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1. Introduction

0DFS In this chapter continues the discussion started in Cohomology of Spaces, Section 1.
One can also view this chapter as the analogue for algebraic spaces of the chapter
on étale cohomology for schemes, see Étale Cohomology, Section 1.

In fact, we intend this chapter to be mainly a translation of the results already
proved for schemes into the language of algebraic spaces. Some of our results can
be found in [Knu71].

2. Conventions

0DFT The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X.

3. Transporting results from schemes

0DFU In this section we explain briefly how results for schemes imply results for (repre-
sentable) algebraic spaces and (representable) morphisms of algebraic spaces. For
quasi-coherent modules more is true (because étale cohomology of a quasi-coherent
module over a scheme agrees with Zariski cohomology) and this has already been
discussed in Cohomology of Spaces, Section 3.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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Let S be a scheme. Let X be an algebraic space over S. Now suppose that X is
representable by the scheme X0 (awkward but temporary notation; we usually just
say “X is a scheme”). In this case X and X0 have the same small étale sites:

Xétale = (X0)étale

This is pointed out in Properties of Spaces, Section 18. Moreover, if f : X → Y
is a morphism of representable algebraic spaces over S and if f0 : X0 → Y0 is a
morphism of schemes representing f , then the induced morphisms of small étale
topoi agree:

Sh(Xétale)
fsmall

// Sh(Yétale)

Sh((X0)étale)
(f0)small // Sh((Y0)étale)

See Properties of Spaces, Lemma 18.8 and Topologies, Lemma 4.17.
Thus there is absolutely no difference between étale cohomology of a scheme and
the étale cohomology of the corresponding algebraic space. Similarly for higher
direct images along morphisms of schemes. In fact, if f : X → Y is a morphism
of algebraic spaces over S which is representable (by schemes), then the higher
direct images Rif∗F of a sheaf F on Xétale can be computed étale locally on Y
(Cohomology on Sites, Lemma 7.4) hence this often reduces computations and
proofs to the case where Y and X are schemes.
We will use the above without further mention in this chapter. For other topologies
the same thing is true; we state it explicitly as a lemma for cohomology here.

Lemma 3.1.0DFV Let S be a scheme. Let τ ∈ {étale, fppf, ph} (add more here). The
inclusion functor

(Sch/S)τ −→ (Spaces/S)τ

is a special cocontinuous functor (Sites, Definition 29.2) and hence identifies topoi.

Proof. The conditions of Sites, Lemma 29.1 are immediately verified as our functor
is fully faithful and as every algebraic space has an étale covering by schemes. □

4. Proper base change

0DFW The proper base change theorem for algebraic spaces follows from the proper base
change theorem for schemes and Chow’s lemma with a little bit of work.

Lemma 4.1.0DFX Let S be a scheme. Let f : Y → X be a surjective proper morphism
of algebraic spaces over S. Let F be a sheaf on Xétale. Then F → f∗f−1F is
injective with image the equalizer of the two maps f∗f−1F → g∗g−1F where g is
the structure morphism g : Y ×X Y → X.

Proof. For any surjective morphism f : Y → X of algebraic spaces over S, the
map F → f∗f−1F is injective. Namely, if x is a geometric point of X, then we
choose a geometric point y of Y lying over x and we consider

Fx → (f∗f−1F)x → (f−1F)y = Fx

See Properties of Spaces, Lemma 19.9 for the last equality.
The second statement is local on X in the étale topology, hence we may and do
assume Y is an affine scheme.

https://stacks.math.columbia.edu/tag/0DFV
https://stacks.math.columbia.edu/tag/0DFX
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Choose a surjective proper morphism Z → Y where Z is a scheme, see Cohomology
of Spaces, Lemma 18.1. The result for Z → X implies the result for Y → X.
Since Z → X is a surjective proper morphism of schemes and hence a ph covering
(Topologies, Lemma 8.6) the result for Z → X follows from Étale Cohomology,
Lemma 102.1 (in fact it is in some sense equivalent to this lemma). □

Lemma 4.2.0DFY Let (A, I) be a henselian pair. Let X be an algebraic space over A
such that the structure morphism f : X → Spec(A) is proper. Let i : X0 → X
be the inclusion of X ×Spec(A) Spec(A/I). For any sheaf F on Xétale we have
Γ(X, F) = Γ(X0, i−1F).

Proof. Choose a surjective proper morphism Y → X where Y is a scheme, see
Cohomology of Spaces, Lemma 18.1. Consider the diagram

Γ(X0, F0) // Γ(Y0, G0) //
// Γ((Y ×X Y )0, H0)

Γ(X, F) //

OO

Γ(Y, G) //
//

OO

Γ(Y ×X Y, H)

OO

Here G, resp. H is the pullbackf or F to Y , resp. Y ×X Y and the index 0 indicates
base change to Spec(A/I). By the case of schemes (Étale Cohomology, Lemma
91.2) we see that the middle and right vertical arrows are bijective. By Lemma 4.1
it follows that the left one is too. □

Lemma 4.3.0DFZ Let A be a henselian local ring. Let X be an algebraic space over A
such that f : X → Spec(A) is a proper morphism. Let X0 ⊂ X be the fibre of f
over the closed point. For any sheaf F on Xétale we have Γ(X, F) = Γ(X0, F|X0).

Proof. This is a special case of Lemma 4.2. □

Lemma 4.4.0DG0 Let S be a scheme. Let f : X → Y and g : Y ′ → Y be a morphisms
of algebraic spaces over S. Assume f is proper. Set X ′ = Y ′ ×Y X with projections
f ′ : X ′ → Y ′ and g′ : X ′ → X. Let F be any sheaf on Xétale. Then g−1f∗F =
f ′

∗(g′)−1F .

Proof. The question is étale local on Y ′. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme V ′ and a surjective étale morphism
V ′ → V ×Y Y ′. Then we may replace Y ′ by V ′ and Y by V . Hence we may assume
Y and Y ′ are schemes. Then we may work Zariski locally on Y and Y ′ and hence
we may assume Y and Y ′ are affine schemes.

