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1. Introduction

04P5 This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even
though the results are stated in terms of groupoids in algebraic spaces, the reader
should keep in mind the 2-cartesian diagram

(1.0.1)04P6

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 20.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

2. Notation

04P7 We continue to abide by the conventions and notation introduced in Groupoids in
Spaces, Section 3.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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3. Useful diagrams

04P8 We briefly restate the results of Groupoids in Spaces, Lemmas 11.4 and 11.5 for
easy reference in this chapter. Let S be a scheme. Let B be an algebraic space over
S. Let (U, R, s, t, c) be a groupoid in algebraic spaces over B. In the commutative
diagram

(3.0.1)04P9

U

R

s

��

t

::

R ×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.
The diagram

(3.0.2)0451

R ×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR

��

U

idU

��
R ×s,U,t R

c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

4. Local structure

0CK9 Let S be a scheme. Let (U, R, s, t, c, e, i) be a groupoid in algebraic spaces over S.
Let u be a geometric point of U . In this section we explain what kind of structure
we obtain on the local rings (Properties of Spaces, Definition 22.2)

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced
by the morphisms s, t, c, e, i by the corresponding letters. In particular we have a
commutative diagram

A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A) ⊕ I =
t(A) ⊕ I. Let us denote

C = OR×s,U,tR,(e,e)(u)
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Then we have
C = (B ⊗s,A,t B)h

mB⊗B+B⊗mB

because the localization (B⊗s,A,t B)mB⊗B+B⊗mB
has separably closed residue field.

Let J ⊂ C be the ideal of C generated by I ⊗ B + B ⊗ I. Then J is also the kernel
of the local ring homomorphism

(e, e) : C −→ A

The composition law c : R ×s,U,t R → R corresponds to a ring map

c : B −→ C

sending I into J .

Lemma 4.1.0CKA The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

where the second arrow comes from the equality J = (I ⊗ B + B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.

Proof. To describe a local homomorphism from C to another henselian local ring
it is enough to say what happens to elements of the form b1 ⊗b2 by Algebra, Lemma
155.6 for example. Keeping this in mind we have the two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and
r 7→ (e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an
inverse to the map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement
we only have to show that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity
maps. This follows from the fact that both compositions R → R ×s,U,t R → R are
identities.

The statement on i follows from the statement on c and the fact that c◦(1, i) = e◦t.
Some details omitted. □

5. Groupoid of sections

0CKB Suppose we have a groupoid (Ob, Arrows, s, t, c, e, i). Then we can construct a
monoid Γ whose elements are maps δ : Ob → Arrows with s ◦ δ = idOb and
composition given by

δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)
In other words, an element of Γ is a rule δ which prescribes an arrow emanating
from every object and composition is the natural thing. For example

•

��
•:: •

��
•

__ ◦

•

��
•

??

•

��
•

__ =

•





•:: •oo

•

__

with obvious notation

https://stacks.math.columbia.edu/tag/0CKA
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The same procedure can be applied to a groupoid in algebraic spaces (U, R, s, t, c, e, i)
over a scheme S. Namely, as elements of Γ we take the set

Γ = {δ : U → R | s ◦ δ = idU }

and composition ◦ : Γ × Γ → Γ is given by the rule above

(5.0.1)0CKC δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)

The identity is given by e ∈ Γ. The groupoid Γ is not a group in general because
there may be elements δ ∈ Γ which do not have an inverse. Namely, it is clear that
δ ∈ Γ will have an inverse if and only if t ◦ δ is an automorphism of U and in this
case δ−1 = i ◦ δ ◦ (t ◦ δ)−1.

For later use we discuss what happens with the subgroupoid Γ0 of Γ of sections
which are infinitesimally close to the identity e. More precisely, suppose given
an R-invariant closed subspace U0 ⊂ U such that U is a first order thickening
of U0. Denote R0 = s−1(U0) = t−1(U0) and let (U0, R0, s0, t0, c0, e0, i0) be the
corresponding groupoid in algebraic spaces. Set

Γ0 = {δ ∈ Γ | δ|U0 = e0}

If s and t are flat, then every element in Γ0 is invertible. This follows because t◦δ will
be a morphism U → U inducing the identity on OU0 and on CU0/U (Lemma 5.1) and
we conclude because we have a short exact sequence 0 → CU0/U → OU → OU0 → 0.

Lemma 5.1.0CKD In the situation discussed in this section, let δ ∈ Γ0 and f = t ◦ δ :
U → U . If s, t are flat, then the canonical map CU0/U → CU0/U induced by f (More
on Morphisms of Spaces, Lemma 5.3) is the identity map.

Proof. To see this we extend the bottom of the diagram (3.0.2) as follows

Y //

��

R ×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

U
δ

// R
s //

t
// U

where the left square is cartesian and this is our definition of Y ; we will not need to
know more about Y . There is a similar diagram with similar properties obtained
by base change to U0 everywhere. We are trying to show that idU = s ◦ δ and
f = t ◦ δ induce the same maps on conormal sheaves. Since s is flat and surjective,
it suffices to prove the same thing for the two compositions a, b : Y → R along the
top row. Observe that a0 = b0 and that one of a and b is an isomorphism as we
know that s ◦ δ is an isomorphism. Therefore the two morphisms a, b : Y → R are
morphisms between algebraic spaces flat over U (via the morphism t : R → U and
the morphism t ◦ a = t ◦ b : Y → U). This implies what we want. Namely, by the
compatibility with compositions in More on Morphisms of Spaces, Lemma 5.4 we
conclude that both maps a∗

0CR0/R → CY0/Y fit into a commutative diagram

a∗
0CR0/R

// CY0/Y

a∗
0t∗

0CU0/U

OO

(t0 ◦ a0)∗CU0/U

OO

https://stacks.math.columbia.edu/tag/0CKD
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whose vertical arrows are isomorphisms by More on Morphisms of Spaces, Lemma
18.1. Thus the lemma holds. □

Let us identify the group Γ0. Applying the discussion in More on Morphisms of
Spaces, Remarks 17.3 and 17.7 to the diagram

(U0 ⊂ U)
(e0,δ)

//

(idU0 ,idU ) &&

(R0 ⊂ R)

(s0,s)xx
(U0 ⊂ U)

we see that δ = θ · e for a unique OU0-linear map θ : e∗
0ΩR0/U0 → CU0/U . Thus we

get a bijection
(5.1.1)0CKE HomOU0

(e∗
0ΩR0/U0 , CU0/U ) −→ Γ0

by applying More on Morphisms of Spaces, Lemma 17.5.

Lemma 5.2.0CKF The bijection (5.1.1) is an isomorphism of groups.

Proof. Let δ1, δ2 ∈ Γ0 correspond to θ1, θ2 as above and the composition δ = δ1 ◦δ2
in Γ0 correspond to θ. We have to show that θ = θ1 + θ2. Recall (More on Mor-
phisms of Spaces, Lemma 17.2) that θ1, θ2, θ correspond to derivations D1, D2, D :
e−1

0 OR0 → CU0/U given by D1 = θ1 ◦ dR0/U0 and so on. It suffices to check that
D = D1 + D2.
We may check equality on stalks. Let u be a geometric point of U and let us use the
local rings A, B, C introduced in Section 4. The morphisms δi correspond to ring
maps δi : B → A. Let K ⊂ A be the ideal of square zero such that A/K = OU0,u. In
other words, K is the stalk of CU0/U at u. The fact that δi ∈ Γ0 means exactly that
δi(I) ⊂ K. The derivation Di is just the map δi − e : B → A. Since B = s(A) ⊕ I
we see that Di is determined by its restriction to I and that this is just given by
δi|I . Moreover Di and hence δi annihilates I2 because I = Ker(I).
To finish the proof we observe that δ corresponds to the composition

B → C = (B ⊗s,A,t B)h
mB⊗B+B⊗mB

→ A

where the first arrow is c and the second arrow is determined by the rule b1 ⊗ b2 7→
δ2(t(δ1(b1)))δ2(b2) as follows from (5.0.1). By Lemma 4.1 we see that an element ζ
of I maps to ζ ⊗ 1 + 1 ⊗ ζ plus higher order terms. Hence we conclude that

D(ζ) = (δ2 ◦ t) (D1(ζ)) + D2(ζ)
However, by Lemma 5.1 the action of δ2 ◦ t on K = CU0/U,u is the identity and we
win. □

6. Properties of groupoids

044Y This section is the analogue of More on Groupoids, Section 6. The reader is strongly
encouraged to read that section first.
The following lemma is the analogue of More on Groupoids, Lemma 6.4.

