
PROPERTIES OF ALGEBRAIC SPACES

03BO

Contents

1. Introduction 2
2. Conventions 2
3. Separation axioms 2
4. Points of algebraic spaces 4
5. Quasi-compact spaces 8
6. Special coverings 8
7. Properties of Spaces defined by properties of schemes 11
8. Constructible sets 13
9. Dimension at a point 13
10. Dimension of local rings 14
11. Generic points 14
12. Reduced spaces 15
13. The schematic locus 17
14. Obtaining a scheme 18
15. Points on quasi-separated spaces 20
16. Étale morphisms of algebraic spaces 21
17. Spaces and fpqc coverings 25
18. The étale site of an algebraic space 26
19. Points of the small étale site 33
20. Supports of abelian sheaves 38
21. The structure sheaf of an algebraic space 39
22. Stalks of the structure sheaf 41
23. Local irreducibility 42
24. Noetherian spaces 43
25. Regular algebraic spaces 44
26. Sheaves of modules on algebraic spaces 45
27. Étale localization 46
28. Recovering morphisms 48
29. Quasi-coherent sheaves on algebraic spaces 53
30. Properties of modules 57
31. Locally projective modules 58
32. Quasi-coherent sheaves and presentations 58
33. Morphisms towards schemes 60
34. Quotients by free actions 60
35. Other chapters 61
References 63

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1



PROPERTIES OF ALGEBRAIC SPACES 2

1. Introduction

03BP Please see Spaces, Section 1 for a brief introduction to algebraic spaces, and please
read some of that chapter for our basic definitions and conventions concerning
algebraic spaces. In this chapter we start introducing some basic notions and prop-
erties of algebraic spaces. A fundamental reference for the case of quasi-separated
algebraic spaces is [Knu71].
The discussion is somewhat awkward at times since we made the design decision
to first talk about properties of algebraic spaces by themselves, and only later
about properties of morphisms of algebraic spaces. We make an exception for this
rule regarding étale morphisms of algebraic spaces, which we introduce in Section
16. But until that section whenever we say a morphism has a certain property,
it automatically means the source of the morphism is a scheme (or perhaps the
morphism is representable).
Some of the material in the chapter (especially regarding points) will be improved
upon in the chapter on decent algebraic spaces.

2. Conventions

03BQ The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X. The reason is that we want to avoid
confusion when changing base schemes, as in Spaces, Section 16.

3. Separation axioms

03BR In this section we collect all the “absolute” separation conditions of algebraic spaces.
Since in our language any algebraic space is an algebraic space over some definite
base scheme, any absolute property ofX over S corresponds to a conditions imposed
on X viewed as an algebraic space over Spec(Z). Here is the precise formulation.

Definition 3.1.03BS (Compare Spaces, Definition 13.2.) Consider a big fppf site
Schfppf = (Sch/Spec(Z))fppf . Let X be an algebraic space over Spec(Z). Let
∆ : X → X ×X be the diagonal morphism.

(1) We say X is separated if ∆ is a closed immersion.
(2) We say X is locally separated1 if ∆ is an immersion.
(3) We say X is quasi-separated if ∆ is quasi-compact.
(4) We say X is Zariski locally quasi-separated2 if there exists a Zariski covering

X =
⋃
i∈I Xi (see Spaces, Definition 12.5) such that each Xi is quasi-

separated.
Let S is a scheme contained in Schfppf , and let X be an algebraic space over
S. Then we say X is separated, locally separated, quasi-separated, or Zariski lo-
cally quasi-separated if X viewed as an algebraic space over Spec(Z) (see Spaces,
Definition 16.2) has the corresponding property.

1In the literature this often refers to quasi-separated and locally separated algebraic spaces.
2This notion was suggested by B. Conrad.

https://stacks.math.columbia.edu/tag/03BS
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It is true that an algebraic space X over S which is separated (in the absolute sense
above) is separated over S (and similarly for the other absolute separation proper-
ties above). This will be discussed in great detail in Morphisms of Spaces, Section
4. We will see in Lemma 6.6 that being Zariski locally separated is independent of
the base scheme (hence equivalent to the absolute notion).
Lemma 3.2.03DY Let S be a scheme. Let X be an algebraic space over S. We have
the following implications among the separation axioms of Definition 3.1:

(1) separated implies all the others,
(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. □

Lemma 3.3.0AHR Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is a quasi-separated algebraic space,
(2) for U → X, V → X with U , V quasi-compact schemes the fibre product

U ×X V is quasi-compact,
(3) for U → X, V → X with U , V affine the fibre product U ×X V is quasi-

compact.
Proof. Using Spaces, Lemma 16.3 we see that we may assume S = Spec(Z). Since
U ×X V = X ×X×X (U × V ) and since U × V is quasi-compact if U and V are so,
we see that (1) implies (2). It is clear that (2) implies (3). Assume (3). Choose a
scheme W and a surjective étale morphism W → X. Then W ×W → X × X is
surjective étale. Hence it suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W
is quasi-compact, see Spaces, Lemma 5.6. If U ⊂ W and V ⊂ W are affine opens,
then j−1(U×V ) = U×X V is quasi-compact by assumption. Since the affine opens
U ×V form an affine open covering of W ×W (Schemes, Lemma 17.4) we conclude
by Schemes, Lemma 19.2. □

Lemma 3.4.0AHS Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is a separated algebraic space,
(2) for U → X, V → X with U , V affine the fibre product U ×X V is affine

and
O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.
Proof. Using Spaces, Lemma 16.3 we see that we may assume S = Spec(Z). Since
U×X V = X×X×X (U×V ) and since U×V is affine if U and V are so, we see that
(1) implies (2). Assume (2). Choose a scheme W and a surjective étale morphism
W → X. Then W ×W → X ×X is surjective étale. Hence it suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W
is a closed immersion, see Spaces, Lemma 5.6. If U ⊂ W and V ⊂ W are affine
opens, then j−1(U ×V ) = U ×X V is affine by assumption and the map U ×X V →
U×V is a closed immersion because the corresponding ring map is surjective. Since
the affine opens U × V form an affine open covering of W ×W (Schemes, Lemma
17.4) we conclude by Morphisms, Lemma 2.1. □

https://stacks.math.columbia.edu/tag/03DY
https://stacks.math.columbia.edu/tag/0AHR
https://stacks.math.columbia.edu/tag/0AHS
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4. Points of algebraic spaces

03BT As is clear from Spaces, Example 14.8 a point of an algebraic space should not
be defined as a monomorphism from the spectrum of a field. Instead we define
them as equivalence classes of morphisms of spectra of fields exactly as explained
in Schemes, Section 13.
Let S be a scheme. Let F be a presheaf on (Sch/S)fppf . Let K be a field. Consider
a morphism

Spec(K) −→ F.

By the Yoneda Lemma this is given by an element p ∈ F (Spec(K)). We say that
two such pairs (Spec(K), p) and (Spec(L), q) are equivalent if there exists a third
field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // F.

In other words, there are field extensions K → Ω and L → Ω such that p and q
map to the same element of F (Spec(Ω)). We omit the verification that this defines
an equivalence relation.

Definition 4.1.03BU Let S be a scheme. Let X be an algebraic space over S. A point
of X is an equivalence class of morphisms from spectra of fields into X. The set of
points of X is denoted |X|.

Note that if f : X → Y is a morphism of algebraic spaces over S, then there is an
induced map |f | : |X| → |Y | which maps a representative x : Spec(K)→ X to the
representative f ◦ x : Spec(K)→ Y .

Lemma 4.2.03BV Let S be a scheme. Let X be a scheme over S. The points of X as
a scheme are in canonical 1-1 correspondence with the points of X as an algebraic
space.

Proof. This is Schemes, Lemma 13.3. □

Lemma 4.3.03H4 Let S be a scheme. Let

Z ×Y X //

��

X

��
Z // Y

be a cartesian diagram of algebraic spaces over S. Then the map of sets of points
|Z ×Y X| −→ |Z| ×|Y | |X|

is surjective.