Assume Y and Y ′ are affine schemes. Choose a surjective proper morphism h1 :
X1 → X where X1 is a scheme, see Cohomology of Spaces, Lemma 18.1. Set
X2 = X1 ×X X1 and denote h2 : X2 → X the structure morphism. Observe this is
a scheme. By the case of schemes (Étale Cohomology, Lemma 91.5) we know the
lemma is true for the cartesian diagrams

X ′
1

//

��

X1

��
Y ′ // Y

and

X ′
2

//

��

X2

��
Y ′ // Y

https://stacks.math.columbia.edu/tag/0DFY
https://stacks.math.columbia.edu/tag/0DFZ
https://stacks.math.columbia.edu/tag/0DG0


MORE ON COHOMOLOGY OF SPACES 4

and the sheaves Fi = (Xi → X)−1F . By Lemma 4.1 we have an exact sequence
0 → F → h1,∗F1 → h2,∗F2 and similarly for (g′)−1F because X ′

2 = X ′
1 ×X′ X ′

1.
Hence we conlude that the lemma is true (some details omitted). □

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S.
Let x : Spec(k) → S be a geometric point. The fibre of f at x is the algebraic
space Yx = Spec(k) ×x,X Y over Spec(k). If F is a sheaf on Yétale, then denote
Fx = p−1F the pullback of F to (Yx)étale. Here p : Yx → Y is the projection. In
the following we will consider the set Γ(Yx, Fx).

Lemma 4.5.0DG1 Let S be a scheme. Let f : Y → X be a proper morphism of algebraic
spaces over S. Let x → X be a geometric point. For any sheaf F on Yétale the
canonical map

(f∗F)x −→ Γ(Yx, Fx)
is bijective.

Proof. This is a special case of Lemma 4.4. □

Theorem 4.6.0DG2 Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let F be an
abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. This proof repeats a few of the arguments given in the proof of the proper
base change theorem for schemes. See Étale Cohomology, Section 91 for more
details.
The statement is étale local on Y ′ and Y , hence we may assume both Y and Y ′

are affine schemes. Observe that this in particular proves the theorem in case f is
representable (we will use this below).
For every n ≥ 1 let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colim F [n]. By Cohomology of Spaces, Lemma 5.2 the functors g−1Rpf∗ and
Rpf ′

∗(g′)−1 commute with filtered colimits. Hence it suffices to prove the theorem
if F is killed by n.
Let F → I• be a resolution by injective sheaves of Z/nZ-modules. Observe that
g−1f∗I• = f ′

∗(g′)−1I• by Lemma 4.4. Applying Leray’s acyclicity lemma (Derived
Categories, Lemma 16.7) we conclude it suffices to prove Rpf ′

∗(g′)−1Im = 0 for
p > 0 and m ∈ Z.
Choose a surjective proper morphism h : Z → X where Z is a scheme, see Co-
homology of Spaces, Lemma 18.1. Choose an injective map h−1Im → J where
J is an injective sheaf of Z/nZ-modules on Zétale. Since h is surjective the map
Im → h∗J is injective (see Lemma 4.1). Since Im is injective we see that Im is a
direct summand of h∗J . Thus it suffices to prove the desired vanishing for h∗J .

https://stacks.math.columbia.edu/tag/0DG1
https://stacks.math.columbia.edu/tag/0DG2
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Denote h′ the base change by g and denote g′′ : Z ′ → Z the projection. There is a
spectral sequence

Ep,q
2 = Rpf ′

∗Rqh′
∗(g′′)−1J

converging to Rp+q(f ′ ◦ h′)∗(g′′)−1J . Since h and f ◦ h are representable (by
schemes) we know the result we want holds for them. Thus in the spectral sequence
we see that Ep,q

2 = 0 for q > 0 and Rp+q(f ′ ◦ h′)∗(g′′)−1J = 0 for p + q > 0. It
follows that Ep,0

2 = 0 for p > 0. Now

Ep,0
2 = Rpf ′

∗h′
∗(g′′)−1J = Rpf ′

∗(g′)−1h∗J
by Lemma 4.4. This finishes the proof. □

Lemma 4.7.0DG3 Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let E ∈
D+(Xétale) have torsion cohomology sheaves. Then the base change map g−1Rf∗E →
Rf ′

∗(g′)−1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
4.6) using the spectral sequences

Ep,q
2 = Rpf∗Hq(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in

Derived Categories, Lemma 21.3. Some details omitted. □

Lemma 4.8.0DG4 Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces. Let y → Y be a geometric point.

(1) For a torsion abelian sheaf F on Xétale we have (Rnf∗F)y = Hn
étale(Xy, Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn

étale(Xy, Ey).

Proof. In the statement, Fy denotes the pullback of F to Xy = y ×Y X. Since
pulling back by y → Y produces the stalk of F , the first statement of the lemma is
a special case of Theorem 4.6. The second one is a special case of Lemma 4.7. □

Lemma 4.9.0DG5 Let k′/k be an extension of separably closed fields. Let X be a
proper algebraic space over k. Let F be a torsion abelian sheaf on X. Then the
map Hq

étale(X, F) → Hq
étale(Xk′ , F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. This is a special case of Theorem 4.6. □

5. Comparing big and small topoi

0DG6 Let S be a scheme and let X be an algebraic space over S. In Topologies on Spaces,
Lemma 4.8 we have introduced comparison morphisms πX : (Spaces/X)étale →
Xspaces,étale and iX : Sh(Xétale) → Sh((Spaces/X)étale) with πX ◦ iX = id as
morphisms of topoi and πX,∗ = i−1

X . More generally, if f : Y → X is an object of
(Spaces/X)étale, then there is a morphism if : Sh(Yétale) → Sh((Spaces/X)étale)
such that fsmall = πX ◦ if , see Topologies on Spaces, Lemmas 4.7 and 4.11. In

https://stacks.math.columbia.edu/tag/0DG3
https://stacks.math.columbia.edu/tag/0DG4
https://stacks.math.columbia.edu/tag/0DG5
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Topologies on Spaces, Remark 4.14 we have extended these to a morphism of ringed
sites

πX : ((Spaces/X)étale, O) → (Xspaces,étale, OX)
and morphisms of ringed topoi

iX : (Sh(Xétale), OX) → (Sh((Spaces/X)étale), O)
and

if : (Sh(Yétale), OY ) → (Sh((Spaces/X)étale, O))
Note that the restriction i−1

X = πX,∗ (see Topologies, Definition 4.15) transforms
O into OX . Similarly, i−1

f transforms O into OY . See Topologies on Spaces,
Remark 4.14. Hence i∗

XF = i−1
X F and i∗

f F = i−1
f F for any O-module F on

(Spaces/X)étale. In particular i∗
X and i∗

f are exact functors. The functor i∗
X is often

denoted F 7→ F|Xétale
(and this does not conflict with the notation in Topologies

on Spaces, Definition 4.9).

Lemma 5.1.0DG7 Let S be a scheme. Let X be an algebraic space over S. Let F be a
sheaf on Xétale. Then π−1

X F is given by the rule
(π−1

X F)(Y ) = Γ(Yétale, f−1
smallF)

for f : Y → X in (Spaces/X)étale. Moreover, π−1
Y F satisfies the sheaf condition

with respect to smooth, syntomic, fppf, fpqc, and ph coverings.

