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1. Introduction

08EZ In this chapter we discuss derived categories of modules on algebraic spaces. There
do not seem to be good introductory references addressing this topic; it is covered
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in the literature by referring to papers dealing with derived categories of modules
on algebraic stacks, for example see [Ols07].

2. Conventions

08F0 If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.
If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X, OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

3. Generalities

08GD In this section we put some general results on cohomology of unbounded complexes
of modules on algebraic spaces.

Lemma 3.1.08GE Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Given an étale morphism V → Y , set U = V ×Y X and denote g : U → V
the projection morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Cohomology on Sites, Lemma 20.1. Hence the
result follows from Properties of Spaces, Lemma 26.2. □

Definition 3.2.08GF Let S be a scheme. Let X be an algebraic space over S. Let E
be an object of D(OX). Let T ⊂ |X| be a closed subset. We say E is supported on
T if the cohomology sheaves Hi(E) are supported on T .

4. Derived category of quasi-coherent modules on the small étale site

071P Let X be a scheme. In this section we show that DQCoh(OX) can be defined in
terms of the small étale site Xétale of X. Denote Oétale the structure sheaf on
Xétale. Consider the morphism of ringed sites
(4.0.1)08H7 ϵ : (Xétale, Oétale) −→ (XZar, OX).
denoted idsmall,étale,Zar in Descent, Lemma 8.5.

Lemma 4.1.08H8 The morphism ϵ of (4.0.1) is a flat morphism of ringed sites. In
particular the functor ϵ∗ : Mod(OX) → Mod(Oétale) is exact. Moreover, if ϵ∗F = 0,
then F = 0.

Proof. The flatness of the morphism ϵ is Descent, Lemma 10.1. Here is another
proof. We have to show that Oétale is a flat ϵ−1OX -module. To do this it suffices
to check OX,x → Oétale,x is flat for any geometric point x of X, see Modules on
Sites, Lemma 39.3, Sites, Lemma 34.2, and Étale Cohomology, Remarks 29.11. By
Étale Cohomology, Lemma 33.1 we see that Oétale,x is the strict henselization of
OX,x. Thus OX,x → Oétale,x is faithfully flat by More on Algebra, Lemma 45.1.
The exactness of ϵ∗ follows from the flatness of ϵ by Modules on Sites, Lemma 31.2.
Let F be an OX -module. If ϵ∗F = 0, then with notation as above

0 = ϵ∗Fx = Fx ⊗OX,x
Oétale,x

https://stacks.math.columbia.edu/tag/08GE
https://stacks.math.columbia.edu/tag/08GF
https://stacks.math.columbia.edu/tag/08H8
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(Modules on Sites, Lemma 36.4) for all geometric points x. By faithful flatness of
OX,x → Oétale,x we conclude Fx = 0 for all x ∈ X. □

Let X be a scheme. Notation as in (4.0.1). Recall that ϵ∗ : QCoh(OX) →
QCoh(Oétale) is an equivalence by Descent, Proposition 8.9 and Remark 8.6. More-
over, QCoh(Oétale) forms a Serre subcategory of Mod(Oétale) by Descent, Lemma
10.2. Hence we can let DQCoh(Oétale) be the triangulated subcategory of D(Oétale)
whose objects are the complexes with quasi-coherent cohomology sheaves, see De-
rived Categories, Section 17. The functor ϵ∗ is exact (Lemma 4.1) hence induces
ϵ∗ : D(OX) → D(Oétale) and since pullbacks of quasi-coherent modules are quasi-
coherent also ϵ∗ : DQCoh(OX) → DQCoh(Oétale).

Lemma 4.2.071Q Let X be a scheme. The functor ϵ∗ : DQCoh(OX) → DQCoh(Oétale)
defined above is an equivalence.

Proof. We will prove this by showing the functor Rϵ∗ : D(Oétale) → D(OX)
induces a quasi-inverse. We will use freely that ϵ∗ is given by restriction to XZar ⊂
Xétale and the description of ϵ∗ = id∗

small,étale,Zar in Descent, Lemma 8.5.

For a quasi-coherent OX -module F the adjunction map F → ϵ∗ϵ∗F is an isomor-
phism by the fact that Fa (Descent, Definition 8.2) is a sheaf as proved in Descent,
Lemma 8.1. Conversely, every quasi-coherent Oétale-module H is of the form ϵ∗F for
some quasi-coherent OX -module F , see Descent, Proposition 8.9. Then F = ϵ∗H
by what we just said and we conclude that the adjunction map ϵ∗ϵ∗H → H is an
isomorphism for all quasi-coherent Oétale-modules H.

Let E be an object of DQCoh(Oétale) and denote Hq = Hq(E) its qth cohomology
sheaf. Let B be the set of affine objects of Xétale. Then Hp(U, Hq) = 0 for all
p > 0, all q ∈ Z, and all U ∈ B, see Descent, Proposition 9.3 and Cohomology of
Schemes, Lemma 2.2. By Cohomology on Sites, Lemma 23.11 this means that

Hq(U, E) = H0(U, Hq)

for all U ∈ B. In particular, we find that this holds for affine opens U ⊂ X. It
follows that the qth cohomology of Rϵ∗E over U is the value of the sheaf ϵ∗Hq over
U . Applying sheafification we obtain

Hq(Rϵ∗E) = ϵ∗Hq

which in particular shows that Rϵ∗ induces a functor DQCoh(Oétale) → DQCoh(OX).
Since ϵ∗ is exact we then obtain Hq(ϵ∗Rϵ∗E) = ϵ∗ϵ∗Hq = Hq (by discussion above).
Thus the adjunction map ϵ∗Rϵ∗E → E is an isomorphism.

Conversely, for F ∈ DQCoh(OX) the adjunction map F → Rϵ∗ϵ∗F is an isomor-
phism for the same reason, i.e., because the cohomology sheaves of Rϵ∗ϵ∗F are
isomorphic to ϵ∗Hm(ϵ∗F ) = ϵ∗ϵ∗Hm(F ) = Hm(F ). □

5. Derived category of quasi-coherent modules

071W Let S be a scheme. Lemma 4.2 shows that the category DQCoh(OS) can be defined
in terms of complexes of OS-modules on the scheme S or by complexes of O-modules
on the small étale site of S. Hence the following definition is compatible with the
definition in the case of schemes.

https://stacks.math.columbia.edu/tag/071Q
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Definition 5.1.071X Let S be a scheme. Let X be an algebraic space over S. The
derived category of OX-modules with quasi-coherent cohomology sheaves is denoted
DQCoh(OX).

This makes sense by Properties of Spaces, Lemma 29.7 and Derived Categories,
Section 17. Thus we obtain a canonical functor

(5.1.1)08F1 D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (17.1.1).

Observe that a flat morphism f : Y → X of algebraic spaces induces an exact
functor f∗ : Mod(OX) → Mod(OY ), see Morphisms of Spaces, Lemma 30.9 and
Modules on Sites, Lemma 31.2. In particular Lf∗ : D(OX) → D(OY ) is computed
on any representative complex (Derived Categories, Lemma 16.9). We will write
Lf∗ = f∗ when f is flat and we have Hi(f∗E) = f∗Hi(E) for E in D(OX) in this
case. We will use this often when f is étale. Of course in the étale case the pullback
functor is just the restriction to Yétale, see Properties of Spaces, Equation (26.1.1).

Lemma 5.2.08F2 Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of D(OX). The following are equivalent

(1) E is in DQCoh(OX),
(2) for every étale morphism φ : U → X where U is an affine scheme φ∗E is

an object of DQCoh(OU ),
(3) for every étale morphism φ : U → X where U is a scheme φ∗E is an object

of DQCoh(OU ),
(4) there exists a surjective étale morphism φ : U → X where U is a scheme

such that φ∗E is an object of DQCoh(OU ), and
(5) there exists a surjective étale morphism of algebraic spaces f : Y → X such

that Lf∗E is an object of DQCoh(OY ).

Proof. This follows immediately from the discussion preceding the lemma and
Properties of Spaces, Lemma 29.6. □

Lemma 5.3.08F3 Let S be a scheme. Let X be an algebraic space over S. Then
DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Properties of Spaces, Lemma 29.7. □

We will need some information on derived limits. We warn the reader that in the
lemma below the derived limit will typically not be an object of DQCoh.

Lemma 5.4.0D3E Let S be a scheme. Let X be an algebraic space over S. Let (Kn)
be an inverse system of DQCoh(OX) with derived limit K = R lim Kn in D(OX).
Assume Hq(Kn+1) → Hq(Kn) is surjective for all q ∈ Z and n ≥ 1. Then

(1) Hq(K) = lim Hq(Kn),
(2) R lim Hq(Kn) = lim Hq(Kn), and
(3) for every affine open U ⊂ X we have Hp(U, lim Hq(Kn)) = 0 for p > 0.

https://stacks.math.columbia.edu/tag/071X
https://stacks.math.columbia.edu/tag/08F2
https://stacks.math.columbia.edu/tag/08F3
https://stacks.math.columbia.edu/tag/0D3E
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Proof. Let B ⊂ Ob(Xétale) be the set of affine objects. Since Hq(Kn) is quasi-
coherent we have Hp(U, Hq(Kn)) = 0 for U ∈ B by the discussion in Cohomology
of Spaces, Section 3 and Cohomology of Schemes, Lemma 2.2. Moreover, the maps
H0(U, Hq(Kn+1)) → H0(U, Hq(Kn)) are surjective for U ∈ B by similar reasoning.
Part (1) follows from Cohomology on Sites, Lemma 23.12 whose conditions we have
just verified. Parts (2) and (3) follow from Cohomology on Sites, Lemma 23.5. □

Lemma 5.5.08F4 Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).

Proof. Choose a diagram
U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. Since
a∗ ◦ Lf∗ = Lh∗ ◦ b∗ the result follows from Lemma 5.2 and the case of schemes
which is Derived Categories of Schemes, Lemma 3.8. □

Lemma 5.6.08F5 Let S be a scheme. Let X be an algebraic space over S. For objects
K, L of DQCoh(OX) the derived tensor product K ⊗L L is in DQCoh(OX).

Proof. Let φ : U → X be a surjective étale morphism from a scheme U . Since
φ∗(K ⊗L

OX
L) = φ∗K ⊗L

OU
φ∗L we see from Lemma 5.2 that this follows from the

case of schemes which is Derived Categories of Schemes, Lemma 3.9. □

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 5.7.08F6 Let S be a scheme. Let X be an algebraic space over S. Let E
be an object of DQCoh(OX). Then the canonical map E → R lim τ≥−nE is an
isomorphism1.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine objects of Xétale. Then Hp(U, Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B
as U is an affine scheme. See discussion in Cohomology of Spaces, Section 3 and
Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology
on Sites, Lemma 23.10 with d = 0. □

Lemma 5.8.08F7 Let S be a scheme. Let X be an algebraic space over S. Let F :
Mod(OX) → Ab be a functor and N ≥ 0 an integer. Assume that

(1) F is left exact,
(2) F commutes with countable direct products,
(3) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX)
(1) Hi(RF (τ≤aE) → Hi(RF (E)) is an isomorphism for i ≤ a,
(2) Hi(RF (E)) → Hi(RF (τ≥b−N+1E)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(RF (E)) = 0

for i ̸∈ [a, b + N − 1].

1In particular, E has a K-injective representative as in Cohomology on Sites, Lemma 24.1.

https://stacks.math.columbia.edu/tag/08F4
https://stacks.math.columbia.edu/tag/08F5
https://stacks.math.columbia.edu/tag/08F6
https://stacks.math.columbia.edu/tag/08F7
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Proof. Statement (1) is Derived Categories, Lemma 16.1.
Proof of statement (2). Write En = τ≥−nE. We have E = R lim En, see Lemma
5.7. Thus RF (E) = R lim RF (En) in D(Ab) by Injectives, Lemma 13.6. Thus for
every i ∈ Z we have a short exact sequence

0 → R1 lim Hi−1(RF (En)) → Hi(RF (E)) → lim Hi(RF (En)) → 0
see More on Algebra, Remark 86.10. To prove (2) we will show that the term on
the left is zero and that the term on the right equals Hi(RF (E−b+N−1) for any b
with i ≥ b.
For every n we have a distinguished triangle

H−n(E)[n] → En → En−1 → H−n(E)[n + 1]
(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we
have

Hi(RF (H−n(E)[n])) = Ri+nF (H−n(E)) = 0
for i + n ≥ N and

Hi(RF (H−n(E)[n + 1])) = Ri+n+1F (H−n(E)) = 0
for i + n + 1 ≥ N . We conclude that

Hi(RF (En)) → Hi(RF (En−1))
is an isomorphism for n ≥ N − i. Thus the systems Hi(RF (En)) all satisfy the ML
condition and the R1 lim term in our short exact sequence is zero (see discussion
in More on Algebra, Section 86). Moreover, the system Hi(RF (En)) is constant
starting with n = N − i − 1 as desired.
Proof of (3). Under the assumption on E we have τ≤a−1E = 0 and we get the
vanishing of Hi(RF (E)) for i ≤ a − 1 from (1). Similarly, we have τ≥b+1E = 0 and
hence we get the vanishing of Hi(RF (E)) for i ≥ b + n from part (2). □

6. Total direct image

08F9 The following lemma is the analogue of Cohomology of Spaces, Lemma 8.1.

Lemma 6.1.08FA Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If Y is quasi-compact, there exists an integer N = N(X, Y, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m ≥ N .

(3) In fact, if Y is quasi-compact we can find N = N(X, Y, f) such that for
every morphism of algebraic spaces Y ′ → Y the same conclusion holds for
the functor R(f ′)∗ where f ′ : X ′ → Y ′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. This question is local on Y , hence
we may assume Y is quasi-compact. Pick N = N(X, Y, f) as in Cohomology of
Spaces, Lemma 8.1. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and
all p ≥ N . Moreover Rpf∗F is quasi-coherent for all p by Cohomology of Spaces,
Lemma 3.1. These statements remain true after base change.

https://stacks.math.columbia.edu/tag/08FA


DERIVED CATEGORIES OF SPACES 7

First, assume E is bounded below. We will show (1) and (2) and (3) hold for such
E with our choice of N . In this case we can for example use the spectral sequence

Rpf∗Hq(E) ⇒ Rp+qf∗E

(Derived Categories, Lemma 21.3), the quasi-coherence of Rpf∗Hq(E), and the
vanishing of Rpf∗Hq(E) for p ≥ N to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say Hm(E) = 0 for m > 0. Let V be an affine object of
Yétale. We have Hp(V ×Y X, F) = 0 for p ≥ N , see Cohomology of Spaces, Lemma
3.2. Hence we may apply Lemma 5.8 to the functor Γ(V ×Y X, −) to see that

RΓ(V, Rf∗E) = RΓ(V ×Y X, E)

has vanishing cohomology in degrees ≥ N . Since this holds for all V affine in Yétale

we conclude that Hm(Rf∗E) = 0 for m ≥ N .

Next, we prove (1) in the general case. Recall that there is a distinguished triangle

τ≤−n−1E → E → τ≥−nE → (τ≤−n−1E)[1]

in D(OX), see Derived Categories, Remark 12.4. By (2) we see that Rf∗τ≤−n−1E
has vanishing cohomology sheaves in degrees ≥ −n+N . Thus, given an integer q we
see that Rqf∗E is equal to Rqf∗τ≥−nE for some n and the result above applies. □

Lemma 6.2.08FB Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S. Then Rf∗ : DQCoh(OX) →
DQCoh(OY ) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕

Ei. We want
to show that the map ⊕

Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 6.1.
Then R0f∗E = R0f∗τ≥−N E and R0f∗Ei = R0f∗τ≥−N Ei by the lemma cited.
Observe that τ≥−N E =

⊕
τ≥−N Ei. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗Hq(E) ⇒ Rp+qf∗E and Rpf∗Hq(Ei) ⇒ Rp+qf∗Ei

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-
coherent sheaves. This case is handled by Cohomology of Spaces, Lemma 5.2. □

Remark 6.3.08GH Let S be a scheme. Let f : X → Y be a morphism of representable
algebraic spaces X and Y over S. Let f0 : X0 → Y0 be a morphism of schemes
representing f (awkward but temporary notation). Then the diagram

DQCoh(OX0)
Lemma 4.2

DQCoh(OX)

DQCoh(OY0)

Lf∗
0

OO

Lemma 4.2
DQCoh(OY )

Lf∗

OO

(Lemma 5.5 and Derived Categories of Schemes, Lemma 3.8) is commutative.
This follows as the equivalences DQCoh(OX0) → DQCoh(OX) and DQCoh(OY0) →

https://stacks.math.columbia.edu/tag/08FB
https://stacks.math.columbia.edu/tag/08GH
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DQCoh(OY ) of Lemma 4.2 come from pulling back by the (flat) morphisms of ringed
sites ϵ : Xétale → X0,Zar and ϵ : Yétale → Y0,Zar and the diagram of ringed sites

X0,Zar

f0

��

Xétaleϵ
oo

f

��
Y0,Zar Yétale

ϵoo

is commutative (details omitted). If f is quasi-compact and quasi-separated, equiv-
alently if f0 is quasi-compact and quasi-separated, then we claim

DQCoh(OX0)

Rf0,∗

��

Lemma 4.2
DQCoh(OX)

Rf∗

��
DQCoh(OY0) Lemma 4.2

DQCoh(OY )

(Lemma 6.1 and Derived Categories of Schemes, Lemma 4.1) is commutative as well.
This also follows from the commutative diagram of sites displayed above as the proof
of Lemma 4.2 shows that the functor Rϵ∗ gives the equivalences DQCoh(OX) →
DQCoh(OX0) and DQCoh(OY ) → DQCoh(OY0).

Lemma 6.4.08II Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then Rf∗ : DQCoh(OX) → DQCoh(OY ) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is
an isomorphism if Rf∗α is an isomorphism. We may check this on cohomology
sheaves. In particular, the question is étale local on Y . Hence we may assume Y
and therefore X is affine. In this case the problem reduces to the case of schemes
(Derived Categories of Schemes, Lemma 5.2) via Lemma 4.2 and Remark 6.3. □

Lemma 6.5.08IJ Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. For E in DQCoh(OY ) we have Rf∗Lf∗E = E ⊗L

OY
f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Spaces, Lemma 8.2). There is a canonical map E ⊗L f∗OX = E ⊗L Rf∗OX →
Rf∗Lf∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on Y . Hence
we may assume Y and therefore X is affine. In this case the problem reduces to
the case of schemes (Derived Categories of Schemes, Lemma 5.3) via Lemma 4.2
and Remark 6.3. □

7. Being proper over a base

0CZB This section is the analogue of Cohomology of Schemes, Section 26. As usual with
material having to do with topology on the sets of points, we have to be careful
translating the material to algebraic spaces.

Lemma 7.1.0CZC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |X| be a closed subset. The
following are equivalent

https://stacks.math.columbia.edu/tag/08II
https://stacks.math.columbia.edu/tag/08IJ
https://stacks.math.columbia.edu/tag/0CZC
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(1) the morphism Z → Y is proper if Z is the reduced induced algebraic space
structure on T (Properties of Spaces, Definition 12.5),

(2) for some closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is
proper, and

(3) for any closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is
proper.

Proof. The implications (3) ⇒ (1) and (1) ⇒ (2) are immediate. Thus it suffices
to prove that (2) implies (3). We urge the reader to find their own proof of this
fact. Let Z ′ and Z ′′ be closed subspaces with T = |Z ′| = |Z ′′| such that Z ′ → Y
is a proper morphism of algebraic spaces. We have to show that Z ′′ → Y is
proper too. Let Z ′′′ = Z ′ ∪ Z ′′ be the scheme theoretic union, see Morphisms of
Spaces, Definition 14.4. Then Z ′′′ is another closed subspace with |Z ′′′| = T . This
follows for example from the description of scheme theoretic unions in Morphisms
of Spaces, Lemma 14.6. Since Z ′′ → Z ′′′ is a closed immersion it suffices to prove
that Z ′′′ → Y is proper (see Morphisms of Spaces, Lemmas 40.5 and 40.4). The
morphism Z ′ → Z ′′′ is a bijective closed immersion and in particular surjective and
universally closed. Then the fact that Z ′ → Y is separated implies that Z ′′′ → Y
is separated, see Morphisms of Spaces, Lemma 9.8. Moreover Z ′′′ → Y is locally
of finite type as X → Y is locally of finite type (Morphisms of Spaces, Lemmas
23.7 and 23.2). Since Z ′ → Y is quasi-compact and Z ′ → Z ′′′ is a universal
homeomorphism we see that Z ′′′ → Y is quasi-compact. Finally, since Z ′ → Y is
universally closed, we see that the same thing is true for Z ′′′ → Y by Morphisms
of Spaces, Lemma 40.7. This finishes the proof. □

Definition 7.2.0CZD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |X| be a closed subset. We
say T is proper over Y if the equivalent conditions of Lemma 7.1 are satisfied.

The lemma used in the definition above is false if the morphism f : X → Y is not
locally of finite type. Therefore we urge the reader not to use this terminology if f
is not locally of finite type.

Lemma 7.3.0CZE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ′ ⊂ T ⊂ |X| be closed subsets. If
T is proper over Y , then the same is true for T ′.

Proof. Omitted. □

Lemma 7.4.0CZF Let S be a scheme. Consider a cartesian diagram of algebraic spaces
over S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

with f locally of finite type. If T is a closed subset of |X| proper over Y , then
|g′|−1(T ) is a closed subset of |X ′| proper over Y ′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by
Morphisms of Spaces, Lemma 23.3. Let Z ⊂ X be the reduced induced closed
subspace structure on T . Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse
image. Then Z ′ = X ′ ×X Z = (Y ′ ×Y X) ×X Z = Y ′ ×Y Z is proper over Y ′ as a

https://stacks.math.columbia.edu/tag/0CZD
https://stacks.math.columbia.edu/tag/0CZE
https://stacks.math.columbia.edu/tag/0CZF
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base change of Z over Y (Morphisms of Spaces, Lemma 40.3). On the other hand,
we have T ′ = |Z ′|. Hence the lemma holds. □

Lemma 7.5.0CZG Let S be a scheme. Let B be an algebraic space over S. Let f : X →
Y be a morphism of algebraic spaces which are locally of finite type over B.

(1) If Y is separated over B and T ⊂ |X| is a closed subset proper over B, then
|f |(T ) is a closed subset of |Y | proper over B.

(2) If f is universally closed and T ⊂ |X| is a closed subset proper over B,
then |f |(T ) is a closed subset of Y proper over B.

(3) If f is proper and T ⊂ |Y | is a closed subset proper over B, then |f |−1(T )
is a closed subset of |X| proper over B.

Proof. Proof of (1). Assume Y is separated over B and T ⊂ |X| is a closed subset
proper over B. Let Z be the reduced induced closed subspace structure on T and
apply Morphisms of Spaces, Lemma 40.8 to Z → Y over B to conclude.

Proof of (2). Assume f is universally closed and T ⊂ |X| is a closed subset proper
over B. Let Z be the reduced induced closed subspace structure on T and let Z ′

be the reduced induced closed subspace structure on |f |(T ). We obtain an induced
morphism Z → Z ′. Denote Z ′′ = f−1(Z ′) the scheme theoretic inverse image.
Then Z ′′ → Z ′ is universally closed as a base change of f (Morphisms of Spaces,
Lemma 40.3). Hence Z → Z ′ is universally closed as a composition of the closed
immersion Z → Z ′′ and Z ′′ → Z ′ (Morphisms of Spaces, Lemmas 40.5 and 40.4).
We conclude that Z ′ → B is separated by Morphisms of Spaces, Lemma 9.8. Since
Z → B is quasi-compact and Z → Z ′ is surjective we see that Z ′ → B is quasi-
compact. Since Z ′ → B is the composition of Z ′ → Y and Y → B we see that
Z ′ → B is locally of finite type (Morphisms of Spaces, Lemmas 23.7 and 23.2).
Finally, since Z → B is universally closed, we see that the same thing is true for
Z ′ → B by Morphisms of Spaces, Lemma 40.7. This finishes the proof.