Proof. Namely, suppose given fieldsK, L and morphisms Spec(K)→ X, Spec(L)→
Z, then the assumption that they agree as elements of |Y | means that there is a
common extension M/K and M/L such that Spec(M)→ Spec(K)→ X → Y and
Spec(M)→ Spec(L)→ Z → Y agree. And this is exactly the condition which says
you get a morphism Spec(M)→ Z ×Y X. □

https://stacks.math.columbia.edu/tag/03BU
https://stacks.math.columbia.edu/tag/03BV
https://stacks.math.columbia.edu/tag/03H4
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Lemma 4.4.03H5 Let S be a scheme. Let X be an algebraic space over S. Let f : T →
X be a morphism from a scheme to X. The following are equivalent

(1) f : T → X is surjective (according to Spaces, Definition 5.1), and
(2) |f | : |T | → |X| is surjective.

Proof. Assume (1). Let x : Spec(K)→ X be a morphism from the spectrum of a
field into X. By assumption the morphism of schemes Spec(K)×X T → Spec(K) is
surjective. Hence there exists a field extension K ′/K and a morphism Spec(K ′)→
Spec(K)×X T such that the left square in the diagram

Spec(K ′) //

��

Spec(K)×X T

��

// T

��
Spec(K) Spec(K) x // X

is commutative. This shows that |f | : |T | → |X| is surjective.

Assume (2). Let Z → X be a morphism where Z is a scheme. We have to show
that the morphism of schemes Z ×X T → T is surjective, i.e., that |Z ×X T | → |Z|
is surjective. This follows from (2) and Lemma 4.3. □

Lemma 4.5.03BW Let S be a scheme. Let X be an algebraic space over S. Let X = U/R
be a presentation of X, see Spaces, Definition 9.3. Then the image of |R| → |U |×|U |
is an equivalence relation and |X| is the quotient of |U | by this equivalence relation.

Proof. The assumption means that U is a scheme, p : U → X is a surjective, étale
morphism, R = U ×X U is a scheme and defines an étale equivalence relation on U
such that X = U/R as sheaves. By Lemma 4.4 we see that |U | → |X| is surjective.
By Lemma 4.3 the map

|R| −→ |U | ×|X| |U |
is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X|. Combining these two
statements we get the result of the lemma. □

Lemma 4.6.03BX Let S be a scheme. There exists a unique topology on the sets of
points of algebraic spaces over S with the following properties:

(1) if X is a scheme over S, then the topology on |X| is the usual one (via the
identification of Lemma 4.2),

(2) for every morphism of algebraic spaces X → Y over S the map |X| → |Y |
is continuous, and

(3) for every étale morphism U → X with U a scheme the map of topological
spaces |U | → |X| is continuous and open.

Proof. Let X be an algebraic space over S. Let p : U → X be a surjective étale
morphism where U is a scheme over S. We define W ⊂ |X| is open if and only
if |p|−1(W ) is an open subset of |U |. This is a topology on |X| (it is the quotient
topology on |X|, see Topology, Lemma 6.2).

Let us prove that the topology is independent of the choice of the presentation.
To do this it suffices to show that if U ′ is a scheme, and U ′ → X is an étale
morphism, then the map |U ′| → |X| (with topology on |X| defined using U → X

https://stacks.math.columbia.edu/tag/03H5
https://stacks.math.columbia.edu/tag/03BW
https://stacks.math.columbia.edu/tag/03BX
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as above) is open and continuous; which in addition will prove that (3) holds. Set
U ′′ = U ×X U ′, so that we have the commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are étale we see that both U ′′ → U and U ′′ → U ′ are
étale morphisms of schemes. Moreover, U ′′ → U ′ is surjective. Hence we get a
commutative diagram of maps of sets

|U ′′| //

��

|U ′|

��
|U | // |X|

The lower horizontal arrow is surjective (see Lemma 4.4 or Lemma 4.5) and contin-
uous by definition of the topology on |X|. The top horizontal arrow is surjective,
continuous, and open by Morphisms, Lemma 36.13. The left vertical arrow is con-
tinuous and open (by Morphisms, Lemma 36.13 again.) Hence it follows formally
that the right vertical arrow is continuous and open.

To finish the proof we prove (2). Let a : X → Y be a morphism of algebraic spaces.
According to Spaces, Lemma 11.6 we can find a diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective and étale. This gives rise
to the diagram

|U |

p

��

α
// |V |

q

��
|X| a // |Y |

where all but the lower horizontal arrows are known to be continuous and the two
vertical arrows are surjective and open. It follows that the lower horizontal arrow
is continuous as desired. □

Definition 4.7.03BY Let S be a scheme. Let X be an algebraic space over S. The
underlying topological space of X is the set of points |X| endowed with the topology
constructed in Lemma 4.6.

It turns out that this topological space carries the same information as the small
Zariski site XZar of Spaces, Definition 12.6.

Lemma 4.8.03BZ Let S be a scheme. Let X be an algebraic space over S.
(1) The rule X ′ 7→ |X ′| defines an inclusion preserving bijection between open

subspaces X ′ (see Spaces, Definition 12.1) of X, and opens of the topological
space |X|.

https://stacks.math.columbia.edu/tag/03BY
https://stacks.math.columbia.edu/tag/03BZ
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(2) A family {Xi ⊂ X}i∈I of open subspaces of X is a Zariski covering (see
Spaces, Definition 12.5) if and only if |X| =

⋃
|Xi|.

In other words, the small Zariski site XZar of X is canonically identified with a
site associated to the topological space |X| (see Sites, Example 6.4).

Proof. In order to prove (1) let us construct the inverse of the rule. Namely,
suppose that W ⊂ |X| is open. Choose a presentation X = U/R corresponding to
the surjective étale map p : U → X and étale maps s, t : R → U . By construction
we see that |p|−1(W ) is an open of U . Denote W ′ ⊂ U the corresponding open
subscheme. It is clear that R′ = s−1(W ′) = t−1(W ′) is a Zariski open of R which
defines an étale equivalence relation on W ′. By Spaces, Lemma 10.2 the morphism
X ′ = W ′/R′ → X is an open immersion. Hence X ′ is an algebraic space by Spaces,
Lemma 11.3. By construction |X ′| = W , i.e., X ′ is a subspace of X corresponding
to W . Thus (1) is proved.

To prove (2), note that if {Xi ⊂ X}i∈I is a collection of open subspaces, then it is a
Zariski covering if and only if the U =

⋃
U ×XXi is an open covering. This follows

from the definition of a Zariski covering and the fact that the morphism U → X is
surjective as a map of presheaves on (Sch/S)fppf . On the other hand, we see that
|X| =

⋃
|Xi| if and only if U =

⋃
U ×X Xi by Lemma 4.5 (and the fact that the

projections U ×X Xi → Xi are surjective and étale). Thus the equivalence of (2)
follows. □

Lemma 4.9.03IE Let S be a scheme. Let X, Y be algebraic spaces over S. Let X ′ ⊂ X
be an open subspace. Let f : Y → X be a morphism of algebraic spaces over S.
Then f factors through X ′ if and only if |f | : |Y | → |X| factors through |X ′| ⊂ |X|.

Proof. By Spaces, Lemma 12.3 we see that Y ′ = Y ×X X ′ → Y is an open
immersion. If |f |(|Y |) ⊂ |X ′|, then clearly |Y ′| = |Y |. Hence Y ′ = Y by Lemma
4.8. □

Lemma 4.10.06NF Let S be a scheme. Let X be an algebraic spaces over S. Let U
be a scheme and let f : U → X be an étale morphism. Let X ′ ⊂ X be the open
subspace corresponding to the open |f |(|U |) ⊂ |X| via Lemma 4.8. Then f factors
through a surjective étale morphism f ′ : U → X ′. Moreover, if R = U ×X U , then
R = U ×X′ U and X ′ has the presentation X ′ = U/R.

Proof. The existence of the factorization follows from Lemma 4.9. The morphism
f ′ is surjective according to Lemma 4.4. To see f ′ is étale, suppose that T → X ′

is a morphism where T is a scheme. Then T ×X U = T ×X′ U as X ′ → X is
a monomorphism of sheaves. Thus the projection T ×X′ U → T is étale as we
assumed f étale. We have U ×X U = U ×X′ U as X ′ → X is a monomorphism.
Then X ′ = U/R follows from Spaces, Lemma 9.1. □

Lemma 4.11.0H2X Let S be a scheme. Let X be an algebraic space over S. Let
p : Spec(K) → X and q : Spec(L) → X be morphisms where K and L are fields.
Assume p and q determine the same point of |X| and p is a monomorphism. Then
q factors uniquely through p.