Proof. Since pullback is transitive and fsmall = πX ◦ if (see above) we see that
i−1
f π−1

X F = f−1
smallF . This shows that π−1

X has the description given in the lemma.

To prove that π−1
X F is a sheaf for the ph topology it suffices by Topologies on Spaces,

Lemma 8.7 to show that for a surjective proper morphism V → U of algebraic
spaces over X we have (π−1

X F)(U) is the equalizer of the two maps (π−1
X F)(V ) →

(π−1
X F)(V ×U V ). This we have seen in Lemma 4.1.

The case of smooth, syntomic, fppf coverings follows from the case of ph coverings
by Topologies on Spaces, Lemma 8.2.
Let U = {Ui → U}i∈I be an fpqc covering of algebraic spaces over X. Let si ∈
(π−1

X F)(Ui) be sections which agree over Ui ×U Uj . We have to prove there exists
a unique s ∈ (π−1

X F)(U) restricting to si over Ui. Case I: U and Ui are schemes.
This case follows from Étale Cohomology, Lemma 39.2. Case II: U is a scheme.
Here we choose surjective étale morphisms Ti → Ui where Ti is a scheme. Then
T = {Ti → U} is an fpqc covering by schemes and by case I the result holds for
T . We omit the verification that this implies the result for U . Case III: general
case. Let W → U be a surjective étale morphism, where W is a scheme. Then
W = {Ui ×U W → W} is an fpqc covering (by algebraic spaces) of the scheme W .
By case II the result hold for W. We omit the verification that this implies the
result for U . □

Lemma 5.2.0DG8 Let S be a scheme. Let Y → X be a morphism of (Spaces/S)étale.
(1) If I is injective in Ab((Spaces/X)étale), then

(a) i−1
f I is injective in Ab(Yétale),

(b) I|Xétale
is injective in Ab(Xétale),

(2) If I• is a K-injective complex in Ab((Spaces/X)étale), then
(a) i−1

f I• is a K-injective complex in Ab(Yétale),

https://stacks.math.columbia.edu/tag/0DG7
https://stacks.math.columbia.edu/tag/0DG8
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(b) I•|Xétale
is a K-injective complex in Ab(Xétale),

The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction
functor πX,∗ = i−1

X is a right adjoint of the exact functor π−1
X , see Homology, Lemma

29.1 and Derived Categories, Lemma 31.9.

Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1
f is

a right adjoint of the exact functor if,!. This functor is constructed in Topologies,
Lemma 4.13 for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma
16.2. It is shown in Modules on Sites, Lemma 16.3 that it is exact. Second proof.
We can use that if = iY ◦ fbig as is shown in Topologies, Lemma 4.17. Since fbig

is a localization, we see that pullback by it preserves injectives and K-injectives,
see Cohomology on Sites, Lemmas 7.1 and 20.1. Then we apply the already proved
parts (1)(b) and (2)(b) to the functor i−1

Y to conclude.

To see a counter example for the case of modules we refer to Étale Cohomology,
Lemma 99.1. □

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S.
The commutative diagram of Topologies on Spaces, Lemma 4.11 (3) leads to a
commutative diagram of ringed sites

(Yspaces,étale, OY )

fspaces,étale

��

((Spaces/Y )étale, O)

fbig

��

πY

oo

(Xspaces,étale, OX) ((Spaces/X)étale, O)πXoo

as one easily sees by writing out the definitions of f ♯
small, f ♯

big, π♯
X , and π♯

Y . In
particular this means that

(5.2.1)0DG9 (fbig,∗F)|Xétale
= fsmall,∗(F|Yétale

)

for any sheaf F on (Spaces/Y )étale and if F is a sheaf of O-modules, then (5.2.1)
is an isomorphism of OX -modules on Xétale.

Lemma 5.3.0DGA Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) For K in D((Spaces/Y )étale) we have (Rfbig,∗K)|Xétale
= Rfsmall,∗(K|Yétale

)
in D(Xétale).

(2) For K in D((Spaces/Y )étale, O) we have (Rfbig,∗K)|Xétale
= Rfsmall,∗(K|Yétale

)
in D(Mod(Xétale, OX)).

More generally, let g : X ′ → X be an object of (Spaces/X)étale. Consider the fibre
product

Y ′
g′
//

f ′

��

Y

f

��
X ′ g // X

Then
(3) For K in D((Spaces/Y )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K) in
D(X ′

étale).

https://stacks.math.columbia.edu/tag/0DGA
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(4) For K in D((Spaces/Y )étale, O) we have i∗
g(Rfbig,∗K) = Rf ′

small,∗(i∗
g′K)

in D(Mod(X ′
étale, OX′)).

(5) For K in D((Spaces/Y )étale) we have g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K)

in D((Spaces/X ′)étale).
(6) For K in D((Spaces/Y )étale, O) we have g∗

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)∗K)
in D(Mod(X ′

étale, OX′)).

Proof. Part (1) follows from Lemma 5.2 and (5.2.1) on choosing a K-injective
complex of abelian sheaves representing K.
Part (3) follows from Lemma 5.2 and Topologies, Lemma 4.19 on choosing a K-
injective complex of abelian sheaves representing K.
Part (5) is Cohomology on Sites, Lemma 21.1.
Part (6) is Cohomology on Sites, Lemma 21.2.
Part (2) can be proved as follows. Above we have seen that πX ◦ fbig = fsmall ◦ πY

as morphisms of ringed sites. Hence we obtain RπX,∗ ◦ Rfbig,∗ = Rfsmall,∗ ◦ RπY,∗
by Cohomology on Sites, Lemma 19.2. Since the restriction functors πX,∗ and πY,∗
are exact, we conclude.
Part (4) follows from part (6) and part (2) applied to f ′ : Y ′ → X ′. □

Let S be a scheme. Let X be an algebraic space over S. Let H be an abelian sheaf
on (Spaces/X)étale. Recall that Hn

étale(U, H) denotes the cohomology of H over an
object U of (Spaces/X)étale.

Lemma 5.4.0DGB Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Then

(1) For K in D(Xétale) we have Hn
étale(X, π−1

X K) = Hn(Xétale, K).
(2) For K in D(Xétale, OX) we have Hn

étale(X, Lπ∗
XK) = Hn(Xétale, K).

(3) For K in D(Xétale) we have Hn
étale(Y, π−1

X K) = Hn(Yétale, f−1
smallK).

(4) For K in D(Xétale, OX) we have Hn
étale(Y, Lπ∗

XK) = Hn(Yétale, Lf∗
smallK).