Lemma 6.1.044Z Let B → S be as in Section 2. Let (U, R, s, t, c) be a groupoid
in algebraic spaces over B. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a
property of morphisms of algebraic spaces which is τ -local on the target (Descent on
Spaces, Definition 10.1). Assume {s : R → U} and {t : R → U} are coverings for

https://stacks.math.columbia.edu/tag/0CKF
https://stacks.math.columbia.edu/tag/044Z


MORE ON GROUPOIDS IN SPACES 6

the τ -topology. Let W ⊂ U be the maximal open subspace such that s−1(W ) → W
has property P. Then W is R-invariant (Groupoids in Spaces, Definition 18.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 10.3. In Diagram (3.0.1) let W1 ⊂ R be the maximal open
subscheme over which the morphism pr1 : R×s,U,tR → R has property P. It follows
from the aforementioned Descent on Spaces, Lemma 10.3 and the assumption that
{s : R → U} and {t : R → U} are coverings for the τ -topology that t−1(W ) =
W1 = s−1(W ) as desired. □

Lemma 6.2.06R4 Let B → S be as in Section 2. Let (U, R, s, t, c) be a groupoid
in algebraic spaces over B. Let G → U be its stabilizer group algebraic space. Let
τ ∈ {fppf, étale, smooth, syntomic}. Let P be a property of morphisms of algebraic
spaces which is τ -local on the target. Assume {s : R → U} and {t : R → U} are
coverings for the τ -topology. Let W ⊂ U be the maximal open subspace such that
GW → W has property P. Then W is R-invariant (see Groupoids in Spaces,
Definition 18.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 10.3. The morphism

G ×U,t R −→ R ×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)

is an isomorphism of algebraic spaces over R (where ◦ denotes composition in
the groupoid). Hence s−1(W ) = t−1(W ) by the properties of W proved in the
aforementioned Descent on Spaces, Lemma 10.3. □

7. Comparing fibres

04PA This section is the analogue of More on Groupoids, Section 7. The reader is strongly
encouraged to read that section first.

Lemma 7.1.0452 Let B → S be as in Section 2. Let (U, R, s, t, c) be a groupoid in
algebraic spaces over B. Let K be a field and let r, r′ : Spec(K) → R be morphisms
such that t ◦ r = t ◦ r′ : Spec(K) → U . Set u = s ◦ r, u′ = s ◦ r′ and denote
Fu = Spec(K) ×u,U,s R and Fu′ = Spec(K) ×u′,U,s R the fibre products. Then
Fu

∼= Fu′ as algebraic spaces over K.

Proof. We use the properties and the existence of Diagram (3.0.1). There exists a
morphism ξ : Spec(K) → R ×s,U,t R with pr0 ◦ ξ = r and c◦ ξ = r′. Let r̃ = pr1 ◦ ξ :
Spec(K) → R. Then looking at the bottom two squares of Diagram (3.0.1) we
see that both Fu and Fu′ are identified with the algebraic space Spec(K) ×r̃,R,pr1

(R ×s,U,t R). □

Actually, in the situation of the lemma the morphisms of pairs s : (R, r) → (U, u)
and s : (R, r′) → (U, u′) are locally isomorphic in the τ -topology, provided {s : R →
U} is a τ -covering. We will insert a precise statement here if needed.

8. Restricting groupoids

04RM

https://stacks.math.columbia.edu/tag/06R4
https://stacks.math.columbia.edu/tag/0452
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In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(8.0.1)04RN

R′

��

//

t′

%%

s′

**
R ×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids in Spaces, Lemma 17.1.

Lemma 8.1.04RP Let S be a scheme. Let B be an algebraic space over S. Let
(U, R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U be a morphism
of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U, R, s, t, c)
via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms of Spaces, Lemmas 23.2 and 23.3. Hence
(1) is clear from Diagram (8.0.1). For the other cases, see Morphisms of Spaces,
Lemmas 28.2, 28.3, 30.3, and 30.4. □

9. Properties of groups over fields and groupoids on fields

06DW The reader is advised to first look at the corresponding sections for groupoid
schemes, see Groupoids, Section 7 and More on Groupoids, Section 10.

Situation 9.1.06DX Here S is a scheme, k is a field over S, and (G, m) is a group
algebraic space over Spec(k).

Situation 9.2.06DY Here S is a scheme, B is an algebraic space, and (U, R, s, t, c) is a
groupoid in algebraic spaces over B with U = Spec(k) for some field k.

Note that in Situation 9.1 we obtain a groupoid in algebraic spaces

(9.2.1)06DZ (Spec(k), G, p, p, m)

where p : G → Spec(k) is the structure morphism of G, see Groupoids in Spaces,
Lemma 15.1. This is a situation as in Situation 9.2. We will use this without
further mention in the rest of this section.

Lemma 9.3.06E0 In Situation 9.2 the composition morphism c : R ×s,U,t R → R is
flat and universally open. In Situation 9.1 the group law m : G ×k G → G is flat
and universally open.

https://stacks.math.columbia.edu/tag/04RP
https://stacks.math.columbia.edu/tag/06DX
https://stacks.math.columbia.edu/tag/06DY
https://stacks.math.columbia.edu/tag/06E0
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Proof. The composition is isomorphic to the projection map pr1 : R ×t,U,t R → R
by Diagram (3.0.2). The projection is flat as a base change of the flat morphism
t and open by Morphisms of Spaces, Lemma 6.6. The second assertion follows
immediately from the first because m matches c in (9.2.1). □

Note that the following lemma applies in particular when working with either quasi-
separated or locally separated algebraic spaces (Decent Spaces, Lemma 15.2).

Lemma 9.4.08BH In Situation 9.2 assume R is a decent space. Then R is a separated
algebraic space. In Situation 9.1 assume that G is a decent algebraic space. Then
G is separated algebraic space.

Proof. We first prove the second assertion. By Groupoids in Spaces, Lemma 6.1
we have to show that e : S → G is a closed immersion. This follows from Decent
Spaces, Lemma 14.5.
Next, we prove the first assertion. To do this we may replace B by S. By the
paragraph above the stabilizer group scheme G → U is separated. By Groupoids
in Spaces, Lemma 29.2 the morphism j = (t, s) : R → U ×S U is separated. As U
is the spectrum of a field the scheme U ×S U is affine (by the construction of fibre
products in Schemes, Section 17). Hence R is separated, see Morphisms of Spaces,
Lemma 4.9. □

Lemma 9.5.06E1 In Situation 9.2. Let k′/k be a field extension, U ′ = Spec(k′) and
let (U ′, R′, s′, t′, c′) be the restriction of (U, R, s, t, c) via U ′ → U . In the defining
diagram

R′

��

//

t′

%%

s′

**

&&

R ×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U

all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, sur-
jective and flat. The morphisms s, t : R → U and the morphism U ′ → U are
universally open by Morphisms, Lemma 23.4. Since R is not empty and U is the
spectrum of a field the morphisms s, t : R → U are surjective and flat. Then you
conclude by using Morphisms of Spaces, Lemmas 5.5, 5.4, 6.4, 20.5, 20.4, 30.4, and
30.3. □

Lemma 9.6.06E2 In Situation 9.2. For any point r ∈ |R| there exist
(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ : Spec(k′) → R′ where (U ′, R′, s′, t′, c′) is the restriction of

(U, R, s, t, c) via Spec(k′) → Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and

https://stacks.math.columbia.edu/tag/08BH
https://stacks.math.columbia.edu/tag/06E1
https://stacks.math.columbia.edu/tag/06E2
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(2) the maps s′ ◦ r′, t′ ◦ r′ : Spec(k′) → Spec(k′) are automorphisms.

Proof. Let’s represent r by a morphism r : Spec(K) → R for some field K. To
prove the lemma we have to find an algebraically closed field k′ and a commutative
diagram

k′ k′
1

oo

k′

τ

OO

K

σ

``

k
s

oo

i

__

k

i

``

t

OO

where s, t : k → K are the field maps coming from s ◦ r and t ◦ r. In the proof of
More on Groupoids, Lemma 10.5 it is shown how to construct such a diagram. □

Lemma 9.7.06E3 In Situation 9.2. If r : Spec(k) → R is a morphism such that
s ◦ r, t ◦ r are automorphisms of Spec(k), then the map

R −→ R, x 7−→ c(r, x)
is an automorphism R → R which maps e to r.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 10.6. □

Lemma 9.8.06E4 In Situation 9.2 the algebraic space R is geometrically unibranch.
In Situation 9.1 the algebraic space G is geometrically unibranch.

