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1. Introduction

06DS This chapter is the analogue of the chapter on varieties in the setting of algebraic
spaces. A reference for algebraic spaces is [Knu71].

2. Conventions

06LX The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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3. Generically finite morphisms

0ACY This section continues the discussion in Decent Spaces, Section 21 and the analogue
for morphisms of algebraic spaces of Varieties, Section 17.

Lemma 3.1.0AD1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is locally Noetherian. Let
y ∈ |Y | be a point of codimension ≤ 1 on Y . Let X0 ⊂ |X| be the set of points of
codimension 0 on X. Assume in addition one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x)⇝ y the transcendence degree of x/f(x) is 0,
(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. We want to reduce the proof to the case of schemes. To do this we choose
a commutative diagram

U //

g

��

X

f

��
V // Y

where U , V are schemes and where the horizontal arrows are étale and surjec-
tive. Pick v ∈ V mapping to y. Observe that V is locally Noetherian and that
dim(OV,v) ≤ 1 (see Properties of Spaces, Definitions 10.2 and Remark 7.3). The
fibre Uv of U → V over v surjects onto f−1({y}) ⊂ |X|. The inverse image of X0

in U is exactly the set of generic points of irreducible components of U (Properties
of Spaces, Lemma 11.1). If η ∈ U is such a point with image x ∈ X0, then the
transcendence degree of x/f(x) is the transcendence degree of κ(η) over κ(g(η))
(Morphisms of Spaces, Definition 33.1). Observe that U → V is quasi-finite at
u ∈ U if and only if f is quasi-finite at the image of u in X.
Case (1). Here case (1) of Varieties, Lemma 17.1 applies and we conclude that
U → V is quasi-finite at all points of Uv. Hence f is quasi-finite at every point
lying over y.
Case (2). Let u ∈ U be a generic point of an irreducible component whose image
in V specializes to v. Then the image x ∈ X0 of u has the property that f(x)⇝ y.
Hence we see that case (2) of Varieties, Lemma 17.1 applies and we conclude as
before.
Case (3) follows from case (3) of Varieties, Lemma 17.1.
In case (4), since |U | → |X| is open, we see that the set of points where U → V is
quasi-finite is dense as well. Hence case (4) of Varieties, Lemma 17.1 applies. □

Lemma 3.2.0AD2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper and Y is locally Noetherian. Let y ∈ Y be a
point of codimension ≤ 1 in Y . Let X0 ⊂ |X| be the set of points of codimension 0
on X. Assume in addition one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x)⇝ y the transcendence degree of x/f(x) is 0,

https://stacks.math.columbia.edu/tag/0AD1
https://stacks.math.columbia.edu/tag/0AD2
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(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then there exists an open subspace Y ′ ⊂ Y containing y such that Y ′ ×Y X → Y ′

is finite.

Proof. By Lemma 3.1 the morphism f is quasi-finite at every point lying over y.
Let y : Spec(k) → Y be a geometric point lying over y. Then |Xy| is a discrete
space (Decent Spaces, Lemma 18.10). Since Xy is quasi-compact as f is proper
we conclude that |Xy| is finite. Thus we can apply Cohomology of Spaces, Lemma
23.2 to conclude. □

Lemma 3.3.0BBQ Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let f : Y → X be a birational proper morphism of algebraic spaces with Y reduced.
Let U ⊂ X be the maximal open over which f is an isomorphism. Then U contains

(1) every point of codimension 0 in X,
(2) every x ∈ |X| of codimension 1 on X such that the local ring of X at x is

normal (Properties of Spaces, Remark 7.6), and
(3) every x ∈ |X| such that the fibre of |Y | → |X| over x is finite and such that

the local ring of X at x is normal.

Proof. Part (1) follows from Decent Spaces, Lemma 22.5 (and the fact that the
Noetherian algebraic spaces X and Y are quasi-separated and hence decent). Part
(2) follows from part (3) and Lemma 3.2 (and the fact that finite morphisms have
finite fibres). Let x ∈ |X| be as in (3). By Cohomology of Spaces, Lemma 23.2
(which applies by Decent Spaces, Lemma 18.10) we may assume f is finite. Choose
an affine scheme X ′ and an étale morphism X ′ → X and a point x′ ∈ X mapping
to x. It suffices to show there exists an open neighbourhood U ′ of x′ ∈ X ′ such that
Y ×X X ′ → X ′ is an isomorphism over U ′ (namely, then U contains the image of U ′

in X, see Spaces, Lemma 5.6). Then Y ×X X ′ → X is a finite birational (Decent
Spaces, Lemma 22.6) morphism. Since a finite morphism is affine we reduce to
the case of a finite birational morphism of Noetherian affine schemes Y → X and
x ∈ X such that OX,x is a normal domain. This is treated in Varieties, Lemma
17.3. □

4. Integral algebraic spaces

0AD3 We have not yet defined the notion of an integral algebraic space. The problem
is that being integral is not an étale local property of schemes. We could use the
property, that X is reduced and |X| is irreducible, given in Properties, Lemma 3.4
to define integral algebraic spaces. In this case the algebraic space described in
Spaces, Example 14.9 would be integral which does not seem right. To avoid this
type of pathology we will in addition assume that X is a decent algebraic space,
although perhaps a weaker alternative exists.

Definition 4.1.0AD4 Let S be a scheme. We say an algebraic space X over S is integral
if it is reduced, decent, and |X| is irreducible.

In this case the irreducible topological space |X| is sober (Decent Spaces, Proposi-
tion 12.4). Hence it has a unique generic point x. In fact, in Decent Spaces, Lemma
20.4 we characterized decent algebraic spaces with finitely many irreducible com-
ponents. Applying that lemma we see that an algebraic space X is integral if it is

https://stacks.math.columbia.edu/tag/0BBQ
https://stacks.math.columbia.edu/tag/0AD4
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reduced, has an irreducible dense open subscheme X ′ with generic point x′ and the
morphism x′ → X is quasi-compact.

Lemma 4.2.0END Let S be a scheme. Let X be an integral algebraic space over S. Let
η ∈ |X| be the generic point of X. There are canonical identifications

R(X) = Oh
X,η = κ(η)

where R(X) is the ring of rational functions defined in Morphisms of Spaces, Def-
inition 47.3, κ(η) is the residue field defined in Decent Spaces, Definition 11.2,
and Oh

X,η is the henselian local ring defined in Decent Spaces, Definition 11.5. In
particular, these rings are fields.

Proof. Since X is a scheme in an open neighbourhood of η (see discussion above),
this follows immediately from the corresponding result for schemes, see Morphisms,
Lemma 49.5. We also use: the henselianization of a field is itself and that our defi-
nitions of these objects for algebraic spaces are compatible with those for schemes.
Details omitted. □

This leads to the following definition.

Definition 4.3.0ENE Let S be a scheme. Let X be an integral algebraic space over
S. The function field, or the field of rational functions of X is the field R(X) of
Lemma 4.2.

We may occasionally indicate this field k(X) instead of R(X).

Lemma 4.4.0BH2 Let S be a scheme. Let X be an integral algebraic space over S.
Then Γ(X, OX) is a domain.

Proof. Set R = Γ(X, OX). If f, g ∈ R are nonzero and fg = 0 then X = V (f) ∪
V (g) where V (f) denotes the closed subspace of X cut out by f . Since X is
irreducible, we see that either V (f) = X or V (g) = X. Then either f = 0 or g = 0
by Properties of Spaces, Lemma 21.4. □

Here is a lemma about normal integral algebraic spaces.

Lemma 4.5.0AYH Let S be a scheme. Let X be a normal integral algebraic space over
S. For every x ∈ |X| there exists a normal integral affine scheme U and an étale
morphism U → X such that x is in the image.

Proof. Choose an affine scheme U and an étale morphism U → X such that x is
in the image. Let ui, i ∈ I be the generic points of irreducible components of U .
Then each ui maps to the generic point of X (Decent Spaces, Lemma 20.1). By
our definition of a decent space (Decent Spaces, Definition 6.1), we see that I is
finite. Hence U = Spec(A) where A is a normal ring with finitely many minimal
primes. Thus A =

∏
i∈I Ai is a product of normal domains by Algebra, Lemma

37.16. Then U =
∐

Ui with Ui = Spec(Ai) and x is in the image of Ui → X for
some i. This proves the lemma. □

Lemma 4.6.0BH3 Let S be a scheme. Let X be a normal integral algebraic space over
S. Then Γ(X, OX) is a normal domain.

Proof. Set R = Γ(X, OX). Then R is a domain by Lemma 4.4. Let f = a/b be an
element of the fraction field of R which is integral over R. For any U → X étale
with U a scheme there is at most one fU ∈ Γ(U, OU ) with b|U fU = a|U . Namely, U

https://stacks.math.columbia.edu/tag/0END
https://stacks.math.columbia.edu/tag/0ENE
https://stacks.math.columbia.edu/tag/0BH2
https://stacks.math.columbia.edu/tag/0AYH
https://stacks.math.columbia.edu/tag/0BH3
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is reduced and the generic points of U map to the generic point of X which implies
that b|U is a nonzerodivisor. For every x ∈ |X| we choose U → X as in Lemma
4.5. Then there is a unique fU ∈ Γ(U, OU ) with b|U fU = a|U because Γ(U, OU ) is
a normal domain by Properties, Lemma 7.9. By the uniqueness mentioned above
these fU glue and define a global section f of the structure sheaf, i.e., of R. □

Lemma 4.7.0ENF Let S be a scheme. Let X be a decent algebraic space over S. There
are canonical bijections between the following sets:

(1) the set of points of X, i.e., |X|,
(2) the set of irreducible closed subsets of |X|,
(3) the set of integral closed subspaces of X.

The bijection from (1) to (2) sends x to {x}. The bijection from (3) to (2) sends
Z to |Z|.

Proof. Our map defines a bijection between (1) and (2) as |X| is sober by Decent
Spaces, Proposition 12.4. Given T ⊂ |X| closed and irreducible, there is a unique
reduced closed subspace Z ⊂ X such that |Z| = T , namely, Z is the reduced
induced subspace structure on T , see Properties of Spaces, Definition 12.5. This is
an integral algebraic space because it is decent, reduced, and irreducible. □

5. Morphisms between integral algebraic spaces

0ENG The following lemma characterizes dominant morphisms of finite degree between
integral algebraic spaces.

Lemma 5.1.0AD5 Let S be a scheme. Let X, Y be integral algebraic spaces over S Let
x ∈ |X| and y ∈ |Y | be the generic points. Let f : X → Y be locally of finite type.
Assume f is dominant (Morphisms of Spaces, Definition 18.1). The following are
equivalent:

(1) the transcendence degree of x/y is 0,
(2) the extension κ(x)/κ(y) (see proof) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite,
(4) f is quasi-finite at x, and
(5) x is the only point of |X| mapping to y.

If f is separated or if f is quasi-compact, then these are also equivalent to
(6) there exists a nonempty affine open V ⊂ Y such that f−1(V ) → V is finite.