Proof of (3). Assume f is proper and T ⊂ |Y | is a closed subset proper over B. Let
Z be the reduced induced closed subspace structure on T . Denote Z ′ = f−1(Z)
the scheme theoretic inverse image. Then Z ′ → Z is proper as a base change of f
(Morphisms of Spaces, Lemma 40.3). Whence Z ′ → B is proper as the composition
of Z ′ → Z and Z → B (Morphisms of Spaces, Lemma 40.4). This finishes the
proof. □

Lemma 7.6.0CZH Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let Ti ⊂ |X|, i = 1, . . . , n be closed subsets.
If Ti, i = 1, . . . , n are proper over Y , then the same is true for T1 ∪ . . . ∪ Tn.

Proof. Let Zi be the reduced induced closed subscheme structure on Ti. The
morphism

Z1 ⨿ . . . ⨿ Zn −→ X

is finite by Morphisms of Spaces, Lemmas 45.10 and 45.11. As finite morphisms
are universally closed (Morphisms of Spaces, Lemma 45.9) and since Z1 ⨿ . . . ⨿ Zn

is proper over S we conclude by Lemma 7.5 part (2) that the image Z1 ∪ . . . ∪ Zn

is proper over S. □

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S
which is locally of finite type. Let F be a finite type, quasi-coherent OX -module.

https://stacks.math.columbia.edu/tag/0CZG
https://stacks.math.columbia.edu/tag/0CZH
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Then the support Supp(F) of F is a closed subset of |X|, see Morphisms of Spaces,
Lemma 15.2. Hence it makes sense to say “the support of F is proper over Y ”.

Lemma 7.7.0CZI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a finite type, quasi-coherent
OX-module. The following are equivalent

(1) the support of F is proper over Y ,
(2) the scheme theoretic support of F (Morphisms of Spaces, Definition 15.4)

is proper over Y , and
(3) there exists a closed subspace Z ⊂ X and a finite type, quasi-coherent OZ-

module G such that (a) Z → Y is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) of F is a closed subset of |X|, see Morphisms of
Spaces, Lemma 15.2. Hence we can apply Definition 7.2. Since the scheme theoretic
support of F is a closed subspace whose underlying closed subset is Supp(F) we
see that (1) and (2) are equivalent by Definition 7.2. It is clear that (2) implies (3).
Conversely, if (3) is true, then Supp(F) ⊂ |Z| and hence Supp(F) is proper over Y
for example by Lemma 7.3. □

Lemma 7.8.0CZJ Let S be a scheme. Consider a cartesian diagram of algebraic spaces
over S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

with f locally of finite type. Let F be a finite type, quasi-coherent OX-module. If
the support of F is proper over Y , then the support of (g′)∗F is proper over Y ′.

Proof. Observe that the statement makes sense because (g′) ∗ F is of finite type
by Modules on Sites, Lemma 23.4. We have Supp((g′)∗F) = |g′|−1(Supp(F)) by
Morphisms of Spaces, Lemma 15.2. Thus the lemma follows from Lemma 7.4. □

Lemma 7.9.0CZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F , G be finite type, quasi-coherent
OX-module.

(1) If the supports of F , G are proper over Y , then the same is true for F ⊕ G,
for any extension of G by F , for Im(u) and Coker(u) given any OX-module
map u : F → G, and for any quasi-coherent quotient of F or G.

(2) If Y is locally Noetherian, then the category of coherent OX-modules with
support proper over Y is a Serre subcategory (Homology, Definition 10.1)
of the abelian category of coherent OX-modules.

Proof. Proof of (1). Let T , T ′ be the support of F and G. Then all the sheaves
mentioned in (1) have support contained in T ∪T ′. Thus the assertion itself is clear
from Lemmas 7.3 and 7.6 provided we check that these sheaves are finite type and
quasi-coherent. For quasi-coherence we refer the reader to Properties of Spaces,
Section 29. For “finite type” we refer the reader to Properties of Spaces, Section
30.

Proof of (2). The proof is the same as the proof of (1). Note that the assertions
make sense as X is locally Noetherian by Morphisms of Spaces, Lemma 23.5 and

https://stacks.math.columbia.edu/tag/0CZI
https://stacks.math.columbia.edu/tag/0CZJ
https://stacks.math.columbia.edu/tag/0CZK
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by the description of the category of coherent modules in Cohomology of Spaces,
Section 12. □

Lemma 7.10.08GC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Let F
be a coherent OX-module with support proper over Y . Then Rpf∗F is a coherent
OY -module for all p ≥ 0.

Proof. By Lemma 7.7 there exists a closed immersion i : Z → X with g = f ◦ i :
Z → Y proper and F = i∗G for some coherent module G on Z. We see that
Rpg∗G is coherent on S by Cohomology of Spaces, Lemma 20.2. On the other
hand, Rqi∗G = 0 for q > 0 (Cohomology of Spaces, Lemma 12.9). By Cohomology
on Sites, Lemma 14.7 we get Rpf∗F = Rpg∗G and the lemma follows. □

8. Derived category of coherent modules

08GI Let S be a scheme. Let X be a locally Noetherian algebraic space over S. In this
case the category Coh(OX) ⊂ Mod(OX) of coherent OX -modules is a weak Serre
subcategory, see Homology, Section 10 and Cohomology of Spaces, Lemma 12.3.
Denote

DCoh(OX) ⊂ D(OX)
the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 17. Thus we obtain a canonical functor

(8.0.1)08GJ D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (17.1.1).

Lemma 8.1.08GK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is Noetherian. Let E be
an object of Db

Coh(OX) such that the support of Hi(E) is proper over Y for all i.
Then Rf∗E is an object of Db

Coh(OY ).

Proof. Consider the spectral sequence

Rpf∗Hq(E) ⇒ Rp+qf∗E

see Derived Categories, Lemma 21.3. By assumption and Lemma 7.10 the sheaves
Rpf∗Hq(E) are coherent. Hence Rp+qf∗E is coherent, i.e., E ∈ DCoh(OY ). Bound-
edness from below is trivial. Boundedness from above follows from Cohomology of
Spaces, Lemma 8.1 or from Lemma 6.1. □

Lemma 8.2.0D0R Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is Noetherian. Let E be
an object of D+

Coh(OX) such that the support of Hi(E) is proper over S for all i.
Then Rf∗E is an object of D+

Coh(OY ).

Proof. The proof is the same as the proof of Lemma 8.1. You can also deduce
it from Lemma 8.1 by considering what the exact functor Rf∗ does to the distin-
guished triangles τ≤aE → E → τ≥a+1E → τ≤aE[1]. □

Lemma 8.3.0D0S Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. If L is in D+

Coh(OX) and K in D−
Coh(OX), then R Hom(K, L) is in D+

Coh(OX).

https://stacks.math.columbia.edu/tag/08GC
https://stacks.math.columbia.edu/tag/08GK
https://stacks.math.columbia.edu/tag/0D0R
https://stacks.math.columbia.edu/tag/0D0S
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Proof. We can check whether an object of D(OX) is in DCoh(OX) étale locally
on X, see Cohomology of Spaces, Lemma 12.2. Hence this lemma follows from the
case of schemes, see Derived Categories of Schemes, Lemma 11.5. □

Lemma 8.4.0D0T Let A be a Noetherian ring. Let X be a proper algebraic space over
A. For L in D+

Coh(OX) and K in D−
Coh(OX), the A-modules Extn

OX
(K, L) are

finite.

Proof. Recall that
Extn

OX
(K, L) = Hn(X, R HomOX

(K, L)) = Hn(Spec(A), Rf∗R HomOX
(K, L))

see Cohomology on Sites, Lemma 35.1 and Cohomology on Sites, Section 14. Thus
the result follows from Lemmas 8.3 and 8.2. □

9. Induction principle

08GL In this section we discuss an induction principle for algebraic spaces analogous
to what is Cohomology of Schemes, Lemma 4.1 for schemes. To formulate it we
introduce the notion of an elementary distinguished square; this terminology is
borrowed from [MV99]. The principle as formulated here is implicit in the paper
[GR71] by Raynaud and Gruson. A related principle for algebraic stacks is [Ryd10,
Theorem D] by David Rydh.

Definition 9.1.08GM Let S be a scheme. A commutative diagram

U ×W V //

��

V

f

��
U

j // W

of algebraic spaces over S is called an elementary distinguished square if
(1) U is an open subspace of W and j is the inclusion morphism,
(2) f is étale, and
(3) setting T = W \U (with reduced induced subspace structure) the morphism

f−1(T ) → T is an isomorphism.
We will indicate this by saying: “Let (U ⊂ W, f : V → W ) be an elementary
distinguished square.”

Note that if (U ⊂ W, f : V → W ) is an elementary distinguished square, then we
have W = U ∪ f(V ). Thus {U → W, V → W} is an étale covering of W . It turns
out that these étale coverings have nice properties and that in some sense there are
“enough” of them.

Lemma 9.2.08GN Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square of algebraic spaces over S.

(1) If V ′ ⊂ V and U ⊂ U ′ ⊂ W are open subspaces and W ′ = U ′ ∪ f(V ′) then
(U ′ ⊂ W ′, f |V ′ : V ′ → W ′) is an elementary distinguished square.

(2) If p : W ′ → W is a morphism of algebraic spaces, then (p−1(U) ⊂ W ′, V ×W

W ′ → W ′) is an elementary distinguished square.
(3) If S′ → S is a morphism of schemes, then (S′ ×S U ⊂ S′ ×S W, S′ ×S V →

S′ ×S W ) is an elementary distinguished square.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0D0T
https://stacks.math.columbia.edu/tag/08GM
https://stacks.math.columbia.edu/tag/08GN
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Lemma 9.3.08GP Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P be a property of the quasi-compact and quasi-separated
objects of Xspaces,étale. Assume that

(1) P holds for every affine object of Xspaces,étale,
(2) for every elementary distinguished square (U ⊂ W, f : V → W ) such that

(a) W is a quasi-compact and quasi-separated object of Xspaces,étale,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,
then P holds for W .

Then P holds for every quasi-compact and quasi-separated object of Xspaces,étale

and in particular for X.

Proof. We first claim that P holds for every representable quasi-compact and
quasi-separated object of Xspaces,étale. Namely, suppose that U → X is étale and
U is a quasi-compact and quasi-separated scheme. By assumption (1) property P
holds for every affine open of U . Moreover, if W, V ⊂ U are quasi-compact open
with V affine and P holds for W , V , and W ∩V , then P holds for W ∪V by (2) (as
the pair (W ⊂ W ∪ V, V → W ∪ V ) is an elementary distinguished square). Thus
P holds for U by the induction principle for schemes, see Cohomology of Schemes,
Lemma 4.1.
To finish the proof it suffices to prove P holds for X (because we can simply replace
X by any quasi-compact and quasi-separated object of Xspaces,étale we want to prove
the result for). We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.6. We will prove
that P holds for Up by descending induction on p. Note that P holds for Un+1
by (1) as an empty algebraic space is affine. Assume P holds for Up+1. Note that
(Up+1 ⊂ Up, fp : Vp → Up) is an elementary distinguished square, but (2) may not
apply as Vp may not be affine. However, as Vp is a quasi-compact scheme we may
choose a finite affine open covering Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Up+1 and

Wp,i = Up+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . , m. These are quasi-compact open subspaces of X. Then we have

Up+1 = Wp,0 ⊂ Wp,1 ⊂ . . . ⊂ Wp,m = Up

and the pairs
(Wp,0 ⊂ Wp,1, fp|Vp,1), (Wp,1 ⊂ Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂ Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 9.2. Note that P holds for each
Vp,1 (as affine schemes) and for Wp,i×Wp,i+1 Vp,i+1 as this is a quasi-compact open of
Vp,i+1 and hence P holds for it by the first paragraph of this proof. Thus (2) applies
to each of these and we inductively conclude P holds for Wp,1, . . . , Wp,m = Up. □

Lemma 9.4.08GQ Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let B ⊂ Ob(Xspaces,étale). Let P be a property of the
elements of B. Assume that

(1) every W ∈ B is quasi-compact and quasi-separated,
(2) if W ∈ B and U ⊂ W is quasi-compact open, then U ∈ B,

https://stacks.math.columbia.edu/tag/08GP
https://stacks.math.columbia.edu/tag/08GQ
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(3) if V ∈ Ob(Xspaces,étale) is affine, then (a) V ∈ B and (b) P holds for V ,
(4) for every elementary distinguished square (U ⊂ W, f : V → W ) such that

(a) W ∈ B,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,
then P holds for W .

Then P holds for every W ∈ B.

Proof. This is proved in exactly the same manner as the proof of Lemma 9.3. (We
remark that (4)(d) makes sense as U ×W V is a quasi-compact open of V hence an
element of B by conditions (2) and (3).) □

Remark 9.5.08GR How to choose the collection B in Lemma 9.4? Here are some
examples:

(1) If X is quasi-compact and separated, then we can choose B to be the set of
quasi-compact and separated objects of Xspaces,étale. Then X ∈ B and B
satisfies (1), (2), and (3)(a). With this choice of B Lemma 9.4 reproduces
Lemma 9.3.

(2) If X is quasi-compact with affine diagonal over Z (as in Properties of Spaces,
Definition 3.1), then we can choose B to be the set of objects of Xspaces,étale

which are quasi-compact and have affine diagonal over Z. Again X ∈ B
and B satisfies (1), (2), and (3)(a).

(3) If X is quasi-compact and quasi-separated, then the smallest subset B which
contains X and satisfies (1), (2), and (3)(a) is given by the rule W ∈ B
if and only if either W is a quasi-compact open subspace of X, or W is a
quasi-compact open of an affine object of Xspaces,étale.

Here is a variant where we extend the truth from an open to larger opens.

Lemma 9.6.09IT Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open subspace. Let P be a
property of quasi-compact open subspaces of X. Assume that

(1) P holds for W , and
(2) for every elementary distinguished square (W1 ⊂ W2, f : V → W2) where

such that
(a) W1, W2 are quasi-compact open subspaces of X,
(b) W ⊂ W1,
(c) V is affine, and
(d) P holds for W1,
then P holds for W2.

Then P holds for X.

Proof. We can deduce this from Lemma 9.4, but instead we will give a direct
argument by explicitly redoing the proof of Lemma 9.3. We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.6. We will prove that
P holds for Wp = W ∪ Up by descending induction on p. This will finish the proof
as W1 = X. Note that P holds for Wn+1 = W ∩Un+1 = W by (1). Assume P holds
for Wp+1. Observe that Wp \ Wp+1 (with reduced induced subspace structure) is

https://stacks.math.columbia.edu/tag/08GR
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a closed subspace of Up \ Up+1. Since (Up+1 ⊂ Up, fp : Vp → Up) is an elementary
distinguished square, the same is true for (Wp+1 ⊂ Wp, fp : Vp → Wp). However (2)
may not apply as Vp may not be affine. However, as Vp is a quasi-compact scheme
we may choose a finite affine open covering Vp = Vp,1 ∪ . . .∪Vp,m. Set Wp,0 = Wp+1
and

Wp,i = Wp+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . , m. These are quasi-compact open subspaces of X containing W .
Then we have

Wp+1 = Wp,0 ⊂ Wp,1 ⊂ . . . ⊂ Wp,m = Wp

and the pairs

(Wp,0 ⊂ Wp,1, fp|Vp,1), (Wp,1 ⊂ Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂ Wp,m, fp|Vp,m
)

are elementary distinguished squares by Lemma 9.2. Now (2) applies to each of
these and we inductively conclude P holds for Wp,1, . . . , Wp,m = Wp. □

10. Mayer-Vietoris

08GS In this section we prove that an elementary distinguished triangle gives rise to
various Mayer-Vietoris sequences.

Let S be a scheme. Let U → X be an étale morphism of algebraic spaces over S.
In Properties of Spaces, Section 27 it was shown that Uspaces,étale = Xspaces,étale/U
compatible with structure sheaves. Hence in this situation we often think of the
morphism jU : U → X as a localization morphism (see Modules on Sites, Definition
19.1). In particular we think of pullback j∗

U as restriction to U and we often denote it
by |U ; this is compatible with Properties of Spaces, Equation (26.1.1). In particular
we see that

(10.0.1)08GT (F|U )u = Fx

if u is a geometric point of U and x the image of u in X. Moreover, restriction
has an exact left adjoint jU !, see Modules on Sites, Lemmas 19.2 and 19.3. Finally,
recall that if G is an OX -module, then

(10.0.2)08GU (jU !G)x =
⊕

u
Gu

for any geometric point x : Spec(k) → X where the direct sum is over those
morphisms u : Spec(k) → U such that jU ◦ u = x, see Modules on Sites, Lemma
38.1 and Properties of Spaces, Lemma 19.13.

Lemma 10.1.08GV Let S be a scheme. Let (U ⊂ X, V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For a sheaf of OX-modules F we have a short exact sequence

0 → jU×X V !F|U×X V → jU !F|U ⊕ jV !F|V → F → 0

(2) For an object E of D(OX) we have a distinguished triangle

jU×X V !E|U×X V → jU !E|U ⊕ jV !E|V → E → jU×X V !E|U×X V [1]

in D(OX).

https://stacks.math.columbia.edu/tag/08GV
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Proof. To show the sequence of (1) is exact we may check on stalks at geometric
points by Properties of Spaces, Theorem 19.12. Let x be a geometric point of X.
By Equations (10.0.1) and (10.0.2) taking stalks at x we obtain the sequence

0 →
⊕

(u,v)
Fx →

⊕
u

Fx ⊕
⊕

v
Fx → Fx → 0

This sequence is exact because for every x there either is exactly one u mapping to
x, or there is no u and exactly one v mapping to x.

Proof of (2). We have seen in Cohomology on Sites, Section 20 that the restriction
functors and the extension by zero functors on derived categories are computed by
just applying the functor to any complex. Let E• be a complex of OX -modules rep-
resenting E. The distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the
short exact sequence of complexes of OX -modules

0 → jU×X V !E•|U×X V → jU !E•|U ⊕ jV !E•|V → E• → 0

which is short exact by (1). □

Lemma 10.2.08GW Let S be a scheme. Let (U ⊂ X, V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For every sheaf of OX-modules F we have a short exact sequence

0 → F → jU,∗F|U ⊕ jV,∗F|V → jU×X V,∗F|U×X V → 0

(2) For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕ RjV,∗E|V → RjU×X V,∗E|U×X V → E[1]

in D(OX).

Proof. Let W be an object of Xétale. We claim the sequence

0 → F(W ) → F(W ×X U) ⊕ F(W ×X V ) → F(W ×X U ×X V )

is exact and that an element of the last group can locally on W be lifted to the
middle one. By Lemma 9.2 the pair (W ×X U ⊂ W, V ×X W → W ) is an elementary
distinguished square. Thus we may assume W = X and it suffices to prove the same
thing for

0 → F(X) → F(U) ⊕ F(V ) → F(U ×X V )
We have seen that

0 → jU×X V !OU×X V → jU !OU ⊕ jV !OV → OX → 0

is a exact sequence of OX -modules in Lemma 10.1 and applying the right ex-
act functor HomOX

(−, F) gives the sequence above. This also means that the
obstruction to lifting s ∈ F(U ×X V ) to an element of F(U) ⊕ F(V ) lies in
Ext1

OX
(OX , F) = H1(X, F). By locality of cohomology (Cohomology on Sites,

Lemma 7.3) this obstruction vanishes étale locally on X and the proof of (1) is
complete.

Proof of (2). Choose a K-injective complex I• representing E whose terms In

are injective objects of Mod(OX), see Injectives, Theorem 12.6. Then I•|U is a
K-injective complex (Cohomology on Sites, Lemma 20.1). Hence RjU,∗E|U is rep-
resented by jU,∗I•|U . Similarly for V and U ×X V . Hence the distinguished triangle

https://stacks.math.columbia.edu/tag/08GW
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of the lemma is the distinguished triangle associated (by Derived Categories, Sec-
tion 12 and especially Lemma 12.1) to the short exact sequence of complexes

0 → I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×X V,∗I•|U×X V → 0.

This sequence is exact by (1). □

Lemma 10.3.08JK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let (U ⊂ X, V → X) be an elementary distinguished square. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U×X V : U ×X V → Y the
restrictions. For every object E of D(OX) there exists a distinguished triangle

Rf∗E → Ra∗(E|U ) ⊕ Rb∗(E|V ) → Rc∗(E|U×X V ) → Rf∗E[1]

in D(OY ). This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then Rf∗E is
computed by f∗I•. Similarly for U , V , and U ∩V by Cohomology on Sites, Lemma
20.1. Hence the distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the
short exact sequence of complexes

0 → f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U×X V → 0.

To see this is a short exact sequence of complexes we argue as follows. Pick an
injective object I of Mod(OX). Apply f∗ to the short exact sequence

0 → I → jU,∗I|U ⊕ jV,∗I|V → jU×X V,∗I|U×X V → 0

of Lemma 10.2 and use that R1f∗I = 0 to get a short exact sequence

0 → f∗I → f∗jU,∗I|U ⊕ f∗jV,∗I|V → f∗jU×X V,∗I|U×X V → 0

The proof is finished by observing that a∗ = f∗jU,∗ and similarly for b∗ and c∗. □

Lemma 10.4.08H9 Let S be a scheme. Let (U ⊂ X, V → X) be an elementary
distinguished square of algebraic spaces over S. For objects E, F of D(OX) we
have a Mayer-Vietoris sequence

. . . // Ext−1(EU×X V , FU×X V )

qqHom(E, F ) // Hom(EU , FU ) ⊕ Hom(EV , FV ) // Hom(EU×X V , FU×X V )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 10.1 to obtain a long exact se-
quence of Hom’s (from Derived Categories, Lemma 4.2) and use that Hom(jU !E|U , F ) =
Hom(E|U , F |U ) by Cohomology on Sites, Lemma 20.8. □

Lemma 10.5.0CRS Let S be a scheme. Let (U ⊂ X, V → X) be an elementary
distinguished square of algebraic spaces over S. For an object E of D(OX) we have
a distinguished triangle

RΓ(X, E) → RΓ(U, E) ⊕ RΓ(V, E) → RΓ(U ×X V, E) → RΓ(X, E)[1]

https://stacks.math.columbia.edu/tag/08JK
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and in particular a long exact cohomology sequence
. . . → Hn(X, E) → Hn(U, E) ⊕ Hn(V, E) → Hn(U ×X V, E) → Hn+1(X, E) → . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E whose terms In are injec-
tive objects of Mod(OX), see Injectives, Theorem 12.6. In the proof of Lemma 10.2
we found a short exact sequence of complexes

0 → I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×X V,∗I•|U×X V → 0
Since H1(X, In) = 0, we see that taking global sections gives an exact sequence of
complexes

0 → Γ(X, I•) → Γ(U, I•) ⊕ Γ(V, I•) → Γ(U ×X V, I•) → 0
Since these complexes represent RΓ(X, E), RΓ(U, E), RΓ(V, E), and RΓ(U×XV, E)
we get a distinguished triangle by Derived Categories, Section 12 and especially
Lemma 12.1. □

Lemma 10.6.08HA Let S be a scheme. Let j : U → X be a étale morphism of algebraic
spaces over S. Given an étale morphism V → Y , set W = V ×X U and denote
jW : W → V the projection morphism. Then (j!E)|V = jW !(E|W ) for E in D(OU ).

