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1. Introduction

03H9 In this chapter we introduce some types of morphisms of algebraic spaces. A refer-
ence is [Knu71].
The goal is to extend the definition of each of the types of morphisms of schemes
defined in the chapters on schemes, and on morphisms of schemes to the category
of algebraic spaces. Each case is slightly different and it seems best to treat them
all separately.

2. Conventions

040V The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Properties of representable morphisms

03HA Let S be a scheme. Let f : X → Y be a representable morphism of algebraic
spaces. In Spaces, Section 5 we defined what it means for f to have property P in
case P is a property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 18.3, and
(2) is fppf local on the base, see Descent, Definition 22.1.

Namely, in this case we say f has property P if and only if for every scheme U and
any morphism U → Y the morphism of schemes X ×Y U → U has property P.
According to the lists in Spaces, Section 4 this applies to the following prop-
erties: (1)(a) closed immersions, (1)(b) open immersions, (1)(c) quasi-compact
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immersions, (2) quasi-compact, (3) universally-closed, (4) (quasi-)separated, (5)
monomorphism, (6) surjective, (7) universally injective, (8) affine, (9) quasi-affine,
(10) (locally) of finite type, (11) (locally) quasi-finite, (12) (locally) of finite pre-
sentation, (13) locally of finite type of relative dimension d, (14) universally open,
(15) flat, (16) syntomic, (17) smooth, (18) unramified (resp. G-unramified), (19)
étale, (20) proper, (21) finite or integral, (22) finite locally free, (23) universally
submersive, (24) universal homeomorphism, and (25) immersion.

In this chapter we will redefine these notions for not necessarily representable mor-
phisms of algebraic spaces. Whenever we do this we will make sure that the new
definition agrees with the old one, in order to avoid ambiguity.

Note that the definition above applies whenever X is a scheme, since a morphism
from a scheme to an algebraic space is representable. And in particular it applies
when both X and Y are schemes. In Spaces, Lemma 5.3 we have seen that in this
case the definitions match, and no ambiguity arise.

Furthermore, in Spaces, Lemma 5.5 we have seen that the property of representable
morphisms of algebraic spaces so defined is stable under arbitrary base change by a
morphism of algebraic spaces. And finally, in Spaces, Lemmas 5.4 and 5.7 we have
seen that if P is stable under compositions, which holds for the properties (1)(a),
(1)(b), (1)(c), (2) – (25), except (13) above, then taking products of representable
morphisms preserves property P and compositions of representable morphisms pre-
serves property P.

We will use these facts below, and whenever we do we will simply refer to this
section as a reference.

4. Separation axioms

03HJ It makes sense to list some a priori properties of the diagonal of a morphism of
algebraic spaces.

Lemma 4.1.03HK Let S be a scheme contained in Schfppf . Let f : X → Y be a
morphism of algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal
morphism. Then

(1) ∆X/Y is representable,
(2) ∆X/Y is locally of finite type,
(3) ∆X/Y is a monomorphism,
(4) ∆X/Y is separated, and
(5) ∆X/Y is locally quasi-finite.

Proof. We are going to use the fact that ∆X/S is representable (by definition of an
algebraic space) and that it satisfies properties (2) – (5), see Spaces, Lemma 13.1.
Note that we have a factorization

X −→ X ×Y X −→ X ×S X

of the diagonal ∆X/S : X → X×SX. Since X×Y X → X×SX is a monomorphism,
and since ∆X/S is representable, it follows formally that ∆X/Y is representable. In
particular, the rest of the statements now make sense, see Section 3.

https://stacks.math.columbia.edu/tag/03HK
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Choose a surjective étale morphism U → X, with U a scheme. Consider the
diagram

R = U ×X U //

��

U ×Y U

��

// U ×S U

��
X // X ×Y X // X ×S X

Both squares are cartesian, hence so is the outer rectangle. The top row consists of
schemes, and the vertical arrows are surjective étale morphisms. By Spaces, Lemma
11.4 the properties (2) – (5) for ∆X/Y are equivalent to those of R→ U ×Y U . In
the proof of Spaces, Lemma 13.1 we have seen that R→ U ×S U has properties (2)
– (5). The morphism U ×Y U → U ×S U is a monomorphism of schemes. These
facts imply that R→ U ×Y U have properties (2) – (5).

Namely: For (3), note that R → U ×Y U is a monomorphism as the composition
R → U ×S U is a monomorphism. For (2), note that R → U ×Y U is locally of
finite type, as the composition R → U ×S U is locally of finite type (Morphisms,
Lemma 15.8). A monomorphism which is locally of finite type is locally quasi-finite
because it has finite fibres (Morphisms, Lemma 20.7), hence (5). A monomorphism
is separated (Schemes, Lemma 23.3), hence (4). □

Definition 4.2.03HL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is locally separated1 if ∆X/Y is an immersion.
(3) We say f is quasi-separated if ∆X/Y is quasi-compact.

This definition makes sense since ∆X/Y is representable, and hence we know what
it means for it to have one of the properties described in the definition. We will
see below (Lemma 4.13) that this definition matches the ones we already have for
morphisms of schemes and representable morphisms.

Lemma 4.3.03KK Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is separated, then f is locally separated and f is quasi-separated.

Proof. This is true, via the general principle Spaces, Lemma 5.8, because a closed
immersion of schemes is an immersion and is quasi-compact. □

Lemma 4.4.03KL All of the separation axioms listed in Definition 4.2 are stable under
base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic spaces. Let
f ′ : X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change
of ∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X. By the results of Section 3 each
of the properties of the diagonal used in Definition 4.2 is stable under base change.
Hence the lemma is true. □

Lemma 4.5.03KN Let S be a scheme. Let f : X → Z, g : Y → Z and Z → T be
morphisms of algebraic spaces over S. Consider the induced morphism i : X×ZY →
X ×T Y . Then

1In the literature this term often refers to quasi-separated and locally separated morphisms.

https://stacks.math.columbia.edu/tag/03HL
https://stacks.math.columbia.edu/tag/03KK
https://stacks.math.columbia.edu/tag/03KL
https://stacks.math.columbia.edu/tag/03KN
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(1) i is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if Z → T is locally separated, then i is an immersion,
(3) if Z → T is separated, then i is a closed immersion, and
(4) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a fibre product diagram. Hence i is the base change of the diagonal morphism
∆Z/T . Thus the lemma follows from Lemma 4.1, and the material in Section 3. □

Lemma 4.6.03KO Let S be a scheme. Let T be an algebraic space over S. Let g : X →
Y be a morphism of algebraic spaces over T . Consider the graph i : X → X ×T Y
of g. Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if Y → T is locally separated, then i is an immersion,
(3) if Y → T is separated, then i is a closed immersion, and
(4) if Y → T is quasi-separated, then i is quasi-compact.

Proof. This is a special case of Lemma 4.5 applied to the morphismX = X×Y Y →
X ×T Y . □

Lemma 4.7.03KP Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Let s : T → X be a section of f (in a formula f ◦ s = idT ). Then

(1) s is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if f is locally separated, then s is an immersion,
(3) if f is separated, then s is a closed immersion, and
(4) if f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 4.6 applied to g = s so the morphism
i = s : T → T ×T X. □

Lemma 4.8.03KQ All of the separation axioms listed in Definition 4.2 are stable under
composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic spaces to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property P.
By Lemma 4.5 above we see that the second arrow also has this property. Hence the
lemma follows since the composition of (representable) morphisms with property
P also is a morphism with property P, see Section 3. □

Lemma 4.9.04ZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

https://stacks.math.columbia.edu/tag/03KO
https://stacks.math.columbia.edu/tag/03KP
https://stacks.math.columbia.edu/tag/03KQ
https://stacks.math.columbia.edu/tag/04ZH
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(1) If Y is separated and f is separated, then X is separated.
(2) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.
(3) If Y is locally separated and f is locally separated, then X is locally sepa-

rated.
(4) If Y is separated over S and f is separated, then X is separated over S.
(5) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(6) If Y is locally separated over S and f is locally separated, then X is locally

separated over S.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 4.8 and Spaces,
Definition 13.2. Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by thinking
of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces, Definition
3.1. □

Lemma 4.10.03KR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S.

(1) If g ◦ f is separated then so is f .
(2) If g ◦ f is locally separated then so is f .
(3) If g ◦ f is quasi-separated then so is f .

Proof. Consider the factorization

X → X ×Y X → X ×Z X

of the diagonal morphism of g◦f . In any case the last morphism is a monomorphism.
Hence for any scheme T and morphism T → X ×Y X we have the equality

X ×(X×Y X) T = X ×(X×Z X) T.

Hence the result is clear. □

Lemma 4.11.04ZI Let S be a scheme. Let X be an algebraic space over S.
(1) If X is separated then X is separated over S.
(2) If X is locally separated then X is locally separated over S.
(3) If X is quasi-separated then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic spaces over S.
(4) If X is separated over S then f is separated.
(5) If X is locally separated over S then f is locally separated.
(6) If X is quasi-separated over S then f is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 4.10 and Spaces,
Definition 13.2. Parts (1), (2), and (3) follow from parts (4), (5), and (6) by thinking
of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces, Definition
3.1. □

Lemma 4.12.03KM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P be any of the separation axioms of Definition 4.2. The
following are equivalent

(1) f is P,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is P,

https://stacks.math.columbia.edu/tag/03KR
https://stacks.math.columbia.edu/tag/04ZI
https://stacks.math.columbia.edu/tag/03KM
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(3) for every affine scheme Z and every morphism Z → Y the base change
Z ×Y X → Z of f is P,

(4) for every affine scheme Z and every morphism Z → Y the algebraic space
Z ×Y X is P (see Properties of Spaces, Definition 3.1),

(5) there exists a scheme V and a surjective étale morphism V → Y such that
the base change V ×Y X → V has P, and

(6) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi has P.

Proof. We will repeatedly use Lemma 4.4 without further mention. In particular,
it is clear that (1) implies (2) and (2) implies (3).
Let us prove that (3) and (4) are equivalent. Note that if Z is an affine scheme, then
the morphism Z → Spec(Z) is a separated morphism as a morphism of algebraic
spaces over Spec(Z). If Z ×Y X → Z is P, then Z ×Y X → Spec(Z) is P as a
composition (see Lemma 4.8). Hence the algebraic space Z×Y X is P. Conversely,
if the algebraic space Z ×Y X is P, then Z ×Y X → Spec(Z) is P, and hence by
Lemma 4.10 we see that Z ×Y X → Z is P.
Let us prove that (3) implies (5). Assume (3). Let V be a scheme and let V → Y
be étale surjective. We have to show that V ×Y X → V has property P. In other
words, we have to show that the morphism

V ×Y X −→ (V ×Y X)×V (V ×Y X) = V ×Y X ×Y X

has the corresponding property (i.e., is a closed immersion, immersion, or quasi-
compact). Let V =

⋃
Vj be an affine open covering of V . By assumption we know

that each of the morphisms
Vj ×Y X −→ Vj ×Y X ×Y X

does have the corresponding property. Since being a closed immersion, immersion,
quasi-compact immersion, or quasi-compact is Zariski local on the target, and since
the Vj cover V we get the desired conclusion.
Let us prove that (5) implies (1). Let V → Y be as in (5). Then we have the fibre
product diagram

V ×Y X //

��

X

��
V ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is a closed immersion, immersion, quasi-
compact immersion, or quasi-compact. It follows from Spaces, Lemma 5.6 that also
the right vertical arrow is a closed immersion, immersion, quasi-compact immersion,
or quasi-compact.
It is clear that (1) implies (6) by taking the covering Y = Y . Assume Y =

⋃
Yi is

as in (6). Choose schemes Vi and surjective étale morphisms Vi → Yi. Note that
the morphisms Vi ×Y X → Vi have P as they are base changes of the morphisms
f−1(Yi) → Yi. Set V =

∐
Vi. Then V → Y is a morphism as in (5) (details

omitted). Hence (6) implies (5) and we are done. □

Lemma 4.13.03KY Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S.

https://stacks.math.columbia.edu/tag/03KY
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(1) The morphism f is locally separated.
(2) The morphism f is (quasi-)separated in the sense of Definition 4.2 above if

and only if f is (quasi-)separated in the sense of Section 3.
In particular, if f : X → Y is a morphism of schemes over S, then f is (quasi-
)separated in the sense of Definition 4.2 if and only if f is (quasi-)separated as a
morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma 4.12 combined with the fact
that any morphism of schemes is locally separated, see Schemes, Lemma 21.2. □

5. Surjective morphisms

03MC We have already defined in Section 3 what it means for a representable morphism
of algebraic spaces to be surjective.

Lemma 5.1.03MD Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is surjective (in the sense of Section 3) if and only
if |f | : |X| → |Y | is surjective.

Proof. Namely, if f : X → Y is representable, then it is surjective if and only if for
every scheme T and every morphism T → Y the base change fT : T ×Y X → T of f
is a surjective morphism of schemes, in other words, if and only if |fT | is surjective.
By Properties of Spaces, Lemma 4.3 the map |T ×Y X| → |T | ×|Y | |X| is always
surjective. Hence |fT | : |T ×Y X| → |T | is surjective if |f | : |X| → |Y | is surjective.
Conversely, if |fT | is surjective for every T → Y as above, then by taking T to be
the spectrum of a field we conclude that |X| → |Y | is surjective. □

This clears the way for the following definition.

Definition 5.2.03ME Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is surjective if the map |f | : |X| → |Y | of associated
topological spaces is surjective.

Lemma 5.3.03MF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is surjective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is surjective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is surjective,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a surjective morphism,
(5) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is surjective,
(6) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are surjective étale such
that the top horizontal arrow is surjective, and

https://stacks.math.columbia.edu/tag/03MD
https://stacks.math.columbia.edu/tag/03ME
https://stacks.math.columbia.edu/tag/03MF
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(7) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is surjective.

Proof. Omitted. □

Lemma 5.4.03MG The composition of surjective morphisms is surjective.

Proof. This is immediate from the definition. □

Lemma 5.5.03MH The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma 4.3. □

6. Open morphisms

03Z0 For a representable morphism of algebraic spaces we have already defined (in Section
3) what it means to be universally open. Hence before we give the natural definition
we check that it agrees with this in the representable case.

Lemma 6.1.03Z1 Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally open (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective étale morphism V → Y . By assumption the morphism of schemes V ×Y

X → V is universally open. By Properties of Spaces, Section 4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is open it follows that the right vertical
arrow is open. This proves (2). The implication (2) ⇒ (1) is immediate from the
definitions. □

Thus we may use the following natural definition.

Definition 6.2.03Z2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is open if the map of topological spaces |f | : |X| → |Y | is open.
(2) We say f is universally open if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces
|Z ×Y X| → |Z|

is open, i.e., the base change Z ×Y X → Z is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties
of Spaces, Definition 16.2 and Lemmas 16.7 and 16.5.

https://stacks.math.columbia.edu/tag/03MG
https://stacks.math.columbia.edu/tag/03MH
https://stacks.math.columbia.edu/tag/03Z1
https://stacks.math.columbia.edu/tag/03Z2
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Lemma 6.3.03Z3 The base change of a universally open morphism of algebraic spaces
by any morphism of algebraic spaces is universally open.

Proof. This is immediate from the definition. □

Lemma 6.4.03Z4 The composition of a pair of (universally) open morphisms of alge-
braic spaces is (universally) open.

Proof. Omitted. □

Lemma 6.5.03Z5 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally open,
(2) for every scheme Z and every morphism Z → Y the projection |Z×Y X| →
|Z| is open,

(3) for every affine scheme Z and every morphism Z → Y the projection |Z×Y

X| → |Z| is open, and
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a universally open morphism of algebraic spaces, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally open.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).
Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally open morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is open. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 16.7). By assumption (3), and
the fact that Wi is affine we see that the left vertical arrows are open. Hence it
follows that the right vertical arrow is open.
Assume V → Y is as in (4). We will show that f is universally open. Let Z → Y
be a morphism of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is open by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 16.7). It follows that the right vertical arrow is open.
Of course (1) implies (5) by taking the covering Y = Y . Assume Y =

⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

https://stacks.math.columbia.edu/tag/03Z3
https://stacks.math.columbia.edu/tag/03Z4
https://stacks.math.columbia.edu/tag/03Z5
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that the base change of f to Zi is open. By a simple topological argument this
implies that Z ×Y X → Z is open. Hence (1) holds. □

Lemma 6.6.06DN Let S be a scheme. Let p : X → Spec(k) be a morphism of algebraic
spaces over S where k is a field. Then p : X → Spec(k) is universally open.

Proof. Choose a scheme U and a surjective étale morphism U → X. The compo-
sition U → Spec(k) is universally open (as a morphism of schemes) by Morphisms,
Lemma 23.4. Let Z → Spec(k) be a morphism of schemes. Then U ×Spec(k) Z →
X ×Spec(k) Z is surjective, see Lemma 5.5. Hence the first of the maps

|U ×Spec(k) Z| → |X ×Spec(k) Z| → |Z|
is surjective. Since the composition is open by the above we conclude that the
second map is open as well. Whence p is universally open by Lemma 6.5. □

7. Submersive morphisms

0411 For a representable morphism of algebraic spaces we have already defined (in Section
3) what it means to be universally submersive. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 7.1.0CFQ Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally submersive (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is submersive.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjec-
tive étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V
is universally submersive. By Properties of Spaces, Section 4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is submersive it follows that the
right vertical arrow is submersive. This proves (2). The implication (2) ⇒ (1) is
immediate from the definitions. □

Thus we may use the following natural definition.

Definition 7.2.0412 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is submersive2 if the continuous map |X| → |Y | is submersive,
see Topology, Definition 6.3.

(2) We say f is universally submersive if for every morphism of algebraic spaces
Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

2This is very different from the notion of a submersion of differential manifolds.

https://stacks.math.columbia.edu/tag/06DN
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We note that a submersive morphism is in particular surjective.

Lemma 7.3.0CFR The base change of a universally submersive morphism of algebraic
spaces by any morphism of algebraic spaces is universally submersive.

Proof. This is immediate from the definition. □

Lemma 7.4.0CFS The composition of a pair of (universally) submersive morphisms of
algebraic spaces is (universally) submersive.

Proof. Omitted. □

8. Quasi-compact morphisms

03HC By Section 3 we know what it means for a representable morphism of algebraic
spaces to be quasi-compact. In order to formulate the definition for a general
morphism of algebraic spaces we make the following observation.

Lemma 8.1.03HD Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent:

(1) f is quasi-compact (in the sense of Section 3), and
(2) for every quasi-compact algebraic space Z and any morphism Z → Y the

algebraic space Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic spaces with Z
quasi-compact. By Properties of Spaces, Definition 5.1 there exists a quasi-compact
scheme U and a surjective étale morphism U → Z. Since f is representable and
quasi-compact we see by definition that U ×Y X is a scheme, and that U ×Y X →
U is quasi-compact. Hence U ×Y X is a quasi-compact scheme. The morphism
U ×Y X → Z ×Y X is étale and surjective (as the base change of the representable
étale and surjective morphism U → Z, see Section 3). Hence by definition Z ×Y X
is quasi-compact.
Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to
show that p : Z ×Y X → Z is quasi-compact. Let U ⊂ Z be affine open. Then
p−1(U) = U ×Y Z and the scheme U ×Y Z is quasi-compact by assumption (2).
Hence p is quasi-compact, see Schemes, Section 19. □

This motivates the following definition.

Definition 8.2.03HE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-compact if for every quasi-compact algebraic space
Z and morphism Z → Y the fibre product Z ×Y X is quasi-compact.

By Lemma 8.1 above this agrees with the already existing notion for representable
morphisms of algebraic spaces.

Lemma 8.3.0EMK Let S be a scheme. If f : X → Y is a quasi-compact morphism
of algebraic spaces over S, then the underlying map |f | : |X| → |Y | of topological
space is quasi-compact.

Proof. Let V ⊂ |Y | be quasi-compact open. By Properties of Spaces, Lemma 4.8
there is an open subspace Y ′ ⊂ Y with V = |Y ′|. Then Y ′ is a quasi-compact
algebraic space by Properties of Spaces, Lemma 5.2 and hence X ′ = Y ′ ×Y X is
a quasi-compact algebraic space by Definition 8.2. On the other hand, X ′ ⊂ X

https://stacks.math.columbia.edu/tag/0CFR
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is an open subspace (Spaces, Lemma 12.3) and |X ′| = |f |−1(|X ′|) = |f |−1(V ) by
Properties of Spaces, Lemma 4.3. We conclude using Properties of Spaces, Lemma
5.2 again that |X ′| is a quasi-compact open of |X| as desired. □

Lemma 8.4.03HF The base change of a quasi-compact morphism of algebraic spaces
by any morphism of algebraic spaces is quasi-compact.
Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 8.5.03HG The composition of a pair of quasi-compact morphisms of algebraic
spaces is quasi-compact.
Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 8.6.040W Let S be a scheme.
(1) If X → Y is a surjective morphism of algebraic spaces over S, and X is

quasi-compact then Y is quasi-compact.
(2) If

X
f

//

p
  

Y

q
��

Z

is a commutative diagram of morphisms of algebraic spaces over S and f
is surjective and p is quasi-compact, then q is quasi-compact.

Proof. Assume X is quasi-compact and X → Y is surjective. By Definition 5.2
the map |X| → |Y | is surjective, hence we see Y is quasi-compact by Properties
of Spaces, Lemma 5.2 and the topological fact that the image of a quasi-compact
space under a continuous map is quasi-compact, see Topology, Lemma 12.7. Let
f, p, q be as in (2). Let T → Z be a morphism whose source is a quasi-compact
algebraic space. By assumption T ×Z X is quasi-compact. By Lemma 5.5 the
morphism T ×Z X → T ×Z Y is surjective. Hence by part (1) we see T ×Z Y is
quasi-compact too. Thus q is quasi-compact. □

Lemma 8.7.04ZJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let g : Y ′ → Y be a universally open and surjective morphism of
algebraic spaces such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f
is quasi-compact.
Proof. Let Z → Y be a morphism of algebraic spaces with Z quasi-compact.
As g is universally open and surjective, we see that Y ′ ×Y Z → Z is open and
surjective. As every point of |Y ′×Y Z| has a fundamental system of quasi-compact
open neighbourhoods (see Properties of Spaces, Lemma 5.5) we can find a quasi-
compact open W ⊂ |Y ′ ×Y Z| which surjects onto Z. Denote f ′′ : W ×Y X → W
the base change of f ′ by W → Y ′. By assumption W ×Y X is quasi-compact. As
W → Z is surjective we see that W ×Y X → Z ×Y X is surjective. Hence Z ×Y X
is quasi-compact by Lemma 8.6. Thus f is quasi-compact. □

Lemma 8.8.03KG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is quasi-compact,
(2) for every scheme Z and any morphism Z → Y the morphism of algebraic

spaces Z ×Y X → Z is quasi-compact,

https://stacks.math.columbia.edu/tag/03HF
https://stacks.math.columbia.edu/tag/03HG
https://stacks.math.columbia.edu/tag/040W
https://stacks.math.columbia.edu/tag/04ZJ
https://stacks.math.columbia.edu/tag/03KG
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(3) for every affine scheme Z and any morphism Z → Y the algebraic space
Z ×Y X is quasi-compact,

(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a quasi-compact morphism of algebraic spaces, and

(5) there exists a surjective étale morphism Y ′ → Y of algebraic spaces such
that Y ′ ×Y X → Y ′ is a quasi-compact morphism of algebraic spaces, and

(6) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-compact.

Proof. We will use Lemma 8.4 without further mention. It is clear that (1) implies
(2) and that (2) implies (3). Assume (3). Let Z be a quasi-compact algebraic space
over S, and let Z → Y be a morphism. By Properties of Spaces, Lemma 6.3
there exists an affine scheme U and a surjective étale morphism U → Z. Then
U ×Y X → Z ×Y X is a surjective morphism of algebraic spaces, see Lemma 5.5.
By assumption |U ×Y X| is quasi-compact. It surjects onto |Z ×Y X|, hence we
conclude that |Z ×Y X| is quasi-compact, see Topology, Lemma 12.7. This proves
that (3) implies (1).

The implications (1) ⇒ (4), (4) ⇒ (5) are clear. The implication (5) ⇒ (1) fol-
lows from Lemma 8.7 and the fact that an étale morphism of algebraic spaces is
universally open (see discussion following Definition 6.2).

Of course (1) implies (6) by taking the covering Y = Y . Assume Y =
⋃
Yi is as

in (6). Let Z be affine and let Z → Y be a morphism. Then there exists a finite
standard affine covering Z = Z1 ∪ . . . ∪ Zn such that each Zj → Y factors through
Yij for some ij . Hence the algebraic space

Zj ×Y X = Zj ×Yij
f−1(Yij

)

is quasi-compact. Since Z ×Y X =
⋃

j=1,...,n Zj ×Y X is a Zariski covering we see
that |Z ×Y X| =

⋃
j=1,...,n |Zj ×Y X| (see Properties of Spaces, Lemma 4.8) is a

finite union of quasi-compact spaces, hence quasi-compact. Thus we see that (6)
implies (3). □

The following (and the next) lemma guarantees in particular that a morphism
X → Spec(A) is quasi-compact as soon as X is a quasi-compact algebraic space

Lemma 8.9.03KS Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S. If g ◦ f is quasi-compact and g is quasi-separated then f
is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 4.7 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 4.4). The
second map is quasi-compact as it is the base change of f , see Lemma 8.4. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 8.5. □

Lemma 8.10.073B Let f : X → Y be a morphism of algebraic spaces over a scheme
S.

(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then f

is quasi-compact and quasi-separated.

https://stacks.math.columbia.edu/tag/03KS
https://stacks.math.columbia.edu/tag/073B
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(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is
quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 8.9 with Z = S = Spec(Z). Part (2) follows
from (1) and Lemma 4.10. For (3) let X → Y and Z → Y be morphisms of quasi-
compact and quasi-separated algebraic spaces. Then X×Y Z → Z is quasi-compact
and quasi-separated as a base change of X → Y using (2) and Lemmas 8.4 and
4.4. Hence X ×Y Z is quasi-compact and quasi-separated as an algebraic space
quasi-compact and quasi-separated over Z, see Lemmas 4.9 and 8.5. □

9. Universally closed morphisms

03HH For a representable morphism of algebraic spaces we have already defined (in Sec-
tion 3) what it means to be universally closed. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 9.1.03XD Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally closed (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective étale morphism V → Y . By assumption the morphism of schemes V ×Y

X → V is universally closed. By Properties of Spaces, Section 4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) is immediate
from the definitions. □

Thus we may use the following natural definition.

Definition 9.2.03HI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is closed if the map of topological spaces |X| → |Y | is closed.
(2) We say f is universally closed if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces
|Z ×Y X| → |Z|

is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 9.3.03IS The base change of a universally closed morphism of algebraic spaces
by any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. □

https://stacks.math.columbia.edu/tag/03XD
https://stacks.math.columbia.edu/tag/03HI
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Lemma 9.4.03IU The composition of a pair of (universally) closed morphisms of
algebraic spaces is (universally) closed.

Proof. Omitted. □

Lemma 9.5.03IT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every scheme Z and every morphism Z → Y the projection |Z×Y X| →
|Z| is closed,

(3) for every affine scheme Z and every morphism Z → Y the projection |Z×Y

X| → |Z| is closed,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a universally closed morphism of algebraic spaces, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally closed morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 16.7). By assumption (3), and
the fact that Wi is affine we see that the left vertical arrows are closed. Hence it
follows that the right vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z → Y be a morphism
of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 16.7). It follows that the right vertical arrow is closed.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

that the base change of f to Zi is closed. By a simple topological argument this
implies that Z ×Y X → Z is closed. Hence (1) holds. □

https://stacks.math.columbia.edu/tag/03IU
https://stacks.math.columbia.edu/tag/03IT
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Example 9.6.03IV Strange example of a universally closed morphism. Let Q ⊂ k be
a field of characteristic zero. Let X = A1

k/Z as in Spaces, Example 14.8. We claim
the structure morphism p : X → Spec(k) is universally closed. Namely, if Z/k is
a scheme, and T ⊂ |X ×k Z| is closed, then T corresponds to a Z-invariant closed
subset of T ′ ⊂ |A1 × Z|. It is easy to see that this implies that T ′ is the inverse
image of a subset T ′′ of Z. By Morphisms, Lemma 25.12 we have that T ′′ ⊂ Z is
closed. Of course T ′′ is the image of T . Hence p is universally closed by Lemma
9.5.

Lemma 9.7.04XW Let S be a scheme. A universally closed morphism of algebraic
spaces over S is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms,
Lemma 41.8. Let f : X → Y be a morphism of algebraic spaces over S. Assume
that f is not quasi-compact. Our goal is to show that f is not universally closed.
By Lemma 8.8 there exists an affine scheme Z and a morphism Z → Y such that
Z ×Y X → Z is not quasi-compact. To achieve our goal it suffices to show that
Z ×Y X → Z is not universally closed, hence we may assume that Y = Spec(B)
for some ring B.
Write X =

⋃
i∈I Xi where the Xi are quasi-compact open subspaces of X. For

example, choose a surjective étale morphism U → X where U is a scheme, choose
an affine open covering U =

⋃
Ui and let Xi ⊂ X be the image of Ui. We will

use later that the morphisms Xi → Y are quasi-compact, see Lemma 8.9. Let
T = Spec(B[ai; i ∈ I]). Let Ti = D(ai) ⊂ T . Let Z ⊂ T ×Y X be the reduced
closed subspace whose underlying closed set of points is |T ×Y Z| \

⋃
i∈I |Ti×Y Xi|,

see Properties of Spaces, Lemma 12.3. (Note that Ti ×Y Xi is an open subspace of
T ×Y X as Ti → T and Xi → X are open immersions, see Spaces, Lemmas 12.3
and 12.2.) Here is a diagram

Z //

##

T ×Y X

fT

��

q
// X

f

��
T

p // Y

It suffices to prove that the image fT (|Z|) is not closed in |T |.
We claim there exists a point y ∈ Y such that there is no affine open neighborhood
V of y in Y such that XV is quasi-compact. If not then we can cover Y with finitely
many such V and for each V the morphism YV → V is quasi-compact by Lemma
8.9 and then Lemma 8.8 implies f quasi-compact, a contradiction. Fix a y ∈ Y as
in the claim.
Let t ∈ T be the point lying over y with κ(t) = κ(y) such that ai = 1 in κ(t) for all
i. Suppose z ∈ |Z| with fT (z) = t. Then q(t) ∈ Xi for some i. Hence fT (z) ̸∈ Ti

by construction of Z, which contradicts the fact that t ∈ Ti by construction. Hence
we see that t ∈ |T | \ fT (|Z|).
Assume fT (|Z|) is closed in |T |. Then there exists an element g ∈ B[ai; i ∈ I] with
fT (|Z|) ⊂ V (g) but t ̸∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(y). Hence this coefficient is invertible
on some affine open neighborhood V of y. Let J be the finite set of j ∈ I such
that the variable aj appears in g. Since XV is not quasi-compact and each Xi,V

https://stacks.math.columbia.edu/tag/03IV
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is quasi-compact, we may choose a point x ∈ |XV | \
⋃

j∈J |Xj,V |. In other words,
x ∈ |X| \

⋃
j∈J |Xj | and x lies above some v ∈ V . Since g has a coefficient that is

invertible on V , we can find a point t′ ∈ T lying above v such that t′ ̸∈ V (g) and
t′ ∈ V (ai) for all i /∈ J . This is true because V (ai; i ∈ I\J) = Spec(B[aj ; j ∈ J ]) and
the set of points of this scheme lying over v is bijective with Spec(κ(v)[aj ; j ∈ J ])
and g restricts to a nonzero element of this polynomial ring by construction. In
other words t′ ̸∈ Ti for each i ̸∈ J . By Properties of Spaces, Lemma 4.3 we can find
a point z of X ×Y T mapping to x ∈ X and to t′ ∈ T . Since x ̸∈ |Xj | for j ∈ J
and t′ ̸∈ Ti for i ∈ I \ J we see that z ∈ |Z|. On the other hand fT (z) = t′ ̸∈ V (g)
which contradicts fT (Z) ⊂ V (g). Thus the assumption “fT (|Z|) closed” is wrong
and we conclude indeed that fT is not closed as desired. □

The target of a separated algebraic space under a surjective universally closed
morphism is separated.