Proof. Let r ∈ |R|. We have to show that R is geometrically unibranch at r.
Combining Lemma 9.5 with Descent on Spaces, Lemma 9.1 we see that it suffices
to prove this in case k is algebraically closed and r comes from a morphism r :
Spec(k) → R such that s◦r and t◦r are automorphisms of Spec(k). By Lemma 9.7
we reduce to the case that r = e is the identity of R and k is algebraically closed.
Assume r = e and k is algebraically closed. Let A = OR,e be the étale local ring
of R at e and let C = OR×s,U,tR,(e,e) be the étale local ring of R ×s,U,t R at (e, e).
By More on Algebra, Lemma 107.4 the minimal prime ideals q of C correspond
1-to-1 to pairs of minimal primes p, p′ ⊂ A. On the other hand, the composition
law induces a flat ring map

A
c♯

// C q

A ⊗s♯,k,t♯ A

OO

p ⊗ A + A ⊗ p′

_

Note that (c♯)−1(q) contains both p and p′ as the diagrams

A
c♯

// C

A ⊗s♯,k k

OO

A ⊗s♯,k,t♯ A
1⊗e♯

oo

OO A
c♯

// C

k ⊗k,t♯ A

OO

A ⊗s♯,k,t♯ A
e♯⊗1oo

OO

commute by (3.0.1). Since c♯ is flat (as c is a flat morphism by Lemma 9.3), we see
that (c♯)−1(q) is a minimal prime of A. Hence p = (c♯)−1(q) = p′. □

https://stacks.math.columbia.edu/tag/06E3
https://stacks.math.columbia.edu/tag/06E4
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In the following lemma we use dimension of algebraic spaces (at a point) as defined
in Properties of Spaces, Section 9. We also use the dimension of the local ring
defined in Properties of Spaces, Section 10 and transcendence degree of points, see
Morphisms of Spaces, Section 33.

Lemma 9.9.06FD In Situation 9.2 assume s, t are locally of finite type. For all r ∈ |R|
(1) dim(R) = dimr(R),
(2) the transcendence degree of r over Spec(k) via s equals the transcendence

degree of r over Spec(k) via t, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(R) = dim(OR,r).

Proof. Let r ∈ |R|. Denote trdeg(r/sk) the transcendence degree of r over Spec(k)
via s. Choose an étale morphism φ : V → R where V is a scheme and v ∈ V
mapping to r. Using the definitions mentioned above the lemma we see that

dimr(R) = dimv(V ) = dim(OV,v) + trdegs(k)(κ(v)) = dim(OR,r) + trdeg(r/sk)

and similarly for t (the second equality by Morphisms, Lemma 28.1). Hence we see
that trdeg(r/sk) = trdeg(r/tk), i.e., (2) holds.

Let k′/k be a field extension. Note that the restriction R′ of R to Spec(k′) (see
Lemma 9.5) is obtained from R by two base changes by morphisms of fields. Thus
Morphisms of Spaces, Lemma 34.3 shows the dimension of R at a point is unchanged
by this operation. Hence in order to prove (1) we may assume, by Lemma 9.6, that
r is represented by a morphism r : Spec(k) → R such that both s ◦ r and t ◦ r
are automorphisms of Spec(k). In this case there exists an automorphism R → R
which maps r to e (Lemma 9.7). Hence we see that dimr(R) = dime(R) for any r.
By definition this means that dimr(R) = dim(R).

Part (3) is a formal consequence of the results obtained in the discussion above. □

Lemma 9.10.06FE In Situation 9.1 assume G locally of finite type. For all g ∈ |G|
(1) dim(G) = dimg(G),
(2) if the transcendence degree of g over k is 0, then dim(G) = dim(OG,g).

Proof. Immediate from Lemma 9.9 via (9.2.1). □

Lemma 9.11.06FF In Situation 9.2 assume s, t are locally of finite type. Let G =
Spec(k) ×∆,Spec(k)×BSpec(k),t×s R be the stabilizer group algebraic space. Then we
have dim(R) = dim(G).

Proof. Since G and R are equidimensional (see Lemmas 9.9 and 9.10) it suffices
to prove that dime(R) = dime(G). Let V be an affine scheme, v ∈ V , and let
φ : V → R be an étale morphism of schemes such that φ(v) = e. Note that V is a
Noetherian scheme as s ◦ φ is locally of finite type as a composition of morphisms
locally of finite type and as V is quasi-compact (use Morphisms of Spaces, Lemmas
23.2, 39.8, and 28.5 and Morphisms, Lemma 15.6). Hence V is locally connected
(see Properties, Lemma 5.5 and Topology, Lemma 9.6). Thus we may replace V by
the connected component containing v (it is still affine as it is an open and closed
subscheme of V ). Set T = Vred equal to the reduction of V . Consider the two
morphisms a, b : T → Spec(k) given by a = s ◦ φ|T and b = t ◦ φ|T . Note that a, b
induce the same field map k → κ(v) because φ(v) = e! Let ka ⊂ Γ(T, OT ) be the
integral closure of a♯(k) ⊂ Γ(T, OT ). Similarly, let kb ⊂ Γ(T, OT ) be the integral

https://stacks.math.columbia.edu/tag/06FD
https://stacks.math.columbia.edu/tag/06FE
https://stacks.math.columbia.edu/tag/06FF
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closure of b♯(k) ⊂ Γ(T, OT ). By Varieties, Proposition 31.1 we see that ka = kb.
Thus we obtain the following commutative diagram

k

a

"" ++
ka = kb

// Γ(T, OT ) // κ(v)

k

b

<< 33

As discussed above the long arrows are equal. Since ka = kb → κ(v) is injective we
conclude that the two morphisms a and b agree. Hence T → R factors through G.
It follows that Rred = Gred in an open neighbourhood of e which certainly implies
that dime(R) = dime(G). □

10. Group algebraic spaces over fields

0B8D There exists a nonseparated group algebraic space over a field, namely Ga/Z over
a field of characteristic zero, see Examples, Section 49. In fact any group scheme
over a field is separated (Lemma 9.4) hence every nonseparated group algebraic
space over a field is nonrepresentable. On the other hand, a group algebraic space
over a field is separated as soon as it is decent, see Lemma 9.4. In this section we
will show that a separated group algebraic space over a field is representable, i.e.,
a scheme.
Lemma 10.1.0B8E Let k be a field with algebraic closure k. Let G be a group algebraic
space over k which is separated1. Then Gk is a scheme.
Proof. By Spaces over Fields, Lemma 10.2 it suffices to show that GK is a scheme
for some field extension K/k. Denote G′

K ⊂ GK the schematic locus of GK as
in Properties of Spaces, Lemma 13.1. By Properties of Spaces, Proposition 13.3
we see that G′

K ⊂ GK is dense open, in particular not empty. Choose a scheme
U and a surjective étale morphism U → G. By Varieties, Lemma 14.2 if K is
an algebraically closed field of large enough transcendence degree, then UK is a
Jacobson scheme and every closed point of UK is K-rational. Hence G′

K has a
K-rational point and it suffices to show that every K-rational point of GK is in
G′

K . If g ∈ GK(K) is a K-rational point and g′ ∈ G′
K(K) a K-rational point in the

schematic locus, then we see that g is in the image of G′
K under the automorphism

GK −→ GK , h 7−→ g(g′)−1h

of GK . Since automorphisms of GK as an algebraic space preserve G′
K , we conclude

that g ∈ G′
K as desired. □

Lemma 10.2.0B8F Let k be a field. Let G be a group algebraic space over k. If G is
separated and locally of finite type over k, then G is a scheme.
Proof. This follows from Lemma 10.1, Groupoids, Lemma 8.6, and Spaces over
Fields, Lemma 10.7. □

Proposition 10.3.0B8G Let k be a field. Let G be a group algebraic space over k. If
G is separated, then G is a scheme.

1It is enough to assume G is decent, e.g., locally separated or quasi-separated by Lemma 9.4.

https://stacks.math.columbia.edu/tag/0B8E
https://stacks.math.columbia.edu/tag/0B8F
https://stacks.math.columbia.edu/tag/0B8G
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Proof. This lemma generalizes Lemma 10.2 (which covers all cases one cares about
in practice). The proof is very similar to the proof of Spaces over Fields, Lemma
10.7 used in the proof of Lemma 10.2 and we encourage the reader to read that
proof first.