Proof. This is true because (j!F)|V = jW !(F|W ) for an OX -module F as follows
immediately from the construction of the functors j! and jW !, see Modules on Sites,
Lemma 19.2. □

Lemma 10.7.08GG Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Set T = |X| \ |U |.

(1) If E is an object of D(OX) supported on T , then (a) E → Rj∗(E|V ) and
(b) j!(E|V ) → E are isomorphisms.

(2) If F is an object of D(OV ) supported on j−1T , then (a) F → (j!F )|V , (b)
(Rj∗F )|V → F , and (c) j!F → Rj∗F are isomorphisms.

Proof. Let E be an object of D(OX) whose cohomology sheaves are supported on
T . Then we see that E|U = 0 and E|U×X V = 0 as T doesn’t meet U and j−1T
doesn’t meet U ×X V . Thus (1)(a) follows from Lemma 10.2. In exactly the same
way (1)(b) follows from Lemma 10.1.
Let F be an object of D(OV ) whose cohomology sheaves are supported on j−1T .
By Lemma 3.1 we have (Rj∗F )|U = RjW,∗(F |W ) = 0 because F |W = 0 by our
assumption. Similarly (j!F )|U = jW !(F |W ) = 0 by Lemma 10.6. Thus j!F and
Rj∗F are supported on T and (j!F )|V and (Rj∗F )|V are supported on j−1(T ).
To check that the maps (2)(a), (b), (c) are isomorphisms in the derived category,
it suffices to check that these map induce isomorphisms on stalks of cohomology
sheaves at geometric points of T and j−1(T ) by Properties of Spaces, Theorem
19.12. This we may do after replacing X by V , U by U ×X V , V by V ×X V and F
by F |V ×X V (restriction via first projection), see Lemmas 3.1, 10.6, and 9.2. Since
V ×X V → V has a section this reduces (2) to the case that j : V → X has a
section.
Assume j has a section σ : X → V . Set V ′ = σ(X). This is an open subspace of
V . Set U ′ = j−1(U). This is another open subspace of V . Then (U ′ ⊂ V, V ′ → V )

https://stacks.math.columbia.edu/tag/08HA
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is an elementary distinguished square. Observe that F |U ′ = 0 and F |V ′∩U ′ = 0
because F is supported on j−1(T ). Denote j′ : V ′ → V the open immersion
and jV ′ : V ′ → X the composition V ′ → V → X which is the inverse of σ.
Set F ′ = σ∗F . The distinguished triangles of Lemmas 10.1 and 10.2 show that
F = j′

!(F |V ′) and F = Rj′
∗(F |V ′). It follows that j!F = j!j

′
!(F |V ′) = jV ′!F = F ′

because jV ′ : V ′ → X is an isomorphism and the inverse of σ. Similarly, Rj∗F =
Rj∗Rj′

∗F = RjV ′,∗F = F ′. This proves (2)(c). To prove (2)(a) and (2)(b) it suffices
to show that F = F ′|V . This is clear because both F and F ′|V restrict to zero on
U ′ and U ′ ∩ V ′ and the same object on V ′. □

We can glue complexes!

Lemma 10.8.08HB Let S be a scheme. Let (U ⊂ X, V → X) be an elementary
distinguished square of algebraic spaces over S. Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
(3) an isomorphism c : A|U×X V → B|U×X V .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V →
B such that c = g|U×X V ◦ f−1|U×X V . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A → E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),

such that
a|U×X V = b|U×X V ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is a ◦ f
and whose restriction to V is b ◦ g.

Proof. Denote jU , jV , jU×X V the corresponding morphisms towards X. Choose
a distinguished triangle

F → RjU,∗A ⊕ RjV,∗B → RjU×X V,∗(B|U×X V ) → F [1]

Here the map RjV,∗B → RjU×X V,∗(B|U×X V ) is the obvious one. The map RjU,∗A →
RjU×X V,∗(B|U×X V ) is the composition of RjU,∗A → RjU×X V,∗(A|U×X V ) with
RjU×X V,∗c. Restricting to U we obtain

F |U → A ⊕ (RjV,∗B)|U → (RjU×X V,∗(B|U×X V ))|U → F |U [1]

Denote j : U ×X V → U . Compatibility of restriction and total direct image
(Lemma 3.1) shows that both (RjV,∗B)|U and (RjU×X V,∗(B|U×X V ))|U are canon-
ically isomorphic to Rj∗(B|U×X V ). Hence the second arrow of the last displayed
equation has a section, and we conclude that the morphism F |U → A is an isomor-
phism.

To see that the morphism F |V → B is an isomorphism we will use a trick. Namely,
choose a distinguished triangle

F |V → B → B′ → F [1]|V

in D(OV ). Since F |U → A is an isomorphism, and since we have the isomorphism
c : A|U×X V → B|U×X V the restriction of F |V → B is an isomorphism over U ×X V .

https://stacks.math.columbia.edu/tag/08HB
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Thus B′ is supported on j−1
V (T ) where T = |X| \ |U |. On the other hand, there is

a morphism of distinguished triangles

F //

��

RjU,∗F |U ⊕ RjV,∗F |V //

��

RjU×X V,∗F |U×X V
//

��

F [1]

��
F // RjU,∗A ⊕ RjV,∗B // RjU×X V,∗(B|U×X V ) // F [1]

The all of the vertical maps in this diagram are isomorphisms, except for the
map RjV,∗F |V → RjV,∗B, hence that is an isomorphism too (Derived Categories,
Lemma 4.3). This implies that RjV,∗B′ = 0. Hence B′ = 0 by Lemma 10.7.
The existence of the morphism F → E follows from the Mayer-Vietoris sequence
for Hom, see Lemma 10.4. □

11. The coherator

08GX Let S be a scheme. Let X be an algebraic space over S. The coherator is a functor
QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any algebraic space X and moreover the adjunction mapping QX(F) → F
is an isomorphism for every quasi-coherent module F , see Properties of Spaces,
Proposition 32.2. Since QX is left exact (as a right adjoint) we can consider its
right derived extension

RQX : D(OX) −→ D(QCoh(OX)).
Since QX is right adjoint to the inclusion functor QCoh(OX) → Mod(OX) we see
that RQX is right adjoint to the canonical functor D(QCoh(OX)) → D(OX) by
Derived Categories, Lemma 30.3.
In this section we will study the functor RQX . In Section 19 we will study the
(closely related) right adjoint to the inclusion functor DQCoh(OX) → D(OX) (when
it exists).

Lemma 11.1.08GY Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )). This functor has the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Spaces, Lemma 8.2. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 16.9. For any complex of OX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism when
F• is a complex with each Fn quasi-coherent. The statement is étale local on Y
hence we may assume Y affine. As an affine morphism is representable we reduce

https://stacks.math.columbia.edu/tag/08GY
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to the case of schemes by the compatibility of Remark 6.3. The case of schemes is
Derived Categories of Schemes, Lemma 7.1. □

Lemma 11.2.08GZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact, quasi-separated, and flat. Then, denot-
ing

Φ : D(QCoh(OX)) → D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) we have RQY ◦ Rf∗ =
Φ ◦ RQX .

Proof. We will prove this by showing that RQY ◦ Rf∗ and Φ ◦ RQX are right
adjoint to the same functor D(QCoh(OY )) → D(OX).
Since f is quasi-compact and quasi-separated, we see that f∗ preserves quasi-
coherence, see Morphisms of Spaces, Lemma 11.2. Recall that QCoh(OX) is a
Grothendieck abelian category (Properties of Spaces, Proposition 32.2). Hence any
K in D(QCoh(OX)) can be represented by a K-injective complex I• of QCoh(OX),
see Injectives, Theorem 12.6. Then we can define Φ(K) = f∗I•.
Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY )) → D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY ) →
D(OX) is left adjoint to Rf∗ : D(OX) → D(OY ), see Cohomology on Sites, Lemma
19.1. Similarly, the functor f∗ : D(QCoh(OY )) → D(QCoh(OX)) is left adjoint to
Φ : D(QCoh(OX)) → D(QCoh(OY )) by Derived Categories, Lemma 30.3.
Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A, RQY (Rf∗E)) = HomD(OY )(A, Rf∗E)
= HomD(OX )(f∗A, E)
= HomD(QCoh(OX ))(f∗A, RQX(E))
= HomD(QCoh(OY ))(A, Φ(RQX(E)))

This implies what we want. □

Lemma 11.3.08H0 Let S be a scheme. Let X be an affine algebraic space over S. Set
A = Γ(X, OX). Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherent OX-module associated to the A-module Γ(X, F),

(2) RQX : D(OX) → D(QCoh(OX)) is the functor which sends E to the
complex of quasi-coherent OX-modules associated to the object RΓ(X, E)
of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (5.1.1).

Proof. Let X0 = Spec(A) be the affine scheme representing X. Recall that there
is a morphism of ringed sites ϵ : Xétale → X0,Zar which induces equivalences

QCoh(OX)
ϵ∗ // QCoh(OX0)
ϵ∗
oo

see Lemma 4.2. Hence we see that QX = ϵ∗ ◦ QX0 ◦ ϵ∗ by uniqueness of adjoint
functors. Hence (1) follows from the description of QX0 in Derived Categories of
Schemes, Lemma 7.3 and the fact that Γ(X0, ϵ∗F) = Γ(X, F). Part (2) follows from
(1) and the fact that the functor from A-modules to quasi-coherent OX -modules
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is exact. The third assertion now follows from the result for schemes (Derived
Categories of Schemes, Lemma 7.3) and Lemma 4.2. □

Next, we prove a criterion for when the functor D(QCoh(OX)) → DQCoh(OX) is
an equivalence.

Lemma 11.4.09TG Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Suppose that for every étale morphism j : V → W with
W ⊂ X quasi-compact open and V affine the right derived functor

Φ : D(QCoh(OU )) → D(QCoh(OW ))

of the left exact functor j∗ : QCoh(OV ) → QCoh(OW ) fits into a commutative
diagram

D(QCoh(OV ))

Φ
��

iV

// DQCoh(OV )

Rj∗

��
D(QCoh(OW )) iW // DQCoh(OW )

Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. We first use the induction principle to prove iX is fully faithful. More
precisely, we will use Lemma 9.6. Let (U ⊂ W, V → W ) be an elementary distin-
guished square with V affine and U, W quasi-compact open in X. Assume that iU

is fully faithful. We have to show that iW is fully faithful. We may replace X by
W , i.e., we may assume W = X (we do this just to simplify the notation – observe
that the condition in the statement of the lemma is preserved under this operation).

Suppose that A, B are objects of D(QCoh(OX)). We want to show that

HomD(QCoh(OX ))(A, B) −→ HomD(OX )(iX(A), iX(B))

is bijective. Let T = |X| \ |U |.

Assume first iX(B) is supported on T . In this case the map

iX(B) → RjV,∗(iX(B)|V ) = RjV,∗(iV (B|V ))

is a quasi-isomorphism (Lemma 10.7). By assumption we have an isomorphism
iX(Φ(B|V )) → RjV,∗(iV (B|V )) in D(OX). Moreover, Φ and −|V are adjoint func-
tors on the derived categories of quasi-coherent modules (by Derived Categories,
Lemma 30.3). The adjunction map B → Φ(B|V ) becomes an isomorphism after
applying iX , whence is an isomorphism in D(QCoh(OX)). Hence

MorD(QCoh(OX ))(A, B) = MorD(QCoh(OX ))(A, Φ(B|V ))
= MorD(QCoh(OV ))(A|V , B|V )
= MorD(OV )(iV (A|V ), iV (B|V ))
= MorD(OX )(iX(A), RjV,∗(iV (B|V )))
= MorD(OX )(iX(A), iX(B))

as desired. Here we have used that iV is fully faithful (Lemma 11.3).

https://stacks.math.columbia.edu/tag/09TG
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In general, choose any complex B• of quasi-coherent OX -modules representing B.
Next, choose any quasi-isomorphism s : B•|U → C• of complexes of quasi-coherent
modules on U . As jU : U → X is quasi-compact and quasi-separated the functor
jU,∗ transforms quasi-coherent modules into quasi-coherent modules (Morphisms of
Spaces, Lemma 11.2). Thus there is a canonical map B• → jU,∗(B•|U ) → jU,∗C•

of complexes of quasi-coherent modules on X. Set B′′ = jU,∗C• in D(QCoh(OX))
and choose a distinguished triangle

B → B′′ → B′ → B[1]

in D(QCoh(OX)). Since the first arrow of the triangle restricts to an isomorphism
over U we see that B′ is supported on T . Hence in the diagram

HomD(QCoh(OX ))(A, B′[−1]) //

��

HomD(OX )(iX(A), iX(B′)[−1])

��
HomD(QCoh(OX ))(A, B) //

��

HomD(OX )(iX(A), iX(B))

��
HomD(QCoh(OX ))(A, B′′) //

��

HomD(OX )(iX(A), iX(B′′))

��
HomD(QCoh(OX ))(A, B′) // HomD(OX )(iX(A), iX(B′))

we have exact columns and the top and bottom horizontal arrows are bijective.
Finally, choose a complex A• of quasi-coherent modules representing A.

Let α : iX(A) → iX(B) be a morphism between in D(OX). The restriction α|U
comes from a morphism in D(QCoh(OU )) as iU is fully faithful. Hence there
exists a choice of s : B•|U → C• as above such that α|U is represented by an
actual map of complexes A•|U → C•. This corresponds to a map of complexes
A → jU,∗C•. In other words, the image of α in HomD(OX )(iX(A), iX(B′′)) comes
from an element of HomD(QCoh(OX ))(A, B′′). A diagram chase then shows that α
comes from a morphism A → B in D(QCoh(OX)). Finally, suppose that a : A → B
is a morphism of D(QCoh(OX)) which becomes zero in D(OX). After choosing B•

suitably, we may assume a is represented by a morphism of complexes a• : A• → B•.
Since iU is fully faithul the restriction a•|U is zero in D(QCoh(OU )). Thus we can
choose s such that s ◦ a•|U : A•|U → C• is homotopic to zero. Applying the functor
jU,∗ we conclude that A• → jU,∗C• is homotopic to zero. Thus a maps to zero in
HomD(QCoh(OX ))(A, B′′). Thus we may assume that a is the image of an element of
b ∈ HomD(QCoh(OX ))(A, B′[−1]). The image of b in HomD(OX )(iX(A), iX(B′)[−1])
comes from a γ ∈ HomD(OX )(A, B′′[−1]) (as a maps to zero in the group on the
right). Since we’ve seen above the horizontal arrows are surjective, we see that γ
comes from a c in HomD(QCoh(OX ))(A, B′′[−1]) which implies a = 0 as desired.

At this point we know that iX is fully faithful for our original X. Since RQX is
its right adjoint, we see that RQX ◦ iX = id (Categories, Lemma 24.4). To finish
the proof we show that for any E in DQCoh(OX) the map iX(RQX(E)) → E is an
isomorphism. Choose a distinguished triangle

iX(RQX(E)) → E → E′ → iX(RQX(E))[1]
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in DQCoh(OX). A formal argument using the above shows that iX(RQX(E′)) = 0.
Thus it suffices to prove that for E ∈ DQCoh(OX) the condition iX(RQX(E)) = 0
implies that E = 0. Consider an étale morphism j : V → X with V affine. By
Lemmas 11.3 and 11.2 and our assumption we have

Rj∗(E|V ) = Rj∗(iV (RQV (E|V ))) = iX(Φ(RQV (E|V ))) = iX(RQX(Rj∗(E|V )))

Choose a distinguished triangle

E → Rj∗(E|V ) → E′ → E[1]

Apply RQX to get a distinguished triangle

0 → RQX(Rj∗(E|V )) → RQX(E′) → 0[1]

in other words the map in the middle is an isomorphism. Combined with the
string of equalities above we find that our first distinguished triangle becomes a
distinguished triangle

E → iX(RQX(E′)) → E′ → E[1]

where the middle morphism is the adjunction map. However, the composition E →
E′ is zero, hence E → iX(RQX(E′)) is zero by adjunction! Since this morphism is
isomorphic to the morphism E → Rj∗(E|V ) adjoint to id : E|V → E|V we conclude
that E|V is zero. Since this holds for all affine V étale over X we conclude E is
zero as desired. □

Proposition 11.5.08H1 Let S be a scheme. Let X be a quasi-compact algebraic space
over S with affine diagonal over Z (as in Properties of Spaces, Definition 3.1).
Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. Let V → W be an étale morphism with V affine and W a quasi-compact
open subspace of X. Then the morphism V → W is affine as W has affine diagonal
over Z and V is affine (Morphisms of Spaces, Lemma 20.11). Lemma 11.1 then
guarantees that the assumption of Lemma 11.4 holds. Hence we conclude. □

Lemma 11.6.0CSR Let S be a scheme and let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y are quasi-compact and have affine diagonal over
Z (as in Properties of Spaces, Definition 3.1). Then, denoting

Φ : D(QCoh(OX)) → D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

is commutative.
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Proof. Observe that the horizontal arrows in the diagram are equivalences of cate-
gories by Proposition 11.5. Hence we can identify these categories (and similarly for
other quasi-compact algebraic spaces with affine diagonal) and then the statement
of the lemma is that the canonical map Φ(K) → Rf∗(K) is an isomorphism for
all K in D(QCoh(OX)). Note that if K1 → K2 → K3 → K1[1] is a distinguished
triangle in D(QCoh(OX)) and the statement is true for two-out-of-three, then it is
true for the third.
Let B ⊂ Ob(Xspaces,étale) be the set of objects which are quasi-compact and have
affine diagonal. For U ∈ B and any morphism g : U → Z where Z is a quasi-
compact algebraic space over S with affine diagonal, denote

Φg : D(QCoh(OU )) → D(QCoh(OZ))
the derived extension of g∗. Let P (U) = “for any K in D(QCoh(OU )) and any
g : U → Z as above the map Φg(K) → Rg∗K is an isomorphism”. By Remark
9.5 conditions (1), (2), and (3)(a) of Lemma 9.4 hold and we are left with proving
(3)(b) and (4).
Checking condition (3)(b). Let U be an affine scheme étale over X. Let g : U → Z
be as above. Since the diagonal of Z is affine the morphism g : U → Z is affine
(Morphisms of Spaces, Lemma 20.11). Hence P (U) holds by Lemma 11.1.
Checking condition (4). Let (U ⊂ W, V → W ) be an elementary distinguished
square in Xspaces,étale with U, W, V in B and V affine. Assume that P holds for
U , V , and U ×W V . We have to show that P holds for W . Let g : W → Z be
a morphism to a quasi-compact algebraic space with affine diagonal. Let K be an
object of D(QCoh(OW )). Consider the distinguished triangle

K → RjU,∗K|U ⊕ RjV,∗K|V → RjU×W V,∗K|U×W V → K[1]
in D(OW ). By the two-out-of-three property mentioned above, it suffices to show
that Φg(RjU,∗K|U ) → Rg∗(RjU,∗K|U ) is an isomorphism and similarly for V and
U ×W V . This is discussed in the next paragraph.
Let j : U → W be a morphism Xspaces,étale with U, W in B and P holds for U .
Let g : W → Z be a morphism to a quasi-compact algebraic space with affine
diagonal. To finish the proof we have to show that Φg(Rj∗K) → Rg∗(Rj∗K)
is an isomorphism for any K in D(QCoh(OU )). Let I• be a K-injective com-
plex in QCoh(OU ) representing K. From P (U) applied to j we see that j∗I•

represents Rj∗K. Since j∗ : QCoh(OU ) → QCoh(OX) has an exact left ad-
joint j∗ : QCoh(OX) → QCoh(OU ) we see that j∗I• is a K-injective complex
in QCoh(OW ), see Derived Categories, Lemma 31.9. Hence Φg(Rj∗K) is repre-
sented by g∗j∗I• = (g ◦ j)∗I•. By P (U) applied to g ◦ j we see that this represents
Rg◦j,∗(K) = Rg∗(Rj∗K). This finishes the proof. □

12. The coherator for Noetherian spaces

09TH We need a little bit more about injective modules to treat the case of a Noetherian
algebraic space.

Lemma 12.1.09TI Let S be a Noetherian affine scheme. Every injective object of
QCoh(OS) is a filtered colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → S)∗Gi
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where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Let S = Spec(A). Let J be an injective object of QCoh(OS). Since
QCoh(OS) is equivalent to the category of A-modules we see that J is equal to
J̃ for some injective A-module J . By Dualizing Complexes, Proposition 5.9 we
can write J =

⊕
Eα with Eα indecomposable and therefore isomorphic to the

injective hull of a reside field at a point. Thus (because finite disjoint unions of
Artinian schemes are Artinian) we may assume that J is the injective hull of κ(p)
for some prime p of A. Then J =

⋃
J [pn] where J [pn] is the injective hull of

κ(p) over A/p
nAp, see Dualizing Complexes, Lemma 7.3. Thus J̃ is the colimit of

the sheaves (Zn → X)∗Gn where Zn = Spec(Ap/pnAp) and Gn the coherent sheaf
associated to the finite A/p

nAp-module J [pn]. Finiteness follows from Dualizing
Complexes, Lemma 6.1. □

Lemma 12.2.09TJ Let S be an affine scheme. Let X be a Noetherian algebraic space
over S. Every injective object of QCoh(OX) is a direct summand of a filtered colimit
colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → X)∗Gi

where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Choose an affine scheme U and a surjective étale morphism j : U → X
(Properties of Spaces, Lemma 6.3). Then U is a Noetherian affine scheme. Choose
an injective object J ′ of QCoh(OU ) such that there exists an injection J |U → J ′.
Then

J → j∗J ′

is an injective morphism in QCoh(OX), hence identifies J as a direct summand
of j∗J ′. Thus the result follows from the corresponding result for J ′ proved in
Lemma 12.1. □

Lemma 12.3.09TK Let S be a scheme. Let f : X → Y be a flat, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. If J is an injective object of
QCoh(OX), then f∗J is an injective object of QCoh(OY ).

Proof. Since f is quasi-compact and quasi-separated, the functor f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma
11.2). The functor f∗ is a left adjoint to f∗ which transforms injections into injec-
tions. Hence the result follows from Homology, Lemma 29.1 □

Lemma 12.4.09TL Let S be a scheme. Let X be a Noetherian algebraic space over S.
If J is an injective object of QCoh(OX), then

(1) Hp(U, J |U ) = 0 for p > 0 and for every quasi-compact and quasi-separated
algebraic space U étale over X,

(2) for any morphism f : X → Y of algebraic spaces over S with Y quasi-
separated we have Rpf∗J = 0 for p > 0.

