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1. Introduction

In this chapter we introduce some types of morphisms of algebraic spaces. A refer-
ence is [KnuT7l].

The goal is to extend the definition of each of the types of morphisms of schemes
defined in the chapters on schemes, and on morphisms of schemes to the category
of algebraic spaces. Each case is slightly different and it seems best to treat them
all separately.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch -
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X x g X for the product of X with itself (in the category of
algebraic spaces over 5), instead of X x X.

3. Properties of representable morphisms

Let S be a scheme. Let f : X — Y be a representable morphism of algebraic
spaces. In Spaces, Section [5| we defined what it means for f to have property P in
case P is a property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition and

(2) is fppf local on the base, see Descent, Definition 22.1]
Namely, in this case we say f has property P if and only if for every scheme U and
any morphism U — Y the morphism of schemes X xy U — U has property P.

According to the lists in Spaces, Section [4] this applies to the following prop-
erties: (1)(a) closed immersions, (1)(b) open immersions, (1)(c) quasi-compact
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immersions, (2) quasi-compact, (3) universally-closed, (4) (quasi-)separated, (5)
monomorphism, (6) surjective, (7) universally injective, (8) affine, (9) quasi-affine,
(10) (locally) of finite type, (11) (locally) quasi-finite, (12) (locally) of finite pre-
sentation, (13) locally of finite type of relative dimension d, (14) universally open,
(15) flat, (16) syntomic, (17) smooth, (18) unramified (resp. G-unramified), (19)
étale, (20) proper, (21) finite or integral, (22) finite locally free, (23) universally
submersive, (24) universal homeomorphism, and (25) immersion.

In this chapter we will redefine these notions for not necessarily representable mor-
phisms of algebraic spaces. Whenever we do this we will make sure that the new
definition agrees with the old one, in order to avoid ambiguity.

Note that the definition above applies whenever X is a scheme, since a morphism
from a scheme to an algebraic space is representable. And in particular it applies
when both X and Y are schemes. In Spaces, Lemma we have seen that in this
case the definitions match, and no ambiguity arise.

Furthermore, in Spaces, Lemma/[5.5 we have seen that the property of representable
morphisms of algebraic spaces so defined is stable under arbitrary base change by a
morphism of algebraic spaces. And finally, in Spaces, Lemmas [5.4] and [5.7] we have
seen that if P is stable under compositions, which holds for the properties (1)(a),
(1)(b), (1)(c), (2) — (25), except (13) above, then taking products of representable
morphisms preserves property P and compositions of representable morphisms pre-
serves property P.

We will use these facts below, and whenever we do we will simply refer to this
section as a reference.

4. Separation axioms

It makes sense to list some a priori properties of the diagonal of a morphism of
algebraic spaces.

Lemma 4.1. Let S be a scheme contained in Schypps. Let f : X — Y be a
morphism of algebraic spaces over S. Let Ax,y : X — X Xy X be the diagonal
morphism. Then

(1) Axyy is representable,
(2) Axyy is locally of finite type,

(3) Ax/y is a monomorphism,

(4) Axyy is separated, and

(6) Axyy is locally quasi-finite.

Proof. We are going to use the fact that Ax/g is representable (by definition of an
algebraic space) and that it satisfies properties (2) — (5), see Spaces, Lemma [13.1]
Note that we have a factorization

X —Xxy X — X xgX

of the diagonal Ax/5 : X — X xgX. Since X xy X — X XX is a monomorphism,
and since Ax/g is representable, it follows formally that A,y is representable. In
particular, the rest of the statements now make sense, see Section [3|
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Choose a surjective étale morphism U — X, with U a scheme. Consider the
diagram
RZUXXUHUXYUHUXSU

i L

X— X xy X — X xg X

Both squares are cartesian, hence so is the outer rectangle. The top row consists of
schemes, and the vertical arrows are surjective étale morphisms. By Spaces, Lemma
the properties (2) — (5) for Ax/y are equivalent to those of R — U xy U. In
the proof of Spaces, Lemma we have seen that R — U x g U has properties (2)
— (5). The morphism U xy U — U xg U is a monomorphism of schemes. These
facts imply that R — U xy U have properties (2) — (5).

Namely: For (3), note that R — U xy U is a monomorphism as the composition
R — U xg U is a monomorphism. For (2), note that R — U xy U is locally of
finite type, as the composition R — U xg U is locally of finite type (Morphisms,
Lemma . A monomorphism which is locally of finite type is locally quasi-finite
because it has finite fibres (Morphisms, Lemma[20.7)), hence (5). A monomorphism
is separated (Schemes, Lemma , hence (4). |

Definition 4.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. Let Ax/y : X — X Xy X be the diagonal morphism.

(1) We say f is separated if Ax,y is a closed immersion.
e say f is locally separated’|if Ax/y is an immersion.
(2) We say f is locally separated|if Axy i i i
e say f is quasi-separated if Ax,y is quasi-compact.
3) Wi i j ted if Ax/y i i t

This definition makes sense since A,y is representable, and hence we know what
it means for it to have one of the properties described in the definition. We will
see below (Lemma that this definition matches the ones we already have for
morphisms of schemes and representable morphisms.

Lemma 4.3. Let S be a scheme. Let f : X —'Y be a morphism of algebraic spaces
over S. If f is separated, then f is locally separated and f is quasi-separated.

Proof. This is true, via the general principle Spaces, Lemma because a closed
immersion of schemes is an immersion and is quasi-compact. ([l

Lemma 4.4. All of the separation axioms listed in Definition are stable under
base change.

Proof. Let f : X — Y and Y/ — Y be morphisms of algebraic spaces. Let
[+ X" =Y’ be the base change of f by Y’ — Y. Then A,y is the base change
of Ax/y by the morphism X’ xys X’ — X xy X. By the results of Section each
of the properties of the diagonal used in Definition is stable under base change.
Hence the lemma is true. O

Lemmal 4.5. Let S be a scheme. Let f : X = Z,g:Y — Z and Z — T be
morphisms of algebraic spaces over S. Consider the induced morphismi: X xXzY —
X xpY. Then

n the literature this term often refers to quasi-separated and locally separated morphisms.
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(1) 4 is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if Z = T is locally separated, then i is an immersion,

(3) if Z — T is separated, then i is a closed immersion, and

(4) if Z — T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram
X xzY — X x7Y

e

72— g xr Z

is a fibre product diagram. Hence i is the base change of the diagonal morphism
Azr. Thus the lemma follows from Lemma and the material in Section O

Lemmal 4.6. Let S be a scheme. Let T be an algebraic space over S. Let g : X —
Y be a morphism of algebraic spaces over T. Consider the graphi: X — X xpY
of g. Then

(1) @ is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if Y = T is locally separated, then i is an immersion,

(3) if Y — T is separated, then i is a closed immersion, and

(4) if Y — T is quasi-separated, then i is quasi-compact.