Proof. By elementary topology, we see that f(x) = y as f is dominant. Let
Y ′ ⊂ Y be the schematic locus of Y and let X ′ ⊂ f−1(Y ′) be the schematic locus
of f−1(Y ′). By the discussion above, using Decent Spaces, Proposition 12.4 and
Theorem 10.2, we see that x ∈ |X ′| and y ∈ |Y ′|. Then f |X′ : X ′ → Y ′ is a
morphism of integral schemes which is locally of finite type. Thus we see that (1),
(2), (3) are equivalent by Morphisms, Lemma 51.7.
Condition (4) implies condition (1) by Morphisms of Spaces, Lemma 33.3 applied
to X → Y → Y . On the other hand, condition (3) implies condition (4) as a finite
morphism is quasi-finite and as x ∈ U because x is the generic point. Thus (1) –
(4) are equivalent.
Assume the equivalent conditions (1) – (4). Suppose that x′ 7→ y. Then x⇝ x′ is
a specialization in the fibre of |X| → |Y | over y. If x′ ̸= x, then f is not quasi-finite

https://stacks.math.columbia.edu/tag/0ENF
https://stacks.math.columbia.edu/tag/0AD5
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at x by Decent Spaces, Lemma 18.9. Hence x = x′ and (5) holds. Conversely, if
(5) holds, then (5) holds for the morphism of schemes X ′ → Y ′ (see above) and we
can use Morphisms, Lemma 51.7 to see that (1) holds.
Observe that (6) implies the equivalent conditions (1) – (5) without any further
assumptions on f . To finish the proof we have to show the equivalent conditions
(1) – (5) imply (6). This follows from Decent Spaces, Lemma 21.4. □

Definition 5.2.0AD6 Let S be a scheme. Let X and Y be integral algebraic spaces
over S. Let f : X → Y be locally of finite type and dominant. Assume any of
the equivalent conditions (1) – (5) of Lemma 5.1. Let x ∈ |X| and y ∈ |Y | be the
generic points. Then the positive integer

deg(X/Y ) = [κ(x) : κ(y)]
is called the degree of X over Y .

Lemma 5.3.0ENH Let S be a scheme. Let X, Y , Z be integral algebraic spaces over
S. Let f : X → Y and g : Y → Z be dominant morphisms locally of finite type.
Assume any of the equivalent conditions (1) – (5) of Lemma 5.1 hold for f and g.
Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 7.7. □

6. Weil divisors

0ENI This section is the analogue of Divisors, Section 26.
We will introduce Weil divisors and rational equivalence of Weil divisors for locally
Noetherian integral algebraic spaces. Since we are not assuming our algebraic spaces
are quasi-compact we have to be a little careful when defining Weil divisors. We
have to allow infinite sums of prime divisors because a rational function may have
infinitely many poles for example. In the quasi-compact case our Weil divisors are
finite sums as usual. Here is a basic lemma we will often use to prove collections of
closed subspaces are locally finite.

Lemma 6.1.0EE5 Let S be a scheme and let X be a locally Noetherian algebraic space
over S. If T ⊂ |X| is a closed subset, then the collection of irreducible components
of T is locally finite.

Proof. The topological space |X| is locally Noetherian (Properties of Spaces, Lemma
24.2). A Noetherian topological space has a finite number of irreducible compo-
nents and a subspace of a Noetherian space is Noetherian (Topology, Lemma 9.2).
Thus the lemma follows from the definition of locally finite (Topology, Definition
28.4). □

Let S be a scheme. Let X be a decent algebraic space over S. Let Z be an integral
closed subspace of X and let ξ ∈ |Z| be the generic point. Then the codimension
of |Z| in |X| is equal to the dimension of the local ring of X at ξ by Decent
Spaces, Lemma 20.2. Recall that we also indicate this by saying that ξ is a point
of codimension 1 on X, see Properties of Spaces, Definition 10.2.

Definition 6.2.0ENJ Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S.

https://stacks.math.columbia.edu/tag/0AD6
https://stacks.math.columbia.edu/tag/0ENH
https://stacks.math.columbia.edu/tag/0EE5
https://stacks.math.columbia.edu/tag/0ENJ
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(1) A prime divisor is an integral closed subspace Z ⊂ X of codimension 1,
i.e., the generic point of |Z| is a point of codimension 1 on X.

(2) A Weil divisor is a formal sum D =
∑

nZZ where the sum is over prime
divisors of X and the collection {|Z| : nZ ̸= 0} is locally finite in |X|
(Topology, Definition 28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In
order to do this we need to define the order of vanishing of a rational function on a
locally Noetherian integral algebraic space X along a prime divisor Z. Let ξ ∈ |Z|
be the generic point. Here we run into the problem that the local ring OX,ξ doesn’t
exist and the henselian local ring Oh

X,ξ may not be a domain, see Example 6.11.
To get around this we use the following lemma.

Lemma 6.3.0ENK Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point.
Then the henselian local ring Oh

X,ξ is a reduced 1-dimensional Noetherian local ring
and there is a canonical injective map

R(X) −→ Q(Oh
X,ξ)

from the function field R(X) of X into the total ring of fractions.

Proof. We will use the results of Decent Spaces, Section 11. Let (U, u) → (X, ξ)
be an elementary étale neighbourhood. Observe that U is locally Noetherian and
reduced. Thus OU,u is a 1-dimensional (by our definition of prime divisors) reduced
Noetherian ring. After replacing U by an affine open neighbourhood of u we may
assume U is Noetherian and affine. After replacing U by a smaller open, we may
assume every irreducible component of U passes through u. Since U → X is open
and X irreducible, U → X is dominant. Hence we obtain a ring map R(X) → R(U)
by composing rational maps, see Morphisms of Spaces, Section 47. Since R(X) is
a field, this map is injective. By our choice of U we see that R(U) is the total
quotient ring Q(OU,u), see Morphisms, Lemma 49.5 and Algebra, Lemma 25.4.

At this point we have proved all the statements in the lemma with OU,u in stead
of Oh

X,ξ. However, Oh
X,ξ is the henselization of OU,u. Thus Oh

X,ξ is a 1-dimensional
reduced Noetherian ring, see More on Algebra, Lemmas 45.4, 45.7, and 45.3. Since
OU,u → Oh

X,ξ is faithfully flat by More on Algebra, Lemma 45.1 it sends nonze-
rodivisors to nonzerodivisors. Therefore we obtain a canonical map Q(OU,u) →
Q(Oh

X,ξ) and we obtain our map. We omit the verification that the map is inde-
pendent of the choice of (U, u) → (X, x); a slightly better approach would be to
first observe that colim Q(OU,u) = Q(Oh

X,ξ). □

Definition 6.4.0ENL Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let f ∈ R(X)∗. For every prime divisor Z ⊂ X we define
the order of vanishing of f along Z as the integer

ordZ(f) = lengthOh
X,ξ

(Oh
X,ξ/aOh

X,ξ) − lengthOh
X,ξ

(Oh
X,ξ/bOh

X,ξ)

where a, b ∈ Oh
X,ξ are nonzerodivisors such that the image of f in Q(Oh

X,ξ) (Lemma
6.3) is equal to a/b. This is well defined by Algebra, Lemma 121.1.

https://stacks.math.columbia.edu/tag/0ENK
https://stacks.math.columbia.edu/tag/0ENL
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If Oh
X,ξ happens to be a domain, then we obtain

ordZ(f) = ordOh
X,ξ

(f)

where the right hand side is the notion of Algebra, Definition 121.2. Note that for
f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).
Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. It is important
to note that the condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ Oh

X,ξ

unless the local ring OX,ξ is a discrete valuation ring.

Lemma 6.5.0ENM Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. If the prime divisor Z ⊂ X meets the schematic
locus of X, then the order of vanishing ordZ(f) of Definition 6.4 agrees with the
order of vanishing of Divisors, Definition 26.3.

Proof. After shrinking X we may assume X is an integral Noetherian scheme. If
ξ ∈ Z denotes the generic point, then we find that Oh

X,ξ is the henselization of OX,ξ

(Decent Spaces, Lemma 11.8). To prove the lemma it suffices and is necessary to
show that

lengthOX,ξ
(OX,ξ/aOX,ξ) = lengthOh

X,ξ
(Oh

X,ξ/aOh
X,ξ)

This follows immediately from Algebra, Lemma 52.13 (and the fact that OX,ξ →
Oh

X,ξ is a flat local ring homomorphism of local Noetherian rings). □

Lemma 6.6.0ENN Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. Then the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not in OX,ξ}
and

{Z ⊂ X | Z a prime divisor and ordZ(f) ̸= 0}
are locally finite in X.

Proof. There exists a nonempty open subspace U ⊂ X such that f corresponds
to a section of Γ(U, O∗

X). Hence the prime divisors which can occur in the sets of
the lemma all correspond to irreducible components of |X| \ |U |. Hence Lemma 6.1
gives the desired result. □

This lemma allows us to make the following definition.

Definition 6.7.0ENP Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let f ∈ R(X)∗. The principal Weil divisor associated to f
is the Weil divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]
where the sum is over prime divisors and ordZ(f) is as in Definition 6.4. This makes
sense by Lemma 6.6.

Lemma 6.8.0ENQ Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f, g ∈ R(X)∗. Then

divX(fg) = divX(f) + divX(g)
as Weil divisors on X.

https://stacks.math.columbia.edu/tag/0ENM
https://stacks.math.columbia.edu/tag/0ENN
https://stacks.math.columbia.edu/tag/0ENP
https://stacks.math.columbia.edu/tag/0ENQ
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Proof. This is clear from the additivity of the ord functions. □

We see from the lemma above that the collection of principal Weil divisors form a
subgroup of the group of all Weil divisors. This leads to the following definition.

Definition 6.9.0ENR Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. The Weil divisor class group of X is the quotient of the
group of Weil divisors by the subgroup of principal Weil divisors. Notation: Cl(X).

By construction we obtain an exact complex

(6.9.1)0ENS R(X)∗ div−−→ Div(X) → Cl(X) → 0
which we can think of as a presentation of Cl(X). Our next task is to relate the
Weil divisor class group to the Picard group.

Example 6.10.0ENT This is a continuation of Morphisms of Spaces, Example 53.3.
Consider the algebraic space X = A1

k/{t ∼ −t | t ̸= 0}. This is a smooth algebraic
space over the field k. There is a universal homeomorphism

X −→ A1
k = Spec(k[t])

which is an isomorphism over A1
k \ {0}. We conclude that X is Noetherian and

integral. Since dim(X) = 1, we see that the prime divisors of X are the closed
points of X. Consider the unique closed point x ∈ |X| lying over 0 ∈ A1

k. Since
X \ {x} maps isomorphically to A1 \ {0} we see that the classes in Cl(X) of closed
points different from x are zero. However, the divisor of t on X is 2[x]. We conclude
that Cl(X) = Z/2Z.

Example 6.11.0ENU Let k be a field. Let
U = Spec(k[x, y]/(xy))

be the union of the coordinate axes in A2
k. Denote ∆ : U → U ×k U the diagonal

and ∆′ : U → U ×k U the map u 7→ (u, σ(u)) where σ : U → U , (x, y) 7→ (y, x) is
the automorphism flipping the coordinate axes. Set

R = ∆(U) ⨿ ∆′(U \ {0U })
where 0U ∈ U is the origin. It is easy to see that R is an étale equivalence relation
on U . The quotient X = U/R is an algebraic space. The morphism U → A1

k,
(x, y) 7→ x + y is R-invariant and hence defines a morphism

X −→ A1
k

This morphism is a universal homeomorphism and an isomorphism over A1
k \ {0}.

