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1. Introduction

0CU4 In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms in the setting of algebraic spaces. We strongly encourage the reader to take
a look at the corresponding chapter in the setting of schemes first, see More on
Flatness, Section 1. A reference is the paper [GR71] by Raynaud and Gruson.

2. Impurities

0CV5 The section is the analogue of More on Flatness, Section 15.

Situation 2.1.0CV6 Let S be a scheme. Let f : X → Y be a finite type, decent1

morphism of algebraic spaces over S. Also, F is a finite type quasi-coherent OX -
module. Finally y ∈ |Y | is a point of Y .

In this situation consider a scheme T , a morphism g : T → Y , a point t ∈ T with
g(t) = y, a specialization t′ ⇝ t in T , and a point ξ ∈ |XT | lying over t′. Here

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1Quasi-separated morphisms are decent, see Decent Spaces, Lemma 17.2. For any morphism

Spec(k) → Y where k is a field, the algebraic space Xk is of finite presentation over k because it
is of finite type over k and quasi-separated by Decent Spaces, Lemma 14.1.

1
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XT = T ×Y X. Picture

(2.1.1)0CV7

ξ_

��
t′ // t � //// y

XT

fT

��

// X

f

��
T

g // Y

Moreover, denote FT the pullback of F to XT .

Definition 2.2.0CV8 In Situation 2.1 we say a diagram (2.1.1) defines an impurity of
F above y if ξ ∈ AssXT /T (FT ) and t ̸∈ fT ({ξ}). We will indicate this by saying
“let (g : T → Y, t′ ⇝ t, ξ) be an impurity of F above y”.

Another way to say this is: (g : T → Y, t′ ⇝ t, ξ) is an impurity of F above y if
there exists no specialization ξ ⇝ θ in the topological space |XT | with fT (θ) = t.
Specializations in non-decent algebraic spaces do not behave well. If the morphism
f is decent, then XT is a decent algebraic space for all morphisms g : T → Y as
above, see Decent Spaces, Definition 17.1.

Lemma 2.3.0CV9 In Situation 2.1. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F
above y. Assume T = limi∈I Ti is a directed limit of affine schemes over Y . Then
for some i the triple (Ti → Y, t′

i ⇝ ti, ξi) is an impurity of F above y.

Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′

i = pi(t′). Finally ξi ∈ |XTi
| is the image of ξ. By

Divisors on Spaces, Lemma 4.7 we have ξi ∈ AssXTi
/Ti

(FTi
). Thus the only point

is to show that ti ̸∈ fTi({ξi}) for some i.

Let Zi ⊂ XTi
be the reduced induced scheme structure on {ξi} ⊂ |XTi

| and let
Z ⊂ XT be the reduced induced scheme structure on {ξ} ⊂ |XT |. Then Z = lim Zi

by Limits of Spaces, Lemma 5.4 (the lemma applies because each XTi is decent).
Choose a field k and a morphism Spec(k) → T whose image is t. Then

∅ = Z ×T Spec(k) = (lim Zi) ×(lim Ti) Spec(k) = lim Zi ×Ti
Spec(k)

because limits commute with fibred products (limits commute with limits). Each
Zi ×Ti Spec(k) is quasi-compact because XTi → Ti is of finite type and hence
Zi → Ti is of finite type. Hence Zi ×Ti

Spec(k) is empty for some i by Limits of
Spaces, Lemma 5.3. Since the image of the composition Spec(k) → T → Ti is ti we
obtain what we want. □

Impurities go up along flat base change.

Lemma 2.4.0CVA In Situation 2.1. Let (Y1, y1) → (Y, y) be a morphism of pointed
algebraic spaces over S. Assume Y1 → Y is flat at y1. If (T → Y, t′ ⇝ t, ξ) is an
impurity of F above y, then there exists an impurity (T1 → Y1, t′

1 ⇝ t1, ξ1) of the
pullback F1 of F to X1 = Y1 ×Y X over y1 such that T1 is étale over Y1 ×Y T .

Proof. Choose an étale morphism T1 → Y1 ×Y T where T1 is a scheme and let
t1 ∈ T1 be a point mapping to y1 and t. It is possible to find a pair (T1, t1) like
this by Properties of Spaces, Lemma 4.3. The morphism of schemes T1 → T is flat
at t1 (use Morphisms of Spaces, Lemma 30.4 and the definition of flat morphisms
of algebraic spaces) there exists a specialization t′

1 ⇝ t1 lying over t′ ⇝ t, see
Morphisms, Lemma 25.9. Choose a point ξ1 ∈ |XT1 | mapping to t′

1 and ξ with

https://stacks.math.columbia.edu/tag/0CV8
https://stacks.math.columbia.edu/tag/0CV9
https://stacks.math.columbia.edu/tag/0CVA
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ξ1 ∈ AssXT1 /T1(FT1). point of Spec(κ(t′
1) ⊗κ(t′) κ(ξ)). This is possible by Divisors

on Spaces, Lemma 4.7. As the closure Z1 of {ξ1} in |XT1 | maps into the closure
of {ξ} in |XT | we conclude that the image of Z1 in |T1| cannot contain t1. Hence
(T1 → Y1, t′

1 ⇝ t1, ξ1) is an impurity of F1 above Y1. □

Lemma 2.5.0CVB In Situation 2.1. Let y be a geometric point lying over y. Let O =
OY,y be the étale local ring of Y at y. Denote Y sh = Spec(O), Xsh = X ×Y Y sh,
and Fsh the pullback of F to Xsh. The following are equivalent

(1) there exists an impurity (Y sh → Y, y′ ⇝ y, ξ) of F above y,
(2) every point of AssXsh/Y sh(Fsh) specializes to a point of the closed fibre Xy,
(3) there exists an impurity (T → Y, t′ ⇝ t, ξ) of F above y such that (T, t) →

(Y, y) is an étale neighbourhood, and
(4) there exists an impurity (T → Y, t′ ⇝ t, ξ) of F above y such that T → Y

is quasi-finite at t.

Proof. That parts (1) and (2) are equivalent is immediate from the definition.
Recall that O = OY,y is the filtered colimit of O(V ) over the category of étale
neighbourhoods (V, v) → (Y, y) (Properties of Spaces, Lemma 19.3). Moreover,
it suffices to consider affine étale neighbourhoods V . Hence Y sh = Spec(O) =
lim Spec(O(V )) = lim V . Thus we see that (1) implies (3) by Lemma 2.3.
Since an étale morphism is locally quasi-finite (Morphisms of Spaces, Lemma 39.5)
we see that (3) implies (4).
Finally, assume (4). After replacing T by an open neighbourhood of t we may
assume T → Y is locally quasi-finite. By Lemma 2.4 we find an impurity (T1 →
Y sh, t′

1 ⇝ t1, ξ1) with T1 → T ×Y Y sh étale. Since an étale morphism is locally
quasi-finite and using Morphisms of Spaces, Lemma 27.4 and Morphisms, Lemma
20.12 we see that T1 → Y sh is locally quasi-finite. As O is strictly henselian, we
can apply More on Morphisms, Lemma 41.1 to see that after replacing T1 by an
open and closed neighbourhood of t1 we may assume that T1 → Y sh = Spec(O)
is finite. Let θ ∈ |Xsh| be the image of ξ1 and let y′ ∈ Spec(O) be the image of
t′
1. By Divisors on Spaces, Lemma 4.7 we see that θ ∈ AssXsh/Y sh(Fsh). Since

π : XT1 → Xsh is finite, it induces a closed map |XT1 | → |Xsh|. Hence the image
of {ξ1} is {θ}. It follows that (Y sh → Y, y′ ⇝ y, θ) is an impurity of F above y and
the proof is complete. □

3. Relatively pure modules

0CVC This section is the analogue of More on Flatness, Section 16.

Definition 3.1.0CVD In Situation 2.1.
(1) We say F is pure above y if none of the equivalent conditions of Lemma

2.5 hold.
(2) We say F is universally pure above y if there does not exist any impurity

of F above y.
(3) We say that X is pure above y if OX is pure above y.
(4) We say F is universally Y -pure, or universally pure relative to Y if F is

universally pure above y for every y ∈ |Y |.
(5) We say F is Y -pure, or pure relative to Y if F is pure above y for every

y ∈ |Y |.

https://stacks.math.columbia.edu/tag/0CVB
https://stacks.math.columbia.edu/tag/0CVD
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(6) We say that X is Y -pure or pure relative to Y if OX is pure relative to Y .

The obligatory lemmas follow.

Lemma 3.2.0CVE In Situation 2.1.
(1) F is universally pure above y, and
(2) for every morphism (Y ′, y′) → (Y, y) of pointed algebraic spaces the pullback

FY ′ is pure above y′.
In particular, F is universally pure relative to Y if and only if every base change
FY ′ of F is pure relative to Y ′.

Proof. This is formal. □

Lemma 3.3.0CVF In Situation 2.1. Let (Y ′, y′) → (Y, y) be a morphism of pointed
algebraic spaces. If Y ′ → Y is quasi-finite at y′ and F is pure above y, then FY ′ is
pure above y′.

Proof. It (T → Y ′, t′ ⇝ t, ξ) is an impurity of FY ′ above y′ with T → Y ′ quasi-
finite at t, then (T → Y, t′ → t, ξ) is an impurity of F above y with T → Y
quasi-finite at t, see Morphisms of Spaces, Lemma 27.3. Hence the lemma follows
immediately from the definition of purity. □

Purity satisfies flat descent.