Proof. This is a special case of Lemmal[4.5applied to the morphism X = X xyY —
X xrY. (]

Lemma 4.7. Let S be a scheme. Let f : X — T be a morphism of algebraic
spaces over S. Let s : T — X be a section of f (in a formula f o s =idr). Then
(1) s is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,
(2) if f is locally separated, then s is an immersion,
(3) if f is separated, then s is a closed immersion, and
(4) if f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma [4.6| applied to g = s so the morphism
i=s:T—>TxpX. O

Lemmal 4.8. All of the separation axioms listed in Definition are stable under
composition of morphisms.

Proof. Let f: X - Y and g : Y — Z be morphisms of algebraic spaces to which
the axiom in question applies. The diagonal Ay, is the composition

X—)XXyX—>XXZX.

Our separation axiom is defined by requiring the diagonal to have some property P.
By Lemmal[£.5]above we see that the second arrow also has this property. Hence the
lemma follows since the composition of (representable) morphisms with property
P also is a morphism with property P, see Section O

Lemmal 4.9. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S.
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(1) IfY is separated and f is separated, then X is separated.

(2) IfY is quasi-separated and f is quasi-separated, then X is quasi-separated.

(3) If Y is locally separated and f is locally separated, then X is locally sepa-
rated.

(4) If Y is separated over S and f is separated, then X is separated over S.

(5) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-
separated over S.

(6) IfY is locally separated over S and f is locally separated, then X is locally
separated over S.

Proof. Parts (4), (5), and (6) follow immediately from Lemma and Spaces,
Definition Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by thinking
of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces, Definition

3.1 O

Lemmal 4.10. Let S be a scheme. Let f : X =Y and g :Y — Z be morphisms
of algebraic spaces over S.

(1) If go f is separated then so is f.

(2) If go f is locally separated then so is f.

(3) If go f is quasi-separated then so is f.

Proof. Consider the factorization
X2 Xxy X > XxzX

of the diagonal morphism of gof. In any case the last morphism is a monomorphism.
Hence for any scheme T and morphism T — X Xy X we have the equality

X X(XXyX) T=X X(XXZX) T.

Hence the result is clear. O

Lemma 4.11. Let S be a scheme. Let X be an algebraic space over S.

(1) If X is separated then X is separated over S.
(2) If X is locally separated then X is locally separated over S.
(3) If X is quasi-separated then X is quasi-separated over S.

Let f: X =Y be a morphism of algebraic spaces over S.

(4) If X is separated over S then f is separated.
(5) If X is locally separated over S then f is locally separated.
(6) If X is quasi-separated over S then f is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma and Spaces,
Definition Parts (1), (2), and (3) follow from parts (4), (5), and (6) by thinking
of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces, Definition

B.1 O

Lemma 4.12. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Let P be any of the separation azioms of Definition [{.3  The
following are equivalent
(1) fisP,
(2) for every scheme Z and morphism Z — Y the base change Z xy X — Z
of f is P,
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(3) for every affine scheme Z and every morphism Z — Y the base change
Zxy X —Z of fisP,

(4) for every affine scheme Z and every morphism Z — Y the algebraic space
Z xy X is P (see Properties of Spaces, Definition ,

(5) there exists a scheme V and a surjective étale morphism V-—'Y such that
the base change V Xy X — V has P, and

(6) there exists a Zariski covering Y = |JY; such that each of the morphisms
Y Y;) = Y; has P.

Proof. We will repeatedly use Lemma [4.4] without further mention. In particular,
it is clear that (1) implies (2) and (2) implies (3).

Let us prove that (3) and (4) are equivalent. Note that if Z is an affine scheme, then
the morphism Z — Spec(Z) is a separated morphism as a morphism of algebraic
spaces over Spec(Z). If Z xy X — Z is P, then Z xy X — Spec(Z) is P as a
composition (see Lemma. Hence the algebraic space Z xy X is P. Conversely,
if the algebraic space Z Xy X is P, then Z xy X — Spec(Z) is P, and hence by
Lemma [£.10] we see that Z xy X — Z is P.

Let us prove that (3) implies (5). Assume (3). Let V be a scheme and let V — Y
be étale surjective. We have to show that V' xy X — V has property P. In other
words, we have to show that the morphism

VXYX—>(V><YX)Xv(VXyX)ZVXyXXyX

has the corresponding property (i.e., is a closed immersion, immersion, or quasi-
compact). Let V' = (JV} be an affine open covering of V. By assumption we know
that each of the morphisms

‘/ijX—>Vj><yXXyX

does have the corresponding property. Since being a closed immersion, immersion,
quasi-compact immersion, or quasi-compact is Zariski local on the target, and since
the V; cover V we get the desired conclusion.

Let us prove that (5) implies (1). Let V' — Y be as in (5). Then we have the fibre
product diagram
Vxy X ——X

l |

VXyXXyXHXXyX

By assumption the left vertical arrow is a closed immersion, immersion, quasi-
compact immersion, or quasi-compact. It follows from Spaces, Lemmal5.6] that also
the right vertical arrow is a closed immersion, immersion, quasi-compact immersion,
or quasi-compact.

It is clear that (1) implies (6) by taking the covering Y =Y. Assume Y = JV; is
as in (6). Choose schemes V; and surjective étale morphisms V; — Y;. Note that
the morphisms V; xy X — V; have P as they are base changes of the morphisms
YY) = Y, Set V.=][Vi. Then V — Y is a morphism as in (5) (details
omitted). Hence (6) implies (5) and we are done. O

Lemma 4.13. Let S be a scheme. Let f : X — Y be a representable morphism
of algebraic spaces over S.
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(1) The morphism f is locally separated.
(2) The morphism f is (quasi-)separated in the sense of Deﬁm’tion above if
and only if f is (quasi-)separated in the sense of Section @

In particular, if f :+ X — Y is a morphism of schemes over S, then f is (quasi-
)separated in the sense of Definition if and only if f is (quasi-)separated as a
morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma combined with the fact
that any morphism of schemes is locally separated, see Schemes, Lemma O

5. Surjective morphisms

We have already defined in Section [3] what it means for a representable morphism
of algebraic spaces to be surjective.