Proof. Since p and q define the same point of |X|, we see that the scheme

Y = Spec(K)×p,X,q Spec(L)

https://stacks.math.columbia.edu/tag/03IE
https://stacks.math.columbia.edu/tag/06NF
https://stacks.math.columbia.edu/tag/0H2X
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is nonempty. Since the base change of a monomorphism is a monomorphism this
means that the projection morphism Y → Spec(L) is a monomorphism. Hence
Y = Spec(L), see Schemes, Lemma 23.11. We conclude that q factors through p.
Uniqueness comes from the fact that p is a monomorphism. □

Lemma 4.12.03E1 Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism where k is a field} −→ |X|
This map is injective.

Proof. This follows from Lemma 4.11. □

We will see in Decent Spaces, Lemma 11.1 that the map of Lemma 4.12 is a bijection
when X is decent.

5. Quasi-compact spaces

03E2
Definition 5.1.03E3 Let S be a scheme. Let X be an algebraic space over S. We
say X is quasi-compact if there exists a surjective étale morphism U → X with U
quasi-compact.

Lemma 5.2.03E4 Let S be a scheme. Let X be an algebraic space over S. Then X is
quasi-compact if and only if |X| is quasi-compact.

Proof. Choose a scheme U and an étale surjective morphism U → X. We will use
Lemma 4.4. If U is quasi-compact, then since |U | → |X| is surjective we conclude
that |X| is quasi-compact. If |X| is quasi-compact, then since |U | → |X| is open
we see that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X| is
surjective (and still étale). Hence we win. □

Lemma 5.3.040T A finite disjoint union of quasi-compact algebraic spaces is a quasi-
compact algebraic space.

Proof. This is clear from Lemma 5.2 and the corresponding topological fact. □

Example 5.4.03IO The space A1
Q/Z is a quasi-compact algebraic space.

Lemma 5.5.04NN Let S be a scheme. Let X be an algebraic space over S. Every
point of |X| has a fundamental system of open quasi-compact neighbourhoods. In
particular |X| is locally quasi-compact in the sense of Topology, Definition 13.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X| of topological spaces. To be a bit more
precise, if u ∈ U maps to x ∈ |X|, then the images of the affine neighbourhoods of
u will give a fundamental system of quasi-compact open neighbourhoods of x. □

6. Special coverings

03FW In this section we collect some straightforward lemmas on the existence of étale
surjective coverings of algebraic spaces.

Lemma 6.1.03FX Let S be a scheme. Let X be an algebraic space over S. There exists
a surjective étale morphism U → X where U is a disjoint union of affine schemes.
We may in addition assume each of these affines maps into an affine open of S.

https://stacks.math.columbia.edu/tag/03E1
https://stacks.math.columbia.edu/tag/03E3
https://stacks.math.columbia.edu/tag/03E4
https://stacks.math.columbia.edu/tag/040T
https://stacks.math.columbia.edu/tag/03IO
https://stacks.math.columbia.edu/tag/04NN
https://stacks.math.columbia.edu/tag/03FX
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Proof. Let V → X be a surjective étale morphism. Let V =
⋃
i∈I Vi be a Zariski

open covering such that each Vi maps into an affine open of S. Then set U =
∐
i∈I Vi

with induced morphism U → V → X. This is étale and surjective as a composition
of étale and surjective representable transformations of functors (via the general
principle Spaces, Lemma 5.4 and Morphisms, Lemmas 9.2 and 36.3). □

Lemma 6.2.03FY Let S be a scheme. Let X be an algebraic space over S. There exists
a Zariski covering X =

⋃
Xi such that each algebraic space Xi has a surjective

étale covering by an affine scheme. We may in addition assume each Xi maps into
an affine open of S.

Proof. By Lemma 6.1 we can find a surjective étale morphism U =
∐
Ui → X,

with Ui affine and mapping into an affine open of S. Let Xi ⊂ X be the open
subspace of X such that Ui → X factors through an étale surjective morphism
Ui → Xi, see Lemma 4.10. Since U =

⋃
Ui we see that X =

⋃
Xi. As Ui → Xi is

surjective it follows that Xi → S maps into an affine open of S. □

Lemma 6.3.03H6 Let S be a scheme. Let X be an algebraic space over S. Then X is
quasi-compact if and only if there exists an étale surjective morphism U → X with
U an affine scheme.

Proof. If there exists an étale surjective morphism U → X with U affine then X
is quasi-compact by Definition 5.1. Conversely, if X is quasi-compact, then |X|
is quasi-compact. Let U =

∐
i∈I Ui be a disjoint union of affine schemes with an

étale and surjective map φ : U → X (Lemma 6.1). Then |X| =
⋃
φ(|Ui|) and

by quasi-compactness there is a finite subset i1, . . . , in such that |X| =
⋃
φ(|Uij |).

Hence Ui1 ∪ . . .∪Uin is an affine scheme with a finite surjective morphism towards
X. □

The following lemma will be obsoleted by the discussion of separated morphisms in
the chapter on morphisms of algebraic spaces.

Lemma 6.4.03FZ Let S be a scheme. Let X be an algebraic space over S. Let U be a
separated scheme and U → X étale. Then U → X is separated, and R = U ×X U
is a separated scheme.

Proof. Let X ′ ⊂ X be the open subscheme such that U → X factors through
an étale surjection U → X ′, see Lemma 4.10. If U → X ′ is separated, then so is
U → X, see Spaces, Lemma 5.4 (as the open immersion X ′ → X is separated by
Spaces, Lemma 5.8 and Schemes, Lemma 23.8). Moreover, since U×X′U = U×XU
it suffices to prove the result after replacing X by X ′, i.e., we may assume U → X
surjective. Consider the commutative diagram

R = U ×X U //

��

U

��
U // X

In the proof of Spaces, Lemma 13.1 we have seen that j : R→ U×S U is separated.
The morphism of schemes U → S is separated as U is a separated scheme, see
Schemes, Lemma 21.13. Hence U ×S U → U is separated as a base change, see
Schemes, Lemma 21.12. Hence the scheme U ×S U is separated (by the same
lemma). Since j is separated we see in the same way that R is separated. Hence

https://stacks.math.columbia.edu/tag/03FY
https://stacks.math.columbia.edu/tag/03H6
https://stacks.math.columbia.edu/tag/03FZ
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R→ U is a separated morphism (by Schemes, Lemma 21.13 again). Thus by Spaces,
Lemma 11.4 and the diagram above we conclude that U → X is separated. □

Lemma 6.5.07S4 Let S be a scheme. Let X be an algebraic space over S. If there
exists a quasi-separated scheme U and a surjective étale morphism U → X such that
either of the projections U ×X U → U is quasi-compact, then X is quasi-separated.
Proof. We may think of X as an algebraic space over Z. Consider the cartesian
diagram

U ×X U //

j

��

X

∆
��

U × U // X ×X
Since U is quasi-separated the projection U ×U → U is quasi-separated (as a base
change of a quasi-separated morphism of schemes, see Schemes, Lemma 21.12).
Hence the assumption in the lemma implies j is quasi-compact by Schemes, Lemma
21.14. By Spaces, Lemma 11.4 we see that ∆ is quasi-compact as desired. □

Lemma 6.6.03W7 Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is Zariski locally quasi-separated over S,
(2) X is Zariski locally quasi-separated,
(3) there exists a Zariski open covering X =

⋃
Xi such that for each i there

exists an affine scheme Ui and a quasi-compact surjective étale morphism
Ui → Xi, and

(4) there exists a Zariski open covering X =
⋃
Xi such that for each i there

exists an affine scheme Ui which maps into an affine open of S and a quasi-
compact surjective étale morphism Ui → Xi.