Lemma 9.8.05Z2 Let S be a scheme. Let B be an algebraic space over S. Let f : X →
Y be a surjective universally closed morphism of algebraic spaces over B.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over B, then Y is quasi-separated over B.
(4) If X is separated over B, then Y is separated over B.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = B = Spec(Z)
(see Properties of Spaces, Definition 3.1). Consider the commutative diagram

X

��

∆X/B

// X ×B X

��
Y

∆Y/B // Y ×B Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X ×B X → X ×B Y → Y ×B Y . Hence it is also quasi-compact, see Lemma 9.7.
Assume X is quasi-separated over B, i.e., ∆X/B is quasi-compact. Then if Z is
quasi-compact and Z → Y ×B Y is a morphism, then Z ×Y ×BY X → Z ×Y ×BY Y
is surjective and Z×Y ×BY X is quasi-compact by our remarks above. We conclude
that ∆Y/B is quasi-compact, i.e., Y is quasi-separated over B.
Assume X is separated over B, i.e., ∆X/B is a closed immersion. Then if Z is
affine, and Z → Y ×B Y is a morphism, then Z ×Y ×BY X → Z ×Y ×BY Y is
surjective and Z ×Y ×BY X → Z is universally closed by our remarks above. We
conclude that ∆Y/B is universally closed. It follows that ∆Y/B is representable,
locally of finite type, a monomorphism (see Lemma 4.1) and universally closed,
hence a closed immersion, see Étale Morphisms, Lemma 7.2 (and also the abstract
principle Spaces, Lemma 5.8). Thus Y is separated over B. □

10. Monomorphisms

042K A representable morphism X → Y of algebraic spaces is a monomorphism according
to Section 3 if for every scheme Z and morphism Z → Y the morphism Z×Y X → Z
is representable by a monomorphism of schemes. This means exactly that Z×Y X →
Z is an injective map of sheaves on (Sch/S)fppf . Since this is supposed to hold for

https://stacks.math.columbia.edu/tag/05Z2
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all Z and all maps Z → Y this is in turn equivalent to the map X → Y being an
injective map of sheaves on (Sch/S)fppf . Thus we may define a monomorphism of
a (possibly nonrepresentable3) morphism of algebraic spaces as follows.

Definition 10.1.042L Let S be a scheme. A morphism of algebraic spaces over S is
called a monomorphism if it is an injective map of sheaves, i.e., a monomorphism
in the category of sheaves on (Sch/S)fppf .

The following lemma shows that this also means that it is a monomorphism in the
category of algebraic spaces over S.

Lemma 10.2.042M Let S be a scheme. Let j : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) j is a monomorphism (as in Definition 10.1),
(2) j is a monomorphism in the category of algebraic spaces over S, and
(3) the diagonal morphism ∆X/Y : X → X ×Y X is an isomorphism.

Proof. Note that X ×Y X is both the fibre product in the category of sheaves
on (Sch/S)fppf and the fibre product in the category of algebraic spaces over S,
see Spaces, Lemma 7.3. The equivalence of (1) and (3) is a general characteriza-
tion of injective maps of sheaves on any site. The equivalence of (2) and (3) is a
characterization of monomorphisms in any category with fibre products. □

Lemma 10.3.042N A monomorphism of algebraic spaces is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma
10.2 above. □

Lemma 10.4.042O A composition of monomorphisms is a monomorphism.

Proof. True because a composition of injective sheaf maps is injective. □

Lemma 10.5.042P The base change of a monomorphism is a monomorphism.

Proof. This is a general fact about fibre products in a category of sheaves. □

Lemma 10.6.042Q Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is a monomorphism,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is a monomorphism,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is a monomorphism,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

the base change V ×Y X → V is a monomorphism, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is a monomorphism.

Proof. We will use without further mention that a base change of a monomorphism
is a monomorphism, see Lemma 10.5. In particular it is clear that (1) ⇒ (2) ⇒
(3) ⇒ (4) (by taking V to be a disjoint union of affine schemes étale over Y , see
Properties of Spaces, Lemma 6.1). Let V be a scheme, and let V → Y be a

3We do not know whether any monomorphism of algebraic spaces is representable. For a
discussion see More on Morphisms of Spaces, Section 4.
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surjective étale morphism. If V ×Y X → V is a monomorphism, then it follows
that X → Y is a monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. Thus (4)
implies (1). Proof of the equivalence of (5) and (1) is omitted. □

Lemma 10.7.042R An immersion of algebraic spaces is a monomorphism. In partic-
ular, any immersion is separated.

Proof. Let f : X → Y be an immersion of algebraic spaces. For any morphism
Z → Y with Z representable the base change Z ×Y X → Z is an immersion of
schemes, hence a monomorphism, see Schemes, Lemma 23.8. Hence f is repre-
sentable, and a monomorphism. □

We will improve on the following lemma in Decent Spaces, Lemma 19.1.

Lemma 10.8.06MG Let S be a scheme. Let k be a field and let Z → Spec(k) be a
monomorphism of algebraic spaces over S. Then either Z = ∅ or Z = Spec(k).

Proof. By Lemmas 10.3 and 4.9 we see that Z is a separated algebraic space. Hence
there exists an open dense subspace Z ′ ⊂ Z which is a scheme, see Properties of
Spaces, Proposition 13.3. By Schemes, Lemma 23.11 we see that either Z ′ = ∅ or
Z ′ ∼= Spec(k). In the first case we conclude that Z = ∅ and in the second case we
conclude that Z ′ = Z = Spec(k) as Z → Spec(k) is a monomorphism which is an
isomorphism over Z ′. □

Lemma 10.9.06RV Let S be a scheme. If X → Y is a monomorphism of algebraic
spaces over S, then |X| → |Y | is injective.

Proof. Immediate from the definitions. □

11. Pushforward of quasi-coherent sheaves

03M7 We first prove a simple lemma that relates pushforward of sheaves of modules for a
morphism of algebraic spaces to pushforward of sheaves of modules for a morphism
of schemes.

Lemma 11.1.03M8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let U → X be a surjective étale morphism from a scheme to X. Set
R = U ×X U and denote t, s : R → U the projection morphisms as usual. Denote
a : U → Y and b : R → Y the induced morphisms. For any object F of Mod(OX)
there exists an exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R)
where the second arrow is the difference t∗ − s∗.

Proof. We denote F also its extension to a sheaf of modules on Xspaces,étale, see
Properties of Spaces, Remark 18.4. Let V → Y be an object of Yétale. Then
V ×Y X is an object of Xspaces,étale, and by definition f∗F(V ) = F(V ×Y X).
Since U → X is surjective étale, we see that {V ×Y U → V ×Y X} is a covering.
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Also, we have (V ×Y U)×X (V ×Y U) = V ×Y R. Hence, by the sheaf condition of
F on Xspaces,étale we have a short exact sequence

0→ F(V ×Y X)→ F(V ×Y U)→ F(V ×Y R)
where the second arrow is the difference of restricting via t or s. This exact sequence
is functorial in V and hence we obtain the lemma. □

Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of representable algebraic spaces X and Y over S. By Descent, Proposition
9.4 the functor f∗ : QCoh(OX) → QCoh(OY ) agrees with the usual functor if we
think of X and Y as schemes.
More generally, suppose f : X → Y is a representable, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. Let V be a scheme and let V → Y
be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be the base
change of f . Then for any quasi-coherent OX -module F we have
(11.1.1)04CF f ′

∗(F|U ) = (f∗F)|V ,
see Properties of Spaces, Lemma 26.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute f ′

∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.
The next level of generality is to consider an arbitrary quasi-compact and quasi-
separated morphism of algebraic spaces.
Lemma 11.2.03M9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then f∗ transforms quasi-
coherent OX-modules into quasi-coherent OY -modules.
Proof. Let F be a quasi-coherent sheaf on X. We have to show that f∗F is a
quasi-coherent sheaf on Y . For this it suffices to show that for any affine scheme
V and étale morphism V → Y the restriction of f∗F to V is quasi-coherent, see
Properties of Spaces, Lemma 29.6. Let f ′ : V ×Y X → V be the base change of f
by V → Y . Note that f ′ is also quasi-compact and quasi-separated, see Lemmas
8.4 and 4.4. By (11.1.1) we know that the restriction of f∗F to V is f ′

∗ of the
restriction of F to V ×Y X. Hence we may replace f by f ′, and assume that Y is
an affine scheme.
Assume Y is an affine scheme. Since f is quasi-compact we see that X is quasi-
compact. Thus we may choose an affine scheme U and a surjective étale morphism
U → X, see Properties of Spaces, Lemma 6.3. By Lemma 11.1 we get an exact
sequence

0→ f∗F → a∗(F|U )→ b∗(F|R).
where R = U ×X U . As X → Y is quasi-separated we see that R → U ×Y

U is a quasi-compact monomorphism. This implies that R is a quasi-compact
separated scheme (as U and Y are affine at this point). Hence a : U → Y and
b : R → Y are quasi-compact and quasi-separated morphisms of schemes. Thus
by Descent, Proposition 9.4 the sheaves a∗(F|U ) and b∗(F|R) are quasi-coherent
(see also the discussion preceding this lemma). This implies that f∗F is a kernel of
quasi-coherent modules, and hence itself quasi-coherent, see Properties of Spaces,
Lemma 29.7. □
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Higher direct images are discussed in Cohomology of Spaces, Section 3.

12. Immersions

03HB Open, closed and locally closed immersions of algebraic spaces were defined in
Spaces, Section 12. Namely, a morphism of algebraic spaces is a closed immer-
sion (resp. open immersion, resp. immersion) if it is representable and a closed
immersion (resp. open immersion, resp. immersion) in the sense of Section 3.

In particular these types of morphisms are stable under base change and composi-
tions of morphisms in the category of algebraic spaces over S, see Spaces, Lemmas
12.2 and 12.3.

Lemma 12.1.03M4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion (resp. open immersion, resp. immersion),
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is a closed immersion (resp. open immersion, resp. immersion),
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is a closed immersion (resp. open immersion, resp. immersion),
(4) there exists a scheme V and a surjective étale morphism V → Y such

that V ×Y X → V is a closed immersion (resp. open immersion, resp.
immersion), and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi) → Yi is a closed immersion (resp. open immersion, resp. immer-
sion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp.
immersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also
(3) implies (4) since we can take V to be a disjoint union of affines, see Properties
of Spaces, Lemma 6.1.

Assume V → Y is as in (4). Let P be the property closed immersion (resp. open
immersion, resp. immersion) of morphisms of schemes. Note that property P is
preserved under any base change and fppf local on the base (see Section 3). More-
over, morphisms of type P are separated and locally quasi-finite (in each of the
three cases, see Schemes, Lemma 23.8, and Morphisms, Lemma 20.16). Hence by
More on Morphisms, Lemma 57.1 the morphisms of type P satisfy descent for fppf
covering. Thus Spaces, Lemma 11.5 applies and we see that X → Y is representable
and has property P, in other words (1) holds.

The equivalence of (1) and (5) follows from the fact that P is Zariski local on the
target (since we saw above that P is in fact fppf local on the target). □

Lemma 12.2.0AGC Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S.

(1) If Z → X is representable, locally of finite type, locally quasi-finite, sepa-
rated, and a monomorphism, then Z → Y is representable, locally of finite
type, locally quasi-finite, separated, and a monomorphism.

(2) If Z → X is an immersion and Y → X is locally separated, then Z → Y
is an immersion.
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(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is
a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram
Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove (1).
The first horizontal arrow is a section of Y ×XZ → Z, whence representable, locally
of finite type, locally quasi-finite, separated, and a monomorphism by Lemma 4.7.
The arrow Y ×X Z → Y is a base change of Z → X hence is representable, locally
of finite type, locally quasi-finite, separated, and a monomorphism (as each of these
properties of morphisms of schemes is stable under base change, see Spaces, Remark
4.1). Hence the same is true for the composition (as each of these properties of
morphisms of schemes is stable under composition, see Spaces, Remark 4.2). This
proves (1). The other results are proved in exactly the same manner. □

Lemma 12.3.04CD Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then |i| : |Z| → |X| is a homeomorphism onto a locally closed
subset, and i is a closed immersion if and only if the image |i|(|Z|) ⊂ |X| is a
closed subset.

Proof. The first statement is Properties of Spaces, Lemma 12.1. Let U be a scheme
and let U → X be a surjective étale morphism. By assumption T = U ×X Z is a
scheme and the morphism j : T → U is an immersion of schemes. By Lemma 12.1
the morphism i is a closed immersion if and only if j is a closed immersion. By
Schemes, Lemma 10.4 this is true if and only if j(T ) is closed in U . However, the
subset j(T ) ⊂ U is the inverse image of |i|(|Z|) ⊂ |X|, see Properties of Spaces,
Lemma 4.3. This finishes the proof. □

Remark 12.4.04CE Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Since i is a monomorphism we may think of |Z| as a subset of |X|; in
the rest of this remark we do so. Let ∂|Z| be the boundary of |Z| in the topological
space |X|. In a formula

∂|Z| = |Z| \ |Z|.
Let ∂Z be the reduced closed subspace of X with |∂Z| = ∂|Z| obtained by taking
the reduced induced closed subspace structure, see Properties of Spaces, Definition
12.5. By construction we see that |Z| is closed in |X| \ |∂Z| = |X \ ∂Z|. Hence it is
true that any immersion of algebraic spaces can be factored as a closed immersion
followed by an open immersion (but not the other way in general, see Morphisms,
Example 3.4).

Remark 12.5.06EC Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a locally closed subset. Let ∂T be the boundary of T in the topological
space |X|. In a formula

∂T = T \ T.
Let U ⊂ X be the open subspace of X with |U | = |X|\∂T , see Properties of Spaces,
Lemma 4.8. Let Z be the reduced closed subspace of U with |Z| = T obtained by
taking the reduced induced closed subspace structure, see Properties of Spaces,
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Definition 12.5. By construction Z → U is a closed immersion of algebraic spaces
and U → X is an open immersion, hence Z → X is an immersion of algebraic
spaces over S (see Spaces, Lemma 12.2). Note that Z is a reduced algebraic space
and that |Z| = T as subsets of |X|. We sometimes say Z is the reduced induced
subspace structure on T .

Lemma 12.6.081U Let S be a scheme. Let Z → X be an immersion of algebraic spaces
over S. Assume Z → X is quasi-compact. There exists a factorization Z → Z → X
where Z → Z is an open immersion and Z → X is a closed immersion.

Proof. Let U be a scheme and let U → X be surjective étale. As usual denote
R = U ×X U with projections s, t : R → U . Set T = Z ×U X. Let T ⊂ U be
the scheme theoretic image of T → U . Note that s−1T = t−1T as taking scheme
theoretic images of quasi-compact morphisms commute with flat base change, see
Morphisms, Lemma 25.16. Hence we obtain a closed subspace Z ⊂ X whose
pullback to U is T , see Properties of Spaces, Lemma 12.2. By Morphisms, Lemma
7.7 the morphism T → T is an open immersion. It follows that Z → Z is an open
immersion and we win. □

13. Closed immersions

03MA In this section we elucidate some of the results obtained previously on immersions
of algebraic spaces. See Spaces, Section 12 and Section 12 in this chapter. This
section is the analogue of Morphisms, Section 2 for algebraic spaces.

Lemma 13.1.03MB Let S be a scheme. Let X be an algebraic space over S. For every
closed immersion i : Z → X the sheaf i∗OZ is a quasi-coherent OX-module, the
map i♯ : OX → i∗OZ is surjective and its kernel is a quasi-coherent sheaf of ideals.
The rule Z 7→ Ker(OX → i∗OZ) defines an inclusion reversing bijection

closed subspaces
Z ⊂ X −→ quasi-coherent sheaves

of ideals I ⊂ OX

Moreover, given a closed subscheme Z corresponding to the quasi-coherent sheaf of
ideals I ⊂ OX a morphism of algebraic spaces h : Y → X factors through Z if and
only if the map h∗I → h∗OX = OY is zero.

Proof. Let U → X be a surjective étale morphism whose source is a scheme.
Consider the diagram

U ×X Z //

i′

��

Z

i

��
U // X

By Lemma 12.1 we see that i is a closed immersion if and only if i′ is a closed
immersion. By Properties of Spaces, Lemma 26.2 we see that i′∗OU×X Z is the
restriction of i∗OZ to U . Hence the assertions on OX → i∗OZ are equivalent to the
corresponding assertions on OU → i′∗OU×X Z . And since i′ is a closed immersion of
schemes, these results follow from Morphisms, Lemma 2.1.

Let us prove that given a quasi-coherent sheaf of ideals I ⊂ OX the formula

Z(T ) = {h : T → X | h∗I → OT is zero}
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defines a closed subspace of X. It is clearly a subfunctor of X. To show that
Z → X is representable by closed immersions, let φ : U → X be a morphism from
a scheme towards X. Then Z ×X U is represented by the analogous subfunctor of
U corresponding to the sheaf of ideals Im(φ∗I → OU ). By Properties of Spaces,
Lemma 29.2 the OU -module φ∗I is quasi-coherent on U , and hence Im(φ∗I → OU )
is a quasi-coherent sheaf of ideals on U . By Schemes, Lemma 4.6 we conclude that
Z ×X U is represented by the closed subscheme of U associated to Im(φ∗I → OU ).
Thus Z is a closed subspace of X.
In the formula for Z above the inputs T are schemes since algebraic spaces are
sheaves on (Sch/S)fppf . We omit the verification that the same formula remains
true if T is an algebraic space. □

Definition 13.2.083Q Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. The inverse image f−1(Z) of the
closed subspace Z is the closed subspace Z ×X Y of Y .

This definition makes sense by Lemma 12.1. If I ⊂ OX is the quasi-coherent sheaf
of ideals corresponding to Z via Lemma 13.1 then f−1IOY = Im(f∗I → OY ) is
the sheaf of ideals corresponding to f−1(Z).

Lemma 13.3.04CG A closed immersion of algebraic spaces is quasi-compact.

Proof. This follows from Schemes, Lemma 19.5 by general principles, see Spaces,
Lemma 5.8. □

Lemma 13.4.04CH A closed immersion of algebraic spaces is separated.

Proof. This follows from Schemes, Lemma 23.8 by general principles, see Spaces,
Lemma 5.8. □

Lemma 13.5.04E5 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S.

(1) The functor
ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and
(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)
is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in |Z|.
In both cases i−1

small is a left inverse to the functor ismall,∗.

Proof. Let U be a scheme and let U → X be surjective étale. Set V = Z ×X U .
Then V is a scheme and i′ : V → U is a closed immersion of schemes. By Properties
of Spaces, Lemma 18.12 for any sheaf G on Z we have

(i−1
smallismall,∗G)|V = (i′)−1

smalli
′
small,∗(G|V )

By Étale Cohomology, Proposition 46.4 the map (i′)−1
smalli

′
small,∗(G|V )→ G|V is an

isomorphism. Since V → Z is surjective and étale this implies that i−1
smallismall,∗G →

G is an isomorphism. This clearly implies that ismall,∗ is fully faithful, see Sites,
Lemma 41.1. To prove the statement on the essential image, consider a sheaf of
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sets F on Xétale whose restriction to X \ Z is isomorphic to ∗. As in the proof of
Étale Cohomology, Proposition 46.4 we consider the adjunction mapping

F −→ ismall,∗i
−1
smallF .

As in the first part we see that the restriction of this map to U is an isomorphism
by the corresponding result for the case of schemes. Since U is an étale covering of
X we conclude it is an isomorphism. □

Lemma 13.6.0DK1 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let z be a geometric point of Z with image x in X. Then
(ismall,∗F)z = Fx for any sheaf F on Zétale.

Proof. Choose an étale neighbourhood (U, u) of x. Then the stalk (ismall,∗F)z is
the stalk of ismall,∗F|U at u. By Properties of Spaces, Lemma 18.12 we may replace
X by U and Z by Z ×X U . Then Z → X is a closed immersion of schemes and the
result is Étale Cohomology, Lemma 46.3. □

The following lemma holds more generally in the setting of a closed immersion of
topoi (insert future reference here).

Lemma 13.7.04G0 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let A be a sheaf of rings on Xétale. Let B be a sheaf of
rings on Zétale. Let φ : A → ismall,∗B be a homomorphism of sheaves of rings so
that we obtain a morphism of ringed topoi

f : (Sh(Zétale),B) −→ (Sh(Xétale),A).
For a sheaf of A-modules F and a sheaf of B-modules G the canonical map

F ⊗A f∗G −→ f∗(f∗F ⊗B G).
is an isomorphism.

Proof. The map is the map adjoint to the map
f∗F ⊗B f

∗f∗G = f∗(F ⊗A f∗G) −→ f∗F ⊗B G
coming from id : f∗F → f∗F and the adjunction map f∗f∗G → G. To see this map
is an isomorphism, we may check on stalks (Properties of Spaces, Theorem 19.12).
Let z : Spec(k) → Z be a geometric point with image x = i ◦ z : Spec(k) → X.
Working out what our maps does on stalks, we see that we have to show

Fx ⊗Ax
Gz = (Fx ⊗Ax

Bz)⊗Bz
Gz

which holds true. Here we have used that taking tensor products commutes with
taking stalks, the behaviour of stalks under pullback Properties of Spaces, Lemma
19.9, and the behaviour of stalks under pushforward along a closed immersion
Lemma 13.6. □

14. Closed immersions and quasi-coherent sheaves

04CI This section is the analogue of Morphisms, Section 4.

Lemma 14.1.04CJ Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting
out Z.

(1) For any OX-module F the adjunction map F → i∗i
∗F induces an isomor-

phism F/IF ∼= i∗i
∗F .
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(2) The functor i∗ is a left inverse to i∗, i.e., for any OZ-module G the adjunc-
tion map i∗i∗G → G is an isomorphism.

(3) The functor
i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherent OX-modules
F such that IF = 0.

Proof. During this proof we work exclusively with sheaves on the small étale sites,
and we use i∗, i−1, . . . to denote pushforward and pullback of sheaves of abelian
groups instead of ismall,∗, i

−1
small.

Let F be an OX -module. By Lemma 13.7 applied with A = OX and G = B = OZ

we see that i∗i∗F = F ⊗OX
OZ . By Lemma 13.1 we see that we have a short exact

sequence
0→ I → OX → i∗OZ → 0

It follows from properties of the tensor product that F ⊗OX
i∗OZ = F/IF . This

proves (1) (except that we omit the verification that the map is induced by the
adjunction mapping).
Let G be any OZ-module. By Lemma 13.5 we see that i−1i∗G = G. Hence to
prove (2) we have to show that the canonical map G ⊗i−1OX

OZ → G is an
isomorphism. This follows from general properties of tensor products if we can
show that i−1OX → OZ is surjective. By Lemma 13.5 it suffices to prove that
i∗i

−1OX → i∗OZ is surjective. Since the surjective map OX → i∗OZ factors
through this map we see that (2) holds.
Finally we prove the most interesting part of the lemma, namely part (3). A
closed immersion is quasi-compact and separated, see Lemmas 13.3 and 13.4. Hence
Lemma 11.2 applies and the pushforward of a quasi-coherent sheaf on Z is indeed
a quasi-coherent sheaf on X. Thus we obtain our functor iQCoh

∗ : QCoh(OZ) →
QCoh(OX). It is clear from part (2) that iQCoh

∗ is fully faithful since it has a left
inverse, namely i∗.
Now we turn to the description of the essential image of the functor i∗. It is clear
that I(i∗G) = 0 for any OZ-module, since I is the kernel of the map OX → i∗OZ

which is the map we use to put an OX -module structure on i∗G. Next, suppose
that F is any quasi-coherent OX -module such that IF = 0. Then we see that
F is an i∗OZ-module because i∗OZ = OX/I. Hence in particular its support is
contained in |Z|. We apply Lemma 13.5 to see that F ∼= i∗G for some OZ-module
G. The only small detail left over is to see why G is quasi-coherent. This is true
because G ∼= i∗F by part (2) and Properties of Spaces, Lemma 29.2. □

Let i : Z → X be a closed immersion of algebraic spaces. Because of the lemma
above we often, by abuse of notation, denote F the sheaf i∗F on X.
Lemma 14.2.04CK Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX-module. Let G ⊂ F be a OX-submodule. There exists a
unique quasi-coherent OX-submodule G′ ⊂ G with the following property: For every
quasi-coherent OX-module H the map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX-submodule of F con-
tained in G.
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Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Properties of Spaces, Lemma 29.7. The module G′ is contained in G. Hence this is
the largest quasi-coherent OX -module contained in G.
To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. □

Lemma 14.3.04CL Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. There is a functor4 i! : QCoh(OX)→ QCoh(OZ) which is
a right adjoint to i∗. (Compare Modules, Lemma 6.3.)
Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of G
of local sections annihilated by I. By Lemma 14.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)
for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. □

Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed
subspaces (see Lemma 13.1) we can define scheme theoretic intersections and unions
of closed subschemes.
Definition 14.4.0CYZ Let S be a scheme. Let X be an algebraic space over S. Let
Z, Y ⊂ X be closed subspaces corresponding to quasi-coherent ideal sheaves I,J ⊂
OX . The scheme theoretic intersection of Z and Y is the closed subspace of X cut
out by I + J . Then scheme theoretic union of Z and Y is the closed subspace of
X cut out by I ∩ J .
It is clear that formation of scheme theoretic intersection commutes with étale
localization and the same is true for scheme theoretic union.
Lemma 14.5.0CZ0 Let S be a scheme. Let X be an algebraic space over S. Let
Z, Y ⊂ X be closed subspaces. Let Z ∩ Y be the scheme theoretic intersection of Z
and Y . Then Z ∩ Y → Z and Z ∩ Y → Y are closed immersions and

Z ∩ Y //

��

Z

��
Y // X

is a cartesian diagram of algebraic spaces over S, i.e., Z ∩ Y = Z ×X Y .
Proof. The morphisms Z ∩ Y → Z and Z ∩ Y → Y are closed immersions by
Lemma 13.1. Since formation of the scheme theoretic intersection commutes with
étale localization we conclude the diagram is cartesian by the case of schemes. See
Morphisms, Lemma 4.5. □

4This is likely nonstandard notation.
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Lemma 14.6.0CZ1 Let S be a scheme. Let X be an algebraic space over S. Let
Y,Z ⊂ X be closed subspaces. Let Y ∪ Z be the scheme theoretic union of Y and
Z. Let Y ∩ Z be the scheme theoretic intersection of Y and Z. Then Y → Y ∪ Z
and Z → Y ∪ Z are closed immersions, there is a short exact sequence

0→ OY ∪Z → OY ×OZ → OY ∩Z → 0
of OZ-modules, and the diagram

Y ∩ Z //

��

Y

��
Z // Y ∪ Z

is cocartesian in the category of algebraic spaces over S, i.e., Y ∪ Z = Y ⨿Y ∩Z Z.

Proof. The morphisms Y → Y ∪ Z and Z → Y ∪ Z are closed immersions by
Lemma 13.1. In the short exact sequence we use the equivalence of Lemma 14.1 to
think of quasi-coherent modules on closed subspaces of X as quasi-coherent modules
on X. For the first map in the sequence we use the canonical maps OY ∪Z → OY

and OY ∪Z → OZ and for the second map we use the canonical map OY → OY ∩Z

and the negative of the canonical map OZ → OY ∩Z . Then to check exactness we
may work étale locally and deduce exactness from the case of schemes (Morphisms,
Lemma 4.6).
To show the diagram is cocartesian, suppose we are given an algebraic space T over
S and morphisms f : Y → T , g : Z → T agreeing as morphisms Y ∩Z → T . Goal:
Show there exists a unique morphism h : Y ∪ Z → T agreeing with f and g. To
construct h we may work étale locally on Y ∪ Z (as Y ∪ Z is an étale sheaf being
an algebraic space). Hence we may assume that X is a scheme. In this case we
know that Y ∪Z is the pushout of Y and Z along Y ∩Z in the category of schemes
by Morphisms, Lemma 4.6. Choose a scheme T ′ and a surjective étale morphism
T ′ → T . Set Y ′ = T ′×T,f Y and Z ′ = T ′×T,g Z. Then Y ′ and Z ′ are schemes and
we have a canonical isomorphism φ : Y ′ ×Y (Y ∩ Z)→ Z ′ ×Z (Y ∩ Z) of schemes.
By More on Morphisms, Lemma 67.8 the pushout W ′ = Y ′⨿Y ′×Y (Y ∩Z),φ Z

′ exists
in the category of schemes. The morphism W ′ → Y ∪ Z is étale by More on
Morphisms, Lemma 67.9. It is surjective as Y ′ → Y and Z ′ → Z are surjective.
The morphisms f ′ : Y ′ → T ′ and g′ : Z ′ → T ′ glue to a unique morphism of
schemes h′ : W ′ → T ′. By uniqueness the composition W ′ → T ′ → T descends to
the desired morphism h : Y ∪ Z → T . Some details omitted. □

15. Supports of modules

07TX In this section we collect some elementary results on supports of quasi-coherent
modules on algebraic spaces. Let X be an algebraic space. The support of an
abelian sheaf on Xétale has been defined in Properties of Spaces, Section 20. We
use the same definition for supports of modules. The following lemma tells us this
agrees with the notion as defined for quasi-coherent modules on schemes.