By Lemma 10.1 the base change Gk is a scheme. Let K/k be a purely transcendental
extension of very large transcendence degree. By Spaces over Fields, Lemma 10.5
it suffices to show that GK is a scheme. Let Kperf be the perfect closure of K.
By Spaces over Fields, Lemma 10.1 it suffices to show that GKperf is a scheme.
Let K ⊂ Kperf ⊂ K be the algebraic closure of K. We may choose an embedding
k → K over k, so that GK is the base change of the scheme Gk by k → K. By
Varieties, Lemma 14.2 we see that GK is a Jacobson scheme all of whose closed
points have residue field K.

Since GK → GKperf is surjective, it suffices to show that the image g ∈ |GKperf | of
an arbitrary closed point of GK is in the schematic locus of GK . In particular, we
may represent g by a morphism g : Spec(L) → GKperf where L/Kperf is separable
algebraic (for example we can take L = K). Thus the scheme

T = Spec(L) ×G
Kperf

GK

= Spec(L) ×Spec(Kperf ) Spec(K)
= Spec(L ⊗Kperf K)

is the spectrum of a K-algebra which is a filtered colimit of algebras which are finite
products of copies of K. Thus by Groupoids, Lemma 7.13 we can find an affine
open W ⊂ GK containing the image of gK : T → GK .

Choose a quasi-compact open V ⊂ GKperf containing the image of W . By Spaces
over Fields, Lemma 10.2 we see that VK′ is a scheme for some finite extension
K ′/Kperf . After enlarging K ′ we may assume that there exists an affine open
U ′ ⊂ VK′ ⊂ GK′ whose base change to K recovers W (use that VK is the limit of
the schemes VK′′ for K ′ ⊂ K ′′ ⊂ K finite and use Limits, Lemmas 4.11 and 4.13).
We may assume that K ′/Kperf is a Galois extension (take the normal closure
Fields, Lemma 16.3 and use that Kperf is perfect). Set H = Gal(K ′/Kperf ). By
construction the H-invariant closed subscheme Spec(L) ×G

Kperf
GK′ is contained

in U ′. By Spaces over Fields, Lemmas 10.3 and 10.4 we conclude. □

11. No rational curves on groups

0AEK In this section we prove that there are no nonconstant morphisms from P1 to a
group algebraic space locally of finite type over a field.

Lemma 11.1.0AEL Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y and g : X → Z be morphisms of algebraic spaces over B. Assume

(1) Y → B is separated,
(2) g is surjective, flat, and locally of finite presentation,
(3) there is a scheme theoretically dense open V ⊂ Z such that f |g−1(V ) :

g−1(V ) → Y factors through V .
Then f factors through g.

https://stacks.math.columbia.edu/tag/0AEL
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Proof. Set R = X ×Z X. By (2) we see that Z = X/R as sheaves. Also (2) implies
that the inverse image of V in R is scheme theoretically dense in R (Morphisms of
Spaces, Lemma 30.11). The we see that the two compositions R → X → Y are
equal by Morphisms of Spaces, Lemma 17.8. The lemma follows. □

Lemma 11.2.0AEM Let k be a field. Let n ≥ 1 and let (P1
k)n be the n-fold self product

over Spec(k). Let f : (P1
k)n → Z be a morphism of algebraic spaces over k. If Z is

separated of finite type over k, then f factors as

(P1
k)n projection−−−−−−−→ (P1

k)m finite−−−−→ Z.

Proof. We may assume k is algebraically closed (details omitted); we only do this
so we may argue using rational points, but the reader can work around this if she/he
so desires. In the proof products are over k. The automorphism group algebraic
space of (P1

k)n contains G = (GL2,k)n. If C ⊂ (P1
k)n is a closed subvariety (in

particular irreducible over k) which is mapped to a point, then we can apply More
on Morphisms of Spaces, Lemma 35.3 to the morphism

G × C → G × Z, (g, c) 7→ (g, f(g · c))
over G. Hence g(C) is mapped to a point for g ∈ G(k) lying in a Zariski open
U ⊂ G. Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) are k-valued points of (P1

k)n.
Let I ⊂ {1, . . . , n} be the set of indices i such that xi = yi. Then

{g(x) | g(y) = y, g ∈ U(k)}
is Zariski dense in the fibre of the projection πI : (P1

k)n →
∏

i∈I P1
k (exercise).

Hence if x, y ∈ C(k) are distinct, we conclude that f maps the whole fibre of πI

containing x, y to a single point. Moreover, the U(k)-orbit of C meets a Zariski
open set of fibres of πI . By Lemma 11.1 the morphism f factors through πI . After
repeating this process finitely many times we reach the stage where all fibres of f
over k points are finite. In this case f is finite by More on Morphisms of Spaces,
Lemma 35.2 and the fact that k points are dense in Z (Spaces over Fields, Lemma
16.2). □

Lemma 11.3.0AEN Let k be a field. Let G be a separated group algebraic space locally
of finite type over k. There does not exist a nonconstant morphism f : P1

k → G
over Spec(k).

Proof. Assume f is nonconstant. Consider the morphisms
P1

k ×Spec(k) . . . ×Spec(k) P1
k −→ G, (t1, . . . , tn) 7−→ f(g1) . . . f(gn)

where on the right hand side we use multiplication in the group. By Lemma 11.2
and the assumption that f is nonconstant this morphism is finite onto its image.
Hence dim(G) ≥ n for all n, which is impossible by Lemma 9.10 and the fact that
G is locally of finite type over k. □

12. The finite part of a morphism

04PB Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. For
an algebraic space or a scheme T over S consider pairs (a, Z) where

(12.0.1)04PC
a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace
such that pr0|Z : Z → T is finite.

https://stacks.math.columbia.edu/tag/0AEM
https://stacks.math.columbia.edu/tag/0AEN
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Suppose h : T ′ → T is a morphism of algebraic spaces over S and (a, Z) is a pair as
in (12.0.1) over T . Set a′ = a◦h and Z ′ = (h× idX)−1(Z) = T ′ ×T Z. Then (a′, Z ′)
is a pair as in (12.0.1) over T ′. This follows as finite morphisms are preserved under
base change, see Morphisms of Spaces, Lemma 45.5. Thus we obtain a functor

(12.0.2)04PD (X/Y )fin : (Sch/S)opp −→ Sets
T 7−→ {(a, Z) as above}

For applications we are mainly interested in this functor (X/Y )fin when f is sep-
arated and locally of finite type. To get an idea of what this is all about, take a
look at Remark 12.6.

Lemma 12.1.04PE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then we have

(1) The presheaf (X/Y )fin satisfies the sheaf condition for the fppf topology.
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T, (X/Y )fin) = {(a, Z) satisfying 12.0.1}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering (by
algebraic spaces). Let si = (ai, Zi) be pairs over Ti satisfying 12.0.1 such that we
have si|Ti×T Tj

= sj |Ti×T Tj
. First, this implies in particular that ai and aj define

the same morphism Ti ×T Tj → Y . By Descent on Spaces, Lemma 7.2 we deduce
that there exists a unique morphism a : T → Y such that ai equals the composition
Ti → T → Y . Second, this implies that Zi ⊂ Ti ×Y X are open subspaces whose
inverse images in (Ti ×T Tj) ×Y X are equal. Since {Ti ×Y X → T ×Y X} is an
fppf covering we deduce that there exists a unique open subspace Z ⊂ T ×Y X
which restricts back to Zi over Ti, see Descent on Spaces, Lemma 7.1. We claim
that the projection Z → T is finite. This follows as being finite is local for the fpqc
topology, see Descent on Spaces, Lemma 11.23.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair satisfying conditions 12.0.1.

Let v : T → (X/Y )fin be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ (X/Y )fin(U) corresponds to a
pair (aU , ZU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , ZU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, Z) over T .

Conversely, let (a, Z) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, Z)|U gives rise to a transformation of functors
v : hU → (X/Y )fin by the Yoneda lemma (Categories, Lemma 3.5). As the two
pullbacks s∗(a, Z)|U and t∗(a, Z)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 9.1 and since (X/Y )fin is an fppf sheaf by (1) we conclude that v factors
through a map T → (X/Y )fin.

We omit the verification that the two constructions above are mutually inverse. □

https://stacks.math.columbia.edu/tag/04PE
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Lemma 12.2.04PF Let S be a scheme. Consider a commutative diagram

X ′
j

//

  

X

~~
Y

of algebraic spaces over S. If j is an open immersion, then there is a canonical
injective map of sheaves j : (X ′/Y )fin → (X/Y )fin.