(5) For M in D((Spaces/X)étale) we have Hn
étale(Y, M) = Hn(Yétale, i−1

f M).
(6) For M in D((Spaces/X)étale, O) we have Hn

étale(Y, M) = Hn(Yétale, i∗
f M).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves
and apply Lemma 5.2 and work out the definitions. Part (3) follows from this
as i−1

f π−1
X = f−1

small. Part (1) is a special case of (3).
Part (6) follows from the very general Cohomology on Sites, Lemma 37.5. Then
part (4) follows because Lf∗

small = i∗
f ◦ Lπ∗

X . Part (2) is a special case of (4). □

Lemma 5.5.0DGC Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D(Xétale) the map

K −→ RπX,∗π−1
X K

is an isomorphism where πX : Sh((Spaces/X)étale) → Sh(Xétale) is as above.

Proof. This is true because both π−1
X and πX,∗ = i−1

X are exact functors and the
composition πX,∗ ◦ π−1

X is the identity functor. □

Lemma 5.6.0DGD Let S be a scheme. Let f : Y → X be a proper morphism of algebraic
spaces over S. Then we have

(1) π−1
X ◦ fsmall,∗ = fbig,∗ ◦ π−1

Y as functors Sh(Yétale) → Sh((Spaces/X)étale),

https://stacks.math.columbia.edu/tag/0DGB
https://stacks.math.columbia.edu/tag/0DGC
https://stacks.math.columbia.edu/tag/0DGD
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(2) π−1
X Rfsmall,∗K = Rfbig,∗π−1

Y K for K in D+(Yétale) whose cohomology
sheaves are torsion, and

(3) π−1
X Rfsmall,∗K = Rfbig,∗π−1

Y K for all K in D(Yétale) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Yétale. Let g : X ′ → X be an object of
(Spaces/X)étale. Consider the fibre product

Y ′
f ′
//

g′

��

X ′

g

��
Y

f // X

Then we have

(fbig,∗π−1
Y F)(X ′) = (π−1

Y F)(Y ′) = ((g′
small)−1F)(Y ′) = (f ′

small,∗(g′
small)−1F)(X ′)

the second equality by Lemma 5.1. On the other hand

(π−1
X fsmall,∗F)(X ′) = (g−1

smallfsmall,∗F)(X ′)

again by Lemma 5.1. Hence by proper base change for sheaves of sets (Lemma
4.4) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphism π−1

X fsmall,∗F =
fbig,∗π−1

Y F . Thus an isomorphism of functors π−1
X ◦ fsmall,∗ = fbig,∗ ◦ π−1

Y .

Proof of (2). There is a canonical base change map π−1
X Rfsmall,∗K → Rfbig,∗π−1

Y K
for any K in D(Yétale), see Cohomology on Sites, Remark 19.3. To prove it is
an isomorphism, it suffices to prove the pull back of the base change map by ig :
Sh(X ′

étale) → Sh((Sch/X)étale) is an isomorphism for any object g : X ′ → X of
(Sch/X)étale. Let T ′, g′, f ′ be as in the previous paragraph. The pullback of the
base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
X Rfsmall,∗K

→ i−1
g Rfbig,∗π−1

Y K

= Rf ′
small,∗(i−1

g′ π−1
Y K)

= Rf ′
small,∗((g′

small)−1K)

where we have used πX ◦ ig = gsmall, πY ◦ ig′ = g′
small, and Lemma 5.3. This map

is an isomorphism by the proper base change theorem (Lemma 4.7) provided K is
bounded below and the cohomology sheaves of K are torsion.

Proof of (3). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This
follows from Cohomology of Spaces, Lemma 4.1 for fsmall. Since any base change
f ′ of f is finite too, we conclude from Lemma 5.3 part (3) that fbig,∗ is exact too
(as the higher derived functors are zero). Thus this case follows from part (1). □

6. Comparing fppf and étale topologies

0DGE This section is the analogue of Étale Cohomology, Section 100.

Let S be a scheme. Let X be an algebraic space over S. On the category Spaces/X
we consider the fppf and étale topologies. The identity functor (Spaces/X)étale →
(Spaces/X)fppf is continuous and defines a morphism of sites

ϵX : (Spaces/X)fppf −→ (Spaces/X)étale
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by an application of Sites, Proposition 14.7. Please note that ϵX,∗ is the identity
functor on underlying presheaves and that ϵ−1

X associates to an étale sheaf the fppf
sheafification. Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

comparing big and small étale sites, see Section 5. The composition determines a
morphism of sites

aX = πX ◦ ϵX : (Spaces/X)fppf −→ Xspaces,étale

If H is an abelian sheaf on (Spaces/X)fppf , then we will write Hn
fppf (U, H) for the

cohomology of H over an object U of (Spaces/X)fppf .

Lemma 6.1.0DGF Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have ϵX,∗a−1

X F = π−1
X F and aX,∗a−1

X F = F .
(2) For F ∈ Ab(Xétale) we have RiϵX,∗(a−1

X F) = 0 for i > 0.

Proof. We have a−1
X F = ϵ−1

X π−1
X F . By Lemma 5.1 the étale sheaf π−1

X F is a sheaf
for the fppf topology and therefore is equal to a−1

X F (as pulling back by ϵX is given
by fppf sheafification). Recall moreover that ϵX,∗ is the identity on underlying
presheaves. Now part (1) is immediate from the explicit description of π−1

X in
Lemma 5.1.

We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale
Cohomology, Lemma 100.6. This will “clearly work” as every algebraic space is
étale locally a scheme. The details are given below but we urge the reader to skip
the proof.

For an abelian sheaf H on (Spaces/X)fppf the higher direct image RpϵX,∗H is the
sheaf associated to the presheaf U 7→ Hp

fppf (U, H) on (Spaces/X)étale. See Coho-
mology on Sites, Lemma 7.4. Since every object of (Spaces/X)étale has a covering
by schemes, it suffices to prove that given U/X a scheme and ξ ∈ Hp

fppf (U, a−1
X F)

we can find an étale covering {Ui → U} such that ξ restricts to zero on Ui. We
have

Hp
fppf (U, a−1

X F) = Hp((Spaces/U)fppf , (a−1
X F)|Spaces/U )

= Hp((Sch/U)fppf , (a−1
X F)|Sch/U )

where the second identification is Lemma 3.1 and the first is a general fact about
restriction (Cohomology on Sites, Lemma 7.1). Looking at the first paragraph and
the corresponding result in the case of schemes (Étale Cohomology, Lemma 100.1)
we conclude that the sheaf (a−1

X F)|Sch/U matches the pullback by the “schemes
version of aU ”. Therefore we can find an étale covering {Ui → U} such that our
class dies in Hp((Sch/Ui)fppf , (a−1

X F)|Sch/Ui
) for each i, see Étale Cohomology,

Lemma 100.6 (the precise statement one should use here is that Vn holds for all
n which is the statement of part (2) for the case of schemes). Transporting back
(using the same formulas as above but now for Ui) we conclude ξ restricts to zero
over Ui as desired. □

The hard work done in the case of schemes now tells us that étale and fppf coho-
mology agree for sheaves coming from the small étale site.

https://stacks.math.columbia.edu/tag/0DGF
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Lemma 6.2.0DGG Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D+(Xétale) the maps

π−1
X K −→ RϵX,∗a−1

X K and K −→ RaX,∗a−1
X K

are isomorphisms with aX : Sh((Spaces/X)fppf ) → Sh(Xétale) as above.