It follows that X is integral and Noetherian. Exactly as in Example 6.10 the reader
shows that Cl(X) = Z/2Z with generator corresponding to the unique closed point
x ∈ |X| mapping to 0 ∈ A1

k. However, in this case the henselian local ring of X at
x isn’t a domain, as it is the henselization of OU,0U

.

7. The Weil divisor class associated to an invertible module

0ENV In this section we go through exactly the same progression as in Section 6 to define
a canonical map Pic(X) → Cl(X) on a locally Noetherian integral algebraic space.
Let S be a scheme. Let X be a locally Noetherian integral algebraic space over S.
Let L be an invertible OX -module. By Divisors on Spaces, Lemma 10.11 there exists
a regular meromorphic section s ∈ Γ(X, KX(L)). In fact, by Divisors on Spaces,

https://stacks.math.columbia.edu/tag/0ENR
https://stacks.math.columbia.edu/tag/0ENT
https://stacks.math.columbia.edu/tag/0ENU
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Lemma 10.8 this is the same thing as a nonzero element in Lη where η ∈ |X| is
the generic point. The same lemma tells us that if L = OX , then s is the same
thing as a nonzero rational function on X (so what we will do below matches the
construction in Section 6).
Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point. We are going
to define the order of vanishing of s along Z. Consider the canonical morphism

cξ : Spec(Oh
X,ξ) −→ X

whose source is the spectrum of the henselian local ring of X as ξ (Decent Spaces,
Definition 11.7). The pullback Lξ = c∗

ξL is an invertible module and hence trivial;
choose a generator sξ of Lξ. Since cξ is flat, pullbacks of meromorphic functions
and (regular) sections are defined for cξ, see Divisors on Spaces, Definition 10.6 and
Lemmas 10.7 and 10.10. Thus we get

c∗
ξ(s) = fsξ

for some nonzerodivisor f ∈ Q(Oh
X,ξ). Here we are using Divisors, Lemma 24.2 to

identify the space of meromorphic sections of Lξ
∼= OSpec(Oh

X,ξ
) in terms of the total

ring of fractions of Oh
X,ξ. Let us agree to denote this element

s/sξ = f ∈ Q(Oh
X,ξ)

Observe that f = s/sξ is replaced by uf where u ∈ Oh
X,ξ is a unit if we change our

choice of sξ.

Definition 7.1.0EPR Let S be a scheme. Let X be a locally Noetherian integral
algebraic algebraic space over S. Let L be an invertible OX -module. Let s ∈
Γ(X, KX(L)) be a regular meromorphic section of L. For every prime divisor Z ⊂ X
with generic point ξ ∈ |Z| we define the order of vanishing of s along Z as the integer

ordZ,L(s) = lengthOh
X,ξ

(Oh
X,ξ/aOh

X,ξ) − lengthOh
X,ξ

(Oh
X,ξ/bOh

X,ξ)

where a, b ∈ Oh
X,ξ are nonzerodivisors such that the element s/sξ of Q(Oh

X,ξ) con-
structed above is equal to a/b. This is well defined by the above and Algebra,
Lemma 121.1.

As explained above, a regular meromorphic section s of OX can be written s = f ·1
where f is a nonzero rational function on X and we have ordZ(f) = ordZ,OX

(s).
As in the case of principal divisors we have the following lemma.

Lemma 7.2.0EPS Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let L be an invertible OX-module. Let s ∈ KX(L) be a regular (i.e.,
nonzero) meromorphic section of L. Then the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}
and

{Z ⊂ X | Z is a prime divisor and ordZ,L(s) ̸= 0}
are locally finite in X.

Proof. There exists a nonempty open subspace U ⊂ X such that s corresponds to
a section of Γ(U, L) which generates L over U . Hence the prime divisors which can
occur in the sets of the lemma all correspond to irreducible components of |X|\ |U |.
Hence Lemma 6.1. gives the desired result. □

https://stacks.math.columbia.edu/tag/0EPR
https://stacks.math.columbia.edu/tag/0EPS
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Lemma 7.3.0EPT Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S Let L be an invertible OX-module. Let s, s′ ∈ KX(L) be nonzero
meromorphic sections of L. Then f = s/s′ is an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 7.2 guarantees that
the sums are indeed Weil divisors. □

Definition 7.4.0EPU Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors. This is well defined by Lemma 7.2.
(2) We define Weil divisor class associated to L as the image of divL(s) in

Cl(X) where s is any nonzero meromorphic section of L over X. This is
well defined by Lemma 7.3.

As expected this construction is additive in the invertible module.

Lemma 7.5.0EPV Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let L, N be invertible OX-modules. Let s, resp. t be a nonzero
meromorphic section of L, resp. N . Then st is a nonzero meromorphic section of
L ⊗OX

N and
divL⊗N (st) = divL(s) + divN (t)

in Div(X). In particular, the Weil divisor class of L ⊗OX
N is the sum of the Weil

divisor classes of L and N .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st
is a nonzero meromorphic section of L ⊗ N . Let Z ⊂ X be a prime divisor. Let
ξ ∈ |Z| be its generic point. Choose generators sξ ∈ Lξ, and tξ ∈ Nξ with notation
as described earlier in this section. Then sξ ⊗ tξ is a generator for (L ⊗ N )ξ. So
st/(sξtξ) = (s/sξ)(t/tξ) in Q(Oh

X,ξ). Applying the additivity of Algebra, Lemma
121.1 we conclude that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)

Some details omitted. □

Let S be a scheme. Let X be a locally Noetherian integral algebraic space over
S. By the constructions and lemmas above we obtain a homomorphism of abelian
groups

(7.5.1)0EPW Pic(X) −→ Cl(X)

which assigns to an invertible module its Weil divisor class.

Lemma 7.6.0EPX Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. If X is normal, then the map (7.5.1) Pic(X) → Cl(X) is injective.

https://stacks.math.columbia.edu/tag/0EPT
https://stacks.math.columbia.edu/tag/0EPU
https://stacks.math.columbia.edu/tag/0EPV
https://stacks.math.columbia.edu/tag/0EPX
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Proof. Let L be an invertible OX -module whose associated Weil divisor class is
trivial. Let s be a regular meromorphic section of L. The assumption means that
divL(s) = div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular
meromorphic section of L with divL(t) = 0, see Lemma 7.3. We claim that t
defines a trivialization of L. The claim finishes the proof of the lemma. Our proof
of the claim is a bit awkward as we don’t yet have a lot of theory at our dispposal;
we suggest the reader skip the proof.
We may check our claim étale locally. Let U ∈ Xétale be affine such that L|U
is trivial. Say sU ∈ Γ(U, L|U ) is a trivialization. By Properties, Lemma 7.5 we
may also assume U is integral. Write U = Spec(A) as the spectrum of a normal
Noetherian domain A with fraction field K. We may write t|U = fsU for some
element f of K, see Divisors on Spaces, Lemma 10.4 for example. Let p ⊂ A be a
height one prime corresponding to a codimension 1 point u ∈ U which maps to a
codimension 1 point ξ ∈ |X|. Choose a trivialization sξ of Lξ as in the beginning
of this section. Choose a geometric point u of U lying over u. Then

(Oh
X,ξ)sh = OX,u = Osh

U,u = (Ap)sh

see Decent Spaces, Lemmas 11.9 and Properties of Spaces, Lemma 22.1. The
normality of X shows that all of these are discrete valuation rings. The trivial-
izations sU and sξ differ by a unit as sections of L pulled back to Spec(OX,u).
Write t = fξsξ with fξ ∈ Q(Oh

X,ξ). We conclude that fξ and f differ by a unit in
Q(OX,u). If Z ⊂ X denotes the prime divisor corresponding to ξ (Lemma 4.7),
then 0 = ordZ,L(t) = ordOh

X,ξ
(fξ) and since Oh

X,ξ is a discrete valuation ring we see
that fξ is a unit. Thus f is a unit in OX,u and hence in particular f ∈ Ap. This
implies f ∈ A by Algebra, Lemma 157.6. We conclude that t ∈ Γ(X, L). Repeat-
ing the argument with t−1 viewed as a meromorphic section of L⊗−1 finishes the
proof. □

8. Modifications and alterations

0AD7 Using our notion of an integral algebraic space we can define a modification as
follows.

Definition 8.1.0AD8 Let S be a scheme. Let X be an integral algebraic space over
S. A modification of X is a birational proper morphism f : X ′ → X of algebraic
spaces over S with X ′ integral.

For birational morphisms of algebraic spaces, see Decent Spaces, Definition 22.1.

Lemma 8.2.0AD9 Let f : X ′ → X be a modification as in Definition 8.1. There exists
a nonempty open U ⊂ X such that f−1(U) → U is an isomorphism.

Proof. By Lemma 5.1 there exists a nonempty U ⊂ X such that f−1(U) → U is
finite. By generic flatness (Morphisms of Spaces, Proposition 32.1) we may assume
f−1(U) → U is flat and of finite presentation. So f−1(U) → U is finite locally free
(Morphisms of Spaces, Lemma 46.6). Since f is birational, the degree of X ′ over
X is 1. Hence f−1(U) → U is finite locally free of degree 1, in other words it is an
isomorphism. □

Definition 8.3.0ADA Let S be a scheme. Let X be an integral algebraic space over S.
An alteration of X is a proper dominant morphism f : Y → X of algebraic spaces

https://stacks.math.columbia.edu/tag/0AD8
https://stacks.math.columbia.edu/tag/0AD9
https://stacks.math.columbia.edu/tag/0ADA
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over S with Y integral such that f−1(U) → U is finite for some nonempty open
U ⊂ X.

If f : Y → X is a dominant and proper morphism between integral algebraic spaces,
then it is an alteration as soon as the induced extension of residue fields in generic
points is finite. Here is the precise statement.

Lemma 8.4.0ADB Let S be a scheme. Let f : X → Y be a proper dominant morphism
of integral algebraic spaces over S. Then f is an alteration if and only if any of the
equivalent conditions (1) – (6) of Lemma 5.1 hold.

Proof. Immediate consequence of the lemma referenced in the statement. □

Lemma 8.5.0DMN Let S be a scheme. Let f : X → Y be a proper surjective morphism
of algebraic spaces over S. Assume Y is integral. Then there exists an integral
closed subspace X ′ ⊂ X such that f ′ = f |X′ : X ′ → Y is an alteration.

Proof. Let V ⊂ Y be a nonempty open affine (Decent Spaces, Theorem 10.2). Let
η ∈ V be the generic point. Then Xη is a nonempty proper algebraic space over
η. Choose a closed point x ∈ |Xη| (exists because |Xη| is a quasi-compact, sober
topological space, see Decent Spaces, Proposition 12.4 and Topology, Lemma 12.8.)
Let X ′ be the reduced induced closed subspace structure on {x} ⊂ |X| (Properties
of Spaces, Definition 12.5. Then f ′ : X ′ → Y is surjective as the image contains η.
Also f ′ is proper as a composition of a closed immersion and a proper morphism.
Finally, the fibre X ′

η has a single point; to see this use Decent Spaces, Lemma 18.6
for both X → Y and X ′ → Y and the point η. Since Y is decent and X ′ → Y is
separated we see that X ′ is decent (Decent Spaces, Lemmas 17.2 and 17.5). Thus
f ′ is an alteration by Lemma 8.4. □

9. Schematic locus

06LY We have already proven a number of results on the schematic locus of an algebraic
space. Here is a list of references:

(1) Properties of Spaces, Sections 13 and 14,
(2) Decent Spaces, Section 10,
(3) Properties of Spaces, Lemma 15.3 ⇐ Decent Spaces, Lemma 12.8 ⇐ Decent

Spaces, Lemma 14.2,
(4) Limits of Spaces, Section 15, and
(5) Limits of Spaces, Section 17.