Lemmal 5.1. Let S be a scheme. Let f : X — Y be a representable morphism of
algebraic spaces over S. Then f is surjective (in the sense of Section@ if and only
if |f] | X]| — |Y] is surjective.

Proof. Namely, if f : X — Y is representable, then it is surjective if and only if for
every scheme 1" and every morphism 7" — Y the base change fr : T'xy X — T of f
is a surjective morphism of schemes, in other words, if and only if | fr| is surjective.
By Properties of Spaces, Lemma the map |T' xy X| — [T| x|y |X| is always
surjective. Hence |fr|: |T Xy X| — |T is surjective if |f| : | X| — [Y] is surjective.
Conversely, if | fr| is surjective for every T'— Y as above, then by taking T' to be
the spectrum of a field we conclude that | X| — |Y| is surjective. O

This clears the way for the following definition.

Definition 5.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. We say f is surjective if the map |f] : |X| — [|Y| of associated
topological spaces is surjective.

Lemma 5.3. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent:
(1) f is surjective,
(2) for every scheme Z and any morphism Z —'Y the morphism Z xy X — Z
18 surjective,
(3) for every affine scheme Z and any morphism Z — Y the morphism Z Xy
X — Z is surjective,
(4) there exists a scheme V and a surjective étale morphism V. —'Y such that
V xy X =V is a surjective morphism,
(5) there exists a scheme U and a surjective étale morphism ¢ : U — X such
that the composition f o ¢ is surjective,
(6) there exists a commutative diagram

U——V

o

X —Y

where U, V are schemes and the vertical arrows are surjective étale such
that the top horizontal arrow is surjective, and
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(7) there exists a Zariski covering Y = \JY; such that each of the morphisms
F~YY;) = Y, is surjective.

Proof. Omitted. O
Lemma 5.4. The composition of surjective morphisms is surjective.
Proof. This is immediate from the definition. O
Lemma 5.5. The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma [4.3 (]

6. Open morphisms

For a representable morphism of algebraic spaces we have already defined (in Section
3) what it means to be universally open. Hence before we give the natural definition
we check that it agrees with this in the representable case.

Lemma 6.1. Let S be a scheme. Let f: X — Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally open (in the sense of Section[3), and
(2) for every morphism of algebraic spaces Z — Y the morphism of topological
spaces |Z Xy X| — |Z] is open.

Proof. Assume (1), and let Z — Y be as in (2). Choose a scheme V and a
surjective étale morphism V' — Y. By assumption the morphism of schemes V' xy
X — V is universally open. By Properties of Spaces, Section [4]in the commutative
diagram

[V xy X| —[Z xy X]

l i

V| ———17|
the horizontal arrows are open and surjective, and moreover
[V xy X| — V] X2 |Z xy X]|
is surjective. Hence as the left vertical arrow is open it follows that the right vertical

arrow is open. This proves (2). The implication (2) = (1) is immediate from the
definitions. O

Thus we may use the following natural definition.

Definition 6.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S.

(1) We say f is open if the map of topological spaces |f| : |X| — |Y] is open.
(2) We say f is universally open if for every morphism of algebraic spaces
Z — 'Y the morphism of topological spaces
|Z xy X| = |Z]
is open, i.e., the base change Z xy X — Z is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties

of Spaces, Definition and Lemmas and
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Lemma 6.3. The base change of a universally open morphism of algebraic spaces
by any morphism of algebraic spaces is universally open.

Proof. This is immediate from the definition. O

Lemma 6.4. The composition of a pair of (universally) open morphisms of alge-
braic spaces is (universally) open.

Proof. Omitted. O

Lemma 6.5. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent
(1) f is universally open,
(2) for every scheme Z and every morphism Z — Y the projection |Z xy X| —
|Z| is open,
(3) for every affine scheme Z and every morphism Z — 'Y the projection |Z Xy
X| — |Z] is open, and
(4) there exists a scheme V and a surjective étale morphism V-—'Y such that
V xy X — V is a universally open morphism of algebraic spaces, and
(5) there exists a Zariski covering Y = \JY; such that each of the morphisms
F~YY;) = Y; is universally open.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V' — Y. We are going to show
that V xy X — V is a universally open morphism of algebraic spaces. Let Z — V'
be a morphism from an algebraic space to V. Let W — Z be a surjective étale
morphism where W = [[ W is a disjoint union of affine schemes, see Properties of
Spaces, Lemma Then we have the following commutative diagram

]_Lle XyX|77|W XyX|4>|Z XyX|77|Z Xy (V XyX)|
[[IWi| ——= W] 2|

‘We have to show the south-east arrow is open. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma . By assumption (3), and
the fact that W, is affine we see that the left vertical arrows are open. Hence it
follows that the right vertical arrow is open.

Assume V' — Y is as in (4). We will show that f is universally open. Let Z — Y
be a morphism of algebraic spaces. Consider the diagram

[(V xy Z) xy (V xy X)|=—=|V xy X| —=|Z xy X]|

T |

V xy 2| ——— 1|7

The south-west arrow is open by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma[16.7)). It follows that the right vertical arrow is open.

Of course (1) implies (5) by taking the covering Y =Y. Assume Y = |JV; is as in
(5). Then for any Z — Y we get a corresponding Zariski covering Z = |J Z; such
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that the base change of f to Z; is open. By a simple topological argument this
implies that Z xy X — Z is open. Hence (1) holds. O

Lemma 6.6. Let S be a scheme. Let p: X — Spec(k) be a morphism of algebraic
spaces over S where k is a field. Then p: X — Spec(k) is universally open.

Proof. Choose a scheme U and a surjective étale morphism U — X. The compo-
sition U — Spec(k) is universally open (as a morphism of schemes) by Morphisms,
Lemma Let Z — Spec(k) be a morphism of schemes. Then U Xgpec(r) Z —
X Xgpec(k) £ 18 surjective, see Lemma Hence the first of the maps

|U X Spec(k) Z| — |X X Spec(k) Z| — |Z|

is surjective. Since the composition is open by the above we conclude that the
second map is open as well. Whence p is universally open by Lemma [6.5] g

7. Submersive morphisms

For a representable morphism of algebraic spaces we have already defined (in Section
what it means to be universally submersive. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemmal 7.1. Let S be a scheme. Let f : X — Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally submersive (in the sense of Section[3), and
(2) for every morphism of algebraic spaces Z — Y the morphism of topological
spaces |Z Xy X| — |Z] is submersive.