Proof. Assume Ui → Xi ⊂ X are as in (3). To prove (4) choose for each i a finite
affine open covering Ui = Ui1 ∪ . . . ∪ Uini

such that each Uij maps into an affine
open of S. The compositions Uij → Ui → Xi are étale and quasi-compact (see
Spaces, Lemma 5.4). Let Xij ⊂ Xi be the open subspace corresponding to the
image of |Uij | → |Xi|, see Lemma 4.10. Note that Uij → Xij is quasi-compact as
Xij ⊂ Xi is a monomorphism and as Uij → X is quasi-compact. Then X =

⋃
Xij

is a covering as in (4). The implication (4) ⇒ (3) is immediate.
Assume (4). To show that X is Zariski locally quasi-separated over S it suffices
to show that Xi is quasi-separated over S. Hence we may assume there exists an
affine scheme U mapping into an affine open of S and a quasi-compact surjective
étale morphism U → X. Consider the fibre product square

U ×X U //

��

U ×S U

��
X

∆X/S // X ×S X

The right vertical arrow is surjective étale (see Spaces, Lemma 5.7) and U ×S U is
affine (as U maps into an affine open of S, see Schemes, Section 17), and U ×X U
is quasi-compact because the projection U ×X U → U is quasi-compact as a base
change of U → X. It follows from Spaces, Lemma 11.4 that ∆X/S is quasi-compact
as desired.

https://stacks.math.columbia.edu/tag/07S4
https://stacks.math.columbia.edu/tag/03W7
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Assume (1). To prove (3) there is an immediate reduction to the case where X
is quasi-separated over S. By Lemma 6.2 we can find a Zariski open covering
X =

⋃
Xi such that each Xi maps into an affine open of S, and such that there

exist affine schemes Ui and surjective étale morphisms Ui → Xi. Since Ui → S
maps into an affine open of S we see that Ui ×S Ui is affine, see Schemes, Section
17. As X is quasi-separated over S, the morphisms

Ri = Ui ×Xi Ui = Ui ×X Ui −→ Ui ×S Ui
as base changes of ∆X/S are quasi-compact. Hence we conclude that Ri is a quasi-
compact scheme. This in turn implies that each projection Ri → Ui is quasi-
compact. Hence, applying Spaces, Lemma 11.4 to the covering Ui → Xi and the
morphism Ui → Xi we conclude that the morphisms Ui → Xi are quasi-compact
as desired.
At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer
to the base scheme we conclude that these are also equivalent with (2). □

The following lemma will turn out to be quite useful.

Lemma 6.7.03IJ Let S be a scheme. Let X be an algebraic space over S. Let U
be a scheme. Let φ : U → X be an étale morphism such that the projections
R = U ×X U → U are quasi-compact; for example if φ is quasi-compact. Then the
fibres of

|U | → |X| and |R| → |X|
are finite.

Proof. Denote R = U ×X U , and s, t : R → U the projections. Let u ∈ U be
a point, and let x ∈ |X| be its image. The fibre of |U | → |X| over x is equal to
s(t−1({u})) by Lemma 4.3, and the fibre of |R| → |X| over x is t−1(s(t−1({u}))).
Since t : R → U is étale and quasi-compact, it has finite fibres (as its fibres are
disjoint unions of spectra of fields by Morphisms, Lemma 36.7 and quasi-compact).
Hence we win. □

7. Properties of Spaces defined by properties of schemes

03E5 Any étale local property of schemes gives rise to a corresponding property of alge-
braic spaces via the following lemma.

Lemma 7.1.03E8 Let S be a scheme. Let X be an algebraic space over S. Let P be
a property of schemes which is local in the étale topology, see Descent, Definition
15.1. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the scheme U
has property P, and

(2) for every scheme U and every étale morphism U → X the scheme U has
property P.

If X is representable this is equivalent to P(X).

Proof. The implication (2) ⇒ (1) is immediate. For the converse, choose a sur-
jective étale morphism U → X with U a scheme that has P and let V be an étale
X-scheme. Then U ×X V → V is an étale surjection of schemes, so V inherits P
from U ×X V , which in turn inherits P from U (see discussion following Descent,
Definition 15.1). The last claim is clear from (1) and Descent, Definition 15.1. □

https://stacks.math.columbia.edu/tag/03IJ
https://stacks.math.columbia.edu/tag/03E8


PROPERTIES OF ALGEBRAIC SPACES 12

Definition 7.2.03E6 Let P be a property of schemes which is local in the étale topology.
Let S be a scheme. Let X be an algebraic space over S. We say X has property P
if any of the equivalent conditions of Lemma 7.1 hold.

Remark 7.3.03E7 Here is a list of properties which are local for the étale topology
(keep in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger
than the étale topology):

(1) locally Noetherian, see Descent, Lemma 16.1,
(2) Jacobson, see Descent, Lemma 16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 17.1,
(4) Cohen-Macaulay, see Descent, Lemma 17.2,
(5) Gorenstein, see Duality for Schemes, Lemma 24.6,
(6) reduced, see Descent, Lemma 18.1,
(7) normal, see Descent, Lemma 18.2,
(8) locally Noetherian and (Rk), see Descent, Lemma 18.3,
(9) regular, see Descent, Lemma 18.4,

(10) Nagata, see Descent, Lemma 18.5.

Any étale local property of germs of schemes gives rise to a corresponding property
of algebraic spaces. Here is the obligatory lemma.

Lemma 7.4.04N2 Let P be a property of germs of schemes which is étale local, see
Descent, Definition 21.1. Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ |X| be a point of X. Consider étale morphisms a : U → X where U is a
scheme. The following are equivalent

(1) for any U → X as above and u ∈ U with a(u) = x we have P(U, u), and
(2) for some U → X as above and u ∈ U with a(u) = x we have P(U, u).

If X is representable, then this is equivalent to P(X,x).

Proof. Omitted. □

Definition 7.5.04RC Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Let P be a property of germs of schemes which is étale local. We say X
has property P at x if any of the equivalent conditions of Lemma 7.4 hold.

Remark 7.6.0BBL Let P be a property of local rings. Assume that for any étale ring
map A → B and q is a prime of B lying over the prime p of A, then P (Ap) ⇔
P (Bq). Then we obtain an étale local property of germs (U, u) of schemes by setting
P(U, u) = P (OU,u). In this situation we will use the terminology “the local ring of
X at x has P” to mean X has property P at x. Here is a list of such properties P :

(1) Noetherian, see More on Algebra, Lemma 44.1,
(2) dimension d, see More on Algebra, Lemma 44.2,
(3) regular, see More on Algebra, Lemma 44.3,
(4) discrete valuation ring, follows from (2), (3), and Algebra, Lemma 119.7,
(5) reduced, see More on Algebra, Lemma 45.4,
(6) normal, see More on Algebra, Lemma 45.6,
(7) Noetherian and depth k, see More on Algebra, Lemma 45.8,
(8) Noetherian and Cohen-Macaulay, see More on Algebra, Lemma 45.9,
(9) Noetherian and Gorenstein, see Dualizing Complexes, Lemma 21.8.

https://stacks.math.columbia.edu/tag/03E6
https://stacks.math.columbia.edu/tag/03E7
https://stacks.math.columbia.edu/tag/04N2
https://stacks.math.columbia.edu/tag/04RC
https://stacks.math.columbia.edu/tag/0BBL
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There are more properties for which this holds, for example G-ring and Nagata. If
we every need these we will add them here as well as references to detailed proofs
of the corresponding algebra facts.

8. Constructible sets

0ECS
Lemma 8.1.0ECT Let S be a scheme. Let X be an algebraic space over S. Let E ⊂ |X|
be a subset. The following are equivalent

(1) for every étale morphism U → X where U is a scheme the inverse image
of E in U is a locally constructible subset of U ,

(2) for every étale morphism U → X where U is an affine scheme the inverse
image of E in U is a constructible subset of U ,

(3) for some surjective étale morphism U → X where U is a scheme the inverse
image of E in U is a locally constructible subset of U .