Lemma 15.1.07TY Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX-module. Let U be a scheme and let φ : U → X be an étale
morphism. Then

Supp(φ∗F) = |φ|−1(Supp(F))
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where the left hand side is the support of φ∗F as a quasi-coherent module on the
scheme U .

Proof. Let u ∈ U be a (usual) point and let x be a geometric point lying over
u. By Properties of Spaces, Lemma 29.4 we have (φ∗F)u ⊗OU,u

OX,x = Fx. Since
OU,u → OX,x is the strict henselization by Properties of Spaces, Lemma 22.1 we
see that it is faithfully flat (see More on Algebra, Lemma 45.1). Thus we see that
(φ∗F)u = 0 if and only if Fx = 0. This proves the lemma. □

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 15.2.07TZ Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type quasi-coherent OX-module. Then

(1) The support of F is closed.
(2) For a geometric point x lying over x ∈ |X| we have

x ∈ Supp(F)⇔ Fx ̸= 0⇔ Fx ⊗OX,x
κ(x) ̸= 0.

(3) For any morphism of algebraic spaces f : Y → X the pullback f∗F is of
finite type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Choose a scheme U and a surjective étale morphism φ : U → X. By
Lemma 15.1 the inverse image of the support of F is the support of φ∗F which
is closed by Morphisms, Lemma 5.3. Thus (1) follows from the definition of the
topology on |X|.

The first equivalence in (2) is the definition of support. The second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma 20.1.

Let f : Y → X be as in (3). Note that f∗F is of finite type by Properties of Spaces,
Section 30. For the final assertion, let y be a geometric point of Y mapping to the
geometric point x on X. Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Properties of Spaces, Lemma 29.5. Hence (f∗F)y⊗κ(y) is nonzero if and only if
Fx⊗κ(x) is nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F),
which is the content of assertion (3). □

Our next task is to show that the scheme theoretic support of a finite type quasi-
coherent module (see Morphisms, Definition 5.5) also makes sense for finite type
quasi-coherent modules on algebraic spaces.

Lemma 15.3.07U0 Let S be a scheme. Let X be an algebraic space over S. Let F
be a finite type quasi-coherent OX-module. There exists a smallest closed subspace
i : Z → X such that there exists a quasi-coherent OZ-module G with i∗G ∼= F .
Moreover:

(1) If U is a scheme and φ : U → X is an étale morphism then Z ×X U is the
scheme theoretic support of φ∗F .

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is |Z|.
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Proof. Choose a scheme U and a surjective étale morphism φ : U → X. Let
R = U ×X U with projections s, t : R → U . Let i′ : Z ′ → U be the scheme
theoretic support of φ∗F and let G′ be the (unique up to unique isomorphism)
finite type quasi-coherent OZ′ -module with i′∗G′ = φ∗F , see Morphisms, Lemma
5.4. As s∗φ∗F = t∗φ∗F we see that R′ = s−1Z ′ = t−1Z ′ as closed subschemes of
R by Morphisms, Lemma 25.14. Thus we may apply Properties of Spaces, Lemma
12.2 to find a closed subspace i : Z → X whose pullback to U is Z ′. Writing
s′, t′ : R′ → Z ′ the projections and j′ : R′ → R the given closed immersion, we see
that

j′
∗(s′)∗G′ = s∗i′∗G′ = s∗φ∗F = t∗φ∗F = t∗i′∗G′ = j′

∗(t′)∗G′

(the first and the last equality by Cohomology of Schemes, Lemma 5.2). Hence the
uniqueness of Morphisms, Lemma 25.14 applied to R′ → R gives an isomorphism
α : (t′)∗G′ → (s′)∗G′ compatible with the canonical isomorphism t∗φ∗F = s∗φ∗F
via j′

∗. Clearly α satisfies the cocycle condition, hence we may apply Properties of
Spaces, Proposition 32.1 to obtain a quasi-coherent module G on Z whose restriction
to Z ′ is G′ compatible with α. Again using the equivalence of the proposition
mentioned above (this time for X) we conclude that i∗G ∼= F .

This proves existence. The other properties of the lemma follow by comparing with
the result for schemes using Lemma 15.1. Detailed proofs omitted. □

Definition 15.4.07U1 Let S be a scheme. Let X be an algebraic space over S. Let F
be a finite type quasi-coherent OX -module. The scheme theoretic support of F is
the closed subspace Z ⊂ X constructed in Lemma 15.3.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 14.1).

16. Scheme theoretic image

082W Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 16.1.082X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. There exists a closed subspace Z ⊂ Y such that f factors through Z
and such that for any other closed subspace Z ′ ⊂ Y such that f factors through Z ′

we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z to
be the closed subscheme determined by I, see Lemma 13.1. In general the lemma
requires us to show that there exists a largest quasi-coherent sheaf of ideals I ′

contained in I. This follows from Lemma 14.2. □

Suppose that in the situation of Lemma 16.1 above X and Y are representable.
Then the closed subspace Z ⊂ Y found in the lemma agrees with the closed
subscheme Z ⊂ Y found in Morphisms, Lemma 6.1. The reason is that closed
subspaces (or subschemes) are in a inclusion reversing correspondence with quasi-
coherent ideal sheaves on Xétale and X. As the category of quasi-coherent modules
on Xétale and X are the same (Properties of Spaces, Section 29) we conclude. Thus
the following definition agrees with the earlier definition for morphisms of schemes.
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Definition 16.2.082Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The scheme theoretic image of f is the smallest closed subspace
Z ⊂ Y through which f factors, see Lemma 16.1 above.

We often just denote f : X → Z the factorization of f . If the morphism f is not
quasi-compact, then (in general) the construction of the scheme theoretic image
does not commute with restriction to open subspaces of Y .

Lemma 16.3.082Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let Z ⊂ Y be the scheme theoretic image of f . If f is quasi-compact
then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subspace corresponding to I,
(3) for any étale morphism V → Y the scheme theoretic image of X×Y V → V

is equal to Z ×Y V , and
(4) the image |f |(|X|) ⊂ |Z| is a dense subset of |Z|.

Proof. To prove (3) it suffices to prove (1) and (2) since the formation of I com-
mutes with étale localization. If (1) holds then in the proof of Lemma 16.1 we
showed (2). Let us prove that I is quasi-coherent. Since the property of being
quasi-coherent is étale local we may assume Y is an affine scheme. As f is quasi-
compact, we can find an affine scheme U and a surjective étale morphism U → X.
Denote f ′ the composition U → X → Y . Then f∗OX is a subsheaf of f ′

∗OU , and
hence I = Ker(OY → OX′). By Lemma 11.2 the sheaf f ′

∗OU is quasi-coherent
on Y . Hence I is quasi-coherent as a kernel of a map between coherent modules.
Finally, part (4) follows from parts (1), (2), and (3) as the ideal I will be the unit
ideal in any point of |Y | which is not contained in the closure of |f |(|X|). □

Lemma 16.4.0830 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X is reduced. Then

(1) the scheme theoretic image Z of f is the reduced induced algebraic space
structure on |f |(|X|), and

(2) for any étale morphism V → Y the scheme theoretic image of X×Y V → V
is equal to Z ×Y V .

Proof. Part (1) is true because the reduced induced algebraic space structure on
|f |(|X|) is the smallest closed subspace of Y through which f factors, see Properties
of Spaces, Lemma 12.4. Part (2) follows from (1), the fact that |V | → |Y | is open,
and the fact that being reduced is preserved under étale localization. □

Lemma 16.5.089B Let S be a scheme. Let f : X → Y be a quasi-compact morphism
of algebraic spaces over S. Let Z be the scheme theoretic image of f . Let z ∈ |Z|.
There exists a valuation ring A with fraction field K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z.
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Proof. Choose an affine scheme V with a point z′ ∈ V and an étale morphism
V → Y mapping z′ to z. Let Z ′ ⊂ V be the scheme theoretic image of X×Y V → V .
By Lemma 16.3 we have Z ′ = Z ×Y V . Thus z′ ∈ Z ′. Since f is quasi-compact
and V is affine we see that X ×Y V is quasi-compact. Hence there exists an affine
scheme W and a surjective étale morphism W → X ×Y V . Then Z ′ ⊂ V is also
the scheme theoretic image of W → V . By Morphisms, Lemma 6.5 we can choose
a diagram

Spec(K) //

��

W //

��

X ×Y V

��

// X

��
Spec(A) // Z ′ // V // Y

such that the closed point of Spec(A) maps to z′. Composing with Z ′ → Z and
W → X ×Y V → X we obtain a solution. □

Lemma 16.6.0CP2 Let S be a scheme. Let

X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of algebraic spaces over S. Let Zi ⊂ Yi, i = 1, 2 be the
scheme theoretic image of fi. Then the morphism Y1 → Y2 induces a morphism
Z1 → Z2 and a commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subspace of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. □

Lemma 16.7.0CP3 Let S be a scheme. Let f : X → Y be a separated morphism
of algebraic spaces over S. Let V ⊂ Y be an open subspace such that V → Y is
quasi-compact. Let s : V → X be a morphism such that f ◦ s = idV . Let Y ′ be the
scheme theoretic image of s. Then Y ′ → Y is an isomorphism over V .
Proof. By Lemma 8.9 the morphism s : V → X is quasi-compact. Hence the
construction of the scheme theoretic image Y ′ of s commutes with restriction to
opens by Lemma 16.3. In particular, we see that Y ′∩f−1(V ) is the scheme theoretic
image of a section of the separated morphism f−1(V ) → V . Since a section of a
separated morphism is a closed immersion (Lemma 4.7), we conclude that Y ′ ∩
f−1(V )→ V is an isomorphism as desired. □

17. Scheme theoretic closure and density

0831 This section is the analogue of Morphisms, Section 7.
Lemma 17.1.0832 Let S be a scheme. Let W ⊂ S be a scheme theoretically dense
open subscheme (Morphisms, Definition 7.1). Let f : X → S be a morphism of
schemes which is flat, locally of finite presentation, and locally quasi-finite. Then
f−1(W ) is scheme theoretically dense in X.
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Proof. We will use the characterization of Morphisms, Lemma 7.5. Assume V ⊂ X
is an open and g ∈ Γ(V,OV ) is a function which restricts to zero on f−1(W ) ∩ V .
We have to show that g = 0. Assume g ̸= 0 to get a contradiction. By More
on Morphisms, Lemma 45.6 we may shrink V , find an open U ⊂ S fitting into a
commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V . Say (g1, . . . , gr) ∈ Γ(U,F⊕r) maps
to g. Then we see that gi|W ∩U = 0 because g|f−1W ∩V = 0. Hence gi = 0 because
F ⊂ OU and W is scheme theoretically dense in S. This implies g = 0 which is the
desired contradiction. □

Lemma 17.2.0833 Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X
be an open subspace. The following are equivalent

(1) for every étale morphism φ : V → X (of algebraic spaces) the scheme
theoretic closure of φ−1(U) in V is equal to V ,

(2) there exists a scheme V and a surjective étale morphism φ : V → X such
that the scheme theoretic closure of φ−1(U) in V is equal to V ,

Proof. Observe that if V → V ′ is a morphism of algebraic spaces étale over X,
and Z ⊂ V , resp. Z ′ ⊂ V ′ is the scheme theoretic closure of U ×X V , resp. U ×X V ′

in V , resp. V ′, then Z maps into Z ′. Thus if V → V ′ is surjective and étale then
Z = V implies Z ′ = V ′. Next, note that an étale morphism is flat, locally of finite
presentation, and locally quasi-finite (see Morphisms, Section 36). Thus Lemma
17.1 implies that if V and V ′ are schemes, then Z ′ = V ′ implies Z = V . A formal
argument using that every algebraic space has an étale covering by a scheme shows
that (1) and (2) are equivalent. □

It follows from Lemma 17.2 that the following definition is compatible with the
definition in the case of schemes.

Definition 17.3.0834 Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace.

(1) The scheme theoretic image of the morphism U → X is called the scheme
theoretic closure of U in X.

(2) We say U is scheme theoretically dense in X if the equivalent conditions of
Lemma 17.2 are satisfied.

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X. This is somewhat inelegant.
But with suitable finiteness conditions we will see that it does hold.

Lemma 17.4.0835 Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X
be an open subspace. If U → X is quasi-compact, then U is scheme theoretically
dense in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma 16.3 part (3). □
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Lemma 17.5.0836 Let S be a scheme. Let j : U → X be an open immersion of
algebraic spaces over S. Then U is scheme theoretically dense in X if and only if
OX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
algebraic space V étale over X. Hence the scheme theoretic closure of U ×X V in
V is equal to V , see proof of Lemma 16.1. Conversely, assume the scheme theoretic
closure of U ×X V is equal to V for all V étale over X. Suppose that OX → j∗OU

is not injective. Then we can find an affine, say V = Spec(A), étale over X and
a nonzero element f ∈ A such that f maps to zero in Γ(V ×X U,O). In this case
the scheme theoretic closure of V ×X U in V is clearly contained in Spec(A/(f)) a
contradiction. □

Lemma 17.6.0837 Let S be a scheme. Let X be an algebraic space over S. If U , V
are scheme theoretically dense open subspaces of X, then so is U ∩ V .

Proof. Let W → X be any étale morphism. Consider the map O(W )→ O(W ×X

V ) → O(W ×X (V ∩ U)). By Lemma 17.5 both maps are injective. Hence the
composite is injective. Hence by Lemma 17.5 U ∩ V is scheme theoretically dense
in X. □

Lemma 17.7.088G Let S be a scheme. Let h : Z → X be an immersion of algebraic
spaces over S. Assume either Z → X is quasi-compact or Z is reduced. Let
Z ⊂ X be the scheme theoretic image of h. Then the morphism Z → Z is an open
immersion which identifies Z with a scheme theoretically dense open subspace of
Z. Moreover, Z is topologically dense in Z.

Proof. In both cases the formation of Z commutes with étale localization, see
Lemmas 16.3 and 16.4. Hence this lemma follows from the case of schemes, see
Morphisms, Lemma 7.7. □

Lemma 17.8.084N Let S be a scheme. Let B be an algebraic space over S. Let
f, g : X → Y be morphisms of algebraic spaces over B. Let U ⊂ X be an open
subspace such that f |U = g|U . If the scheme theoretic closure of U in X is X and
Y → B is separated, then f = g.

Proof. As Y → B is separated the fibre product Y ×∆,Y ×BY,(f,g) X is a closed
subspace Z ⊂ X. As f |U = g|U we see that U ⊂ Z. Hence Z = X as U is assumed
scheme theoretically dense in X. □

18. Dominant morphisms

0ABK We copy the definition of a dominant morphism of schemes to get the notion of a
dominant morphism of algebraic spaces. We caution the reader that this definition
is not well behaved unless the morphism is quasi-compact and the algebraic spaces
satisfy some separation axioms.

Definition 18.1.0ABL Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is called dominant if the image of |f | : |X| → |Y | is dense in |Y |.
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19. Universally injective morphisms

03MT We have already defined in Section 3 what it means for a representable morphism of
algebraic spaces to be universally injective. For a field K over S (recall this means
that we are given a structure morphism Spec(K) → S) and an algebraic space X
over S we write X(K) = MorS(Spec(K), X). We first translate the condition for
representable morphisms into a condition on the functor of points.

Lemma 19.1.03MU Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is universally injective (in the sense of Section
3) if and only if for all fields K the map X(K)→ Y (K) is injective.

Proof. We are going to use Morphisms, Lemma 10.2 without further mention.
Suppose that f is universally injective. Then for any field K and any morphism
Spec(K) → Y the morphism of schemes Spec(K) ×Y X → Spec(K) is universally
injective. Hence there exists at most one section of the morphism Spec(K)×Y X →
Spec(K). Hence the map X(K)→ Y (K) is injective. Conversely, suppose that for
every field K the map X(K)→ Y (K) is injective. Let T → Y be a morphism from
a scheme into Y , and consider the base change fT : T ×Y X → T . For any field K
we have

(T ×Y X)(K) = T (K)×Y (K) X(K)
by definition of the fibre product, and hence the injectivity of X(K)→ Y (K) guar-
antees the injectivity of (T ×Y X)(K)→ T (K) which means that fT is universally
injective as desired. □

Next, we translate the property that the transformation between field valued points
is injective into something more geometric.

Lemma 19.2.040X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) the map X(K)→ Y (K) is injective for every field K over S
(2) for every morphism Y ′ → Y of algebraic spaces over S the induced map
|Y ′ ×Y X| → |Y ′| is injective, and

(3) the diagonal morphism X → X ×Y X is surjective.

Proof. Assume (1). Let g : Y ′ → Y be a morphism of algebraic spaces, and
denote f ′ : Y ′ ×Y X → Y ′ the base change of f . Let Ki, i = 1, 2 be fields and let
φi : Spec(Ki) → Y ′ ×Y X be morphisms such that f ′ ◦ φ1 and f ′ ◦ φ2 define the
same element of |Y ′|. By definition this means there exists a field Ω and embeddings
αi : Ki ⊂ Ω such that the two morphisms f ′ ◦ φi ◦ αi : Spec(Ω) → Y ′ are equal.
Here is the corresponding commutative diagram

Spec(Ω)

..

α1

&&

α2
// Spec(K2)

φ2

&&
Spec(K1) φ1 // Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y.

In particular the compositions g ◦ f ′ ◦ φi ◦ αi are equal. By assumption (1) this
implies that the morphism g′ ◦ φi ◦ αi are equal, where g′ : Y ′ ×Y X → X is the
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projection. By the universal property of the fibre product we conclude that the
morphisms φi ◦αi : Spec(Ω)→ Y ′×Y X are equal. In other words φ1 and φ2 define
the same point of Y ′ ×Y X. We conclude that (2) holds.
Assume (2). Let K be a field over S, and let a, b : Spec(K)→ X be two morphisms
such that f ◦a = f ◦b. Denote c : Spec(K)→ Y the common value. By assumption
|Spec(K)×c,Y X| → |Spec(K)| is injective. This means there exists a field Ω and
embeddings αi : K → Ω such that

Spec(Ω)
α1

//

α2

��

Spec(K)

a

��
Spec(K) b // Spec(K)×c,Y X

is commutative. Composing with the projection to Spec(K) we see that α1 = α2.
Denote the common value α. Then we see that {α : Spec(Ω) → Spec(K)} is a
fpqc covering of Spec(K) such that the two morphisms a, b become equal on the
members of the covering. By Properties of Spaces, Proposition 17.1 we conclude
that a = b. We conclude that (1) holds.
Assume (3). Let x, x′ ∈ |X| be a pair of points such that f(x) = f(x′) in |Y |.
By Properties of Spaces, Lemma 4.3 we see there exists a x′′ ∈ |X ×Y X| whose
projections are x and x′. By assumption and Properties of Spaces, Lemma 4.4 there
exists a x′′′ ∈ |X| with ∆X/Y (x′′′) = x′′. Thus x = x′. In other words f is injective.
Since condition (3) is stable under base change we see that f satisfies (2).
Assume (2). Then in particular |X ×Y X| → |X| is injective which implies imme-
diately that |∆X/Y | : |X| → |X ×Y X| is surjective, which implies that ∆X/Y is
surjective by Properties of Spaces, Lemma 4.4. □

By the two lemmas above the following definition does not conflict with the already
defined notion of a universally injective representable morphism of algebraic spaces.

Definition 19.3.03MV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is universally injective if for every morphism Y ′ → Y the
induced map |Y ′ ×Y X| → |Y ′| is injective.

To be sure this means that any or all of the equivalent conditions of Lemma 19.2
hold.

Remark 19.4.05VS A universally injective morphism of schemes is separated, see
Morphisms, Lemma 10.3. This is not the case for morphisms of algebraic spaces.
Namely, the algebraic space X = A1

k/{x ∼ −x | x ̸= 0} constructed in Spaces,
Example 14.1 comes equipped with a morphism X → A1

k which maps the point
with coordinate x to the point with coordinate x2. This is an isomorphism away
from 0, and there is a unique point of X lying above 0. As X isn’t separated this
is a universally injective morphism of algebraic spaces which is not separated.

Lemma 19.5.03MW The base change of a universally injective morphism is universally
injective.

Proof. Omitted. Hint: This is formal. □

Lemma 19.6.03MX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

https://stacks.math.columbia.edu/tag/03MV
https://stacks.math.columbia.edu/tag/05VS
https://stacks.math.columbia.edu/tag/03MW
https://stacks.math.columbia.edu/tag/03MX


MORPHISMS OF ALGEBRAIC SPACES 38

(1) f is universally injective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is universally injective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is universally injective,
(4) there exists a scheme Z and a surjective morphism Z → Y such that Z ×Y

X → Z is universally injective, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally injective.

Proof. We will use that being universally injective is preserved under base change
(Lemma 19.5) without further mention in this proof. It is clear that (1) ⇒ (2) ⇒
(3) ⇒ (4).
Assume g : Z → Y as in (4). Let y : Spec(K) → Y be a morphism from the
spectrum of a field into Y . By assumption we can find an extension field α : K ⊂ K ′

and a morphism z : Spec(K ′) → Z such that y ◦ α = g ◦ z (with obvious abuse
of notation). By assumption the morphism Z ×Y X → Z is universally injective,
hence there is at most one lift of g ◦z : Spec(K ′)→ Y to a morphism into X. Since
{α : Spec(K ′) → Spec(K)} is a fpqc covering this implies there is at most one lift
of y : Spec(K) → Y to a morphism into X, see Properties of Spaces, Proposition
17.1. Thus we see that (1) holds.
We omit the verification that (5) is equivalent to (1). □

Lemma 19.7.03MY A composition of universally injective morphisms is universally
injective.

Proof. Omitted. □

20. Affine morphisms

03WD We have already defined in Section 3 what it means for a representable morphism
of algebraic spaces to be affine.

Lemma 20.1.03WE Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is affine (in the sense of Section 3) if and only
if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is affine.

Proof. This follows directly from the definition of an affine morphism of schemes
(Morphisms, Definition 11.1). □

This clears the way for the following definition.

Definition 20.2.03WF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is affine if for every affine scheme Z and morphism Z → Y
the algebraic space X ×Y Z is representable by an affine scheme.

Lemma 20.3.03WG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and affine,
(2) f is affine,
(3) for every affine scheme V and étale morphism V → Y the scheme X ×Y V

is affine,
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(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is affine, and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is affine.

Proof. It is clear that (1) implies (2), that (2) implies (3), and that (3) implies (4)
by taking V to be a disjoint union of affines étale over Y , see Properties of Spaces,
Lemma 6.1. Assume V → Y is as in (4). Then for every affine open W of V we see
that W ×Y X is an affine open of V ×Y X. Hence by Properties of Spaces, Lemma
13.1 we conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V
is affine. This means we can apply Spaces, Lemma 11.5 because the class of affine
morphisms satisfies all the required properties (see Morphisms, Lemmas 11.8 and
Descent, Lemmas 23.18 and 37.1). The conclusion of applying this lemma is that
f is representable and affine, i.e., (1) holds.

The equivalence of (1) and (5) follows from the fact that being affine is Zariski local
on the target (the reference above shows that being affine is in fact fpqc local on
the target). □

Lemma 20.4.03WH The composition of affine morphisms is affine.

Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 20.5.03WI The base change of an affine morphism is affine.

Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 20.6.07U2 A closed immersion is affine.

Proof. Follows immediately from the corresponding statement for morphisms of
schemes, see Morphisms, Lemma 11.9. □

Lemma 20.7.081V Let S be a scheme. Let X be an algebraic space over S. There is
an anti-equivalence of categories

algebraic spaces
affine over X ←→ quasi-coherent sheaves

of OX-algebras
which associates to f : Y → X the sheaf f∗OY . Moreover, this equivalence is
compatible with arbitrary base change.

Proof. This lemma is the analogue of Morphisms, Lemma 11.5. Let A be a quasi-
coherent sheaf of OX -algebras. We will construct an affine morphism of algebraic
spaces π : Y = Spec

X
(A) → X with π∗OY

∼= A. To do this, choose a scheme U
and a surjective étale morphism φ : U → X. As usual denote R = U ×X U with
projections s, t : R→ U . Denote ψ : R→ X the composition ψ = φ ◦ s = φ ◦ t. By
the aforementioned lemma there exists an affine morphisms of schemes π0 : V → U
and π1 : W → R with π0,∗OV

∼= φ∗A and π1,∗OW
∼= ψ∗A. Since the construction

is compatible with base change there exist morphisms s′, t′ : W → V such that the
diagrams

W
s′
//

��

V

��
R

s // U

and

W
t′
//

��

V

��
R

t // U
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are cartesian. It follows that s′, t′ are étale. It is a formal consequence of the above
that (t′, s′) : W → V ×S V is a monomorphism. We omit the verification that
W → V ×S V is an equivalence relation (hint: think about the pullback of A to
U ×X U ×X U = R ×s,U,t R). The quotient sheaf Y = V/W is an algebraic space,
see Spaces, Theorem 10.5. By Groupoids, Lemma 20.7 we see that Y ×X U ∼= V .
Hence Y → X is affine by Lemma 20.3. Finally, the isomorphism of

(Y ×X U → U)∗OY ×X U = π0,∗OV
∼= φ∗A

is compatible with glueing isomorphisms, whence (Y → X)∗OY
∼= A by Properties

of Spaces, Proposition 32.1. We omit the verification that this construction is
compatible with base change. □

Definition 20.8.081W Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf ofOX -algebras. The relative spectrum of A over X, or simply
the spectrum of A over X is the affine morphism Spec(A) → X corresponding to
A under the equivalence of categories of Lemma 20.7.
Forming the relative spectrum commutes with arbitrary base change.
Remark 20.9.081X Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Then f has a canonical
factorization

Y −→ Spec
X

(f∗OY ) −→ X

This makes sense because f∗OY is quasi-coherent by Lemma 11.2. The morphism
Y → Spec

X
(f∗OY ) comes from the canonical OY -algebra map f∗f∗OY → OY

which corresponds to a canonical morphism Y → Y ×X Spec
X

(f∗OY ) over Y (see
Lemma 20.7) whence a factorization of f as above.
Lemma 20.10.08AI Let S be a scheme. Let f : Y → X be an affine morphism
of algebraic spaces over S. Let A = f∗OY . The functor F 7→ f∗F induces an
equivalence of categories{

category of quasi-coherent
OY -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OX-module if and only if it is
quasi-coherent as an A-module.
Proof. Omitted. □

Lemma 20.11.08GB Let S be a scheme. Let B be an algebraic space over S. Suppose
g : X → Y is a morphism of algebraic spaces over B.

(1) If X is affine over B and ∆ : Y → Y ×B Y is affine, then g is affine.
(2) If X is affine over B and Y is separated over B, then g is affine.
(3) A morphism from an affine scheme to an algebraic space with affine diag-

onal over Z (as in Properties of Spaces, Definition 3.1) is affine.
(4) A morphism from an affine scheme to a separated algebraic space is affine.

Proof. Proof of (1). The base change X ×B Y → Y is affine by Lemma 20.5. The
morphism (1, g) : X → X×BY is the base change of Y → Y ×BY by the morphism
X ×B Y → Y ×B Y . Hence it is affine by Lemma 20.5. The composition of affine
morphisms is affine (see Lemma 20.4) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 20.6) and Y/B separated means ∆ is a
closed immersion. Parts (3) and (4) are special cases of (1) and (2). □
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Lemma 20.12.09TF Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let A be an Artinian ring. Any morphism Spec(A)→ X is affine.

Proof. Let U → X be an étale morphism with U affine. To prove the lemma
we have to show that Spec(A) ×X U is affine, see Lemma 20.3. Since X is quasi-
separated the scheme Spec(A) ×X U is quasi-compact. Moreover, the projection
morphism Spec(A) ×X U → Spec(A) is étale. Hence this morphism has finite
discrete fibers and moreover the topology on Spec(A) is discrete. Thus Spec(A)×X

U is a scheme whose underlying topological space is a finite discrete set. We are
done by Schemes, Lemma 11.8. □

21. Quasi-affine morphisms

03WJ We have already defined in Section 3 what it means for a representable morphism
of algebraic spaces to be quasi-affine.

Lemma 21.1.03WK Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is quasi-affine (in the sense of Section 3) if
and only if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is
quasi-affine.

Proof. This follows directly from the definition of a quasi-affine morphism of
schemes (Morphisms, Definition 13.1). □

This clears the way for the following definition.

Definition 21.2.03WL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-affine if for every affine scheme Z and morphism
Z → Y the algebraic space X ×Y Z is representable by a quasi-affine scheme.

Lemma 21.3.03WM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and quasi-affine,
(2) f is quasi-affine,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is quasi-affine, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-affine.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a
disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume
V → Y is as in (3). Then for every affine open W of V we see that W ×Y X
is a quasi-affine open of V ×Y X. Hence by Properties of Spaces, Lemma 13.1
we conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V
is quasi-affine. This means we can apply Spaces, Lemma 11.5 because the class of
quasi-affine morphisms satisfies all the required properties (see Morphisms, Lemmas
13.5 and Descent, Lemmas 23.20 and 38.1). The conclusion of applying this lemma
is that f is representable and quasi-affine, i.e., (1) holds.
The equivalence of (1) and (4) follows from the fact that being quasi-affine is Zariski
local on the target (the reference above shows that being quasi-affine is in fact fpqc
local on the target). □

Lemma 21.4.03WN The composition of quasi-affine morphisms is quasi-affine.
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Proof. Omitted. □

Lemma 21.5.03WO The base change of a quasi-affine morphism is quasi-affine.

Proof. Omitted. □

Lemma 21.6.086S Let S be a scheme. A quasi-compact and quasi-separated mor-
phism of algebraic spaces f : Y → X is quasi-affine if and only if the canonical
factorization Y → Spec

X
(f∗OY ) (Remark 20.9) is an open immersion.

Proof. Let U → X be a surjective morphism where U is a scheme. Since we may
check whether f is quasi-affine after base change to U (Lemma 21.3), since f∗OY |V
is equal to (Y ×X U → U)∗OY ×X U (Properties of Spaces, Lemma 26.2), and since
formation of relative spectrum commutes with base change (Lemma 20.7), we see
that the assertion reduces to the case that X is a scheme. If X is a scheme and
either f is quasi-affine or Y → Spec

X
(f∗OY ) is an open immersion, then Y is a

scheme as well. Thus we reduce to Morphisms, Lemma 13.3. □

22. Types of morphisms étale local on source-and-target

03MI Given a property of morphisms of schemes which is étale local on the source-and-
target, see Descent, Definition 32.3 we may use it to define a corresponding property
of morphisms of algebraic spaces, namely by imposing either of the equivalent
conditions of the lemma below.