Proof. Assume (1), and let Z — Y be as in (2). Choose a scheme V and a surjec-
tive étale morphism V' — Y. By assumption the morphism of schemes V xy X — V'
is universally submersive. By Properties of Spaces, Section [4 in the commutative
diagram

|V XyX| H|Z XyX|

| l

V] |Z]
the horizontal arrows are open and surjective, and moreover
‘V XyX‘ — |V| X z| |Z XyXl

is surjective. Hence as the left vertical arrow is submersive it follows that the
right vertical arrow is submersive. This proves (2). The implication (2) = (1) is
immediate from the definitions. (I

Thus we may use the following natural definition.

Definition 7.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S.
(1) We say f is submersz’veﬂ if the continuous map |X| — |Y| is submersive,
see Topology, Definition
(2) We say f is universally submersive if for every morphism of algebraic spaces
Y’ — Y the base change Y’ xy X — Y is submersive.

2This is very different from the notion of a submersion of differential manifolds.
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We note that a submersive morphism is in particular surjective.

Lemma 7.3. The base change of a universally submersive morphism of algebraic
spaces by any morphism of algebraic spaces is universally submersive.

Proof. This is immediate from the definition. O

Lemma 7.4. The composition of a pair of (universally) submersive morphisms of
algebraic spaces is (universally) submersive.

Proof. Omitted. O

8. Quasi-compact morphisms

By Section [3] we know what it means for a representable morphism of algebraic
spaces to be quasi-compact. In order to formulate the definition for a general
morphism of algebraic spaces we make the following observation.

Lemma 8.1. Let S be a scheme. Let f: X — Y be a representable morphism of
algebraic spaces over S. The following are equivalent:
(1) f is quasi-compact (in the sense of Section @, and
(2) for every quasi-compact algebraic space Z and any morphism Z — 'Y the
algebraic space Z Xy X is quasi-compact.

Proof. Assume (1), and let Z — Y be a morphism of algebraic spaces with Z
quasi-compact. By Properties of Spaces, Definition [5.1] there exists a quasi-compact
scheme U and a surjective étale morphism U — Z. Since f is representable and
quasi-compact we see by definition that U xy X is a scheme, and that U xy X —
U is quasi-compact. Hence U xy X is a quasi-compact scheme. The morphism
U xy X — Z xy X is étale and surjective (as the base change of the representable
étale and surjective morphism U — Z, see Section . Hence by definition Z xy X
is quasi-compact.

Assume (2). Let Z — Y be a morphism, where Z is a scheme. We have to
show that p : Z xy X — Z is quasi-compact. Let U C Z be affine open. Then
p~1(U) = U xy Z and the scheme U xy Z is quasi-compact by assumption (2).
Hence p is quasi-compact, see Schemes, Section ([l

This motivates the following definition.

Definition 8.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. We say f is quasi-compact if for every quasi-compact algebraic space
Z and morphism Z — Y the fibre product Z xy X is quasi-compact.

By Lemma above this agrees with the already existing notion for representable
morphisms of algebraic spaces.

Lemma 8.3. Let S be a scheme. If f : X — Y is a quasi-compact morphism
of algebraic spaces over S, then the underlying map |f| : | X| — |Y| of topological
space s quasi-compact.

Proof. Let V C |Y| be quasi-compact open. By Properties of Spaces, Lemma
there is an open subspace Y/ C Y with V' = |Y’|. Then Y’ is a quasi-compact
algebraic space by Properties of Spaces, Lemma and hence X' =Y’ xy X is
a quasi-compact algebraic space by Definition On the other hand, X' C X
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is an open subspace (Spaces, Lemma [12.3) and |X'| = |f|71(|X']) = |f|*(V) by
Properties of Spaces, Lemma We conclude using Properties of Spaces, Lemma
5.2l again that | X'| is a quasi-compact open of |X| as desired. O

Lemma 8.4. The base change of a quasi-compact morphism of algebraic spaces
by any morphism of algebraic spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. O

Lemma 8.5. The composition of a pair of quasi-compact morphisms of algebraic
spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. O

Lemma 8.6. Let S be a scheme.

(1) If X = Y is a surjective morphism of algebraic spaces over S, and X is
quasi-compact then Y is quasi-compact.

(2) If
X—Y
f
N
A
is a commutative diagram of morphisms of algebraic spaces over S and f
is surjective and p is quasi-compact, then q is quasi-compact.

Proof. Assume X is quasi-compact and X — Y is surjective. By Definition
the map |X| — |Y] is surjective, hence we see Y is quasi-compact by Properties
of Spaces, Lemma [5.2] and the topological fact that the image of a quasi-compact
space under a continuous map is quasi-compact, see Topology, Lemma Let
fyp,q be as in (2). Let T — Z be a morphism whose source is a quasi-compact
algebraic space. By assumption T' Xz X is quasi-compact. By Lemma the
morphism T xz X — T xz Y is surjective. Hence by part (1) we see T Xz Y is
quasi-compact too. Thus ¢ is quasi-compact. (Il

Lemma 8.7. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Let g : Y' — Y be a universally open and surjective morphism of
algebraic spaces such that the base change f' : X' — Y’ is quasi-compact. Then f
is quasi-compact.

Proof. Let Z — Y be a morphism of algebraic spaces with Z quasi-compact.
As g is universally open and surjective, we see that Y’ xy Z — Z is open and
surjective. As every point of |Y’ Xy Z| has a fundamental system of quasi-compact
open neighbourhoods (see Properties of Spaces, Lemma we can find a quasi-
compact open W C |Y/ xy Z| which surjects onto Z. Denote f” : W xy X — W
the base change of f' by W — Y’. By assumption W Xy X is quasi-compact. As
W — Z is surjective we see that W xy X — Z xy X is surjective. Hence Z xy X
is quasi-compact by Lemma[8.6] Thus f is quasi-compact. O
Lemma 8.8. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is quasi-compact,

(2) for every scheme Z and any morphism Z — Y the morphism of algebraic

spaces Z Xy X — Z 1is quasi-compact,
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(3) for every affine scheme Z and any morphism Z — Y the algebraic space
Z Xy X is quasi-compact,

(4) there exists a scheme V and a surjective étale morphism V. —'Y such that
V xy X = V is a quasi-compact morphism of algebraic spaces, and

(5) there exists a surjective étale morphism Y’ — Y of algebraic spaces such
that Y' xy X — Y’ is a quasi-compact morphism of algebraic spaces, and

(6) there exists a Zariski covering Y = |JY; such that each of the morphisms
f~YY;) = Y, is quasi-compact.

