisms of pairs

((ω′)•|X′
j
, τ ′|Y ′

j
)→ (aj(OY ′

j
), Trf ′

j
,OY ′

j

). After replacing f : X → Y by f ′ : X ′ → Y ′

we reduce to the problem solved in the next paragraph.

Assume Y is affine. Problem: show (ω•, τ) is isomorphic to (ω•
X/Y , Tr) = (a(OY ), Trf,OY

).
We may assume our covering {Yi → Y } is given by a single surjective étale mor-
phism {g : Y ′ → Y } of affines. Namely, we can first replace {gi : Yi → Y } by a
finite subcovering, and then we can set g =

∐
gi : Y ′ =

∐
Yi → Y ; some details

omitted. Set X ′ = Y ′ ×Y X with maps f ′, g′ as in Definition 9.1. Then all we’re
given is that we have an isomorphism

(ω•|X′ , τ |Y ′)→ (a′(OY ′), Trf ′,OY ′ )

Since (ω•
X/Y , Tr) is a relative dualizing complex (see discussion following Definition

9.1) there is a unique isomorphism

(ω•
X/Y |X′ , Tr|Y ′)→ (a′(OY ′), Trf ′,OY ′ )

Uniqueness by Lemma 9.3 for example. Combining the displayed isomorphisms we
find an isomorphism

α : (ω•|X′ , τ |Y ′)→ (ω•
X/Y |X′ , Tr|Y ′)

Set Y ′′ = Y ′ ×Y Y ′ and X ′′ = Y ′′ ×Y X the two pullbacks of α to X ′′ have to
be the same by uniqueness again. Since we have vanishing negative self exts for
ω•

X′/Y ′ over X ′ (Lemma 9.2) and since this remains true after pulling back by any
projection Y ′ ×Y . . . ×Y Y ′ → Y ′ (small detail omitted – compare with the proof
of Lemma 9.3), we find that α descends to an isomorphism ω• → ω•

X/Y over X by
Simplicial Spaces, Lemma 35.1. □

Lemma 9.5.0E61 Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. There exists a relative dualizing
complex (ω•

X/Y , τ).

Proof. Choose a étale hypercovering b : V → Y such that each Vn =
∐

i∈In
Yn,i

with Yn,i affine. This is possible by Hypercoverings, Lemma 12.2 and Remark 12.9
(to replace the hypercovering produced in the lemma by the one having disjoint
unions in each degree). Denote Xn,i = Yn,i ×Y X and Un = Vn ×Y X so that
we obtain an étale hypercovering a : U → X (Hypercoverings, Lemma 12.4) with
Un =

∐
Xn,i. For each n, i there exists a relative dualizing complex (ω•

n,i, τn,i) on
Xn,i/Yn,i. See discussion following Definition 9.1. For φ : [m] → [n] and i ∈ In

consider the morphisms gφ,i : Yn,i → Ym,α(φ) and g′
φ,i : Xn,i → Xm,α(φ) which

are part of the structure of the given hypercoverings (Hypercoverings, Section 12).
Then we have a unique isomorphisms

ιn,i,φ : (L(g′
n,i)∗ω•

n,i, Lg∗
n,iτn,i) −→ (ω•

m,α(φ)(i), τm,α(φ)(i))

of pairs, see discussion following Definition 9.1. Observe that ω•
n,i has vanishing

negative self exts on Xn,i by Lemma 9.2. Denote (ω•
n, τn) the pair on Un/Vn

constructed using the pairs (ω•
n,i, τn,i) for i ∈ In. For φ : [m] → [n] and i ∈ In

consider the morphisms gφ : Vn → Vm and g′
φ : Un → Um which are part of

https://stacks.math.columbia.edu/tag/0E61
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the structure of the simplicial algebraic spaces V and U . Then we have unique
isomorphisms

ιφ : (L(g′
φ)∗ω•

n, Lg∗
φτn) −→ (ω•

m, τm)
of pairs constructed from the isomorphisms on the pieces. The uniqueness guaran-
tees that these isomorphisms satisfy the transitivity condition as formulated in Sim-
plicial Spaces, Definition 14.1. The assumptions of Simplicial Spaces, Lemma 35.2
are satisfied for a : U → X, the complexes ω•

n and the isomorphisms ιφ
1. Thus we

obtain an object ω• of DQCoh(OX) together with an isomorphism ι0 : ω•|U0 → ω•
0

compatible with the two isomorphisms ιδ1
0

and ιδ1
1
. Finally, we apply Simplicial

Spaces, Lemma 35.1 to find a unique morphism
τ : Rf∗ω• −→ OY

whose restriction to V0 agrees with τ0; some details omitted – compare with the end
of the proof of Lemma 9.3 for example to see why we have the required vanishing
of negative exts. By Lemma 9.4 the pair (ω•, τ) is a relative dualizing complex and
the proof is complete. □

Lemma 9.6.0E6C Let S be a scheme. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of algebraic spaces over S. Assume X → Y is proper, flat, and of finite presentation.
Let (ω•

X/Y , τ) be a relative dualizing complex for f . Then (L(g′)∗ω•
X/Y , Lg∗τ) is a

relative dualizing complex for f ′.

Proof. Observe that L(g′)∗ω•
X/Y is Y ′-perfect by More on Morphisms of Spaces,

Lemma 52.6. The other condition of Definition 9.1 holds by transitivity of fibre
products. □

10. Comparison with the case of schemes

0E6D We should add a lot more in this section.

Lemma 10.1.0E6E Let S be a scheme. Let f : X → Y be a morphism of quasi-compact
and quasi-separated algebraic spaces over S. Assume X and Y are representable and
let f0 : X0 → Y0 be a morphism of schemes representing f (awkward but temporary
notation). Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint of Rf∗ from
Lemma 3.1. Let a0 : DQCoh(OY0)→ DQCoh(OX0) be the right adjoint of Rf∗ from
Duality for Schemes, Lemma 3.1. Then

DQCoh(OX0)
Derived Categories of Spaces, Lemma 4.2

DQCoh(OX)

DQCoh(OY0)

a0

OO

Derived Categories of Spaces, Lemma 4.2
DQCoh(OY )

a

OO

is commutative.
1This lemma uses only ω•

0 and the two maps δ1
1 , δ1

0 : [1] → [0]. The reader can skip the first few
lines of the proof of the referenced lemma because here we actually are already given a simplicial
system of the derived category of modules.

https://stacks.math.columbia.edu/tag/0E6C
https://stacks.math.columbia.edu/tag/0E6E
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Proof. Follows from uniqueness of adjoints and the compatibilities of Derived Cat-
egories of Spaces, Remark 6.3. □
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