Lemma 22.1.03MJ Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Consider commutative diagrams

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes and the vertical arrows are étale. The following are
equivalent

(1) for any diagram as above the morphism h has property P, and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P.
If X and Y are representable, then this is also equivalent to f (as a morphism of
schemes) having property P. If P is also preserved under any base change, and
fppf local on the base, then for representable morphisms f this is also equivalent to
f having property P in the sense of Section 3.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is
immediate (taking into account Spaces, Lemma 11.6). Assume

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y
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are two diagrams as in the lemma. Assume U → X is surjective and h has property
P. To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the diagram

U

h

��

U ×X U ′oo

(h,h′)
��

// U ′

h′

��
V V ×Y V ′oo // V ′

By Descent, Lemma 32.5 we see that h has P implies (h, h′) has P and since
U ×X U ′ → U ′ is surjective this implies (by the same lemma) that h′ has P.

If X and Y are representable, then Descent, Lemma 32.5 applies which shows that
(1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property P.
The left vertical arrow is étale and surjective and the right vertical arrow is étale.
Thus Descent, Lemma 32.5 once again kicks in and shows that Z ×Y X → Z has
property P. □

Definition 22.2.04RD Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. We say a morphism f : X → Y of
algebraic spaces over S has property P if the equivalent conditions of Lemma 22.1
hold.

Here are a couple of obvious remarks.

Remark 22.3.0AML Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable un-
der compositions. Then the class of morphisms of algebraic spaces having property
P is stable under composition.

Remark 22.4.0AMM Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable
under base change. Then the class of morphisms of algebraic spaces having property
P is stable under base change.

Given a property of morphisms of germs of schemes which is étale local on the
source-and-target, see Descent, Definition 33.1 we may use it to define a correspond-
ing property of morphisms of algebraic spaces at a point, namely by imposing either
of the equivalent conditions of the lemma below.

Lemma 22.5.04NC Let Q be a property of morphisms of germs which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
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algebraic spaces over S. Let x ∈ |X| be a point of X. Consider the diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

where U and V are schemes, a, b are étale, and u, v, x, y are points of the corre-
sponding spaces. The following are equivalent

(1) for any diagram as above we have Q((U, u)→ (V, v)), and
(2) for some diagram as above we have Q((U, u)→ (V, v)).

If X and Y are representable, then this is also equivalent to Q((X,x)→ (Y, y)).

Proof. Omitted. Hint: Very similar to the proof of Lemma 22.1. □

Definition 22.6.04RE Let Q be a property of morphisms of germs of schemes which
is étale local on the source-and-target. Let S be a scheme. Given a morphism
f : X → Y of algebraic spaces over S and a point x ∈ |X| we say that f has
property Q at x if the equivalent conditions of Lemma 22.5 hold.

The following lemma should not be used blindly to go from a property of morphisms
to a property of morphisms at a point. For example if P is the property of being
flat, then the property Q in the following lemma means “f is flat in an open
neighbourhood of x” which is not the same as “f is flat at x”.

Lemma 22.7.04RF Let P be a property of morphisms of schemes which is étale local on
the source-and-target. Consider the property Q of morphisms of germs associated
to P in Descent, Lemma 33.2. Then

(1) Q is étale local on the source-and-target.
(2) given a morphism of algebraic spaces f : X → Y and x ∈ |X| the following

are equivalent
(a) f has Q at x, and
(b) there is an open neighbourhood X ′ ⊂ X of x such that X ′ → Y has P.

(3) given a morphism of algebraic spaces f : X → Y the following are equiva-
lent:
(a) f has P,
(b) for every x ∈ |X| the morphism f has Q at x.

Proof. See Descent, Lemma 33.2 for (1). The implication (1)(a) ⇒ (2)(b) follows
on letting X ′ = a(U) ⊂ X given a diagram as in Lemma 22.5. The implication
(2)(b) ⇒ (1)(a) is clear. The equivalence of (3)(a) and (3)(b) follows from the
corresponding result for morphisms of schemes, see Descent, Lemma 33.3. □

Remark 22.8.04RG We will apply Lemma 22.7 above to all cases listed in Descent,
Remark 32.7 except “flat”. In each case we will do this by defining f to have
property P at x if f has P in a neighbourhood of x.

23. Morphisms of finite type

03XE The property “locally of finite type” of morphisms of schemes is étale local on the
source-and-target, see Descent, Remark 32.7. It is also stable under base change
and fpqc local on the target, see Morphisms, Lemma 15.4, and Descent, Lemmas
23.10. Hence, by Lemma 22.1 above, we may define what it means for a morphism
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of algebraic spaces to be locally of finite type as follows and it agrees with the
already existing notion defined in Section 3 when the morphism is representable.

Definition 23.1.03XF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f locally of finite type if the equivalent conditions of Lemma 22.1
hold with P = locally of finite type.

(2) Let x ∈ |X|. We say f is of finite type at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite type.

(3) We say f is of finite type if it is locally of finite type and quasi-compact.

Consider the algebraic space A1
k/Z of Spaces, Example 14.8. The morphism A1

k/Z→
Spec(k) is of finite type.

Lemma 23.2.03XG The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. See Remark 22.3 and Morphisms, Lemma 15.3. □

Lemma 23.3.03XH A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. See Remark 22.4 and Morphisms, Lemma 15.4. □

Lemma 23.4.040Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite type,
(2) for every x ∈ |X| the morphism f is of finite type at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite type,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally of finite type,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite type,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally of finite type,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite type,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, U → X is surjective,
and the top horizontal arrow is locally of finite type, and
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(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is locally of finite type.

Proof. Each of the conditions (2), (3), (4), (5), (6), (7), and (9) imply condition
(8) in a straightforward manner. For example, if (5) holds, then we can choose a
scheme V which is a disjoint union of affines and a surjective morphism V → Y
(see Properties of Spaces, Lemma 6.1). Then V ×Y X → V is locally of finite type
by (5). Choose a scheme U and a surjective étale morphism U → V ×Y X. Then
U → V is locally of finite type by Lemma 23.2. Hence (8) is true.

The conditions (1), (7), and (8) are equivalent by definition.

To finish the proof, we show that (1) implies all of the conditions (2), (3), (4), (5),
(6), and (9). For (2) this is immediate. For (3), (4), (5), and (9) this follows from
the fact that being locally of finite type is preserved under base change, see Lemma
23.3. For (6) we can take U = X and we’re done. □

Lemma 23.5.04ZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and Y is locally Noetherian, then X is
locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes and the vertical arrows are
surjective étale. If f is locally of finite type, then U → V is locally of finite type. If
Y is locally Noetherian, then V is locally Noetherian. By Morphisms, Lemma 15.6
we see that U is locally Noetherian, which means that X is locally Noetherian. □

Lemma 23.6.0462 Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then f : X → Y
is locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrows are étale and surjective, see Spaces,
Lemma 11.6. At this point we can use Lemma 23.4 and Morphisms, Lemma 15.8
to conclude. □

Lemma 23.7.06ED An immersion is locally of finite type.

Proof. Follows from the general principle Spaces, Lemma 5.8 and Morphisms,
Lemmas 15.5. □
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24. Points and geometric points

0485 In this section we make some remarks on points and geometric points (see Properties
of Spaces, Definition 19.1). One way to think about a geometric point of X is to
consider a geometric point s : Spec(k) → S of S and a lift of s to a morphism x
into X. Here is a diagram

Spec(k)
x
//

s
##

X

��
S.

We often say “let k be an algebraically closed field over S” to indicate that Spec(k)
comes equipped with a morphism Spec(k)→ S. In this situation we write

X(k) = MorS(Spec(k), X) = {x ∈ X lying over s}
for the set of k-valued points of X. In this case the map X(k) → |X| maps into
the subset |Xs| ⊂ |X|. Here Xs = Spec(κ(s)) ×S X, where s ∈ S is the point
corresponding to s. As Spec(κ(s)) → S is a monomorphism, also the base change
Xs → X is a monomorphism, and |Xs| is indeed a subset of |X|.

Lemma 24.1.0487 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. The following are equivalent:

(1) f is surjective, and
(2) for every algebraically closed field k over S the induced map X(k)→ Y (k)

is surjective.

Proof. Choose a diagram
U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 11.6. Since f is locally of finite type we see that U → V is locally of finite
type.
Assume (1) and let y ∈ Y (k). Then U → Y is surjective and locally of finite
type by Lemmas 5.4 and 23.2. Let Z = U ×Y,y Spec(k). This is a scheme. The
projection Z → Spec(k) is surjective and locally of finite type by Lemmas 5.5 and
23.3. It follows from Varieties, Lemma 14.1 that Z has a k valued point z. The
image x ∈ X(k) of z maps to y as desired.
Assume (2). By Properties of Spaces, Lemma 4.4 it suffices to show that |X| → |Y |
is surjective. Let y ∈ |Y |. Choose a u ∈ U mapping to y. Let k ⊃ κ(u) be an
algebraic closure. Denote u ∈ U(k) the corresponding point and y ∈ Y (k) its image.
By assumption there exists a x ∈ X(k) mapping to y. Then it is clear that the
image x ∈ |X| of x maps to y. □

In order to state the next lemma we introduce the following notation. Given a
scheme T we denote

λ(T ) = sup{ℵ0, |κ(t)|; t ∈ T}.
In words λ(T ) is the smallest infinite cardinal bounding all the cardinalities of
residue fields ot T . Note that if R is a ring then the cardinality of any residue
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field κ(p) of R is bounded by the cardinality of R (details omitted). This implies
that λ(T ) ≤ size(T ) where size(T ) is the size of the scheme T as introduced in
Sets, Section 9. If L/K is a finitely generated field extension then |K| ≤ |L| ≤
max{ℵ0, |K|}. It follows that if T ′ → T is a morphism of schemes which is locally
of finite type then λ(T ′) ≤ λ(T ), and if T ′ → T is also surjective then equality
holds. Next, suppose that S is a scheme and that X is an algebraic space over S.
In this case we define

λ(X) := λ(U)
where U is any scheme over S which has a surjective étale morphism towards X.
The reason that this is independent of the choice of U is that given a pair of such
schemes U and U ′ the fibre product U ×X U ′ is a scheme which admits a surjective
étale morphism to both U and U ′, whence λ(U) = λ(U ×X U ′) = λ(U ′) by the
discussion above.

Lemma 24.2.0488 Let S be a scheme. Let X, Y be algebraic spaces over S.
(1) As k ranges over all algebraically closed fields over S the collection of geo-

metric points y ∈ Y (k) cover all of |Y |.
(2) As k ranges over all algebraically closed fields over S with |k| ≥ λ(Y ) and
|k| > λ(X) the geometric points y ∈ Y (k) cover all of |Y |.

(3) For any geometric point s : Spec(k) → S where k has cardinality > λ(X)
the map

X(k) −→ |Xs|
is surjective.

(4) Let X → Y be a morphism of algebraic spaces over S. For any geometric
point s : Spec(k)→ S where k has cardinality > λ(X) the map

X(k) −→ |X| ×|Y | Y (k)
is surjective.

(5) Let X → Y be a morphism of algebraic spaces over S. The following are
equivalent:
(a) the map X → Y is surjective,
(b) for all algebraically closed fields k over S with |k| > λ(X), and |k| ≥

λ(Y ) the map X(k)→ Y (k) is surjective.

Proof. To prove part (1) choose a surjective étale morphism V → Y where V is
a scheme. For each v ∈ V choose an algebraic closure κ(v) ⊂ kv. Consider the
morphisms x : Spec(kv)→ V → Y . By construction of |Y | these cover |Y |.
To prove part (2) we will use the following two facts whose proofs we omit: (i)
If K is a field and K is algebraic closure then |K| ≤ max{ℵ0, |K|}. (ii) For any
algebraically closed field k and any cardinal ℵ, ℵ ≥ |k| there exists an extension of
algebraically closed fields k′/k with |k′| = ℵ. Now we set ℵ = max{λ(X), λ(Y )}+.
Here λ+ > λ indicates the next bigger cardinal, see Sets, Section 6. Now (i) implies
that the fields ku constructed in the first paragraph of the proof all have cardinality
bounded by λ(X). Hence by (ii) we can find extensions ku ⊂ k′

u such that |k′
u| = ℵ.

The morphisms x′ : Spec(k′
u)→ X cover |X| as desired. To really finish the proof

of (2) we need to show that the schemes Spec(k′
u) are (isomorphic to) objects of

Schfppf because our conventions are that all schemes are objects of Schfppf ; the
rest of this paragraph should be skipped by anyone who is not interested in set
theoretical considerations. By construction there exists an object T of Schfppf
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such that λ(X) and λ(Y ) are bounded by size(T ). By our construction of the
category Schfppf in Topologies, Definitions 7.6 as the category Schα constructed in
Sets, Lemma 9.2 we see that any scheme whose size is ≤ size(T )+ is isomorphic to
an object of Schfppf . See the expression for the function Bound in Sets, Equation
(9.1.1). Since ℵ ≤ size(T )+ we conclude.

The notation Xs in part (3) means the fibre product Spec(κ(s))×SX, where s ∈ S is
the point corresponding to s. Hence part (2) follows from (4) with Y = Spec(κ(s)).

Let us prove (4). Let X → Y be a morphism of algebraic spaces over S. Let k be an
algebraically closed field over S of cardinality > λ(X). Let y ∈ Y (k) and x ∈ |X|
which map to the same element y of |Y |. We have to find x ∈ X(k) mapping to x
and y. Choose a commutative diagram

U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 11.6. Choose a u ∈ |U | which maps to x, and denote v ∈ |V | the image.
We will think of u = Spec(κ(u)) and v = Spec(κ(v)) as schemes. Note that V ×Y

Spec(k) is a scheme étale over k. Hence it is a disjoint union of spectra of finite
separable extensions of k, see Morphisms, Lemma 36.7. As v maps to y we see that
v ×Y Spec(k) is a nonempty scheme. As v → V is a monomorphism, we see that
v×Y Spec(k)→ V ×Y Spec(k) is a monomorphism. Hence v×Y Spec(k) is a disjoint
union of spectra of finite separable extensions of k, by Schemes, Lemma 23.11. We
conclude that the morphism v ×Y Spec(k) → Spec(k) has a section, i.e., we can
find a morphism v : Spec(k)→ V lying over v and over y. Finally we consider the
scheme

u×V,v Spec(k) = Spec(κ(u)⊗κ(v) k)
where κ(v)→ k is the field map defining the morphism v. Since the cardinality of k
is larger than the cardinality of κ(u) by assumption we may apply Algebra, Lemma
35.12 to see that any maximal ideal m ⊂ κ(u) ⊗κ(v) k has a residue field which is
algebraic over k and hence equal to k. Such a maximal ideal will hence produce
a morphism u : Spec(k) → U lying over u and mapping to v. The composition
Spec(k) → U → X will be the desired geometric point x ∈ X(k). This concludes
the proof of part (4).

Part (5) is a formal consequence of parts (2) and (4) and Properties of Spaces,
Lemma 4.4. □

25. Points of finite type

06EE Let S be a scheme. Let X be an algebraic space over S. A finite type point
x ∈ |X| is a point which can be represented by a morphism Spec(k)→ X which is
locally of finite type. Finite type points are a suitable replacement of closed points
for algebraic spaces and algebraic stacks. There are always “enough of them” for
example.

Lemma 25.1.06EF Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:
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(1) There exists a morphism Spec(k) → X which is locally of finite type and
represents x.

(2) There exists a scheme U , a closed point u ∈ U , and an étale morphism
φ : U → X such that φ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by the general principle
Spaces, Lemma 5.8 and Morphisms, Lemmas 36.11 and 21.8). Hence we see (1)
holds by Lemma 23.2.

Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective étale morphism where U is a scheme. By assumption
U×X Spec(k)→ U is locally of finite type. Pick a finite type point v of U×X Spec(k)
(there exists at least one, see Morphisms, Lemma 16.4). By Morphisms, Lemma
16.5 the image u ∈ U of v is a finite type point of U . Hence by Morphisms,
Lemma 16.4 after shrinking U we may assume that u is a closed point of U , i.e.,
(2) holds. □

Definition 25.2.06EG Let S be a scheme. Let X be an algebraic space over S. We say
a point x ∈ |X| is a finite type point5 if the equivalent conditions of Lemma 25.1
are satisfied. We denote Xft-pts the set of finite type points of X.

We can describe the set of finite type points as follows.

Lemma 25.3.06EH Let S be a scheme. Let X be an algebraic space over S. We have

Xft-pts =
⋃

φ:U→X étale
|φ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
étale over X or over all affine schemes étale over X.

Proof. Immediate from Lemma 25.1. □

Lemma 25.4.06EI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x :
Spec(k) → X. Then f ◦ x is locally of finite type by Lemma 23.2. Hence f(x) ∈
Yft-pts. □

Lemma 25.5.06EJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 25.4. Let y ∈ |Y | be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic space Xk = Spec(k) ×Y X is nonempty, therefore has
a finite type point x ∈ |Xk| by Lemma 25.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k) → Y (Lemma 23.3). Hence
the image of x in X is a finite type point by Lemma 25.4 which maps to y by
construction. □

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.
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Lemma 25.6.06EK Let S be a scheme. Let X be an algebraic space over S. For any
locally closed subset T ⊂ |X| we have

T ̸= ∅ ⇒ T ∩Xft-pts ̸= ∅.
In particular, for any closed subset T ⊂ |X| we see that T ∩Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induce subspace structure on T , see Remark
12.5. Any immersion is locally of finite type, see Lemma 23.7. Hence by Lemma
25.4 we see Zft-pts ⊂ Xft-pts ∩ T . Finally, any nonempty affine scheme U with an
étale morphism towards Z has at least one closed point. Hence Z has at least one
finite type point by Lemma 25.3. The lemma follows. □

Here is another, more technical, characterization of a finite type point on an alge-
braic space.

Lemma 25.7.06EL Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) x is a finite type point,
(2) there exists an algebraic space Z whose underlying topological space |Z| is

a singleton, and a morphism f : Z → X which is locally of finite type such
that {x} = |f |(|Z|), and

(3) there exists an algebraic space Z and a morphism f : Z → X with the
following properties:
(a) there is a surjective étale morphism z : Spec(k)→ Z where k is a field,
(b) f is locally of finite type,
(c) f is a monomorphism, and
(d) x = f(z).

Proof. Assume x is a finite type point. Choose an affine scheme U , a closed point
u ∈ U , and an étale morphism φ : U → X with φ(u) = x, see Lemma 25.3.
Set u = Spec(κ(u)) as usual. The projection morphisms u ×X u → u are the
compositions

u×X u→ u×X U → u×X X = u

where the first arrow is a closed immersion (a base change of u → U) and the
second arrow is étale (a base change of the étale morphism U → X). Hence u×X U
is a disjoint union of spectra of finite separable extensions of k (see Morphisms,
Lemma 36.7) and therefore the closed subscheme u×X u is a disjoint union of finite
separable extension of k, i.e., u×X u→ u is étale. By Spaces, Theorem 10.5 we see
that Z = u/u×X u is an algebraic space. By construction the diagram

u

��

// U

��
Z // X

is commutative with étale vertical arrows. Hence Z → X is locally of finite type
(see Lemma 23.4). By construction the morphism Z → X is a monomorphism and
the image of z is x. Thus (3) holds.
It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by
Lemma 25.4 (and Lemma 25.6 to see that Zft-pts is nonempty, i.e., the unique point
of Z is a finite type point of Z). □
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26. Nagata spaces

0BAT See Properties of Spaces, Section 7 for the definition of a Nagata algebraic space.

Lemma 26.1.0BAU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If Y is Nagata and f locally of finite type then X is Nagata.

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let U
be a scheme and let U → X ×Y V be a surjective étale morphism. If Y is Nagata,
then V is a Nagata scheme. If X → Y is locally of finite type, then U → V is
locally of finite type. Hence V is a Nagata scheme by Morphisms, Lemma 18.1.
Then X is Nagata by definition. □

Lemma 26.2.0BAV The following types of algebraic spaces are Nagata.
(1) Any algebraic space locally of finite type over a Nagata scheme.
(2) Any algebraic space locally of finite type over a field.
(3) Any algebraic space locally of finite type over a Noetherian complete local

ring.
(4) Any algebraic space locally of finite type over Z.
(5) Any algebraic space locally of finite type over a Dedekind ring of character-

istic zero.
(6) And so on.

Proof. The first property holds by Lemma 26.1. Thus the others hold as well, see
Morphisms, Lemma 18.2. □

27. Quasi-finite morphisms

03XI The property “locally quasi-finite” of morphisms of schemes is étale local on the
source-and-target, see Descent, Remark 32.7. It is also stable under base change
and fpqc local on the target, see Morphisms, Lemma 20.13, and Descent, Lemma
23.24. Hence, by Lemma 22.1 above, we may define what it means for a morphism
of algebraic spaces to be locally quasi-finite as follows and it agrees with the already
existing notion defined in Section 3 when the morphism is representable.

Definition 27.1.03XJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is locally quasi-finite if the equivalent conditions of Lemma 22.1
hold with P = locally quasi-finite.

(2) Let x ∈ |X|. We say f is quasi-finite at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally quasi-finite.

(3) A morphism of algebraic spaces f : X → Y is quasi-finite if it is locally
quasi-finite and quasi-compact.

The last part is compatible with the notion of quasi-finiteness for morphisms of
schemes by Morphisms, Lemma 20.9.

Lemma 27.2.0ABM Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms
of algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Denote
g′ : X ′ → X the projection. Assume f is locally of finite type. Let W ⊂ |X|, resp.
W ′ ⊂ |X ′| be the set of points where f , resp. f ′ is quasi-finite.

(1) W ⊂ |X| and W ′ ⊂ |X ′| are open,
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(2) W ′ = (g′)−1(W ), i.e., formation of the locus where f is quasi-finite com-
mutes with base change,

(3) the base change of a locally quasi-finite morphism is locally quasi-finite, and
(4) the base change of a quasi-finite morphism is quasi-finite.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′ and
a surjective étale morphism V ′ → Y ′ ×Y V . Set U ′ = V ′ ×V U so that U ′ → X ′ is
a surjective étale morphism as well. Picture

U ′

��

// U

��
V ′ // V

lying over

X ′

��

// X

��
Y ′ // Y

Choose u ∈ |U | with image x ∈ |X|. The property of being "locally quasi-finite"
is étale local on the source-and-target, see Descent, Remark 32.7. Hence Lemmas
22.5 and 22.7 apply and we see that f : X → Y is quasi-finite at x if and only if
U → V is quasi-finite at u. Similarly for f ′ : X ′ → Y ′ and the morphism U ′ → V ′.
Hence parts (1), (2), and (3) reduce to Morphisms, Lemmas 20.13 and 56.2. Part
(4) follows from (3) and Lemma 8.4. □

Lemma 27.3.03XK The composition of quasi-finite morphisms is quasi-finite. The
same holds for locally quasi-finite.

Proof. See Remark 22.3 and Morphisms, Lemma 20.12. □

Lemma 27.4.03XL A base change of a quasi-finite morphism is quasi-finite. The same
holds for locally quasi-finite.

Proof. Immediate consequence of Lemma 27.2. □

The following lemma characterizes locally quasi-finite morphisms as those mor-
phisms which are locally of finite type and have “discrete fibres”. However, this is
not the same thing as asking |X| → |Y | to have discrete fibres as the discussion in
Examples, Section 50 shows.

Lemma 27.5.06RW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume f is locally of finite type. The following are equivalent

(1) f is locally quasi-finite,
(2) for every morphism Spec(k) → Y where k is a field the space |Xk| is dis-

crete. Here Xk = Spec(k)×Y X.

Proof. Assume f is locally quasi-finite. Let Spec(k) → Y be as in (2). Choose a
surjective étale morphism U → X where U is a scheme. Then Uk = Spec(k)×Y U →
Xk is an étale morphism of algebraic spaces by Properties of Spaces, Lemma 16.5.
By Lemma 27.4 we see that Xk → Spec(k) is locally quasi-finite. By definition
this means that Uk → Spec(k) is locally quasi-finite. Hence |Uk| is discrete by
Morphisms, Lemma 20.8. Since |Uk| → |Xk| is surjective and open we conclude
that |Xk| is discrete.

Conversely, assume (2). Choose a surjective étale morphism V → Y where V is a
scheme. Choose a surjective étale morphism U → V ×Y X where U is a scheme.
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Note that U → V is locally of finite type as f is locally of finite type. Picture

U //

##

X ×Y V

��

// V

��
X // Y

If f is not locally quasi-finite then U → V is not locally quasi-finite. Hence there
exists a specialization u ⇝ u′ for some u, u′ ∈ U lying over the same point v ∈ V ,
see Morphisms, Lemma 20.6. We claim that u, u′ do not have the same image in
Xv = Spec(κ(v)) ×Y X which will contradict the assumption that |Xv| is discrete
as desired. Let d = trdegκ(v)(κ(u)) and d′ = trdegκ(v)(κ(u′)). Then we see that
d > d′ by Morphisms, Lemma 28.7. Note that Uv (the fibre of U → V over v) is the
fibre product of U and Xv over X ×Y V , hence Uv → Xv is étale (as a base change
of the étale morphism U → X ×Y V ). If u, u′ ∈ Uv map to the same element of
|Xv| then there exists a point r ∈ Rv = Uv ×Xv

Uv with t(r) = u and s(r) = u′, see
Properties of Spaces, Lemma 4.3. Note that s, t : Rv → Uv are étale morphisms
of schemes over κ(v), hence κ(u) ⊂ κ(r) ⊃ κ(u′) are finite separable extensions of
fields over κ(v) (see Morphisms, Lemma 36.7). We conclude that the transcendence
degrees are equal. This contradiction finishes the proof. □

Lemma 27.6.040Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally quasi-finite,
(2) for every x ∈ |X| the morphism f is quasi-finite at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally quasi-finite,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally quasi-finite,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally quasi-finite,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally quasi-finite,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally quasi-finite,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is locally quasi-finite, and
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(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is locally quasi-finite.

Proof. Omitted. □

Lemma 27.7.03XM An immersion is locally quasi-finite.

Proof. Omitted. □

Lemma 27.8.03XN Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is locally quasi-finite, then X → Y is locally quasi-finite.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 11.6.) Apply Mor-
phisms, Lemma 20.17 to the top row. □

Lemma 27.9.0ABN Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let y ∈ |Y |. There are at most finitely many points of |X|
lying over y at which f is quasi-finite.

Proof. Choose a field k and a morphism Spec(k) → Y in the equivalence class
determined by y. The fibre Xk = Spec(k)×Y X is an algebraic space of finite type
over a field, in particular quasi-compact. The map |Xk| → |X| surjects onto the
fibre of |X| → |Y | over y (Properties of Spaces, Lemma 4.3). Moreover, the set of
points where Xk → Spec(k) is quasi-finite maps onto the set of points lying over y
where f is quasi-finite by Lemma 27.2. Choose an affine scheme U and a surjective
étale morphism U → Xk (Properties of Spaces, Lemma 6.3). Then U → Spec(k)
is a morphism of finite type and there are at most a finite number of points where
this morphism is quasi-finite, see Morphisms, Lemma 20.14. Since Xk → Spec(k)
is quasi-finite at a point x′ if and only if it is the image of a point of U where
U → Spec(k) is quasi-finite, we conclude. □

Lemma 27.10.0463 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and a monomorphism, then f is separated
and locally quasi-finite.

Proof. A monomorphism is separated, see Lemma 10.3. By Lemma 27.6 it suffices
to prove the lemma after performing a base change by Z → Y with Z affine. Hence
we may assume that Y is an affine scheme. Choose an affine scheme U and an
étale morphism U → X. Since X → Y is locally of finite type the morphism of
affine schemes U → Y is of finite type. Since X → Y is a monomorphism we
have U ×X U = U ×Y U . In particular the maps U ×Y U → U are étale. Let
y ∈ Y . Then either Uy is empty, or Spec(κ(u)) ×Spec(κ(y)) Uy is isomorphic to the
fibre of U ×Y U → U over u for some u ∈ U lying over y. This implies that the
fibres of U → Y are finite discrete sets (as U ×Y U → U is an étale morphism
of affine schemes, see Morphisms, Lemma 36.7). Hence U → Y is quasi-finite, see
Morphisms, Lemma 20.6. As U → X was an arbitrary étale morphism with U
affine this implies that X → Y is locally quasi-finite. □
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28. Morphisms of finite presentation

03XO The property “locally of finite presentation” of morphisms of schemes is étale local
on the source-and-target, see Descent, Remark 32.7. It is also stable under base
change and fpqc local on the target, see Morphisms, Lemma 21.4, and Descent,
Lemma 23.11. Hence, by Lemma 22.1 above, we may define what it means for a
morphism of algebraic spaces to be locally of finite presentation as follows and it
agrees with the already existing notion defined in Section 3 when the morphism is
representable.

Definition 28.1.03XP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is locally of finite presentation if the equivalent conditions of
Lemma 22.1 hold with P =“locally of finite presentation”.

(2) Let x ∈ |X|. We say f is of finite presentation at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
presentation6.

(3) A morphism of algebraic spaces f : X → Y is of finite presentation if it is
locally of finite presentation, quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 28.2.03XQ The composition of morphisms of finite presentation is of finite
presentation. The same holds for locally of finite presentation.

Proof. See Remark 22.3 and Morphisms, Lemma 21.3. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 8.5 and 4.8). □

Lemma 28.3.03XR A base change of a morphism of finite presentation is of finite
presentation. The same holds for locally of finite presentation.

Proof. See Remark 22.4 and Morphisms, Lemma 21.4. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 8.4 and 4.4). □

Lemma 28.4.0410 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite presentation,
(2) for every x ∈ |X| the morphism f is of finite presentation at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite presentation,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally of finite presentation,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite presentation,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally of finite presentation,

6It seems awkward to use “locally of finite presentation at x”, but the current terminology
may be misleading in the sense that “of finite presentation at x” does not mean that there is an
open neighbourhood X′ ⊂ X such that f |X′ is of finite presentation.
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(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite presentation,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is locally of finite presentation,
and

(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is locally of finite presentation.

Proof. Omitted. □

Lemma 28.5.0464 A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Let f : X → Y be a morphism of algebraic spaces which is locally of finite
presentation. This means there exists a diagram as in Lemma 22.1 with h locally
of finite presentation and surjective vertical arrow a. By Morphisms, Lemma 21.8
h is locally of finite type. Hence X → Y is locally of finite type by definition. If
f is of finite presentation then it is quasi-compact and it follows that f is of finite
type. □

Lemma 28.6.04ZL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is of finite presentation and Y is Noetherian, then X is Noe-
therian.