Proof. We will use Lemmawithout further mention. It is clear that (1) implies
(2) and that (2) implies (3). Assume (3). Let Z be a quasi-compact algebraic space
over S, and let Z — Y be a morphism. By Properties of Spaces, Lemma (6.3
there exists an affine scheme U and a surjective étale morphism U — Z. Then
U xy X — Z xy X is a surjective morphism of algebraic spaces, see Lemma
By assumption |U xy X]| is quasi-compact. It surjects onto |Z xy X|, hence we
conclude that |Z xy X| is quasi-compact, see Topology, Lemma This proves
that (3) implies (1).

The implications (1) = (4), (4) = (5) are clear. The implication (5) = (1) fol-
lows from Lemma and the fact that an étale morphism of algebraic spaces is
universally open (see discussion following Definition [6.2)).

Of course (1) implies (6) by taking the covering ¥ =Y. Assume Y = Y] is as
in (6). Let Z be affine and let Z — Y be a morphism. Then there exists a finite
standard affine covering Z = Z; U...U Z,, such that each Z; — Y factors through
Y;, for some i;. Hence the algebraic space

Zj XyX = Zj Xyij fﬁl(Y’iJ)

is quasi-compact. Since Z xy X =J;_; _, Zj xy X is a Zariski covering we see
that |Z xy X[ = U,=,. 1% Xy X| (see Properties of Spaces, Lemma [4.8) is a
finite union of quasi-compact spaces, hence quasi-compact. Thus we see that (6)
implies (3). O

The following (and the next) lemma guarantees in particular that a morphism
X — Spec(A) is quasi-compact as soon as X is a quasi-compact algebraic space

Lemma 8.9. Let S be a scheme. Let f: X =Y and g:Y — Z be morphisms of
algebraic spaces over S. If go f is quasi-compact and g is quasi-separated then f
18 quasi-compact.

Proof. This is true because f equals the composition (1,f): X - X xzY =Y.
The first map is quasi-compact by Lemma [£.7] because it is a section of the quasi-
separated morphism X xz Y — X (a base change of g, see Lemma . The
second map is quasi-compact as it is the base change of f, see Lemma And
compositions of quasi-compact morphisms are quasi-compact, see Lemma [3.5] [

Lemma 8.10. Let f: X — Y be a morphism of algebraic spaces over a scheme
S.
(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and 'Y is quasi-separated, then f
s quasi-compact and quasi-separated.
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(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is
quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 8.9 with Z = S = Spec(Z). Part (2) follows
from (1) and Lemma For (3) let X =Y and Z — Y be morphisms of quasi-
compact and quasi-separated algebraic spaces. Then X xy Z — Z is quasi-compact
and quasi-separated as a base change of X — Y using (2) and Lemmas and
14 Hence X Xy Z is quasi-compact and quasi-separated as an algebraic space
quasi-compact and quasi-separated over Z, see Lemmas [£.9] and [8.5] (Il

9. Universally closed morphisms

For a representable morphism of algebraic spaces we have already defined (in Sec-
tion [3) what it means to be universally closed. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 9.1. Let S be a scheme. Let f : X — Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally closed (in the sense of Section[d), and
(2) for every morphism of algebraic spaces Z —'Y the morphism of topological
spaces |Z xy X| — |Z] is closed.

Proof. Assume (1), and let Z — Y be as in (2). Choose a scheme V and a
surjective étale morphism V' — Y. By assumption the morphism of schemes V' xy
X — V is universally closed. By Properties of Spaces, Section[din the commutative
diagram

|V xy X| —=|Z xy X]|

V] |Z|
the horizontal arrows are open and surjective, and moreover
‘V XyX‘ — |V| Xz |Z XyXI

is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) = (1) is immediate
from the definitions. O

Thus we may use the following natural definition.

Definition 9.2. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S.

(1) We say f is closed if the map of topological spaces | X| — |Y| is closed.
(2) We say f is universally closed if for every morphism of algebraic spaces
Z — Y the morphism of topological spaces

|Z xy X| — |Z]
is closed, i.e., the base change Z xy X — Z is closed.

Lemma 9.3. The base change of a universally closed morphism of algebraic spaces
by any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. O
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Lemma 9.4. The composition of a pair of (universally) closed morphisms of
algebraic spaces is (universally) closed.

Proof. Omitted. U

Lemma 9.5. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally closed,

(2) for every scheme Z and every morphism Z — Y the projection |Z xy X| —
|Z| is closed,

(3) for every affine scheme Z and every morphism Z — Y the projection |Z Xy
X| = |Z] is closed,

(4) there exists a scheme V and a surjective étale morphism V- —'Y such that
V xy X =V is a universally closed morphism of algebraic spaces, and

(5) there exists a Zariski covering Y = |JY; such that each of the morphisms
F~YY;) = Y; is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V' — Y. We are going to show
that V xy X — V is a universally closed morphism of algebraic spaces. Let Z — V'
be a morphism from an algebraic space to V. Let W — Z be a surjective étale
morphism where W = [[ W; is a disjoint union of affine schemes, see Properties of
Spaces, Lemma Then we have the following commutative diagram

IL Wi xy X| == W xy X| —|Z xy X| =17 xv (V xy X)|
[ Wi] == W] ——— 12|

We have to show the south-east arrow is closed. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma . By assumption (3), and
the fact that W; is affine we see that the left vertical arrows are closed. Hence it
follows that the right vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z — Y be a morphism
of algebraic spaces. Consider the diagram

|(V Xy Z) Xy (V XyX)|:|V XyX|4>|Z XyX|

I i

|V Xy Z|4>|Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemmal(16.7). It follows that the right vertical arrow is closed.