Proof. We only prove the second statement; the first is easier and proved in exactly
the same manner. There is an immediate reduction to the case where K is given by
a single abelian sheaf. Namely, represent K by a bounded below complex F•. By
the case of a sheaf we see that Fn = aX,∗a−1

X Fn and that the sheaves RqaX,∗a−1
X Fn

are zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .

By Lemma 6.1 we have aX,∗a−1
X F = F . Thus it suffices to show that RqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7). By Lemma 6.1 we have RiϵX,∗(a−1

X F) = 0 for
i > 0. We have ϵX,∗a−1

X F = π−1
X F and by Lemma 5.5 we have RjπX,∗(π−1

X F) = 0
for j > 0. This concludes the proof. □

Lemma 6.3.0DGH Let S be a scheme and let X be an algebraic space over S. With
aX : Sh((Spaces/X)fppf ) → Sh(Xétale) as above:

(1) Hq(Xétale, F) = Hq
fppf (X, a−1

X F) for an abelian sheaf F on Xétale,
(2) Hq(Xétale, K) = Hq

fppf (X, a−1
X K) for K ∈ D+(Xétale).

Example: if A is an abelian group, then Hq
étale(X, A) = Hq

fppf (X, A).

Proof. This follows from Lemma 6.2 by Cohomology on Sites, Remark 14.4. □

Lemma 6.4.0DGI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)fppf )
fbig,fppf

//

ϵX

��

Sh((Spaces/Y )fppf )

ϵY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)

and
Sh((Spaces/X)fppf )

fbig,fppf

//

aX

��

Sh((Spaces/Y )fppf )

aY

��
Sh(Xétale) fsmall // Sh(Yétale)

with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 7 and Section 5. □

Lemma 6.5.0DGJ In Lemma 6.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,fppf,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K) for K in D+(Xétale) with torsion
cohomology sheaves.

https://stacks.math.columbia.edu/tag/0DGG
https://stacks.math.columbia.edu/tag/0DGH
https://stacks.math.columbia.edu/tag/0DGI
https://stacks.math.columbia.edu/tag/0DGJ
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Proof. Proof of (1). You can prove this by repeating the proof of Lemma 5.6 part
(1); we will instead deduce the result from this. As ϵY,∗ is the identity functor
on underlying presheaves, it reflects isomorphisms. Lemma 6.1 shows that ϵY,∗ ◦
a−1

Y = π−1
Y and similarly for X. To show that the canonical map a−1

Y fsmall,∗F →
fbig,fppf,∗a−1

X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a−1

Y fsmall,∗F
→ ϵY,∗fbig,fppf,∗a−1

X F
= fbig,étale,∗ϵX,∗a−1

X F
= fbig,étale,∗π−1

X F

is an isomorphism. This is part (1) of Lemma 5.6.

To see (2) we use that

RϵY,∗Rfbig,fppf,∗a−1
X K = Rfbig,étale,∗RϵX,∗a−1

X K

= Rfbig,étale,∗π−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 6.4 and Cohomology on
Sites, Lemma 19.2. Then second equality is Lemma 6.2. The third is Lemma 5.6
part (2). The fourth is Lemma 6.2 again. Thus the base change map a−1

Y (Rfsmall,∗K) →
Rfbig,fppf,∗(a−1

X K) induces an isomorphism

RϵY,∗a−1
Y Rfsmall,∗K → RϵY,∗Rfbig,fppf,∗a−1

X K

The proof is finished by the following remark: a map α : a−1
Y L → M with L in

D+(Yétale) and M in D+((Spaces/Y )fppf ) such that RϵY,∗α is an isomorphism,
is an isomorphism. Namely, we show by induction on i that Hi(α) is an isomor-
phism. This is true for all sufficiently small i. If it holds for i ≤ i0, then we see that
RjϵY,∗Hi(M) = 0 for j > 0 and i ≤ i0 by Lemma 6.1 because Hi(M) = a−1

Y Hi(L)
in this range. Hence ϵY,∗Hi0+1(M) = Hi0+1(RϵY,∗M) by a spectral sequence ar-
gument. Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a−1
Y Hi0+1(L). This implies

Hi0+1(α) is an isomorphism (because ϵY,∗ reflects isomorphisms as it is the identity
on underlying presheaves) as desired. □

Lemma 6.6.0DGK In Lemma 6.4 if f is finite, then a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K)
for K in D+(Xétale).

Proof. Let V → Y be a surjective étale morphism where V is a scheme. It suffices
to prove the base change map is an isomorphism after restricting to V . Hence we
may assume that Y is a scheme. As the morphism is finite, hence representable, we
conclude that we may assume both X and Y are schemes. In this case the result
follows from the case of schemes (Étale Cohomology, Lemma 100.6 part (2)) using
the comparison of topoi discussed in Section 3 and in particular given in Lemma
3.1. Some details omitted. □

https://stacks.math.columbia.edu/tag/0DGK
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Lemma 6.7.0DGL In Lemma 6.4 assume f is flat, locally of finite presentation, and
surjective. Then the functor

Sh(Yétale) −→
{

(G, H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppf H an isomorphism

}
sending F to (f−1

smallF , a−1
Y F , can) is an equivalence.

Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 6.1). Hence
the forgetful functor (G, H, α) 7→ H identifies the category of triples with a full
subcategory of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful, hence
the functor in the lemma is fully faithful as well.
Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base
change of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is
true for fi and fij for all i, j, then the lemma is true for f . To see this, note that the
given étale covering determines an étale covering of the final object in each of the
four sites Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is
equivalent to the category of glueing data for this covering (Sites, Lemma 26.5) in
each of the four cases. A huge commutative diagram of categories then finishes the
proof of the claim. We omit the details. The claim shows that we may work étale
locally on Y . In particular, we may assume Y is a scheme.
Assume Y is a scheme. Choose a scheme X ′ and a surjective étale morphism
s : X ′ → X. Set f ′ = f ◦ s : X ′ → Y and observe that f ′ is surjective, locally
of finite presentation, and flat. Claim: if the lemma is true for f ′, then it is true
for f . Namely, given a triple (G, H, α) for f , we can pullback by s to get a triple
(s−1

smallG, H, s−1
big,fppf α) for f ′. A solution for this triple gives a sheaf F on Yétale

with a−1
Y F = H. By the first paragraph of the proof this means the triple is in the

essential image. This reduces us to the case where both X and Y are schemes. This
case follows from Étale Cohomology, Lemma 100.4 via the discussion in Section 3
and in particular Lemma 3.1. □

7. Comparing fppf and étale topologies: modules

0DGM We continue the discussion in Section 6 but in this section we briefly discuss what
happens for sheaves of modules.
Let S be a scheme. Let X be an algebraic space over S. The morphisms of sites ϵX ,
πX , and their composition aX introduced in Section 6 have natural enhancements
to morphisms of ringed sites. The first is written as

ϵX : ((Spaces/X)fppf , O) −→ ((Spaces/X)étale, O)
Note that we can use the same symbol for the structure sheaf as indeed the sheaves
have the same underlying presheaf. The second is

πX : ((Spaces/X)étale, O) −→ (Xétale, OX)
The third is the morphism

aX : ((Spaces/X)fppf , O) −→ (Xétale, OX)
Let us review what we already know about quasi-coherent modules on these sites.

Lemma 7.1.0DGN Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX-module.

https://stacks.math.columbia.edu/tag/0DGL
https://stacks.math.columbia.edu/tag/0DGN
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(1) The rule

Fa : (Spaces/X)étale −→ Ab, (f : Y → X) 7−→ Γ(Y, f∗F)

satisfies the sheaf condition for fpqc and a fortiori fppf and étale coverings,
(2) Fa = π∗

XF on (Spaces/X)étale,
(3) Fa = a∗

XF on (Spaces/X)fppf ,
(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OX-modules

and quasi-coherent modules on ((Spaces/X)étale, O),
(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OX-modules

and quasi-coherent modules on ((Spaces/X)fppf , O),
(6) we have ϵX,∗a∗

XF = π∗
XF and aX,∗a∗

XF = F ,
(7) we have RiϵX,∗(a∗

XF) = 0 and RiaX,∗(a∗
XF) = 0 for i > 0.

Proof. Part (1) is a consequence of fppf descent of quasi-coherent modules. Namely,
suppose that {fi : Ui → U} is an fpqc covering in (Spaces/X)étale. Denote
g : U → X the structure morphism. Suppose that we have a family of sections
si ∈ Γ(Ui, f∗

i g∗F) such that si|Ui×U Uj
= sj |Ui×U Uj

. We have to find the cor-
respond section s ∈ Γ(U, g∗F). We can reinterpret the si as a family of maps
φi : f∗

i OU = OUi
→ f∗

i g∗F compatible with the canonical descent data associated
to the quasi-coherent sheaves OU and g∗F on U . Hence by Descent on Spaces,
Proposition 4.1 we see that we may (uniquely) descend these to a map OU → g∗F
which gives us our section s.

We will deduce (2) – (7) from the corresponding statement for schemes. Choose an
étale covering {Xi → X}i∈I where each Xi is a scheme. Observe that Xi ×X Xj is a
scheme too. This covering induces a covering of the final object in each of the three
sites (Spaces/X)fppf , (Spaces/X)étale, and Xétale. Hence we see that the category
of sheaves on these sites are equivalent to descent data for these coverings, see Sites,
Lemma 26.5. Parts (2), (3) are local (because we have the glueing statement). Being
quasi-coherent is a local property, hence parts (4), (5) are local. Clearly (6) and
(7) are local. It follows that it suffices to prove parts (2) – (7) of the lemma when
X is a scheme.

Assume X is a scheme. The embeddings (Sch/X)étale ⊂ (Spaces/X)étale and
(Sch/X)fppf ⊂ (Spaces/X)fppf determine equivalences of ringed topoi by Lemma
3.1. We conclude that (2) – (7) follows from the case of schemes. Étale Coho-
mology, Lemma 101.1. To transport the property of being quasi-coherent via this
equivalence use that being quasi-coherent is an intrinsic property of modules as
explained in Modules on Sites, Section 23. Some minor details omitted. □

Lemma 7.2.0DGP Let S be a scheme. Let X be an algebraic space over S. For F a
quasi-coherent OX-module the maps

π∗
XF −→ RϵX,∗(a∗

XF) and F −→ RaX,∗(a∗
XF)

are isomorphisms.

Proof. This is an immediate consequence of parts (6) and (7) of Lemma 7.1. □

Lemma 7.3.0DGQ Let S be a scheme. Let X be an algebraic space over S. Let F1 →
F2 → F3 be a complex of quasi-coherent OX-modules. Set

Hétale = Ker(π∗
XF2 → π∗

XF3)/ Im(π∗
XF1 → π∗

XF2)

https://stacks.math.columbia.edu/tag/0DGP
https://stacks.math.columbia.edu/tag/0DGQ
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on (Spaces/X)étale and set
Hfppf = Ker(a∗

XF2 → a∗
XF3)/ Im(a∗

XF1 → a∗
XF2)

on (Spaces/X)fppf . Then Hétale = ϵX,∗Hfppf and
Hp

étale(U, Hétale) = Hp
fppf (U, Hfppf ) = 0

for p > 0 and any affine object U of (Spaces/X)étale.

More is true, namely the collection of modules on (Spaces/X)fppf which fppf locally
look like those in the lemma are called adquate modules. They form a weak Serre
subcategory of the category of all O-modules and their cohomology is studied in
Adequate Modules, Section 5.