Proof. Assume f is of finite presentation and Y Noetherian. By Lemmas 28.5
and 23.5 we see that X is locally Noetherian. As f is quasi-compact and Y is
quasi-compact we see that X is quasi-compact. As f is of finite presentation it is
quasi-separated (see Definition 28.1) and as Y is Noetherian it is quasi-separated
(see Properties of Spaces, Definition 24.1). Hence X is quasi-separated by Lemma
4.9. Hence we have checked all three conditions of Properties of Spaces, Definition
24.1 and we win. □

Lemma 28.7.06G4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If Y is locally Noetherian and f locally of finite type then f is locally of
finite presentation.

(2) If Y is locally Noetherian and f of finite type and quasi-separated then f is
of finite presentation.
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Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 22.1 with h locally of finite type and
surjective vertical arrow a. By Morphisms, Lemma 21.9 h is locally of finite pre-
sentation. Hence X → Y is locally of finite presentation by definition. This proves
(1). If f is of finite type and quasi-separated then it is also quasi-compact and
quasi-separated and (2) follows immediately. □

Lemma 28.8.06G5 Let S be a scheme. Let Y be an algebraic space over S which is
quasi-compact and quasi-separated. If X is of finite presentation over Y , then X
is quasi-compact and quasi-separated.

Proof. Omitted. □

Lemma 28.9.05WT Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. If X is locally of finite presentation over Z, and Y is
locally of finite type over Z, then f is locally of finite presentation.

Proof. Choose a scheme W and a surjective étale morphism W → Z. Then choose
a scheme V and a surjective étale morphism V →W×Z Y . Finally choose a scheme
U and a surjective étale morphism U → V ×Y X. By definition U is locally of finite
presentation over W and V is locally of finite type over W . By Morphisms, Lemma
21.11 the morphism U → V is locally of finite presentation. Hence f is locally of
finite presentation. □

Lemma 28.10.084P Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S with diagonal ∆ : X → X ×Y X. If f is locally of finite type then
∆ is locally of finite presentation. If f is quasi-separated and locally of finite type,
then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism over X (via the second projection X ×Y X →
X). Assume f is locally of finite type. Note that X is of finite presentation over
X and X ×Y X is of finite type over X (by Lemma 23.3). Thus the first statement
holds by Lemma 28.9. The second statement follows from the first, the definitions,
and the fact that a diagonal morphism is separated (Lemma 4.1). □

Lemma 28.11.06CN An open immersion of algebraic spaces is locally of finite presen-
tation.

Proof. An open immersion is by definition representable, hence we can use the
general principle Spaces, Lemma 5.8 and Morphisms, Lemma 21.5. □

Lemma 28.12.084Q A closed immersion i : Z → X is of finite presentation if and
only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of
finite type (as an OX-module).

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
Lemma 28.4 we see that i′ : Z ×X U → U is of finite presentation if and only if i
is. By Properties of Spaces, Section 30 we see that I is of finite type if and only if
I|U = Ker(OU → i′∗OZ×X U ) is. Hence the result follows from the case of schemes,
see Morphisms, Lemma 21.7. □

https://stacks.math.columbia.edu/tag/06G5
https://stacks.math.columbia.edu/tag/05WT
https://stacks.math.columbia.edu/tag/084P
https://stacks.math.columbia.edu/tag/06CN
https://stacks.math.columbia.edu/tag/084Q


MORPHISMS OF ALGEBRAIC SPACES 59

29. Constructible sets

0ECV This section is the continuation of Properties of Spaces, Section 8.
Lemma 29.1.0ECW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let E ⊂ |Y | be a subset. If E is étale locally constructible in Y ,
then f−1(E) is étale locally constructible in X.
Proof. Choose a scheme V and a surjective étale morphism φ : V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Then U → X is surjective
étale and the inverse image of f−1(E) in U is the inverse image of φ−1(E) by
U → V . Thus the lemma follows from the case of schemes for U → V (Morphisms,
Lemma 22.1) and the definition (Properties of Spaces, Definition 8.2). □

Theorem 29.2 (Chevalley’s Theorem).0ECX Let S be a scheme. Let f : X → Y be
a morphism of algebraic spaces over S. Assume f is quasi-compact and locally of
finite presentation. Then the image of every étale locally constructible subset of |X|
is an étale locally constructible subset of |Y |.
Proof. Let E ⊂ |X| be étale locally constructible. Let V → Y be an étale mor-
phism with V affine. It suffices to show that the inverse image of f(E) in V is
constructible, see Properties of Spaces, Definition 8.2. Since f is quasi-compact
V ×Y X is a quasi-compact algebraic space. Choose an affine scheme U and a
surjective étale morphism U → V ×Y X (Properties of Spaces, Lemma 6.3). By
Properties of Spaces, Lemma 4.3 the inverse image of f(E) in V is the image under
U → V of the inverse image of E in U . Thus the result follows from the case of
schemes, see Morphisms, Lemma 22.2. □

30. Flat morphisms

03MK The property “flat” of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 32.7. It is also stable under base change and fpqc local on
the target, see Morphisms, Lemma 25.8 and Descent, Lemma 23.15. Hence, by
Lemma 22.1 above, we may define the notion of a flat morphism of algebraic spaces
as follows and it agrees with the already existing notion defined in Section 3 when
the morphism is representable.
Definition 30.1.03ML Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is flat if the equivalent conditions of Lemma 22.1 with P =“flat”.
(2) Let x ∈ |X|. We say f is flat at x if the equivalent conditions of Lemma

22.5 hold with Q =“induced map local rings is flat”.
Note that the second part makes sense by Descent, Lemma 33.4.
We do a quick sanity check.
Lemma 30.2.08EW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if f is flat at all points of |X|.
Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y
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where U and V are schemes, the vertical arrows are étale, and a is surjective. By
definition f is flat if and only if h is flat (Definition 22.2). By definition f is flat
at x ∈ |X| if and only if h is flat at some (equivalently any) u ∈ U which maps
to x (Definition 22.6). Thus the lemma follows from the fact that a morphism
of schemes is flat if and only if it is flat at all points of the source (Morphisms,
Definition 25.1). □

Lemma 30.3.03MN The composition of flat morphisms is flat.

Proof. See Remark 22.3 and Morphisms, Lemma 25.6. □

Lemma 30.4.03MO The base change of a flat morphism is flat.

Proof. See Remark 22.4 and Morphisms, Lemma 25.8. □

Lemma 30.5.03MM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is flat,
(2) for every x ∈ |X| the morphism f is flat at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is flat,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is flat,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is flat,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is flat,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is flat,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is flat, and

(9) there exists a Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is flat.

Proof. Omitted. □

Lemma 30.6.042S A flat morphism locally of finite presentation is universally open.
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Proof. Let f : X → Y be a flat morphism locally of finite presentation of algebraic
spaces over S. Choose a diagram

U
α
//

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 11.6. By Lemmas 30.5 and 28.4 the morphism α is flat and locally of
finite presentation. Hence by Morphisms, Lemma 25.10 we see that α is universally
open. Hence X → Y is universally open according to Lemma 6.5. □

Lemma 30.7.0413 Let S be a scheme. Let f : X → Y be a flat, quasi-compact,
surjective morphism of algebraic spaces over S. A subset T ⊂ |Y | is open (resp.
closed) if and only f−1(|T |) is open (resp. closed) in |X|. In other words f is
submersive, and in fact universally submersive.

Proof. Choose affine schemes Vi and étale morphisms Vi → Y such that V =∐
Vi → Y is surjective, see Properties of Spaces, Lemma 6.1. For each i the

algebraic space Vi ×Y X is quasi-compact. Hence we can find an affine scheme Ui

and a surjective étale morphism Ui → Vi ×Y X, see Properties of Spaces, Lemma
6.3. Then the composition Ui → Vi ×Y X → Vi is a surjective, flat morphism of
affines. Of course then U =

∐
Ui → X is surjective and étale and U = V ×Y X.

Moreover, the morphism U → V is the disjoint union of the morphisms Ui → Vi.
Hence U → V is surjective, quasi-compact and flat. Consider the diagram

U //

��

X

��
V // Y

By definition of the topology on |Y | the set T is closed (resp. open) if and only
if g−1(T ) ⊂ |V | is closed (resp. open). The same holds for f−1(T ) and its in-
verse image in |U |. Since U → V is quasi-compact, surjective, and flat we win by
Morphisms, Lemma 25.12. □

Lemma 30.8.04NG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x be a geometric point of X lying over the point x ∈ |X|. Let
y = f ◦ x. The following are equivalent

(1) f is flat at x, and
(2) the map on étale local rings OY,y → OX,x is flat.

Proof. Choose a commutative diagram
U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x. We can find
a geometric point u : Spec(k) → U lying over u with x = a ◦ u, see Properties of
Spaces, Lemma 19.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = Osh
U,u and OY,y = Osh

V,v
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see Properties of Spaces, Lemma 22.1. We obtain a commutative diagram

OU,u
// OX,x

OV,v

OO

// OY,y

OO

of local rings with flat horizontal arrows. We have to show that the left vertical
arrow is flat if and only if the right vertical arrow is. Algebra, Lemma 39.9 tells us
OU,u is flat over OV,v if and only if OX,x is flat over OV,v. Hence the result follows
from More on Flatness, Lemma 2.5. □

Lemma 30.9.073C Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if the morphism of sites (fsmall, f

♯) :
(Xétale,OX)→ (Yétale,OY ) associated to f is flat.

Proof. Flatness of (fsmall, f
♯) is defined in terms of flatness of OX as a f−1

smallOY -
module. This can be checked at stalks, see Modules on Sites, Lemma 39.3 and
Properties of Spaces, Theorem 19.12. But we’ve already seen that flatness of f can
be checked on stalks, see Lemma 30.8. □

Lemma 30.10.089C Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let F be a finite type quasi-coherent OX-module with scheme the-
oretic support Z ⊂ X. If f is flat, then f−1(Z) is the scheme theoretic support of
f∗F .

Proof. Using the characterization of the scheme theoretic support as given in
Lemma 15.3 and using the characterization of flat morphisms in terms of étale
coverings in Lemma 30.5 we reduce to the case of schemes which is Morphisms,
Lemma 25.14. □

Lemma 30.11.089D Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let V → Y be a quasi-compact open immersion. If V is scheme
theoretically dense in Y , then f−1V is scheme theoretically dense in X.

Proof. Using the characterization of scheme theoretically dense opens in Lemma
17.2 and using the characterization of flat morphisms in terms of étale coverings
in Lemma 30.5 we reduce to the case of schemes which is Morphisms, Lemma
25.15. □

Lemma 30.12.089E Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let g : V → Y be a quasi-compact morphism of algebraic spaces. Let
Z ⊂ Y be the scheme theoretic image of g and let Z ′ ⊂ X be the scheme theoretic
image of the base change V ×Y X → X. Then Z ′ = f−1Z.

Proof. Let Y ′ → Y be a surjective étale morphism such that Y ′ is a disjoint union
of affine schemes (Properties of Spaces, Lemma 6.1). Let X ′ → X ×Y Y ′ be a
surjective étale morphism such that X ′ is a disjoint union of affine schemes. By
Lemma 30.5 the morphism X ′ → Y ′ is flat. Set V ′ = V ×Y Y

′. By Lemma 16.3 the
inverse image of Z in Y ′ is the scheme theoretic image of V ′ → Y ′ and the inverse
image of Z ′ in X ′ is the scheme theoretic image of V ′×Y ′X ′ → X ′. Since X ′ → X is
surjective étale, it suffices to prove the result in the case of the morphisms X ′ → Y ′

and V ′ → Y ′. Thus we may assume X and Y are affine schemes. In this case V is
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a quasi-compact algebraic space. Choose an affine scheme W and a surjective étale
morphism W → V (Properties of Spaces, Lemma 6.3). It is clear that the scheme
theoretic image of V → Y agrees with the scheme theoretic image of W → Y and
similarly for V ×Y X → Y and W ×Y X → X. Thus we reduce to the case of
schemes which is Morphisms, Lemma 25.16. □

31. Flat modules

05VT In this section we define what it means for a module to be flat at a point. To do
this we will use the notion of the stalk of a sheaf on the small étale site Xétale of
an algebraic space, see Properties of Spaces, Definition 19.6.

Lemma 31.1.05VU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X|. The following
are equivalent

(1) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x the
module a∗F is flat at u over V ,

(2) the stalk Fx is flat over the étale local ring OY,y where x is any geometric
point lying over x and y = f ◦ x.

Proof. During this proof we fix a geometric proof x : Spec(k)→ X over x and we
denote y = f ◦x its image in Y . Given a diagram as in (1) we can find a geometric
point u : Spec(k)→ U lying over u with x = a◦u, see Properties of Spaces, Lemma
19.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = Osh
U,u and OY,y = Osh

V,v

see Properties of Spaces, Lemma 22.1. We obtain a commutative diagram

OU,u
// OX,x

OV,v

OO

// OY,y

OO

of local rings. Finally, we have

Fx = (φ∗F)u ⊗OU,u
OX,x

by Properties of Spaces, Lemma 29.4. Thus Algebra, Lemma 39.9 tells us (φ∗F)u

is flat over OV,v if and only if Fx is flat over OV,v. Hence the result follows from
More on Flatness, Lemma 2.5. □

Definition 31.2.05VV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X.

(1) Let x ∈ |X|. We say F is flat at x over Y if the equivalent conditions of
Lemma 31.1 hold.

(2) We say F is flat over Y if F is flat over Y at all x ∈ |X|.

https://stacks.math.columbia.edu/tag/05VU
https://stacks.math.columbia.edu/tag/05VV


MORPHISMS OF ALGEBRAIC SPACES 64

Having defined this we have the obligatory base change lemma. This lemma implies
that formation of the flat locus of a quasi-coherent sheaf commutes with flat base
change.

Lemma 31.3.05VW Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let x′ ∈ |X ′| with image x ∈ |X|.
Let F be a quasi-coherent sheaf on X and denote F ′ = (g′)∗F .

(1) If F is flat at x over Y then F ′ is flat at x′ over Y ′.
(2) If g is flat at f ′(x′) and F ′ is flat at x′ over Y ′, then F is flat at x over Y .

In particular, if F is flat over Y , then F ′ is flat over Y ′.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′

and a surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme
endowed with a surjective étale morphism U ′ = V ′ ×V U → Y ′ ×Y X = X ′. Pick
u′ ∈ U ′ mapping to x′ ∈ |X ′|. Then we can check flatness of F ′ at x′ over Y ′ in
terms of flatness of F ′|U ′ at u′ over V ′. Hence the lemma follows from More on
Morphisms, Lemma 15.2. □

The following lemma discusses “composition” of flat morphisms in terms of modules.
It also shows that flatness satisfies a kind of top down descent.

Lemma 31.4.05VX Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X| with image
y ∈ |Y |.

(1) If F is flat at x over Y and Y is flat at y over Z, then F is flat at x over
Z.

(2) Let x : Spec(K)→ X be a representative of x. If
(a) F is flat at x over Y ,
(b) x∗F ̸= 0, and
(c) F is flat at x over Z,

then Y is flat at y over Z.
(3) Let x be a geometric point of X lying over x with image y in Y . If Fx is

a faithfully flat OY,y-module and F is flat at x over Z, then Y is flat at y
over Z.

Proof. Pick x and y as in part (3) and denote z the induced geometric point of
Z. Via the characterization of flatness in Lemmas 31.1 and 30.8 the lemma reduces
to a purely algebraic question on the local ring map OZ,z → OY,y and the module
Fx. Part (1) follows from Algebra, Lemma 39.4. We remark that condition (2)(b)
guarantees that Fx/myFx is nonzero. Hence (2)(a) + (2)(b) imply that Fx is a
faithfully flat OY,y-module, see Algebra, Lemma 39.15. Thus (2) is a special case
of (3). Finally, (3) follows from Algebra, Lemma 39.10. □

Sometimes the base change happens “up on top”. Here is a precise statement.
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Lemma 31.5.05VY Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. Let G be a quasi-coherent sheaf on Y . Let x ∈ |X| with
image y ∈ |Y |. If f is flat at x, then

G flat over Z at y ⇔ f∗G flat over Z at x.
In particular: If f is surjective and flat, then G is flat over Z, if and only if f∗G is
flat over Z.

Proof. Pick a geometric point x of X and denote y the image in Y and z the
image in Z. Via the characterization of flatness in Lemmas 31.1 and 30.8 and the
description of the stalk of f∗G at x of Properties of Spaces, Lemma 29.5 the lemma
reduces to a purely algebraic question on the local ring maps OZ,z → OY,y → OX,x

and the module Gy. This algebraic statement is Algebra, Lemma 39.9. □

Lemma 31.6.0CVU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Assume f locally finite pre-
sentation, F of finite type, X = Supp(F), and F flat over Y . Then f is universally
open.

Proof. Choose a surjective étale morphism φ : V → Y where V is a scheme.
Choose a surjective étale morphism U → V ×Y X where U is a scheme. Then it
suffices to prove the lemma for U → V and the quasi-coherent OV -module φ∗F .
Hence this lemma follows from the case of schemes, see Morphisms, Lemma 25.11.

□

32. Generic flatness

06QR This section is the analogue of Morphisms, Section 27.

Proposition 32.1.06QS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) Y is reduced,
(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subspace W ⊂ Y such that the base change XW →
W of f is flat, locally of finite presentation, and quasi-compact and such that F|XW

is flat over W and of finite presentation over OXW
.

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let
XV = V ×Y X and let FV be the restriction of F to XV . Suppose that the result
holds for the morphism XV → V and the sheaf FV . Then there exists an open
subscheme V ′ ⊂ V such that XV ′ → V ′ is flat and of finite presentation and FV ′

is an OXV ′ -module of finite presentation flat over V ′. Let W ⊂ Y be the image of
the étale morphism V ′ → Y , see Properties of Spaces, Lemma 4.10. Then V ′ →W
is a surjective étale morphism, hence we see that XW →W is flat, locally of finite
presentation, and quasi-compact by Lemmas 28.4, 30.5, and 8.8. By the discussion
in Properties of Spaces, Section 30 we see that FW is of finite presentation as a
OXW

-module and by Lemma 31.3 we see that FW is flat over W . This argument
reduces the proposition to the case where Y is a scheme.
Suppose we can prove the proposition when Y is an affine scheme. Let f : X → Y
be a finite type morphism of algebraic spaces over S with Y a scheme, and let
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F be a finite type, quasi-coherent OX -module. Choose an affine open covering
Y =

⋃
Vj . By assumption we can find dense open Wj ⊂ Vj such that XWj → Wj

is flat, locally of finite presentation, and quasi-compact and such that F|XWj
is flat

over Wj and of finite presentation as an OXWj
-module. In this situation we simply

take W =
⋃
Wj and we win. Hence we reduce the proposition to the case where Y

is an affine scheme.

Let Y be an affine scheme over S, let f : X → Y be a finite type morphism of
algebraic spaces over S, and let F be a finite type, quasi-coherent OX -module.
Since f is of finite type it is quasi-compact, hence X is quasi-compact. Thus we
can find an affine scheme U and a surjective étale morphism U → X, see Properties
of Spaces, Lemma 6.3. Note that U → Y is of finite type (this is what it means for
f to be of finite type in this case). Hence we can apply Morphisms, Proposition
27.2 to see that there exists a dense open W ⊂ Y such that UW → W is flat and
of finite presentation and such that F|UW

is flat over W and of finite presentation
as an OUW

-module. According to our definitions this means that the base change
XW → W of f is flat, locally of finite presentation, and quasi-compact and F|XW

is flat over W and of finite presentation over OXW
. □

We cannot improve the result of the lemma above to requiring XW → W to be of
finite presentation as A1

Q/Z → Spec(Q) gives a counter example. The problem is
that the diagonal morphism ∆X/Y may not be quasi-compact, i.e., f may not be
quasi-separated. Clearly, this is also the only problem.

Proposition 32.2.06QT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) Y is reduced,
(2) f is quasi-separated,
(3) f is of finite type, and
(4) F is a finite type OX-module.

Then there exists an open dense subspace W ⊂ Y such that the base change XW →
W of f is flat and of finite presentation and such that F|XW

is flat over W and of
finite presentation over OXW

.

Proof. This follows immediately from Proposition 32.1 and the fact that “of fi-
nite presentation” = “locally of finite presentation” + “quasi-compact” + “quasi-
separated”. □

33. Relative dimension

04NH In this section we define the relative dimension of a morphism of algebraic spaces
at a point, and some closely related properties.

Definition 33.1.04NM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Let d, r ∈ {0, 1, 2, . . . ,∞}.

(1) We say the dimension of the local ring of the fibre of f at x is d if the
equivalent conditions of Lemma 22.5 hold for the property Pd described in
Descent, Lemma 33.6.

(2) We say the transcendence degree of x/f(x) is r if the equivalent conditions
of Lemma 22.5 hold for the property Pr described in Descent, Lemma 33.7.
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(3) We say f has relative dimension d at x if the equivalent conditions of
Lemma 22.5 hold for the property Pd described in Descent, Lemma 33.8.

Let us spell out what this means. Namely, choose some diagrams
U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

as in Lemma 22.5. Then we have
relative dimension of f at x = dimu(Uv)

dimension of local ring of the fibre of f at x = dim(OUv,u)
transcendence degree of x/f(x) = trdegκ(v)(κ(u))

Note that if Y = Spec(k) is the spectrum of a field, then the relative dimension
of X/Y at x is the same as dimx(X), the transcendence degree of x/f(x) is the
transcendence degree over k, and the dimension of the local ring of the fibre of f
at x is just the dimension of the local ring at x, i.e., the relative notions become
absolute notions in that case.

Definition 33.2.06LR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let d ∈ {0, 1, 2, . . .}.

(1) We say f has relative dimension ≤ d if f has relative dimension ≤ d at all
x ∈ |X|.

(2) We say f has relative dimension d if f has relative dimension d at all
x ∈ |X|.

Having relative dimension equal to d means roughly speaking that all nonempty
fibres are equidimensional of dimension d.

Lemma 33.3.06RX Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let x ∈ |X| and let y ∈ |Y |, z ∈ |Z| be the images. Assume X → Y
is locally quasi-finite and Y → Z locally of finite type. Then the transcendence
degree of x/z is equal to the transcendence degree of y/z.

Proof. We can choose commutative diagrams
U

��

// V

��

// W

��
X // Y // Z

u

��

// v

��

// w

��
x // y // z

where U, V,W are schemes and the vertical arrows are étale. By definition the
morphism U → V is locally quasi-finite which implies that κ(v) ⊂ κ(u) is finite, see
Morphisms, Lemma 20.5. Hence the result is clear. □

Lemma 33.4.0ECY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, Y is Jacobson (Properties of Spaces,
Remark 7.3), and x ∈ |X| is a finite type point of X, then the transcendence degree
of x/f(x) is 0.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . By Lemma 25.5 we
can find a finite type point u ∈ U mapping to x. After shrinking U we may
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assume u ∈ U is closed (Morphisms, Lemma 16.4). Let v ∈ V be the image of
u. By Morphisms, Lemma 16.8 the extension κ(u)/κ(v) is finite. This finishes the
proof. □

Lemma 33.5.0AFH Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian algebraic spaces over S which is flat, locally of finite type and of relative
dimension d. For every point x in |X| with image y in |Y | we have dimx(X) =
dimy(Y ) + d.

Proof. By definition of the dimension of an algebraic space at a point (Properties of
Spaces, Definition 9.1) and by definition of having relative dimension d, this reduces
to the corresponding statement for schemes (Morphisms, Lemma 29.6). □

34. Morphisms and dimensions of fibres

04NP This section is the analogue of Morphisms, Section 28. The formulations in this
section are a bit awkward since we do not have local rings of algebraic spaces at
points.

Lemma 34.1.04NQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Assume f is locally of finite type. Then we have

relative dimension of f at x
=

dimension of local ring of the fibre of f at x
+

transcendence degree of x/f(x)

where the notation is as in Definition 33.1.

Proof. This follows immediately from Morphisms, Lemma 28.1 applied to h : U →
V and u ∈ U as in Lemma 22.5. □

Lemma 34.2.04NR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. Let x ∈ |X| and set y = f(x). Assume f and g locally
of finite type. Then

(1)
relative dimension of g ◦ f at x

≤
relative dimension of f at x

+
relative dimension of g at y

(2) equality holds in (1) if for some morphism Spec(k)→ Z from the spectrum
of a field in the class of g(f(x)) = g(y) the morphism Xk → Yk is flat at
x, for example if f is flat at x,

(3)
transcendence degree of x/g(f(x))

=
transcendence degree of x/f(x)

+
transcendence degree of f(x)/g(f(x))
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Proof. Choose a diagram
U

��

// V

��

// W

��
X // Y // Z

with U, V,W schemes and vertical arrows étale and surjective. (See Spaces, Lemma
11.6.) Choose u ∈ U mapping to x. Set v, w equal to the images of u in V,W . Apply
Morphisms, Lemma 28.2 to the top row and the points u, v, w. Details omitted. □

Lemma 34.3.04NS Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of algebraic spaces over S. Let x′ ∈ |X ′|. Set x = g′(x′).
Assume f locally of finite type. Then

(1)
relative dimension of f at x

=
relative dimension of f ′ at x′

(2) we have
dimension of local ring of the fibre of f ′ at x′

−
dimension of local ring of the fibre of f at x

=
transcendence degree of x/f(x)

−
transcendence degree of x′/f ′(x′)

and the common value is ≥ 0,
(3) given x and y′ ∈ |Y ′| mapping to the same y ∈ |Y | there exists a choice of

x′ such that the integer in (2) is 0.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Choose a surjective
étale morphism V ′ → V ×Y Y ′ with V ′ a scheme. Set U ′ = V ′ ×V U . Then
the induced morphism U ′ → X ′ is also surjective and étale (argument omitted).
Choose u′ ∈ U ′ mapping to x′. At this point parts (1) and (2) follow by applying
Morphisms, Lemma 28.3 to the diagram of schemes involving U ′, U, V ′, V and the
point u′. To prove (3) first choose v ∈ V mapping to y. Then using Properties of
Spaces, Lemma 4.3 we can choose v′ ∈ V ′ mapping to y′ and v and u ∈ U mapping
to x and v. Finally, according to Morphisms, Lemma 28.3 we can choose u′ ∈ U ′

mapping to v′ and u such that the integer is zero. Then taking x′ ∈ |X ′| the image
of u′ works. □

Lemma 34.4.04NT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let n ≥ 0. Assume f is locally of finite type. The set

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
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is open in |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 11.6. By Morphisms, Lemma 28.4 the set Un of points where h has
relative dimension ≤ n is open in U . By our definition of relative dimension for
morphisms of algebraic spaces at points we see that Un = a−1(Wn). The lemma
follows by definition of the topology on |X|. □

Lemma 34.5.04NU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S Let n ≥ 0. Assume f is locally of finite presentation. The open

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
of Lemma 34.4 is retrocompact in |X|. (See Topology, Definition 12.1.)

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 11.6. In the proof of Lemma 34.4 we have seen that a−1(Wn) = Un

is the corresponding set for the morphism h. By Morphisms, Lemma 28.6 we see
that Un is retrocompact in U . The lemma follows by definition of the topology on
|X|, compare with Properties of Spaces, Lemma 5.5 and its proof. □

Lemma 34.6.04NV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then f is locally quasi-finite if
and only if f has relative dimension 0 at each x ∈ |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 11.6. The definitions imply that h is locally quasi-finite if and only
if f is locally quasi-finite, and that f has relative dimension 0 at all x ∈ |X| if and
only if h has relative dimension 0 at all u ∈ U . Hence the result follows from the
result for h which is Morphisms, Lemma 29.5. □

Lemma 34.7.04NW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then there exists a canonical
open subspace X ′ ⊂ X such that f |X′ : X ′ → Y is locally quasi-finite, and such
that the relative dimension of f at any x ∈ |X|, x ̸∈ |X ′| is ≥ 1. Formation of X ′

commutes with arbitrary base change.

Proof. Combine Lemmas 34.4, 34.6, and 34.3. □
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Lemma 34.8.06LS Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is locally of finite
type and where k is a field over S. Let z ∈ |F | be such that dimz(F ) = 0. Then,
after replacing X by an open subspace containing p(z), the morphism

X −→ Y

is locally quasi-finite.

Proof. Let X ′ ⊂ X be the open subspace over which f is locally quasi-finite found
in Lemma 34.7. Since the formation of X ′ commutes with arbitrary base change
we see that z ∈ X ′ ×Y Spec(k). Hence the lemma is clear. □

35. The dimension formula

0BAW The analog of the dimension formula (Morphisms, Lemma 52.1) is a bit tricky
to formulate, because we would have to define integral algebraic spaces (we do
this later) as well as universally catenary algebraic spaces. However, the following
version is straightforward.

Lemma 35.1.0BAX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f locally of finite type. Let
x ∈ |X| with image y ∈ |Y |. Then we have

the dimension of the local ring of X at x ≤
the dimension of the local ring of Y at y + E−
the transcendence degree of x/y

Here E is the maximum of the transcendence degrees of ξ/f(ξ) where ξ ∈ |X| runs
over the points specializing to x at which the local ring of X has dimension 0.

Proof. Choose an affine scheme V , an étale morphism V → Y , and a point v ∈ V
mapping to y. Choose an affine scheme U , an étale morphism U → X ×Y V and
a point u ∈ U mapping to v in V and x in X. Unwinding Definition 33.1 and
Properties of Spaces, Definition 10.2 we have to show that

dim(OU,u) ≤ dim(OV,v) + E − trdegκ(v)(κ(u))
Let ξU ∈ U be a generic point of an irreducible component of U which contains u.
Then ξU maps to a point ξ ∈ |X| which is in the list used to define the quantity
E and in fact every ξ used in the definition of E occurs in this manner (small
detail omitted). In particular, there are only a finite number of these ξ and we
can take the maximum (i.e., it really is a maximum and not a supremum). The
transcendence degree of ξ over f(ξ) is trdegκ(ξV )(κ(ξU )) where ξV ∈ V is the image
of ξU . Thus the lemma follows from Morphisms, Lemma 52.2. □

Lemma 35.2.0BAY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E
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where E is the supremum of the transcendence degrees of ξ/f(ξ) where ξ runs
through the points at which the local ring of X has dimension 0.

Proof. Immediate consequence of Lemma 35.1 and Properties of Spaces, Lemma
10.3. □

36. Syntomic morphisms

03Z6 The property “syntomic” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 32.7. It is also stable under base change and fpqc local
on the target, see Morphisms, Lemma 30.4 and Descent, Lemma 23.26. Hence, by
Lemma 22.1 above, we may define the notion of a syntomic morphism of algebraic
spaces as follows and it agrees with the already existing notion defined in Section
3 when the morphism is representable.