Of course (1) implies (5) by taking the covering Y =Y. Assume Y = |JV; is as in
(5). Then for any Z — Y we get a corresponding Zariski covering Z = |J Z; such
that the base change of f to Z; is closed. By a simple topological argument this
implies that Z xy X — Z is closed. Hence (1) holds. O
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Example 9.6. Strange example of a universally closed morphism. Let Q C k be
a field of characteristic zero. Let X = A} /Z as in Spaces, Example We claim
the structure morphism p : X — Spec(k) is universally closed. Namely, if Z/k is
a scheme, and T C |X xy, Z| is closed, then T corresponds to a Z-invariant closed
subset of T/ C |A! x Z|. Tt is easy to see that this implies that 7" is the inverse
image of a subset T of Z. By Morphisms, Lemma we have that 7" C Z is
closed. Of course T" is the image of T. Hence p is universally closed by Lemma
9.9

Lemma 9.7. Let S be a scheme. A universally closed morphism of algebraic
spaces over S is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms,
Lemma Let f: X — Y be a morphism of algebraic spaces over S. Assume
that f is not quasi-compact. Our goal is to show that f is not universally closed.
By Lemma there exists an affine scheme Z and a morphism Z — Y such that
Z xy X — Z is not quasi-compact. To achieve our goal it suffices to show that
Z xy X — Z is not universally closed, hence we may assume that Y = Spec(B)
for some ring B.

Write X = (J,c; Xi where the X; are quasi-compact open subspaces of X. For
example, choose a surjective étale morphism U — X where U is a scheme, choose
an affine open covering U = |JU; and let X; C X be the image of U;. We will
use later that the morphisms X; — Y are quasi-compact, see Lemma Let
T = Spec(Bla;;i € I]). Let T; = D(a;) C T. Let Z C T xy X be the reduced
closed subspace whose underlying closed set of points is |T' xy Z|\ ;¢ |Ts ¥y Xil,
see Properties of Spaces, Lemma, m (Note that T; xy X; is an open subspace of
T xy X as T; — T and X; — X are open immersions, see Spaces, Lemmas

and ) Here is a diagram

J——=Txy X ——>X

Nk

7' —Y
It suffices to prove that the image fr(|Z|) is not closed in |T7|.

We claim there exists a point y € Y such that there is no affine open neighborhood
V of y in Y such that Xy is quasi-compact. If not then we can cover Y with finitely
many such V and for each V the morphism Yy — V is quasi-compact by Lemma
and then Lemma [8.8 implies f quasi-compact, a contradiction. Fix a y € Y as
in the claim.

Let ¢t € T be the point lying over y with x(t) = x(y) such that a; = 1 in x(¢) for all
i. Suppose z € |Z| with fr(z) =t. Then ¢(t) € X; for some i. Hence fr(z) € T;
by construction of Z, which contradicts the fact that ¢ € T; by construction. Hence
we see that t € |T'|\ fr(|Z]).

Assume fr(]Z]) is closed in |T|. Then there exists an element g € Bla;;i € I] with
fr(|Z]) c V(g) but t € V(g). Hence the image of g in k(t) is nonzero. In particular
some coefficient of g has nonzero image in x(y). Hence this coefficient is invertible
on some affine open neighborhood V' of y. Let J be the finite set of j € I such
that the variable a; appears in g. Since Xy is not quasi-compact and each Xj;y
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is quasi-compact, we may choose a point = € |Xy/| \UjeJ |X,v]. In other words,
z € [ X[\ UjesX;| and x lies above some v € V. Since g has a coefficient that is
invertible on V', we can find a point ¢’ € T lying above v such that ¢ ¢ V(g) and
t' € V(a;) forall ¢ ¢ J. Thisis true because V(a;;i € I\J) = Spec(B|a;; j € J]) and
the set of points of this scheme lying over v is bijective with Spec(k(v)[a;;j € J])
and g restricts to a nonzero element of this polynomial ring by construction. In
other words t' ¢ T; for each i ¢ J. By Properties of Spaces, Lemma [4.3 we can find
a point z of X xy T mapping to z € X and to t’ € T. Since = ¢ |X,| for j € J
and t' ¢ T; for i € I\ J we see that z € |Z|. On the other hand fr(z) =t € V(g)
which contradicts fr(Z) C V(g). Thus the assumption “fr(]Z]) closed” is wrong
and we conclude indeed that fr is not closed as desired. (I

The target of a separated algebraic space under a surjective universally closed
morphism is separated.

Lemmal 9.8. Let S be a scheme. Let B be an algebraic space over S. Let f : X —
Y be a surjective universally closed morphism of algebraic spaces over B.

(1) If X is quasi-separated, then'Y is quasi-separated.

(2) If X is separated, then'Y is separated.

(3) If X is quasi-separated over B, then'Y is quasi-separated over B.

(4) If X is separated over B, then'Y is separated over B.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = B = Spec(Z)
(see Properties of Spaces, Definition [3.1)). Consider the commutative diagram

X X xpX

o]

A
Yy — % Yy xpY

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
XxpX =X xpY =Y xpY. Hence it is also quasi-compact, see Lemma [0.7]

Assume X is quasi-separated over B, i.e., Ax/p is quasi-compact. Then if Z is
quasi-compact and Z — Y xp Y is a morphism, then Z Xy x,v X = Z Xyx,v Y
is surjective and Z Xy vy X is quasi-compact by our remarks above. We conclude
that Ay, p is quasi-compact, i.e., Y is quasi-separated over B.

Assume X is separated over B, i.e., Ax,p is a closed immersion. Then if Z is
affine, and Z — Y xp Y is a morphism, then Z Xyx,vy X = Z Xyxpzy Y is
surjective and Z Xy x,y X — Z is universally closed by our remarks above. We
conclude that Ay, p is universally closed. It follows that Ay, p is representable,
locally of finite type, a monomorphism (see Lemma [4.1)) and universally closed,
hence a closed immersion, see Etale Morphisms, Lemm (and also the abstract
principle Spaces, Lemma . Thus Y is separated over B. ([

10. Monomorphisms

A representable morphism X — Y of algebraic spaces is a monomorphism according
to Section [3]if for every scheme Z and morphism Z — Y the morphism Z xy X — Z
is representable by a monomorphism of schemes. This means exactly that Zxy X —
Z is an injective map of sheaves on (Sch/S) ppr. Since this is supposed to hold for
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all Z and all maps Z — Y this is in turn equivalent to the map X — Y being an
injective map of sheaves on (Sch/S) fpps. Thus we may define a monomorphism of
a (possibly nonrepresentablg’)) morphism of algebraic spaces as follows.

Definition 10.1. Let S be a scheme. A morphism of algebraic spaces over S is
called a monomorphism if it is an injective map of sheaves, i.e., a monomorphism
in the category of sheaves on (Sch/S)pps-

The following lemma shows that this also means that it is a monomorphism in the
category of algebraic spaces over S.