Proof. By Properties, Lemma 2.1 we see that (1) and (2) are equivalent. It is
immediate that (1) implies (3). Thus we assume we have a surjective étale morphism
φ : U → X where U is a scheme such that φ−1(E) is locally constructible. Let
φ′ : U ′ → X be another étale morphism where U ′ is a scheme. Then we have

E′′ = pr−1
1 (φ−1(E)) = pr−1

2 ((φ′)−1(E))
where pr1 : U ×X U ′ → U and pr2 : U ×X U ′ → U ′ are the projections. By
Morphisms, Lemma 22.1 we see that E′′ is locally constructible in U ×X U ′. Let
W ′ ⊂ U ′ be an affine open. Since pr2 is étale and hence open, we can choose a
quasi-compact open W ′′ ⊂ U×XU ′ with pr2(W ′′) = W ′. Then pr2|W ′′ : W ′′ →W ′

is quasi-compact. We have W ′ ∩ (φ′)−1(E) = pr2(E′′ ∩W ′′) as φ is surjective, see
Lemma 4.3. Thus W ′ ∩ (φ′)−1(E) = pr2(E′′ ∩ W ′′) is locally constructible by
Morphisms, Theorem 22.3 as desired. □

Definition 8.2.0ECU Let S be a scheme. Let X be an algebraic space over S. Let
E ⊂ |X| be a subset. We say E is étale locally constructible if the equivalent
conditions of Lemma 8.1 are satisfied.

Of course, if X is representable, i.e., X is a scheme, then this just means E is a
locally constructible subset of the underlying topological space.

9. Dimension at a point

04N3 We can use Descent, Lemma 21.2 to define the dimension of an algebraic space X
at a point x. This will give us a different notion than the topological one (i.e., the
dimension of |X| at x).

Definition 9.1.04N5 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point of X. We define the dimension of X at x to be the element
dimx(X) ∈ {0, 1, 2, . . . ,∞} such that dimx(X) = dimu(U) for any (equivalently
some) pair (a : U → X,u) consisting of an étale morphism a : U → X from a
scheme to X and a point u ∈ U with a(u) = x. See Definition 7.5, Lemma 7.4, and
Descent, Lemma 21.2.

Warning: It is not the case that dimx(X) = dimx(|X|) in general. A counter
example is the algebraic space X of Spaces, Example 14.9. Namely, let x ∈ |X| be
a point not equal to the generic point x0 of |X|. Then we have dimx(X) = 0 but

https://stacks.math.columbia.edu/tag/0ECT
https://stacks.math.columbia.edu/tag/0ECU
https://stacks.math.columbia.edu/tag/04N5
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dimx(|X|) = 1. In particular, the dimension of X (as defined below) is different
from the dimension of |X|.

Definition 9.2.04N6 Let S be a scheme. Let X be an algebraic space over S. The
dimension dim(X) of X is defined by the rule

dim(X) = supx∈|X| dimx(X)

By Properties, Lemma 10.2 we see that this is the usual notion if X is a scheme.
There is another integer that measures the dimension of a scheme at a point, namely
the dimension of the local ring. This invariant is compatible with étale morphisms
also, see Section 10.

10. Dimension of local rings

04N7 The dimension of the local ring of an algebraic space is a well defined concept.

Lemma 10.1.0BAM Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) for some scheme U and étale morphism a : U → X and point u ∈ U with
a(u) = x we have dim(OU,u) = d,

(2) for any scheme U , any étale morphism a : U → X, and any point u ∈ U
with a(u) = x we have dim(OU,u) = d.

If X is a scheme, this is equivalent to dim(OX,x) = d.

Proof. Combine Lemma 7.4 and Descent, Lemma 21.3. □

Definition 10.2.04NA Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The dimension of the local ring of X at x is the element
d ∈ {0, 1, 2, . . . ,∞} satisfying the equivalent conditions of Lemma 10.1. In this
case we will also say x is a point of codimension d on X.

Besides the lemma below we also point the reader to Lemmas 22.4 and 22.5.

Lemma 10.3.0BAN Let S be a scheme. Let X be an algebraic space over S. The
following quantities are equal:

(1) The dimension of X.
(2) The supremum of the dimensions of the local rings of X.
(3) The supremum of dimx(X) for x ∈ |X|.

Proof. The numbers in (1) and (3) are equal by Definition 9.2. Let U → X be a
surjective étale morphism from a scheme U . The supremum of dimx(X) for x ∈ |X|
is the same as the supremum of dimu(U) for points u of U by definition. This is
the same as the supremum of dim(OU,u) by Properties, Lemma 10.2. This in turn
is the same as (2) by definition. □

11. Generic points

0BAP Let T be a topological space. According to the second edition of EGA I, a maximal
point of T is a generic point of an irreducible component of T . If T = |X| is the
topological space associated to an algebraic space X, there are at least two notions
of maximal points: we can look at maximal points of T viewed as a topological
space, or we can look at images of maximal points of U where U → X is an étale
morphism and U is a scheme. The second notion corresponds to the set of points

https://stacks.math.columbia.edu/tag/04N6
https://stacks.math.columbia.edu/tag/0BAM
https://stacks.math.columbia.edu/tag/04NA
https://stacks.math.columbia.edu/tag/0BAN
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of codimension 0 (Lemma 11.1). The codimension 0 points are easier to work with
for general algebraic spaces; the two notions agree for quasi-separated and more
generally decent algebraic spaces (Decent Spaces, Lemma 20.1).

Lemma 11.1.0BAQ Let S be a scheme and let X be an algebraic space over S. Let
x ∈ |X|. Consider étale morphisms a : U → X where U is a scheme. The following
are equivalent

(1) x is a point of codimension 0 on X,
(2) for some U → X as above and u ∈ U with a(u) = x, the point u is the

generic point of an irreducible component of U , and
(3) for any U → X as above and any u ∈ U mapping to x, the point u is the

generic point of an irreducible component of U .
If X is representable, this is equivalent to x being a generic point of an irreducible
component of |X|.

Proof. Observe that a point u of a scheme U is a generic point of an irreducible
component of U if and only if dim(OU,u) = 0 (Properties, Lemma 10.4). Hence this
follows from the definition of the codimension of a point on X (Definition 10.2). □

Lemma 11.2.0BAR Let S be a scheme and let X be an algebraic space over S. The set
of codimension 0 points of X is dense in |X|.

Proof. If U is a scheme, then the set of generic points of irreducible components
is dense in U (holds for any quasi-sober topological space). Thus if U → X is a
surjective étale morphism, then the set of codimension 0 points of X is the image
of a dense subset of |U | (Lemma 11.1). Since |X| has the quotient topology for
|U | → |X| we conclude. □

12. Reduced spaces

03IP We have already defined reduced algebraic spaces in Section 7. Here we just prove
some simple lemmas regarding reduced algebraic spaces.

Lemma 12.1.0ABJ Let S be a scheme. Let Z → X be an immersion of algebraic
spaces. Then |Z| → |X| is a homeomorphism of |Z| onto a locally closed subset of
|X|.

Proof. Let U be a scheme and U → X a surjective étale morphism. Then Z ×X
U → U is an immersion of schemes, hence gives a homeomorphism of |Z ×X U |
with a locally closed subset T ′ of |U |. By Lemma 4.3 the subset T ′ is the inverse
image of the image T of |Z| → |X|. The map |Z| → |X| is injective because the
transformation of functors Z → X is injective, see Spaces, Section 12. By Topology,
Lemma 6.4 we see that T is locally closed in |X|. Moreover, the continuous map
|Z| → T is a homeomorphism as the map |Z ×X U | → T ′ is a homeomorphism and
|Z ×Y U | → |Z| is submersive. □

The following lemma will help us construct (locally) closed subspaces.

Lemma 12.2.07TW Let S be a scheme. Let j : R → U ×S U be an étale equivalence
relation. Let X = U/R be the associated algebraic space (Spaces, Theorem 10.5).
There is a canonical bijection
R-invariant locally closed subschemes Z ′ of U ↔ locally closed subspaces Z of X

https://stacks.math.columbia.edu/tag/0BAQ
https://stacks.math.columbia.edu/tag/0BAR
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https://stacks.math.columbia.edu/tag/07TW
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Moreover, if Z → X is closed (resp. open) if and only if Z ′ → U is closed (resp.
open).