Proof. If (a, Z) is a pair over T for X ′/Y , then (a, j(Z)) is a pair over T for
X/Y . □

Lemma 12.3.04PG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let X ′ ⊂ X be the maximal open
subspace over which f is locally quasi-finite, see Morphisms of Spaces, Lemma 34.7.
Then (X/Y )fin = (X ′/Y )fin.

Proof. Lemma 12.2 gives us an injective map (X ′/Y )fin → (X/Y )fin. Morphisms
of Spaces, Lemma 34.7 assures us that formation of X ′ commutes with base change.
Hence everything comes down to proving that if Z ⊂ X is an open subspace such
that f |Z : Z → Y is finite, then Z ⊂ X ′. This is true because a finite morphism is
locally quasi-finite, see Morphisms of Spaces, Lemma 45.8. □

Lemma 12.4.04PH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let T be an algebraic space over S, and let (a, Z) be a pair as in
12.0.1. If f is separated, then Z is closed in T ×Y X.

Proof. A finite morphism of algebraic spaces is universally closed by Morphisms
of Spaces, Lemma 45.9. Since f is separated so is the morphism T ×Y X → T , see
Morphisms of Spaces, Lemma 4.4. Thus the closedness of Z follows from Morphisms
of Spaces, Lemma 40.6. □

Remark 12.5.04PI Let f : X → Y be a separated morphism of algebraic spaces. The
sheaf (X/Y )fin comes with a natural map (X/Y )fin → Y by mapping the pair
(a, Z) ∈ (X/Y )fin(T ) to the element a ∈ Y (T ). We can use Lemma 12.4 to define
operations

⋆i : (X/Y )fin ×Y (X/Y )fin −→ (X/Y )fin

by the rules
⋆1 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∪ Z2)
⋆2 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∩ Z2)
⋆3 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 \ Z2)
⋆4 : ((a, Z1), (a, Z2)) 7−→ (a, Z2 \ Z1).

The reason this works is that Z1∩Z2 is both open and closed inside Z1 and Z2 (which
also implies that Z1 ∪ Z2 is the disjoint union of the other three pieces). Thus we
can think of (X/Y )fin as an F2-algebra (without unit) over Y with multiplication
given by ss′ = ⋆2(s, s′), and addition given by

s + s′ = ⋆1(⋆3(s, s′), ⋆4(s, s′))
which boils down to taking the symmetric difference. Note that in this sheaf of
algebras 0 = (1Y , ∅) and that indeed s + s = 0 for any local section s. If f : X → Y

https://stacks.math.columbia.edu/tag/04PF
https://stacks.math.columbia.edu/tag/04PG
https://stacks.math.columbia.edu/tag/04PH
https://stacks.math.columbia.edu/tag/04PI
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is finite, then this algebra has a unit namely 1 = (1Y , X) and ⋆3(s, s′) = s(1 + s′),
and ⋆4(s, s′) = (1 + s)s′.

Remark 12.6.04PJ Let f : X → Y be a separated, locally quasi-finite morphism of
schemes. In this case the sheaf (X/Y )fin is closely related to the sheaf f!F2 (insert
future reference here) on Yétale. Namely, if V → Y is étale, and s ∈ Γ(V, f!F2),
then s ∈ Γ(V ×Y X, F2) is a section with proper support Z = Supp(s) over V .
Since f is also locally quasi-finite we see that the projection Z → V is actually
finite. Since the support of a section of a constant abelian sheaf is open we see that
the pair (V → Y, Supp(s)) satisfies 12.0.1. In fact, f!F2 ∼= (X/Y )fin|Yétale

in this
case which also explains the F2-algebra structure introduced in Remark 12.5.

Lemma 12.7.04PK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The diagonal of (X/Y )fin → Y

(X/Y )fin −→ (X/Y )fin ×Y (X/Y )fin

is representable (by schemes) and an open immersion and the “absolute” diagonal
(X/Y )fin −→ (X/Y )fin × (X/Y )fin

is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the
composition of the relative diagonal and a base change of the diagonal of Y (which
is representable by schemes), see Spaces, Section 3. To prove the first assertion we
have to show the following: Given a scheme T and two pairs (a, Z1) and (a, Z2)
over T with identical first component satisfying 12.0.1 there is an open subscheme
V ⊂ T with the following property: For any morphism of schemes h : T ′ → T we
have

h(T ′) ⊂ V ⇔
(

T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X
)

Let us construct V . Note that Z1∩Z2 is open in Z1 and in Z2. Since pr0|Zi
: Zi → T

is finite, hence proper (see Morphisms of Spaces, Lemma 45.9) we see that
E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2))

is closed in T . Now it is clear that V = T \ E works. □

Lemma 12.8.04QE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Suppose that U is a scheme, U → Y is an étale morphism and
Z ⊂ U ×Y X is an open subspace finite over U . Then the induced morphism
U → (X/Y )fin is étale.

Proof. This is formal from the description of the diagonal in Lemma 12.7 but we
write it out since it is an important step in the development of the theory. We
have to check that for any scheme T over S and a morphism T → (X/Y )fin the
projection map

T ×(X/Y )fin
U −→ T

is étale. Note that
T ×(X/Y )fin

U = (X/Y )fin ×((X/Y )fin×Y (X/Y )fin) (T ×Y U)
Applying the result of Lemma 12.7 we see that T ×(X/Y )fin

U is represented by an
open subscheme of T ×Y U . As the projection T ×Y U → T is étale by Morphisms
of Spaces, Lemma 39.4 we conclude. □

https://stacks.math.columbia.edu/tag/04PJ
https://stacks.math.columbia.edu/tag/04PK
https://stacks.math.columbia.edu/tag/04QE
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Lemma 12.9.04QF Let S be a scheme. Let

X ′

��

// X

��
Y ′ // Y

be a fibre product square of algebraic spaces over S. Then

(X ′/Y ′)fin

��

// (X/Y )fin

��
Y ′ // Y

is a fibre product square of sheaves on (Sch/S)fppf .

Proof. It follows immediately from the definitions that the sheaf (X ′/Y ′)fin is
equal to the sheaf Y ′ ×Y (X/Y )fin. □

Lemma 12.10.04QG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated and locally quasi-finite, then there exists a scheme
U étale over Y and a surjective étale morphism U → (X/Y )fin over Y .

Proof. Note that the assertion makes sense by the result of Lemma 12.7 on the
diagonal of (X/Y )fin, see Spaces, Lemma 5.10. Let V be a scheme and let V → Y
be a surjective étale morphism. By Lemma 12.9 the morphism (V ×Y X/V )fin →
(X/Y )fin is a base change of the map V → Y and hence is surjective and étale,
see Spaces, Lemma 5.5. Hence it suffices to prove the lemma for (V ×Y X/V )fin.
(Here we implicitly use that the composition of representable, surjective, and étale
transformations of functors is again representable, surjective, and étale, see Spaces,
Lemmas 3.2 and 5.4, and Morphisms, Lemmas 9.2 and 36.3.) Note that the prop-
erties of being separated and locally quasi-finite are preserved under base change,
see Morphisms of Spaces, Lemmas 4.4 and 27.4. Hence V ×Y X → V is separated
and locally quasi-finite as well, and by Morphisms of Spaces, Proposition 50.2 we
see that V ×Y X is a scheme as well. Thus we may assume that f : X → Y is a
separated and locally quasi-finite morphism of schemes.
Pick a point y ∈ Y . Pick x1, . . . , xn ∈ X points lying over y. Pick an étale
neighbourhood a : (U, u) → (Y, y) and a decomposition

U ×S X = W ⨿
∐

i=1,...,n

∐
j=1,...,mj

Vi,j

as in More on Morphisms, Lemma 41.5. Pick any subset
I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

Given these choices we obtain a pair (a, Z) with Z =
⋃

(i,j)∈I Vi,j which satisfies
conditions 12.0.1. In other words we obtain a morphism U → (X/Y )fin. The
construction of this morphism depends on all the things we picked above, so we
should really write

U(y, n, x1, . . . , xn, a, I) −→ (X/Y )fin

This morphism is étale by Lemma 12.8.
Claim: The disjoint union of all of these is surjective onto (X/Y )fin. It is clear
that if the claim holds, then the lemma is true.

https://stacks.math.columbia.edu/tag/04QF
https://stacks.math.columbia.edu/tag/04QG
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To show surjectivity we have to show the following (see Spaces, Remark 5.2): Given
a scheme T over S, a point t ∈ T , and a map T → (X/Y )fin we can find a datum
(y, n, x1, . . . , xn, a, I) as above such that t is in the image of the projection map

U(y, n, x1, . . . , xn, a, I) ×(X/Y )fin
T −→ T.