There are some cases where certain types of morphisms of algebraic spaces are au-
tomatically representable, for example separated, locally quasi-finite morphisms
(Morphisms of Spaces, Lemma 51.1), and flat monomorphisms (More on Mor-
phisms of Spaces, Lemma 4.1). In Section 10 we will study what happens with
the schematic locus under extension of base field.

Lemma 9.1.06LZ Let S be a scheme. Let X be an algebraic space over S. Assume X
satisfies at least one of the following conditions

(1) X is quasi-separated and dim(X) = 0,
(2) X is locally of finite type over a field k and dim(X) = 0,
(3) X is Noetherian and dim(X) = 0, or
(4) add more here.

Then X is a separated scheme and any quasi-compact open of X is affine.

https://stacks.math.columbia.edu/tag/0ADB
https://stacks.math.columbia.edu/tag/0DMN
https://stacks.math.columbia.edu/tag/06LZ
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Proof. If we prove that any quasi-compact open of X is affine, then X is a sepa-
rated scheme. Thus we may assume X is quasi-compact and we aim to show that
X is affine. Cases (2) and (3) follow immediately from case (1) but we will give a
separate proofs of (2) and (3) as these proofs use significantly less theory.

Proof of (3). Let U be an affine scheme and let U → X be an étale morphism. Set
R = U ×X U . The two projection morphisms s, t : R → U are étale morphisms
of schemes. By Properties of Spaces, Definition 9.2 we see that dim(U) = 0 and
dim(R) = 0. Since R is a locally Noetherian scheme of dimension 0, we see that
R is a disjoint union of spectra of Artinian local rings (Properties, Lemma 10.5).
Since we assumed that X is Noetherian (so quasi-separated) we conclude that R is
quasi-compact. Hence R is an affine scheme (use Schemes, Lemma 6.8). The étale
morphisms s, t : R → U induce finite residue field extensions. Hence s and t are
finite by Algebra, Lemma 54.4 (small detail omitted). Thus Groupoids, Proposition
23.9 shows that X = U/R is an affine scheme.

Proof of (2) – almost identical to the proof of (3). Let U be an affine scheme and
let U → X be a surjective étale morphism. Set R = U ×X U . The two projection
morphisms s, t : R → U are étale morphisms of schemes. By Properties of Spaces,
Definition 9.2 we see that dim(U) = 0 and similarly dim(R) = 0. On the other
hand, the morphism U → Spec(k) is locally of finite type as the composition of
the étale morphism U → X and X → Spec(k), see Morphisms of Spaces, Lemmas
23.2 and 39.9. Similarly, R → Spec(k) is locally of finite type. Hence by Varieties,
Lemma 20.2 we see that U and R are disjoint unions of spectra of local Artinian
k-algebras finite over k. The same thing is therefore true of U ×Spec(k) U . As

R = U ×X U −→ U ×Spec(k) U

is a monomorphism, we see that R is a finite(!) union of spectra of finite k-algebras.
It follows that R is affine, see Schemes, Lemma 6.8. Applying Varieties, Lemma
20.2 once more we see that R is finite over k. Hence s, t are finite, see Morphisms,
Lemma 44.14. Thus Groupoids, Proposition 23.9 shows that X = U/R is an affine
scheme.

Cohomological proof of (1). By Cohomology of Spaces, Lemma 10.1 we have van-
ishing of higher cohomology groups for all quasi-coherent sheaves F on X. Hence
X is affine (in particular a scheme) by Cohomology of Spaces, Proposition 16.7.

Geometric proof of (1). Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and étale morphisms fp : Vp → Up as in Decent Spaces, Lemma 8.6 (we will
use all their properties below). Then dim(Vp) = 0 by our definition of dimen-
sion of algebraic spaces. Thus Properties, Lemma 10.6 applies to each Vp. Then
f−1

p (Up+1) ⊂ Vp is quasi-compact open and hence is affine as well as closed. It
follows that |Tp| ⊂ |Up| (see locus citatus) is open as well as closed. Hence X is a
disjoint union of open and closed subspaces whose reduced structures are schemes.
It follows that X is a scheme (Limits of Spaces, Lemma 15.3). Then the proof is
finished by the case of schemes that we already referenced above. □

The following lemma tells us that a quasi-separated algebraic space is a scheme
away from codimension 1.
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Lemma 9.2.0ADC Let S be a scheme. Let X be a quasi-separated algebraic space over
S. Let x ∈ |X|. The following are equivalent

(1) x is a point of codimension 0 on X,
(2) the local ring of X at x has dimension 0, and
(3) x is a generic point of an irreducible component of |X|.

If true, then there exists an open subspace of X containing x which is a scheme.

Proof. The equivalence of (1), (2), and (3) follows from Decent Spaces, Lemma
20.1 and the fact that a quasi-separated algebraic space is decent (Decent Spaces,
Section 6). However in the next paragraph we will give a more elementary proof of
the equivalence.

Note that (1) and (2) are equivalent by definition (Properties of Spaces, Definition
10.2). To prove the equivalence of (1) and (3) we may assume X is quasi-compact.
Choose

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and fi : Vi → Ui as in Decent Spaces, Lemma 8.6. Say x ∈ Ui, x ̸∈ Ui+1. Then
x = fi(y) for a unique y ∈ Vi. If (1) holds, then y is a generic point of an irreducible
component of Vi (Properties of Spaces, Lemma 11.1). Since f−1

i (Ui+1) is a quasi-
compact open of Vi not containing y, there is an open neighbourhood W ⊂ Vi of y
disjoint from f−1

i (Vi) (see Properties, Lemma 2.2 or more simply Algebra, Lemma
26.4). Then fi|W : W → X is an isomorphism onto its image and hence x = fi(y)
is a generic point of |X|. Conversely, assume (3) holds. Then fi maps {y} onto the
irreducible component {x} of |Ui|. Since |fi| is bijective over {x}, it follows that
{y} is an irreducible component of Ui. Thus x is a point of codimension 0.

The final statement of the lemma is Properties of Spaces, Proposition 13.3. □

The following lemma says that a separated locally Noetherian algebraic space is a
scheme in codimension 1, i.e., away from codimension 2.

Lemma 9.3.0ADD Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
If X is separated, locally Noetherian, and the dimension of the local ring of X at
x is ≤ 1 (Properties of Spaces, Definition 10.2), then there exists an open subspace
of X containing x which is a scheme.

Proof. (Please see the remark below for a different approach avoiding the material
on finite groupoids.) We can replace X by an quasi-compact neighbourhood of
x, hence we may assume X is quasi-compact, separated, and Noetherian. There
exists a scheme U and a finite surjective morphism U → X, see Limits of Spaces,
Proposition 16.1. Let R = U ×X U . Then j : R → U ×S U is an equivalence
relation and we obtain a groupoid scheme (U, R, s, t, c) over S with s, t finite and
U Noetherian and separated. Let {u1, . . . , un} ⊂ U be the set of points mapping
to x. Then dim(OU,ui) ≤ 1 by Decent Spaces, Lemma 12.6.

By More on Groupoids, Lemma 14.10 there exists an R-invariant affine open W ⊂ U
containing the orbit {u1, . . . , un}. Since U → X is finite surjective the continuous
map |U | → |X| is closed surjective, hence submersive by Topology, Lemma 6.5.
Thus f(W ) is open and there is an open subspace X ′ ⊂ X with f : W → X ′ a
surjective finite morphism. Then X ′ is an affine scheme by Cohomology of Spaces,
Lemma 17.3 and the proof is finished. □

https://stacks.math.columbia.edu/tag/0ADC
https://stacks.math.columbia.edu/tag/0ADD
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Remark 9.4.0ADE Here is a sketch of a proof of Lemma 9.3 which avoids using More
on Groupoids, Lemma 14.10.
Step 1. We may assume X is a reduced Noetherian separated algebraic space (for
example by Cohomology of Spaces, Lemma 17.3 or by Limits of Spaces, Lemma
15.3) and we may choose a finite surjective morphism Y → X where Y is a Noe-
therian scheme (by Limits of Spaces, Proposition 16.1).
Step 2. After replacing X by an open neighbourhood of x, there exists a birational
finite morphism X ′ → X and a closed subscheme Y ′ ⊂ X ′ ×X Y such that Y ′ → X ′

is surjective finite locally free. Namely, because X is reduced there is a dense open
subspace U ⊂ X over which Y is flat (Morphisms of Spaces, Proposition 32.1). Then
we can choose a U -admissible blowup b : X̃ → X such that the strict transform Ỹ
of Y is flat over X̃, see More on Morphisms of Spaces, Lemma 39.1. (An alternative
is to use Hilbert schemes if one wants to avoid using the result on blowups). Then
we let X ′ ⊂ X̃ be the scheme theoretic closure of b−1(U) and Y ′ = X ′ ×X̃ Ỹ . Since
x is a codimension 1 point, we see that X ′ → X is finite over a neighbourhood of
x (Lemma 3.2).
Step 3. After shrinking X to a smaller neighbourhood of x we get that X ′ is a
scheme. This holds because Y ′ is a scheme and Y ′ → X ′ being finite locally free
and because every finite set of codimension 1 points of Y ′ is contained in an affine
open. Use Properties of Spaces, Proposition 14.1 and Varieties, Proposition 42.7.
Step 4. There exists an affine open W ′ ⊂ X ′ containing all points lying over x
which is the inverse image of an open subspace of X. To prove this let Z ⊂ X
be the closure of the set of points where X ′ → X is not an isomorphism. We
may assume x ∈ Z otherwise we are already done. Then x is a generic point
of an irreducible component of Z and after shrinking X we may assume Z is an
affine scheme (Lemma 9.2). Then the inverse image Z ′ ⊂ X ′ is an affine scheme
as well. Say x1, . . . , xn ∈ Z ′ are the points mapping to x. Then we can find an
affine open W ′ in X ′ whose intersection with Z ′ is the inverse image of a principal
open of Z containing x. Namely, we first pick an affine open W ′ ⊂ X ′ containing
x1, . . . , xn using Varieties, Proposition 42.7. Then we pick a principal open D(f) ⊂
Z containing x whose inverse image D(f |Z′) is contained in W ′ ∩ Z ′. Then we
pick f ′ ∈ Γ(W ′, OW ′) restricting to f |Z′ and we replace W ′ by D(f ′) ⊂ W ′. Since
X ′ → X is an isomorphism away from Z ′ → Z the choice of W ′ guarantees that
the image W ⊂ X of W ′ is open with inverse image W ′ in X ′.
Step 5. Then W ′ → W is a finite surjective morphism and W is a scheme by
Cohomology of Spaces, Lemma 17.3 and the proof is complete.