Proof. Denote φ : U → X the canonical map. The bijection sends Z → X to
Z ′ = Z ×X U → U . It is immediate from the definition that Z ′ → U is an
immersion, resp. closed immersion, resp. open immersion if Z → X is so. It is also
clear that Z ′ is R-invariant (see Groupoids, Definition 19.1).
Conversely, assume that Z ′ → U is an immersion which is R-invariant. Let R′ be
the restriction of R to Z ′, see Groupoids, Definition 18.2. Since R′ = R×s,U Z ′ =
Z ′×U,tR in this case we see that R′ is an étale equivalence relation on Z ′. By Spaces,
Theorem 10.5 we see Z = Z ′/R′ is an algebraic space. By construction we have
U×XZ = Z ′, so U×XZ → Z is an immersion. Note that the property “immersion”
is preserved under base change and fppf local on the base (see Spaces, Section 4).
Moreover, immersions are separated and locally quasi-finite (see Schemes, Lemma
23.8 and Morphisms, Lemma 20.16). Hence by More on Morphisms, Lemma 57.1
immersions satisfy descent for fppf covering. This means all the hypotheses of
Spaces, Lemma 11.5 are satisfied for Z → X, P =“immersion”, and the étale
surjective morphism U → X. We conclude that Z → X is representable and an
immersion, which is the definition of a subspace (see Spaces, Definition 12.1).
It is clear that these constructions are inverse to each other and we win. □

Lemma 12.3.03IQ Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X|
be a closed subset. There exists a unique closed subspace Z ⊂ X with the following
properties: (a) we have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective étale morphism, where U is a scheme. Set
R = U ×X U , so that X = U/R, see Spaces, Lemma 9.1. As usual we denote s, t :
R → U the two projection morphisms. By Lemma 4.5 we see that T corresponds
to a closed subset T ′ ⊂ |U | such that s−1(T ′) = t−1(T ′). Let Z ′ ⊂ U be the
reduced induced scheme structure on T ′. In this case the fibre products Z ′ ×U,t R
and Z ′ ×U,s R are closed subschemes of R (Schemes, Lemma 18.2) which are étale
over Z ′ (Morphisms, Lemma 36.4), and hence reduced (because being reduced is
local in the étale topology, see Remark 7.3). Since they have the same underlying
topological space (see above) we conclude that Z ′ ×U,t R = Z ′ ×U,s R. Thus we
can apply Lemma 12.2 to obtain a closed subspace Z ⊂ X whose pullback to U is
Z ′. By construction |Z| = T and Z is reduced. This proves existence. We omit the
proof of uniqueness. □

Lemma 12.4.03JJ Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Z ⊂ X be a closed subspace. Assume Y is reduced. A morphism f : Y → X factors
through Z if and only if f(|Y |) ⊂ |Z|.

Proof. Assume f(|Y |) ⊂ |Z|. Choose a diagram

V

b
��

h
// U

a

��
Y

f // X

where U , V are schemes, and the vertical arrows are surjective and étale. The
scheme V is reduced, see Lemma 7.1. Hence h factors through a−1(Z) by Schemes,
Lemma 12.7. So a ◦ h factors through Z. As Z ⊂ X is a subsheaf, and V → Y is

https://stacks.math.columbia.edu/tag/03IQ
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a surjection of sheaves on (Sch/S)fppf we conclude that X → Y factors through
Z. □

Definition 12.5.047X Let S be a scheme, and let X be an algebraic space over S.
Let Z ⊂ |X| be a closed subset. An algebraic space structure on Z is given by a
closed subspace Z ′ of X with |Z ′| equal to Z. The reduced induced algebraic space
structure on Z is the one constructed in Lemma 12.3. The reduction Xred of X is
the reduced induced algebraic space structure on |X|.

13. The schematic locus

03JG Every algebraic space has a largest open subspace which is a scheme; this is more
or less clear but we also write out the proof below. Of course this subspace may
be empty, for example if X = A1

Q/Z (the universal counter example). On the
other hand, if X is for example quasi-separated, then this largest open subscheme
is actually dense in X!

Lemma 13.1.03JH Let S be a scheme. Let X be an algebraic space over S. There
exists a largest open subspace X ′ ⊂ X which is a scheme.

Proof. Let U → X be an étale surjective morphism, where U is a scheme. Let
R = U ×X U . The open subspaces of X correspond 1 − 1 with open subschemes
of U which are R-invariant. Hence there is a set of them. Let Xi, i ∈ I be the
set of open subspaces of X which are schemes, i.e., are representable. Consider the
open subspace X ′ ⊂ X whose underlying set of points is the open

⋃
|Xi| of |X|.

By Lemma 4.4 we see that ∐
Xi −→ X ′

is a surjective map of sheaves on (Sch/S)fppf . But since each Xi → X ′ is repre-
sentable by open immersions we see that in fact the map is surjective in the Zariski
topology. Namely, if T → X ′ is a morphism from a scheme into X ′, then Xi×X′ T
is an open subscheme of T . Hence we can apply Schemes, Lemma 15.4 to see that
X ′ is a scheme. □

In the rest of this section we say that an open subspace X ′ of an algebraic space
X is dense if the corresponding open subset |X ′| ⊂ |X| is dense.

Lemma 13.2.0BAS Let S be a scheme. Let X be an algebraic space over S. If there
exists a finite, étale, surjective morphism U → X where U is a quasi-separated
scheme, then there exists a dense open subspace X ′ of X which is a scheme. More
precisely, every point x ∈ |X| of codimension 0 in X is contained in X ′.

Proof. Let X ′ ⊂ X be the maximal open subspace which is a scheme (Lemma
13.1). Let x ∈ |X| be a point of codimension 0 on X. By Lemma 11.2 it suffices to
show x ∈ X ′. Let U → X be as in the statement of the lemma. Write R = U ×X U
and denote s, t : R→ U the projections as usual. Note that s, t are surjective, finite
and étale. By Lemma 6.7 the fibre of |U | → |X| over x is finite, say {η1, . . . , ηn}.
By Lemma 11.1 each ηi is the generic point of an irreducible component of U . By
Properties, Lemma 29.1 we can find an affine open W ⊂ U containing {η1, . . . , ηn}
(this is where we use that U is quasi-separated). By Groupoids, Lemma 24.1 we
may assume that W is R-invariant. Since W ⊂ U is an R-invariant affine open,
the restriction RW of R to W equals RW = s−1(W ) = t−1(W ) (see Groupoids,
Definition 19.1 and discussion following it). In particular the maps RW → W are

https://stacks.math.columbia.edu/tag/047X
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finite étale also. It follows that RW is affine. Thus we see that W/RW is a scheme,
by Groupoids, Proposition 23.9. On the other hand, W/RW is an open subspace
of X by Spaces, Lemma 10.2 and it contains x by construction. □

We will improve the following proposition to the case of decent algebraic spaces in
Decent Spaces, Theorem 10.2.

Proposition 13.3.06NH Let S be a scheme. Let X be an algebraic space over S. If X
is Zariski locally quasi-separated (for example if X is quasi-separated), then there
exists a dense open subspace X ′ of X which is a scheme. More precisely, every
point x ∈ |X| of codimension 0 on X is contained in X ′.

Proof. The question is local on X by Lemma 13.1. Thus by Lemma 6.6 we may
assume that there exists an affine scheme U and a surjective, quasi-compact, étale
morphism U → X. Moreover U → X is separated (Lemma 6.4). Set R = U ×X U
and denote s, t : R → U the projections as usual. Then s, t are surjective, quasi-
compact, separated, and étale. Hence s, t are also quasi-finite and have finite fibres
(Morphisms, Lemmas 36.6, 20.9, and 20.10). By Morphisms, Lemma 51.1 for every
η ∈ U which is the generic point of an irreducible component of U , there exists
an open neighbourhood V ⊂ U of η such that s−1(V ) → V is finite. By Descent,
Lemma 23.23 being finite is fpqc (and in particular étale) local on the target.
Hence we may apply More on Groupoids, Lemma 6.4 which says that the largest
open W ⊂ U over which s is finite is R-invariant. By the above W contains every
generic point of an irreducible component of U . The restriction RW of R to W
equals RW = s−1(W ) = t−1(W ) (see Groupoids, Definition 19.1 and discussion
following it). By construction sW , tW : RW → W are finite étale. Consider the
open subspace X ′ = W/RW ⊂ X (see Spaces, Lemma 10.2). By construction the
inclusion map X ′ → X induces a bijection on points of codimension 0. This reduces
us to Lemma 13.2. □

14. Obtaining a scheme

07S5 We have used in the previous section that the quotient U/R of an affine scheme U
by an equivalence relation R is a scheme if the morphisms s, t : R → U are finite
étale. This is a special case of the following result.