Lemma 10.2. Let S be a scheme. Let j : X — Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) j is @ monomorphism (as in Definition[10.1]),

(2) j is a monomorphism in the category of algebraic spaces over S, and

(3) the diagonal morphism Ax/y : X — X xy X is an isomorphism.

Proof. Note that X xy X is both the fibre product in the category of sheaves
on (Sch/S)¢pps and the fibre product in the category of algebraic spaces over S,
see Spaces, Lemma The equivalence of (1) and (3) is a general characteriza-
tion of injective maps of sheaves on any site. The equivalence of (2) and (3) is a
characterization of monomorphisms in any category with fibre products. (]

Lemmal 10.3. A monomorphism of algebraic spaces is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma

above. U
Lemma 10.4. A composition of monomorphisms is a monomorphism.

Proof. True because a composition of injective sheaf maps is injective. [
Lemma 10.5. The base change of a monomorphism is a monomorphism.
Proof. This is a general fact about fibre products in a category of sheaves. O

Lemmal 10.6. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. The following are equivalent
(1) f is a monomorphism,
(2) for every scheme Z and morphism Z — Y the base change Z xy X — Z
of f is a monomorphism,
(3) for every affine scheme Z and every morphism Z — Y the base change
Z xy X — Z of f is a monomorphism,
(4) there exists a scheme V and a surjective étale morphism V- —'Y such that
the base change V xy X — V is a monomorphism, and
(5) there exists a Zariski covering Y = |JY; such that each of the morphisms
F~YY:) = Y is a monomorphism.

Proof. We will use without further mention that a base change of a monomorphism
is a monomorphism, see Lemma In particular it is clear that (1) = (2) =
(3) = (4) (by taking V' to be a disjoint union of affine schemes étale over Y, see
Properties of Spaces, Lemma . Let V be a scheme, and let V. — Y be a

3We do not know whether any monomorphism of algebraic spaces is representable. For a
discussion see More on Morphisms of Spaces, Section
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surjective étale morphism. If V xy X — V is a monomorphism, then it follows
that X — Y is a monomorphism. Namely, given any cartesian diagram of sheaves

F—>G
bl l F=Hx:G

H-—1oT

if ¢ is a surjection of sheaves, and a is injective, then also d is injective. Thus (4)
implies (1). Proof of the equivalence of (5) and (1) is omitted. O

Lemma 10.7. An immersion of algebraic spaces is a monomorphism. In partic-
ular, any immersion is separated.

Proof. Let f: X — Y be an immersion of algebraic spaces. For any morphism
Z — Y with Z representable the base change Z xy X — Z is an immersion of
schemes, hence a monomorphism, see Schemes, Lemma [23.8 Hence f is repre-
sentable, and a monomorphism. O

We will improve on the following lemma in Decent Spaces, Lemma [19.1

Lemma 10.8. Let S be a scheme. Let k be a field and let Z — Spec(k) be a
monomorphism of algebraic spaces over S. Then either Z = () or Z = Spec(k).

Proof. By Lemmas and [£.9we see that Z is a separated algebraic space. Hence
there exists an open dense subspace Z’ C Z which is a scheme, see Properties of
Spaces, Proposition By Schemes, Lemma we see that either Z/ = () or
Z' = Spec(k). In the first case we conclude that Z = §) and in the second case we
conclude that Z’ = Z = Spec(k) as Z — Spec(k) is a monomorphism which is an
isomorphism over Z’. O

Lemma 10.9. Let S be a scheme. If X — Y is a monomorphism of algebraic
spaces over S, then |X| — |Y| is injective.

Proof. Immediate from the definitions. |

11. Pushforward of quasi-coherent sheaves

We first prove a simple lemma, that relates pushforward of sheaves of modules for a
morphism of algebraic spaces to pushforward of sheaves of modules for a morphism
of schemes.

Lemmal 11.1. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. Let U — X be a surjective étale morphism from a scheme to X. Set
R =U xx U and denote t,s : R — U the projection morphisms as usual. Denote
a:U—=Y andb: R —Y the induced morphisms. For any object F of Mod(Ox)
there exists an exact sequence

0= fuF = au(Flu) = b(F|r)
where the second arrow is the difference t* — s*.
Proof. We denote F also its extension to a sheaf of modules on X ,qces étale, S€€
Properties of Spaces, Remark Let V. — Y be an object of Ygqe. Then

V xy X is an object of Xgpaces,étate, and by definition f.F(V) = F(V xy X).
Since U — X is surjective étale, we see that {V xy U — V xy X} is a covering.
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Also, we have (V xy U) xx (V xy U) =V xy R. Hence, by the sheaf condition of
F on Xspaces,étale We have a short exact sequence

0= F(V xy X) = F(V xyU)— F(V xy R)

where the second arrow is the difference of restricting via ¢ or s. This exact sequence
is functorial in V' and hence we obtain the lemma. O

Let S be a scheme. Let f : X — Y be a quasi-compact and quasi-separated mor-
phism of representable algebraic spaces X and Y over S. By Descent, Proposition
the functor fi : QCoh(Ox) — QCoh(Oy) agrees with the usual functor if we
think of X and Y as schemes.

More generally, suppose f : X — Y is a representable, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. Let V be a scheme and let V — Y
be an étale surjective morphism. Let U =V xy X and let f': U — V be the base
change of f. Then for any quasi-coherent Ox-module F we have

(11.1.1) fi(Flu) = (fF)lv,

see Properties of Spaces, Lemma And because f' : U — V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute f.(F|y) by thinking of F|y as a quasi-coherent sheaf
on the scheme U, and f’ as a morphism of schemes. We will frequently use this
without further mention.

The next level of generality is to consider an arbitrary quasi-compact and quasi-
separated morphism of algebraic spaces.

Lemma 11.2. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then f, transforms quasi-
coherent Ox -modules into quasi-coherent Oy -modules.

Proof. Let F be a quasi-coherent sheaf on X. We have to show that f,F is a
quasi-coherent sheaf on Y. For this it suffices to show that for any affine scheme
V' and étale morphism V' — Y the restriction of f.F to V is quasi-coherent, see
Properties of Spaces, Lemma Let f': V xy X — V be the base change of f
by V — Y. Note that f’ is also quasi-compact and quasi-separated, see Lemmas
and By we know that the restriction of f.F to V is fi of the
restriction of F to V xy X. Hence we may replace f by f’, and assume that Y is
an affine scheme.