10. Schematic locus and field extension

0B82 It can happen that a nonrepresentable algebraic space over a field k becomes rep-
resentable (i.e., a scheme) after base change to an extension of k. See Spaces,
Example 14.2. In this section we address this issue.
Lemma 10.1.0B83 Let k be a field. Let X be an algebraic space over k. If there exists
a purely inseparable field extension k′/k such that Xk′ is a scheme, then X is a
scheme.
Proof. The morphism Xk′ → X is integral, surjective, and universally injective.
Hence this lemma follows from Limits of Spaces, Lemma 15.4. □

https://stacks.math.columbia.edu/tag/0ADE
https://stacks.math.columbia.edu/tag/0B83
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Lemma 10.2.0B84 Let k be a field with algebraic closure k. Let X be a quasi-separated
algebraic space over k.

(1) If there exists a field extension K/k such that XK is a scheme, then Xk is
a scheme.

(2) If X is quasi-compact and there exists a field extension K/k such that XK

is a scheme, then Xk′ is a scheme for some finite separable extension k′ of
k.

Proof. Since every algebraic space is the union of its quasi-compact open sub-
spaces, we see that the first part of the lemma follows from the second part (some
details omitted). Thus we assume X is quasi-compact and we assume given an
extension K/k with XK representable. Write K =

⋃
A as the colimit of finitely

generated k-subalgebras A. By Limits of Spaces, Lemma 5.11 we see that XA is a
scheme for some A. Choose a maximal ideal m ⊂ A. By the Hilbert Nullstellen-
satz (Algebra, Theorem 34.1) the residue field k′ = A/m is a finite extension of k.
Thus we see that Xk′ is a scheme. If k′ ⊃ k is not separable, let k′/k′′/k be the
subextension found in Fields, Lemma 14.6. Since k′/k′′ is purely inseparable, by
Lemma 10.1 the algebraic space Xk′′ is a scheme. Since k′′|k is separable the proof
is complete. □

Lemma 10.3.0B86 Let k′/k be a finite Galois extension with Galois group G. Let X
be an algebraic space over k. Then G acts freely on the algebraic space Xk′ and
X = Xk′/G in the sense of Properties of Spaces, Lemma 34.1.

Proof. Omitted. Hints: First show that Spec(k) = Spec(k′)/G. Then use com-
patibility of taking quotients with base change. □

Lemma 10.4.0B87 Let S be a scheme. Let X be an algebraic space over S and let
G be a finite group acting freely on X. Set Y = X/G as in Properties of Spaces,
Lemma 34.1. For y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. It follows from the construction of Y = X/G in Properties of Spaces,
Lemma 34.1 that the morphism X → Y is surjective and étale. Of course we have
X ×Y X = X × G hence the morphism X → Y is even finite étale. It is also
surjective. Thus the lemma follows from Decent Spaces, Lemma 10.3. □

Lemma 10.5.0B85 Let k be a field. Let X be a quasi-separated algebraic space over
k. If there exists a purely transcendental field extension K/k such that XK is a
scheme, then X is a scheme.

Proof. Since every algebraic space is the union of its quasi-compact open sub-
spaces, we may assume X is quasi-compact (some details omitted). Recall (Fields,
Definition 26.1) that the assumption on the extension K/k signifies that K is the
fraction field of a polynomial ring (in possibly infinitely many variables) over k.
Thus K =

⋃
A is the union of subalgebras each of which is a localization of a finite

polynomial algebra over k. By Limits of Spaces, Lemma 5.11 we see that XA is a
scheme for some A. Write

A = k[x1, . . . , xn][1/f ]
for some nonzero f ∈ k[x1, . . . , xn].

https://stacks.math.columbia.edu/tag/0B84
https://stacks.math.columbia.edu/tag/0B86
https://stacks.math.columbia.edu/tag/0B87
https://stacks.math.columbia.edu/tag/0B85
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If k is infinite then we can finish the proof as follows: choose a1, . . . , an ∈ k with
f(a1, . . . , an) ̸= 0. Then (a1, . . . , an) define an k-algebra map A → k mapping xi

to ai and 1/f to 1/f(a1, . . . , an). Thus the base change XA ×Spec(A) Spec(k) ∼= X
is a scheme as desired.

In this paragraph we finish the proof in case k is finite. In this case we write X =
lim Xi with Xi of finite presentation over k and with affine transition morphisms
(Limits of Spaces, Lemma 10.2). Using Limits of Spaces, Lemma 5.11 we see
that Xi,A is a scheme for some i. Thus we may assume X → Spec(k) is of finite
presentation. Let x ∈ |X| be a closed point. We may represent x by a closed
immersion Spec(κ) → X (Decent Spaces, Lemma 14.6). Then Spec(κ) → Spec(k)
is of finite type, hence κ is a finite extension of k (by the Hilbert Nullstellensatz, see
Algebra, Theorem 34.1; some details omitted). Say [κ : k] = d. Choose an integer
n ≫ 0 prime to d and let k′/k be the extension of degree n. Then k′/k is Galois
with G = Aut(k′/k) cyclic of order n. If n is large enough there will be k-algebra
homomorphism A → k′ by the same reason as above. Then Xk′ is a scheme and
X = Xk′/G (Lemma 10.3). On the other hand, since n and d are relatively prime
we see that

Spec(κ) ×X Xk′ = Spec(κ) ×Spec(k) Spec(k′) = Spec(κ ⊗k k′)

is the spectrum of a field. In other words, the fibre of Xk′ → X over x consists of
a single point. Thus by Lemma 10.4 we see that x is in the schematic locus of X
as desired. □

Remark 10.6.0BA7 Let k be a finite field. Let K/k be a geometrically irreducible field
extension. Then K is the limit of geometrically irreducible finite type k-algebras
A. Given A the estimates of Lang and Weil [LW54], show that for n ≫ 0 there
exists an k-algebra homomorphism A → k′ with k′/k of degree n. Analyzing the
argument given in the proof of Lemma 10.5 we see that if X is a quasi-separated
algebraic space over k and XK is a scheme, then X is a scheme. If we ever need
this result we will precisely formulate it and prove it here.

Lemma 10.7.0B88 Let k be a field with algebraic closure k. Let X be an algebraic
space over k such that

(1) X is decent and locally of finite type over k,
(2) Xk is a scheme, and
(3) any finite set of k-rational points of Xk is contained in an affine.

Then X is a scheme.

Proof. If K/k is an extension, then the base change XK is decent (Decent Spaces,
Lemma 6.5) and locally of finite type over K (Morphisms of Spaces, Lemma 23.3).
By Lemma 10.1 it suffices to prove that X becomes a scheme after base change to
the perfection of k, hence we may assume k is a perfect field (this step isn’t strictly
necessary, but makes the other arguments easier to think about). By covering X
by quasi-compact opens we see that it suffices to prove the lemma in case X is
quasi-compact (small detail omitted). In this case |X| is a sober topological space
(Decent Spaces, Proposition 12.4). Hence it suffices to show that every closed point
in |X| is contained in the schematic locus of X (use Properties of Spaces, Lemma
13.1 and Topology, Lemma 12.8).
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Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 14.6 we can find a closed
immersion Spec(l) → X representing x. Then Spec(l) → Spec(k) is of finite type
(Morphisms of Spaces, Lemma 23.2) and we conclude that l is a finite extension of
k by the Hilbert Nullstellensatz (Algebra, Theorem 34.1). It is separable because
k is perfect. Thus the scheme

Spec(l) ×X Xk = Spec(l) ×Spec(k) Spec(k) = Spec(l ⊗k k)

is the disjoint union of a finite number of k-rational points. By assumption (3) we
can find an affine open W ⊂ Xk containing these points.

By Lemma 10.2 we see that Xk′ is a scheme for some finite extension k′/k. After
enlarging k′ we may assume that there exists an affine open U ′ ⊂ Xk′ whose
base change to k recovers W (use that Xk is the limit of the schemes Xk′′ for
k′ ⊂ k′′ ⊂ k finite and use Limits, Lemmas 4.11 and 4.13). We may assume that
k′/k is a Galois extension (take the normal closure Fields, Lemma 16.3 and use
that k is perfect). Set G = Gal(k′/k). By construction the G-invariant closed
subscheme Spec(l) ×X Xk′ is contained in U ′. Thus x is in the schematic locus by
Lemmas 10.3 and 10.4. □

The following two lemmas should go somewhere else. Please compare the next
lemma to Decent Spaces, Lemma 18.8.

Lemma 10.8.06S0 Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is locally quasi-finite over k,
(2) X is locally of finite type over k and has dimension 0,
(3) X is a scheme and is locally quasi-finite over k,
(4) X is a scheme and is locally of finite type over k and has dimension 0, and
(5) X is a disjoint union of spectra of Artinian local k-algebras A over k with

dimk(A) < ∞.

Proof. Because we are over a field relative dimension of X/k is the same as the
dimension of X. Hence by Morphisms of Spaces, Lemma 34.6 we see that (1) and
(2) are equivalent. Hence it follows from Lemma 9.1 (and trivial implications) that
(1) – (4) are equivalent. Finally, Varieties, Lemma 20.2 shows that (1) – (4) are
equivalent with (5). □

Lemma 10.9.06S1 Let k be a field. Let f : X → Y be a monomorphism of algebraic
spaces over k. If Y is locally quasi-finite over k so is X.

Proof. Assume Y is locally quasi-finite over k. By Lemma 10.8 we see that Y =∐
Spec(Ai) where each Ai is an Artinian local ring finite over k. By Decent Spaces,

Lemma 19.1 we see that X is a scheme. Consider Xi = f−1(Spec(Ai)). Then Xi

has either one or zero points. If Xi has zero points there is nothing to prove. If
Xi has one point, then Xi = Spec(Bi) with Bi a zero dimensional local ring and
Ai → Bi is an epimorphism of rings. In particular Ai/mAi = Bi/mAiBi and we see
that Ai → Bi is surjective by Nakayama’s lemma, Algebra, Lemma 20.1 (because
mAi

is a nilpotent ideal!). Thus Bi is a finite local k-algebra, and we conclude by
Lemma 10.8 that X → Spec(k) is locally quasi-finite. □

https://stacks.math.columbia.edu/tag/06S0
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11. Geometrically reduced algebraic spaces

0DMP If X is a reduced algebraic space over a field, then it can happen that X becomes
nonreduced after extending the ground field. This does not happen for geometrically
reduced algebraic spaces.

Definition 11.1.0DMQ Let k be a field. Let X be an algebraic space over k.
(1) Let x ∈ |X| be a point. We say X is geometrically reduced at x if OX,x is

geometrically reduced over k.
(2) We say X is geometrically reduced over k if X is geometrically reduced at

every point of X.

Observe that if X is geometrically reduced at x, then the local ring of X at x is re-
duced (Properties of Spaces, Lemma 22.6). Similarly, if X is geometrically reduced
over k, then X is reduced (by Properties of Spaces, Lemma 21.4). The following
lemma in particular implies this definition does not clash with the corresponding
property for schemes over a field.

Lemma 11.2.0DMR Let k be a field. Let X be an algebraic space over k. Let x ∈ |X|.
The following are equivalent

(1) X is geometrically reduced at x,
(2) for some étale neighbourhood (U, u) → (X, x) where U is a scheme, U is

geometrically reduced at u,
(3) for any étale neighbourhood (U, u) → (X, x) where U is a scheme, U is

geometrically reduced at u.