Definition 36.1.03Z7 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is syntomic if the equivalent conditions of Lemma 22.1 hold with
P =“syntomic”.

(2) Let x ∈ |X|. We say f is syntomic at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is syntomic.

Lemma 36.2.03Z8 The composition of syntomic morphisms is syntomic.

Proof. See Remark 22.3 and Morphisms, Lemma 30.3. □

Lemma 36.3.03Z9 The base change of a syntomic morphism is syntomic.

Proof. See Remark 22.4 and Morphisms, Lemma 30.4. □

Lemma 36.4.03ZA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is syntomic,
(2) for every x ∈ |X| the morphism f is syntomic at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is syntomic,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is syntomic,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a syntomic morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is syntomic,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is syntomic,
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(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is syntomic, and

(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is syntomic.

Proof. Omitted. □

Lemma 36.5.0DEY A syntomic morphism is locally of finite presentation.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 30.6).
□

Lemma 36.6.0DEZ A syntomic morphism is flat.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 30.7).
□

Lemma 36.7.0DF0 A syntomic morphism is universally open.

Proof. Combine Lemmas 36.5, 36.6, and 30.6. □

37. Smooth morphisms

03ZB The property “smooth” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 32.7. It is also stable under base change and fpqc local
on the target, see Morphisms, Lemma 34.5 and Descent, Lemma 23.27. Hence, by
Lemma 22.1 above, we may define the notion of a smooth morphism of algebraic
spaces as follows and it agrees with the already existing notion defined in Section
3 when the morphism is representable.

Definition 37.1.03ZC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is smooth if the equivalent conditions of Lemma 22.1 hold with
P =“smooth”.

(2) Let x ∈ |X|. We say f is smooth at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is smooth.

Lemma 37.2.03ZD The composition of smooth morphisms is smooth.

Proof. See Remark 22.3 and Morphisms, Lemma 34.4. □

Lemma 37.3.03ZE The base change of a smooth morphism is smooth.

Proof. See Remark 22.4 and Morphisms, Lemma 34.5. □

Lemma 37.4.03ZF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is smooth,
(2) for every x ∈ |X| the morphism f is smooth at x,
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(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z
is smooth,

(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is smooth,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a smooth morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is smooth,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is smooth,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is smooth, and

(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is smooth.

Proof. Omitted. □

Lemma 37.5.04AJ A smooth morphism of algebraic spaces is locally of finite presen-
tation.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition
this means there exists a diagram as in Lemma 22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 34.8 h is locally of finite presentation.
Hence X → Y is locally of finite presentation by definition. □

Lemma 37.6.06MH A smooth morphism of algebraic spaces is locally of finite type.

Proof. Combine Lemmas 37.5 and 28.5. □

Lemma 37.7.04TA A smooth morphism of algebraic spaces is flat.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition
this means there exists a diagram as in Lemma 22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 34.8 h is flat. Hence X → Y is flat by
definition. □

Lemma 37.8.06CP A smooth morphism of algebraic spaces is syntomic.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition
this means there exists a diagram as in Lemma 22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 34.7 h is syntomic. Hence X → Y is
syntomic by definition. □
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Lemma 37.9.0DZI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. There is a maximal open subspace U ⊂ X such that f |U : U → Y is
smooth. Moreover, formation of this open commutes with base change by

(1) morphisms which are flat and locally of finite presentation,
(2) flat morphisms provided f is locally of finite presentation.

Proof. The existence of U follows from the fact that the property of being smooth is
Zariski (and even étale) local on the source, see Lemma 37.4. Moreover, this lemma
allows us to translate properties (1) and (2) into the case of morphisms of schemes.
The case of schemes is Morphisms, Lemma 34.15. Some details omitted. □

Lemma 37.10.0AFI Let X and Y be locally Noetherian algebraic spaces over a scheme
S, and let f : X → Y be a smooth morphism. For every point x ∈ |X| with image
y ∈ |Y |,

dimx(X) = dimy(Y ) + dimx(Xy)
where dimx(Xy) is the relative dimension of f at x as in Definition 33.1.
Proof. By definition of the dimension of an algebraic space at a point (Properties
of Spaces, Definition 9.1), this reduces to the corresponding statement for schemes
(Morphisms, Lemma 34.21). □

38. Unramified morphisms

03ZG The property “unramified” (resp. “G-unramified”) of morphisms of schemes is étale
local on the source-and-target, see Descent, Remark 32.7. It is also stable under
base change and fpqc local on the target, see Morphisms, Lemma 35.5 and Descent,
Lemma 23.28. Hence, by Lemma 22.1 above, we may define the notion of an unram-
ified morphism (resp. G-unramified morphism) of algebraic spaces as follows and it
agrees with the already existing notion defined in Section 3 when the morphism is
representable.
Definition 38.1.03ZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is unramified if the equivalent conditions of Lemma 22.1 hold with
P = unramified.

(2) Let x ∈ |X|. We say f is unramified at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is unramified.

(3) We say f is G-unramified if the equivalent conditions of Lemma 22.1 hold
with P = G-unramified.

(4) Let x ∈ |X|. We say f is G-unramified at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is G-unramified.

Because of the following lemma, from here on we will only develop theory for
unramified morphisms, and whenever we want to use a G-unramified morphism we
will simply say “an unramified morphism locally of finite presentation”.
Lemma 38.2.04G1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is G-unramified if and only if f is unramified and locally of
finite presentation.
Proof. Consider any diagram as in Lemma 22.1. Then all we are saying is that
the morphism h is G-unramified if and only if it is unramified and locally of finite
presentation. This is clear from Morphisms, Definition 35.1. □

https://stacks.math.columbia.edu/tag/0DZI
https://stacks.math.columbia.edu/tag/0AFI
https://stacks.math.columbia.edu/tag/03ZH
https://stacks.math.columbia.edu/tag/04G1


MORPHISMS OF ALGEBRAIC SPACES 76

Lemma 38.3.03ZI The composition of unramified morphisms is unramified.

Proof. See Remark 22.3 and Morphisms, Lemma 35.4. □

Lemma 38.4.03ZJ The base change of an unramified morphism is unramified.

Proof. See Remark 22.4 and Morphisms, Lemma 35.5. □

Lemma 38.5.03ZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is unramified,
(2) for every x ∈ |X| the morphism f is unramified at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is unramified,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is unramified,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an unramified morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is unramified,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is unramified,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is unramified, and

(9) there exist Zariski coverings Y =
⋃

i∈I Yi, and f−1(Yi) =
⋃
Xij such that

each morphism Xij → Yi is unramified.

Proof. Omitted. □

Lemma 38.6.05VZ An unramified morphism of algebraic spaces is locally of finite type.

Proof. Via a diagram as in Lemma 22.1 this translates into Morphisms, Lemma
35.9. □

Lemma 38.7.05W0 If f is unramified at x then f is quasi-finite at x. In particular,
an unramified morphism is locally quasi-finite.

Proof. Via a diagram as in Lemma 22.1 this translates into Morphisms, Lemma
35.10. □

Lemma 38.8.06CQ An immersion of algebraic spaces is unramified.
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Proof. Let i : X → Y be an immersion of algebraic spaces. Choose a scheme V
and a surjective étale morphism V → Y . Then V ×Y X → V is an immersion
of schemes, hence unramified (see Morphisms, Lemmas 35.7 and 35.8). Thus by
definition i is unramified. □

Lemma 38.9.05W1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If f is unramified, then the diagonal morphism ∆X/Y : X → X×Y X is an
open immersion.

(2) If f is locally of finite type and ∆X/Y is an open immersion, then f is
unramified.

Proof. We know in any case that ∆X/Y is a representable monomorphism, see
Lemma 4.1. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X×Y V . Consider the commutative
diagram

U

��

∆U/V

// U ×V U

��

// V

∆V/Y

��
X

∆X/Y // X ×Y X // V ×Y V

with cartesian right square. The left vertical arrow is surjective étale. The right
vertical arrow is étale as a morphism between schemes étale over Y , see Properties
of Spaces, Lemma 16.6. Hence the middle vertical arrow is étale too (but it need
not be surjective).
Assume f is unramified. Then U → V is unramified, hence ∆U/V is an open
immersion by Morphisms, Lemma 35.13. Looking at the left square of the diagram
above we conclude that ∆X/Y is an étale morphism, see Properties of Spaces,
Lemma 16.3. Hence ∆X/Y is a representable étale monomorphism, which implies
that it is an open immersion by Étale Morphisms, Theorem 14.1. (See also Spaces,
Lemma 5.8 for the translation from schemes language into the language of functors.)
Assume that f is locally of finite type and that ∆X/Y is an open immersion. This
implies that U → V is locally of finite type too (by definition of a morphism of
algebraic spaces which is locally of finite type). Looking at the displayed diagram
above we conclude that ∆U/V is étale as a morphism between schemes étale over
X ×Y X, see Properties of Spaces, Lemma 16.6. But since ∆U/V is the diagonal
of a morphism between schemes we see that it is in any case an immersion, see
Schemes, Lemma 21.2. Hence it is an open immersion, and we conclude that
U → V is unramified by Morphisms, Lemma 35.13. This in turn means that f is
unramified by definition. □

Lemma 38.10.05W2 Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that X → Z is locally of finite type. Then
there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X| is the set of points
where f is unramified. Moreover, for any morphism of algebraic spaces Z ′ → Z, if
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f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z, then U(f ′) is the inverse image
of U(f) under the projection X ′ → X.

Proof. This lemma is the analogue of Morphisms, Lemma 35.15 and in fact we will
deduce the lemma from it. By Definition 38.1 the set {x ∈ |X| : f is unramified at x}
is open in X. Hence we only need to prove the final statement. By Lemma 23.6 the
morphism X → Y is locally of finite type. By Lemma 23.3 the morphism X ′ → Y ′

is locally of finite type.
Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme V
and a surjective étale morphism V →W ×Z Y . Choose a scheme U and a surjective
étale morphism U → V ×Y X. Finally, choose a scheme W ′ and a surjective étale
morphism W ′ →W×ZZ

′. Set V ′ = W ′×W V and U ′ = W ′×WU , so that we obtain
surjective étale morphisms V ′ → Y ′ and U ′ → X ′. We will use without further
mention an étale morphism of algebraic spaces induces an open map of associated
topological spaces (see Properties of Spaces, Lemma 16.7). This combined with
Lemma 38.5 implies that U(f) is the image in |X| of the set T of points in U
where the morphism U → V is unramified. Similarly, U(f ′) is the image in |X ′|
of the set T ′ of points in U ′ where the morphism U ′ → V ′ is unramified. Now, by
construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned Morphisms,
Lemma 35.15 applies to show that T ′ is the inverse image of T . Since |U ′| → |X ′|
is surjective this implies the lemma. □

Lemma 38.11.06G6 Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is unramified, then X → Y is unramified.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 11.6.) Apply Mor-
phisms, Lemma 35.16 to the top row. □

39. Étale morphisms

03XS The notion of an étale morphism of algebraic spaces was defined in Properties of
Spaces, Definition 16.2. Here is what it means for a morphism to be étale at a
point.

Definition 39.1.04RH Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Let x ∈ |X|. We say f is étale at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is étale.

Lemma 39.2.03XT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:
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(1) f is étale,
(2) for every x ∈ |X| the morphism f is étale at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is étale,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is étale,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an étale morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is étale,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is étale,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X surjec-
tive such that the top horizontal arrow is étale, and

(9) there exist Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is étale.

Proof. Combine Properties of Spaces, Lemmas 16.3, 16.5 and 16.4. Some details
omitted. □

Lemma 39.3.0465 The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.4. □

Lemma 39.4.0466 The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.5. □

Lemma 39.5.03XU An étale morphism of algebraic spaces is locally quasi-finite.

Proof. Let X → Y be an étale morphism of algebraic spaces, see Properties of
Spaces, Definition 16.2. By Properties of Spaces, Lemma 16.3 we see this means
there exists a diagram as in Lemma 22.1 with h étale and surjective vertical arrow
a. By Morphisms, Lemma 36.6 h is locally quasi-finite. Hence X → Y is locally
quasi-finite by definition. □

Lemma 39.6.04XX An étale morphism of algebraic spaces is smooth.

Proof. The proof is identical to the proof of Lemma 39.5. It uses the fact that
an étale morphism of schemes is smooth (by definition of an étale morphism of
schemes). □
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Lemma 39.7.0467 An étale morphism of algebraic spaces is flat.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms,
Lemma 36.12. □

Lemma 39.8.0468 An étale morphism of algebraic spaces is locally of finite presenta-
tion.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms,
Lemma 36.11. □

Lemma 39.9.06LT An étale morphism of algebraic spaces is locally of finite type.

Proof. An étale morphism is locally of finite presentation and a morphism locally
of finite presentation is locally of finite type, see Lemmas 39.8 and 28.5. □

Lemma 39.10.06CR An étale morphism of algebraic spaces is unramified.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms,
Lemma 36.5. □

Lemma 39.11.05W3 Let S be a scheme. Let X,Y be algebraic spaces étale over an
algebraic space Z. Any morphism X → Y over Z is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.6. □

Lemma 39.12.06LU A locally finitely presented, flat, unramified morphism of algebraic
spaces is étale.

Proof. Let X → Y be a locally finitely presented, flat, unramified morphism of
algebraic spaces. By Properties of Spaces, Lemma 16.3 we see this means there
exists a diagram as in Lemma 22.1 with h locally finitely presented, flat, unramified
and surjective vertical arrow a. By Morphisms, Lemma 36.16 h is étale. Hence
X → Y is étale by definition. □

40. Proper morphisms

03ZL The notion of a proper morphism plays an important role in algebraic geometry.
Here is the definition of a proper morphism of algebraic spaces.

Definition 40.1.03ZM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is proper if f is separated, finite type, and universally
closed.

Lemma 40.2.083R Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and every morphism Z → Y the projection Z×Y X → Z

is proper,
(3) for every affine scheme Z and every morphism Z → Y the projection Z×Y

X → Z is proper,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is proper, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is proper.
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Proof. Combine Lemmas 4.12, 23.4, 8.8, and 9.5. □

Lemma 40.3.04WP A base change of a proper morphism is proper.

Proof. See Lemmas 4.4, 23.3, and 9.3. □

Lemma 40.4.04XY A composition of proper morphisms is proper.

Proof. See Lemmas 4.8, 23.2, and 9.4. □

Lemma 40.5.04XZ A closed immersion of algebraic spaces is a proper morphism of
algebraic spaces.

Proof. As a closed immersion is by definition representable this follows from
Spaces, Lemma 5.8 and the corresponding result for morphisms of schemes, see
Morphisms, Lemma 41.6. □

Lemma 40.6.04NX Let S be a scheme. Consider a commutative diagram of algebraic
spaces

X //

  

Y

~~
B

over S.
(1) If X → B is universally closed and Y → B is separated, then the morphism

X → Y is universally closed. In particular, the image of |X| in |Y | is closed.
(2) If X → B is proper and Y → B is separated, then the morphism X → Y

is proper.

Proof. Assume X → B is universally closed and Y → B is separated. We factor
the morphism as X → X ×B Y → Y . The first morphism is a closed immersion,
see Lemma 4.6 hence universally closed. The projection X ×B Y → Y is the base
change of a universally closed morphism and hence universally closed, see Lemma
9.3. Thus X → Y is universally closed as the composition of universally closed
morphisms, see Lemma 9.4. This proves (1). To deduce (2) combine (1) with
Lemmas 4.10, 8.9, and 23.6. □

Lemma 40.7.08AJ Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces over B. If X is universally closed
over B and f is surjective then Y is universally closed over B. In particular, if
also Y is separated and of finite type over B, then Y is proper over B.

Proof. Assume X is universally closed and f surjective. Denote p : X → B,
q : Y → B the structure morphisms. Let B′ → B be a morphism of algebraic
spaces over S. The base change f ′ : XB′ → YB′ is surjective (Lemma 5.5), and the
base change p′ : XB′ → B′ is closed. If T ⊂ YB′ is closed, then (f ′)−1(T ) ⊂ XB′ is
closed, hence p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. □

Lemma 40.8.0AGD Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B
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be a commutative diagram of morphism of algebraic spaces over S. Assume
(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,

Then the scheme theoretic image Z ⊂ Y of h is proper over B and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 16. Observe that
h is quasi-compact (Lemma 8.10) hence |h|(|X|) ⊂ |Z| is dense (Lemma 16.3). On
the other hand |h|(|X|) is closed in |Y | (Lemma 40.6) hence X → Z is surjective.
Thus Z → B is a proper (Lemma 40.7). □

Lemma 40.9.04Y0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is separated,
(2) ∆X/Y : X → X ×Y X is universally closed, and
(3) ∆X/Y : X → X ×Y X is proper.

Proof. The implication (1) ⇒ (3) follows from Lemma 40.5. We will use Spaces,
Lemma 5.8 without further mention in the rest of the proof. Recall that ∆X/Y is a
representable monomorphism which is locally of finite type, see Lemma 4.1. Since
proper⇒ universally closed for morphisms of schemes we conclude that (3) implies
(2). If ∆X/Y is universally closed then Étale Morphisms, Lemma 7.2 implies that
it is a closed immersion. Thus (2) ⇒ (1) and we win. □

41. Valuative criteria

03IW The section introduces the basics on valuative criteria for morphisms of algebraic
spaces. Here is a list of references to further results

(1) the valuative criterion for universal closedness can be found in Section 42,
(2) the valuative criterion of separatedness can be found in Section 43,
(3) the valuative criterion for properness can be found in Section 44,
(4) additional converse statements can be found in Decent Spaces, Section 16

and Decent Spaces, Lemma 17.11, and
(5) in the Noetherian case it is enough to check the criterion for discrete valu-

ation rings as is shown in Cohomology of Spaces, Section 19 and Limits of
Spaces, Section 21, and

(6) refined versions of the valuative criteria in the Noetherian case can be found
in Limits of Spaces, Section 22.

We first formally state the definition and then we discuss how this differs from the
case of morphisms of schemes.

Definition 41.1.03IX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f satisfies the uniqueness part of the valuative criterion if
given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y
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where A is a valuation ring with field of fractions K, there exists at most one
dotted arrow (without requiring existence). We say f satisfies the existence part of
the valuative criterion if given any solid diagram as above there exists an extension
K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′)→
X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

We say f satisfies the valuative criterion if f satisfies both the existence and unique-
ness part.

The formulation of the existence part of the valuative criterion is slightly different
for morphisms of algebraic spaces, since it may be necessary to extend the fraction
field of the valuation ring. In practice this difference almost never plays a role.

(1) Checking the uniqueness part of the valuative criterion never involves any
fraction field extensions, hence this is exactly the same as in the case of
schemes.

(2) It is necessary to allow for field extensions in general, see Example 41.6.
(3) For morphisms of algebraic spaces it always suffices to take a finite separable

extensions K ′/K in the existence part of the valuative criterion, see Lemma
41.3.

(4) If f : X → Y is a separated morphism of algebraic spaces, then we can
always take K = K ′ when we check the existence part of the valuative
criterion, see Lemma 41.5.

(5) For a quasi-compact and quasi-separated morphism f : X → Y , we get an
equivalence between “f is separated and universally closed” and “f satisfies
the usual valuative criterion”, see Lemma 43.3. The valuative criterion for
properness is the usual one, see Lemma 44.1.

As a first step in the theory, we show that the criterion is identical to the criterion
as formulated for morphisms of schemes in case the morphism of algebraic spaces
is representable.

Lemma 41.2.03K8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is representable. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 20.3.
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Proof. It suffices to show that given a commutative diagram of the form

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

φ

44

Spec(A) // Y

as in Definition 41.1, then we can find a morphism Spec(A) → X fitting into the
diagram too. Set XA = Spec(A)×Y Y . As f is representable we see that XA is a
scheme. The morphism φ gives a morphism φ′ : Spec(A′) → XA. Let x ∈ XA be
the image of the closed point of φ′ : Spec(A′) → XA. Then we have the following
commutative diagram of rings

K ′ Koo OXA,x
oo

vv
A′

OO

Aoo Aoo

OO

Since A is a valuation ring, and since A′ dominates A, we see that K ∩ A′ = A.
Hence the ring map OXA,x → K has image contained in A. Whence a morphism
Spec(A)→ XA (see Schemes, Section 13) as desired. □

Lemma 41.3.03KH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) f satisfies the existence part of the valuative criterion as in Definition 41.1

modified by requiring the extension K ′/K to be finite separable.

Proof. We have to show that (1) implies (2). Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. Choose a scheme U and a surjective
étale morphism U → X. Then

Spec(A′)×X U −→ Spec(A′)

is surjective étale. Let p be a point of Spec(A′)×X U mapping to the closed point
of Spec(A′). Let p′ ⇝ p be a generalization of p mapping to the generic point
of Spec(A′). Such a generalization exists because generalizations lift along flat
morphisms of schemes, see Morphisms, Lemma 25.9. Then p′ corresponds to a
point of the scheme Spec(K ′)×X U . Note that

Spec(K ′)×X U = Spec(K ′)×Spec(K) (Spec(K)×X U)

Hence p′ maps to a point q′ ∈ Spec(K)×XU whose residue field is a finite separable
extension of K. Finally, p′ ⇝ p maps to a specialization u′ ⇝ u on the scheme U .

https://stacks.math.columbia.edu/tag/03KH
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With all this notation we get the following diagram of rings

κ(p′) κ(q′)oo κ(u′)oo

OSpec(A′)×X U,p

ff

OU,u
oo

OO

K ′

OO

A′oo

OO

Aoo

OO

This means that the ring B ⊂ κ(q′) generated by the images of A and OU,u maps
to a subring of κ(p′) contained in the image B′ of OSpec(A′)×X U,p → κ(p′). Note
that B′ is a local ring. Let m ⊂ B be the maximal ideal. By construction A ∩ m,
(resp. OU,u ∩m, resp. A′ ∩m) is the maximal ideal of A (resp. OU,u, resp. A′). Set
q = B ∩m. This is a prime ideal such that A ∩ q is the maximal ideal of A. Hence
Bq ⊂ κ(q′) is a local ring dominating A. By Algebra, Lemma 50.2 we can find a
valuation ring A1 ⊂ κ(q′) with field of fractions κ(q′) dominating Bq. The (local)
ring map OU,u → A1 gives a morphism Spec(A1)→ U → X such that the diagram

Spec(κ(q′)) //

��

Spec(K) // X

��
Spec(A1) //

44

Spec(A) // Y

is commutative. Since the fraction field of A1 is κ(q′) and since κ(q′)/K is finite
separable by construction the lemma is proved. □

Lemma 41.4.0ARH Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) //

;;

Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. Then the dotted arrow exists making
the diagram commute.

Proof. We have to show that we can find a morphism Spec(A) → X fitting into
the diagram.
Consider the base change XA = Spec(A) ×Y X of X. Then XA → Spec(A) is
a separated morphism of algebraic spaces (Lemma 4.4). Base changing all the
morphisms of the diagram above we obtain

Spec(K ′) //

��

Spec(K) // XA

��
Spec(A′) //

44

Spec(A) Spec(A)

Thus we may replace X by XA, assume that Y = Spec(A) and that we have a
diagram as above. We may and do replace X by a quasi-compact open subspace
containing the image of |Spec(A′)| → |X|.

https://stacks.math.columbia.edu/tag/0ARH
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The morphism Spec(A′) → X is quasi-compact by Lemma 8.9. Let Z ⊂ X be
the scheme theoretic image of Spec(A′)→ X. Then Z is a reduced (Lemma 16.4),
quasi-compact (as a closed subspace of X), separated (as a closed subspace of X)
algebraic space over A. Consider the base change

Spec(K ′) = Spec(A′)×Spec(A) Spec(K)→ X ×Spec(A) Spec(K) = XK

of the morphism Spec(A′) → X by the flat morphism of schemes Spec(K) →
Spec(A). By Lemma 30.12 we see that the scheme theoretic image of this morphism
is the base change ZK of Z. On the other hand, by assumption (i.e., the commu-
tative diagram above) this morphism factors through a morphism Spec(K)→ ZK

which is a section to the structure morphism ZK → Spec(K). As ZK is separated,
this section is a closed immersion (Lemma 4.7). We conclude that ZK = Spec(K).

Let V → Z be a surjective étale morphism with V an affine scheme (Properties of
Spaces, Lemma 6.3). Say V = Spec(B). Then V ×Z Spec(A′) = Spec(C) is affine
as Z is separated. Note that B → C is injective as V is the scheme theoretic image
of V ×Z Spec(A′) → V by Lemma 16.3. On the other hand, A′ → C is étale as
corresponds to the base change of V → Z. Since A′ is a torsion free A-module, the
flatness of A′ → C implies C is a torsion free A-module, hence B is a torsion free
A-module. Note that being torsion free as an A-module is equivalent to being flat
(More on Algebra, Lemma 22.10). Next, we write

V ×Z V = Spec(B′)

Note that the two ring maps B → B′ are étale as V → Z is étale. The canonical
surjective map B ⊗A B → B′ becomes an isomorphism after tensoring with K
over A because ZK = Spec(K). However, B ⊗A B is torsion free as an A-module
by our remarks above. Thus B′ = B ⊗A B. It follows that the base change of
the ring map A → B by the faithfully flat ring map A → B is étale (note that
Spec(B) → Spec(A) is surjective as X → Spec(A) is surjective). Hence A → B
is étale (Descent, Lemma 23.29), in other words, V → X is étale. Since we have
V ×Z V = V ×Spec(A) V we conclude that Z = Spec(A) as algebraic spaces (for
example by Spaces, Lemma 9.1) and the proof is complete. □

Lemma 41.5.0A3W Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 20.3.

https://stacks.math.columbia.edu/tag/0A3W
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Proof. We have to show that (1) implies (2). Suppose given a commutative dia-
gram

Spec(K) //

��

X

��
Spec(A) // Y

as in part (2). By (1) there exists a commutative diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. By Lemma 41.4 we can find a mor-
phism Spec(A)→ X fitting into the diagram, i.e., (2) holds. □

Example 41.6.03KI Consider the algebraic space X constructed in Spaces, Example
14.2. Recall that it is Galois twist of the affine line with zero doubled. The Galois
twist is with respect to a degree two Galois extension k′/k of fields. As such it
comes with a morphism

π : X −→ S = A1
k

which is quasi-compact. We claim that π is universally closed. Namely, after base
change by Spec(k′)→ Spec(k) the morphism π is identified with the morphism

affine line with zero doubled −→ affine line
which is universally closed (some details omitted). Since the morphism Spec(k′)→
Spec(k) is universally closed and surjective, a diagram chase shows that π is uni-
versally closed. On the other hand, consider the diagram

Spec(k((x))) //

��

X

π

��
Spec(k[[x]]) //

99

A1
k

Since the unique point of X above 0 ∈ A1
k corresponds to a monomorphism

Spec(k′) → X it is clear there cannot exist a dotted arrow! This shows that a
finite separable field extension is needed in general.

Lemma 41.7.03IY The base change of a morphism of algebraic spaces which satisfies
the existence part of (resp. uniqueness part of) the valuative criterion by any mor-
phism of algebraic spaces satisfies the existence part of (resp. uniqueness part of)
the valuative criterion.

Proof. Let f : X → Y be a morphism of algebraic spaces over the scheme S. Let
Z → Y be any morphism of algebraic spaces over S. Consider a solid commutative
diagram of the following shape

Spec(K) //

��

Z ×Y X //

��

X

��
Spec(A) //

99 44

Z // Y

https://stacks.math.columbia.edu/tag/03KI
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Then the set of north-west dotted arrows making the diagram commute is in 1-1
correspondence with the set of west-north-west dotted arrows making the diagram
commute. This proves the lemma in the case of “uniqueness”. For the existence part,
assume f satisfies the existence part of the valuative criterion. If we are given a solid
commutative diagram as above, then by assumption there exists an extension K ′/K
of fields and a valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′)→ X
fitting into the following commutative diagram

Spec(K ′) //

��

Spec(K) // Z ×Y X // X

��
Spec(A′) //

22

Spec(A) // Z // Y

And by the remarks above the skew arrow corresponds to an arrow Spec(A′) →
Z ×Y X as desired. □

Lemma 41.8.03IZ The composition of two morphisms of algebraic spaces which satisfy
the (existence part of, resp. uniqueness part of) the valuative criterion satisfies the
(existence part of, resp. uniqueness part of) the valuative criterion.

Proof. Let f : X → Y , g : Y → Z be morphisms of algebraic spaces over the
scheme S. Consider a solid commutative diagram of the following shape

Spec(K)

��

// X

f

��
Y

g

��
Spec(A) //

;;

DD

Z

If we have the uniqueness part for g, then there exists at most one north-west
dotted arrow making the diagram commute. If we also have the uniqueness part
for f , then we have at most one north-north-west dotted arrow making the diagram
commute. The proof in the existence case comes from contemplating the following
diagram

Spec(K ′′) //

��

Spec(K ′) // Spec(K) // X

f

��
Y

g

��
Spec(A′′) //

55

Spec(A′) //

44

Spec(A) // Z

Namely, the existence part for g gives us the extension K ′, the valuation ring A′

and the arrow Spec(A′) → Y , whereupon the existence part for f gives us the
extension K ′′, the valuation ring A′′ and the arrow Spec(A′′)→ X. □

42. Valuative criterion for universal closedness

03K9 The existence part of the valuative criterion implies universal closedness for quasi-
compact morphisms, see Lemma 42.1. In the case of schemes, this is an “if and

https://stacks.math.columbia.edu/tag/03IZ
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only if” statement, but for morphisms of algebraic spaces this is wrong. Example
9.6 shows that A1

k/Z → Spec(k) is universally closed, but it is easy to see that
the existence part of the valuative criterion fails. We revisit this topic in Decent
Spaces, Section 16 and show the converse holds if the source of the morphism is a
decent space (see also Decent Spaces, Lemma 17.11 for a relative version).

Lemma 42.1.03KA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 8.4 and 41.7 properties (1) and (2) are preserved under any
base change. By Lemma 9.5 we only have to show that |T ×Y X| → |T | is closed,
whenever T is an affine scheme over S mapping into Y . Hence it suffices to prove:
If Y is an affine scheme, f : X → Y is quasi-compact and satisfies the existence
part of the valuative criterion, then f : |X| → |Y | is closed. In this situation X is
a quasi-compact algebraic space. By Properties of Spaces, Lemma 6.3 there exists
an affine scheme U and a surjective étale morphism φ : U → X. Let T ⊂ |X|
closed. The inverse image φ−1(T ) ⊂ U is closed, and hence is the set of points
of an affine closed subscheme Z ⊂ U . Thus, by Algebra, Lemma 41.5 we see that
f(T ) = f(φ(|Z|)) ⊂ |Y | is closed if it is closed under specialization.