To prove this we may clearly replace T by Spec(κ(t)) and T → (X/Y )fin by the
composition Spec(κ(t)) → T → (X/Y )fin. In other words, we may assume that T
is the spectrum of an algebraically closed field.
Let T = Spec(k) be the spectrum of an algebraically closed field k. The morphism
T → (X/Y )fin is given by a pair (T → Y, Z) satisfying conditions 12.0.1. Here is
a picture:

Z

��

// X

��
Spec(k) T // Y

Let y ∈ Y be the image point of T → Y . Since Z is finite over k it has finitely
many points. Thus there exist finitely many points x1, . . . , xn ∈ X such that the
image of Z in X is contained in {x1, . . . , xn}. Choose a : (U, u) → (Y, y) adapted
to y and x1, . . . , xn as above, which gives the diagram

W ⨿
∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
U // Y.

Since k is algebraically closed and κ(y) ⊂ κ(u) is finite separable we may fac-
tor the morphism T = Spec(k) → Y through the morphism u = Spec(κ(u)) →
Spec(κ(y)) = y ⊂ Y . With this choice we obtain the commutative diagram:

Z

��

// W ⨿
∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
Spec(k) // U // Y

We know that the image of the left upper arrow ends up in
∐

Vi,j . Recall also that
Z is an open subscheme of Spec(k) ×Y X by definition of (X/Y )fin and that the
right hand square is a fibre product square. Thus we see that

Z ⊂
∐

i=1,...,n

∐
j=1,...,mj

Spec(k) ×U Vi,j

is an open subscheme. By construction (see More on Morphisms, Lemma 41.5)
each Vi,j has a unique point vi,j lying over u with purely inseparable residue field
extension κ(vi,j)/κ(u). Hence each scheme Spec(k) ×U Vi,j has exactly one point.
Thus we see that

Z =
∐

(i,j)∈I
Spec(k) ×U Vi,j

for a unique subset I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Unwinding the definitions
this shows that

U(y, n, x1, . . . , xn, a, I) ×(X/Y )fin
T

with I as found above is nonempty as desired. □
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Proposition 12.11.04QH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated and locally of finite type. Then (X/Y )fin is an
algebraic space. Moreover, the morphism (X/Y )fin → Y is étale.

Proof. By Lemma 12.3 we may replace X by the open subscheme which is locally
quasi-finite over Y . Hence we may assume that f is separated and locally quasi-
finite. We will check the three conditions of Spaces, Definition 6.1. Condition
(1) follows from Lemma 12.1. Condition (2) follows from Lemma 12.7. Finally,
condition (3) follows from Lemma 12.10. Thus (X/Y )fin is an algebraic space.
Moreover, that lemma shows that there exists a commutative diagram

U //

��

(X/Y )fin

zz
Y

with horizontal arrow surjective and étale and south-east arrow étale. By Properties
of Spaces, Lemma 16.3 this implies that the south-west arrow is étale as well. □

Remark 12.12.04QI The condition that f be separated cannot be dropped from
Proposition 12.11. An example is to take X the affine line with zero doubled, see
Schemes, Example 14.3, Y = A1

k the affine line, and X → Y the obvious map.
Recall that over 0 ∈ Y there are two points 01 and 02 in X. Thus (X/Y )fin has
four points over 0, namely ∅, {01}, {02}, {01, 02}. Of these four points only three
can be lifted to an open subscheme of U ×Y X finite over U for U → Y étale,
namely ∅, {01}, {02}. This shows that (X/Y )fin if representable by an algebraic
space is not étale over Y . Similar arguments show that (X/Y )fin is really not an
algebraic space. Details omitted.

Remark 12.13.04QJ Let Y = A1
R be the affine line over the real numbers, and let

X = Spec(C) mapping to the R-rational point 0 in Y . In this case the morphism
f : X → Y is finite, but it is not the case that (X/Y )fin is a scheme. Namely,
one can show that in this case the algebraic space (X/Y )fin is isomorphic to the
algebraic space of Spaces, Example 14.2 associated to the extension R ⊂ C. Thus
it is really necessary to leave the category of schemes in order to represent the sheaf
(X/Y )fin, even when f is a finite morphism.

Lemma 12.14.04RI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated, flat, and locally of finite presentation. In this case

(1) (X/Y )fin → Y is separated, representable, and étale, and
(2) if Y is a scheme, then (X/Y )fin is (representable by) a scheme.

Proof. Since f is in particular separated and locally of finite type (see Morphisms
of Spaces, Lemma 28.5) we see that (X/Y )fin is an algebraic space by Proposition
12.11. To prove that (X/Y )fin → Y is separated we have to show the following:
Given a scheme T and two pairs (a, Z1) and (a, Z2) over T with identical first
component satisfying 12.0.1 there is a closed subscheme V ⊂ T with the following
property: For any morphism of schemes h : T ′ → T we have

h factors through V ⇔
(

T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X
)

https://stacks.math.columbia.edu/tag/04QH
https://stacks.math.columbia.edu/tag/04QI
https://stacks.math.columbia.edu/tag/04QJ
https://stacks.math.columbia.edu/tag/04RI
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In the proof of Lemma 12.7 we have seen that V = T ′ \ E is an open subscheme of
T ′ with closed complement

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2)) .

Thus everything comes down to showing that E is also open. By Lemma 12.4 we
see that Z1 and Z2 are closed in T ′ ×Y X. Hence Z1 \ Z1 ∩ Z2 is open in Z1. As f
is flat and locally of finite presentation, so is pr0|Z1 . This is true as Z1 is an open
subspace of the base change T ′ ×Y X, and Morphisms of Spaces, Lemmas 28.3 and
Lemmas 30.4. Hence pr0|Z1 is open, see Morphisms of Spaces, Lemma 30.6. Thus
pr0|Z1 (Z1 \ Z1 ∩ Z2)) is open and it follows that E is open as desired.

We have already seen that (X/Y )fin → Y is étale, see Proposition 12.11. Hence
now we know it is locally quasi-finite (see Morphisms of Spaces, Lemma 39.5)
and separated, hence representable by Morphisms of Spaces, Lemma 51.1. The
final assertion is clear (if you like you can use Morphisms of Spaces, Proposition
50.2). □

Variant: Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let σ : Y → X be a section of f . For an algebraic space or a scheme T
over S consider pairs (a, Z) where

(12.14.1)04RQ

a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace

such that pr0|Z : Z → T is finite and
(1T , σ ◦ a) : T → T ×Y X factors through Z.

We will denote (X/Y, σ)fin the subfunctor of (X/Y )fin parametrizing these pairs.

Lemma 12.15.04RR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let σ : Y → X be a section of f . Consider the transformation of
functors

t : (X/Y, σ)fin −→ (X/Y )fin.

defined above. Then
(1) t is representable by open immersions,
(2) if f is separated, then t is representable by open and closed immersions,
(3) if (X/Y )fin is an algebraic space, then (X/Y, σ)fin is an algebraic space

and an open subspace of (X/Y )fin, and
(4) if (X/Y )fin is a scheme, then (X/Y, σ)fin is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (a, Z) over T as in (12.0.1) the inverse image
of Z by (1T , σ ◦a) : T → T ×Y X is the open subscheme of T we are looking for. □

13. Finite collections of arrows

04RS Let C be a groupoid, see Categories, Definition 2.5. As discussed in Groupoids,
Section 13 this corresponds to a septuple (Ob, Arrows, s, t, c, e, i).

Using this data we can make another groupoid Cfin as follows:
(1) An object of Cfin consists of a finite subset Z ⊂ Arrows with the following

properties:
(a) s(Z) = {u} is a singleton, and
(b) e(u) ∈ Z.

https://stacks.math.columbia.edu/tag/04RR


MORE ON GROUPOIDS IN SPACES 21

(2) A morphism of Cfin consists of a pair (Z, z), where Z is an object of Cfin

and z ∈ Z.
(3) The source of (Z, z) is Z.
(4) The target of (Z, z) is t(Z, z) = {z′ ◦ z−1; z′ ∈ Z}.
(5) Given (Z1, z1), (Z2, z2) such that s(Z1, z1) = t(Z2, z2) the composition

(Z1, z1) ◦ (Z2, z2) is (Z2, z1 ◦ z2).