Proof. Proof of (1). Write J as a direct summand of colim Fi with Fi = (Zi →
X)∗Gi as in Lemma 12.2. It is clear that it suffices to prove the vanishing for
colim Fi. Since pullback commutes with colimits and since U is quasi-compact and
quasi-separated, it suffices to prove Hp(U, Fi|U ) = 0 for p > 0, see Cohomology of
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Spaces, Lemma 5.1. Observe that Zi → X is an affine morphism, see Morphisms
of Spaces, Lemma 20.12. Thus

Fi|U = (Zi ×X U → U)∗G′
i = R(Zi ×X U → U)∗G′

i

where G′
i is the pullback of Gi to Zi ×X U , see Cohomology of Spaces, Lemma

11.1. Since Zi ×X U is affine we conclude that G′
i has no higher cohomology on

Zi ×X U . By the Leray spectral sequence we conclude the same thing is true for
Fi|U (Cohomology on Sites, Lemma 14.6).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let V → Y
be an étale morphism with V affine. Then V ×Y X → X is an étale morphism
and V ×Y X is a quasi-compact and quasi-separated algebraic space étale over X
(details omitted). Hence Hp(V ×Y X, J ) is zero by part (1). Since Rpf∗J is the
sheaf associated to the presheaf V 7→ Hp(V ×Y X, J ) the result is proved. □

Lemma 12.5.09TM Let S be a scheme. Let f : X → Y be a morphism of Noetherian
algebraic spaces over S. Then f∗ on quasi-coherent sheaves has a right derived
extension Φ : D(QCoh(OX)) → D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian the morphism is quasi-compact and quasi-
separated (see Morphisms of Spaces, Lemma 8.10). Thus f∗ preserve quasi-coherence,
see Morphisms of Spaces, Lemma 11.2. Next, let K be an object of D(QCoh(OX)).
Since QCoh(OX) is a Grothendieck abelian category (Properties of Spaces, Propo-
sition 32.2), we can represent K by a K-injective complex I• such that each In is
an injective object of QCoh(OX), see Injectives, Theorem 12.6. Thus we see that
the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X, Y, f) be as
in Lemma 6.1. Consider the short exact sequence

0 → σ≥m−N−1I• → I• → σ≤m−N−2I• → 0

of complexes of quasi-coherent sheaves on X. By Lemma 6.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we
see that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may
assume that I• is a bounded below complex of injective objects of QCoh(OX).
This case follows from Leray’s acyclicity lemma (Derived Categories, Lemma 16.7)
with required vanishing because of Lemma 12.4. □
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Proposition 12.6.09TN Let S be a scheme. Let X be a Noetherian algebraic space
over S. Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .
Proof. Follows immediately from Lemmas 12.5 and 11.4. □

13. Pseudo-coherent and perfect complexes

08HC In this section we study the general notions defined in Cohomology on Sites, Sec-
tions 44, 45, 46, and 47 for the étale site of an algebraic space. In particular we
match this with what happens for schemes.
First we compare the notion of a pseudo-coherent complex on a scheme and on its
associated small étale site.
Lemma 13.1.08HD Let X be a scheme. Let F be an OX-module. The following are
equivalent

(1) F is of finite type as an OX-module, and
(2) ϵ∗F is of finite type as an Oétale-module on the small étale site of X.

Here ϵ is as in (4.0.1).
Proof. The implication (1) ⇒ (2) is a general fact, see Modules on Sites, Lemma
23.4. Assume (2). By assumption there exists an étale covering {fi : Xi → X} such
that ϵ∗F|(Xi)étale

is generated by finitely many sections. Let x ∈ X. We will show
that F is generated by finitely many sections in a neighbourhood of x. Say x is in
the image of Xi → X and denote X ′ = Xi. Let s1, . . . , sn ∈ Γ(X ′, ϵ∗F|X′

étale
) be

generating sections. As ϵ∗F = ϵ−1F ⊗ϵ−1OX
Oétale we can find an étale morphism

X ′′ → X ′ such that x is in the image of X ′ → X and such that si|X′′ =
∑

sij ⊗ aij

for some sections sij ∈ ϵ−1F(X ′′) and aij ∈ Oétale(X ′′). Denote U ⊂ X the image
of X ′′ → X. This is an open subscheme as f ′′ : X ′′ → X is étale (Morphisms,
Lemma 36.13). After possibly shrinking X ′′ more we may assume sij come from
elements tij ∈ F(U) as follows from the construction of the inverse image functor
ϵ−1. Now we claim that tij generate F|U which finishes the proof of the lemma.
Namely, the corresponding map O⊕N

U → F|U has the property that its pullback
by f ′′ to X ′′ is surjective. Since f ′′ : X ′′ → U is a surjective flat morphism of
schemes, this implies that O⊕N

U → F|U is surjective by looking at stalks and using
that OU,f ′′(z) → OX′′,z is faithfully flat for all z ∈ X ′′. □

In the situation above the morphism of sites ϵ is flat hence defines a pullback on
complexes of modules.
Lemma 13.2.08HE Let X be a scheme. Let E be an object of D(OX). The following
are equivalent

(1) E is m-pseudo-coherent, and
(2) ϵ∗E is m-pseudo-coherent on the small étale site of X.

Here ϵ is as in (4.0.1).
Proof. The implication (1) ⇒ (2) is a general fact, see Cohomology on Sites,
Lemma 45.3. Assume ϵ∗E is m-pseudo-coherent. We will use without further
mention that ϵ∗ is an exact functor and that therefore

ϵ∗Hi(E) = Hi(ϵ∗E).
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To show that E is m-pseudo-coherent we may work locally on X, hence we may
assume that X is quasi-compact (for example affine). Since X is quasi-compact
every étale covering {Ui → X} has a finite refinement. Thus we see that ϵ∗E is
an object of D−(Oétale), see comments following Cohomology on Sites, Definition
45.1. By Lemma 4.1 it follows that E is an object of D−(OX).
Let n ∈ Z be the largest integer such that Hn(E) is nonzero; then n is also the
largest integer such that Hn(ϵ∗E) is nonzero. We will prove the lemma by induction
on n − m. If n < m, then the lemma is clearly true. If n ≥ m, then Hn(ϵ∗E) is
a finite Oétale-module, see Cohomology on Sites, Lemma 45.7. Hence Hn(E) is a
finite OX -module, see Lemma 13.1. After replacing X by the members of an open
covering, we may assume there exists a surjection O⊕t

X → Hn(E). We may locally
on X lift this to a map of complexes α : O⊕t

X [−n] → E (details omitted). Choose
a distinguished triangle

O⊕t
X [−n] → E → C → O⊕t

X [−n + 1]
Then C has vanishing cohomology in degrees ≥ n. On the other hand, the complex
ϵ∗C is m-pseudo-coherent, see Cohomology on Sites, Lemma 45.4. Hence by induc-
tion we see that C is m-pseudo-coherent. Applying Cohomology on Sites, Lemma
45.4 once more we conclude. □

Lemma 13.3.08HF Let X be a scheme. Let E be an object of D(OX). Then
(1) E has tor amplitude in [a, b] if and only if ϵ∗E has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if ϵ∗E has finite tor dimension.

Here ϵ is as in (4.0.1).
Proof. The easy implication follows from Cohomology on Sites, Lemma 46.5. For
the converse, assume that ϵ∗E has tor amplitude in [a, b]. Let F be an OX -module.
As ϵ is a flat morphism of ringed sites (Lemma 4.1) we have

ϵ∗(E ⊗L
OX

F) = ϵ∗E ⊗L
Oétale

ϵ∗F
Thus the (assumed) vanishing of cohomology sheaves on the right hand side implies
the desired vanishing of the cohomology sheaves of E ⊗L

OX
F via Lemma 4.1. □

Lemma 13.4.0DK7 Let f : X → Y be a morphism of schemes. Let E be an object of
D(OX). Then

(1) E as an object of D(f−1OY ) has tor amplitude in [a, b] if and only if ϵ∗E
has tor amplitude in [a, b] as an object of D(f−1

smallOYétale
).

(2) E locally has finite tor dimension as an object of D(f−1OY ) if and only if
ϵ∗E locally has finite tor dimension as an object of D(f−1

smallOYétale
).

Here ϵ is as in (4.0.1).
Proof. The easy direction in (1) follows from Cohomology on Sites, Lemma 46.5.
Let x ∈ X be a point and let x be a geometric point lying over x. Let y = f(x)
and denote y the geometric point of Y coming from x. Then (f−1OY )x = OY,y

(Sheaves, Lemma 21.5) and
(f−1

smallOYétale
)x = OYétale,y = Osh

Y,y

is the strict henselization (by Étale Cohomology, Lemmas 36.2 and 33.1). Since the
stalk of OXétale

at X is Osh
X,x we obtain

(ϵ∗E)x = Ex ⊗L
OX,x

Osh
X,x
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by transitivity of pullbacks. If ϵ∗E has tor amplitude in [a, b] as a complex of
f−1

smallOYétale
-modules, then (ϵ∗E)x has tor amplitude in [a, b] as a complex of Osh

Y,y-
modules (because taking stalks is a pullback and lemma cited above). By More on
Flatness, Lemma 2.6 we find the tor amplitude of (ϵ∗E)x as a complex of OY,y-
modules is in [a, b]. Since OX,x → Osh

X,x is faithfully flat (More on Algebra, Lemma
45.1) and since (ϵ∗E)x = Ex ⊗L

OX,x
Osh

X,x we may apply More on Algebra, Lemma
66.18 to conclude the tor amplitude of Ex as a complex of OY,y-modules is in [a, b].
By Cohomology, Lemma 48.5 we conclude that E as an object of D(f−1OY ) has
tor amplitude in [a, b]. This gives the reverse implication in (1). Part (2) follows
formally from (1). □

Lemma 13.5.08HG Let X be a scheme. Let E be an object of D(OX). Then E is a
perfect object of D(OX) if and only if ϵ∗E is a perfect object of D(Oétale). Here ϵ
is as in (4.0.1).

Proof. The easy implication follows from the general result contained in Coho-
mology on Sites, Lemma 47.5. For the converse, we can use the equivalence of Co-
homology on Sites, Lemma 47.4 and the corresponding results for pseudo-coherent
and complexes of finite tor dimension, namely Lemmas 13.2 and 13.3. Some details
omitted. □

Lemma 13.6.08JL Let S be a scheme. Let X be an algebraic space over S. If E is an
m-pseudo-coherent object of D(OX), then Hi(E) is a quasi-coherent OX-module
for i > m. If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. Locally Hi(E) is isomorphic to Hi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. □

Lemma 13.7.08IK Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let E be an object of DQCoh(OX). For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i ≫ 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−
Coh(OX).

Proof. As X is quasi-compact we can find an affine scheme U and a surjective
étale morphism U → X (Properties of Spaces, Lemma 6.3). Observe that U is
Noetherian. Note that E is m-pseudo-coherent if and only if E|U is m-pseudo-
coherent (follows from the definition or from Cohomology on Sites, Lemma 45.2).
Similarly, Hi(E) is coherent if and only if Hi(E)|U = Hi(E|U ) is coherent (see
Cohomology of Spaces, Lemma 12.2). Thus we may assume that X is representable.
If X is representable by a scheme X0 then (Lemma 4.2) we can write E = ϵ∗E0
where E0 is an object of DQCoh(OX0) and ϵ : Xétale → (X0)Zar is as in (4.0.1). In
this case E is m-pseudo-coherent if and only if E0 is by Lemma 13.2. Similarly,
Hi(E0) is of finite type (i.e., coherent) if and only if Hi(E) is by Lemma 13.1.
Finally, Hi(E0) = 0 if and only if Hi(E) = 0 by Lemma 4.1. Thus we reduce to
the case of schemes which is Derived Categories of Schemes, Lemma 10.3. □

Lemma 13.8.08IL Let S be a scheme. Let X be a quasi-separated algebraic space over
S. Let E be an object of DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
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(2) for all F in QCoh(OX) we have Hi(E ⊗L
OX

F) = 0 for i ̸∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let j : U → X be an étale
morphism with U affine. As X is quasi-separated j : U → X is quasi-compact and
separated, hence j∗ transforms quasi-coherent modules into quasi-coherent modules
(Morphisms of Spaces, Lemma 11.2). Thus the functor QCoh(OX) → QCoh(OU )
is essentially surjective. It follows that condition (2) implies the vanishing of
Hi(E|U ⊗L

OU
G) for i ̸∈ [a, b] for all quasi-coherent OU -modules G. Since it suf-

fices to prove that E|U has tor amplitude in [a, b] we reduce to the case where X is
representable.
If X is representable by a scheme X0 then (Lemma 4.2) we can write E = ϵ∗E0
where E0 is an object of DQCoh(OX0) and ϵ : Xétale → (X0)Zar is as in (4.0.1).
For every quasi-coherent module F0 on X0 the module ϵ∗F0 is quasi-coherent on
X and

Hi(E ⊗L
OX

ϵ∗F0) = ϵ∗Hi(E0 ⊗L
OX0

F0)
as ϵ is flat (Lemma 4.1). Moreover, the vanishing of these sheaves for i ̸∈ [a, b]
implies the same thing for Hi(E0 ⊗L

OX0
F0) by the same lemma. Thus we’ve re-

duced the problem to the case of schemes which is treated in Derived Categories of
Schemes, Lemma 10.6. □

Lemma 13.9.08JP Let X be a scheme. Let E, F be objects of D(OX). Assume either
(1) E is pseudo-coherent and F lies in D+(OX), or
(2) E is perfect and F arbitrary,

then there is a canonical isomorphism
ϵ∗R Hom(E, F ) −→ R Hom(ϵ∗E, ϵ∗F )

Here ϵ is as in (4.0.1).

Proof. Recall that ϵ is flat (Lemma 4.1) and hence ϵ∗ = Lϵ∗. There is a canonical
map from left to right by Cohomology on Sites, Remark 35.11. To see this is an
isomorphism we can work locally, i.e., we may assume X is an affine scheme.
In case (1) we can represent E by a bounded above complex E• of finite free OX -
modules, see Derived Categories of Schemes, Lemma 13.3. We may also represent
F by a bounded below complex F• of OX -modules. Applying Cohomology, Lemma
46.11 we see that R Hom(E, F ) is represented by the complex with terms⊕

n=−p+q
HomOX

(Ep, Fq)

Applying Cohomology on Sites, Lemma 44.10 we see that R Hom(ϵ∗E, ϵ∗F ) is rep-
resented by the complex with terms⊕

n=−p+q
HomOétale

(ϵ∗Ep, ϵ∗Fq)

Thus the statement of the lemma boils down to the true fact that the canonical
map

ϵ∗ HomOX
(E , F) −→ HomOétale

(ϵ∗E , ϵ∗F)
is an isomorphism for any OX -module F and finite free OX -module E .
In case (2) we can represent E by a strictly perfect complex E• of OX -modules, use
Derived Categories of Schemes, Lemmas 3.5 and 10.7 and the fact that a perfect
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complex of modules is represented by a finite complex of finite projective mod-
ules. Thus we can do the exact same proof as above, replacing the reference to
Cohomology, Lemma 46.11 by a reference to Cohomology, Lemma 46.9. □

Lemma 13.10.0A8A Let S be a scheme. Let X be an algebraic space over S. Let L, K
be objects of D(OX). If either

(1) L in D+
QCoh(OX) and K is pseudo-coherent,

(2) L in DQCoh(OX) and K is perfect,
then R Hom(K, L) is in DQCoh(OX).
Proof. This follows from the analogue for schemes (Derived Categories of Schemes,
Lemma 10.8) via the criterion of Lemma 5.2, the criterion of Lemmas 13.2 and 13.5,
and the result of Lemma 13.9. □

Lemma 13.11.0E4Q Let S be a scheme. Let X be an algebraic space over S. Let
K, L, M be objects of DQCoh(OX). The map

K ⊗L
OX

R Hom(M, L) −→ R Hom(M, K ⊗L
OX

L)
of Cohomology on Sites, Lemma 35.7 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(OX), and K has finite tor dimension.

Proof. Checking whether or not the map is an isomorphism can be done étale
locally hence we may assume X is an affine scheme. Then we can write K, L, M as
ϵ∗K0, ϵ∗L0, ϵ∗M0 for some K0, L0, M0 in DQCoh(OX) by Lemma 4.2. Then we see
that Lemma 13.9 reduces cases (1) and (3) to the case of schemes which is Derived
Categories of Schemes, Lemma 10.9. If K is perfect but no other assumptions are
made, then we do not know that either side of the arrow is in DQCoh(OX) but the
result is still true because K will be represented (after localizing further) by a finite
complex of finite free modules in which case it is clear. □

14. Approximation by perfect complexes

08HH In this section we continue the discussion started in Derived Categories of Schemes,
Section 14.
Definition 14.1.08HI Let S be a scheme. Let X be an algebraic space over S. Consider
triples (T, E, m) where

(1) T ⊂ |X| is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T, E, m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P ) → Hi(E) for i > m and a surjection Hm(P ) → Hm(E).
Approximation cannot hold for every triple. Please read the remarks following
Derived Categories of Schemes, Definition 14.1 to see why.
Definition 14.2.08HJ Let S be a scheme. Let X be an algebraic space over S. We
say approximation by perfect complexes holds on X if for any closed subset T ⊂ |X|
such that the morphism X \ T → X is quasi-compact there exists an integer r such
that for every triple (T, E, m) as in Definition 14.1 with
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(1) E is (m − r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m − r

approximation holds.

Lemma 14.3.08HK Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic space over S. Let E be a perfect object of D(OV )
supported on j−1(T ) where T = |X| \ |U |. Then Rj∗E is a perfect object of D(OX).

Proof. Being perfect is local on Xétale. Thus it suffices to check that Rj∗E is
perfect when restricted to U and V . We have Rj∗E|V = E by Lemma 10.7 which
is perfect. We have Rj∗E|U = 0 because E|V \j−1(T ) = 0 (use Lemma 3.1). □

Lemma 14.4.08HL Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Let T be a closed subset of |X| \ |U |
and let (T, E, m) be a triple as in Definition 14.1. If

(1) approximation holds for (j−1T, E|V , m), and
(2) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T, E, m).

Proof. Let P → E|V be an approximation of the triple (j−1T, E|V , m) over V .
Then Rj∗P is a perfect object of D(OX) by Lemma 14.3. On the other hand,
Rj∗P = j!P by Lemma 10.7. We see that j!P is supported on T for example by
(10.0.2). Hence we obtain an approximation Rj∗P = j!P → j!(E|V ) → E. □

Lemma 14.5.08HM Let S be a scheme. Let X be an algebraic space over S which
is representable by an affine scheme. Then approximation holds for every triple
(T, E, m) as in Definition 14.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m − r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Let X0 be an affine scheme representing X. Let T0 ⊂ X0 by the closed
subset corresponding to T . Let ϵ : Xétale → X0,Zar be the morphism (4.0.1). We
may write E = ϵ∗E0 for some object E0 of DQCoh(OX0), see Lemma 4.2. Then E0 is
m-pseudo-coherent, see Lemma 13.2. Comparing stalks of cohomology sheaves (see
proof of Lemma 4.1) we see that Hi(E0) is supported on T0 for i ≥ m − r + 1. By
Derived Categories of Schemes, Lemma 14.4 there exists an approximation P0 → E0
of (T0, E0, m). By Lemma 13.5 we see that P = ϵ∗P0 is a perfect object of D(OX).
Pulling back we obtain an approximation P = ϵ∗P0 → ϵ∗E0 = E as desired. □

Lemma 14.6.08HN Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume U quasi-compact, V affine,
and U ×X V quasi-compact. If approximation by perfect complexes holds on U , then
approximation by perfect complexes holds on X.

Proof. Let T ⊂ |X| be a closed subset with X \ T → X quasi-compact. Let rU

be the integer of Definition 14.2 adapted to the pair (U, T ∩ |U |). Set T ′ = T \ |U |.
Endow T ′ with the induced reduced subspace structure. Since |T ′| is contained in
|X| \ |U | we see that j−1(T ′) → T ′ is an isomorphism. Moreover, V \ j−1(T ′) is
quasi-compact as it is the fibre product of U ×X V with X \ T over X and we’ve
assumed U ×X V quasi-compact and X \ T → X quasi-compact. Let r′ be the
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number of affines needed to cover V \ j−1(T ′). We claim that r = max(rU , r′)
works for the pair (X, T ).
To see this choose a triple (T, E, m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m − r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.
Base case: t ≤ m − r′. This means that Hi(E) is supported on T ′ for i ≥ m − r′.
Hence Lemma 14.5 guarantees the existence of an approximation P → E|V of
(T ′, E|V , m) on V . Applying Lemma 14.4 we see that (T ′, E, m) can be approxi-
mated. Such an approximation is also an approximation of (T, E, m).
Induction step. Choose an approximation P → E|U of (T ∩ |U |, E|U , m). This
in particular gives a surjection Ht(P ) → Ht(E|U ). In the rest of the proof we
will use the equivalence of Lemma 4.2 (and the compatibilities of Remark 6.3) for
the representable algebraic spaces V and U ×X V . We will also use the fact that
(m − r)-pseudo-coherence, resp. perfectness on the Zariski site and étale site agree,
see Lemmas 13.2 and 13.5. Thus we can use the results of Derived Categories of
Schemes, Section 13 for the open immersion U ×X V ⊂ V . In this way Derived
Categories of Schemes, Lemma 13.9 implies there exists a perfect object Q in D(OV )
supported on j−1(T ) and an isomorphism Q|U×X V → (P ⊕P [1])|U×X V . By Derived
Categories of Schemes, Lemma 13.6 we can replace Q by Q ⊗L I and assume that
the map

Q|U×X V −→ (P ⊕ P [1])|U×X V −→ P |U×X V −→ E|U×X V

lifts to Q → E|V . By Lemma 10.8 we find an morphism a : R → E of D(OX)
such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to Q → E|V .
Thus R is perfect and supported on T and the map Ht(R) → Ht(E) is surjective
on restriction to U . Choose a distinguished triangle

R → E → E′ → R[1]
Then E′ is (m−r)-pseudo-coherent (Cohomology on Sites, Lemma 45.4), Hi(E′)|U =
0 for i ≥ t, and Hi(E′) is supported on T for i ≥ m − r. By induction we find an
approximation R′ → E′ of (T, E′, m). Fit the composition R′ → E′ → R[1] into a
distinguished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1] → R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology on Sites, Lemma 47.6)
supported on T . An easy diagram chase shows that R′′ → E is the desired approx-
imation. □

Theorem 14.7.08HP Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Lemma 9.3 and Lemmas 14.6
and 14.5. □
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15. Generating derived categories

09IU This section is the analogue of Derived Categories of Schemes, Section 15. However,
we first prove the following lemma which is the analogue of Derived Categories of
Schemes, Lemma 13.10.

Lemma 15.1.09IV Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open. Let T ⊂ |X| be a
closed subset such that X \ T → X is a quasi-compact morphism. Let E be an
object of DQCoh(OX). Let α : P → E|W be a map where P is a perfect object of
D(OW ) supported on T ∩ W . Then there exists a map β : R → E where R is a
perfect object of D(OX) supported on T such that P is a direct summand of R|W
in D(OW ) compatible α and β|W .

Proof. We will use the induction principle of Lemma 9.6 to prove this. Thus we
immediately reduce to the case where we have an elementary distinguished square
(W ⊂ X, f : V → X) with V affine and P → E|W as in the statement of the
lemma. In the rest of the proof we will use Lemma 4.2 (and the compatibilities of
Remark 6.3) for the representable algebraic spaces V and W ×X V . We will also
use the fact that perfectness on the Zariski site and étale site agree, see Lemma
13.5.
By Derived Categories of Schemes, Lemma 13.9 we can choose a perfect object Q
in D(OV ) supported on f−1T and an isomorphism Q|W ×X V → (P ⊕ P [1])|W ×X V .
By Derived Categories of Schemes, Lemma 13.6 we can replace Q by Q ⊗L I (still
supported on f−1T ) and assume that the map

Q|W ×X V → (P ⊕ P [1])|W ×V −→ P |W ×X V −→ E|W ×X V

lifts to Q → E|V . By Lemma 10.8 we find an morphism a : R → E of D(OX) such
that a|W is isomorphic to P ⊕ P [1] → E|W and a|V isomorphic to Q → E|V . Thus
R is perfect and supported on T as desired. □

Remark 15.2.09IW The proof of Lemma 15.1 shows that

R|W = P ⊕ P ⊕n1 [1] ⊕ . . . ⊕ P ⊕nm [m]
for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|W
equals that of P . By repeating the construction for the map P ⊕n1 [1] ⊕ . . . ⊕
P ⊕nm [m] → R|W , taking cones, and using induction we can achieve equality of
cohomology sheaves of R|W and P above any given degree.