Lemma 3.4.0CVG In Situation 2.1. Let (Y1, y1) → (Y, y) be a morphism of pointed
algebraic spaces. Assume Y1 → Y is flat at y1.

(1) If FY1 is pure above y1, then F is pure above y.
(2) If FY1 is universally pure above y1, then F is universally pure above y.

Proof. This is true because impurities go up along a flat base change, see Lemma
2.4. For example part (1) follows because by any impurity (T → Y, t′ ⇝ t, ξ) of F
above y with T → Y quasi-finite at t by the lemma leads to an impurity (T1 →
Y1, t′

1 ⇝ t1, ξ1) of the pullback F1 of F to X1 = Y1×Y X over y1 such that T1 is étale
over Y1×Y T . Hence T1 → Y1 is quasi-finite at t1 because étale morphisms are locally
quasi-finite and compositions of locally quasi-finite morphisms are locally quasi-
finite (Morphisms of Spaces, Lemmas 39.5 and 27.3). Similarly for part (2). □

Lemma 3.5.0CVH In Situation 2.1. Let i : Z → X be a closed immersion and as-
sume that F = i∗G for some finite type, quasi-coherent sheaf G on Z. Then G is
(universally) pure above y if and only if F is (universally) pure above y.

Proof. This follows from Divisors on Spaces, Lemma 4.9. □

Lemma 3.6.0CVI In Situation 2.1.
(1) If the support of F is proper over Y , then F is universally pure relative to

Y .
(2) If f is proper, then F is universally pure relative to Y .
(3) If f is proper, then X is universally pure relative to Y .

Proof. First we reduce (1) to (2). Namely, let Z ⊂ X be the scheme theoretic
support of F (Morphisms of Spaces, Definition 15.4). Let i : Z → X be the
corresponding closed immersion and write F = i∗G for some finite type quasi-
coherent OZ-module G. In case (1) Z → Y is proper by assumption. Thus by
Lemma 3.5 case (1) reduces to case (2).

https://stacks.math.columbia.edu/tag/0CVE
https://stacks.math.columbia.edu/tag/0CVF
https://stacks.math.columbia.edu/tag/0CVG
https://stacks.math.columbia.edu/tag/0CVH
https://stacks.math.columbia.edu/tag/0CVI
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Assume f is proper. Let (g : T → Y, t′ ⇝ t, ξ) be an impurity of F above y. Since
f is proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′

this implies that t ∈ f({ξ}) which is a contradiction. □

4. Flat finite type modules

0CVJ Please compare with More on Flatness, Sections 10, 13, and 26. Most of these
results have immediate consequences of algebraic spaces by étale localization.

Lemma 4.1.0CWJ Let S be a scheme. Let X → Y be a finite type morphism of algebraic
spaces over S. Let F be a finite type quasi-coherent OX-module. Let y ∈ |Y | be a
point. There exists an étale morphism (Y ′, y′) → (Y, y) with Y ′ an affine scheme
and étale morphisms hi : Wi → XY ′ , i = 1, . . . , n such that for each i there exists a
complete dévissage of Fi/Wi/Y ′ over y′, where Fi is the pullback of F to Wi and
such that |(XY ′)y′ | ⊂

⋃
hi(Wi).

Proof. The question is étale local on Y hence we may assume Y is an affine scheme.
Then X is quasi-compact, hence we can choose an affine scheme X ′ and a surjective
étale morphism X ′ → X. Then we may apply More on Flatness, Lemma 5.8 to
X ′ → Y , (X ′ → Y )∗F , and y to get what we want. □

Lemma 4.2.0CWK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX-module
of finite type. Let y ∈ |Y | and F = f−1({y}) ⊂ |X|. Then the set

{x ∈ F | F flat over Y at x}
is open in F .

Proof. Choose a scheme V , a point v ∈ V , and an étale morphism V → Y mapping
v to y. Choose a scheme U and a surjective étale morphism U → V ×Y X. Then
|Uv| → F is an open continuous map of topological spaces as |U | → |X| is continuous
and open. Hence the result follows from the case of schemes which is More on
Flatness, Lemma 10.4. □

Lemma 4.3.0CVK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let F
be a finite type quasi-coherent sheaf on X. Let G be a quasi-coherent sheaf on Y .
If F is flat at x over Y , then

x ∈ WeakAssX(F ⊗OX
f∗G) ⇔ y ∈ WeakAssY (G) and x ∈ AssX/Y (F).

Proof. Choose a commutative diagram

U

��

g
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are surjective étale. Choose
u ∈ U mapping to x. Let E = F|U and H = G|V . Let v ∈ V be the image of
u. Then x ∈ WeakAssX(F ⊗OX

f∗G) if and only if u ∈ WeakAssX(E ⊗OX
g∗H)

by Divisors on Spaces, Definition 2.2. Similarly, y ∈ WeakAssY (G) if and only if
v ∈ WeakAssV (H). Finally, we have x ∈ AssX/Y (F) if and only if u ∈ AssUv

(E|Uv
)

by Divisors on Spaces, Definition 4.5. Observe that flatness of F at x is equivalent

https://stacks.math.columbia.edu/tag/0CWJ
https://stacks.math.columbia.edu/tag/0CWK
https://stacks.math.columbia.edu/tag/0CVK
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to flatness of E at u, see Morphisms of Spaces, Definition 31.2. The equivalence for
g : U → V , E , H, u, and v is More on Flatness, Lemma 13.3. □

Lemma 4.4.0CVL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a finite type quasi-coherent
sheaf on X which is flat over Y . Let G be a quasi-coherent sheaf on Y . Then we
have

WeakAssX(F ⊗OX
f∗G) = AssX/Y (F) ∩ |f |−1(WeakAssY (G))

Proof. Immediate consequence of Lemma 4.3. □

Theorem 4.5.0DLR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Assume

(1) X → Y is locally of finite presentation,
(2) F is an OX-module of finite type, and
(3) the set of weakly associated points of Y is locally finite in Y .

Then U = {x ∈ |X| : F flat at x over Y } is open in X and F|U is an OU -module
of finite presentation and flat over Y .

Proof. Condition (3) means that if V → Y is a surjective étale morphism where V
is a scheme, then the weakly associated points of V are locally finite on the scheme
V . (Recall that the weakly associated points of V are exactly the inverse image of
the weakly associated points of Y by Divisors on Spaces, Definition 2.2.) Having
said this the question is étale local on X and Y , hence we may assume X and Y
are schemes. Thus the result follows from More on Flatness, Theorem 13.6. □

Lemma 4.6.0CVW Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X. Let y ∈ |Y |. Set F = f−1({y}) ⊂
|X|. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over Y at all x ∈ F .

Then there exists an étale morphism (Y ′, y′) → (Y, y) where Y ′ is a scheme and a
commutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Spec(OY ′,y′)oo

such that X ′ → X ×Y Spec(OY ′,y′) is étale, |X ′
y′ | → F is surjective, X ′ is affine,

and Γ(X ′, g∗F) is a free OY ′,y′-module.

Proof. Choose an étale morphism (Y ′, y′) → (Y, y) where Y ′ is an affine scheme.
Then X ×Y Y ′ is quasi-compact. Choose an affine scheme X ′ and a surjective étale
morphism X ′ → X ×Y Y ′. Picture

X

��

X ′
g

oo

��
Y Y ′oo

https://stacks.math.columbia.edu/tag/0CVL
https://stacks.math.columbia.edu/tag/0DLR
https://stacks.math.columbia.edu/tag/0CVW
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Then F ′ = g∗F is flat over Y ′ at all points of X ′
y′ , see Morphisms of Spaces, Lemma

31.3. Hence we can apply the lemma in the case of schemes (More on Flatness,
Lemma 12.11) to the morphism X ′ → Y ′, the quasi-coherent sheaf g∗F , and the
point y′. This gives an étale morphism (Y ′′, y′′) → (Y ′, y′) and a commutative
diagram

X

��

X ′
g

oo

��

X ′′
g′

oo

��
Y Y ′oo Spec(OY ′′,y′′)oo

To get what we want we take (Y ′′, y′′) → (Y, y) and g ◦ g′ : X ′′ → X. □

Theorem 4.7.0CWL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX-module
of finite type. Let x ∈ |X| with image y ∈ |Y |. Set F = f−1({y}) ⊂ |X|. Consider
the conditions

(1) F is flat at x over Y , and
(2) for every x′ ∈ F ∩ AssX/Y (F) which specializes to x we have that F is flat

at x′ over Y .
Then we always have (2) ⇒ (1). If X and Y are decent, then (1) ⇒ (2).

Proof. Assume (2). Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → V ×Y X. Choose a
point u ∈ U mapping to x. Let v ∈ V be the image of u. We will deduce the
result from the corresponding result for F|U = (U → X)∗F and the point u. Uv.
This works because AssU/V (F|U ) ∩ |Uv| is equal to AssUv

(F|Uv
) and equal to the

inverse image of F ∩AssX/Y (F). Since the map |Uv| → F is continuous we see that
specializations in |Uv| map to specializations in F , hence condition (2) is inherited
by U → V , F|U , and the point u. Thus More on Flatness, Theorem 26.1 applies
and we conclude that (1) holds.