We omit the verification that this defines a groupoid. Pictorially an object of Cfin

can be viewed as a diagram

•

•e ::

??

//

��

•

•

To make a morphism of Cfin you pick one of the arrows and you precompose the
other arrows by its inverse. For example if we pick the middle horizontal arrow
then the target is the picture

•

• •oo

OO

e
zz

��
•

Note that the cardinalities of s(Z, z) and t(Z, z) are equal. So Cfin is really a
countable disjoint union of groupoids.

14. The finite part of a groupoid

04RT In this section we are going to use the idea explained in Section 13 to take the finite
part of a groupoid in algebraic spaces.

Let S be a scheme. Let B be an algebraic space over S. Let (U, R, s, t, c, e, i)
be a groupoid in algebraic spaces over B. Assumption: The morphisms s, t are
separated and locally of finite type. This notation and assumption will we be fixed
throughout this section.

Denote Rs the algebraic space R seen as an algebraic space over U via s. Let
U ′ = (Rs/U, e)fin. Since s is separated and locally of finite type, by Proposition
12.11 and Lemma 12.15, we see that U ′ is an algebraic space endowed with an étale
morphism g : U ′ → U . Moreover, by Lemma 12.1 there exists a universal open
subspace Zuniv ⊂ R ×s,U,g U ′ which is finite over U ′ and such that (1U ′ , e ◦ g) :
U ′ → R ×s,U,g U ′ factors through Zuniv. Moreover, by Lemma 12.4 the open
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subspace Zuniv is also closed in R ×s,U ′,g U . Picture so far:

Zuniv

�� %%
R ×s,U,g U ′

��

// U ′

g

��
R

s // U

Let T be a scheme over B. We see that a T -valued point of Zuniv may be viewed
as a triple (u, Z, z) where

(1) u : T → U is a T -valued point of U ,
(2) Z ⊂ R ×s,U,u T is an open and closed subspace finite over T such that

(e ◦ u, 1T ) factors through it, and
(3) z : T → R is a T -valued point of R with s ◦ z = u and such that (z, 1T )

factors through Z.
Having said this, it is morally clear from the discussion in Section 13 that we can
turn (Zuniv, U ′) into a groupoid in algebraic spaces over B. To make sure will
define the morphisms s′, t′, c′, e′, i′ one by one using the functorial point of view.
(Please don’t read this before reading and understanding the simple construction
in Section 13.)

The morphism s′ : Zuniv → U ′ corresponds to the rule

s′ : (u, Z, z) 7→ (u, Z).

The morphism t′ : Zuniv → U ′ is given by the rule

t′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z)).

The entry c(Z, i ◦ z) makes sense as the map c(−, i ◦ z) : R ×s,U,u T → R ×s,U,t◦z T
is an isomorphism with inverse c(−, z). The morphism e′ : U ′ → Zuniv is given by
the rule

e′ : (u, Z) 7→ (u, Z, (e ◦ u, 1T )).
Note that this makes sense by the requirement that (e ◦ u, 1T ) factors through Z.
The morphism i′ : Zuniv → Zuniv is given by the rule

i′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z), i ◦ z).

Finally, composition is defined by the rule

c′ : ((u1, Z1, z1), (u2, Z2, z2)) 7→ (u2, Z2, z1 ◦ z2).

We omit the verification that the axioms of a groupoid in algebraic spaces hold for
(U ′, Zuniv, s′, t′, c′, e′, i′).

A final piece of information is that there is a canonical morphism of groupoids

(U ′, Zuniv, s′, t′, c′, e′, i′) −→ (U, R, s, t, c, e, i)

Namely, the morphism U ′ → U is the morphism g : U ′ → U which is defined by
the rule (u, Z) 7→ u. The morphism Zuniv → R is defined by the rule (u, Z, z) 7→ z.
This finishes the construction. Let us summarize our findings as follows.
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Lemma 14.1.04RU Let S be a scheme. Let B be an algebraic space over S. Let
(U, R, s, t, c, e, i) be a groupoid in algebraic spaces over B. Assume the morphisms
s, t are separated and locally of finite type. There exists a canonical morphism

(U ′, Zuniv, s′, t′, c′, e′, i′) −→ (U, R, s, t, c, e, i)
of groupoids in algebraic spaces over B where

(1) g : U ′ → U is identified with (Rs/U, e)fin → U , and
(2) Zuniv ⊂ R ×s,U,g U ′ is the universal open (and closed) subspace finite over

U ′ which contains the base change of the unit e.

Proof. See discussion above. □

15. Étale localization of groupoid schemes

04RJ In this section we prove results similar to [KM97, Proposition 4.2]. We try to be
a bit more general, and we try to avoid using Hilbert schemes by using the finite
part of a morphism instead. The goal is to "split" a groupoid in algebraic spaces
over a point after étale localization. Here is the definition (very similar to [KM97,
Definition 4.1]).

Definition 15.1.04RK Let S be a scheme. Let B be an algebraic space over S Let
(U, R, s, t, c) be a groupoid in algebraic spaces over B. Let u ∈ |U | be a point.

(1) We say R is strongly split over u if there exists an open subspace P ⊂ R
such that
(a) (U, P, s|P , t|P , c|P ×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {r ∈ |R| : s(r) = u, t(r) = u} ⊂ |P |.

The choice of such a P will be called a strong splitting of R over u.
(2) We say R is split over u if there exists an open subspace P ⊂ R such that

(a) (U, P, s|P , t|P , c|P ×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {g ∈ |G| : g maps to u} ⊂ |P | where G → U is the stabilizer.

The choice of such a P will be called a splitting of R over u.
(3) We say R is quasi-split over u if there exists an open subspace P ⊂ R such

that
(a) (U, P, s|P , t|P , c|P ×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) e(u) ∈ |P |2.

The choice of such a P will be called a quasi-splitting of R over u.

Note the similarity of the conditions on P to the conditions on pairs in (12.0.1). In
particular, if s, t are separated, then P is also closed in R (see Lemma 12.4).
Suppose we start with a groupoid in algebraic spaces (U, R, s, t, c) over B and a
point u ∈ |U |. Since the goal is to split the groupoid after étale localization we
may as well replace U by an affine scheme (what we mean is that this is harmless
for any possible application). Moreover, the additional hypotheses we are going
to have to impose will force R to be a scheme at least in a neighbourhood of
{r ∈ |R| : s(r) = u, t(r) = u} or e(u). This is why we start with a groupoid scheme
as described below. However, our technique of proof leads us outside of the category

2This condition is implied by (a).

https://stacks.math.columbia.edu/tag/04RU
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of schemes, which is why we have formulated a splitting for the case of groupoids
in algebraic spaces above. On the other hand, we know of no applications but the
case where the morphisms s, t are also flat and of finite presentation, in which case
we end up back in the category of schemes.

Situation 15.2 (Strong splitting).04RL Let S be a scheme. Let (U, R, s, t, c) be a
groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R → U are separated,
(2) s, t are locally of finite type,
(3) the set {r ∈ R : s(r) = u, t(r) = u} is finite, and
(4) s is quasi-finite at each point of the set in (3).

Note that assumptions (3) and (4) are implied by the assumption that the fibre
s−1({u}) is finite, see Morphisms, Lemma 20.7.

Situation 15.3 (Splitting).0DTB Let S be a scheme. Let (U, R, s, t, c) be a groupoid
scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R → U are separated,
(2) s, t are locally of finite type,
(3) the set {g ∈ G : g maps to u} is finite where G → U is the stabilizer, and
(4) s is quasi-finite at each point of the set in (3).

Situation 15.4 (Quasi-splitting).04RV Let S be a scheme. Let (U, R, s, t, c) be a
groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R → U are separated,
(2) s, t are locally of finite type, and
(3) s is quasi-finite at e(u).

For our application to the existence theorems for algebraic spaces the case of quasi-
splittings is sufficient. Moreover, the quasi-splitting case will allow us to prove an
étale local structure theorem for quasi-DM stacks. The splitting case will be used to
prove a version of the Keel-Mori theorem. The strong splitting case applies to give
an étale local structure theorem for quasi-DM algebraic stacks with quasi-compact
diagonal.

Lemma 15.5 (Existence of strong splitting).03FM In Situation 15.2 there exists an
algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′

lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is
strongly split over u′.