Lemma 15.3.09IX Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W be a quasi-compact open subspace of X. Let P be a
perfect object of D(OW ). Then P is a direct summand of the restriction of a perfect
object of D(OX).

Proof. Special case of Lemma 15.1. □

Theorem 15.4.09IY Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The category DQCoh(OX) can be generated by a single
perfect object. More precisely, there exists a perfect object P of D(OX) such that
for E ∈ DQCoh(OX) the following are equivalent

(1) E = 0, and
(2) HomD(OX )(P [n], E) = 0 for all n ∈ Z.
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Proof. We will prove this using the induction principle of Lemma 9.3.
If X is affine, then OX is a perfect generator. This follows from Lemma 4.2 and
Derived Categories of Schemes, Lemma 3.5.
Assume that (U ⊂ X, f : V → X) is an elementary distinguished square with
U quasi-compact such that the theorem holds for U and V is an affine scheme.
Let P be a perfect object of D(OU ) which is a generator for DQCoh(OU ). Using
Lemma 15.3 we may choose a perfect object Q of D(OX) whose restriction to U
is a direct sum one of whose summands is P . Say V = Spec(A). Let Z ⊂ V
be the reduced closed subscheme which is the inverse image of X \ U and maps
isomorphically to it (see Definition 9.1). This is a retrocompact closed subset of V .
Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be the perfect
object corresponding to the Koszul complex on f1, . . . , fr over A. Note that since
K is supported on Z, the pushforward K ′ = Rf∗K is a perfect object of D(OX)
whose restriction to V is K (see Lemmas 14.3 and 10.7). We claim that Q ⊕ K ′ is
a generator for DQCoh(OX).
Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q ⊕ K ′ into E. By Lemma 10.7 we have K ′ = f!K and hence

HomD(OX )(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Derived Categories of Schemes, Lemma 15.2 (using also Lemma 4.2)
the vanishing of these groups implies that E|V is isomorphic to R(U ×X V →
V )∗E|U×X V . This implies that E = R(U → X)∗E|U (small detail omitted). If this
is the case then

HomD(OX )(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

Remark 15.5.0E4R Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let E ∈ DQCoh(OY ) be a
generator (see Theorem 15.4). Then the following are equivalent

(1) for K ∈ DQCoh(OX) we have Rf∗K = 0 if and only if K = 0,
(2) Rf∗ : DQCoh(OX) → DQCoh(OY ) reflects isomorphisms, and
(3) Lf∗E is a generator for DQCoh(OX).

The equivalence between (1) and (2) is a formal consequence of the fact that
Rf∗ : DQCoh(OX) → DQCoh(OY ) is an exact functor of triangulated categories.
Similarly, the equivalence between (1) and (3) follows formally from the fact that
Lf∗ is the left adjoint to Rf∗. These conditions hold if f is affine (Lemma 6.4) or
if f is an open immersion, or if f is a composition of such.

The following result is an strengthening of Theorem 15.4 proved using exactly the
same methods. Let T ⊂ |X| be a closed subset where X is an algebraic space. Let’s
denote DT (OX) the strictly full, saturated, triangulated subcategory consisting of
complexes whose cohomology sheaves are supported on T .

Lemma 15.6.0AEC Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. With notation as above, the category DQCoh,T (OX) is generated by a
single perfect object.
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Proof. We will prove this using the induction principle of Lemma 9.3. The prop-
erty is true for representable quasi-compact and quasi-separated objects of the site
Xspaces,étale by Derived Categories of Schemes, Lemma 15.4.
Assume that (U ⊂ X, f : V → X) is an elementary distinguished square such
that the lemma holds for U and V is affine. To finish the proof we have to show
that the result holds for X. Let P be a perfect object of D(OU ) supported on
T ∩ U which is a generator for DQCoh,T ∩U (OU ). Using Lemma 15.1 we may choose
a perfect object Q of D(OX) supported on T whose restriction to U is a direct
sum one of whose summands is P . Write V = Spec(B). Let Z = X \ U . Then
f−1Z is a closed subset of V such that V \ f−1Z is quasi-compact. As X is quasi-
separated, it follows that f−1Z ∩ f−1T = f−1(Z ∩ T ) is a closed subset of V such
that W = V \ f−1(Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B
such that f−1(Z ∩ T ) = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect object
corresponding to the Koszul complex on g1, . . . , gs over B. Note that since K is
supported on f−1(Z ∩ T ) ⊂ V closed, the pushforward K ′ = R(V → X)∗K is a
perfect object of D(OX) whose restriction to V is K (see Lemmas 14.3 and 10.7).
We claim that Q ⊕ K ′ is a generator for DQCoh,T (OX).
Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from
any shift of Q⊕K ′ into E. By Lemma 10.7 we have K ′ = R(V → X)!K and hence

HomD(OX )(K ′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 15.2 we have E|V = Rj∗E|W where
j : W → V is the inclusion. Picture

W
j

// V Z ∩ Too

��
V \ f−1Z

j′

OO

j′′

::

Z

bb

Since E is supported on T we see that E|W is supported on f−1T ∩ W = f−1T ∩
(V \ f−1Z) which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj′
∗(E|U∩V )) = Rj′′

∗ (E|U∩V )
Here the second equality is part (1) of Cohomology, Lemma 33.6 which applies
because V is a scheme and E has quasi-coherent cohomology sheaves hence push-
forward along the quasi-compact open immersion j′ agrees with pushforward on
the underlying schemes, see Remark 6.3. This implies that E = R(U → X)∗E|U
(small detail omitted). If this is the case then

HomD(OX )(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

16. Compact and perfect objects

09M7 This section is the analogue of Derived Categories of Schemes, Section 17.

Proposition 16.1.09M8 Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. An object of DQCoh(OX) is compact if and only
if it is perfect.
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Proof. If K is a perfect object of D(OX) with dual K∨ (Cohomology on Sites,
Lemma 48.4) we have

HomD(OX )(K, M) = H0(X, K∨ ⊗L
OX

M)

functorially in M . Since K∨ ⊗L
OX

− commutes with direct sums and since H0(X, −)
commutes with direct sums on DQCoh(OX) by Lemma 6.2 we conclude that K is
compact in DQCoh(OX).
Conversely, let K be a compact object of DQCoh(OX). To show that K is perfect,
it suffices to show that K|U is perfect for every affine scheme U étale over X, see
Cohomology on Sites, Lemma 47.2. Observe that j : U → X is a quasi-compact
and separated morphism. Hence Rj∗ : DQCoh(OU ) → DQCoh(OX) commutes with
direct sums, see Lemma 6.2. Thus the adjointness of restriction to U and Rj∗
implies that K|U is a perfect object of DQCoh(OU ). Hence we reduce to the case
that X is affine, in particular a quasi-compact and quasi-separated scheme. Via
Lemma 4.2 and 13.5 we reduce to the case of schemes, i.e., to Derived Categories
of Schemes, Proposition 17.1. □

Remark 16.2.0GFC Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let G be a perfect object of D(OX) which is a generator for
DQCoh(OX). By Theorem 15.4 there is at least one of these. Combining Lemma
5.3 with Proposition 16.1 and with Derived Categories, Proposition 37.6 we see
that G is a classical generator for Dperf (OX).

The following result is a strengthening of Proposition 16.1. Let T ⊂ |X| be a closed
subset where X is an algebraic space. As before DT (OX) denotes the strictly
full, saturated, triangulated subcategory consisting of complexes whose cohomol-
ogy sheaves are supported on T . Since taking direct sums commutes with taking
cohomology sheaves, it follows that DT (OX) has direct sums and that they are
equal to direct sums in D(OX).

Lemma 16.3.0AED Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. An object of DQCoh,T (OX) is compact if and only if it is perfect as an
object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Proposition 16.1 the perfect objects define
compact objects of D(OX) hence a fortiori of any subcategory preserved under
taking direct sums. For the converse we will use there exists a generator E ∈
DQCoh,T (OX) which is a perfect complex of OX -modules, see Lemma 15.6. Hence
by the above, E is compact. Then it follows from Derived Categories, Proposition
37.6 that E is a classical generator of the full subcategory of compact objects
of DQCoh,T (OX). Thus any compact object can be constructed out of E by a
finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct
sums, (c) taking cones, and (d) taking direct summands. Each of these operations
preserves the property of being perfect and the result follows. □

Remark 16.4.0GFD Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. Let G be a perfect object of DQCoh,T (OX) which is a generator for
DQCoh,T (OX). By Lemma 15.6 there is at least one of these. Combining the fact
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that DQCoh,T (OX) has direct sums with Lemma 16.3 and with Derived Categories,
Proposition 37.6 we see that G is a classical generator for Dperf,T (OX).

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 16.5.0AEE Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that the complement
U ⊂ X is quasi-compact. Let α : P → E be a morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX-modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = R Hom(P, E) is an
object of D. See Lemma 13.10 for quasi-coherence. It is clear that K is supported
on T as formation of R Hom commutes with restriction to opens. The map α defines
an element of H0(K) = HomD(OX )(OX [0], K). Then it suffices to prove the result
for the map α : OX [0] → K.
Let E ∈ D be a perfect generator, see Lemma 15.6. Write

K = hocolimKn

as in Derived Categories, Lemma 37.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn holds in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α, see Derived Categories, Lemma 33.9. By
Derived Categories, Lemma 37.4 applied to the morphism OX [0] → Kn in the
ambient category D(OX) we see that αn factors as OX [0] → Q → Kn where Q is
an object of ⟨E⟩. We conclude that Q is a perfect complex supported on T .
Choose a distinguished triangle

I → OX [0] → Q → I[1]
By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. □

17. Derived categories as module categories

09M9 The section is the analogue of Derived Categories of Schemes, Section 18.

Lemma 17.1.09MA Let S be a scheme. Let X be an algebraic space over S. Let K•

be a complex of OX-modules whose cohomology sheaves are quasi-coherent. Let
(E, d) = HomCompdg(OX )(K•, K•) be the endomorphism differential graded algebra.
Then the functor

− ⊗L
E K• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 35.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property P . Let F• be a
filtration on P as in Differential Graded Algebra, Section 20. Then we have

P ⊗E K• = hocolim FiP ⊗E K•
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Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. □

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 17.2.09MB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K be a perfect object of D(OX). Then

(1) there exist integers a ≤ b such that HomD(OX )(K, L) = 0 for L ∈ DQCoh(OX)
with Hi(L) = 0 for i ∈ [a, b], and

(2) if L is bounded, then Extn
D(OX )(K, L) is zero for all but finitely many n.

Proof. Part (2) follows from (1) as Extn
D(OX )(K, L) = HomD(OX )(K, L[n]). We

prove (1). Since K is perfect we have

Exti
D(OX )(K, L) = Hi(X, K∨ ⊗L

OX
L)

where K∨ is the “dual” perfect complex to K, see Cohomology on Sites, Lemma
48.4. Note that P = K∨ ⊗L

OX
L is in DQCoh(X) by Lemmas 5.6 and 13.6 (to see

that a perfect complex has quasi-coherent cohomology sheaves). Say K∨ has tor
amplitude in [a, b]. Then the spectral sequence

Ep,q
1 = Hp(K∨ ⊗L

OX
Hq(L)) ⇒ Hp+q(K∨ ⊗L

OX
L)

shows that Hj(K∨ ⊗L
OX

L) is zero if Hq(L) = 0 for q ∈ [j − b, j − a]. Let N be the
integer max(dp +p) of Cohomology of Spaces, Lemma 7.3. Then H0(X, K∨ ⊗L

OX
L)

vanishes if the cohomology sheaves

H−N (K∨ ⊗L
OX

L), H−N+1(K∨ ⊗L
OX

L), . . . , H0(K∨ ⊗L
OX

L)

are zero. Namely, by the lemma cited and Lemma 5.8, we have

H0(X, K∨ ⊗L
OX

L) = H0(X, τ≥−N (K∨ ⊗L
OX

L))

and by the vanishing of cohomology sheaves, this is equal to H0(X, τ≥1(K∨⊗L
OX

L))
which is zero by Derived Categories, Lemma 16.1. It follows that HomD(OX )(K, L)
is zero if Hi(L) = 0 for i ∈ [−b − N, −a]. □

The following is the analogue of Derived Categories of Schemes, Theorem 18.3.

Theorem 17.3.09MC Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then there exist a differential graded algebra (E, d) with
only a finite number of nonzero cohomology groups Hi(E) such that DQCoh(OX) is
equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gen-
erates DQCoh(OX). Such a thing exists by Theorem 15.4 and the existence of
K-injective resolutions. We will show the theorem holds with

(E, d) = HomCompdg(OX )(K•, K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 35. Since K• is K-injective we have

(17.3.1)09MD Hn(E) = Extn
D(OX )(K•, K•)
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for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 17.2.
Consider the functor

− ⊗L
E K• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 35.3. Since K• is perfect, it defines a
compact object of D(OX), see Proposition 16.1. Combined with (17.3.1) the functor
above is fully faithful as follows from Differential Graded Algebra, Lemmas 35.6.
It has a right adjoint

R Hom(K•, −) : D(OX) −→ D(E, d)

by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma 17.1
that we obtain

− ⊗L
E K• : D(E, d) −→ DQCoh(OX)

and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 7.2. □

Remark 17.4 (Variant with support).0DK8 Let S be a scheme. Let X be a quasi-
compact and quasi-separated algebraic space. Let T ⊂ |X| be a closed subset
such that |X| \ T is quasi-compact. The analogue of Theorem 17.3 holds for
DQCoh,T (OX). This follows from the exact same argument as in the proof of the
theorem, using Lemmas 15.6 and 16.3 and a variant of Lemma 17.1 with supports.
If we ever need this, we will precisely state the result here and give a detailed proof.

Remark 17.5 (Uniqueness of dga).0DK9 Let X be a quasi-compact and quasi-separated
algebraic space over a ring R. By the construction of the proof of Theorem 17.3
there exists a differential graded algebra (A, d) over R such that DQCoh(X) is R-
linearly equivalent to D(A, d) as a triangulated category. One may ask: how unique
is (A, d)? The answer is (only) slightly better than just saying that (A, d) is well
defined up to derived equivalence. Namely, suppose that (B, d) is a second such
pair. Then we have

(A, d) = HomCompdg(OX )(K•, K•)

and
(B, d) = HomCompdg(OX )(L•, L•)

for some K-injective complexes K• and L• of OX -modules corresponding to perfect
generators of DQCoh(OX). Set

Ω = HomCompdg(OX )(K•, L•) Ω′ = HomCompdg(OX )(L•, K•)

Then Ω is a differential graded Bopp ⊗R A-module and Ω′ is a differential graded
Aopp ⊗R B-module. Moreover, the equivalence

D(A, d) → DQCoh(OX) → D(B, d)

is given by the functor − ⊗L
A Ω′ and similarly for the quasi-inverse. Thus we are

in the situation of Differential Graded Algebra, Remark 37.10. If we ever need this
remark we will provide a precise statement with a detailed proof here.
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18. Characterizing pseudo-coherent complexes, I

0DKA This material will be continued in More on Morphisms of Spaces, Section 51. We can
characterize pseudo-coherent objects as derived homotopy limits of approximations
by perfect objects.

Lemma 18.1.0DKB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K ∈ D(OX). The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect and τ≥−nKn → τ≥−nK is an isomor-

phism for all n.

Proof. The implication (2) ⇒ (1) is true on any ringed site. Namely, assume
(2) holds. Recall that a perfect object of the derived category is pseudo-coherent,
see Cohomology on Sites, Lemma 47.4. Then it follows from the definitions that
τ≥−nKn is (−n+1)-pseudo-coherent and hence τ≥−nK is (−n+1)-pseudo-coherent,
hence K is (−n + 1)-pseudo-coherent. This is true for all n, hence K is pseudo-
coherent, see Cohomology on Sites, Definition 45.1.

Assume (1). We start by choosing an approximation K1 → K of (X, K, −2) by a
perfect complex K1, see Definitions 14.1 and 14.2 and Theorem 14.7. Suppose by
induction we have

K1 → K2 → . . . → Kn → K

with Ki perfect such that such that τ≥−iKi → τ≥−iK is an isomorphism for all
1 ≤ i ≤ n. Then we pick a ≤ b as in Lemma 17.2 for the perfect object Kn. Choose
an approximation Kn+1 → K of (X, K, min(a−1, −n−1)). Choose a distinguished
triangle

Kn+1 → K → C → Kn+1[1]
Then we see that C ∈ DQCoh(OX) has Hi(C) = 0 for i ≥ a. Thus by our choice
of a, b we see that HomD(OX )(Kn, C) = 0. Hence the composition Kn → K → C
is zero. Hence by Derived Categories, Lemma 4.2 we can factor Kn → K through
Kn+1 proving the induction step.

We still have to prove that K = hocolimKn. This follows by an application of
Derived Categories, Lemma 33.8 to the functors Hi(−) : D(OX) → Mod(OX) and
our choice of Kn. □

Lemma 18.2.0DKC Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. Let K ∈ D(OX) supported on
T . The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect, supported on T , and τ≥−nKn →

τ≥−nK is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 18.1
except that in the choice of the approximations we use the triples (T, K, m). □

19. The coherator revisited

0CR3 In Section 11 we constructed and studied the right adjoint RQX to the canonical
functor D(QCoh(OX)) → D(OX). It was constructed as the right derived extension
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of the coherator QX : Mod(OX) → QCoh(OX). In this section, we study when the
inclusion functor

DQCoh(OX) −→ D(OX)
has a right adjoint. If this right adjoint exists, we will denote2 it

DQX : D(OX) −→ DQCoh(OX)
It turns out that quasi-compact and quasi-separated algebraic spaces have such a
right adjoint.
Lemma 19.1.0CR4 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The inclusion functor DQCoh(OX) → D(OX) has a right
adjoint.
First proof. We will use the induction principle in Lemma 9.3 to prove this. If
D(QCoh(OX)) → DQCoh(OX) is an equivalence, then the lemma is true because
the functor RQX of Section 11 is a right adjoint to the functor D(QCoh(OX)) →
D(OX). In particular, our lemma is true for affine algebraic spaces, see Lemma
11.3. Thus we see that it suffices to show: if (U ⊂ X, f : V → X) is an elementary
distinguished square with U quasi-compact and V affine and the lemma holds for
U , V , and U ×X V , then the lemma holds for X.
The adjoint exists if and only if for every object K of D(OX) we can find a distin-
guished triangle

E′ → E → K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M, K) = 0 for all M
in DQCoh(OX). See Derived Categories, Lemma 40.7. Consider the distinguished
triangle

E → RjU,∗E|U ⊕ RjV,∗E|V → RjU×X V,∗E|U×X V → E[1]
in D(OX) of Lemma 10.2. By Derived Categories, Lemma 40.5 it suffices to con-
struct the desired distinguished triangles for RjU,∗E|U , RjV,∗E|V , and RjU×X V,∗E|U×X V .
This reduces us to the statement discussed in the next paragraph.
Let j : U → X be an étale morphism corresponding with U quasi-compact and
quasi-separated and the lemma is true for U . Let L be an object of D(OU ). Then
there exists a distinguished triangle

E′ → Rj∗L → K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M, K) = 0 for all M
in DQCoh(OX). To see this we choose a distinguished triangle

L′ → L → Q → L′[1]
in D(OU ) such that L′ is in DQCoh(OU ) and such that Hom(N, Q) = 0 for all N in
DQCoh(OU ). This is possible because the statement in Derived Categories, Lemma
40.7 is an if and only if. We obtain a distinguished triangle

Rj∗L′ → Rj∗L → Rj∗Q → Rj∗L′[1]
in D(OX). Observe that Rj∗L′ is in DQCoh(OX) by Lemma 6.1. On the other
hand, if M in DQCoh(OX), then

Hom(M, Rj∗Q) = Hom(Lj∗M, Q) = 0

2This is probably nonstandard notation. However, we have already used QX for the coherator
and RQX for its derived extension.
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because Lj∗M is in DQCoh(OU ) by Lemma 5.5. This finishes the proof. □

Second proof. The adjoint exists by Derived Categories, Proposition 38.2. The
hypotheses are satisfied: First, note that DQCoh(OX) has direct sums and di-
rect sums commute with the inclusion functor (Lemma 5.3). On the other hand,
DQCoh(OX) is compactly generated because it has a perfect generator Theorem
15.4 and because perfect objects are compact by Proposition 16.1. □

Lemma 19.2.0CR5 Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. If the right adjoints DQX and DQY

of the inclusion functors DQCoh → D exist for X and Y , then

Rf∗ ◦ DQX = DQY ◦ Rf∗

Proof. The statement makes sense because Rf∗ sends DQCoh(OX) into DQCoh(OY )
by Lemma 6.1. The statement is true because Lf∗ similarly maps DQCoh(OY ) into
DQCoh(OX) (Lemma 5.5) and hence both Rf∗ ◦ DQX and DQY ◦ Rf∗ are right
adjoint to Lf∗ : DQCoh(OY ) → D(OX). □

Remark 19.3.0CR6 Let S be a scheme. Let (U ⊂ X, f : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume X, U , V are quasi-compact
and quasi-separated. By Lemma 19.1 the functors DQX , DQU , DQV , DQU×X V

exist. Moreover, there is a canonical distinguished triangle

DQX(K) → RjU,∗DQU (K|U )⊕RjV,∗DQV (K|V ) → RjU×X V,∗DQU×X V (K|U×X V ) →

for any K ∈ D(OX). This follows by applying the exact functor DQX to the
distinguished triangle of Lemma 10.2 and using Lemma 19.2 three times.

Lemma 19.4.0CSS Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The functor DQX of Lemma 19.1 has the following bound-
edness property: there exists an integer N = N(X) such that, if K in D(OX) with
Hi(U, K) = 0 for U affine étale over X and i ̸∈ [a, b], then the cohomology sheaves
Hi(DQX(K)) are zero for i ̸∈ [a, b + N ].

Proof. We will prove this using the induction principle of Lemma 9.3.

If X is affine, then the lemma is true with N = 0 because then RQX = DQX is
given by taking the complex of quasi-coherent sheaves associated to RΓ(X, K). See
Lemma 11.3.

Let (U ⊂ W, f : V → W ) be an elementary distinguished square with W quasi-
compact and quasi-separated, U ⊂ W quasi-compact open, V affine such that
the lemma holds for U , V , and U ×W V . Say with integers N(U), N(V ), and
N(U ×W V ). Now suppose K is in D(OX) with Hi(W, K) = 0 for all affine W
étale over X and all i ̸∈ [a, b]. Then K|U , K|V , K|U×W V have the same property.
Hence we see that RQU (K|U ) and RQV (K|V ) and RQU∩V (K|U×W V ) have vanish-
ing cohomology sheaves outside the inverval [a, b+max(N(U), N(V ), N(U ×W V )).
Since the functors RjU,∗, RjV,∗, RjU×W V,∗ have finite cohomological dimension on
DQCoh by Lemma 6.1 we see that there exists an N such that RjU,∗DQU (K|U ),
RjV,∗DQV (K|V ), and RjU∩V,∗DQU×W V (K|U×W V ) have vanishing cohomology sheaves
outside the interval [a, b+N ]. Then finally we conclude by the distinguished triangle
of Remark 19.3. □
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Example 19.5.0CST Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let (Fn) be an inverse system of quasi-coherent sheaves
on X. Since DQX is a right adjoint it commutes with products and therefore with
derived limits. Hence we see that

DQX(R lim Fn) = (R lim in DQCoh(OX))(Fn)

where the first R lim is taken in D(OX). In fact, let’s write K = R lim Fn for this.
For any affine U étale over X we have

Hi(U, K) = Hi(RΓ(U, R lim Fn)) = Hi(R lim RΓ(U, Fn)) = Hi(R lim Γ(U, Fn))

since cohomology commutes with derived limits and since the quasi-coherent sheaves
Fn have no higher cohomology on affines. By the computation of R lim in the cat-
egory of abelian groups, we see that Hi(U, K) = 0 unless i ∈ [0, 1]. Then finally
we conclude that the R lim in DQCoh(OX), which is DQX(K) by the above, is in
Db

QCoh(OX) and has vanishing cohomology sheaves in negative degrees by Lemma
19.4.