Let y′ ⇝ y be a specialization in Y with y′ ∈ f(T ). Choose a point x′ ∈ T ⊂ |X|
mapping to y′ under f . We may represent x′ by a morphism Spec(K) → X for
some field K. Thus we have the following diagram

Spec(K)
x′
//

��

X

f

��
Spec(OY,y) // Y,

see Schemes, Section 13 for the existence of the left vertical map. Choose a valuation
ring A ⊂ K dominating the image of the ring map OY,y → K (this is possible
since the image is a local ring and not a field as y′ ̸= y, see Algebra, Lemma
50.2). By assumption there exists a field extension K ′/K and a valuation ring
A′ ⊂ K ′ dominating A, and a morphism Spec(A′)→ X fitting into the commutative
diagram. Since A′ dominates A, and A dominates OY,y we see that the closed point
of Spec(A′) maps to a point x ∈ X with f(x) = y which is a specialization of x′.
Hence x ∈ T as T is closed, and hence y ∈ f(T ) as desired. □

The following lemma will be generalized in Decent Spaces, Lemma 17.11.

Lemma 42.2.0A3X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If f is quasi-separated and universally closed, then f satisfies the existence
part of the valuative criterion.

(2) If f is quasi-compact and quasi-separated, then f is universally closed if
and only if the existence part of the valuative criterion holds.

https://stacks.math.columbia.edu/tag/03KA
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Proof. If (1) is true then combined with Lemma 42.1 we obtain (2). Assume f is
quasi-separated and universally closed. Assume given a diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in Definition 41.1. A formal argument shows that the existence of the desired
diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

follows from existence in the case of the morphism XA → Spec(A). Since being
quasi-separated and universally closed are preserved by base change, the lemma
follows from the result in the next paragraph.

Consider a solid diagram

Spec(K)
x

//

��

X

f

��
Spec(A)

99

Spec(A)

where A is a valuation ring with field of fractions K. By Lemma 8.9 and the fact
that f is quasi-separated we have that the morphism x is quasi-compact. Since f
is universally closed, we have in particular that |f |({x}) is closed in Spec(A). Since
this image contains the generic point of Spec(A) there exists a point x′ ∈ |X| in
the closure of x mapping to the closed point of Spec(A). By Lemma 16.5 we can
find a commutative diagram

Spec(K ′) //

��

Spec(K)

��
Spec(A′) // X

such that the closed point of Spec(A′) maps to x′ ∈ |X|. It follows that Spec(A′)→
Spec(A) maps the closed point to the closed point, i.e., A′ dominates A and this
finishes the proof. □

Lemma 42.3.0A3Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and separated. Then the following are
equivalent

(1) f is universally closed,
(2) the existence part of the valuative criterion holds as in Definition 41.1, and
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(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 20.3.

Proof. Since f is separated parts (2) and (3) are equivalent by Lemma 41.5. The
equivalence of (3) and (1) follows from Lemma 42.2. □

Lemma 42.4.089F Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let Spec(A) → Y be a morphism where A is a valuation ring. If
the closed point of Spec(A) maps to a point of |Y | in the image of |X| → |Y |, then
there exists a commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A → A′ is an extension of valuation rings (More on Algebra, Definition
123.1).

Proof. The base change XA → Spec(A) is flat (Lemma 30.4) and the closed point
of Spec(A) is in the image of |XA| → |Spec(A)| (Properties of Spaces, Lemma 4.3).
Thus we may assume Y = Spec(A). Let U → X be a surjective étale morphism
where U is a scheme. Let u ∈ U map to the closed point of Spec(A). Consider
the flat local ring map A → B = OU,u. By Algebra, Lemma 39.16 there exists
a prime ideal q ⊂ B such that q lies over (0) ⊂ A. By Algebra, Lemma 50.2
we can find a valuation ring A′ ⊂ κ(q) dominating B/q. The induced morphism
Spec(A′)→ U → X is a solution to the problem posed by the lemma. □

Lemma 42.5.089G Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. If

(1) f and h are quasi-compact,
(2) |h|(|U |) is dense in |X|, and

given any commutative solid diagram

Spec(K) //

��

U // X

��
Spec(A) //

66

Y

where A is a valuation ring with field of fractions K
(3) there exists at most one dotted arrow making the diagram commute, and
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(4) there exists an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ domi-
nating A and a morphism Spec(A′) → X such that the following diagram
commutes

Spec(K ′) //

��

Spec(K) // U // X

��
Spec(A′) //

33

Spec(A) // Y

then f is universally closed. If moreover
(5) f is quasi-separated

then f is separated and universally closed.

Proof. Assume (1), (2), (3), and (4). We will verify the existence part of the
valuative criterion for f which will imply f is universally closed by Lemma 42.1.
To do this, consider a commutative diagram

(42.5.1)089H

Spec(K) //

��

X

��
Spec(A) // Y

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective
reductions by Properties of Spaces, Lemma 12.4. In this case the assumption that
h(U) is dense means that the scheme theoretic image of h : U → X is X, see
Lemma 16.4.

Reduction to the case Y affine. Choose an étale morphism Spec(R) → Y such
that the closed point of Spec(A) maps to an element of Im(|Spec(R)| → |Y |). By
Lemma 42.4 we can find a local ring map A→ A′ of valuation rings and a morphism
Spec(A′)→ Spec(R) fitting into a commutative diagram

Spec(A′) //

��

Spec(R)

��
Spec(A) // Y

Since in Definition 41.1 we allow for extensions of valuation rings it is clear that we
may replace A by A′, Y by Spec(R), X by X×Y Spec(R) and U by U ×Y Spec(R).

From now on we assume that Y = Spec(R) is an affine scheme. Let Spec(B)→ X be
an étale morphism from an affine scheme such that the morphism Spec(K)→ X is
in the image of |Spec(B)| → |X|. Since we may replace K by an extension K ′ ⊃ K
and A by a valuation ring A′ ⊂ K ′ dominating A (which exists by Algebra, Lemma
50.2), we may assume the morphism Spec(K) → X factors through Spec(B) (by
definition of |X|). In other words, we may think of K as a B-algebra. Choose a
polynomial algebra P over B and a B-algebra surjection P → K. Then Spec(P )→
X is flat as a composition Spec(P ) → Spec(B) → X. Hence the scheme theoretic
image of the morphism U ×X Spec(P )→ Spec(P ) is Spec(P ) by Lemma 30.12. By
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Lemma 16.5 we can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map φ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating φ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.

which is a valuation ring by Algebra, Lemma 50.10. As C is an R-algebra with
fraction field K ′, we obtain a solid commutative diagram

Spec(K ′
1) //

��

Spec(K ′) //

��

U // X

��
Spec(C1) //

33

Spec(C) // Y

as in the statement of the lemma. Thus assumption (4) produces C → C1 and the
dotted arrows making the diagram commute. Let A′

1 = (C1)p be the localization
of C1 at a prime p ⊂ C1 lying over mA′ ⊂ C. Since C → C1 is flat by More
on Algebra, Lemma 22.10 such a prime p exists by Algebra, Lemmas 39.17 and
39.16. Note that A′ is the localization of C at mA′ and that A′

1 is a valuation ring
(Algebra, Lemma 50.9). In other words, A′ → A′

1 is a local ring map of valuation
rings. Assumption (3) implies

Spec(A′
1) //

��

Spec(C1) // X

Spec(A′) // Spec(P ) // Spec(B)

OO

commutes. Hence the restriction of the morphism Spec(C1) → X to Spec(C1/p)
restricts to the composition

Spec(κ(p))→ Spec(A′/mA′) = Spec(K ′′)→ Spec(K)→ X

on the generic point of Spec(C1/p). Moreover, C1/p is a valuation ring (Al-
gebra, Lemma 50.9) dominating A′′ which dominates A. Thus the morphism
Spec(C1/p) → X witnesses the existence part of the valuative criterion for the
diagram (42.5.1) as desired.

Next, suppose that (5) is satisfied as well, i.e., the morphism ∆ : X → X ×S X is
quasi-compact. In this case assumptions (1) – (4) hold for h and ∆. Hence the first
part of the proof shows that ∆ is universally closed. By Lemma 40.9 we conclude
that f is separated. □
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43. Valuative criterion of separatedness

03KT First we prove a converse and then we state the criterion.
Lemma 43.1.03KU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated, then f satisfies the uniqueness part of the valuative
criterion.
Proof. Let a diagram as in Definition 41.1 be given. Suppose there are two distinct
morphisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the
equalizer of a and b. Then Z = Spec(A) ×(a,b),X×Y X,∆ X. If f is separated,
then ∆ is a closed immersion, and this is a closed subscheme of Spec(A). By
assumption it contains the generic point of Spec(A). Since A is a domain this
implies Z = Spec(A). Hence a = b as desired. □

Lemma 43.2 (Valuative criterion separatedness).03KV Let S be a scheme. Let f :
X → Y be a morphism of algebraic spaces over S. Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.
Proof. Assumption (1) means ∆X/Y is quasi-compact. We claim the morphism
∆X/Y : X → X ×Y X satisfies the existence part of the valuative criterion. Let a
solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×Y X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over Y . By assumption (2) we see that a = b. Hence using a as the dotted arrow
works. Hence Lemma 42.1 applies, and we see that ∆X/Y is universally closed.
Since always ∆X/Y is locally of finite type and separated, we conclude from More
on Morphisms, Lemma 44.1 that ∆X/Y is a finite morphism (also, use the general
principle of Spaces, Lemma 5.8). At this point ∆X/Y is a representable, finite
monomorphism, hence a closed immersion by Morphisms, Lemma 44.15. □

Lemma 43.3.0A3Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and quasi-separated. Then the following
are equivalent

(1) f is separated and universally closed,
(2) the valuative criterion holds as in Definition 41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defini-
tion 20.3.
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Proof. Since f is quasi-separated, the uniqueness part of the valutative criterion
implies f is separated (Lemma 43.2). Conversely, if f is separated, then it satisfies
the uniqueness part of the valuative criterion (Lemma 43.1). Having said this,
we see that in each of the three cases the morphism f is separated and satisfies
the uniqueness part of the valuative criterion. In this case the lemma is a formal
consequence of Lemma 42.3. □

44. Valuative criterion of properness

0CKZ Here is a statement.

Lemma 44.1 (Valuative criterion for properness).0A40 Let S be a scheme. Let f :
X → Y be a morphism of algebraic spaces over S. Assume f is of finite type and
quasi-separated. Then the following are equivalent

(1) f is proper,
(2) the valuative criterion holds as in Definition 41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defini-
tion 20.3.

Proof. Formal consequence of Lemma 43.3 and the definitions. □

45. Integral and finite morphisms

03ZN We have already defined in Section 3 what it means for a representable morphism
of algebraic spaces to be integral (resp. finite).

Lemma 45.1.03ZO Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is integral, resp. finite (in the sense of Section 3),
if and only if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z
is affine and integral, resp. finite, over Z.

Proof. This follows directly from the definition of an integral (resp. finite) mor-
phism of schemes (Morphisms, Definition 44.1). □

This clears the way for the following definition.

Definition 45.2.03ZP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say that f is integral if for every affine scheme Z and morphisms Z → Y
the algebraic space X ×Y Z is representable by an affine scheme integral
over Z.

(2) We say that f is finite if for every affine scheme Z and morphisms Z → Y
the algebraic space X ×Y Z is representable by an affine scheme finite over
Z.
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Lemma 45.3.03ZQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and integral (resp. finite),
(2) f is integral (resp. finite),
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is integral (resp. finite), and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is integral (resp. finite).

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a
disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume
V → Y is as in (3). Then for every affine open W of V we see that W ×Y X is an
affine open of V ×Y X. Hence by Properties of Spaces, Lemma 13.1 we conclude
that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine. This
means we can apply Spaces, Lemma 11.5 because the class of integral (resp. finite)
morphisms satisfies all the required properties (see Morphisms, Lemmas 44.6 and
Descent, Lemmas 23.22, 23.23, and 37.1). The conclusion of applying this lemma
is that f is representable and integral (resp. finite), i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being integral (resp. finite)
is Zariski local on the target (the reference above shows that being integral or finite
is in fact fpqc local on the target). □

Lemma 45.4.03ZR The composition of integral (resp. finite) morphisms is integral
(resp. finite).

Proof. Omitted. □

Lemma 45.5.03ZS The base change of an integral (resp. finite) morphism is integral
(resp. finite).

Proof. Omitted. □

Lemma 45.6.0414 A finite morphism of algebraic spaces is integral. An integral mor-
phism of algebraic spaces which is locally of finite type is finite.

Proof. In both cases the morphism is representable, and you can check the con-
dition after a base change by an affine scheme mapping into Y , see Lemmas 45.3.
Hence this lemma follows from the same lemma for the case of schemes, see Mor-
phisms, Lemma 44.4. □

Lemma 45.7.0415 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. In both cases the morphism is representable, and you can check the con-
dition after a base change by an affine scheme mapping into Y , see Lemmas 45.3,
20.3, and 9.5. Hence the result follows from Morphisms, Lemma 44.7. □

Lemma 45.8.04NY A finite morphism of algebraic spaces is quasi-finite.
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Proof. Let f : X → Y be a morphism of algebraic spaces. By Definition 45.2 and
Lemmas 8.8 and 27.6 both properties may be checked after base change to an affine
over Y , i.e., we may assume Y affine. If f is finite then X is a scheme. Hence the
result follows from the corresponding result for schemes, see Morphisms, Lemma
44.10. □

Lemma 45.9.04NZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. In both cases the morphism is representable, and you can check the condi-
tion after base change to an affine scheme mapping into Y , see Lemmas 45.3, 20.3,
and 40.2. Hence the result follows from Morphisms, Lemma 44.11. □

Lemma 45.10.081Y A closed immersion is finite (and a fortiori integral).

Proof. Omitted. □

Lemma 45.11.0CZ2 Let S be a scheme. Let Xi → Y , i = 1, . . . , n be finite morphisms
of algebraic spaces over S. Then X1 ⨿ . . .⨿Xn → Y is finite too.

Proof. Follows from the case of schemes (Morphisms, Lemma 44.13) by étale lo-
calization. □

Lemma 45.12.081Z Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S.

(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X×Z Y → Y is finite (resp. integral) by Lemma 45.5. The morphism X → X×Z Y
is a closed immersion as Y → Z is separated, see Lemma 4.7. A closed immersion
is finite (resp. integral), see Lemma 45.10. The composition of finite (resp. integral)
morphisms is finite (resp. integral), see Lemma 45.4. Thus we win. □

46. Finite locally free morphisms

03ZT We have already defined in Section 3 what it means for a representable morphism
of algebraic spaces to be finite locally free.

Lemma 46.1.03ZU Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is finite locally free (in the sense of Section 3)
if and only if f is affine and the sheaf f∗OX is a finite locally free OY -module.

Proof. Assume f is finite locally free (as defined in Section 3). This means that for
every morphism V → Y whose source is a scheme the base change f ′ : V ×Y X → V
is a finite locally free morphism of schemes. This in turn means (by the definition
of a finite locally free morphism of schemes) that f ′

∗OV ×Y X is a finite locally free
OV -module. We may choose V → Y to be surjective and étale. By Properties of
Spaces, Lemma 26.2 we conclude the restriction of f∗OX to V is finite locally free.
Hence by Modules on Sites, Lemma 23.3 applied to the sheaf f∗OX on Yspaces,étale

we conclude that f∗OX is finite locally free.
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Conversely, assume f is affine and that f∗OX is a finite locally free OY -module.
Let V be a scheme, and let V → Y be a surjective étale morphism. Again by
Properties of Spaces, Lemma 26.2 we see that f ′

∗OV ×Y X is finite locally free. Hence
f ′ : V ×Y X → V is finite locally free (as it is also affine). By Spaces, Lemma 11.5
we conclude that f is finite locally free (use Morphisms, Lemma 48.4 Descent,
Lemmas 23.30 and 37.1). Thus we win. □

This clears the way for the following definition.

Definition 46.2.03ZV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that f is finite locally free if f is affine and f∗OX is a finite
locally free OY -module. In this case we say f is has rank or degree d if the sheaf
f∗OX is finite locally free of rank d.

Lemma 46.3.03ZW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and finite locally free,
(2) f is finite locally free,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is finite locally free, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi is finite locally free.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a
disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume
V → Y is as in (3). Then for every affine open W of V we see that W ×Y X is an
affine open of V ×Y X. Hence by Properties of Spaces, Lemma 13.1 we conclude that
V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine. This means
we can apply Spaces, Lemma 11.5 because the class of finite locally free morphisms
satisfies all the required properties (see Morphisms, Lemma 48.4 Descent, Lemmas
23.30 and 37.1). The conclusion of applying this lemma is that f is representable
and finite locally free, i.e., (1) holds.
The equivalence of (1) and (4) follows from the fact that being finite locally free is
Zariski local on the target (the reference above shows that being finite locally free
is in fact fpqc local on the target). □

Lemma 46.4.03ZX The composition of finite locally free morphisms is finite locally
free.

Proof. Omitted. □

Lemma 46.5.03ZY The base change of a finite locally free morphism is finite locally
free.

Proof. Omitted. □

Lemma 46.6.0416 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If Y is locally Noetherian these are also equivalent to
(3) f is finite and flat.
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Proof. In each of the three cases the morphism is representable and you can check
the property after base change by a surjective étale morphism V → Y , see Lemmas
45.3, 46.3, 30.5, and 28.4. If Y is locally Noetherian, then V is locally Noetherian.
Hence the result follows from the corresponding result in the schemes case, see
Morphisms, Lemma 48.2. □

47. Rational maps

0EML This section is the analogue of Morphisms, Section 49. We will use without further
mention that the intersection of dense opens of a topological space is a dense open.

Definition 47.1.0EMM Let S be a scheme. Let X, Y be algebraic spaces over S.
(1) Let f : U → Y , g : V → Y be morphisms of algebraic spaces over S defined

on dense open subspaces U , V of X. We say that f is equivalent to g if
f |W = g|W for some dense open subspace W ⊂ U ∩ V .

(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

(3) Given morphisms X → B and Y → B of algebraic spaces over S we say
that a rational map from X to Y is a B-rational map from X to Y if
there exists a representative f : U → Y of the equivalence class which is a
morphism over B.

We say that two morphisms f , g as in (1) of the definition define the same rational
map instead of saying that they are equivalent. In many cases we will consider in
the future, the algebraic spaces X and Y will contain a dense open subspaces X ′

and Y ′ which are schemes. In that case a rational map from X to Y is the same as
an S-rational map from X ′ to Y ′ in the sense of Morphisms, Definition 47.1. Then
all of the theory developed for schemes can be brought to bear.

Definition 47.2.0EMN Let S be a scheme. Let X be an algebraic space over S. A
rational function on X is a rational map from X to A1

S .

Looking at the discussion following Morphisms, Definition 49.3 we find that this is
the same as the notion defined there in case X happens to be a scheme.

Recall that we have the canonical identification

MorS(T,A1
S) = Mor(T,A1

Z) = Γ(T,OT )

for any scheme T over S, see Schemes, Example 15.2. Hence A1
S is a ring-object in

the category of schemes over S. In other words, addition and multiplication define
morphisms

+ : A1
S ×S A1

S → A1
S and ∗ : A1

S ×S A1
S → A1

S

satisfying the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into A1

S has a natural ring
structure.

Definition 47.3.0EMP Let S be a scheme. Let X be an algebraic space over S. The ring
of rational functions on X is the ring R(X) whose elements are rational functions
with addition and multiplication as just described.

We will define function fields for integral algebraic spaces later, see Spaces over
Fields, Section 4.
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Definition 47.4.0EMQ Let S be a scheme. Let φ be a rational map between two
algebraic spaces X and Y over S. We say φ is defined in a point x ∈ |X| if there
exists a representative (U, f) of φ with x ∈ |U |. The domain of definition of φ is
the set of all points where φ is defined.

The domain of definition is viewed as an open subspace of X via Properties of
Spaces, Lemma 4.8. With this definition it isn’t true in general that φ has a
representative which is defined on all of the domain of definition.

Lemma 47.5.0EMR Let S be a scheme. Let X and Y be algebraic spaces over S.
Assume X is reduced and Y is separated over S. Let φ be a rational map from
X to Y with domain of definition U ⊂ X. Then there exists a unique morphism
f : U → Y of algebraic spaces representing φ.

Proof. Let (V, g) and (V ′, g′) be representatives of φ. Then g, g′ agree on a dense
open subspace W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and
g′|V ∩V ′ is a closed subspace of V ∩ V ′ because it is the base change of ∆ : Y →
Y ×S Y by the morphism V ∩ V ′ → Y ×S Y given by g|V ∩V ′ and g′|V ∩V ′ . Now
W ⊂ E implies that |E| = |V ∩ V ′|. As V ∩ V ′ is reduced we conclude E = V ∩ V ′

scheme theoretically, i.e., g|V ∩V ′ = g′|V ∩V ′ , see Properties of Spaces, Lemma 12.4.
It follows that we can glue the representatives g : V → Y of φ to a morphism
f : U → Y because

∐
V → U is a surjection of fppf sheaves and

∐
V,V ′ V ∩ V ′ =

(
∐
V )×U (

∐
V ). □

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our spaces are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

Definition 47.6.0EMS Let S be a scheme. Let X and Y be algebraic spaces over S.
Assume |X| and |Y | are irreducible. A rational map from X to Y is called dominant
if any representative f : U → Y is a dominant morphism in the sense of Definition
18.1.

We can compose a dominant rational map φ between irreducible algebraic spaces
X and Y with an arbitrary rational map ψ from Y to Z. Namely, choose repre-
sentatives f : U → Y with |U | ⊂ |X| open dense and g : V → Z with |V | ⊂ |Y |
open dense. Then W = |f |−1(V ) ⊂ |X| is open nonempty (because the image of
|f | is dense and hence must meet the nonempty open V ) and hence dense as |X| is
irreducible. We define ψ ◦ φ as the equivalence class of g ◦ f |W : W → Z. We omit
the verification that this is well defined.
In this way we obtain a category whose objects are irreducible algebraic spaces over
S and whose morphisms are dominant rational maps.

Definition 47.7.0EMT Let S be a scheme. Let X and Y be algebraic spaces over S with
|X| and |Y | irreducible. We say X and Y are birational if X and Y are isomorphic
in the category of irreducible algebraic spaces over S and dominant rational maps.

If X and Y are birational irreducible algebraic spaces, then the set of rational
maps from X to Z is bijective with the set of rational map from Y to Z for all
algebraic spaces Z (functorially in Z). For “general” irreducible algebraic spaces
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this is just one possible definition. Another would be to require X and Y have
isomorphic rings of rational functions; sometimes these two notions are equivalent
(insert future reference here).

Lemma 47.8.0EMU Let S be a scheme. Let X and Y be algebraic space over S with |X|
and |Y | irreducible. Then X and Y are birational if and only if there are nonempty
open subspaces U ⊂ X and V ⊂ Y which are isomorphic as algebraic spaces over
S.

Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps from X to Y and from Y to X. After shrinking
U we may assume f : U → Y factors through V . As g ◦ f is the identity as a
dominant rational map, we see that the composition U → V → X is the identity
on a dense open of U . Thus after replacing U by a smaller open we may assume
that U → V → X is the inclusion of U into X. By symmetry we find there exists
an open subspace V ′ ⊂ V such that g|V ′ : V ′ → X factors through U ⊂ X and
such that V ′ → U → Y is the identity. The inverse image of |V ′| by |U | → |V | is an
open of |U | and hence equal to |U ′| for some open subspace U ′ ⊂ U , see Properties
of Spaces, Lemma 4.8. Then U ′ ⊂ U → V factors as U ′ → V ′. Similarly V ′ → U
factors as V ′ → U ′. The reader finds that U ′ → V ′ and V ′ → U ′ are mutually
inverse morphisms of algebraic spaces over S and the proof is complete. □

48. Relative normalization of algebraic spaces

0BAZ This section is the analogue of Morphisms, Section 53.

Lemma 48.1.0820 Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf of OX-algebras. There exists a quasi-coherent sheaf of OX-
algebras A′ ⊂ A such that for any affine object U of Xétale the ring A′(U) ⊂ A(U)
is the integral closure of OX(U) in A(U).

Proof. Let U be an object of Xétale. Then U is a scheme. Denote A|U the
restriction to the Zariski site. Then A|U is a quasi-coherent sheaf of OU -algebras
hence we can apply Morphisms, Lemma 53.1 to find a quasi-coherent subalgebra
A′

U ⊂ A|U such that the value of A′
U on any affine open W ⊂ U is as given in

the statement of the lemma. If f : U ′ → U is a morphism in Xétale, then A|U ′ =
f∗(A|U ) where f∗ means pullback by the morphism f in the Zariski topology; this
holds because A is quasi-coherent (see introduction to Properties of Spaces, Section
29 and the references to the discussion in the chapter on descent on schemes).
Since f is étale we find that More on Morphisms, Lemma 19.1 says that we get a
canonical isomorphism f∗(A′

U ) = A′
U ′ . This immediately tells us that we obtain

a sub presheaf A′ ⊂ A of OX -algebras over Xétale which is a sheaf for the Zariski
topology and has the right values on affine objects. But the fact that each A′

U

is quasi-coherent on the scheme U and that for f : U ′ → U étale we have A′
U ′ =

f∗(A′
U ) implies that A′ is quasi-coherent on Xétale as well (as this is a local property

and we have the references above describing quasi-coherent modules on Uétale in
exactly this manner). □

Definition 48.2.0821 Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of OX -algebras. The integral closure of OX in A is the
quasi-coherent OX -subalgebra A′ ⊂ A constructed in Lemma 48.1 above.
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We will apply this in particular when A = f∗OY for a quasi-compact and quasi-
separated morphism of algebraic spaces f : Y → X (see Lemma 11.2). We can
then take the relative spectrum of the quasi-coherent OX -algebra (Lemma 20.7) to
obtain the normalization of X in Y .

Definition 48.3.0822 Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let O′ be the integral closure
of OX in f∗OY . The normalization of X in Y is the morphism of algebraic spaces

ν : X ′ = Spec
X

(O′)→ X

over S. It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X

of the initial morphism f .

To get the factorization, use Remark 20.9 and functoriality of the Spec construction.

Lemma 48.4.0ABP Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let Y → X ′ → X be the
normalization of X in Y .

(1) If W → X is an étale morphism of algebraic spaces over S, then W ×X X ′

is the normalization of W in W ×X Y .
(2) If Y and X are representable, then Y ′ is representable and is canonically

isomorphic to the normalization of the scheme X in the scheme Y as con-
structed in Morphisms, Section 54.

Proof. It is immediate from the construction that the formation of the normaliza-
tion of X in Y commutes with étale base change, i.e., part (1) holds. On the other
hand, ifX and Y are schemes, then for U ⊂ X affine open, f∗OY (U) = OY (f−1(U))
and hence ν−1(U) is the spectrum of exactly the same ring as we get in the corre-
sponding construction for schemes. □

Here is a characterization of this construction.

Lemma 48.5.0823 Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. The factorization f = ν ◦ f ′, where
ν : X ′ → X is the normalization of X in Y is characterized by the following two
properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a

commutative diagram
Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for a unique morphism h : X ′ → Z.
Moreover, in (2) the morphism h : X ′ → Z is the normalization of Z in Y .

Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 48.3. The
morphism ν is integral by construction, which proves (1). Assume given a factor-
ization f = π ◦ g with π : Z → X integral as in (2). By Definition 45.2 π is affine,
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and hence Z is the relative spectrum of a quasi-coherent sheaf of OX -algebras B.
The morphism g : X → Z corresponds to a map of OX -algebras χ : B → f∗OY .
Since B(U) is integral over OX(U) for every affine U étale over X (by Definition
45.2) we see from Lemma 48.1 that χ(B) ⊂ O′. By the functoriality of the relative
spectrum Lemma 20.7 this provides us with a unique morphism h : X ′ → Z. We
omit the verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it char-
acterizes it as an initial object in a category. The morphism h in (2) is integral by
Lemma 45.12. Given a factorization g = π′ ◦ g′ with π′ : Z ′ → Z integral, we get
a factorization f = (π ◦ π′) ◦ g′ and we get a morphism h′ : X ′ → Z ′. Uniqueness
implies that π′◦h′ = h. Hence the characterization (1), (2) applies to the morphism
h : X ′ → Z which gives the last statement of the lemma. □

Lemma 48.6.0AYF Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let X ′ → X be the normalization
of X in Y . If Y is reduced, so is X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. □

Lemma 48.7.0AYG Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of schemes. Let X ′ → X be the normalization of X in Y . If
x′ ∈ |X ′| is a point of codimension 0 (Properties of Spaces, Definition 10.2), then
x′ is the image of some y ∈ |Y | of codimension 0.

Proof. By Lemma 48.4 and the definitions, we may assume that X = Spec(A) is
affine. Then X ′ = Spec(A′) where A′ is the integral closure of A in Γ(Y,OY ) and x′

corresponds to a minimal prime of A′. Choose a surjective étale morphism V → Y
where V = Spec(B) is affine. Then A′ → B is injective, hence every minimal prime
of A′ is the image of a minimal prime of B, see Algebra, Lemma 30.5. The lemma
follows. □

Lemma 48.8.0824 Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Suppose that Y = Y1⨿Y2 is a
disjoint union of two algebraic spaces. Write fi = f |Yi

. Let X ′
i be the normalization

of X in Yi. Then X ′
1 ⨿X ′

2 is the normalization of X in Y .

Proof. Omitted. □

Lemma 48.9.0A0Q Let S be a scheme. Let f : X → Y be a quasi-compact, quasi-
separated and universally closed morphisms of algebraic spaces over S. Then f∗OX

is integral over OY . In other words, the normalization of Y in X is equal to the
factorization

X −→ Spec
Y

(f∗OX) −→ Y

of Remark 20.9.

Proof. The question is étale local on Y , hence we may reduce to the case where
Y = Spec(R) is affine. Let h ∈ Γ(X,OX). We have to show that h satisfies a
monic equation over R. Think of h as a morphism as in the following commutative
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diagram
X

h
//

f ��

A1
Y

~~
Y

Let Z ⊂ A1
Y be the scheme theoretic image of h, see Definition 16.2. The morphism

h is quasi-compact as f is quasi-compact and A1
Y → Y is separated, see Lemma 8.9.

By Lemma 16.3 the morphism X → Z has dense image on underlying topological
spaces. By Lemma 40.6 the morphism X → Z is closed. Hence h(X) = Z (set
theoretically). Thus we can use Lemma 40.7 to conclude that Z → Y is universally
closed (and even proper). Since Z ⊂ A1

Y , we see that Z → Y is affine and proper,
hence integral by Lemma 45.7. Writing A1

Y = Spec(R[T ]) we conclude that the
ideal I ⊂ R[T ] of Z contains a monic polynomial P (T ) ∈ R[T ]. Hence P (h) = 0
and we win. □

Lemma 48.10.0825 Let S be a scheme. Let f : Y → X be an integral morphism of
algebraic spaces over S. Then the integral closure of X in Y is equal to Y .