If Y is decent, then we can represent y by a quasi-compact monomorphism Spec(k) →
Y (by definition of decent spaces, see Decent Spaces, Definition 6.1). Then F =
|Xk|, see Decent Spaces, Lemma 18.6. If in addition X is decent (or more generally
if f is decent, see Decent Spaces, Definition 17.1 and Decent Spaces, Lemma 17.3),
then Xy is a decent space too. Furthermore, specializations in F can be lifted to
specializations in Uv → Xy, see Decent Spaces, Lemma 12.2. Having said this it is
clear that the reverse implication holds, because it holds in the case of schemes. □

Lemma 4.8.0CWM Let S be a local scheme with closed point s. Let f : X → S be a
morphism from an algebraic space X to S which is locally of finite type. Let F be
a finite type quasi-coherent OX-module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
2,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at
points of the relative assassin of F over S by Theorem 4.7. □

2For example this holds if f is finite type and F is pure along Xs, or if f is proper.

https://stacks.math.columbia.edu/tag/0CWL
https://stacks.math.columbia.edu/tag/0CWM
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5. Flat finitely presented modules

0CVX This is the analogue of More on Flatness, Section 12.

Proposition 5.1.0CVY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X| with image
y ∈ |Y |. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over Y .

Then there exists a commutative diagram of pointed schemes

(X, x)

��

(X ′, x′)
g

oo

��
(Y, y) (Y ′, y′)oo

whose horizontal arrows are étale such that X ′, Y ′ are affine and such that Γ(X ′, g∗F)
is a projective Γ(Y ′, OY ′)-module.

Proof. As formulated this proposition immmediately reduces to the case of schemes,
which is More on Flatness, Proposition 12.4. □

Lemma 5.2.0CVZ Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X. Let y ∈ |Y |. Set F = f−1({y}) ⊂
|X|. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over Y at all x ∈ F .

Then there exists a commutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Y ′hoo

such that h and g are étale, there is a point y′ ∈ |Y ′| mapping to y, we have
F ⊂ g(|X ′|), the algebraic spaces X ′, Y ′ are affine, and Γ(X ′, g∗F) is a projective
Γ(Y ′, OY ′)-module.

Proof. As formulated this lemma immmediately reduces to the case of schemes,
which is More on Flatness, Lemma 12.5. □

6. A criterion for purity

0CW0 This section is the analogue of More on Flatness, Section 18.

Lemma 6.1.0CW1 Let S be a scheme. Let X be a decent algebraic space locally of finite
type over S. Let F be a finite type, quasi-coherent OX-module. Let s ∈ S such that
F is flat over S at all points of Xs. Let x′ ∈ AssX/S(F). If the closure of {x′} in
|X| meets |Xs|, then the closure meets AssX/S(F) ∩ |Xs|.

https://stacks.math.columbia.edu/tag/0CVY
https://stacks.math.columbia.edu/tag/0CVZ
https://stacks.math.columbia.edu/tag/0CW1
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Proof. Observe that |Xs| ⊂ |X| is the set of points of |X| lying over s ∈ S, see
Decent Spaces, Lemma 18.6. Let t ∈ |Xs| be a specialization of x′ in |X|. Choose
an affine scheme U and a point u ∈ U and an étale morphism φ : U → X mapping
u to t. By Decent Spaces, Lemma 12.2 we can choose a specialization u′ ⇝ u with
u′ mapping to x′. Set g = f ◦ φ. Observe that s′ = g(u′) = f(x′) specializes to s.
By our definition of AssX/S(F) we have u′ ∈ AssU/S(φ∗F). By the schemes version
of this lemma (More on Flatness, Lemma 18.1) we see that there is a specialization
u′ ⇝ u with u ∈ AssUs

(φ∗Fs) = AssU/S(φ∗F) ∩ Us. Hence x = φ(u) ∈ AssX/S(F)
lies over s and the lemma is proved. □

Lemma 6.2.0CW2 Let Y be an algebraic space over a scheme S. Let g : X ′ → X be
a morphism of algebraic spaces over Y with X locally of finite type over Y . Let F
be a quasi-coherent OX-module. If AssX/Y (F) ⊂ g(|X ′|), then for any morphism
Z → Y we have AssXZ/Z(FZ) ⊂ gZ(|X ′

Z |).

Proof. By Properties of Spaces, Lemma 4.3 the map |X ′
Z | → |XZ | ×|X| |X ′| is

surjective as X ′
Z is equal to XZ ×X X ′. By Divisors on Spaces, Lemma 4.7 the map

|XZ | → |X| sends AssXZ /Z(FZ) into AssX/Y (F). The lemma follows. □

Lemma 6.3.0CW3 Let Y be an algebraic space over a scheme S. Let g : X ′ → X be
an étale morphism of algebraic spaces over Y . Assume the structure morphisms
X ′ → Y and X → Y are decent and of finite type. Let F be a finite type, quasi-
coherent OX-module. Let y ∈ |Y |. Set F = f−1({y}) ⊂ |X|.

(1) If AssX/Y (F) ⊂ g(|X ′|) and g∗F is (universally) pure above y, then F is
(universally) pure above y.

(2) If F is pure above y, g(|X ′|) contains F , and Y is affine local with closed
point y, then AssX/Y (F) ⊂ g(|X ′|).

(3) If F is pure above y, F is flat at all points of F , g(|X ′|) contains AssX/Y (F)∩
F , and Y is affine local with closed point y, then AssX/Y (F) ⊂ g(|X ′|).

(4) Add more here.

Proof. The assumptions on X → Y and X ′ → Y guarantee that we may apply
the material in Sections 2 and 3 to these morphisms and the sheaves F and g∗F .
Since g is étale we see that AssX′/Y (g∗F) is the inverse image of AssX/Y (F) and
the same remains true after base change.
Proof of (1). Assume AssX/Y (F) ⊂ g(|X ′|). Suppose that (T → Y, t′ ⇝ t, ξ) is
an impurity of F above y. Since AssXT /T (FT ) ⊂ gT (|X ′

T |) by Lemma 6.2 we can
choose a point ξ′ ∈ |X ′

T | mapping to ξ. By the above we see that (T → Y, t′ ⇝ t, ξ′)
is an impurity of g∗F above y′. This implies (1) is true.
Proof of (2). This follows from the fact that g(|X ′|) is open in |X| and the fact
that by purity every point of AssX/Y (F) specializes to a point of F .
Proof of (3). This follows from the fact that g(|X ′|) is open in |X| and the fact
that by purity combined with Lemma 6.1 every point of AssX/Y (F) specializes to
a point of AssX/Y (F) ∩ F . □

Lemma 6.4.0CW4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Let y ∈ |Y |. Assume

(1) f is decent and of finite type,
(2) F is of finite type,

https://stacks.math.columbia.edu/tag/0CW2
https://stacks.math.columbia.edu/tag/0CW3
https://stacks.math.columbia.edu/tag/0CW4
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(3) F is flat over Y at all points lying over y, and
(4) F is pure above y.

Then F is universally pure above y.

Proof. Consider the morphism Spec(OY,y) → Y . This is a flat morphism from
the spectrum of a stricly henselian local ring which maps the closed point to y. By
Lemma 3.4 we reduce to the case described in the next paragraph.
Assume Y is the spectrum of a strictly henselian local ring R with closed point y.
By Lemma 4.6 there exists an étale morphism g : X ′ → X with g(|X ′|) ⊃ |Xy|,
with X ′ affine, and with Γ(X ′, g∗F) a free R-module. Then g∗F is universally
pure relative to Y , see More on Flatness, Lemma 17.4. Hence it suffices to prove
that g(|X ′|) contains AssX/Y (F) by Lemma 6.3 part (1). This in turn follows from
Lemma 6.3 part (2). □

Lemma 6.5.0CW5 Let S be a scheme. Let f : X → Y be a decent, finite type mor-
phism of algebraic spaces over S. Let F be a finite type quasi-coherent OX-module.
Assume F is flat over Y . In this case F is pure relative to Y if and only if F is
universally pure relative to Y .

Proof. Immediate consequence of Lemma 6.4 and the definitions. □

Lemma 6.6.0CW6 Let Y be an algebraic space over a scheme S. Let g : X ′ → X be a flat
morphism of algebraic spaces over Y with X locally of finite type over Y . Let F be a
finite type quasi-coherent OX-module which is flat over Y . If AssX/Y (F) ⊂ g(|X ′|)
then the canonical map

F −→ g∗g∗F
is injective, and remains injective after any base change.

Proof. The final assertion means that FZ → (gZ)∗g∗
ZFZ is injective for any mor-

phism Z → Y . Since the assumption on the relative assassin is preserved by base
change (Lemma 6.2) it suffices to prove the injectivity of the displayed arrow.
Let K = Ker(F → g∗g∗F). Our goal is to prove that K = 0. In order to do this it
suffices to prove that WeakAssX(K) = ∅, see Divisors on Spaces, Lemma 2.5. We
have WeakAssX(K) ⊂ WeakAssX(F), see Divisors on Spaces, Lemma 2.4. As F is
flat we see from Lemma 4.4 that WeakAssX(F) ⊂ AssX/Y (F). By assumption any
point x of AssX/Y (F) is the image of some x′ ∈ |X ′|. Since g is flat the local ring
map OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ (g∗F)x′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 82.11). Since the displayed arrow factors through
Fx → (g∗g∗F)x, we conclude that Kx = 0. Hence x cannot be a weakly associated
point of K and we win. □

7. Flattening functors

083E This section is the analogue of More on Flatness, Section 20. We urge the reader
to skip this section on a first reading.