Proof. For any object f : U → X of (Spaces/X)étale consider the restriction
Hétale|Uétale

of Hétale to Uétale via the functor i∗
f = i−1

f discussed in Section 5. The
sheaf Hétale|Uétale

is equal to the homology of complex f∗F• in degree 1. This is
true because if ◦πX = f as morphisms of ringed sites Uétale → Xétale. In particular
we see that Hétale|Uétale

is a quasi-coherent OU -module. Next, let g : V → U be a
flat morphism in (Spaces/X)étale. Since

i∗
f◦g ◦ π∗

X = (f ◦ g)∗ = g∗ ◦ f∗

as morphisms of sites Vétale → Xétale and since g is flat hence g∗ is exact, we obtain
Hétale|Vétale

= g∗ (Hétale|Uétale
)

With these preparations we are ready to prove the lemma.
Let U = {gi : Ui → U}i∈I be an fppf covering with f : U → X as above. The
sheaf propery holds for Hétale and the covering U by (1) of Lemma 7.1 applied
to Hétale|Uétale

and the above. Therefore we see that Hétale is already an fppf
sheaf and this means that Hfppf is equal to Hétale as a presheaf. In particular
Hétale = ϵX,∗Hfppf .
Finally, to prove the vanishing, we use Cohomology on Sites, Lemma 10.9. We let
B be the affine objects of (Spaces/X)fppf and we let Cov be the set of finite fppf
coverings U = {Ui → U}i=1,...,n with U , Ui affine. We have

Ȟp(U , Hétale) = Ȟp(U , (Hétale|Uétale
)a)

because the values of Hétale on the affine schemes Ui0 ×U . . .×U Uip flat over U agree
with the values of the pullback of the quasi-coherent module Hétale|Uétale

by the
first paragraph. Hence we obtain vanishing by Descent, Lemma 9.2. This finishes
the proof. □

Lemma 7.4.0DGR Let S be a scheme. Let X be an algebraic space over S. For
K ∈ DQCoh(OX) the maps

Lπ∗
XK −→ RϵX,∗(La∗

XK) and K −→ RaX,∗(La∗
XK)

are isomorphisms. Here aX : Sh((Spaces/X)fppf ) → Sh(Xétale) is as above.

Proof. The question is étale local on X hence we may assume X is affine. Say
X = Spec(A). Then we have DQCoh(OX) = D(A) by Derived Categories of Spaces,
Lemma 4.2 and Derived Categories of Schemes, Lemma 3.5. Hence we can choose an
K-flat complex of A-modules K• whose corresponding complex K• of quasi-coherent
OX -modules represents K. We claim that K• is a K-flat complex of OX -modules.

https://stacks.math.columbia.edu/tag/0DGR
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Proof of the claim. By Derived Categories of Schemes, Lemma 3.6 we see that K̃•

is K-flat on the scheme (Spec(A), OSpec(A)). Next, note that K• = ϵ∗K̃• where ϵ is
as in Derived Categories of Spaces, Lemma 4.2 whence K• is K-flat by Cohomology
on Sites, Lemma 18.7 and the fact that the étale site of a scheme has enough points
(Étale Cohomology, Remarks 29.11).
By the claim we see that La∗

XK = a∗
XK• and Lπ∗

XK = π∗
XK•. Since the first

part of the proof shows that the pullback a∗
XKn of the quasi-coherent module is

acyclic for ϵX,∗, resp. aX,∗, surely the proof is done by Leray’s acyclicity lemma?
Actually..., no because Leray’s acyclicity lemma only applies to bounded below
complexes. However, in the next paragraph we will show the result does follow
from the bounded below case because our complex is the derived limit of bounded
below complexes of quasi-coherent modules.
The cohomology sheaves of π∗

XK• and a∗
XK• have vanishing higher cohomology

groups over affine objects of (Spaces/X)étale by Lemma 7.3. Therefore we have
Lπ∗

XK = R lim τ≥−n(Lπ∗
XK) and La∗

XK = R lim τ≥−n(La∗
XK)

by Cohomology on Sites, Lemma 23.10.
Proof of Lπ∗

XK = RϵX,∗(La∗
XF). By the above we have

RϵX,∗La∗
XK = R lim RϵX,∗(τ≥−n(La∗

XK))
by Cohomology on Sites, Lemma 23.3. Note that τ≥−n(La∗

XK) is represented by
τ≥−n(a∗

XK•) which may not be the same as a∗
X(τ≥−nK•). But clearly the systems

{τ≥−n(a∗
XK•)}n≥1 and {a∗

X(τ≥−nK•)}n≥1

are isomorphic as pro-systems. By Leray’s acyclicity lemma (Derived Categories,
Lemma 16.7) and the first part of the lemma we see that

RϵX,∗(a∗
X(τ≥−nK•)) = π∗

X(τ≥−nK•)
Then we can use that the systems

{τ≥−n(π∗
XK•)}n≥1 and {π∗

X(τ≥−nK•)}n≥1

are isomorphic as pro-systems. Finally, we put everything together as follows
RϵX,∗La∗

XK = RϵX,∗(R lim τ≥−n(La∗
XK))

= R lim RϵX,∗(τ≥−n(La∗
XK))

= R lim RϵX,∗(τ≥−n(a∗
XK•))

= R lim RϵX,∗(a∗
X(τ≥−nK•))

= R lim π∗
X(τ≥−nK•)

= R lim τ≥−n(π∗
XK•)

= R lim τ≥−n(Lπ∗
XK)

= Lπ∗
XK

Here in equalities four and six we have used that isomorphic pro-systems have the
same R lim (small detail omitted). You can avoid this step by using more about
cohomology of the terms of the complex τ≥−na∗

XK• proved in Lemma 7.3 as this
will prove directly that RϵX,∗(τ≥−n(a∗

XK•)) = τ≥−n(π∗
XK•).

The equality K = RaX,∗(La∗
XF) is proved in exactly the same way using in the

final step that K = R lim τ≥−nK by Derived Categories of Spaces, Lemma 5.7. □
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8. Comparing ph and étale topologies

0DGS This section is the analogue of Étale Cohomology, Section 102.
Let S be a scheme. Let X be an algebraic space over S. On the category Spaces/X
we consider the ph and étale topologies. The identity functor (Spaces/X)étale →
(Spaces/X)ph is continuous as every étale covering is a ph covering by Topologies
on Spaces, Lemma 8.2. Hence it defines a morphism of sites

ϵX : (Spaces/X)ph −→ (Spaces/X)étale

by an application of Sites, Proposition 14.7. Please note that ϵX,∗ is the identity
functor on underlying presheaves and that ϵ−1

X associates to an étale sheaf the ph
sheafification. Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

comparing big and small étale sites, see Section 5. The composition determines a
morphism of sites

aX = πX ◦ ϵX : (Spaces/X)ph −→ Xspaces,étale

If H is an abelian sheaf on (Spaces/X)ph, then we will write Hn
ph(U, H) for the

cohomology of H over an object U of (Spaces/X)ph.

Lemma 8.1.0DGT Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have ϵX,∗a−1

X F = π−1
X F and aX,∗a−1

X F = F .
(2) For F ∈ Ab(Xétale) torsion we have RiϵX,∗(a−1

X F) = 0 for i > 0.