Proof. Recall that the local ring OX,x is the strict henselization of OU,u, see Prop-
erties of Spaces, Lemma 22.1. By Varieties, Lemma 6.2 we find that U is geomet-
rically reduced at u if and only if OU,u is geometrically reduced over k. Thus we
have to show: if A is a local k-algebra, then A is geometrically reduced over k if
and only if Ash is geometrically reduced over k. We check this using the definition
of geometrically reduced algebras (Algebra, Definition 43.1). Let K/k be a field
extension. Since A → Ash is faithfully flat (More on Algebra, Lemma 45.1) we
see that A ⊗k K → Ash ⊗k K is faithfully flat (Algebra, Lemma 39.7). Hence if
Ash ⊗k K is reduced, so is A ⊗k K by Algebra, Lemma 164.2. Conversely, recall
that Ash is a colimit of étale A-algebra, see Algebra, Lemma 155.2. Thus Ash ⊗k K
is a filtered colimit of étale A ⊗k K-algebras. We conclude by Algebra, Lemma
163.7. □

Lemma 11.3.0DMS Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is geometrically reduced,
(2) for some surjective étale morphism U → X where U is a scheme, U is

geometrically reduced,
(3) for any étale morphism U → X where U is a scheme, U is geometrically

reduced.

Proof. Immediate from the definitions and Lemma 11.2. □

The notion isn’t interesting in characteristic zero.

Lemma 11.4.0E02 Let X be an algebraic space over a perfect field k (for example k
has characteristic zero).
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(1) For x ∈ |X|, if OX,x is reduced, then X is geometrically reduced at x.
(2) If X is reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Algebra, Lemma 43.6 and the definition
of a perfect field (Algebra, Definition 45.1). The second statement follows from the
first. □

Lemma 11.5.0E03 Let k be a field of characteristic p > 0. Let X be an algebraic space
over k. The following are equivalent

(1) X is geometrically reduced over k,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced, and
(6) Xk̄ is reduced.

Proof. Choose a surjective étale morphism U → X where U is a scheme. Via
Lemma 11.3 the lemma follows from the result for U over k. See Varieties, Lemma
6.4. □

Lemma 11.6.0E04 Let k be a field. Let X be an algebraic space over k. Let k′/k be
a field extension. Let x ∈ |X| be a point and let x′ ∈ |Xk′ | be a point lying over x.
The following are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. Choose an étale morphism U → X where U is a scheme and a point u ∈ U
mapping to x ∈ |X|. By Properties of Spaces, Lemma 4.3 we may choose a point
u′ ∈ Uk′ = U ×X Xk′ mapping to both u and x′. By Lemma 11.2 the lemma follows
from the lemma for U, u, u′ which is Varieties, Lemma 6.6. □

Lemma 11.7.0E05 Let k be a field. Let f : X → Y be a morphism of algebraic spaces
over k. Let x ∈ |X| be a point with image y ∈ |Y |.

(1) if f is étale at x, then X is geometrically reduced at x ⇔ Y is geometrically
reduced at y,

(2) if f is surjective étale, then X is geometrically reduced ⇔ Y is geometrically
reduced.

Proof. Part (1) is clear because OX,x = OY,y if f is étale at x. Part (2) follows
immediately from part (1). □

12. Geometrically connected algebraic spaces

0A0Y If X is a connected algebraic space over a field, then it can happen that X be-
comes disconnected after extending the ground field. This does not happen for
geometrically connected algebraic spaces.

Definition 12.1.0A0Z Let X be an algebraic space over the field k. We say X is
geometrically connected over k if the base change Xk′ is connected for every field
extension k′ of k.

https://stacks.math.columbia.edu/tag/0E03
https://stacks.math.columbia.edu/tag/0E04
https://stacks.math.columbia.edu/tag/0E05
https://stacks.math.columbia.edu/tag/0A0Z


ALGEBRAIC SPACES OVER FIELDS 22

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected algebraic spaces are nonempty.

Lemma 12.2.0A10 Let X be an algebraic space over the field k. Let k′/k be a field
extension. Then X is geometrically connected over k if and only if Xk′ is geomet-
rically connected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. □

Lemma 12.3.0A11 Let k be a field. Let X, Y be algebraic spaces over k. Assume X
is geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. Let y ∈ |Y | be represented by a morphism Spec(K) → Y where K is a field.
The fibre of |X ×k Y | → |Y | over y is the image of |XK | → |X ×k Y | by Properties
of Spaces, Lemma 4.3. Thus these fibres are connected by our assumption that X
is geometrically connected. By Morphisms of Spaces, Lemma 6.6 the map |p| is
open. Thus we may apply Topology, Lemma 7.6 to conclude. □

Lemma 12.4.0A12 Let k′/k be an extension of fields. Let X be an algebraic space over
k. Assume k separably algebraically closed. Then the morphism Xk′ → X induces
a bijection of connected components. In particular, X is geometrically connected
over k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
connected over k, see Algebra, Lemma 48.4. Hence Z = Spec(k′) is geometrically
connected over k by Varieties, Lemma 7.5. Since Xk′ = Z ×k X the result is a
special case of Lemma 12.3. □

Lemma 12.5.0A13 Let k be a field. Let X be an algebraic space over k. Let k be a
separable algebraic closure of k. Then X is geometrically connected if and only if
the base change Xk is connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k

′
/k such that k′ embeds into k

′ as an extension of k. By Lemma 12.4
we see that X

k
′ is connected. Since X

k
′ → Xk′ is surjective we conclude that Xk′

is connected as desired. □

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)
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of the opposite group on the scheme Spec(k). Let X be an algebraic space over k.
Since Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces
a canonical action
(12.5.1)0A14 Gal(k/k)opp × Xk −→ Xk.

Lemma 12.6.0A15 Let k be a field. Let X be an algebraic space over k. Let k be
a (possibly infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open.
Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂ Xk′

such that V = (V ′)k,
(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all

σ ∈ H.

Proof. Choose a scheme U and a surjective étale morphism U → X. Choose a
quasi-compact open W ⊂ Uk whose image in Xk is V . This is possible because
|Uk| → |Xk| is continuous and because |Uk| has a basis of quasi-compact opens. We
can apply Varieties, Lemma 7.9 to W ⊂ Uk to obtain the lemma. □

Lemma 12.7.0A16 Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let X be an algebraic space over k. Let T ⊂ |Xk| have the following properties

(1) T is a closed subset of |Xk|,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ |X| whose inverse image in |Xk′ | is T .

Proof. Let T ⊂ |X| be the image of T . Since |Xk| → |X| is surjective, the
statement means that T is closed and that its inverse image is T . Choose a scheme
U and a surjective étale morphism U → X. By the case of schemes (see Varieties,
Lemma 7.10) there exists a closed subset T ′ ⊂ |U | whose inverse image in |Uk| is
the inverse image of T . Since |Uk| → |Xk| is surjective, we see that T ′ is the inverse
image of T via |U | → |X|. By our construction of the topology on |X| this means
that T is closed. In the same manner one sees that T is the inverse image of T . □

Lemma 12.8.0A17 Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the algebraic space Xk′ is

connected.

Proof. This proof is identical to the proof of Varieties, Lemma 7.11 except that
we replace Varieties, Lemma 7.7 by Lemma 12.5, we replace Varieties, Lemma 7.9
by Lemma 12.6, and we replace Varieties, Lemma 7.10 by Lemma 12.7. We urge
the reader to read that proof in stead of this one.
It follows immediately from the definition that (1) implies (2). Assume that X is
not geometrically connected. Let k ⊂ k be a separable algebraic closure of k. By
Lemma 12.5 it follows that Xk is disconnected. Say Xk = U ⨿ V with U and V
open, closed, and nonempty algebraic subspaces of Xk.

Suppose that W ⊂ X is any quasi-compact open subspace. Then Wk ∩ U and
Wk ∩ V are open and closed subspaces of Wk. In particular Wk ∩ U and Wk ∩ V
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are quasi-compact, and by Lemma 12.6 both Wk ∩ U and Wk ∩ V are defined over
a finite subextension and invariant under an open subgroup of Gal(k/k). We will
use this without further mention in the following.
Pick W0 ⊂ X quasi-compact open subspace such that both W0,k ∩ U and W0,k ∩ V

are nonempty. Choose a finite subextension k/k′/k and a decomposition W0,k′ =
U ′

0 ⨿ V ′
0 into open and closed subsets such that W0,k ∩ U = (U ′

0)k and W0,k ∩ V =
(V ′

0)k. Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩ U) = W0,k ∩ U and
similarly for V .
Having chosen W0, k′ as above, for every quasi-compact open subspace W ⊂ X we
set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed subspaces. Also, by construction Wk̄ = UW ⨿ VW .
We claim that if W ⊂ W ′ ⊂ X are quasi-compact open subspaces, then Wk ∩UW ′ =
UW and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W ⊂X UW and V =

⋃
W ⊂X VW we obtain Xk = U ⨿ V is a disjoint union of

open and closed subsets. It is clear that V is nonempty as it is constructed by taking
unions (locally). On the other hand, U is nonempty since it contains W0 ∩ U by
construction. Finally, U, V ⊂ Xk̄ are closed and H-invariant by construction. Hence
by Lemma 12.7 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ .
Clearly Xk′ = U ′ ⨿ V ′ and we see that Xk′ is disconnected as desired. □

13. Geometrically irreducible algebraic spaces

0DMT Spaces, Example 14.9 shows that it is best not to think about irreducible algebraic
spaces in complete generality1. For decent (for example quasi-separated) algebraic
spaces this kind of disaster doesn’t happen. Thus we make the following definition
only under the assumption that our algebraic space is decent.
Definition 13.1.0DMU Let k be a field. Let X be a decent algebraic space over k. We
say X is geometrically irreducible if the topological space |Xk′ | is irreducible2 for
any field extension k′ of k.
Observe that Xk′ is a decent algebraic space (Decent Spaces, Lemma 6.5). Hence
the topological space |Xk′ | is sober. Decent Spaces, Proposition 12.4.

14. Geometrically integral algebraic spaces

0DMV Recall that integral algebraic spaces are by definition decent, see Section 4.
Definition 14.1.0DMW Let X be an algebraic space over the field k. We say X is
geometrically integral over k if the algebraic space Xk′ is integral (Definition 4.1)
for every field extension k′ of k.
In particular X is a decent algebraic space. We can relate this to being geometrically
reduced and geometrically irreducible as follows.

1To be sure, if we say “the algebraic space X is irreducible”, we probably mean to say “the
topological space |X| is irreducible”.

2An irreducible space is nonempty.
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Lemma 14.2.0DMX Let k be a field. Let X be a decent algebraic space over k. Then X
is geometrically integral over k if and only if X is both geometrically reduced and
geometrically irreducible over k.

Proof. This is an immediate consequence of the definitions because our notion of
integral (in the presence of decency) is equivalent to reduced and irreducible. □

Lemma 14.3.0DMY Let k be a field. Let X be a proper algebraic space over k.
(1) A = H0(X, OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,n Ai is a product of Artinian local k-algebras, one factor for

each connected component of |X|,
(3) if X is reduced, then A =

∏
i=1,...,n ki is a product of fields, each a finite

extension of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.