20. Cohomology and base change, IV

08IM This section is the analogue of Derived Categories of Schemes, Section 22.

Lemma 20.1.08IN Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. For E in DQCoh(OX) and K in
DQCoh(OY ) we have

Rf∗(E) ⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY

K → Rf∗(E ⊗L
OX

Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E) ⊗L
OY

K) = Lf∗(Rf∗(E)) ⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E. See Cohomology on Sites, Lemmas 18.4 and
19.1. To check it is an isomorphism we may work étale locally on Y . Hence we
reduce to the case that Y is an affine scheme.

Suppose that K =
⊕

Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If
the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗

and ⊗L preserve direct sums by construction and Rf∗ commutes with direct sums
(for complexes with quasi-coherent cohomology sheaves) by Lemma 6.2. Moreover,
suppose that K → L → M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K, L, M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is an
equivalence by Lemma 4.2 and Derived Categories of Schemes, Lemma 3.5. Let
T be the property for K ∈ D(A) that the statement of the lemma holds for K̃.
The discussion above and More on Algebra, Remark 59.11 shows that it suffices to
prove T holds for A[k]. This finishes the proof, as the statement of the lemma is
clear for shifts of the structure sheaf. □
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Definition 20.2.08IP Let S be a scheme. Let B be an algebraic space over S. Let X,
Y be algebraic spaces over B. We say X and Y are Tor independent over B if and
only if for every commutative diagram

Spec(k)

y

�� b ##

x
// X

��
Y // B

of geometric points the rings OX,x and OY,y are Tor independent over OB,b (see
More on Algebra, Definition 61.1).

The following lemma shows in particular that this definition agrees with our defi-
nition in the case of representable algebraic spaces.

Lemma 20.3.08IQ Let S be a scheme. Let B be an algebraic space over S. Let X, Y
be algebraic spaces over B. The following are equivalent

(1) X and Y are Tor independent over B,
(2) for every commutative diagram

U

��

// W

��

V

��

oo

X // B Yoo

with étale vertical arrows U and V are Tor independent over W ,
(3) for some commutative diagram as in (2) with (a) W → B étale surjective,

(b) U → X ×B W étale surjective, (c) V → Y ×B W étale surjective, the
spaces U and V are Tor independent over W , and

(4) for some commutative diagram as in (3) with U , V , W schemes, the
schemes U and V are Tor independent over W in the sense of Derived
Categories of Schemes, Definition 22.2.

Proof. For an étale morphism φ : U → X of algebraic spaces and geometric point
u the map of local rings OX,φ(u) → OU,u is an isomorphism. Hence the equivalence
of (1) and (2) follows. So does the implication (1) ⇒ (3). Assume (3) and pick a
diagram of geometric points as in Definition 20.2. The assumptions imply that we
can first lift b to a geometric point w of W , then lift the geometric point (x, b) to
a geometric point u of U , and finally lift the geometric point (y, b) to a geometric
point v of V . Use Properties of Spaces, Lemma 19.4 to find the lifts. Using the
remark on local rings above we conclude that the condition of the definition is
satisfied for the given diagram.

Having made these initial points, it is clear that (4) comes down to the statement
that Definition 20.2 agrees with Derived Categories of Schemes, Definition 22.2
when X, Y , and B are schemes.

Let x, b, y be as in Definition 20.2 lying over the points x, y, b. Recall that OX,x =
Osh

X,x (Properties of Spaces, Lemma 22.1) and similarly for the other two. By
Algebra, Lemma 155.12 we see that OX,x is a strict henselization of OX,x⊗OB,b

OB,b.
In particular, the ring map

OX,x ⊗OB,b
OB,b −→ OX,x

https://stacks.math.columbia.edu/tag/08IP
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is flat (More on Algebra, Lemma 45.1). By More on Algebra, Lemma 61.3 we see
that

TorOB,b

i (OX,x, OY,y) ⊗OX,x⊗OB,b
OY,y

(OX,x ⊗O
B,b

OY,y) = Tor
O

B,b

i (OX,x, OY,y)

Hence it follows that if X and Y are Tor independent over B as schemes, then X
and Y are Tor independent as algebraic spaces over B.
For the converse, we may assume X, Y , and B are affine. Observe that the ring
map

OX,x ⊗OB,b
OY,y −→ OX,x ⊗O

B,b
OY,y

is flat by the observations given above. Moreover, the image of the map on spectra
includes all primes s ⊂ OX,x ⊗OB,b

OY,y lying over mx and my. Hence from this and
the displayed formula of Tor’s above we see that if X and Y are Tor independent
over B as algebraic spaces, then

TorOB,b

i (OX,x, OY,y)s = 0
for all i > 0 and all s as above. By More on Algebra, Lemma 61.6 applied to the
ring maps Γ(B, OB) → Γ(X, OX) and Γ(B, OB) → Γ(X, OX) this implies that X
and Y are Tor independent over B. □

Lemma 20.4.08IR Let S be a scheme. Let g : Y ′ → Y be a morphism of algebraic
spaces over S. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic spaces over S. Consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

If X and Y ′ are Tor independent over Y , then for all E ∈ DQCoh(OX) we have
Rf ′

∗L(g′)∗E = Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology on Sites, Remark 19.3
to get a canonical base change map Lg∗Rf∗E → Rf ′

∗L(g′)∗E. To check this is an
isomorphism we may work étale locally on Y ′. Hence we may assume g : Y ′ → Y is
a morphism of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg∗Rf∗E → Rg∗Rf ′
∗L(g′)∗E = Rf∗(Rg′

∗L(g′)∗E)
is an isomorphism, see Lemma 6.4 (and use Lemmas 5.5, 5.6, and 6.1 to see that
the objects Rf ′

∗L(g′)∗E and Lg∗Rf∗E have quasi-coherent cohomology sheaves).
Note that g′ is affine as well (Morphisms of Spaces, Lemma 20.5). By Lemma 6.5
the map becomes a map

Rf∗E ⊗L
OY

g∗OY ′ −→ Rf∗(E ⊗L
OX

g′
∗OX′)

Observe that g′
∗OX′ = f∗g∗OY ′ . Thus by Lemma 20.1 it suffices to prove that

Lf∗g∗OY ′ = f∗g∗OY ′ . This follows from our assumption that X and Y ′ are Tor
independent over Y . Namely, to check it we may work étale locally on X, hence we
may also assume X is affine. Say X = Spec(A), Y = Spec(R) and Y ′ = Spec(R′).
Our assumption implies that A and R′ are Tor independent over R (see Lemma
20.3 and More on Algebra, Lemma 61.6), i.e., TorR

i (A, R′) = 0 for i > 0. In other
words A ⊗L

R R′ = A ⊗R R′ which exactly means that Lf∗g∗OY ′ = f∗g∗OY ′ . □
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The following lemma will be used in the chapter on dualizing complexes.

Lemma 20.5.0E4S Let g : S′ → S be a morphism of affine schemes. Consider a
cartesian square

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of quasi-compact and quasi-separated algebraic spaces. Assume g and f Tor inde-
pendent. Write S = Spec(R) and S′ = Spec(R′). For M, K ∈ D(OX) the canonical
map

R HomX(M, K) ⊗L
R R′ −→ R HomX′(L(g′)∗M, L(g′)∗K)

in D(R′) is an isomorphism in the following two cases
(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and R′ has finite tor
dimension over R.

Proof. There is a canonical map R HomX(M, K) → R HomX′(L(g′)∗M, L(g′)∗K)
in D(Γ(X, OX)) of global hom complexes, see Cohomology on Sites, Section 36.
Restricting scalars we can view this as a map in D(R). Then we can use the
adjointness of restriction and − ⊗L

R R′ to get the displayed map of the lemma.
Having defined the map it suffices to prove it is an isomorphism in the derived
category of abelian groups.
The right hand side is equal to

R HomX(M, R(g′)∗L(g′)∗K) = R HomX(M, K ⊗L
OX

g′
∗OX′)

by Lemma 6.5. In both cases the complex R Hom(M, K) is an object of DQCoh(OX)
by Lemma 13.10. There is a natural map

R Hom(M, K) ⊗L
OX

g′
∗OX′ −→ R Hom(M, K ⊗L

OX
g′

∗OX′)
which is an isomorphism in both cases Lemma 13.11. To see that this lemma
applies in case (2) we note that g′

∗OX′ = Rg′
∗OX′ = Lf∗g∗OX the second equality

by Lemma 20.4. Using Derived Categories of Schemes, Lemma 10.4, Lemma 13.3,
and Cohomology on Sites, Lemma 46.5 we conclude that g′

∗OX′ has finite Tor
dimension. Hence, in both cases by replacing K by R Hom(M, K) we reduce to
proving

RΓ(X, K) ⊗L
A A′ −→ RΓ(X, K ⊗L

OX
g′

∗OX′)
is an isomorphism. Note that the left hand side is equal to RΓ(X ′, L(g′)∗K) by
Lemma 6.5. Hence the result follows from Lemma 20.4. □

Remark 20.6.0E4T With notation as in Lemma 20.5. The diagram

R HomX(M, Rg′
∗L) ⊗L

R R′ //

µ

��

R HomX′(L(g′)∗M, L(g′)∗Rg′
∗L)

a

��
R HomX(M, R(g′)∗L) R HomX′(L(g′)∗M, L)

is commutative where the top horizontal arrow is the map from the lemma, µ is the
multiplication map, and a comes from the adjunction map L(g′)∗Rg′

∗L → L. The
multiplication map is the adjunction map K ′ ⊗L

R R′ → K ′ for any K ′ ∈ D(R′).
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Lemma 20.7.0DKD Let S be a scheme. Consider a cartesian square of algebraic spaces

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

over S. Assume g and f Tor independent.
(1) If E ∈ D(OX) has tor amplitude in [a, b] as a complex of f−1OY -modules,

then L(g′)∗E has tor amplitude in [a, b] as a complex of f−1OY ′-modules.
(2) If G is an OX-module flat over Y , then L(g′)∗G = (g′)∗G.

Proof. We can compute tor dimension at stalks, see Cohomology on Sites, Lemma
46.10 and Properties of Spaces, Theorem 19.12. If x′ is a geometric point of X ′

with image x in X, then
(L(g′)∗E)x′ = Ex ⊗L

OX,x
OX′,x′

Let y′ in Y ′ and y in Y be the image of x′ and x. Since X and Y ′ are tor independent
over Y , we can apply More on Algebra, Lemma 61.2 to see that the right hand side
of the displayed formula is equal to Ex ⊗L

OY,y
OY ′,y′ in D(OY ′,y′). Thus (1) follows

from More on Algebra, Lemma 66.13. To see (2) observe that flatness of G is
equivalent to the condition that G[0] has tor amplitude in [0, 0]. Applying (1) we
conclude. □

21. Cohomology and base change, V

0DKE This section is the analogue of Derived Categories of Schemes, Section 26. In Section
20 we saw a base change theorem holds when the morphisms are tor independent.
Even in the affine case there cannot be a base change theorem without such a
condition, see More on Algebra, Section 61. In this section we analyze when one
can get a base change result “one complex at a time”.
To make this work, let S be a base scheme and suppose we have a commutative
diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic spaces over S (usually we will assume it is cartesian). Let K ∈
DQCoh(OX) and let L(g′)∗K → K ′ be a map in DQCoh(OX′). For a geometric point
x′ of X ′ consider the geometric points x = g′(x′), y′ = f ′(x′), y = f(x) = g(y′) of
X, Y ′, Y . Then we can consider the maps

Kx ⊗L
OY,y

OY ′,y′ → Kx ⊗L
OX,x

OX′,x′ → K ′
x′

where the first arrow is More on Algebra, Equation (61.0.1) and the second comes
from (L(g′)∗K)x′ = Kx ⊗L

OX,x
OX′,x′ and the given map L(g′)∗K → K ′. For each

i ∈ Z we obtain a OX,x ⊗OY,y
OY ′,y′ -module structure on Hi(Kx ⊗L

OY,y
OY ′,y′).

Putting everything together we obtain canonical maps
(21.0.1)0DKF Hi(Kx ⊗L

OY,y
OY ′,y′) ⊗(OX,x⊗OY,y

OY ′,y′ ) OX′,x′ −→ Hi(K ′
x′)

of OX′,x′ -modules.
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Lemma 21.1.0DKG Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). The following are equivalent

(1) for any x′ ∈ X ′ and i ∈ Z the map (21.0.1) is an isomorphism,
(2) for any commutative diagram

U

��

a

  
V ′ //

c

  

V

b

  

X

f

��
Y ′ g // Y

with a, b, c étale, U, V, V ′ schemes, and with U ′ = V ′ ×V U the equivalent
conditions of Derived Categories of Schemes, Lemma 21.1 hold for (U →
X)∗K and (U ′ → X ′)∗K ′, and

(3) there is some diagram as in (2) with U ′ → X ′ surjective.

Proof. Observe that (1) is étale local on X ′. Working through formal implications
of what is known, we see that it suffices to prove condition (1) of this lemma is equiv-
alent to condition (1) of Derived Categories of Schemes, Lemma 26.1 if X, Y, Y ′, X ′

are representable by schemes X0, Y0, Y ′
0 , X ′

0. Denote f0, g0, g′
0, f ′

0 the morphisms
between these schemes corresponding to f, g, g′, f ′. We may assume K = ϵ∗K0 and
K ′ = ϵ∗K ′

0 for some objects K0 ∈ DQCoh(OX0) and K ′
0 ∈ DQCoh(OX′

0
), see Lemma

4.2. Moreover, the map Lg∗K → K ′ is the pullback of a map L(g0)∗K0 → K ′
0 with

notation as in Remark 6.3. Recall that OX,x is the strict henselization of OX,x

(Properties of Spaces, Lemma 22.1) and that we have

Kx = K0,x ⊗L
OX,x

OX,x and K ′
x′ = K ′

0,x′ ⊗L
OX′,x′ OX′,x′

(akin to Properties of Spaces, Lemma 29.4). Consider the commutative diagram

Hi(Kx ⊗L
OY,y

OY ′,y′) ⊗(OX,x⊗OY,y
OY ′,y′ ) OX′,x′ // Hi(K ′

x′)

Hi(K0,x ⊗L
OY,y

OY ′,y′) ⊗(OX,x⊗OY,y
OY ′,y′ ) OX′,x′

OO

// Hi(K ′
0,x′)

OO

We have to show that the lower horizontal arrow is an isomorphism if and only if
the upper horizontal arrow is an isomorphism. Since OX′,x′ → OX′,x′ is faithfully
flat (More on Algebra, Lemma 45.1) it suffices to show that the top arrow is the
base change of the bottom arrow by this map. This follows immediately from the
relationships between stalks given above for the objects on the right. For the objects
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on the left it suffices to show that

Hi
(

(K0,x ⊗L
OX,x

OX,x) ⊗L
OY,y

OY ′,y′

)
= Hi(K0,x ⊗L

OY,y
OY ′,y′) ⊗(OX,x⊗OY,y

OY ′,y′ ) (OX,x ⊗OY,y
OY ′,y′)

This follows from More on Algebra, Lemma 61.5. The flatness assumptions of this
lemma hold by what was said above as well as Algebra, Lemma 155.12 implying
that OX,x is the strict henselization of OX,x ⊗OY,y

OY,y and that OY ′,y′ is the strict
henselization of OY ′,y′ ⊗OY,y

OY,y. □

Lemma 21.2.0DKH Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). If

(1) the equivalent conditions of Lemma 21.1 hold, and
(2) f is quasi-compact and quasi-separated,

then the composition Lg∗Rf∗K → Rf ′
∗L(g′)∗K → Rf ′

∗K ′ is an isomorphism.

Proof. To check the map is an isomorphism we may work étale locally on Y ′.
Hence we may assume g : Y ′ → Y is a morphism of affine schemes. In this case,
we will use the induction principle of Lemma 9.3 to prove that for a quasi-compact
and quasi-separated algebraic space U étale over X the similarly constructed map
Lg∗R(U → Y )∗K|U → R(U ′ → Y ′)∗K ′|U ′ is an isomorphism. Here U ′ = X ′ ×g′,X

U = Y ′ ×g,Y U .

If U is a scheme (for example affine), then the result holds. Namely, then Y, Y ′, U, U ′

are schemes, K and K ′ come from objects of the derived category of the underlying
schemes by Lemma 4.2 and the condition of Derived Categories of Schemes, Lemma
26.1 holds for these complexes by Lemma 21.1. Thus (by the compatibilities ex-
plained in Remark 6.3) we can apply the result in the case of schemes which is
Derived Categories of Schemes, Lemma 26.2.

The induction step. Let (U ⊂ W, V → W ) be an elementary distinguished square
with W a quasi-compact and quasi-separated algebraic space étale over X, with
U quasi-compact, V affine and the result holds for U , V , and U ×W V . To easy
notation we replace W by X (this is permissible at this point). Denote a : U → Y ,
b : V → Y , and c : U ×X V → Y the obvious morphisms. Let a′ : U ′ → Y ′,
b′ : V ′ → Y ′ and c′ : U ′ ×X′ V ′ → Y ′ be the base changes of a, b, and c. Using
the distinguished triangles from relative Mayer-Vietoris (Lemma 10.3) we obtain a
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commutative diagram

Lg∗Rf∗K //

��

Rf ′
∗K ′

��
Lg∗Ra∗K|U ⊕ Lg∗Rb∗K|V //

��

Ra′
∗K ′|U ′ ⊕ Rb′

∗K ′|V ′

��
Lg∗Rc∗K|U×X V

//

��

Rc′
∗K ′|U ′×X′ V ′

��
Lg∗Rf∗K[1] // Rf ′

∗K ′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 4.3) and the proof of the lemma is finished. □

Lemma 21.3.0DKI Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). If the equivalent conditions of Lemma
21.1 hold, then

(1) for E ∈ DQCoh(OX) the equivalent conditions of Lemma 21.1 hold for
L(g′)∗(E ⊗L K) → L(g′)∗E ⊗L K ′,

(2) if E in D(OX) is perfect the equivalent conditions of Lemma 21.1 hold for
L(g′)∗R Hom(E, K) → R Hom(L(g′)∗E, K ′), and

(3) if K is bounded below and E in D(OX) pseudo-coherent the equivalent con-
ditions of Lemma 21.1 hold for L(g′)∗R Hom(E, K) → R Hom(L(g′)∗E, K ′).

Proof. The statement makes sense as the complexes involved have quasi-coherent
cohomology sheaves by Lemmas 5.5, 5.6, and 13.10 and Cohomology on Sites,
Lemmas 45.3 and 47.5. Having said this, we can check the maps (21.0.1) are
isomorphisms in case (1) by computing the source and target of (21.0.1) using the
transitive property of tensor product, see More on Algebra, Lemma 59.15. The
map in (2) and (3) is the composition

L(g′)∗R Hom(E, K) → R Hom(L(g′)∗E, L(g′)∗K) → R Hom(L(g′)∗E, K ′)

where the first arrow is Cohomology on Sites, Remark 35.11 and the second arrow
comes from the given map L(g′)∗K → K ′. To prove the maps (21.0.1) are isomor-
phisms one represents Ex by a bounded complex of finite projective OX.x-modules
in case (2) or by a bounded above complex of finite free modules in case (3) and
computes the source and target of the arrow. Some details omitted. □

Lemma 21.4.0A1K Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E ∈ DQCoh(OX). Let G• be a
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bounded above complex of quasi-coherent OX-modules flat over Y . Then formation
of

Rf∗(E ⊗L
OX

G•)
commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X. The lemma asserts that
Lg∗Rf∗(E ⊗L

OX
G•) −→ Rf ′

∗(L(g′)∗E ⊗L
OX′ (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use derived
pullback on G•. To prove this, we apply Lemmas 21.2 and 21.3 to see that it
suffices to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 21.1. This follows by checking the
condition on stalks, where it immediately follows from the fact that G•

x ⊗OY,y
OY ′,y′

computes the derived tensor product by our assumptions on the complex G•. □

Lemma 21.5.08JQ Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E be an object of D(OX). Let
G• be a complex of quasi-coherent OX-modules. If

(1) E is perfect, G• is a bounded above, and Gn is flat over Y , or
(2) E is pseudo-coherent, G• is bounded, and Gn is flat over Y ,

then formation of
Rf∗R Hom(E, G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X. The lemma asserts that
Lg∗Rf∗R Hom(E, G•) −→ R(f ′)∗R Hom(L(g′)∗E, (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use the derived
pullback on G•. To prove this, we apply Lemmas 21.2 and 21.3 to see that it suffices
to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 21.1. This was shown in the proof of
Lemma 21.4. □
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22. Producing perfect complexes

0A1L The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation.

Lemma 22.1.08IS Let S be a scheme. Let Y be a Noetherian algebraic space over S.
Let f : X → Y be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the support of Hi(E) is proper over Y for all i,
(3) E has finite tor dimension as an object of D(f−1OY ).

Then Rf∗E is a perfect object of D(OY ).

Proof. By Lemma 8.1 we see that Rf∗E is an object of Db
Coh(OY ). Hence Rf∗E

is pseudo-coherent (Lemma 13.7). Hence it suffices to show that Rf∗E has finite
tor dimension, see Cohomology on Sites, Lemma 47.4. By Lemma 13.8 it suffices
to check that Rf∗(E) ⊗L

OY
F has universally bounded cohomology for all quasi-

coherent sheaves F on Y . Bounded from above is clear as Rf∗(E) is bounded from
above. Let T ⊂ |X| be the union of the supports of Hi(E) for all i. Then T is
proper over Y by assumptions (1) and (2) and Lemma 7.6. In particular there exists
a quasi-compact open subspace X ′ ⊂ X containing T . Setting f ′ = f |X′ we have
Rf∗(E) = Rf ′

∗(E|X′) because E restricts to zero on X \ T . Thus we may replace
X by X ′ and assume f is quasi-compact. We have assumed f is quasi-separated.
Thus

Rf∗(E) ⊗L
OY

F = Rf∗
(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OY
f−1F

)
by Lemma 20.1 and Cohomology on Sites, Lemma 18.5. By assumption (3) the
complex E ⊗L

f−1OY
f−1F has cohomology sheaves in a given finite range, say [a, b].

Then Rf∗ of it has cohomology in the range [a, ∞) and we win. □

Lemma 22.2.0DKJ Let S be a scheme. Let B be a Noetherian algebraic space over S.
Let f : X → B be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) be perfect. Let G• be a bounded complex of coher-
ent OX-modules flat over B with support proper over B. Then K = Rf∗(E⊗L

OX
G•)

is a perfect object of D(OB).