Proposition 14.1.07S6 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Assume

(1) s, t : R→ U finite locally free,
(2) j = (t, s) is an equivalence, and
(3) for a dense set of points u ∈ U the R-equivalence class t(s−1({u})) is

contained in an affine open of U .
Then there exists a finite locally free morphism U → M of schemes over S such
that R = U ×M U and such that M represents the quotient sheaf U/R in the fppf
topology.

Proof. By assumption (3) and Groupoids, Lemma 24.1 we can find an open cover-
ing U =

⋃
Ui such that each Ui is an R-invariant affine open of U . Set Ri = R|Ui

.
Consider the fppf sheaves F = U/R and Fi = Ui/Ri. By Spaces, Lemma 10.2 the
morphisms Fi → F are representable and open immersions. By Groupoids, Propo-
sition 23.9 the sheaves Fi are representable by affine schemes. If T is a scheme and
T → F is a morphism, then Vi = Fi×F T is open in T and we claim that T =

⋃
Vi.
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Namely, fppf locally on T we can lift T → F to a morphism f : T → U and in that
case f−1(Ui) ⊂ Vi. Hence we conclude that F is representable by a scheme, see
Schemes, Lemma 15.4. □

For example, if U is isomorphic to a locally closed subscheme of an affine scheme or
isomorphic to a locally closed subscheme of Proj(A) for some graded ring A, then
the third assumption holds by Properties, Lemma 29.5. In particular we can apply
this to free actions of finite groups and finite group schemes on quasi-affine or quasi-
projective schemes. For example, the quotient X/G of a quasi-projective variety X
by a free action of a finite group G is a scheme. Here is a detailed statement.

Lemma 14.2.07S7 Let S be a scheme. Let G→ S be a group scheme. Let X → S be
a morphism of schemes. Let a : G×S X → X be an action. Assume that

(1) G→ S is finite locally free,
(2) the action a is free,
(3) X → S is affine, or quasi-affine, or projective, or quasi-projective, or X is

isomorphic to an open subscheme of an affine scheme, or X is isomorphic
to an open subscheme of Proj(A) for some graded ring A, or G → S is
radicial.

Then the fppf quotient sheaf X/G is a scheme and X → X/G is an fppf G-torsor.

Proof. We first show that X/G is a scheme. Since the action is free the morphism
j = (a,pr) : G ×S X → X ×S X is a monomorphism and hence an equivalence
relation, see Groupoids, Lemma 10.3. The maps s, t : G ×S X → X are finite
locally free as we’ve assumed that G→ S is finite locally free. To conclude it now
suffices to prove the last assumption of Proposition 14.1 holds. Since the action of
G is over S it suffices to prove that any finite set of points in a fibre of X → S is
contained in an affine open of X. If X is isomorphic to an open subscheme of an
affine scheme or isomorphic to an open subscheme of Proj(A) for some graded ring
A this follows from Properties, Lemma 29.5. If X → S is affine, or quasi-affine,
or projective, or quasi-projective, we may replace S by an affine open and we get
back to the case we just dealt with. If G→ S is radicial, then the orbits of points
on X under the action of G are singletons and the condition trivially holds. Some
details omitted.

To see that X → X/G is an fppf G-torsor (Groupoids, Definition 11.3) we have to
show that G×SX → X×X/GX is an isomorphism and that X → X/G fppf locally
has sections. The second part is clear from the fact that X → X/G is surjective as a
map of fppf sheaves (by construction). The first part follows from the isomorphism
R = U ×M U in the conclusion of Proposition 14.1 (note that R = G×S X in our
case). □

Lemma 14.3.0BBM Notation and assumptions as in Proposition 14.1. Then
(1) if U is quasi-separated over S, then U/R is quasi-separated over S,
(2) if U is quasi-separated, then U/R is quasi-separated,
(3) if U is separated over S, then U/R is separated over S,
(4) if U is separated, then U/R is separated, and
(5) add more here.

Similar results hold in the setting of Lemma 14.2.
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Proof. Since M represents the quotient sheaf we have a cartesian diagram

R
j
//

��

U ×S U

��
M // M ×S M

of schemes. Since U ×S U →M ×S M is surjective finite locally free, to show that
M →M ×S M is quasi-compact, resp. a closed immersion, it suffices to show that
j : R → U ×S U is quasi-compact, resp. a closed immersion, see Descent, Lemmas
23.1 and 23.19. Since j : R→ U×SU is a morphism over U and since R is finite over
U , we see that j is quasi-compact as soon as the projection U ×S U → U is quasi-
separated (Schemes, Lemma 21.14). Since j is a monomorphism and locally of finite
type, we see that j is a closed immersion as soon as it is proper (Étale Morphisms,
Lemma 7.2) which will be the case as soon as the projection U ×S U → U is
separated (Morphisms, Lemma 41.7). This proves (1) and (3). To prove (2) and
(4) we replace S by Spec(Z), see Definition 3.1. Since Lemma 14.2 is proved through
an application of Proposition 14.1 the final statement is clear too. □

15. Points on quasi-separated spaces

06NI Points can behave very badly on algebraic spaces in the generality introduced in
the Stacks project. However, for quasi-separated spaces their behaviour is mostly
like the behaviour of points on schemes. We prove a few results on this in this
section; the chapter on decent spaces contains many more results on this, see for
example Decent Spaces, Section 12.

Lemma 15.1.06NJ Let S be a scheme. Let X be a Zariski locally quasi-separated alge-
braic space over S. Then the topological space |X| is sober (see Topology, Definition
8.6).

Proof. Combining Topology, Lemma 8.8 and Lemma 6.6 we see that we may as-
sume that there exists an affine scheme U and a surjective, quasi-compact, étale
morphism U → X. Set R = U ×X U with projection maps s, t : R→ U . Applying
Lemma 6.7 we see that the fibres of s, t are finite. It follows all the assumptions of
Topology, Lemma 19.8 are met, and we conclude that |X| is Kolmogorov3.
It remains to show that every irreducible closed subset T ⊂ |X| has a generic point.
By Lemma 12.3 there exists a closed subspace Z ⊂ X with |Z| = |T |. Note that
U×XZ → Z is a quasi-compact, surjective, étale morphism from an affine scheme to
Z, hence Z is Zariski locally quasi-separated by Lemma 6.6. By Proposition 13.3 we
see that there exists an open dense subspace Z ′ ⊂ Z which is a scheme. This means
that |Z ′| ⊂ T is open dense. Hence the topological space |Z ′| is irreducible, which
means that Z ′ is an irreducible scheme. By Schemes, Lemma 11.1 we conclude that
|Z ′| is the closure of a single point η ∈ |Z ′| ⊂ T and hence also T = {η}, and we
win. □

Lemma 15.2.0A4G Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The topological space |X| is a spectral space.

3Actually we use here also Schemes, Lemma 11.1 (soberness schemes), Morphisms, Lemmas
36.12 and 25.9 (generalizations lift along étale morphisms), Lemma 4.5 (points on an algebraic
space in terms of a presentation), and Lemma 4.6 (openness quotient map).
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Proof. By Topology, Definition 23.1 we have to check that |X| is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. By Lemma 15.1 we see that |X| is sober. By
Lemma 5.2 we see that |X| is quasi-compact. By Lemma 6.3 there exists an affine
scheme U and a surjective étale morphism f : U → X. Since |f | : |U | → |X| is
open and continuous and since |U | has a basis of quasi-compact opens, we conclude
that |X| has a basis of quasi-compact opens. Finally, suppose that A,B ⊂ |X|
are quasi-compact open. Then A = |X ′| and B = |X ′′| for some open subspaces
X ′, X ′′ ⊂ X (Lemma 4.8) and we can choose affine schemes V and W and surjective
étale morphisms V → X ′ and W → X ′′ (Lemma 6.3). Then A ∩ B is the image
of |V ×X W | → |X| (Lemma 4.3). Since V ×X W is quasi-compact as X is quasi-
separated (Lemma 3.3) we conclude that A ∩ B is quasi-compact and the proof is
finished. □

The following lemma can be used to prove that an algebraic space is isomorphic to
the spectrum of a field.

Lemma 15.3.03DZ Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is quasi-separated, then X ∼= Spec(k′) where k/k′ is a finite separable extension.