Proof. We have a−1
X F = ϵ−1

X π−1
X F . By Lemma 5.1 the étale sheaf π−1

X F is a
sheaf for the ph topology and therefore is equal to a−1

X F (as pulling back by ϵX is
given by ph sheafification). Recall moreover that ϵX,∗ is the identity on underlying
presheaves. Now part (1) is immediate from the explicit description of π−1

X in
Lemma 5.1.
We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale
Cohomology, Lemma 102.5. This will “clearly work” as every algebraic space is
étale locally a scheme. The details are given below but we urge the reader to skip
the proof.
For an abelian sheaf H on (Spaces/X)ph the higher direct image RpϵX,∗H is the
sheaf associated to the presheaf U 7→ Hp

ph(U, H) on (Spaces/X)étale. See Cohomol-
ogy on Sites, Lemma 7.4. Since every object of (Spaces/X)étale has a covering by
schemes, it suffices to prove that given U/X a scheme and ξ ∈ Hp

ph(U, a−1
X F) we

can find an étale covering {Ui → U} such that ξ restricts to zero on Ui. We have
Hp

ph(U, a−1
X F) = Hp((Spaces/U)ph, (a−1

X F)|Spaces/U )
= Hp((Sch/U)ph, (a−1

X F)|Sch/U )
where the second identification is Lemma 3.1 and the first is a general fact about
restriction (Cohomology on Sites, Lemma 7.1). Looking at the first paragraph and
the corresponding result in the case of schemes (Étale Cohomology, Lemma 102.1)
we conclude that the sheaf (a−1

X F)|Sch/U matches the pullback by the “schemes
version of aU ”. Therefore we can find an étale covering {Ui → U} such that
our class dies in Hp((Sch/Ui)ph, (a−1

X F)|Sch/Ui
) for each i, see Étale Cohomology,

Lemma 102.5 (the precise statement one should use here is that Vn holds for all

https://stacks.math.columbia.edu/tag/0DGT
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n which is the statement of part (2) for the case of schemes). Transporting back
(using the same formulas as above but now for Ui) we conclude ξ restricts to zero
over Ui as desired. □

The hard work done in the case of schemes now tells us that étale and ph cohomology
agree for torsion abelian sheaves coming from the small étale site.

Lemma 8.2.0DGU Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D+(Xétale) with torsion cohomology sheaves the maps

π−1
X K −→ RϵX,∗a−1

X K and K −→ RaX,∗a−1
X K

are isomorphisms with aX : Sh((Spaces/X)ph) → Sh(Xétale) as above.

Proof. We only prove the second statement; the first is easier and proved in exactly
the same manner. There is a reduction to the case where K is given by a single
torsion abelian sheaf. Namely, represent K by a bounded below complex F• of
torsion abelian sheaves. This is possible by Cohomology on Sites, Lemma 19.8. By
the case of a sheaf we see that Fn = aX,∗a−1

X Fn and that the sheaves RqaX,∗a−1
X Fn

are zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F
where F is a torsion abelian sheaf.
By Lemma 8.1 we have aX,∗a−1

X F = F . Thus it suffices to show that RqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7). By Lemma 8.1 we have RiϵX,∗(a−1

X F) = 0 for
i > 0. We have ϵX,∗a−1

X F = π−1
X F and by Lemma 5.5 we have RjπX,∗(π−1

X F) = 0
for j > 0. This concludes the proof. □

Lemma 8.3.0DGV Let S be a scheme and let X be an algebraic space over S. With
aX : Sh((Spaces/X)ph) → Sh(Xétale) as above:

(1) Hq(Xétale, F) = Hq
ph(X, a−1

X F) for a torsion abelian sheaf F on Xétale,
(2) Hq(Xétale, K) = Hq

ph(X, a−1
X K) for K ∈ D+(Xétale) with torsion cohomol-

ogy sheaves
Example: if A is a torsion abelian group, then Hq

étale(X, A) = Hq
ph(X, A).

Proof. This follows from Lemma 8.2 by Cohomology on Sites, Remark 14.4. □

Lemma 8.4.0DGW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)ph)
fbig,ph

//

ϵX

��

Sh((Spaces/Y )ph)

ϵY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)

and
Sh((Spaces/X)ph)

fbig,ph

//

aX

��

Sh((Spaces/Y )ph)

aY

��
Sh(Xétale) fsmall // Sh(Yétale)

with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

https://stacks.math.columbia.edu/tag/0DGU
https://stacks.math.columbia.edu/tag/0DGV
https://stacks.math.columbia.edu/tag/0DGW
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Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 8 and Section 5. □

Lemma 8.5.0DGX In Lemma 8.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,ph,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1

X K) for K in D+(Xétale) with torsion co-
homology sheaves.

Proof. Proof of (1). You can prove this by repeating the proof of Lemma 5.6 part
(1); we will instead deduce the result from this. As ϵY,∗ is the identity functor
on underlying presheaves, it reflects isomorphisms. Lemma 8.1 shows that ϵY,∗ ◦
a−1

Y = π−1
Y and similarly for X. To show that the canonical map a−1

Y fsmall,∗F →
fbig,ph,∗a−1

X F is an isomorphism, it suffices to show that
π−1

Y fsmall,∗F = ϵY,∗a−1
Y fsmall,∗F

→ ϵY,∗fbig,ph,∗a−1
X F

= fbig,étale,∗ϵX,∗a−1
X F

= fbig,étale,∗π−1
X F

is an isomorphism. This is part (1) of Lemma 5.6.
To see (2) we use that

RϵY,∗Rfbig,ph,∗a−1
X K = Rfbig,étale,∗RϵX,∗a−1

X K

= Rfbig,étale,∗π−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 8.4 and Cohomology on
Sites, Lemma 19.2. Then second equality is Lemma 8.2. The third is Lemma 5.6
part (2). The fourth is Lemma 8.2 again. Thus the base change map a−1

Y (Rfsmall,∗K) →
Rfbig,ph,∗(a−1

X K) induces an isomorphism
RϵY,∗a−1

Y Rfsmall,∗K → RϵY,∗Rfbig,ph,∗a−1
X K

The proof is finished by the following remark: consider a map α : a−1
Y L → M with

L in D+(Yétale) having torsion cohomology sheaves and M in D+((Spaces/Y )ph). If
RϵY,∗α is an isomorphism, then α is an isomorphism. Namely, we show by induction
on i that Hi(α) is an isomorphism. This is true for all sufficiently small i. If it holds
for i ≤ i0, then we see that RjϵY,∗Hi(M) = 0 for j > 0 and i ≤ i0 by Lemma 8.1 be-
cause Hi(M) = a−1

Y Hi(L) in this range. Hence ϵY,∗Hi0+1(M) = Hi0+1(RϵY,∗M) by
a spectral sequence argument. Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a−1
Y Hi0+1(L).

This implies Hi0+1(α) is an isomorphism (because ϵY,∗ reflects isomorphisms as it
is the identity on underlying presheaves) as desired. □
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