Proof. By Cohomology of Spaces, Lemma 20.3 we see that A = H0(X, OX) is a
finite dimensional k-algebra. This proves (1).
Then A is a product of local rings by Algebra, Lemma 53.2 and Algebra, Proposition
60.7. If X = Y ⨿ Z with Y and Z open subspaces of X, then we obtain an
idempotent e ∈ A by taking the section of OX which is 1 on Y and 0 on Z.
Conversely, if e ∈ A is an idempotent, then we get a corresponding decomposition
of |X|. Finally, as |X| is a Noetherian topological space (by Morphisms of Spaces,
Lemma 28.6 and Properties of Spaces, Lemma 24.2) its connected components are
open. Hence the connected components of |X| correspond 1-to-1 with primitive
idempotents of A. This proves (2).
If X is reduced, then A is reduced (Properties of Spaces, Lemma 21.4). Hence
the local rings Ai = ki are reduced and therefore fields (for example by Algebra,
Lemma 25.1). This proves (3).
If X is geometrically reduced, then same thing is true for A ⊗k k = H0(Xk, OX

k
)

(see Cohomology of Spaces, Lemma 11.2 for equality). This implies that ki ⊗k k
is a product of fields and hence ki/k is separable for example by Algebra, Lemmas
44.1 and 44.3. This proves (4).
If X is geometrically connected, then A ⊗k k = H0(Xk, OX

k
) is a zero dimensional

local ring by part (2) and hence its spectrum has one point, in particular it is
irreducible. Thus A is geometrically irreducible. This proves (5). Of course (5)
implies (6).
If X is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1 ⊗k k is a
product of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of
course (7) implies (8). □

Lemma 14.4.0DMZ Let k be a field. Let X be a proper integral algebraic space over k.
Let L be an invertible OX-module. If H0(X, L) and H0(X, L⊗−1) are both nonzero,
then L ∼= OX .
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Proof. Let s ∈ H0(X, L) and t ∈ H0(X, L⊗−1) be nonzero sections. Let x ∈ |X| be
a point in the support of s. Choose an affine étale neighbourhood (U, u) → (X, x)
such that L|U ∼= OU . Then s|U corresponds to a nonzero regular function on
the reduced (because X is reduced) scheme U and hence is nonvanishing in a
generic point of an irreducible component of U . By Decent Spaces, Lemma 20.1
we conclude that the generic point η of |X| is in the support of s. The same is
true for t. Then of course st must be nonzero because the local ring of X at η is a
field (by aforementioned lemma the local ring has dimension zero, as X is reduced
the local ring is reduced, and Algebra, Lemma 25.1). However, we have seen that
K = H0(X, OX) is a field in Lemma 14.3. Thus st is everywhere nonzero and we
see that s : OX → L is an isomorphism. □

15. Dimension

0EDA In this section we continue the discussion about dimension. Here is a list of previous
material:

(1) dimension is defined in Properties of Spaces, Section 9,
(2) dimension of local ring is defined in Properties of Spaces, Section 10,
(3) a couple of results in Properties of Spaces, Lemmas 22.4 and 22.5,
(4) relative dimension is defined in Morphisms of Spaces, Section 33,
(5) results on dimension of fibres in Morphisms of Spaces, Section 34,
(6) a weak form of the dimension formula Morphisms of Spaces, Section 35,
(7) a result on smoothness and dimension Morphisms of Spaces, Lemma 37.10,
(8) dimension is dim(|X|) for decent spaces Decent Spaces, Lemma 12.5,
(9) quasi-finite maps and dimension Decent Spaces, Lemmas 12.6 and 12.7.

In More on Morphisms of Spaces, Section 31 we will discuss jumping of dimension
in fibres of a finite type morphism.

Lemma 15.1.0EDB Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces. Then dim(X) ≤ dim(Y ). If f is surjective then dim(X) =
dim(Y ).

Proof. Choose V → Y surjective étale with V a scheme. Then U = X ×Y V is a
scheme and U → V is integral (and surjective if f is surjective). By Properties of
Spaces, Lemma 22.5 we have dim(X) = dim(U) and dim(Y ) = dim(V ). Thus the
result follows from the case of schemes which is Morphisms, Lemma 44.9. □

Lemma 15.2.0EDC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) Y is locally Noetherian,
(2) X and Y are integral algebraic spaces,
(3) f is dominant, and
(4) f is locally of finite type.

If x ∈ |X| and y ∈ |Y | are the generic points, then
dim(X) ≤ dim(Y ) + transcendence degree of x/y.

If f is proper, then equality holds.

Proof. Recall that |X| and |Y | are irreducible sober topological spaces, see dis-
cussion following Definition 4.1. Thus the fact that f is dominant means that |f |
maps x to y. Moreover, x ∈ |X| is the unique point at which the local ring of X has
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dimension 0, see Decent Spaces, Lemma 20.1. By Morphisms of Spaces, Lemma
35.1 we see that the dimension of the local ring of X at any point x′ ∈ |X| is at
most the dimension of the local ring of Y at y′ = f(x′) plus the transcendence
degree of x/y. Since the dimension of X, resp. dimension of Y is the supremum of
the dimensions of the local rings at x′, resp. y′ (Properties of Spaces, Lemma 10.3)
we conclude the inequality holds.
Assume f is proper. Let V ⊂ Y be a nonempty quasi-compact open subspace. If
we can prove the equality for the morphism f−1(V ) → V , then we get the equality
for X → Y . Thus we may assume that X and Y are quasi-compact. Observe that
X is quasi-separated as a locally Noetherian decent algebraic space, see Decent
Spaces, Lemma 14.1. Thus we may choose Y ′ → Y finite surjective where Y ′ is
a scheme, see Limits of Spaces, Proposition 16.1. After replacing Y ′ by a suitable
closed subscheme, we may assume Y ′ is integral, see for example the more general
Lemma 8.5. By the same lemma, we may choose a closed subspace X ′ ⊂ X ×Y Y ′

such that X ′ is integral and X ′ → X is finite surjective. Now X ′ is also locally
Noetherian (Morphisms of Spaces, Lemma 23.5) and we can use Limits of Spaces,
Proposition 16.1 once more to choose a finite surjective morphism X ′′ → X ′ with
X ′′ a scheme. As before we may assume that X ′′ is integral. Picture

X ′′

��

// X

f

��
Y ′ // Y

By Lemma 15.1 we have dim(X ′′) = dim(X) and dim(Y ′) = dim(Y ). Since X
and Y have open neighbourhoods of x, resp. y which are schemes, we readily see
that the generic points x′′ ∈ X ′′, resp. y′ ∈ Y ′ are the unique points mapping
to x, resp. y and that the residue field extensions κ(x′′)/κ(x) and κ(y′)/κ(y) are
finite. This implies that the transcendence degree of x′′/y′ is the same as the
transcendence degree of x/y. Thus the equality follows from the case of schemes
whicn is Morphisms, Lemma 52.4. □

16. Spaces smooth over fields

06M0 This section is the analogue of Varieties, Section 25.

Lemma 16.1.06M1 Let k be a field. Let X be an algebraic space smooth over k. Then
X is a regular algebraic space.

Proof. Choose a scheme U and a surjective étale morphism U → X. The mor-
phism U → Spec(k) is smooth as a composition of an étale (hence smooth) mor-
phism and a smooth morphism (see Morphisms of Spaces, Lemmas 39.6 and 37.2).
Hence U is regular by Varieties, Lemma 25.3. By Properties of Spaces, Definition
7.2 this means that X is regular. □

Lemma 16.2.07W4 Let k be a field. Let X be an algebraic space smooth over Spec(k).
The set of x ∈ |X| which are image of morphisms Spec(k′) → X with k′ ⊃ k finite
separable is dense in |X|.

Proof. Choose a scheme U and a surjective étale morphism U → X. The mor-
phism U → Spec(k) is smooth as a composition of an étale (hence smooth) mor-
phism and a smooth morphism (see Morphisms of Spaces, Lemmas 39.6 and 37.2).

https://stacks.math.columbia.edu/tag/06M1
https://stacks.math.columbia.edu/tag/07W4


ALGEBRAIC SPACES OVER FIELDS 28

Hence we can apply Varieties, Lemma 25.6 to see that the closed points of U whose
residue fields are finite separable over k are dense. This implies the lemma by our
definition of the topology on |X|. □

17. Euler characteristics

0DN0 In this section we prove some elementary properties of Euler characteristics of
coherent sheaves on algebraic spaces proper over fields.

Definition 17.1.0DN1 Let k be a field. Let X be a proper algebraic over k. Let F be a
coherent OX -module. In this situation the Euler characteristic of F is the integer

χ(X, F) =
∑

i
(−1)i dimk Hi(X, F).

For justification of the formula see below.

In the situation of the definition only a finite number of the vector spaces Hi(X, F)
are nonzero (Cohomology of Spaces, Lemma 7.3) and each of these spaces is finite
dimensional (Cohomology of Spaces, Lemma 20.3). Thus χ(X, F) ∈ Z is well
defined. Observe that this definition depends on the field k and not just on the
pair (X, F).

Lemma 17.2.0DN2 Let k be a field. Let X be a proper algebraic space over k. Let
0 → F1 → F2 → F3 → 0 be a short exact sequence of coherent modules on X.
Then

χ(X, F2) = χ(X, F1) + χ(X, F3)

Proof. Consider the long exact sequence of cohomology
0 → H0(X, F1) → H0(X, F2) → H0(X, F3) → H1(X, F1) → . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dim H0(X, F1) − dim H0(X, F2) + dim H0(X, F3) − dim H1(X, F1) + . . .

This immediately implies the lemma. □

Lemma 17.3.0EDD Let k be a field. Let f : Y → X be a morphism of algebraic spaces
proper over k. Let G be a coherent OY -module. Then

χ(Y, G) =
∑

(−1)iχ(X, Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Spaces, Lemmas 20.2 and 8.1. By
Cohomology on Sites, Lemma 14.5 there is a spectral sequence with

Ep,q
2 = Hp(X, Rqf∗G)

converging to Hp+q(Y, G). By finiteness of cohomology on X we see that only a
finite number of Ep,q

2 are nonzero and each Ep,q
2 is a finite dimensional vector space.

It follows that the same is true for Ep,q
r for r ≥ 2 and that∑

(−1)p+q dimk Ep,q
r

is independent of r. Since for r large enough we have Ep,q
r = Ep,q

∞ and since
convergence means there is a filtration on Hn(Y, G) whose graded pieces are Ep,q

∞
with p + 1 = n (this is the meaning of convergence of the spectral sequence), we
conclude. □
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18. Numerical intersections

0DN3 In this section we play around with the Euler characteristic of coherent sheaves
on proper algebraic spaces to obtain numerical intersection numbers for invertible
modules. Our main tool will be the following lemma.

Lemma 18.1.0DN4 Let k be a field. Let X be a proper algebraic space over k. Let F
be a coherent OX-module. Let L1, . . . , Lr be invertible OX-modules. The map

(n1, . . . , nr) 7−→ χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the
scheme theoretic support of F .