Situation 7.1.083F Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let u : F → G be a homomorphism of quasi-coherent OX -modules.
For any scheme T over B we will denote uT : FT → GT the base change of u to T , in

https://stacks.math.columbia.edu/tag/0CW5
https://stacks.math.columbia.edu/tag/0CW6
https://stacks.math.columbia.edu/tag/083F
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other words, uT is the pullback of u via the projection morphism XT = X ×B T →
X. In this situation we can consider the functor

(7.1.1)083G Fiso : (Sch/B)opp −→ Sets, T −→
{

{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

In Situation 7.1 we sometimes think of the functors Fiso, Finj , Fsurj , and Fzero

as functors (Sch/S)opp → Sets endowed with a morphism Fiso → B, Finj → B,
Fsurj → B, and Fzero → B. Namely, if T is a scheme over S, then an element
h ∈ Fiso(T ) is a morphism h : T → B such that the base change of u via h is an
isomorphism. In particular, when we say that Fiso is an algebraic space, we mean
that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 7.2.083H In Situation 7.1. Each of the functors Fiso, Finj, Fsurj, Fzero

satisfies the sheaf property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi
=

X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 9.3. In particular, for every x ∈ |XT | there exists an
i ∈ I and an xi ∈ |Xi| mapping to x. Since OXT ,x → OXi,xi

is flat, hence faithfully
flat (see Morphisms of Spaces, Section 30). we conclude that (ui)xi

is injective,
surjective, bijective, or zero if and only if (uT )x is injective, surjective, bijective, or
zero. The lemma follows. □

Lemma 7.3.083I In Situation 7.1 let X ′ → X be a flat morphism of algebraic spaces.
Denote u′ : F ′ → G′ the pullback of u to X ′. Denote F ′

iso, F ′
inj, F ′

surj, F ′
zero the

functors on Sch/B associated to u′.
(1) If G is of finite type and the image of |X ′| → |X| contains the support of

G, then Fsurj = F ′
surj and Fzero = F ′

zero.
(2) If F is of finite type and the image of |X ′| → |X| contains the support of

F , then Finj = F ′
inj and Fzero = F ′

zero.
(3) If F and G are of finite type and the image of |X ′| → |X| contains the

supports of F and G, then Fiso = F ′
iso.

Proof. let v : H → E be a map of quasi-coherent modules on an algebraic space
Y and let φ : Y ′ → Y be a surjective flat morphism of algebraic spaces, then v is
an isomorphism, injective, surjective, or zero if and only if φ∗v is an isomorphism,
injective, surjective, or zero. Namely, for every y ∈ |Y | there exists a y′ ∈ |Y ′| and
the map of local rings OY,y → OY ′,y′ is faithfully flat (see Morphisms of Spaces,
Section 30). Of course, to check for injectivity or being zero it suffices to look
at the points in the support of H, and to check for surjectivity it suffices to look
at points in the support of E . Moreover, under the finite type assumptions as in
the statement of the lemma, taking the supports commutes with base change, see
Morphisms of Spaces, Lemma 15.2. Thus the lemma is clear. □

Recall that we’ve defined the scheme theoretic support of a finite type quasi-
coherent module in Morphisms of Spaces, Definition 15.4.

Lemma 7.4.083J In Situation 7.1.

https://stacks.math.columbia.edu/tag/083H
https://stacks.math.columbia.edu/tag/083I
https://stacks.math.columbia.edu/tag/083J
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(1) If G is of finite type and the scheme theoretic support of G is quasi-compact
over B, then Fsurj is limit preserving.

(2) If F of finite type and the scheme theoretic support of F is quasi-compact
over B, then Fzero is limit preserving.

(3) If F is of finite type, G is of finite presentation, and the scheme theoretic
supports of F and G are quasi-compact over B, then Fiso is limit preserving.

Proof. Proof of (1). Let i : Z → X be the scheme theoretic support of G and think
of G as a finite type quasi-coherent module on Z. We may replace X by Z and u by
the map i∗F → G (details omitted). Hence we may assume f is quasi-compact and G
of finite type. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume
that uT is surjective. Set Xi = XTi

= X ×S Ti and ui = uTi
: Fi = FTi

→ Gi = GTi
.

To prove (1) we have to show that ui is surjective for some i. Pick 0 ∈ I and replace
I by {i | i ≥ 0}. Since f is quasi-compact we see X0 is quasi-compact. Hence
we may choose a surjective étale morphism φ0 : W0 → X0 where W0 is an affine
scheme. Set W = W0 ×T0 T and Wi = W0 ×T0 Ti for i ≥ 0. These are affine schemes
endowed with a surjective étale morphisms φ : W → XT and φi : Wi → Xi. Note
that W = lim Wi. Hence φ∗uT is surjective and it suffices to prove that φ∗

i ui is
surjective for some i. Thus we have reduced the problem to the affine case which
is Algebra, Lemma 127.5 part (2).

Proof of (2). Assume F is of finite type with scheme theoretic support Z ⊂ B
quasi-compact over B. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is zero. Set Xi = Ti ×B X and denote ui : Fi → Gi the
pullback. Choose 0 ∈ I and replace I by {i | i ≥ 0}. Set Z0 = Z ×X X0. By
Morphisms of Spaces, Lemma 15.2 the support of Fi is |Z0|. Since |Z0| is quasi-
compact we can find an affine scheme W0 and an étale morphism W0 → X0 such
that |Z0| ⊂ Im(|W0| → |X0|). Set W = W0 ×T0 T and Wi = W0 ×T0 Ti for
i ≥ 0. These are affine schemes endowed with étale morphisms φ : W → XT and
φi : Wi → Xi. Note that W = lim Wi and that the support of FT and Fi is
contained in the image of |W | → |XT | and |Wi| → |Xi|. Now φ∗uT is injective
and it suffices to prove that φ∗

i ui is injective for some i. Thus we have reduced the
problem to the affine case which is Algebra, Lemma 127.5 part (1).

Proof of (3). This can be proven in exactly the same manner as in the previous
two paragraphs using Algebra, Lemma 127.5 part (3). We can also deduce it from
(1) and (2) as follows. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is an isomorphism. By part (1) there exists an 0 ∈ I such
that uT0 is surjective. Set K = Ker(uT0) and consider the map of quasi-coherent
modules v : K → FT0 . For i ≥ 0 the base change vTi

is zero if and only if ui is
an isomorphism. Moreover, vT is zero. Since GT0 is of finite presentation, FT0 is of
finite type, and uT0 is surjective we conclude that K is of finite type (Modules on
Sites, Lemma 24.1). It is clear that the support of K is contained in the support of
FT0 which is quasi-compact over T0. Hence we can apply part (2) to see that vTi

is zero for some i. □

Lemma 7.5.0CVM In Situation 7.1 suppose given an exact sequence

F u−→ G v−→ H → 0

Then we have Fv,iso = Fu,zero with obvious notation.

https://stacks.math.columbia.edu/tag/0CVM
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Proof. Since pullback is right exact we see that FT → GT → HT → 0 is exact for
every scheme T over B. Hence uT is surjective if and only if vT is an isomorphism.

□

Lemma 7.6.0CW7 In Situation 7.1 suppose given an affine morphism i : Z → X and
a quasi-coherent OZ-module H such that G = i∗H. Let v : i∗F → H be the map
adjoint to u. Then

(1) Fv,zero = Fu,zero, and
(2) if i is a closed immersion, then Fv,surj = Fu,surj.

Proof. Let T be a scheme over B. Denote iT : ZT → XT the base change of i and
HT the pullback of H to ZT . Observe that (i∗F)T = i∗

T FT and iT,∗HT = (i∗H)T .
The first statement follows from commutativity of pullbacks and the second from
Cohomology of Spaces, Lemma 11.1. Hence we see that uT and vT are adjoint
maps as well. Thus uT = 0 if and only if vT = 0. This proves (1). In case (2) we
see that uT is surjective if and only if vT is surjective because uT factors as

FT → iT,∗i∗
T FT

iT,∗vT−−−−→ iT,∗HT

and the fact that iT,∗ is an exact functor fully faithfully embedding the category of
quasi-coherent modules on ZT into the category of quasi-coherent OXT

-modules.
See Morphisms of Spaces, Lemma 14.1. □

Lemma 7.7.0CW8 In Situation 7.1 suppose given an affine morphism g : X → X ′. Set
u′ = f∗u : f∗F → f∗G. Then Fu,iso = Fu′,iso, Fu,inj = Fu′,inj, Fu,surj = Fu′,surj,
and Fu,zero = Fu′,zero.

Proof. By Cohomology of Spaces, Lemma 11.1 we have gT,∗uT = u′
T . Moreover,

gT,∗ : QCoh(OXT
) → QCoh(OX) is a faithful, exact functor reflecting isomor-

phisms, injective maps, and surjective maps. □

Situation 7.8.0CWX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over Y
we will denote FT the base change of F to T , in other words, FT is the pullback
of F via the projection morphism XT = X ×Y T → X. Since the base change of a
flat module is flat we obtain a functor

(7.8.1)0CWY Fflat : (Sch/Y )opp −→ Sets, T −→
{

{∗} if FT is flat over T,
∅ else.