Proof. The object K is perfect by Lemma 22.1. We check the lemma applies:
Locally E is isomorphic to a finite complex of finite free OX -modules. Hence locally
E ⊗L

OX
G• is isomorphic to a finite complex whose terms are of the form⊕

i=a,...,b
(Gi)⊕ri

for some integers a, b, ra, . . . , rb. This immediately implies the cohomology sheaves
Hi(E ⊗L

OX
G) are coherent. The hypothesis on the tor dimension also follows as Gi

is flat over f−1OY . □

Lemma 22.3.0DKK Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of fi-
nite type and quasi-separated. Let E ∈ D(OX) be perfect. Let G• be a bounded
complex of coherent OX-modules flat over B with support proper over B. Then
K = Rf∗R Hom(E, G) is a perfect object of D(OB).
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Proof. Since E is a perfect complex there exists a dual perfect complex E∨, see
Cohomology on Sites, Lemma 48.4. Observe that R Hom(E, G•) = E∨ ⊗L

OX
G•.

Thus the perfectness of K follows from Lemma 22.2. □

23. A projection formula for Ext

08JM Lemma 23.3 (or similar results in the literature) is sometimes useful to verify prop-
erties of an obstruction theory needed to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems. Suppose that f : X → Y is
a proper, flat, finitely presented morphism of algebraic spaces and E ∈ D(OX) is
perfect. Here the lemma says

Exti
X(E, f∗F) = Exti

Y ((Rf∗E∨)∨, F)
for F quasi-coherent on Y . Writing it this way makes it look like a projection
formula for Ext and indeed the result follows rather easily from Lemma 20.1.

Lemma 23.1.0A1M Assumptions and notation as in Lemma 22.2. Then there are
functorial isomorphisms

Hi(B, K ⊗L
OB

F) −→ Hi(X, E ⊗L
OX

(G• ⊗OX
f∗F))

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. We have
G• ⊗L

OX
Lf∗F = G• ⊗L

f−1OB
f−1F = G• ⊗f−1OB

f−1F = G• ⊗OX
f∗F

the first equality by Cohomology on Sites, Lemma 18.5, the second as Gn is a flat
f−1OB-module, and the third by definition of pullbacks. Hence we obtain

Hi(X, E ⊗L
OX

(G• ⊗OX
f∗F)) = Hi(X, E ⊗L

OX
G• ⊗L

OX
Lf∗F)

= Hi(B, Rf∗(E ⊗L
OX

G• ⊗L
OX

Lf∗F))
= Hi(B, Rf∗(E ⊗L

OX
G•) ⊗L

OB
F)

= Hi(B, K ⊗L
OB

F)

The first equality by the above, the second by Leray (Cohomology on Sites, Remark
14.4), and the third equality by Lemma 20.1. The statement on boundary maps
means the following: Given a short exact sequence 0 → F1 → F2 → F3 → 0 then
the isomorphisms fit into commutative diagrams

Hi(B, K ⊗L
OB

F3) //

δ

��

Hi(X, E ⊗L
OX

(G• ⊗OX
f∗F3))

δ

��
Hi+1(B, K ⊗L

OB
F1) // Hi+1(X, E ⊗L

OX
(G• ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle
K ⊗L

OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0 → G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because Gn is flat over B. We omit the
verification of the commutativity of the displayed diagram. □
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Lemma 23.2.08JN Assumption and notation as in Lemma 22.3. Then there are func-
torial isomorphisms

Hi(B, K ⊗L
OB

F) −→ Exti
OX

(E, G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 22.3 let E∨ be the dual perfect complex and
recall that K = Rf∗(E∨ ⊗L

OX
G•). Since we also have

Exti
OX

(E, G• ⊗OX
f∗F) = Hi(X, E∨ ⊗L

OX
(G• ⊗OX

f∗F))

by construction of E∨, the existence of the isomorphisms follows from Lemma 23.1
applied to E∨ and G•. The statement on boundary maps means the following:
Given a short exact sequence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit
into commutative diagrams

Hi(B, K ⊗L
OB

F3) //

δ

��

Exti
OX

(E, G• ⊗OX
f∗F3)

δ

��
Hi+1(B, K ⊗L

OB
F1) // Exti+1

OX
(E, G• ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OB

F1 → K ⊗L
OB

F2 → K ⊗L
OB

F3 → K ⊗L
OB

F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0 → G• ⊗OX
f∗F1 → G• ⊗OX

f∗F2 → G• ⊗OX
f∗F3 → 0

of complexes. This sequence is exact because Gn is flat over B. We omit the
verification of the commutativity of the displayed diagram. □

Lemma 23.3.08JR Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S, E ∈ D(OX), and F• a complex of OX-modules. Assume

(1) B is Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) E ∈ D−

Coh(OX),
(4) G• is a bounded complex of coherent OX-module flat over B with support

proper over B.
Then the following two statements are true

(A) for every m ∈ Z there exists a perfect object K of D(OB) and functorial
maps

αi
F : Exti

OX
(E, G• ⊗OX

f∗F) −→ Hi(B, K ⊗L
OB

F)

for F quasi-coherent on B compatible with boundary maps (see proof) such
that αi

F is an isomorphism for i ≤ m, and
(B) there exists a pseudo-coherent L ∈ D(OB) and functorial isomorphisms

Exti
OB

(L, F) −→ Exti
OX

(E, G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps.
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Proof. Proof of (A). Suppose Gi is nonzero only for i ∈ [a, b]. We may replace
X by a quasi-compact open neighbourhood of the union of the supports of Gi.
Hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X, E, −m − 1 + a) (possible by Theorem 14.7). Then the induced map

Exti
OX

(E, G• ⊗OX
f∗F) −→ Exti

OX
(P, G• ⊗OX

f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

Exti
OX

(C, G• ⊗OX
f∗F) resp. Exti+1

OX
(C, G• ⊗OX

f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in degrees
≥ −m−1+a these Ext-groups are zero for i ≤ m+1 by Derived Categories, Lemma
27.3. This reduces us to the case that E is a perfect complex which is Lemma 23.2.
The statement on boundaries is explained in the proof of Lemma 23.2.

Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that
E is pseudo-coherent by Lemma 13.7. By Lemma 18.1 we can write E = hocolimEn

with En perfect and En → E inducing an isomorphism on truncations τ≥−n. Let
E∨

n be the dual perfect complex (Cohomology on Sites, Lemma 48.4). We obtain
an inverse system . . . → E∨

3 → E∨
2 → E∨

1 of perfect objects. This in turn gives rise
to an inverse system

. . . → K3 → K2 → K1 with Kn = Rf∗(E∨
n ⊗L

OX
G•)

perfect on Y , see Lemma 22.2. By Lemma 23.2 and its proof and by the arguments
in the previous paragraph (with P = En) for any quasi-coherent F on Y we have
functorial canonical maps

Exti
OX

(E, G• ⊗OX
f∗F)

tt ))
Hi(Y, Kn+1 ⊗L

OY
F) // Hi(Y, Kn ⊗L

OY
F)

which are isomorphisms for i ≤ n + a. Let Ln = K∨
n be the dual perfect complex.

Then we see that L1 → L2 → L3 → . . . is a system of perfect objects in D(OY )
such that for any quasi-coherent F on Y the maps

Exti
OY

(Ln+1, F) −→ Exti
OY

(Ln, F)

are isomorphisms for i ≤ n + a − 1. This implies that Ln → Ln+1 induces
an isomorphism on truncations τ≥−n−a+2 (hint: take cone of Ln → Ln+1 and
look at its last nonvanishing cohomology sheaf). Thus L = hocolimLn is pseudo-
coherent, see Lemma 18.1. The mapping property of homotopy colimits gives that
Exti

OY
(L, F) = Exti

OY
(Ln, F) for i ≤ n + a − 3 which finishes the proof. □

Remark 23.4.0DKL The pseudo-coherent complex L of part (B) of Lemma 23.3 is
canonically associated to the situation. For example, formation of L as in (B) is
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compatible with base change. In other words, given a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes we have canonical functorial isomorphisms
Exti

OY ′ (Lg∗L, F ′) −→ Exti
OX

(L(g′)∗E, (g′)∗G• ⊗OX′ (f ′)∗F ′)

for F ′ quasi-coherent on Y ′. Obsere that we do not use derived pullback on G• on
the right hand side. If we ever need this, we will formulate a precise result here
and give a detailed proof.

24. Limits and derived categories

09RG In this section we collect some results about the derived category of an algebraic
space which is the limit of an inverse system of algebraic spaces. More precisely,
we will work in the following setting.

Situation 24.1.09RH Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms fi′i : Xi′ → Xi.
We denote fi : X → Xi the projection. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I. We also choose an element 0 ∈ I.

Lemma 24.2.09RI In Situation 24.1. Let E0 and K0 be objects of D(OX0). Set
Ei = Lf∗

i0E0 and Ki = Lf∗
i0K0 for i ≥ 0 and set E = Lf∗

0 E0 and K = Lf∗
0 K0.

Then the map
colimi≥0 HomD(OXi

)(Ei, Ki) −→ HomD(OX )(E, K)

is an isomorphism if either
(1) E0 is perfect and K0 ∈ DQCoh(OX0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OX0) has finite tor dimension.

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale

consider the condition P that the canonical map
colimi≥0 HomD(OUi

)(Ei|Ui
, Ki|Ui

) −→ HomD(OU )(E|U , K|U )

is an isomorphism, where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P
holds for each U0 by the induction principle of Lemma 9.3. Condition (2) of this
lemma follows immediately from Mayer-Vietoris for hom in the derived category,
see Lemma 10.4. Thus it suffices to prove the lemma when X0 is affine.
If X0 is affine, then the result follows from the case of schemes, see Derived Cate-
gories of Schemes, Lemma 29.2. To see this use the equivalence of Lemma 4.2 and
use the translation of properties explained in Lemmas 13.2, 13.3, and 13.5. □

Lemma 24.3.09RJ In Situation 24.1 the category of perfect objects of D(OX) is the
colimit of the categories of perfect objects of D(OXi

).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale

consider the condition P that the functor
colimi≥0 Dperf (OUi

) −→ Dperf (OU )
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is an equivalence where perf indicates the full subcategory of perfect objects and
where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P holds for every U0
by the induction principle of Lemma 9.3. First, we observe that we already know
the functor is fully faithful by Lemma 24.2. Thus it suffices to prove essential
surjectivity.
We first check condition (2) of the induction principle. Thus suppose that we have
an elementary distinguished square (U0 ⊂ X0, V0 → X0) and that P holds for U0,
V0, and U0 ×X0 V0. Let E be a perfect object of D(OX). We can find i ≥ 0 and EU,i

perfect on Ui and EV,i perfect on Vi whose pullback to U and V are isomorphic to
E|U and E|V . Denote

a : EU,i → (R(X → Xi)∗E)|Ui
and b : EV,i → (R(X → Xi)∗E)|Vi

the maps adjoint to the isomorphisms L(U → Ui)∗EU,i → E|U and L(V →
Vi)∗EV,i → E|V . By fully faithfulness, after increasing i, we can find an isomor-
phism c : EU,i|Ui×Xi

Vi
→ EV,i|Ui×Xi

Vi
which pulls back to the identifications

L(U → Ui)∗EU,i|U×X V → E|U×X V → L(V → Vi)∗EV,i|U×X V .

Apply Lemma 10.8 to get an object Ei on Xi and a map d : Ei → R(X → Xi)∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is
perfect and that d is adjoint to an isomorphism L(X → Xi)∗Ei → E.
Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when X0 is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Lemma 29.3. To see this use the equivalence of
Lemma 4.2 and use the translation of Lemma 13.5. □

25. Cohomology and base change, VI

0A1N A final section on cohomology and base change continuing the discussion of Sections
20, 21, and 22. An easy to grok special case is given in Remark 25.2.

Lemma 25.1.0A1P Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G• be a bounded complex of finitely presented OX-modules, flat over Y , with
support proper over Y . Then

K = Rf∗(E ⊗L
OX

G•)
is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 21.4. Thus it suffices to show that
K is a perfect object. If Y is Noetherian, then this follows from Lemma 22.2. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.
The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R).
We write R = colim Ri as a filtered colimit of Noetherian rings Ri. By Limits of
Spaces, Lemma 7.1 there exists an i and an algebraic space Xi of finite presentation
over Ri whose base change to R is X. By Limits of Spaces, Lemma 7.2 we may
assume after increasing i, that there exists a bounded complex of finitely presented
OXi-modules G•

i whose pullback to X is G•. After increasing i we may assume
Gn

i is flat over Ri, see Limits of Spaces, Lemma 6.12. After increasing i we may
assume the support of Gn

i is proper over Ri, see Limits of Spaces, Lemma 12.3.

https://stacks.math.columbia.edu/tag/0A1P
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Finally, by Lemma 24.3 we may, after increasing i, assume there exists a perfect
object Ei of D(OXi) whose pullback to X is E. By Lemma 22.2 we have that
Ki = Rfi,∗(Ei ⊗L

OXi
G•

i ) is perfect on Spec(Ri) where fi : Xi → Spec(Ri) is the
structure morphism. By the base change result (Lemma 21.4) the pullback of Ki

to Y = Spec(R) is K and we conclude. □

Remark 25.2.0A1Q Let R be a ring. Let X be an algebraic space of finite presentation
over R. Let G be a finitely presented OX -module flat over R with support proper
over R. By Lemma 25.1 there exists a finite complex of finite projective R-modules
M• such that we have

RΓ(XR′ , GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 25.3.0CTL Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a pseudo-coherent
object. Let G• be a bounded above complex of finitely presented OX-modules, flat
over Y , with support proper over Y . Then

K = Rf∗(E ⊗L
OX

G•)

is a pseudo-coherent object of D(OY ) and its formation commutes with arbitrary
base change.

Proof. The statement on base change is Lemma 21.4. Thus it suffices to show that
K is a pseudo-coherent object. This will follow from Lemma 25.1 by approximation
by perfect complexes. We encourage the reader to skip the rest of the proof.

The question is étale local on Y , hence we may assume Y is affine. Then X is
quasi-compact and quasi-separated. Moreover, there exists an integer N such that
total direct image Rf∗ : DQCoh(OX) → DQCoh(OY ) has cohomological dimension
N as explained in Lemma 6.1. Choose an integer b such that Gi = 0 for i > b. It
suffices to show that K is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X, E, m−N −1−b). This is possible by Theorem
14.7. Choose a distinguished triangle

P → E → C → P [1]

in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L G• are zero in degrees ≥ m − N − 1. Thus
the cohomology sheaves of Rf∗(C ⊗L G) are zero in degrees ≥ m − 1. Hence

Rf∗(P ⊗L G) → Rf∗(E ⊗L G)

is an isomorphism on cohomology sheaves in degrees ≥ m. Next, suppose that
Hi(P ) = 0 for i > a. Then P ⊗L σ≥m−N−1−aG• −→ P ⊗L G• is an isomorphism
on cohomology sheaves in degrees ≥ m − N − 1. Thus again we find that

Rf∗(P ⊗L σ≥m−N−1−aG•) → Rf∗(P ⊗L G•)

is an isomorphism on cohomology sheaves in degrees ≥ m. By Lemma 25.1 the
source is a perfect complex. We conclude that K is m-pseudo-coherent as desired.

□

Lemma 25.4.0CTM Let S be a scheme. Let f : X → Y be a proper morphism of finite
presentation of algebraic spaces over S.
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(1) Let E ∈ D(OX) be perfect and f flat. Then Rf∗E is a perfect object of
D(OY ) and its formation commutes with arbitrary base change.

(2) Let G be an OX-module of finite presentation, flat over S. Then Rf∗G is
a perfect object of D(OY ) and its formation commutes with arbitrary base
change.

Proof. Special cases of Lemma 25.1 applied with (1) G• equal to OX in degree 0
and (2) E = OX and G• consisting of G sitting in degree 0. □

Lemma 25.5.0CTN Let S be a scheme. Let f : X → Y be a flat proper morphism of
finite presentation of algebraic spaces over S. Let E ∈ D(OX) be pseudo-coherent.
Then Rf∗E is a pseudo-coherent object of D(OY ) and its formation commutes with
arbitrary base change.

More generally, if f : X → Y is proper and E on X is pseudo-coherent relative to
Y (More on Morphisms of Spaces, Definition 45.3), then Rf∗E is pseudo-coherent
(but formation does not commute with base change in this generality). The case of
this for schemes is proved in [Kie72].

Proof. Special case of Lemma 25.3 applied with G = OX . □

Lemma 25.6.0D3F Let R be a ring. Let X be an algebraic space and let f : X →
Spec(R) be proper, flat, and of finite presentation. Let (Mn) be an inverse system
of R-modules with surjective transition maps. Then the canonical map

OX ⊗R (lim Mn) −→ lim OX ⊗R Mn

induces an isomorphism from the source to DQX applied to the target.

Proof. The statement means that for any object E of DQCoh(OX) the induced
map

Hom(E, OX ⊗R (lim Mn)) −→ Hom(E, lim OX ⊗R Mn)
is an isomorphism. Since DQCoh(OX) has a perfect generator (Theorem 15.4) it
suffices to check this for perfect E. By Lemma 5.4 we have lim OX ⊗R Mn =
R lim OX ⊗R Mn. The exact functor R HomX(E, −) : DQCoh(OX) → D(R) of
Cohomology on Sites, Section 36 commutes with products and hence with derived
limits, whence

R HomX(E, lim OX ⊗R Mn) = R lim R HomX(E, OX ⊗R Mn)
Let E∨ be the dual perfect complex, see Cohomology on Sites, Lemma 48.4. We
have

R HomX(E, OX ⊗R Mn) = RΓ(X, E∨ ⊗L
OX

Lf∗Mn) = RΓ(X, E∨) ⊗L
R Mn

by Lemma 20.1. From Lemma 25.4 we see RΓ(X, E∨) is a perfect complex of R-
modules. In particular it is a pseudo-coherent complex and by More on Algebra,
Lemma 102.3 we obtain

R lim RΓ(X, E∨) ⊗L
R Mn = RΓ(X, E∨) ⊗L

R lim Mn

as desired. □

Lemma 25.7.0CWH Let A be a ring. Let X be an algebraic space over A which is
quasi-compact and quasi-separated. Let K ∈ D−

QCoh(OX). If RΓ(X, E ⊗L K) is
pseudo-coherent in D(A) for every perfect E in D(OX), then RΓ(X, E ⊗L K) is
pseudo-coherent in D(A) for every pseudo-coherent E in D(OX).
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Proof. There exists an integer N such that RΓ(X, −) : DQCoh(OX) → D(A)
has cohomological dimension N as explained in Lemma 6.1. Let b ∈ Z be such
that Hi(K) = 0 for i > b. Let E be pseudo-coherent on X. It suffices to show
that RΓ(X, E ⊗L K) is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X, E, m − N − 1 − b). This is possible by
Theorem 14.7. Choose a distinguished triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L K are zero in degrees ≥ m − N − 1. Thus
the cohomology of RΓ(X, C ⊗L K) are zero in degrees ≥ m − 1. Hence

RΓ(X, P ⊗L K) → RΓ(X, E ⊗L K)
is an isomorphism on cohomology in degrees ≥ m. By assumption the source
is pseudo-coherent. We conclude that RΓ(X, E ⊗L K) is m-pseudo-coherent as
desired. □

Lemma 25.8.0A1R Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G• be a bounded complex of finitely presented OX-modules, flat over Y , with
support proper over Y . Then

K = Rf∗R Hom(E, G•)
is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 21.5. Thus it suffices to show that
K is a perfect object. If Y is Noetherian, then this follows from Lemma 22.3. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.
The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R).
We write R = colim Ri as a filtered colimit of Noetherian rings Ri. By Limits of
Spaces, Lemma 7.1 there exists an i and an algebraic space Xi of finite presentation
over Ri whose base change to R is X. By Limits of Spaces, Lemma 7.2 we may
assume after increasing i, that there exists a bounded complex of finitely presented
OXi-module G•

i whose pullback to X is G. After increasing i we may assume Gn
i is

flat over Ri, see Limits of Spaces, Lemma 6.12. After increasing i we may assume
the support of Gn

i is proper over Ri, see Limits of Spaces, Lemma 12.3. Finally, by
Lemma 13.5 we may, after increasing i, assume there exists a perfect object Ei of
D(OXi

) whose pullback to X is E. Applying Lemma 23.2 to Xi → Spec(Ri), Ei,
G•

i and using the base change property already shown we obtain the result. □

26. Perfect complexes

0D1X We first talk about jumping loci for betti numbers of perfect complexes. First we
have to define betti numbers.
Let S be a scheme. Let X be an algebraic space over S. Let E be an object
of D(OX). Let x ∈ |X|. We want to define βi(x) ∈ {0, 1, 2, . . .} ∪ {∞}. To do
this, choose a morphism f : Spec(k) → X in the equivalence class of x. Then
Lf∗E is an object of D(Spec(k)étale, O). By Étale Cohomology, Lemma 59.4 and
Theorem 17.4 we find that D(Spec(k)étale, O) = D(k) is the derived category of
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k-vector spaces. Hence Lf∗E is a complex of k-vector spaces and we can take
βi(x) = dimk Hi(Lf∗E). It is easy to see that this does not depend on the choice
of the representative in x. Moreover, if X is a scheme, this is the same as the notion
used in Derived Categories of Schemes, Section 31.

Lemma 26.1.0D1Y Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be pseudo-coherent (for example perfect). For any i ∈ Z consider the
function

βi : |X| −→ {0, 1, 2, . . .}
defined above. Then we have

(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are étale locally constructible.

Proof. Choose a scheme U and a surjective étale morphism φ : U → X. Then
Lφ∗E is a pseudo-coherent complex on the scheme U (use Lemma 13.2) and we
can apply the result for schemes, see Derived Categories of Schemes, Lemma 31.1.
The meaning of part (3) is that the inverse image of the level sets to U are locally
constructible, see Properties of Spaces, Definition 8.2. □

Lemma 26.2.0E0R Let Y be a scheme and let X be an algebraic space over Y such
that the structure morphism f : X → Y is flat, proper, and of finite presentation.
Let F be an OX-module of finite presentation, flat over Y . For fixed i ∈ Z consider
the function

βi : |Y | → {0, 1, 2, . . .}, y 7−→ dimκ(y) Hi(Xy, Fy)
Then we have

(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in Y .

Proof. By cohomology and base change (more precisely by Lemma 25.4) the ob-
ject K = Rf∗F is a perfect object of the derived category of Y whose formation
commutes with arbitrary base change. In particular we have

Hi(Xy, Fy) = Hi(K ⊗L
OY

κ(y))
Thus the lemma follows from Lemma 26.1. □

Lemma 26.3.0D1Z Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect. The function

χE : |X| −→ Z, x 7−→
∑

(−1)iβi(x)

is locally constant on X.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization.
See Derived Categories of Schemes, Lemma 31.2. □

Lemma 26.4.0D20 Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect. Given i, r ∈ Z, there exists an open subspace U ⊂ X
characterized by the following

(1) E|U ∼= Hi(E|U )[−i] and Hi(E|U ) is a locally free OU -module of rank r,
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(2) a morphism f : Y → X factors through U if and only if Lf∗E is isomorphic
to a locally free module of rank r placed in degree i.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization.
See Derived Categories of Schemes, Lemma 31.3. □

Lemma 26.5.0E6A Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is proper, flat, and of finite presentation. Let F be an OX-
module of finite presentation, flat over Y . Fix i, r ∈ Z. Then there exists an open
subspace V ⊂ Y with the following property: A morphism T → Y factors through
V if and only if RfT,∗FT is isomorphic to a finite locally free module of rank r
placed in degree i.