Proof. Let Z ⊂ X be the scheme theoretic support of F . Then F = i∗G for some
coherent OZ-module G (Cohomology of Spaces, Lemma 12.7) and we have

χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ) = χ(Z, G ⊗ i∗L⊗n1
1 ⊗ . . . ⊗ i∗L⊗nr

r )
by the projection formula (Cohomology on Sites, Lemma 50.1) and Cohomology of
Spaces, Lemma 8.3. Since |Z| = Supp(F) we see that it suffices to show

PF (n1, . . . , nr) : (n1, . . . , nr) 7−→ χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most dim(X). Let us say
property P holds for the coherent OX -module F if the above is true.
We will prove this statement by devissage, more precisely we will check conditions
(1), (2), and (3) of Cohomology of Spaces, Lemma 14.6 are satisfied.
Verification of condition (1). Let

0 → F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X. By Lemma 17.2 we have

PF2(n1, . . . , nr) = PF1(n1, . . . , nr) + PF3(n1, . . . , nr)
Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then so does
the third.
Condition (2) follows because PF⊕m(n1, . . . , nr) = mPF (n1, . . . , nr).
Proof of (3). Let i : Z → X be a reduced closed subspace with |Z| irreducible. We
have to find a coherent module G on X whose support is Z such that P holds for
G. We will give two constructions: one using Chow’s lemma and one using a finite
cover by a scheme.
Proof existence G using a finite cover by a scheme. Choose π : Z ′ → Z finite
surjective where Z ′ is a scheme, see Limits of Spaces, Proposition 16.1. Set G =
i∗π∗OZ′ = (i ◦ π)∗OZ′ . Note that Z ′ is proper over k and that the support of G is
Y (details omitted). We have

R(π◦i)∗(OZ′) = G and R(π◦i)∗(π∗i∗(L⊗n1
1 ⊗. . .⊗L⊗nr

r )) = G⊗L⊗n1
1 ⊗. . .⊗L⊗nr

r

The first equality holds because i ◦ π is affine (Cohomology of Spaces, Lemma 8.2)
and the second equality follows from the first and the projection formula (Coho-
mology on Sites, Lemma 50.1). Using Leray (Cohomology on Sites, Lemma 14.6)
we obtain

PG(n1, . . . , nr) = χ(Z ′, π∗i∗(L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ))
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By the case of schemes (Varieties, Lemma 45.1) this is a numerical polynomial in
n1, . . . , nr of degree at most dim(Z ′). We conclude because dim(Z ′) ≤ dim(Z) ≤
dim(X). The first inequality follows from Decent Spaces, Lemma 12.7.
Proof existence G using Chow’s lemma. We apply Cohomology of Spaces, Lemma
18.1 to the morphism Z → Spec(k). Thus we get a surjective proper morphism
f : Y → Z over Spec(k) where Y is a closed subscheme of Pm

k for some m. After
replacing Y by a closed subscheme we may assume that Y is integral and f : Y → Z
is an alteration, see Lemma 8.5. Denote OY (n) the pullback of OPm

k
(n). Pick n > 0

such that Rpf∗OY (n) = 0 for p > 0, see Cohomology of Spaces, Lemma 20.1. We
claim that G = i∗f∗OY (n) satisfies P. Namely, by the case of schemes (Varieties,
Lemma 45.1) we know that

(n1, . . . , nr) 7−→ χ(Y, OY (n) ⊗ f∗i∗(L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ))
is a numerical polynomial in n1, . . . , nr of total degree at most dim(Y ). On the
other hand, by the projection formula (Cohomology on Sites, Lemma 50.1)

i∗Rf∗
(
OY (n) ⊗ f∗i∗(L⊗n1

1 ⊗ . . . ⊗ L⊗nr
r )

)
= i∗Rf∗OY (n) ⊗ L⊗n1

1 ⊗ . . . ⊗ L⊗nr
r

= G ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r

the last equality by our choice of n. By Leray (Cohomology on Sites, Lemma 14.6)
we get

χ(Y, OY (n) ⊗ f∗i∗(L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r )) = PG(n1, . . . , nr)
and we conclude because dim(Y ) ≤ dim(Z) ≤ dim(X). The first inequality holds
by Morphisms of Spaces, Lemma 35.2 and the fact that Y → Z is an alteration
(and hence the induced extension of residue fields in generic points is finite). □

The following lemma roughly shows that the leading coefficient only depends on
the length of the coherent module in the generic points of its support.

Lemma 18.2.0EDE Let k be a field. Let X be a proper algebraic space over k. Let
F be a coherent OX-module. Let L1, . . . , Lr be invertible OX-modules. Let d =
dim(Supp(F)). Let Zi ⊂ X be the irreducible components of Supp(F) of dimension
d. Let xi be a geometric generic point of Zi and set mi = lengthOX,xi

(Fxi
). Then

χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ) −
∑

i
mi χ(Zi, L⊗n1

1 ⊗ . . . ⊗ L⊗nr
r |Zi

)

is a numerical polynomial in n1, . . . , nr of total degree < d.

Proof. We first prove a slightly weaker statement. Namely, say dim(X) = N and
let Xi ⊂ X be the irreducible components of dimension N . Let xi be a geometric
generic point of Xi. The étale local ring OX,xi

is Noetherian of dimension 0, hence
for every coherent OX -module F the length

mi(F) = lengthOX,xi
(Fxi

)

is an integer ≥ 0. We claim that

E(F) = χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ) −
∑

i
mi(F) χ(Zi, L⊗n1

1 ⊗ . . . ⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < N . We will prove this using
Cohomology of Spaces, Lemma 14.6. For any short exact sequence 0 → F ′ → F →
F ′′ → 0 we have E(F) = E(F ′) + E(F ′′). This follows from additivity of Euler
characteristics (Lemma 17.2) and additivity of lengths (Algebra, Lemma 52.3).
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This immediately implies properties (1) and (2) of Cohomology of Spaces, Lemma
14.6. Finally, property (3) holds because for G = OZ for any Z ⊂ X irreducible
reduced closed subspace. Namely, if Z = Zi0 for some i0, then mi(G) = δi0i and
we conclude E(G) = 0. If Z ̸= Zi for any i, then mi(G) = 0 for all i, dim(Z) < N
and we get the result from Lemma 18.1.

Proof of the statement as in the lemma. Let Z ⊂ X be the scheme theoretic
support of F . Then F = i∗G for some coherent OZ-module G (Cohomology of
Spaces, Lemma 12.7) and we have

χ(X, F ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ) = χ(Z, G ⊗ i∗L⊗n1
1 ⊗ . . . ⊗ i∗L⊗nr

r )

by the projection formula (Cohomology on Sites, Lemma 50.1) and Cohomology
of Spaces, Lemma 8.3. Since |Z| = Supp(F) we see that Zi ⊂ Z for all i and we
see that these are the irreducible components of Z of dimension d. We may and
do think of xi as a geometric point of Z. The map i♯ : OX → i∗OZ determines a
surjection

OX,xi
→ OZ,xi

Via this map we have an isomorphism of modules Gxi
= Fxi

as F = i∗G. This
implies that

mi = lengthOX,xi
(Fxi

) = lengthOZ,xi
(Gxi

)

Thus we see that the expression in the lemma is equal to

χ(Z, G ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nr

r ) −
∑

i
mi χ(Zi, L⊗n1

1 ⊗ . . . ⊗ L⊗nr
r |Zi)

and the result follows from the discussion in the first paragraph (applied with Z in
stead of X). □

Definition 18.3.0EDF Let k be a field. Let X be a proper algebraic space over k.
Let i : Z → X be a closed subspace of dimension d. Let L1, . . . , Ld be invertible
OX -modules. We define the intersection number (L1 · · · Ld · Z) as the coefficient of
n1 . . . nd in the numerical polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d ) = χ(Z, L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d |Z)

In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Co-
homology, Section 54) and Cohomology of Schemes, Lemma 2.4. We prove a few
lemmas for these intersection numbers.

Lemma 18.4.0EDG In the situation of Definition 18.3 the intersection number (L1 · · · Ld·
Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .

(
nd

kd

)
with k1 + . . . + kd ≤ e.

Apply this with e = d. Left as an exercise. □

Lemma 18.5.0EDH In the situation of Definition 18.3 the intersection number (L1 · · · Ld·
Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)
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Proof. This is true because by Lemma 18.1 the function
(n1, . . . , ni−1, n′

i, n′′
i , ni+1, . . . , nd) 7→ χ(Z, L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd

d |Z)
is a numerical polynomial of total degree at most d in d + 1 variables. □

Lemma 18.6.0EDI In the situation of Definition 18.3 let Zi ⊂ Z be the irreducible
components of dimension d. Let mi = lengthOX,xi

(OZ,xi
) where xi is a geometric

generic point of Zi. Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 18.2 and the definitions. □

Lemma 18.7.0EDJ Let k be a field. Let f : Y → X be a morphism of algebraic spaces
proper over k. Let Z ⊂ Y be an integral closed subspace of dimension d and let
L1, . . . , Ld be invertible OX-modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))
where deg(Z → f(Z)) is as in Definition 5.2 or 0 if dim(f(Z)) < d.

Proof. In the statement f(Z) ⊂ X is the scheme theoretic image of f and it is also
the reduced induced algebraic space structure on the closed subset f(|Z|) ⊂ X, see
Morphisms of Spaces, Lemma 16.4. Then Z and f(Z) are reduced, proper (hence
decent) algebraic spaces over k, whence integral (Definition 4.1). The left hand side
is computed using the coefficient of n1 . . . nd in the function

χ(Y, OZ ⊗ f∗L⊗n1
1 ⊗ . . . ⊗ f∗L⊗nd

d ) =
∑

(−1)iχ(X, Rif∗OZ ⊗ L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d )

The equality follows from Lemma 17.3 and the projection formula (Cohomology,
Lemma 54.2). If f(Z) has dimension < d, then the right hand side is a polynomial
of total degree < d by Lemma 18.1 and the result is true. Assume dim(f(Z)) = d.
Then by dimension theory (Lemma 15.2) we find that the equivalent conditions (1)
– (5) of Lemma 5.1 hold. Thus deg(Z → f(Z)) is well defined. By the already
used Lemma 5.1 we find f : Z → f(Z) is finite over a nonempty open V of f(Z);
after possibly shrinking V we may assume V is a scheme. Let ξ ∈ V be the generic
point. Thus deg(f : Z → f(Z)) the length of the stalk of f∗OZ at ξ over OX,ξ and
the stalk of Rif∗OX at ξ is zero for i > 0 (for example by Cohomology of Spaces,
Lemma 4.1). Thus the terms χ(X, Rif∗OZ ⊗ L⊗n1

1 ⊗ . . . ⊗ L⊗nd

d ) with i > 0 have
total degree < d and
χ(X, f∗OZ⊗L⊗n1

1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z), L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))
modulo a polynomial of total degree < d by Lemma 18.2. The desired result
follows. □

Lemma 18.8.0EDK Let k be a field. Let X be a proper algebraic space over k. Let Z ⊂
X be a closed subspace of dimension d. Let L1, . . . , Ld be invertible OX-modules.
Assume there exists an effective Cartier divisor D ⊂ Z such that L1|Z ∼= OZ(D).
Then

(L1 · · · Ld · Z) = (L2 · · · Ld · D)

Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z
and L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short
exact sequence

0 → L⊗−1
1 → OX → OD → 0
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Set P (n1, . . . , nd) = χ(X, L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d ) and Q(n1, . . . , nd) = χ(D, L⊗n1
1 ⊗

. . . ⊗ L⊗nd

d |D). We conclude from additivity (Lemma 17.2) that
P (n1, . . . , nd) − P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)

Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd

in P is equal to the coefficient of n2 . . . nd in Q. □
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