Proof. By Lemma 45.7 this is a special case of Lemma 48.9. □

Lemma 48.11.0BB0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) Y is Nagata,
(2) f is quasi-separated of finite type,
(3) X is reduced.

Then the normalization ν : Y ′ → Y of Y in X is finite.

Proof. The question is étale local on Y , see Lemma 48.4. Thus we may assume
Y = Spec(R) is affine. Then R is a Noetherian Nagata ring and we have to show
that the integral closure of R in Γ(X,OX) is finite over R. Since f is quasi-compact
we see that X is quasi-compact. Choose an affine scheme U and a surjective étale
morphism U → X (Properties of Spaces, Lemma 6.3). Then Γ(X,OX) ⊂ Γ(U,OX).
Since R is Noetherian it suffices to show that the integral closure of R in Γ(U,OU )
is finite over R. As U → Y is of finite type this follows from Morphisms, Lemma
53.15. □

49. Normalization

07U3 This section is the analogue of Morphisms, Section 54.

Lemma 49.1.0BB1 Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) there is a surjective étale morphism U → X where U is a scheme such that
every quasi-compact open of U has finitely many irreducible components,

(2) for every scheme U and every étale morphism U → X every quasi-compact
open of U has finitely many irreducible components,

(3) for every quasi-compact algebraic space Y étale over X the set of codimen-
sion 0 points of Y (Properties of Spaces, Definition 10.2) is finite, and

(4) for every quasi-compact algebraic space Y étale over X the space |Y | has
finitely many irreducible components.

https://stacks.math.columbia.edu/tag/0825
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If X is representable this means that every quasi-compact open of X has finitely
many irreducible components.

Proof. The equivalence of (1) and (2) and the final statement follow from Descent,
Lemma 16.3 and Properties of Spaces, Lemma 7.1. It is clear that (4) implies (1)
and (2) by considering only those Y which are schemes. Similarly, (3) implies (1)
and (2) since for a scheme the codimension 0 points are the generic points of its
irreducible components, see for example Properties of Spaces, Lemma 11.1.

Conversely, assume (2) and let Y → X be an étale morphism of algebraic spaces
with Y quasi-compact. Then we can choose an affine scheme V and a surjective étale
morphism V → Y (Properties of Spaces, Lemma 6.3). Since V has finitely many
irreducible components by (2) and since |V | → |Y | is surjective and continuous, we
conclude that |Y | has finitely many irreducible components by Topology, Lemma
8.5. Thus (4) holds. Similarly, by Properties of Spaces, Lemma 11.1 the images of
the generic points of the irreducible components of V are the codimension 0 points
of Y and we conclude that there are finitely many, i.e., (3) holds. □

Lemma 49.2.0GMB Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Then X satisfies the equivalent conditions of Lemma 49.1.

Proof. If U → X is étale and U is a scheme, then U is a locally Noetherian scheme,
see Properties of Spaces, Section 7. A locally Noetherian scheme has a locally finite
set of irreducible components (Divisors, Lemma 26.1). Thus we conclude that X
passes condition (2) of the lemma. □

Lemma 49.3.0GMC Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Then for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has
codimension 0 in Y .

Proof. Via Properties of Spaces, Lemma 11.1 and étale localization this translates
into the case of a morphism of schemes and generic points of irreducible components.
Here the result follows as generalizations lift along flat morphisms of schemes, see
Morphisms, Lemma 25.9. □

Lemma 49.4.0GMD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is flat and locally of finite type and assume Y satisfies the
equivalent conditions of Lemma 49.1. Then X satisfies the equivalent conditions
of Lemma 49.1 and for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has
codimension 0 in Y .

Proof. The last statement follows from Lemma 49.3. Choose a surjective étale
morphism V → Y where V is a scheme. Choose a surjective étale morphism
U → X ×Y V where U is a scheme. It suffices to show that every quasi-compact
open of U has finitely many irreducible components. We will use the results of
Properties of Spaces, Lemma 11.1 without further mention. By what we’ve already
shown, the codimension 0 points of U lie above codimension 0 points in U and
these are locally finite by assumption. Hence it suffices to show that for v ∈ V of
codimension 0 the codimension 0 points of the scheme theoretic fibre Uv = U ×V v
are locally finite. This is true because Uv is a scheme locally of finite type over
κ(v), hence locally Noetherian and we can apply Lemma 49.2 for example. □
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Lemma 49.5.07U4 Let S be a scheme. For every algebraic space X over S satisfying
the equivalent conditions of Lemma 49.1 there exists a morphism of algebraic spaces

νX : Xν −→ X

with the following properties

(1) if X satisfies the equivalent conditions of Lemma 49.1 then Xν is normal
and νX is integral,

(2) if X is a scheme such that every quasi-compact open has finitely many
irreducible components, then νX : Xν → X is the normalization of X
constructed in Morphisms, Section 54,

(3) if f : X → Y is a morphism of algebraic spaces over S which both satisfy the
equivalent conditions of Lemma 49.1 and every codimension 0 point of X is
mapped by f to a codimension 0 point of Y , then there is a unique morphism
fν : Xν → Y ν of algebraic spaces over S such that νY ◦ fν = f ◦ νX , and

(4) if f : X → Y is an étale or smooth morphism of algebraic spaces and Y
satisfies the equivalent conditions of Lemma 49.1, then the hypotheses of
(3) hold and the morphism fν induces an isomorphism Xν → X ×Y Y ν .

Proof. Consider the category C whose objects are the schemes U over S such
that every quasi-compact open of U has finitely many irreducible components and
whose morphisms are those morphisms g : U → V of schemes over S such that every
generic point of an irreducible component of U is mapped to the generic point of
an irreducible component of V . We have already shown that

(a) for U ∈ Ob(C) we have a normalization morphism νU : Uν → U as in
Morphisms, Definition 54.1,

(b) for U ∈ Ob(C) the morphism νU is integral and Uν is a normal scheme, see
Morphisms, Lemma 54.5,

(c) for every g : U → V ∈ Arrows(C) there is a unique morphism gν : Uν → V ν

such that νV ◦ gν = g ◦ νU , see Morphisms, Lemma 54.5 part (4) applied to
the composition Xν → X → Y ,

(d) if V ∈ Ob(C) and g : U → V is étale or smooth, then U ∈ Ob(C) and g ∈
Arrows(C) and the morphism gν induces an isomorphism Uν → U ×V V ν ,
see Lemma 49.4 and More on Morphisms, Lemma 19.3.

Our task is to extend this construction to the corresponding category of algebraic
spaces X over S.

Let X be an algebraic space over S satisfying the equivalent conditions of Lemma
49.1. Let U → X be a surjective étale morphism where U is a scheme. Set
R = U ×X U with projections s, t : R → U and j = (t, s) : R → U ×S U so
that X = U/R, see Spaces, Lemma 9.1. Observe that U and R are objects of C
by our assumptions on X and that the morphisms s and t are étale morphisms of
schemes over S. By (a) we have the normalization morphisms νU : Uν → U and
νR : Rν → R, by (d) we have morphisms sν : Rν → Uν , tν : Rν → Uν which define
isomorphisms Rν → R×s,U Uν and Rν → Uν ×U,t R. It follows that sν and tν are
étale (as they are isomorphic to base changes of étale morphisms). The induced
morphism jν = (tν , sν) : Rν → Uν ×S U

ν is a monomorphism as it is equal to the

https://stacks.math.columbia.edu/tag/07U4
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composition

Rν → (Uν ×U,t R)×R (R×s,U Uν)
= Uν ×U,t R×s,U Uν

j−→ Uν ×U (U ×S U)×U Uν

= Uν ×S U
ν

The first arrow is the diagonal morphism of νR. (This tells us that Rν is a subscheme
of the restriction of R to Uν .) A formal computation with fibre products using
property (d) shows that Rν ×sν ,Uν ,tν Rν is the normalization of R×s,U,t R. Hence
the étale morphism c : R×s,U,tR→ R extends uniquely to cν by (d). The morphism
cν is compatible with the projection pr13 : Uν×SU

ν×SU
ν → Uν×SU

ν . Similarly,
there are morphisms iν : Rν → Rν compatible with the morphism Uν ×S U

ν →
Uν×SU

ν which switches factors and there is a morphism eν : Uν → Rν compatible
with the diagonal morphism Uν → Uν ×S Uν . All in all it follows that jν :
Rν → Uν ×S U

ν is an étale equivalence relation. At this point we may and do set
Xν = Uν/Rν (Spaces, Theorem 10.5). Then we see that we have Uν = Xν ×X U
by Groupoids, Lemma 20.7.

What have we shown in the previous paragraph is this: for every algebraic space X
over S satisfying the equivalent conditions of Lemma 49.1 if we choose a surjective
étale morphism g : U → X where U is a scheme, then we obtain a cartesian diagram

Xν

νX

��

Uν

gν
oo

νU

��
X U

goo

of algebraic spaces. This immediately implies that Xν is a normal algebraic space
and that νX is a integral morphism. This gives part (1) of the lemma.

We will show below that the morphism νX : Xν → X up to unique isomorphism is
independent of the choice of g, but for now, if X is a scheme, we choose id : X → X
so that it is clear that we have part (2) of the lemma.

We still have to prove parts (3) and (4). Let g : U → X and νX : Xν → X and
gν : Uν → Xν be as above. Let Z be a normal scheme and let h : Z → U and
a : Z → Xν be morphisms over S such that g ◦ h = νX ◦ a and such that every
irreducible compoent of Z dominates an irreducible component of U (via h). By
Morphisms, Lemma 54.5 part (4) we obtain a unique morphism hν : Z → Uν such
that h = νU ◦ hν . Picture:

Xν

νX

��

Uν

gν
oo

νU

��

Z
hν
oo

a

uu

h~~
X U

goo

Observe that a = gν ◦ hν . Namely, since the square with corners Xν , X, Uν , U
is cartesian, this follows immediately from the fact that hν is unique (given h). In
other words, given h : Z → U as above (and not a) there is a unique morphism
a : Z → Xν with νX ◦ a = g ◦ h.
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Let f : X → Y be as in part (3) of the statement of the lemma. Suppose we have
chosen surjective étale morphisms U → X and V → Y where U and V are schemes
such that f lifts to a morphism g : U → V . Then g ∈ Arrows(C) and we obtain a
unique morphism gν : Uν → V ν compatible with νU and νV . However, then the
two morphisms

Rν = Uν ×Xν Uν → Uν → V ν → Y ν

must be the same by our comments in the previous paragraph (applied with Y in
stead of X). Since Xν is constructed by taking the quotient of Uν by Rν it follows
that we obtain a (unique) morphism fν : Xν → Y ν as stated in (3).

To see that the construction of Xν is independent of the choice of g : U → X
surjective étale, apply the construction in the previous paragraph to id : X → X
and a morphism U ′ → U between étale coverings of X. This is enough because
given any two étale coverings of X there is a third one which dominates both. The
reader shows that the morphism between the two normalizations constructed using
either U ′ → X or U → X becomes an isomorphism after base change to U ′ and
hence was an isomorphism. We omit the details.

We omit the proof of (4) which is similar; hint use part (d) above. □

This leads us to the following definition.

Definition 49.6.0BB2 Let S be a scheme. Let X be an algebraic space over S satisfying
the equivalent conditions of Lemma 49.1. We define the normalization of X as the
morphism

νX : Xν −→ X

constructed in Lemma 49.5.

The definition applies to locally Noetherian algebraic spaces, see Lemma 49.2. Usu-
ally the normalization is defined only for reduced algebraic spaces. With the defini-
tion above the normalization of X is the same as the normalization of the reduction
Xred of X.

Lemma 49.7.0BB3 Let S be a scheme. Let X be an algebraic space over S satisfying
the equivalent conditions of Lemma 49.1. The normalization morphism ν factors
through the reduction Xred and Xν → Xred is the normalization of Xred.

Proof. We may check this étale locally on X and hence reduce to the case of
schemes which is Morphisms, Lemma 54.2. Some details omitted. □

Lemma 49.8.0BB4 Let S be a scheme. Let X be an algebraic space over S satisfying
the equivalent conditions of Lemma 49.1.

(1) The normalization Xν is normal.
(2) The morphism ν : Xν → X is integral and surjective.
(3) The map |ν| : |Xν | → |X| induces a bijection between the sets of points of

codimension 0 (Properties of Spaces, Definition 10.2).
(4) Let Z → X be a morphism. Assume Z is a normal algebraic space and that

for z ∈ |Z| we have: z has codimension 0 in Z ⇒ f(z) has codimension 0
in X. Then there exists a unique factorization Z → Xν → X.

Proof. Properties (1), (2), and (3) follow from the corresponding results for schemes
(Morphisms, Lemma 54.5) combined with the fact that a point of a scheme is a
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generic point of an irreducible component if and only if the dimension of the local
ring is zero (Properties, Lemma 10.4).
Let Z → X be a morphism as in (4). Let U be a scheme and let U → X be a
surjective étale morphism. Choose a scheme V and a surjective étale morphism V →
U×XZ. The condition on codimension 0 points assures us that V → U maps generic
points of irreducible components of V to generic points of irreducible components
of U . Thus we obtain a unique factorization V → Uν → U by Morphisms, Lemma
54.5. The uniqueness guarantees us that the two maps

V ×U×X Z V → V → Uν

agree because these maps are the unique factorization of the map V ×U×X Z V →
V → U . Since the algebraic space U ×X Z is equal to the quotient V/V ×U×X Z V
(see Spaces, Section 9) we find a canonical morphism U ×X Z → Uν . Picture

U ×X Z //

��

Uν //

��

U

��
Z 22// Xν // X

To obtain the dotted arrow we note that the construction of the arrow U×XZ → Uν

is functorial in the étale morphism U → X (precise formulation and proof omitted).
Hence if we set R = U ×X U with projections s, t : R → U , then we obtain a
morphism R ×X Z → Rν commuting with s, t : R → U and sν , tν : Rν → Uν .
Recall that Xν = Uν/Rν , see proof of Lemma 49.5. Since X = U/R a simple sheaf
theoretic argument shows that Z = (U ×X Z)/(R ×X Z). Thus the morphisms
U ×X Z → Uν and R×X Z → Rν define a morphism Z → Xν as desired. □

Lemma 49.9.0BB5 Let S be a scheme. Let X be a Nagata algebraic space over S. The
normalization ν : Xν → X is a finite morphism.

Proof. Since X being Nagata is locally Noetherian, Definition 49.6 applies. By
construction of Xν in Lemma 49.5 we immediately reduce to the case of schemes
which is Morphisms, Lemma 54.10. □

50. Separated, locally quasi-finite morphisms

0417 In this section we prove that an algebraic space which is locally quasi-finite and
separated over a scheme, is representable. This implies that a separated and lo-
cally quasi-finite morphism is representable (see Lemma 51.1). But first... a lemma
(which will be obsoleted by Proposition 50.2).

Lemma 50.1.03XW Let S be a scheme. Consider a commutative diagram

V ′ //

$$

T ′ ×T X //

��

X

��
T ′ // T

of algebraic spaces over S. Assume
(1) T ′ → T is an étale morphism of affine schemes,
(2) X → T is a separated, locally quasi-finite morphism,
(3) V ′ is an open subspace of T ′ ×T X, and
(4) V ′ → T ′ is quasi-affine.

https://stacks.math.columbia.edu/tag/0BB5
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In this situation the image U of V ′ in X is a quasi-compact open subspace of X
which is representable.

Proof. We first make some trivial observations. Note that V ′ is representable
by Lemma 21.3. It is also quasi-compact (as a quasi-affine scheme over an affine
scheme, see Morphisms, Lemma 13.2). Since T ′ ×T X → X is étale (Properties of
Spaces, Lemma 16.5) the map |T ′ ×T X| → |X| is open, see Properties of Spaces,
Lemma 16.7. Let U ⊂ X be the open subspace corresponding to the image of
|V ′|, see Properties of Spaces, Lemma 4.8. As |V ′| is quasi-compact we see that
|U | is quasi-compact, hence U is a quasi-compact algebraic space, by Properties of
Spaces, Lemma 5.2.

By Morphisms, Lemma 57.9 the morphism T ′ → T is universally bounded. Hence
we can do induction on the integer n bounding the degree of the fibres of T ′ → T ,
see Morphisms, Lemma 57.8 for a description of this integer in the case of an étale
morphism. If n = 1, then T ′ → T is an open immersion (see Étale Morphisms,
Theorem 14.1), and the result is clear. Assume n > 1.

Consider the affine scheme T ′′ = T ′ ×T T ′. As T ′ → T is étale we have a de-
composition (into open and closed affine subschemes) T ′′ = ∆(T ′) ⨿ T ∗. Namely
∆ = ∆T ′/T is open by Morphisms, Lemma 35.13 and closed because T ′ → T is
separated as a morphism of affines. As a base change the degrees of the fibres of the
second projection pr1 : T ′ ×T T ′ → T ′ are bounded by n, see Morphisms, Lemma
57.5. On the other hand, pr1|∆(T ′) : ∆(T ′)→ T ′ is an isomorphism and every fibre
has exactly one point. Thus, on applying Morphisms, Lemma 57.8 we conclude
the degrees of the fibres of the restriction pr1|T ∗ : T ∗ → T ′ are bounded by n− 1.
Hence the induction hypothesis applied to the diagram

p−1
0 (V ′) ∩X∗ //

%%

X∗
p1|X∗

//

��

X ′

��
T ∗ pr1|T ∗ // T ′

gives that p1(p−1
0 (V ′) ∩X∗) is a quasi-compact scheme. Here we set X ′′ = T ′′ ×T

X, X∗ = T ∗ ×T X, and X ′ = T ′ ×T X, and p0, p1 : X ′′ → X ′ are the base
changes of pr0,pr1. Most of the hypotheses of the lemma imply by base change the
corresponding hypothesis for the diagram above. For example p−1

0 (V ′) = T ′′×T ′ V ′

is a scheme quasi-affine over T ′′ as a base change. Some verifications omitted.

By Properties of Spaces, Lemma 13.1 we conclude that

p1(p−1
0 (V ′)) = V ′ ∪ p1(p−1

0 (V ′) ∩X∗)

is a quasi-compact scheme. Moreover, it is clear that p1(p−1
0 (V ′)) is the inverse

image of the quasi-compact open subspace U ⊂ X discussed in the first paragraph
of the proof. In other words, T ′ ×T U is a scheme! Note that T ′ ×T U is quasi-
compact and separated and locally quasi-finite over T ′, as T ′ ×T X → T ′ is locally
quasi-finite and separated being a base change of the original morphism X → T
(see Lemmas 4.4 and 27.4). This implies by More on Morphisms, Lemma 43.2 that
T ′ ×T U → T ′ is quasi-affine.

By Descent, Lemma 39.1 this gives a descent datum on T ′ ×T U/T
′ relative to the

étale covering {T ′ → W}, where W ⊂ T is the image of the morphism T ′ → T .
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Because U ′ is quasi-affine over T ′ we see from Descent, Lemma 38.1 that this datum
is effective, and by the last part of Descent, Lemma 39.1 this implies that U is a
scheme as desired. Some minor details omitted. □

Proposition 50.2.03XX Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Assume

(1) T is representable,
(2) f is locally quasi-finite, and
(3) f is separated.

Then X is representable.

Proof. Let T =
⋃
Ti be an affine open covering of the scheme T . If we can show

that the open subspaces Xi = f−1(Ti) are representable, then X is representable,
see Properties of Spaces, Lemma 13.1. Note that Xi = Ti ×T X and that locally
quasi-finite and separated are both stable under base change, see Lemmas 4.4 and
27.4. Hence we may assume T is an affine scheme.
By Properties of Spaces, Lemma 6.2 there exists a Zariski covering X =

⋃
Xi such

that each Xi has a surjective étale covering by an affine scheme. By Properties of
Spaces, Lemma 13.1 again it suffices to prove the proposition for each Xi. Hence
we may assume there exists an affine scheme U and a surjective étale morphism
U → X. This reduces us to the situation in the next paragraph.
Assume we have

U −→ X −→ T

where U and T are affine schemes, U → X is étale surjective, and X → T is
separated and locally quasi-finite. By Lemmas 39.5 and 27.3 the morphism U → T
is locally quasi-finite. Since U and T are affine it is quasi-finite. Set R = U ×X U .
Then X = U/R, see Spaces, Lemma 9.1. As X → T is separated the morphism
R → U ×T U is a closed immersion, see Lemma 4.5. In particular R is an affine
scheme also. As U → X is étale the projection morphisms t, s : R → U are étale
as well. In particular s and t are quasi-finite, flat and of finite presentation (see
Morphisms, Lemmas 36.6, 36.12 and 36.11).
Let (U,R, s, t, c) be the groupoid associated to the étale equivalence relation R on
U . Let u ∈ U be a point, and denote p ∈ T its image. We are going to use
More on Groupoids, Lemma 13.2 for the groupoid (U,R, s, t, c) over the scheme
T with points p and u as above. By the discussion in the previous paragraph
all the assumptions (1) – (7) of that lemma are satisfied. Hence we get an étale
neighbourhood (T ′, p′)→ (T, p) and disjoint union decompositions

UT ′ = U ′ ⨿W, RT ′ = R′ ⨿W ′

and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), (g), and (h) of the
aforementioned More on Groupoids, Lemma 13.2. We may and do assume that T ′

is affine (after possibly shrinking T ′). Conclusion (h) implies that R′ = U ′ ×XT ′

U ′ with projection mappings identified with the restrictions of s′ and t′. Thus
(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′ R′) of conclusion (g) is an étale equivalence relation.
By Spaces, Lemma 10.2 we conclude that U ′/R′ is an open subspace of XT ′ . By
conclusion (d) the schemes U ′, R′ are affine and the morphisms s′|R′ , t′|R′ are finite
étale. Hence Groupoids, Proposition 23.9 kicks in and we see that U ′/R′ is an affine
scheme.

https://stacks.math.columbia.edu/tag/03XX
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We conclude that for every pair of points (u, p) as above we can find an étale
neighbourhood (T ′, p′)→ (T, p) with κ(p) = κ(p′) and a point u′ ∈ UT ′ mapping to
u such that the image x′ of u′ in |XT ′ | has an open neighbourhood V ′ in XT ′ which
is an affine scheme. We apply Lemma 50.1 to obtain an open subspace W ⊂ X
which is a scheme, and which contains x (the image of u in |X|). Since this works
for every x we see that X is a scheme by Properties of Spaces, Lemma 13.1. This
ends the proof. □

51. Applications

05W4 An alternative proof of the following lemma is to see it as a consequence of Zariski’s
main theorem for (nonrepresentable) morphisms of algebraic spaces as discussed in
More on Morphisms of Spaces, Section 34. Namely, More on Morphisms of Spaces,
Lemma 34.2 implies that a quasi-finite and separated morphism of algebraic spaces
is quasi-affine and therefore representable.

Lemma 51.1.0418 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally quasi-finite and separated, then f is representable.

Proof. This is immediate from Proposition 50.2 and the fact that being locally
quasi-finite and separated is preserved under any base change, see Lemmas 27.4
and 4.4. □

Lemma 51.2.05W5 Let S be a scheme. Let f : X → Y be an étale and universally
injective morphism of algebraic spaces over S. Then f is an open immersion.

Proof. Let T → Y be a morphism from a scheme into Y . If we can show that
X ×Y T → T is an open immersion, then we are done. Since being étale and being
universally injective are properties of morphisms stable under base change (see
Lemmas 39.4 and 19.5) we may assume that Y is a scheme. Note that the diagonal
∆X/Y : X → X ×Y X is étale, a monomorphism, and surjective by Lemma 19.2.
Hence we see that ∆X/Y is an isomorphism (see Spaces, Lemma 5.9), in particular
we see that X is separated over Y . It follows that X is a scheme too, by Proposition
50.2. Finally, X → Y is an open immersion by the fundamental theorem for étale
morphisms of schemes, see Étale Morphisms, Theorem 14.1. □

52. Zariski’s Main Theorem (representable case)

0ABQ This is the version you can prove using that normalization commutes with étale
localization. Before we can prove more powerful versions (for non-representable
morphisms) we need to develop more tools. See More on Morphisms of Spaces,
Section 34.

Lemma 52.1.0ABR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is representable, of finite type, and separated. Let Y ′ be the
normalization of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
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(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. Let W → Y be a surjective étale morphism where W is a scheme. Then
W ×Y X is a scheme as well. By Lemma 48.4 the algebraic space W ×Y Y ′ is
representable and is the normalization of the scheme W in the scheme W ×Y X.
Picture

W ×Y X

(1,f) $$

(1,f ′)
// W ×Y Y ′

(1,ν)zz
W

By More on Morphisms, Lemma 43.1 the result of the lemma holds over W . Let
V ′ ⊂W ×Y Y ′ be the open subscheme such that

(1) (1, f ′)−1(V ′)→ V ′ is an isomorphism, and
(2) (1, f ′)−1(V ′) ⊂W ×Y X is the set of points at which (1, f) is quasi-finite.

By Lemma 34.7 there is a maximal open set of points U ⊂ X where f is quasi-finite
and W ×Y U = (1, f ′)−1(V ′). The morphism f ′|U : U → Y ′ is an open immersion
by Lemma 12.1 as its base change to W is the isomorphism (1, f ′)−1(V ′) → V ′

followed by the open immersion V ′ →W ×Y Y
′. Setting U ′ = Im(U → Y ′) finishes

the proof (omitted: the verification that (f ′)−1(U ′) = U). □

In the following lemma we can drop the assumption of being representable as we’ve
shown that a locally quasi-finite separated morphism is representable.

Lemma 52.2.0ABS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization
of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. By Lemma 51.1 the morphism f is representable. Hence we may apply
Lemma 52.1. Thus there exists an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) = X
(!) and X → U ′ is an isomorphism! In other words, f ′ is an open immersion.
Note that f ′ is quasi-compact as f is quasi-compact and ν : Y ′ → Y is separated
(Lemma 8.9). Hence for every affine scheme Z and morphism Z → Y the fibre
product Z ×Y X is a quasi-compact open subscheme of the affine scheme Z ×Y Y ′.
Hence f is quasi-affine by definition. □

53. Universal homeomorphisms

05Z3 The class of universal homeomorphisms of schemes is closed under composition and
arbitrary base change and is fppf local on the base. See Morphisms, Lemmas 45.3
and 45.2 and Descent, Lemma 23.9. Thus, if we apply the discussion in Section 3
to this notion we see that we know what it means for a representable morphism of
algebraic spaces to be a universal homeomorphism.

https://stacks.math.columbia.edu/tag/0ABS
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Lemma 53.1.05Z4 Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is a universal homeomorphism (in the sense of
Section 3) if and only if for every morphism of algebraic spaces Z → Y the base
change map Z ×Y X → Z induces a homeomorphism |Z ×Y X| → |Z|.

Proof. If for every morphism of algebraic spaces Z → Y the base change map Z×Y

X → Z induces a homeomorphism |Z×Y X| → |Z|, then the same is true whenever
Z is a scheme, which formally implies that f is a universal homeomorphism in the
sense of Section 3. Conversely, if f is a universal homeomorphism in the sense of
Section 3 then X → Y is integral, universally injective and surjective (by Spaces,
Lemma 5.8 and Morphisms, Lemma 45.5). Hence f is universally closed, see Lemma
45.7 and universally injective and (universally) surjective, i.e., f is a universal
homeomorphism. □

Definition 53.2.05Z5 Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is called a universal homeomorphism if and only if for every morphism of
algebraic spaces Z → Y the base change Z ×Y X → Z induces a homeomorphism
|Z ×Y X| → |Z|.

This definition does not clash with the pre-existing definition for representable
morphisms of algebraic spaces by our Lemma 53.1. For morphisms of algebraic
spaces it is not the case that universal homeomorphisms are always integral.

Example 53.3.05Z6 This is a continuation of Remark 19.4. Consider the algebraic
space X = A1

k/{x ∼ −x | x ̸= 0}. There are morphisms

A1
k −→ X −→ A1

k

such that the first arrow is étale surjective, the second arrow is universally injective,
and the composition is the map x 7→ x2. Hence the composition is universally
closed. Thus it follows that the map X → A1

k is a universal homeomorphism, but
X → A1

k is not separated.

Let S be a scheme. Let f : X → Y be a universal homeomorphism of algebraic
spaces over S. Then f is universally closed, hence is quasi-compact, see Lemma 9.7.
But f need not be separated (see example above), and not even quasi-separated:
an example is to take infinite dimensional affine space A∞ = Spec(k[x1, x2, . . .])
modulo the equivalence relation given by flipping finitely many signs of nonzero
coordinates (details omitted).
First we state the obligatory lemmas.

Lemma 53.4.0CFT The base change of a universal homeomorphism of algebraic spaces
by any morphism of algebraic spaces is a universal homeomorphism.

Proof. This is immediate from the definition. □

Lemma 53.5.0CFU The composition of a pair of universal homeomorphisms of algebraic
spaces is a universal homeomorphism.

Proof. Omitted. □

Lemma 53.6.08AK Let S be a scheme. Let X be an algebraic space over S. The
canonical closed immersion Xred → X (see Properties of Spaces, Definition 12.5)
is a universal homeomorphism.

https://stacks.math.columbia.edu/tag/05Z4
https://stacks.math.columbia.edu/tag/05Z5
https://stacks.math.columbia.edu/tag/05Z6
https://stacks.math.columbia.edu/tag/0CFT
https://stacks.math.columbia.edu/tag/0CFU
https://stacks.math.columbia.edu/tag/08AK
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Proof. Omitted. □

We put the following result here as we do not currently have a better place to put
it.

Lemma 53.7.0AEH Let S be a scheme. Let f : Y → X be a universally injective,
integral morphism of algebraic spaces over S.

(1) The functor
fsmall,∗ : Sh(Yétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to |X| \ f(|Y |) is isomorphic to ∗, and
(2) the functor

fsmall,∗ : Ab(Yétale) −→ Ab(Xétale)
is fully faithful and its essential image is those abelian sheaves on Yétale

whose support is contained in f(|Y |).
In both cases f−1

small is a left inverse to the functor fsmall,∗.

Proof. Since f is integral it is universally closed (Lemma 45.7). In particular,
f(|Y |) is a closed subset of |X| and the statements make sense. The rest of the
proof is identical to the proof of Lemma 13.5 except that we use Étale Cohomology,
Proposition 47.1 instead of Étale Cohomology, Proposition 46.4. □
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