Proof. By cohomology and base change ( Lemma 25.4) the object K = Rf∗F
is a perfect object of the derived category of Y whose formation commutes with
arbitrary base change. Thus this lemma follows immediately from Lemma 26.4. □

Lemma 26.6.0D21 Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect of tor-amplitude in [a, b] for some a, b ∈ Z. Let r ≥ 0. Then
there exists a locally closed subspace j : Z → X characterized by the following

(1) Ha(Lj∗E) is a locally free OZ-module of rank r, and
(2) a morphism f : Y → X factors through Z if and only if for all morphisms

g : Y ′ → Y the OY ′-module Ha(L(f ◦ g)∗E) is locally free of rank r.
Moreover, j : Z → X is of finite presentation and we have

(3) if f : Y → X factors as Y
g−→ Z → X, then Ha(Lf∗E) = g∗Ha(Lj∗E),

(4) if βa(x) ≤ r for all x ∈ |X|, then j is a closed immersion and given
f : Y → X the following are equivalent
(a) f : Y → X factors through Z,
(b) H0(Lf∗E) is a locally free OY -module of rank r,
and if r = 1 these are also equivalent to
(c) OY → HomOY

(H0(Lf∗E), H0(Lf∗E)) is injective.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization.
See Derived Categories of Schemes, Lemma 31.4. □

Lemma 26.7.0E6B Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) for a morphism Spec(k) → Y where k is a field, we have k = H0(Xk, OXk

).
Then we have

(a) f∗OX = OY and this holds after any base change,
(b) étale locally on Y we have

Rf∗OX = OY ⊕ P

in D(OY ) where P is perfect of tor amplitude in [1, ∞).

Proof. It suffices to prove (a) and (b) étale locally on Y , thus we may and do
assume Y is an affine scheme. By cohomology and base change (Lemma 25.4) the
complex E = Rf∗OX is perfect and its formation commutes with arbitrary base
change. In particular, for y ∈ Y we see that H0(E⊗L κ(y)) = H0(Xy, OXy

) = κ(y).
Thus β0(y) ≤ 1 for all y ∈ Y with notation as in Lemma 26.1. Apply Lemma 26.6
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with a = 0 and r = 1. We obtain a universal closed subscheme j : Z → Y with
H0(Lj∗E) invertible characterized by the equivalence of (4)(a), (b), and (c) of the
lemma. Since formation of E commutes with base change, we have

Lf∗E = Rpr1,∗OX×Y X

The morphism pr1 : X ×Y X has a section namely the diagonal morphism ∆ for X
over Y . We obtain maps

OX −→ Rpr1,∗OX×Y X −→ OX

in D(OX) whose composition is the identity. Thus Rpr1,∗OX×Y X = OX ⊕ E′ in
D(OX). Thus OX is a direct summand of H0(Lf∗E) and we conclude that X → Y
factors through Z by the equivalence of (4)(c) and (4)(a) of the lemma cited above.
Since {X → Y } is an fppf covering, we have Z = Y . Thus f∗OX is an invertible
OY -module. We conclude OY → f∗OX is an isomorphism because a ring map
A → B such that B is invertible as an A-module is an isomorphism. Since the
assumptions are preserved under base change, we see that (a) is true.
Proof of (b). Above we have seen that for every y ∈ Y the map OY → H0(E⊗Lκ(y))
is surjective. Thus we may apply More on Algebra, Lemma 76.2 to see that in an
open neighbourhood of y we have a decomposition Rf∗OX = OY ⊕ P □

Lemma 26.8.0E0S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced and connected.

Then f∗OX = OY and this holds after any base change.

Proof. By Lemma 26.7 it suffices to show that k = H0(Xk, OXk
) for all morphisms

Spec(k) → Y where k is a field. This follows from Spaces over Fields, Lemma 14.3
and the fact that Xk is geometrically connected and geometrically reduced. □

27. Other applications

0CRT In this section we state and prove some results that can be deduced from the theory
worked out above.

Lemma 27.1.0CRU Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K be an object of DQCoh(OX) such that the cohomology
sheaves Hi(K) have countable sets of sections over affine schemes étale over X.
Then for any quasi-compact and quasi-separated étale morphism U → X and any
perfect object E in D(OX) the sets

Hi(U, K ⊗L E), Exti(E|U , K|U )
are countable.

Proof. Using Cohomology on Sites, Lemma 48.4 we see that it suffices to prove
the result for the groups Hi(U, K ⊗L E). We will use the induction principle to
prove the lemma, see Lemma 9.3.
When U = Spec(A) is affine the result follows from the case of schemes, see Derived
Categories of Schemes, Lemma 33.2.
To finish the proof it suffices to show: if (U ⊂ W, V → W ) is an elementary
distinguished triangle and the result holds for U , V , and U ×W V , then the result
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holds for W . This is an immediate consquence of the Mayer-Vietoris sequence, see
Lemma 10.5. □

Lemma 27.2.0CRV Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume the sets of sections of OX over affines étale over
X are countable. Let K be an object of DQCoh(OX). The following are equivalent

(1) K = hocolimEn with En a perfect object of D(OX), and
(2) the cohomology sheaves Hi(K) have countable sets of sections over affines

étale over X.

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with
taking cohomology sheaves (by Derived Categories, Lemma 33.8) and because a
perfect complex is locally isomorphic to a finite complex of finite free OX -modules
and therefore satisfies (2) by assumption on X.
Assume (2). Choose a K-injective complex K• representing K. Choose a perfect
generator E of DQCoh(OX) and represent it by a K-injective complex I•. According
to Theorem 17.3 and its proof there is an equivalence of triangulated categories
F : DQCoh(OX) → D(A, d) where (A, d) is the differential graded algebra

(A, d) = HomCompdg(OX )(I•, I•)
which maps K to the differential graded module

M = HomCompdg(OX )(I•, K•)

Note that Hi(A) = Exti(E, E) and Hi(M) = Exti(E, K). Moreover, since F is
an equivalence it and its quasi-inverse commute with homotopy colimits. There-
fore, it suffices to write M as a homotopy colimit of compact objects of D(A, d).
By Differential Graded Algebra, Lemma 38.3 it suffices show that Exti(E, E) and
Exti(E, K) are countable for each i. This follows from Lemma 27.1. □

Lemma 27.3.0CRW Let A be a ring. Let f : U → X be a flat morphism of algebraic
spaces of finite presentation over A. Then

(1) there exists an inverse system of perfect objects Ln of D(OX) such that
RΓ(U, Lf∗K) = hocolim R HomX(Ln, K)

in D(A) functorially in K in DQCoh(OX), and
(2) there exists a system of perfect objects En of D(OX) such that

RΓ(U, Lf∗K) = hocolim RΓ(X, En ⊗L K)
in D(A) functorially in K in DQCoh(OX).

Proof. By Lemma 20.1 we have
RΓ(U, Lf∗K) = RΓ(X, Rf∗OU ⊗L K)

functorially in K. Observe that RΓ(X, −) commutes with homotopy colimits be-
cause it commutes with direct sums by Lemma 6.2. Similarly, − ⊗L K commutes
with derived colimits because − ⊗L K commutes with direct sums (because direct
sums in D(OX) are given by direct sums of representing complexes). Hence to
prove (2) it suffices to write Rf∗OU = hocolimEn for a system of perfect objects
En of D(OX). Once this is done we obtain (1) by setting Ln = E∨

n , see Cohomology
on Sites, Lemma 48.4.
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Write A = colim Ai with Ai of finite type over Z. By Limits of Spaces, Lemma 7.1
we can find an i and morphisms Ui → Xi → Spec(Ai) of finite presentation whose
base change to Spec(A) recovers U → X → Spec(A). After increasing i we may
assume that fi : Ui → Xi is flat, see Limits of Spaces, Lemma 6.12. By Lemma
20.4 the derived pullback of Rfi,∗OUi

by g : X → Xi is equal to Rf∗OU . Since Lg∗

commutes with derived colimits, it suffices to prove what we want for fi. Hence we
may assume that U and X are of finite type over Z.
Assume f : U → X is a morphism of algebraic spaces of finite type over Z. To finish
the proof we will show that Rf∗OU is a homotopy colimit of perfect complexes. To
see this we apply Lemma 27.2. Thus it suffices to show that Rif∗OU has countable
sets of sections over affines étale over X. This follows from Lemma 27.1 applied to
the structure sheaf. □

28. The resolution property

0GUR This section is the analogue of Derived Categories of Schemes, Section 36 for alge-
braic spaces; please read that section first. It is currently not known if a smooth
proper algebraic space over a field always has the resolution property or if this is
false. If you know the answer to this question, please email stacks.project@gmail.com.
We can make the following definition although it scarcely makes sense to consider
it for general algebraic spaces.

Definition 28.1.0GUS Let S be a scheme. Let X be an algebraic space over S. We
say X has the resolution property if every quasi-coherent OX -module of finite type
is the quotient of a finite locally free OX -module.

If X is a quasi-compact and quasi-separated algebraic space, then it suffices to check
every OX -module module of finite presentation (automatically quasi-coherent) is
the quotient of a finite locally free OX -module, see Limits of Spaces, Lemma 9.3.
If X is a Noetherian algebraic space, then finite type quasi-coherent modules are
exactly the coherent OX -modules, see Cohomology of Spaces, Lemma 12.2.

Lemma 28.2.0GUT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) Y is quasi-compact and quasi-separated and has the resolution property,
(2) there exists an f -ample invertible module on X (Divisors on Spaces, Defi-

nition 14.1).
Then X has the resolution property.

Proof. Let F be a finite type quasi-coherent OX -module. Let L be an f -ample
invertible module. Choose an affine scheme V and a surjective étale morphism
V → Y . Set U = V ×Y X. Then L|U is ample on U . By Properties, Proposition
26.13 we know there exists finitely many maps si : L⊗ni |U → F|U which are jointly
surjective. Consider the quasi-coherent OY -modules

Hn = f∗(F ⊗OX
L⊗n)

We may think of si as a section over V of the sheaf H−ni
. Suppose we can find

finite locally free OY -modules Ei and maps Ei → H−ni such that si is in the image.
Then the corresponding maps

f∗Ei ⊗OX
L⊗ni −→ F

mailto:stacks.project@gmail.com
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are going to be jointly surjective and the lemma is proved. By Limits of Spaces,
Lemma 9.2 for each i we can find a finite type quasi-coherent submodule H′

i ⊂ H−ni

which contains the section si over V . Thus the resolution property of Y produces
surjections Ei → H′

i and we conclude. □

Lemma 28.3.0GUU Let S be a scheme. Let f : X → Y be an affine or quasi-affine
morphism of algebraic spaces over S with Y quasi-compact and quasi-separated. If
Y has the resolution property, so does X.

Proof. By Divisors on Spaces, Lemma 14.7 this is a special case of Lemma 28.2. □

Here is a case where one can prove the resolution property goes down.

Lemma 28.4.0GUV Let S be a scheme. Let f : X → Y be a surjective finite locally free
morphism of algebraic spaces over S. If X has the resolution property, so does Y .

Proof. The condition means that f is affine and that f∗OX is a finite locally free
OY -module of positive rank. Let G be a quasi-coherent OY -module of finite type.
By assumption there exists a surjection E → f∗G for some finite locally free OX -
module E . Since f∗ is exact (Cohomology of Spaces, Section 4) we get a surjection

f∗E −→ f∗f∗G = G ⊗OY
f∗OX

Taking duals we get a surjection

f∗E ⊗OY
HomOY

(f∗OX , OY ) −→ G

Since f∗E is finite locally free, we conclude. □

For more on the resolution property of algebraic spaces, please see More on Mor-
phisms of Spaces, Section 56.

29. Detecting Boundedness

0GFE In this section, we show that compact generators of DQCoh of a quasi-compact,
quasi-separated scheme, as constructed in Section 15, have a special property. We
recommend reading that section first as it is very similar to this one.

Lemma 29.1.0GFF Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P ∈ Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The
following are equivalent

(1) HomD(OX )(P [−i], E) = 0 for i ≫ 0, and
(2) HomD(OX )(P [−i], τ≥aE) = 0 for i ≫ 0.

Proof. Using the triangle τ<aE → E → τ≥aE → we see that the equivalence
follows if we can show

HomD(OX )(P [−i], τ<aE) = HomD(OX )(P, (τ<aE)[i]) = 0

for i ≫ 0. As P is perfect this is true by Lemma 17.2. □

Lemma 29.2.0GFG Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P ∈ Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The
following are equivalent

(1) HomD(OX )(P [−i], E) = 0 for i ≪ 0, and
(2) HomD(OX )(P [−i], τ≤aE) = 0 for i ≪ 0.
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Proof. Using the triangle τ≤aE → E → τ>aE → we see that the equivalence
follows if we can show

HomD(OX )(P [−i], τ>aE) = HomD(OX )(P, (τ>aE)[i]) = 0

for i ≪ 0. As P is perfect this is true by Lemma 17.2. □

Proposition 29.3.0GFH Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let G ∈ Dperf (OX) be a perfect complex which
generates DQCoh(OX). Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D−
QCoh(OX),

(2) HomD(OX )(G[−i], E) = 0 for i ≫ 0,
(3) Exti

X(G, E) = 0 for i ≫ 0,
(4) R HomX(G, E) is in D−(Z),
(5) Hi(X, G∨ ⊗L

OX
E) = 0 for i ≫ 0,

(6) RΓ(X, G∨ ⊗L
OX

E) is in D−(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X, P ⊗L

OX
E) = 0 for i ≫ 0,

(c) RΓ(X, P ⊗L
OX

E) is in D−(Z).

Proof. Assume (1). Since HomD(OX )(G[−i], E) = HomD(OX )(G, E[i]) we see that
this is zero for i ≫ 0 by Lemma 17.2. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section
36. Part (5) and (6) are equivalent as Hi(X, −) = Hi(RΓ(X, −)) by definition.
The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions
(5), (6) by Cohomology on Sites, Lemma 48.4 and the fact that (G[−i])∨ = G∨[i].

It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
16.2. For P ∈ Dperf (OX) let T (P ) be the assertion that R HomX(P, E) is in
D−(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 36.7 we see that (4) implies T holds
on all of Dperf (OX). The same argument works for all other properties, except
that for property (7)(b) and (7)(c) we also use that P 7→ P ∨ is a self equivalence
of Dperf (OX). Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Lemma 9.3.

First, we prove (2) – (7) ⇒ (1) if X is affine. This follows from the case of schemes,
see Derived Categories of Schemes, Proposition 40.5.

Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-
compact and quasi-separated algebraic spaces over S and assume the implication
(2) – (7) ⇒ (1) is known for U , V , and U ×X V . To finish the proof we have to
show the implication (2) – (7) ⇒ (1) for X. Suppose E ∈ DQCoh(OX) satisfies (2)
– (7). By Lemma 15.3 and Theorem 15.4 there exists a perfect complex Q on X
such that Q|U generates DQCoh(OU ).

https://stacks.math.columbia.edu/tag/0GFH
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Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X \ U and maps isomorphically to it (see Definition 9.1). This is a retro-
compact closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let
K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on f1, . . . , fr

over A. Note that since K is supported on Z, the pushforward K ′ = Rj∗K is a per-
fect object of D(OX) whose restriction to V is K (see Lemmas 14.3 and 10.7). By
assumption, we know R HomOX

(Q, E) and R HomOX
(K ′, E) are bounded above.

By Lemma 10.7 we have K ′ = j!K and hence
HomD(OX )(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0

for i ≫ 0. Therefore, we may apply Derived Categories of Schemes, Lemma 40.1 to
E|V to obtain an integer a such that τ≥a(E|V ) = τ≥aR(U ×X V → V )∗(E|U×X V ).
Then τ≥aE = τ≥aR(U → X)∗(E|U ) (check that the canonical map is an isomor-
phism after restricting to U and to V ). Hence using Lemma 29.1 twice we see
that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX )(Q[−i], R(U → X)∗(E|U )) = 0
for i ≫ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D−

QCoh(OU ). But then since the functor R(U → X)∗ preserves D−
QCoh (by

Lemma 6.1), we get τ≥aE ∈ D−
QCoh(OX). Thus E ∈ D−

QCoh(OX). □

Proposition 29.4.0GFI Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let G ∈ Dperf (OX) be a perfect complex which
generates DQCoh(OX). Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D+
QCoh(OX),

(2) HomD(OX )(G[−i], E) = 0 for i ≪ 0,
(3) Exti

X(G, E) = 0 for i ≪ 0,
(4) R HomX(G, E) is in D+(Z),
(5) Hi(X, G∨ ⊗L

OX
E) = 0 for i ≪ 0,

(6) RΓ(X, G∨ ⊗L
OX

E) is in D+(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X, P ⊗L

OX
E) = 0 for i ≪ 0,

(c) RΓ(X, P ⊗L
OX

E) is in D+(Z).

Proof. Assume (1). Since HomD(OX )(G[−i], E) = HomD(OX )(G, E[i]) we see that
this is zero for i ≪ 0 by Lemma 17.2. This proves that (1) implies (2).
Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section
36. Part (5) and (6) are equivalent as Hi(X, −) = Hi(RΓ(X, −)) by definition.
The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions
(5), (6) by Cohomology on Sites, Lemma 48.4 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
16.2. For P ∈ Dperf (OX) let T (P ) be the assertion that R HomX(P, E) is in
D+(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 36.7 we see that (4) implies T holds
on all of Dperf (OX). The same argument works for all other properties, except

https://stacks.math.columbia.edu/tag/0GFI
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that for property (7)(b) and (7)(c) we also use that P 7→ P ∨ is a self equivalence
of Dperf (OX). Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Lemma 9.3.

First, we prove (2) – (7) ⇒ (1) if X is affine. This follows from the case of schemes,
see Derived Categories of Schemes, Proposition 40.6.

Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-
compact and quasi-separated algebraic spaces over S and assume the implication
(2) – (7) ⇒ (1) is known for U , V , and U ×X V . To finish the proof we have to
show the implication (2) – (7) ⇒ (1) for X. Suppose E ∈ DQCoh(OX) satisfies (2)
– (7). By Lemma 15.3 and Theorem 15.4 there exists a perfect complex Q on X
such that Q|U generates DQCoh(OU ).

Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X \ U and maps isomorphically to it (see Definition 9.1). This is a retro-
compact closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let
K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on f1, . . . , fr

over A. Note that since K is supported on Z, the pushforward K ′ = Rj∗K is a per-
fect object of D(OX) whose restriction to V is K (see Lemmas 14.3 and 10.7). By
assumption, we know R HomOX

(Q, E) and R HomOX
(K ′, E) are bounded below.

By Lemma 10.7 we have K ′ = j!K and hence

HomD(OX )(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0

for i ≪ 0. Therefore, we may apply Derived Categories of Schemes, Lemma 40.2 to
E|V to obtain an integer a such that τ≤a(E|V ) = τ≤aR(U ×X V → V )∗(E|U×X V ).
Then τ≤aE = τ≤aR(U → X)∗(E|U ) (check that the canonical map is an isomor-
phism after restricting to U and to V ). Hence using Lemma 29.2 twice we see
that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX )(Q[−i], R(U → X)∗(E|U )) = 0

for i ≪ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D+

QCoh(OU ). But then since the functor R(U → X)∗ preserves D+
QCoh (by

Lemma 6.1), we get τ≤aE ∈ D+
QCoh(OX). Thus E ∈ D+

QCoh(OX). □

30. Quasi-coherent objects in the derived category

0H05 Let S be a scheme. Let X be an algebraic space over S. Recall that Xaffine,étale

denotes the category of affine objects of Xétale with topology given by standard
étale coverings, see Properties of Spaces, Definition 18.5. We remind the reader that
the topos of Xaffine,étale is the small étale topos of X, see Properties of Spaces,
Lemma 18.6. The site Xétale comes with a structure sheaf OX whose restriction to
Xaffine,étale we also denote OX . Then there is an equivalence of ringed topoi

(Sh(Xaffine,étale), OX) −→ (Sh(Xétale), OX)

See Descent on Spaces, Equation (5.0.1) and the discussion in Descent on Spaces,
Section 5.
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In this section we denote Xaffine the underlying category of Xaffine,étale endowed
with the chaotic topology, i.e., such that sheaves agree with presheaves. In par-
ticular, the structure sheaf OX becomes a sheaf on Xaffine as well. We obtain a
morphisms of ringed sites

ϵ : (Xaffine,étale, OX) −→ (Xaffine, OX)

as in Cohomology on Sites, Section 27. In this section we will identify DQCoh(OX)
with the category QC (Xaffine, OX) introduced in Cohomology on Sites, Section
43.

Lemma 30.1.0H06 In the sitation above there are canonical exact equivalences between
the following triangulated categories

(1) DQCoh(OX),
(2) DQCoh(Xaffine,étale, OX),
(3) DQCoh(Xaffine, OX), and
(4) QC (Xaffine, OX).

Proof. If U → V → X are étale morphisms with U and V affine, then the ring map
OX(V ) → OX(U) is flat. Hence the equivalence between (3) and (4) is a special
case of Cohomology on Sites, Lemma 43.11 (the proof also clarifies the statement).

The discussion preceding the lemma shows that we have an equivalence of ringed
topoi (Sh(Xaffine,étale), OX) → (Sh(Xétale), OX) and hence an equivalence be-
tween abelian categories of modules. Since the notion of quasi-coherent modules is
intrinsic (Modules on Sites, Lemma 23.2) we see that this equivalence preserves the
subcategories of quasi-coherent modules. Thus we get a canonical exact equivalence
between the triangulated categories in (1) and (2).

To get an exact equivalence between the triangulated categories in (2) and (3) we
will apply Cohomology on Sites, Lemma 29.1 to the morphism ϵ : (Xaffine,étale, OX) →
(Xaffine, OX) above. We take B = Ob(Xaffine) and we take A ⊂ PMod(Xaffine, O)
to be the full subcategory of those presheaves F such that F(V ) ⊗OX (V ) OX(U) →
F(U) is an isomorphism. Observe that by Descent on Spaces, Lemma 5.1 objects of
A are exactly those sheaves in the étale topology which are quasi-coherent modules
on (Xaffine,étale, OX). On the other hand, by Modules on Sites, Lemma 24.2, the
objects of A are exactly the quasi-coherent modules on (Xaffine, OX), i.e., in the
chaotic topology. Thus if we show that Cohomology on Sites, Lemma 29.1 applies,
then we do indeed get the canonical equivalence between the categories of (2) and
(3) using ϵ∗ and Rϵ∗.

We have to verify 4 conditions:
(1) Every object of A is a sheaf for the étale topology. This we have seen above.
(2) A is a weak Serre subcategory of Mod(Xaffine,étale, OX). Above we have

seen that A = QCoh(Xaffine,étale, OX) and we have seen above that these,
via the equivalence Mod(Xaffine,étale, O) = Mod(Xétale, OX), correspond
to the quasi-coherent modules on X. Thus the result by Properties of
Spaces, Lemma 29.7 and Homology, Lemma 10.3.

(3) Every object of Xaffine has a covering in the chaotic topology whose mem-
bers are elements of B. This holds because B contains all objects.

(4) For every object U of Xaffine and F in A we have Hp
Zar(U, F) = 0 for p > 0.

This holds by the vanishing of cohomology of quasi-coherent modules on

https://stacks.math.columbia.edu/tag/0H06
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affines, see discussion in Cohomology of Spaces, Section 3 and Cohomology
of Schemes, Lemma 2.2.

This finishes the proof. □

Remark 30.2.0H07 Let S be a scheme. Let X be an algebraic space over S. We will
later show that also QC ((Aff/X), O) is canonically equivalent to DQCoh(OX). See
Sheaves on Stacks, Proposition 26.4.
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