In Situation 7.8 we sometimes think of Fflat as a functor (Sch/S)opp → Sets en-
dowed with a morphism Fflat → Y . Namely, if T is a scheme over S, then an
element h ∈ Fflat(T ) is a morphism h : T → Y such that the base change of F
via h is flat over T . In particular, when we say that Fflat is an algebraic space, we
mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 7.9.0CWZ In Situation 7.8.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of algebraic spaces over Y , then FT ′ is flat over T ′ if and only if FT is
flat over T , see Morphisms of Spaces, Lemma 31.3. Part (2) follows from Limits of

https://stacks.math.columbia.edu/tag/0CW7
https://stacks.math.columbia.edu/tag/0CW8
https://stacks.math.columbia.edu/tag/0CWX
https://stacks.math.columbia.edu/tag/0CWZ


FLATNESS ON ALGEBRAIC SPACES 14

Spaces, Lemma 6.12 if f is also quasi-separated (i.e., f is of finite presentation). For
the general case, first reduce to the case where the base is affine and then cover X
by finitely many affines to reduce to the quasi-separated case. Details omitted. □

8. Making a map zero

0CW9 This section has no analogue in the corresponding chapter on schemes.

Situation 8.1.0CWA Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let u : F → G be a map of quasi-coherent OX -modules. Assume G flat
over S.

Lemma 8.2.083K In Situation 8.1. Let T → S be a quasi-compact morphism of
schemes such that the base change uT is zero. Then exists a closed subscheme
Z ⊂ S such that (a) T → S factors through Z and (b) the base change uZ is
zero. If F is a finite type OX-module and the scheme theoretic support of F is
quasi-compact, then we can take Z → S of finite presentation.

Proof. Let U → X be a surjective étale morphism of algebraic spaces where U =∐
Ui is a disjoint union of affine schemes (see Properties of Spaces, Lemma 6.1).

By Lemma 7.3 we see that we may replace X by U . In other words, we may assume
that X =

∐
Xi is a disjoint union of affine schemes Xi. Suppose that we can prove

the lemma for ui = u|Xi
. Then we find a closed subscheme Zi ⊂ S such that

T → S factors through Zi and ui,Zi
is zero. If Zi = Spec(R/Ii) ⊂ Spec(R) = S,

then taking Z = Spec(R/
∑

Ii) works. Thus we may assume that X = Spec(A) is
affine.

Choose a finite affine open covering T = T1 ∪ . . . ∪ Tm. It is clear that we may
replace T by

∐
j=1,...,m Tj . Hence we may assume T is affine. Say T = Spec(R′).

Let u : M → N be the homomorphisms of A-modules corresponding to u : F → G.
Then N is a flat R-module as G is flat over S. The assumption of the lemma means
that the composition

M ⊗R R′ → N ⊗R R′

is zero. Let z ∈ M . By Lazard’s theorem (Algebra, Theorem 81.4) and the fact
that ⊗ commutes with colimits we can find free R-module Fz, an element z̃ ∈ Fz,
and a map Fz → N such that u(z) is the image of z̃ and z̃ maps to zero in Fz ⊗R R′.
Choose a basis {ez,α} of Fz and write z̃ =

∑
fz,αez,α with fz,α ∈ R. Let I ⊂ R

be the ideal generated by the elements fz,α with z ranging over all elements of M .
By construction I maps to zero in R′ and the elements z̃ map to zero in Fz/IFz

whence in N/IN . Thus Z = Spec(R/I) is a solution to the problem in this case.

Assume F is of finite type with quasi-compact scheme theoretic support. Write
Z = Spec(R/I). Write I =

⋃
Iλ as a filtered union of finitely generated ideals. Set

Zλ = Spec(R/Iλ), so Z = colim Zλ. Since uZ is zero, we see that uZλ
is zero for

some λ by Lemma 7.4. This finishes the proof of the lemma. □

Lemma 8.3.083L Let A be a ring. Let u : M → N be a map of A-modules. If N is
projective as an A-module, then there exists an ideal I ⊂ A such that for any ring
map φ : A → B the following are equivalent

(1) u ⊗ 1 : M ⊗A B → N ⊗A B is zero, and
(2) φ(I) = 0.

https://stacks.math.columbia.edu/tag/0CWA
https://stacks.math.columbia.edu/tag/083K
https://stacks.math.columbia.edu/tag/083L


FLATNESS ON ALGEBRAIC SPACES 15

Proof. As N is projective we can find a projective A-module C such that F =
N ⊕ C is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume N is free. In this case let I be the ideal of A generated by
coefficients of all the elements of Im(u) with respect to some (fixed) basis of N . □

Lemma 8.4.0CWB In Situation 8.1. Let T ⊂ S be a subset. Let s ∈ S be in the closure
of T . For t ∈ T , let ut be the pullback of u to Xt and let us be the pullback of u to
Xs. If X is locally of finite presentation over S, G is of finite presentation3, and
ut = 0 for all t ∈ T , then us = 0.

Proof. To check whether us is zero, is étale local on the fibre Xs. Hence we may
pick a point x ∈ |Xs| ⊂ |X| and check in an étale neighbourhood. Choose

(X, x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

as in Proposition 5.1. Let T ′ ⊂ S′ be the inverse image of T . Observe that s′ is in
the closure of T ′ because S′ → S is open. Hence we reduce to the algebra problem
described in the next paragraph.
We have an R-module map u : M → N such that N is projective as an R-module
and such that ut : M ⊗R κ(t) → N ⊗R κ(t) is zero for each t ∈ T . Problem: show
that us = 0. Let I ⊂ R be the ideal defined in Lemma 8.3. Then I maps to zero
in κ(t) for all t ∈ T . Hence T ⊂ V (I). Since s is in the closure of T we see that
s ∈ V (I). Hence us = 0. □

It would be interesting to find a “simple” direct proof of either Lemma 8.5 or
Lemma 8.6 using arguments like those used in Lemmas 8.2 and 8.4. A “classical”
proof of this lemma when f : X → B is a projective morphism and B a Noetherian
scheme would be: (a) choose a relatively ample invertible sheaf OX(1), (b) set
un : f∗F(n) → f∗G(n), (c) observe that f∗G(n) is a finite locally free sheaf for all
n ≫ 0, and (d) Fzero is represented by the vanishing locus of un for some n ≫ 0.

Lemma 8.5.0CWC In Situation 7.1. Assume
(1) f is of finite presentation, and
(2) G is of finite presentation, flat over B, and pure relative to B.

Then Fzero is an algebraic space and Fzero → B is a closed immersion. If F is of
finite type, then Fzero → B is of finite presentation.

Proof. By Lemma 6.5 the module G is universally pure relative to B. In order
to prove that Fzero is an algebraic space, it suffices to show that Fzero → B is
representable, see Spaces, Lemma 11.3. Let B′ → B be a morphism where B′ is a
scheme and let u′ : F ′ → G′ be the pullback of u to X ′ = XB′ . Then the associated
functor F ′

zero equals Fzero ×B B′. This reduces us to the case that B is a scheme.
Assume B is a scheme. We will show that Fzero is representable by a closed sub-
scheme of B. By Lemma 7.2 and Descent, Lemmas 37.2 and 39.1 the question

3It would suffice if X is locally of finite type over S and G is finitely presented relative to S, but
this notion hasn’t yet been defined in the setting of algebraic spaces. The definition for schemes
is given in More on Morphisms, Section 58.

https://stacks.math.columbia.edu/tag/0CWB
https://stacks.math.columbia.edu/tag/0CWC
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is local for the étale topology on B. Let b ∈ B. We first replace B by an affine
neighbourhood of b. Choose a diagram

X

��

X ′
g

oo

��
B B′oo

and b′ ∈ B′ mapping to b ∈ B as in Lemma 5.2. As we are working étale locally,
we may replace B by B′ and assume that we have a diagram

X

  

X ′
g

oo

~~
B

with B and X ′ affine such that Γ(X ′, g∗G) is a projective Γ(B, OB)-module and
g(|X ′|) ⊃ |Xb|. Let U ⊂ X be the open subspace with |U | = g(|X ′|). By Divisors
on Spaces, Lemma 4.10 the set

E = {t ∈ B : AssXt
(Gt) ⊂ |Ut|} = {t ∈ B : AssX/B(G) ∩ |Xt| ⊂ |Ut|}

is constructible in B. By Lemma 6.3 part (2) we see that E contains Spec(OB,b).
By Morphisms, Lemma 22.4 we see that E contains an open neighbourhood of b.
Hence after replacing B by a smaller affine neighbourhood of b we may assume that
AssX/B(G) ⊂ g(|X ′|).
From Lemma 6.6 it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G
is injective, and the same remains true after any base change. Hence we have
reduced to the case where, in addition to the assumptions in the theorem, X → B
is a morphism of affine schemes and Γ(X, G) is a projective Γ(B, OB)-module. This
case follows immediately from Lemma 8.3.
We still have to show that Fzero → B is of finite presentation if F is of finite type.
This follows from Lemma 7.4 combined with Limits of Spaces, Proposition 3.10. □

Lemma 8.6.083M In Situation 7.1. Assume
(1) f is locally of finite presentation,
(2) G is an OX-module of finite presentation flat over B,
(3) the support of G is proper over B.

Then the functor Fzero is an algebraic space and Fzero → B is a closed immersion.
If F is of finite type, then Fzero → B is of finite presentation.