Assume Y is an affine scheme. Since f is quasi-compact we see that X is quasi-
compact. Thus we may choose an affine scheme U and a surjective étale morphism
U — X, see Properties of Spaces, Lemma [6.3] By Lemma [I1.1] we get an exact
sequence

where R = U xx U. As X — Y is quasi-separated we see that R — U Xy
U is a quasi-compact monomorphism. This implies that R is a quasi-compact
separated scheme (as U and Y are affine at this point). Hence a : U — Y and
b: R — Y are quasi-compact and quasi-separated morphisms of schemes. Thus
by Descent, Proposition the sheaves a.(F|y) and b.(F|g) are quasi-coherent
(see also the discussion preceding this lemma). This implies that f.F is a kernel of
quasi-coherent modules, and hence itself quasi-coherent, see Properties of Spaces,
Lemma O
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Higher direct images are discussed in Cohomology of Spaces, Section

12. Immersions

Open, closed and locally closed immersions of algebraic spaces were defined in
Spaces, Section Namely, a morphism of algebraic spaces is a closed immer-
sion (resp. open immersion, resp. immersion) if it is representable and a closed
immersion (resp. open immersion, resp. immersion) in the sense of Section

In particular these types of morphisms are stable under base change and composi-
tions of morphisms in the category of algebraic spaces over S, see Spaces, Lemmas

[2.2] and 12.3]

Lemma 12.1. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion (resp. open immersion, resp. immersion),

(2) for every scheme Z and any morphism Z — Y the morphism Z xy X — Z
is a closed immersion (resp. open immersion, resp. itmmersion),

(3) for every affine scheme Z and any morphism Z — Y the morphism Z Xy
X — Z is a closed immersion (resp. open immersion, resp. immersion),

(4) there exists a scheme V and a surjective étale morphism V. — Y such
that V- xy X — V is a closed immersion (resp. open immersion, resp.
immersion), and

(5) there exists a Zariski covering Y = |JY; such that each of the morphisms
FYUY:) = Y; is a closed immersion (resp. open immersion, resp. immer-
sion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp.
immersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also
(3) implies (4) since we can take V to be a disjoint union of affines, see Properties
of Spaces, Lemma [6.1

Assume V' — Y is as in (4). Let P be the property closed immersion (resp. open
immersion, resp. immersion) of morphisms of schemes. Note that property P is
preserved under any base change and fppf local on the base (see Section . More-
over, morphisms of type P are separated and locally quasi-finite (in each of the
three cases, see Schemes, Lemma and Morphisms, Lemma [20.16)). Hence by
More on Morphisms, Lemma the morphisms of type P satisfy descent for fppf
covering. Thus Spaces, Lemma applies and we see that X — Y is representable
and has property P, in other words (1) holds.

The equivalence of (1) and (5) follows from the fact that P is Zariski local on the
target (since we saw above that P is in fact fppf local on the target). ([l

Lemmal 12.2. Let S be a scheme. Let Z — Y — X be morphisms of algebraic
spaces over S.

(1) If Z — X is representable, locally of finite type, locally quasi-finite, sepa-
rated, and a monomorphism, then Z — 'Y is representable, locally of finite
type, locally quasi-finite, separated, and a monomorphism.

(2) If Z — X is an immersion and Y — X is locally separated, then Z —'Y
18 an immersion.
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(3) If Z — X is a closed immersion and Y — X is separated, then Z —'Y is
a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

L ——=Y XxXx/—>7

~N

Y ——X

where the composition of the top horizontal arrows is the identity. Let us prove (1).
The first horizontal arrow is a section of Y X x Z — Z, whence representable, locally
of finite type, locally quasi-finite, separated, and a monomorphism by Lemma [4.7]
The arrow Y X x Z — Y is a base change of Z — X hence is representable, locally
of finite type, locally quasi-finite, separated, and a monomorphism (as each of these
properties of morphisms of schemes is stable under base change, see Spaces, Remark
4.1). Hence the same is true for the composition (as each of these properties of
morphisms of schemes is stable under composition, see Spaces, Remark . This
proves (1). The other results are proved in exactly the same manner. O

Lemma 12.3. Let S be a scheme. Leti: Z — X be an immersion of algebraic
spaces over S. Then |i| : |Z| — |X| is a homeomorphism onto a locally closed
subset, and i is a closed immersion if and only if the image |i|(|Z]) C |X| is a
closed subset.

Proof. The first statement is Properties of Spaces, Lemmal[I2.1] Let U be a scheme
and let U — X be a surjective étale morphism. By assumption T'=U xx Z is a
scheme and the morphism j : T'— U is an immersion of schemes. By Lemma [12.1
the morphism i is a closed immersion if and only if j is a closed immersion. By
Schemes, Lemma this is true if and only if j(T') is closed in U. However, the
subset j(T) C U is the inverse image of |i|(|Z]) C |X]|, see Properties of Spaces,
Lemma [4.3] This finishes the proof. O

Remark| 12.4. Let S be a scheme. Let i : Z — X be an immersion of algebraic
spaces over S. Since 4 is a monomorphism we may think of | Z| as a subset of | X|; in
the rest of this remark we do so. Let 9|Z| be the boundary of |Z| in the topological
space | X|. In a formula
02| = 121\ |2,

Let 0Z be the reduced closed subspace of X with |0Z] = 0|Z| obtained by taking
the reduced induced closed subspace structure, see Properties of Spaces, Definition
By construction we see that |Z] is closed in | X |\ [0Z] = | X \ 0Z|. Hence it is
true that any immersion of algebraic spaces can be factored as a closed immersion
followed by an open immersion (but not the other way in general, see Morphisms,

Example .

Remark| 12.5. Let S be a scheme. Let X be an algebraic space over S. Let
T C |X| be a locally closed subset. Let 9T be the boundary of T in the topological
space | X|. In a formula

OT =T\T.
Let U C X be the open subspace of X with |U| = | X |\ 9T, see Properties of Spaces,
Lemma Let Z be the reduced closed subspace of U with |Z| = T obtained by
taking the reduced induced closed subspace structure, see Properties of Spaces,


https://stacks.math.columbia.edu/tag/04CD
https://stacks.math.columbia.edu/tag/04CE
https://stacks.math.columbia.edu/tag/06EC

081U

03MA

03MB

MORPHISMS OF ALGEBRAIC SPACES 24

Definition [12.5] By construction Z — U is a closed immersion of algebraic spaces
and U — X is an open i