Proof. Let f : (U ′, Zuniv, s′, t′, c′) → (U, R, s, t, c) be as constructed in Lemma
14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s′, t′, c′) → (U ′, R′, s′, t′, c′)
(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.
We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma. Set
Fu = R×s,U Spec(κ(u)). The set {r ∈ R : s(r) = u, t(r) = u} is finite by assumption

https://stacks.math.columbia.edu/tag/04RL
https://stacks.math.columbia.edu/tag/0DTB
https://stacks.math.columbia.edu/tag/04RV
https://stacks.math.columbia.edu/tag/03FM
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and Fu → Spec(κ(u)) is quasi-finite at each of its elements by assumption. Hence
we can find a decomposition into open and closed subschemes

Fu = Zu ⨿ Rest

for some scheme Zu finite over κ(u) whose support is {r ∈ R : s(r) = u, t(r) = u}.
Note that e(u) ∈ Zu. Hence by the construction of U ′ in Section 14 (u, Zu) defines
a Spec(κ(u))-valued point u′ of U ′.
We still have to show that the set {r′ ∈ |R′| : s′(r′) = u′, t′(r′) = u′} is contained in
|Zuniv|. Pick any point r′ in this set and represent it by a morphism z′ : Spec(k) →
R′. Denote z : Spec(k) → R the composition of z′ with the map R′ → R. Clearly,
z defines an element of the set {r ∈ R : s(r) = u, t(r) = u}. Also, the compositions
s ◦ z, t ◦ z : Spec(k) → U factor through u, so we may think of s ◦ z, t ◦ z as a
morphism Spec(k) → Spec(κ(u)). Then z′ = (z, u′ ◦ t ◦ z, u′ ◦ s ◦ u) as morphisms
into R′ = R ×(U×SU) (U ′ ×S U ′). Consider the triple

(s ◦ z, Zu ×Spec(κ(u)),s◦z Spec(k), z)
where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image via
s′, t′ in U ′ is u′ and whose image via Zuniv → R′ is the point r′ by the relationship
between z and z′ mentioned above. This finishes the proof. □

Lemma 15.6 (Existence of splitting).0DTC In Situation 15.3 there exists an algebraic
space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′ lying over
u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is split over u′.

Proof. Let f : (U ′, Zuniv, s′, t′, c′) → (U, R, s, t, c) be as constructed in Lemma
14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s′, t′, c′) → (U ′, R′, s′, t′, c′)
(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.
We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma.
Set Fu = R ×s,U Spec(κ(u)). Let Gu ⊂ Fu be the scheme theoretic fibre of G → U
over u. By assumption Gu is finite and Fu → Spec(κ(u)) is quasi-finite at each
point of Gu by assumption. Hence we can find a decomposition into open and
closed subschemes

Fu = Zu ⨿ Rest

for some scheme Zu finite over κ(u) whose support is Gu. Note that e(u) ∈ Zu.
Hence by the construction of U ′ in Section 14 (u, Zu) defines a Spec(κ(u))-valued
point u′ of U ′.
We still have to show that the set {g′ ∈ |G′| : g′ maps to u′} is contained in |Zuniv|.
Pick any point g′ in this set and represent it by a morphism z′ : Spec(k) → G′.
Denote z : Spec(k) → G the composition of z′ with the map G′ → G. Clearly,
z defines a point of Gu. In fact, let us write ũ : Spec(k) → u → U for the
corresponding map to u or U . Consider the triple

(ũ, Zu ×u,ũ Spec(k), z)

https://stacks.math.columbia.edu/tag/0DTC
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where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image
via s′, t′ in U ′ is u′ and whose image via Zuniv → R′ is the point z′ (because the
image in R is z). This finishes the proof. □

Lemma 15.7 (Existence of quasi-splitting).04RW In Situation 15.4 there exists an
algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′

lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is
quasi-split over u′.

Proof. Let f : (U ′, Zuniv, s′, t′, c′) → (U, R, s, t, c) be as constructed in Lemma
14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s′, t′, c′) → (U ′, R′, s′, t′, c′)
(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.
We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma. Set
Fu = R ×s,U Spec(κ(u)). The morphism Fu → Spec(κ(u)) is quasi-finite at e(u) by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu ⨿ Rest

for some scheme Zu finite over κ(u) whose support is e(u). Hence by the construc-
tion of U ′ in Section 14 (u, Zu) defines a Spec(κ(u))-valued point u′ of U ′. To finish
the proof we have to show that e′(u′) ∈ Zuniv which is clear. □

Finally, when we add additional assumptions we obtain schemes.

Lemma 15.8.04RX In Situation 15.2 assume in addition that s, t are flat and locally
of finite presentation. Then there exists a scheme U ′, a separated étale morphism
U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction
R′ = R|U ′ of R to U ′ is strongly split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 15.5 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and
12.15. □

Lemma 15.9.0DTD In Situation 15.3 assume in addition that s, t are flat and locally
of finite presentation. Then there exists a scheme U ′, a separated étale morphism
U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction
R′ = R|U ′ of R to U ′ is split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 15.6 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and
12.15. □

Lemma 15.10.04RY In Situation 15.4 assume in addition that s, t are flat and locally
of finite presentation. Then there exists a scheme U ′, a separated étale morphism
U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction
R′ = R|U ′ of R to U ′ is quasi-split over u′.

https://stacks.math.columbia.edu/tag/04RW
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Proof. This follows from the construction of U ′ in the proof of Lemma 15.7 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and
12.15. □

In fact we can obtain affine schemes by applying an earlier result on finite locally
free groupoids.

Lemma 15.11.04RZ In Situation 15.2 assume in addition that s, t are flat and locally
of finite presentation and that U is affine. Then there exists an affine scheme U ′,
an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is strongly split over u′.

Proof. Let U ′ → U and u′ ∈ U ′ be the separated étale morphism of schemes we
found in Lemma 15.8. Let P ⊂ R′ be the strong splitting of R′ over u′. By More
on Groupoids, Lemma 9.1 the morphisms s′, t′ : R′ → U ′ are flat and locally of
finite presentation. They are finite by assumption. Hence s′, t′ are finite locally
free, see Morphisms, Lemma 48.2. In particular t(s−1(u′)) is a finite set of points
{u′

1, u′
2, . . . , u′

n} of U ′. Choose a quasi-compact open W ⊂ U ′ containing each u′
i.

As U is affine the morphism W → U is quasi-compact (see Schemes, Lemma 19.2).
The morphism W → U is also locally quasi-finite (see Morphisms, Lemma 36.6)
and separated. Hence by More on Morphisms, Lemma 43.2 (a version of Zariski’s
Main Theorem) we conclude that W is quasi-affine. By Properties, Lemma 29.5
we see that {u′

1, . . . , u′
n} are contained in an affine open of U ′. Thus we may apply

Groupoids, Lemma 24.1 to conclude that there exists an affine P -invariant open
U ′′ ⊂ U ′ which contains u′.

To finish the proof denote R′′ = R|U ′′ the restriction of R to U ′′. This is the same as
the restriction of R′ to U ′′. As P ⊂ R′ is an open and closed subscheme, so is P |U ′′ ⊂
R′′. By construction the open subscheme U ′′ ⊂ U ′ is P -invariant which means that
P |U ′′ = (s′|P )−1(U ′′) = (t′|P )−1(U ′′) (see discussion in Groupoids, Section 19) so
the restrictions of s′′ and t′′ to P |U ′′ are still finite. The sub groupoid scheme P |U ′′

is still a strong splitting of R′′ over u′′; above we verified (a), (b) and (c) holds as
{r′ ∈ R′ : t′(r′) = u′, s′(r′) = u′} = {r′′ ∈ R′′ : t′′(r′′) = u′, s′′(r′′) = u′} trivially.
The lemma is proved. □

Lemma 15.12.0DTE In Situation 15.3 assume in addition that s, t are flat and locally
of finite presentation and that U is affine. Then there exists an affine scheme U ′,
an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 15.11
except that “strong splitting” needs to be replaced by “splitting” (2 times) and
that the reference to Lemma 15.8 needs to be replaced by a reference to Lemma
15.9. □

Lemma 15.13.04S0 In Situation 15.4 assume in addition that s, t are flat and locally
of finite presentation and that U is affine. Then there exists an affine scheme U ′,
an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is quasi-split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 15.11
except that “strong splitting” needs to be replaced by “quasi-splitting” (2 times)

https://stacks.math.columbia.edu/tag/04RZ
https://stacks.math.columbia.edu/tag/0DTE
https://stacks.math.columbia.edu/tag/04S0
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and that the reference to Lemma 15.8 needs to be replaced by a reference to Lemma
15.10. □
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