Proof. If f is of finite presentation, then this follows immediately from Lemmas
8.5 and 3.6. This is the only case of interest and we urge the reader to skip the rest
of the proof, which deals with the possibility (allowed by the assumptions in this
lemma) that f is not quasi-separated or quasi-compact.
Let i : Z → X be the closed subspace cut out by the zeroth fitting ideal of G
(Divisors on Spaces, Section 5). Then Z → B is proper by assumption (see Derived
Categories of Spaces, Section 7). On the other hand i is of finite presentation
(Divisors on Spaces, Lemma 5.2 and Morphisms of Spaces, Lemma 28.12). There
exists a quasi-coherent OZ-module H of finite type with i∗H = G (Divisors on
Spaces, Lemma 5.3). In fact H is of finite presentation as an OZ-module by Algebra,

https://stacks.math.columbia.edu/tag/083M
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Lemma 6.4 (details omitted). Then Fzero is the same as the functor Fzero for the
map i∗F → H adjoint to u, see Lemma 7.6. The sheaf H is flat relative to B
because the same is true for G (check on stalks; details omitted). Moreover, note
that if F is of finite type, then i∗F is of finite type. Hence we have reduced the
lemma to the case discussed in the first paragraph of the proof. □

9. Flattening a map

0CVN This section is the analogue of More on Flatness, Section 23. In particular the
following result is a variant of More on Flatness, Theorem 23.3.

Theorem 9.1.0CWD In Situation 7.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over B, and pure relative to B, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → B. Moreover Z → S is of
finite presentation if G is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 7.5 we
see that Fu,iso = Fv,zero. By Lemma 8.5 applied to v we see that Fu,iso = Fv,zero

is representable by a closed subspace of B. Note that K is of finite type if G is of
finite presentation, see Modules on Sites, Lemma 24.1. Hence we also obtain the
final statement of the lemma. □

Lemma 9.2.083N In Situation 7.1. Assume
(1) f is locally of finite presentation,
(2) F is locally of finite presentation and flat over B,
(3) the support of F is proper over B, and
(4) u is surjective.

Then the functor Fiso is an algebraic space and Fiso → B is a closed immersion.
If G is of finite presentation, then Fiso → B is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 7.5 we
see that Fu,iso = Fv,zero. By Lemma 8.6 applied to v we see that Fu,iso = Fv,zero

is representable by a closed subspace of B. Note that K is of finite type if G is of
finite presentation, see Modules on Sites, Lemma 24.1. Hence we also obtain the
final statement of the lemma. □

We will use the following (easy) result when discussing the Quot functor.

Lemma 9.3.09TP In Situation 7.1. Assume
(1) f is locally of finite presentation,
(2) G is of finite type,
(3) the support of G is proper over B.

Then Fsurj is an algebraic space and Fsurj → B is an open immersion.

Proof. Consider Coker(u). Observe that Coker(uT ) = Coker(u)T for any T/B.
Note that formation of the support of a finite type quasi-coherent module commutes
with pullback (Morphisms of Spaces, Lemma 15.1). Hence Fsurj is representable
by the open subspace of B corresponding to the open set

|B| \ |f |(Supp(Coker(u)))

https://stacks.math.columbia.edu/tag/0CWD
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see Properties of Spaces, Lemma 4.8. This is an open because |f | is closed on
Supp(G) and Supp(Coker(u)) is a closed subset of Supp(G). □

10. Flattening in the local case

0CWN This section is the analogue of More on Flatness, Section 24.

Lemma 10.1.0CWP Let S be the spectrum of a henselian local ring with closed point s.
Let X → S be a morphism of algebraic spaces which is locally of finite type. Let F
be a finite type quasi-coherent OX-module. Let E ⊂ |Xs| be a subset. There exists
a closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t) → (S, s) the following are equivalent

(1) FT is flat over T at all points of |Xt| which map to a point of E ⊂ |Xs|,
and

(2) Spec(OT,t) → S factors through Z.
Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ |Xs| is closed and quasi-compact, then Z → S is of finite presentation.

Proof. Choose a scheme U and an étale morphism φ : U → X. Let E′ ⊂ |Us| be
the inverse image of E. If E′ → E is surjective, then condition (1) is equivalent
to: (φ∗F)T is flat over T at all points of |Ut| which map to a point of E′ ⊂ |Ut|.
Choosing φ to be surjective, we reduced to the case of schemes which is More on
Flatness, Lemma 24.3. If E is closed and quasi-compact, then we may choose U to
be affine such that E′ → E is surjective. Then E′ is closed and quasi-compact and
the final statement follows from the final statement of More on Flatness, Lemma
24.3. □

11. Universal flattening

0CWQ This section is the analogue of More on Flatness, Section 27. Our main aim is to
prove Lemma 11.8. However, we do not see a way to deduce this result from the
corresponding result for schemes directly. Hence we have to redevelop some of the
material here. But first a definition.

Definition 11.1.0CWR Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. We say that the universal
flattening of F exists if the functor Fflat defined in Situation 7.8 is an algebraic
space. We say that the universal flattening of X exists if the universal flattening
of OX exists.

This is a bit unsatisfactory, because here the definition of universal flattening does
not agree with the one used in the case of schemes, as we don’t know whether every
monomorphism of algebraic spaces is representable (More on Morphisms of Spaces,
Section 4). Hopefully no confusion will ever result from this.

Lemma 11.2.0CWS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces which is locally of finite type. Let F be a quasi-coherent OX-module of finite
type. Let n ≥ 0. The following are equivalent

https://stacks.math.columbia.edu/tag/0CWP
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(1) for some commutative diagram

U

φ

��

// V

��
X // Y

with surjective, étale vertical arrows where U and V are schemes, the sheaf
φ∗F is flat over V in dimensions ≥ n (More on Flatness, Definition 20.10),

(2) for every commutative diagram

U

φ

��

// V

��
X // Y

with étale vertical arrows where U and V are schemes, the sheaf φ∗F is flat
over V in dimensions ≥ n, and

(3) for x ∈ |X| such that F is not flat at x over Y the transcendence degree of
x/f(x) is < n (Morphisms of Spaces, Definition 33.1).

If this is true, then it remains true after any base change Y ′ → Y .

Proof. Suppose that we have a diagram as in (1). Then the equivalence of the
conditions in More on Flatness, Lemma 20.9 shows that (1) and (3) are equivalent.
But condition (3) is inherited by φ∗F for any U → V as in (2). Whence we see
that (3) implies (2) by the result for schemes again. The result for schemes also
implies the statement on base change. □

Definition 11.3.0CWT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. Let n ≥ 0. We say F is flat over Y in dimensions ≥ n if the
equivalent conditions of Lemma 11.2 are satisfied.

Situation 11.4.0CWU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. For any scheme T over Y we will denote FT the base change of
F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×Y T → X. Note that fT : XT → T is of finite type and that FT is
an OXT

-module of finite type (Morphisms of Spaces, Lemma 23.3 and Modules on
Sites, Lemma 23.4). Let n ≥ 0. By Definition 11.3 and Lemma 11.2 we obtain a
functor
(11.4.1)

0CWV Fn : (Sch/Y )opp −→ Sets, T −→
{

{∗} if FT is flat over T in dim ≥ n,
∅ else.

In Situation 11.4 we sometimes think of Fn as a functor (Sch/S)opp → Sets endowed
with a morphism Fn → Y . Namely, if T is a scheme over S, then an element
h ∈ Fn(T ) is a morphism h : T → Y such that the base change of F via h is flat
over T in dim ≥ n. In particular, when we say that Fn is an algebraic space, we
mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 11.5.0CWW In Situation 11.4.
(1) The functor Fn satisfies the sheaf property for the fpqc topology.

https://stacks.math.columbia.edu/tag/0CWT
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(2) If f is quasi-compact and locally of finite presentation and F is of finite
presentation, then the functor Fn is limit preserving.

Proof. Proof of (1). Suppose that {Ti → T} is an fpqc covering of a scheme
T over Y . We have to show that if Fn(Ti) is nonempty for all i, then Fn(T )
is nonempty. Choose a diagram as in part (1) of Lemma 11.2. Denote F ′

n the
corresponding functor for φ∗F and the morphism U → V . By More on Flatness,
Lemma 20.12 we have the sheaf property for F ′

n. Thus we get the sheaf property for
Fn because for T → Y we have Fn(T ) = F ′

n(V ×Y T ) by Lemma 11.2 and because
{V ×Y Ti → V ×Y T} is an fpqc covering.
Proof of (2). Suppose that T = limi∈I Ti is a filtered limit of affine schemes Ti over
Y and assume that Fn(T ) is nonempty. We have to show that Fn(Ti) is nonempty
for some i. Choose a diagram as in part (1) of Lemma 11.2. Fix i ∈ I and choose
an affine open Wi ⊂ V ×Y Ti mapping surjectively onto Ti. For i′ ≥ i let Wi′ be the
inverse image of Wi in V ×Y Ti′ and let W ⊂ V ×Y T be the inverse image of Wi.
Then W = limi′≥i Wi is a filtered limit of affine schemes over V . By Lemma 11.2
again it suffices to show that F ′

n(Wi′) is nonempty for some i′ ≥ i. But we know
that F ′

n(W ) is nonempty because of our assumption that Fn(T ) = F ′
n(V ×Y T ) is

nonempty. Thus we can apply More on Flatness, Lemma 20.12 to conclude. □

Lemma 11.6.0CX0 In Situation 11.4. Let h : X ′ → X be an étale morphism. Set
F ′ = h∗F and f ′ = f ◦ h. Let F ′

n be (11.4.1) associated to (f ′ : X ′ → Y, F ′). Then
Fn is a subfunctor of F ′

n and if h(X ′) ⊃ AssX/Y (F), then Fn = F ′
n.

Proof. Choose U → X, V → Y , U → V as in part (1) of Lemma 11.2. Choose a
surjective étale morphism U ′ → U ×X X ′ where U ′ is a scheme. Then we have the
lemma for the two functors FU,n and FU ′,n determined by U ′ → U and F|U over
V , see More on Flatness, Lemma 27.2. On the other hand, Lemma 11.2 tells us
that given T → Y we have Fn(T ) = FU,n(V ×Y T ) and F ′

n(T ) = FU ′,n(V ×Y T ).
This proves the lemma. □

Theorem 11.7.0CX1 In Situation 11.4. Assume moreover that f is of finite presen-
tation, that F is an OX-module of finite presentation, and that F is pure relative
to Y . Then Fn is an algebraic space and Fn → Y is a monomorphism of finite
presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 11.5. Since Fn →
Y is a monomorphism of sheaves on (Sch/S)fppf we see that ∆ : Fn → Fn × Fn

is the pullback of the diagonal ∆Y : Y → Y ×S Y . Hence the representability of
∆Y implies the same thing for Fn. Therefore it suffices to prove that there exists a
scheme W over S and a surjective étale morphism W → Fn.
To construct W → Fn choose an étale covering {Yi → Y } with Yi a scheme. Let
Xi = X ×Y Yi and let Fi be the pullback of F to Xi. Then Fi is pure relative to
Yi either by definition or by Lemma 3.3. The other assumptions of the theorem are
preserved as well. Finally, the restriction of Fn to Yi is the functor Fn corresponding
to Xi → Yi and Fi. Hence it suffices to show: Given F and f : X → Y as in the
statement of the theorem where Y is a scheme, the functor Fn is representable by
a scheme Zn and Zn → Y is a monomorphism of finite presentation.
Observe that a monomorphism of finite presentation is separated and quasi-finite
(Morphisms, Lemma 20.15). Hence combining Descent, Lemma 39.1, More on

https://stacks.math.columbia.edu/tag/0CX0
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Morphisms, Lemma 57.1 , and Descent, Lemmas 23.31 and 23.13 we see that the
question is local for the étale topology on Y .
In particular the situation is local for the Zariski topology on Y and we may assume
that Y is affine. In this case the dimension of the fibres of f is bounded above, hence
we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → Y of finite presentation. Consider the base change Xn+1 = Zn+1 ×Y X
and the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → Y is quasi-finite as
it is a monomorphism of finite presentation, hence Lemma 3.3 implies that Fn+1
is pure relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in
order to prove the result for Fn it suffices to prove the result for the corresponding
functor for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the
result for Fn in case Yn+1 = Y , i.e., we may assume that F is flat in dimensions
≥ n + 1 over Y .
Fix n and assume F is flat in dimensions ≥ n+1 over the affine scheme Y . To finish
the proof we have to show that Fn is representable by a monomorphism Zn → S of
finite presentation. Since the question is local in the étale topology on Y it suffices
to show that for every y ∈ Y there exists an étale neighbourhood (Y ′, y′) → (Y, y)
such that the result holds after base change to Y ′. Thus by Lemma 4.1 we may
assume there exist étale morphisms hj : Wj → X, j = 1, . . . , m such that for each
j there exists a complete dévissage of Fj/Wj/Y over y, where Fj is the pullback
of F to Wj and such that |Xy| ⊂

⋃
hj(Wj). Since hj is étale, by Lemma 11.2 the

sheaves Fj are still flat over in dimensions ≥ n + 1 over Y . Set W =
⋃

hj(Wj),
which is a quasi-compact open of X. As F is pure along Xy we see that

E = {t ∈ |Y | : AssXt
(Ft) ⊂ W}.

contains all generalizations of y. By Divisors on Spaces, Lemma 4.10 E is a con-
structible subset of Y . We have seen that Spec(OY,y) ⊂ E. By Morphisms, Lemma
22.4 we see that E contains an open neighbourhood of y. Hence after shrinking Y
we may assume that E = Y . It follows from Lemma 11.6 that it suffices to prove
the lemma for the functor Fn associated to X =

∐
Wj and F =

∐
Fj . If Fj,n

denotes the functor for Wj → Y and the sheaf Fj we see that Fn =
∏

Fj,n. Hence
it suffices to prove each Fj,n is representable by some monomorphism Zj,n → Y of
finite presentation, since then

Zn = Z1,n ×Y . . . ×Y Zm,n

Thus we have reduced the theorem to the special case handled in More on Flatness,
Lemma 27.4. □

Thus we finally obtain the desired result.

Lemma 11.8.0CX2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module.

(1) If f is of finite presentation, F is an OX-module of finite presentation, and
F is pure relative to Y , then there exists a universal flattening Y ′ → Y of
F . Moreover Y ′ → Y is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to Y , then there exists a
universal flattening Y ′ → Y of X. Moreover Y ′ → Y is a monomorphism
of finite presentation.

https://stacks.math.columbia.edu/tag/0CX2
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(3) If f is proper and of finite presentation and F is an OX-module of finite
presentation, then there exists a universal flattening Y ′ → Y of F . More-
over Y ′ → Y is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening Y ′ → Y of X.

Proof. These statements follow immediately from Theorem 11.7 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 3.6. □

12. Grothendieck’s Existence Theorem

0CX3 This section is the analogue of More on Flatness, Section 28 and continues the
discussion in More on Morphisms of Spaces, Section 42. We will work in the
following situation.

Situation 12.1.0CX4 Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = lim An. We have
an algebraic space X separated and of finite presentation over A. We set Xn =
X ×Spec(A) Spec(An) and we view it as a closed subspace of X. We assume further
given a system (Fn, φn) where Fn is a finitely presented OXn -module, flat over An,
with support proper over An, and

φn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms of Spaces, Lemma
14.1).

Our goal is to see if we can find a quasi-coherent sheaf F on X such that Fn =
F ⊗OX

OXn
for all n.

Lemma 12.2.0CX5 In Situation 12.1 consider
K = R limDQCoh(OX )(Fn) = DQX(R limD(OX ) Fn)

Then K is in Db
QCoh(OX) and in fact K has nonzero cohomology sheaves only in

degrees ≥ 0.

Proof. Special case of Derived Categories of Spaces, Example 19.5. □

Lemma 12.3.0CX6 In Situation 12.1 let K be as in Lemma 12.2. For any perfect
object E of D(OX) we have

(1) M = RΓ(X, K ⊗L E) is a perfect object of D(A) and there is a canonical
isomorphism RΓ(Xn, Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = R HomX(E, K) is a perfect object of D(A) and there is a canonical

isomorphism R HomXn
(E|Xn

, Fn) = N ⊗L
A An in D(An).

In both statements E|Xn
denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn
and Nn = R HomXn

(En, Fn). Recall
that R HomXn

(−, −) is equal to RΓ(Xn, R Hom(−, −)), see Cohomology on Sites,
Section 36. Hence by Derived Categories of Spaces, Lemma 25.8 we see that Nn

is a perfect object of D(An) whose formation commutes with base change. Thus
the maps Nn ⊗L

An
An−1 → Nn−1 coming from φn are isomorphisms. By More on

Algebra, Lemma 97.3 we find that R lim Nn is perfect and that its base change
back to An recovers Nn. On the other hand, the exact functor R HomX(E, −) :
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DQCoh(OX) → D(A) of triangulated categories commutes with products and hence
with derived limits, whence

R HomX(E, K) = R lim R HomX(E, Fn) = R lim R HomX(En, Fn) = R lim Nn

This proves (2). To see that (1) holds, translate it into (2) using Cohomology on
Sites, Lemma 48.4. □

Lemma 12.4.0CX7 In Situation 12.1 let K be as in Lemma 12.2. Then K is pseudo-
coherent relative to A.

Proof. Combinging Lemma 12.3 and Derived Categories of Spaces, Lemma 25.7
we see that RΓ(X, K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E
in D(OX). Thus the lemma follows from More on Morphisms of Spaces, Lemma
51.4. □

Lemma 12.5.0CX8 In Situation 12.1 let K be as in Lemma 12.2. For any étale
morphism U → X with U quasi-compact and quasi-separated we have

RΓ(U, K) ⊗L
A An = RΓ(Un, Fn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 27.3 there exists a system
of perfect complexes Em on X such that RΓ(U, K) = hocolimRΓ(X, K ⊗L Em). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Fn we obtain

RΓ(Un, Fn) = RΓ(U, Fn)
= hocolimmRΓ(X, Fn ⊗L Em)
= hocolimmRΓ(Xn, Fn ⊗L Em|Xn

)

Using Lemma 12.3 and the fact that − ⊗L
A An commutes with homotopy colimits

we obtain the result. □

Lemma 12.6.0CX9 In Situation 12.1 let K be as in Lemma 12.2. Denote X0 ⊂
|X| the closed subset consisting of points lying over the closed subset Spec(A1) =
Spec(A2) = . . . of Spec(A). There exists an open subspace W ⊂ X containing X0
such that

(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fix n ≥ 1. By construction there is a canonical map K → Fn in DQCoh(OX)
and hence a canonical map H0(K) → Fn of quasi-coherent sheaves. This explains
the meaning of part (3).

Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that (1),
(2), and (3) are true. Since X0 is quasi-compact this will prove the lemma. Let
U → X be an étale morphism with U affine and u ∈ U a point mapping to x. Since
|U | → |X| is open it suffices to find an open neighbourhood of u in U where (1), (2),
and (3) are true. Say U = Spec(B). Choose a surjection P → B with P smooth
over A. By Lemma 12.4 and the definition of relative pseudo-coherence there exists
a bounded above complex F • of finite free P -modules representing Ri∗K where
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i : U → Spec(P ) is the closed immersion induced by the presentation. Let Mn be
the B-module corresponding to Fn|U . By Lemma 12.5

Hi(F • ⊗A An) =
{

0 if i ̸= 0
Mn if i = 0

Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3)
are true. If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point u is maximal. Hence in an open neighbourhood of u inside Spec(P )
the rank is maximal. Thus after replacing P by a principal localization we may
assume that the displayed map is surjective. Since F i is finite free we may choose
a splitting F i−1 = F ′ ⊕ F i. Then we may replace F • by the complex

. . . → F i−2 → F ′ → 0 → . . .

and we win by induction on i. □

Lemma 12.7.0CXA In Situation 12.1 let K be as in Lemma 12.2. Let W ⊂ X be as in
Lemma 12.6. Set F = H0(K)|W . Then, after possibly shrinking the open W , the
support of F is proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 11.3
the pair (A, In) is henselian. Let Z ⊂ W be the scheme theoretic support of F .
This is a closed subspace as F is of finite presentation. By part (3) of Lemma 12.6
we see that Z ×Spec(A) Spec(An) is equal to the support of Fn and hence proper
over Spec(A/I). By More on Morphisms of Spaces, Lemma 36.10 we can write
Z = Z1 ⨿ Z2 with Z1, Z2 open and closed in Z, with Z1 proper over A, and with
Z1 ×Spec(A) Spec(A/In) equal to the support of Fn. In other words, |Z2| does not
meet X0. Hence after replacing W by W \ Z2 we obtain the lemma. □

Theorem 12.8 (Grothendieck Existence Theorem).0CXB In Situation 12.1 there exists
a finitely presented OX-module F , flat over A, with support proper over A, such
that Fn = F ⊗OX

OXn
for all n compatibly with the maps φn.

Proof. Apply Lemmas 12.2, 12.3, 12.4, 12.5, 12.6, and 12.7 to get an open subspace
W ⊂ X containing all points lying over Spec(An) and a finitely presented OW -
module F whose support is proper over A with Fn = F ⊗OW

OXn
for all n ≥ 1.

(This makes sense as Xn ⊂ W .) By Lemma 3.6 we see that F is universally
pure relative to Spec(A). By Theorem 11.7 (for explanation, see Lemma 11.8)
there exists a universal flattening S′ → Spec(A) of F and moreover the morphism
S′ → Spec(A) is a monomorphism of finite presentation. In particular S′ is a
scheme (this follows from the proof of the theorem but it also follows a postoriori
by Morphisms of Spaces, Proposition 50.2). Since the base change of F to Spec(An)
is Fn we find that Spec(An) → Spec(A) factors (uniquely) through S′ for each n.
By More on Flatness, Lemma 28.8 we see that S′ = Spec(A). This means that F
is flat over A. Finally, since the scheme theoretic support Z of F is proper over
Spec(A), the morphism Z → X is closed. Hence the pushforward (W → X)∗F is
supported on W and has all the desired properties. □
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13. Grothendieck’s Existence Theorem, bis

0DIJ In this section we prove an analogue for Grothendieck’s existence theorem in the
derived category, following the method used in Section 12 for quasi-coherent mod-
ules. This section is the analogue of More on Flatness, Section 29 for algebraic
spaces. The classical case (for algebraic spaces) is discussed in More on Morphisms
of Spaces, Section 42. We will work in the following situation.

Situation 13.1.0DIK Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = lim An. We have an
algebraic space X proper, flat, and of finite presentation over A. We set Xn =
X ×Spec(A) Spec(An) and we view it as a closed subspace of X. We assume further
given a system (Kn, φn) where Kn is a pseudo-coherent object of D(OXn

) and

φn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

More precisely, we should write φn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 → Xn

is the inclusion morphism and in this notation the condition is that the adjoint
map Li∗

n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherent
K ∈ D(OX) such that Kn = K⊗L

OX
OXn

for all n (with the same abuse of notation).

Lemma 13.2.0DIL In Situation 13.1 consider

K = R limDQCoh(OX )(Kn) = DQX(R limD(OX ) Kn)

Then K is in D−
QCoh(OX).

Proof. The functor DQX exists because X is quasi-compact and quasi-separated,
see Derived Categories of Spaces, Lemma 19.1. Since DQX is a right adjoint it
commutes with products and therefore with derived limits. Hence the equality in
the statement of the lemma.

By Derived Categories of Spaces, Lemma 19.4 the functor DQX has bounded co-
homological dimension. Hence it suffices to show that R lim Kn ∈ D−(OX). To see
this, let U → X be étale with U affine. Then there is a canonical exact sequence

0 → R1 lim Hm−1(U, Kn) → Hm(U, R lim Kn) → lim Hm(U, Kn) → 0

by Cohomology on Sites, Lemma 23.2. Since U is affine and Kn is pseudo-coherent
(and hence has quasi-coherent cohomology sheaves by Derived Categories of Spaces,
Lemma 13.6) we see that Hm(U, Kn) = Hm(Kn)(U) by Derived Categories of
Schemes, Lemma 3.5. Thus we conclude that it suffices to show that Kn is bounded
above independent of n.

Since Kn is pseudo-coherent we have Kn ∈ D−(OXn
). Suppose that an is maximal

such that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn) is
an OXn

-module of finite presentation (Cohomology on Sites, Lemma 45.7). We have
Han(Kn−1) = Han(Kn) ⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it follows
from Nakayama’s lemma (Algebra, Lemma 20.1) that if Han(Kn) ⊗OXn

OXn−1 is
zero, then Han(Kn) is zero too (argue by checking on stalks for example; small
detail omitted). Thus an−1 = an for all n and we conclude. □

https://stacks.math.columbia.edu/tag/0DIK
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Lemma 13.3.0DIM In Situation 13.1 let K be as in Lemma 13.2. For any perfect
object E of D(OX) the cohomology

M = RΓ(X, K ⊗L E)

is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn, Kn ⊗L E|Xn
) = M ⊗L

A An

in D(An). Here E|Xn denotes the derived pullback of E to Xn.

Proof. Write En = E|Xn and Mn = RΓ(Xn, Kn ⊗L E|Xn). By Derived Categories
of Spaces, Lemma 25.5 we see that Mn is a pseudo-coherent object of D(An) whose
formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 → Mn−1

coming from φn are isomorphisms. By More on Algebra, Lemma 97.1 we find that
R lim Mn is pseudo-coherent and that its base change back to An recovers Mn. On
the other hand, the exact functor RΓ(X, −) : DQCoh(OX) → D(A) of triangulated
categories commutes with products and hence with derived limits, whence

RΓ(X, E ⊗L K) = R lim RΓ(X, E ⊗L Kn) = R lim RΓ(Xn, En ⊗L Kn) = R lim Mn

as desired. □

Lemma 13.4.0DIN In Situation 13.1 let K be as in Lemma 13.2. Then K is pseudo-
coherent on X.

Proof. Combinging Lemma 13.3 and Derived Categories of Spaces, Lemma 25.7
we see that RΓ(X, K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E
in D(OX). Thus it follows from More on Morphisms of Spaces, Lemma 51.4 that
K is pseudo-coherent relative to A. Since X is of flat and of finite presentation
over A, this is the same as being pseudo-coherent on X, see More on Morphisms of
Spaces, Lemma 45.4. □

Lemma 13.5.0DIP In Situation 13.1 let K be as in Lemma 13.2. For any étale
morphism U → X with U quasi-compact and quasi-separated we have

RΓ(U, K) ⊗L
A An = RΓ(Un, Kn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 27.3 there exists a system
of perfect complexes Em on X such that RΓ(U, K) = hocolimRΓ(X, K ⊗L Em). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Kn we obtain

RΓ(Un, Kn) = RΓ(U, Kn)
= hocolimmRΓ(X, Kn ⊗L Em)
= hocolimmRΓ(Xn, Kn ⊗L Em|Xn)

Using Lemma 13.3 and the fact that − ⊗L
A An commutes with homotopy colimits

we obtain the result. □

Theorem 13.6 (Derived Grothendieck Existence Theorem).0DIQ In Situation 13.1
there exists a pseudo-coherent K in D(OX) such that Kn = K ⊗L

OX
OXn

for all n
compatibly with the maps φn.

https://stacks.math.columbia.edu/tag/0DIM
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Proof. Apply Lemmas 13.2, 13.3, 13.4 to get a pseudo-coherent object K of
D(OX). Choosing affine U in Lemma 13.5 it follows immediately that K restricts
to Kn over Xn. □

Remark 13.7.0DIR The result in this section can be generalized. It is probably correct
if we only assume X → Spec(A) to be separated, of finite presentation, and Kn

pseudo-coherent relative to An supported on a closed subset of Xn proper over
An. The outcome will be a K which is pseudo-coherent relative to A supported
on a closed subset proper over A. If we ever need this, we will formulate a precise
statement and prove it here.
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