Proof. Set R = Spec(k)×X Spec(k), so that we have a fibre product diagram

R
s

//

t

��

Spec(k)

��
Spec(k) // X

By Spaces, Lemma 9.1 we know X = Spec(k)/R is the quotient sheaf. Because
Spec(k) → X is étale, the morphisms s and t are étale. Hence R =

∐
i∈I Spec(ki)

is a disjoint union of spectra of fields, and both s and t induce finite separable field
extensions s, t : k ⊂ ki, see Morphisms, Lemma 36.7. Because

R = Spec(k)×X Spec(k) = (Spec(k)×S Spec(k))×X×SX,∆ X

and since ∆ is quasi-compact by assumption we conclude that R → Spec(k) ×S
Spec(k) is quasi-compact. Hence R is quasi-compact as Spec(k) ×S Spec(k) is
affine. We conclude that I is finite. This implies that s and t are finite locally free
morphisms. Hence by Groupoids, Proposition 23.9 we conclude that Spec(k)/R is
represented by Spec(k′), with k′ ⊂ k finite locally free where

k′ = {x ∈ k | si(x) = ti(x) for all i ∈ I}
It is easy to see that k′ is a field. □

Remark 15.4.03E0 Lemma 15.3 holds for decent algebraic spaces, see Decent Spaces,
Lemma 12.8. In fact a decent algebraic space with one point is a scheme, see Decent
Spaces, Lemma 14.2. This also holds when X is locally separated, because a locally
separated algebraic space is decent, see Decent Spaces, Lemma 15.2.

16. Étale morphisms of algebraic spaces

03FQ This section really belongs in the chapter on morphisms of algebraic spaces, but
we need the notion of an algebraic space étale over another in order to define
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the small étale site of an algebraic space. Thus we need to do some preliminary
work on étale morphisms from schemes to algebraic spaces, and étale morphisms
between algebraic spaces. For more about étale morphisms of algebraic spaces, see
Morphisms of Spaces, Section 39.

Lemma 16.1.03EC Let S be a scheme. Let X be an algebraic space over S. Let U , U ′

be schemes over S.
(1) If U → U ′ is an étale morphism of schemes, and if U ′ → X is an étale

morphism from U ′ to X, then the composition U → X is an étale morphism
from U to X.

(2) If φ : U → X and φ′ : U ′ → X are étale morphisms towards X, and if
χ : U → U ′ is a morphism of schemes such that φ = φ′ ◦ χ, then χ is an
étale morphism of schemes.

(3) If χ : U → U ′ is a surjective étale morphism of schemes and φ′ : U ′ → X
is a morphism such that φ = φ′ ◦ χ is étale, then φ′ is étale.

Proof. Recall that our definition of an étale morphism from a scheme into an
algebraic space comes from Spaces, Definition 5.1 via the fact that any morphism
from a scheme into an algebraic space is representable.

Part (1) of the lemma follows from this, the fact that étale morphisms are preserved
under composition (Morphisms, Lemma 36.3) and Spaces, Lemmas 5.4 and 5.3
(which are formal).

To prove part (2) choose a scheme W over S and a surjective étale morphism
W → X. Consider the base change χW : W ×X U → W ×X U ′ of χ. As W ×X U
and W ×X U ′ are étale over W , we conclude that χW is étale, by Morphisms,
Lemma 36.18. On the other hand, in the commutative diagram

W ×X U //

��

W ×X U ′

��
U // U ′

the two vertical arrows are étale and surjective. Hence by Descent, Lemma 14.4 we
conclude that U → U ′ is étale.

To prove part (3) choose a scheme W over S and a morphism W → X. As above
we consider the diagram

W ×X U //

��

W ×X U ′

��

// W

��
U // U ′ // X

Now we know that W ×X U → W ×X U ′ is surjective étale (as a base change of
U → U ′) and that W ×X U →W is étale. Thus W ×X U ′ →W is étale by Descent,
Lemma 14.4. By definition this means that φ′ is étale. □

Definition 16.2.03FR Let S be a scheme. A morphism f : X → Y between algebraic
spaces over S is called étale if and only if for every étale morphism φ : U → X
where U is a scheme, the composition f ◦ φ is étale also.
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If X and Y are schemes, then this agree with the usual notion of an étale morphism
of schemes. In fact, whenever X → Y is a representable morphism of algebraic
spaces, then this agrees with the notion defined via Spaces, Definition 5.1. This
follows by combining Lemma 16.3 below and Spaces, Lemma 11.4.

Lemma 16.3.03FS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is étale,
(2) there exists a surjective étale morphism φ : U → X, where U is a scheme,

such that the composition f ◦φ is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism ψ : V → Y , where V is a scheme,

such that the base change V ×X Y → V is étale (as a morphism of algebraic
spaces),

(4) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and the left vertical
arrow is surjective such that the horizontal arrow is étale.

Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. Let
W → X be an étale morphism with W a scheme. Then we see that W ×X U → U
is étale. Hence W ×X U → V is étale as the composition of the étale morphisms of
schemes W×XU → U and U → V . Therefore W×XU → Y is étale by Lemma 16.1
(1). Since also the projection W ×X U → W is surjective and étale, we conclude
from Lemma 16.1 (3) that W → Y is étale.

Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

U

��

// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 11.6. By
assumption the morphism U → Y is étale, and hence U → V is étale by Lemma
16.1 (2).

We omit the proof that (2) and (3) are also equivalent to (1). □

Lemma 16.4.03FT The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is immediate from the definition. □

Lemma 16.5.03FU The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.

Proof. Let X → Y be an étale morphism of algebraic spaces over S. Let Z → Y
be a morphism of algebraic spaces. Choose a scheme U and a surjective étale

https://stacks.math.columbia.edu/tag/03FS
https://stacks.math.columbia.edu/tag/03FT
https://stacks.math.columbia.edu/tag/03FU


PROPERTIES OF ALGEBRAIC SPACES 24

morphism U → X. Choose a scheme W and a surjective étale morphism W → Z.
Then U → Y is étale, hence in the diagram

W ×Y U

��

// W

��
Z ×Y X // Z

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and
étale (verification omitted). Hence we conclude that the lower horizontal arrow is
étale by Lemma 16.3. □

Lemma 16.6.03FV Let S be a scheme. Let X,Y, Z be algebraic spaces. Let g : X → Z,
h : Y → Z be étale morphisms and let f : X → Y be a morphism such that h◦f = g.
Then f is étale.

Proof. Choose a commutative diagram

U

��

χ
// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 11.6. By
assumption the morphisms φ : U → X → Z and ψ : V → Y → Z are étale.
Moreover, ψ ◦χ = φ by our assumption on f, g, h. Hence U → V is étale by Lemma
16.1 part (2). □

Lemma 16.7.03IR Let S be a scheme. If X → Y is an étale morphism of algebraic
spaces over S, then the associated map |X| → |Y | of topological spaces is open.

Proof. This is clear from the diagram in Lemma 16.3 and Lemma 4.6. □

Finally, here is a fun lemma. It is not true that an algebraic space with an étale
morphism towards a scheme is a scheme, see Spaces, Example 14.2. But it is true
if the target is the spectrum of a field.

Lemma 16.8.03KX Let S be a scheme. Let X → Spec(k) be étale morphism over S,
where k is a field. Then X is a scheme.

Proof. Let U be an affine scheme, and let U → X be an étale morphism. By
Definition 16.2 we see that U → Spec(k) is an étale morphism. Hence U =∐
i=1,...,n Spec(ki) is a finite disjoint union of spectra of finite separable exten-

sions ki of k, see Morphisms, Lemma 36.7. The R = U ×X U → U ×Spec(k) U
is a monomorphism and U ×Spec(k) U is also a finite disjoint union of spectra of
finite separable extensions of k. Hence by Schemes, Lemma 23.11 we see that R is
similarly a finite disjoint union of spectra of finite separable extensions of k. This
U and R are affine and both projections R→ U are finite locally free. Hence U/R
is a scheme by Groupoids, Proposition 23.9. By Spaces, Lemma 10.2 it is also an
open subspace of X. By Lemma 13.1 we conclude that X is a scheme. □
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17. Spaces and fpqc coverings

03W8 Let S be a scheme. An algebraic space over S is defined as a sheaf in the fppf
topology with additional properties. Hence it is not immediately clear that it
satisfies the sheaf property for the fpqc topology (see Topologies, Definition 9.12).
In this section we give Gabber’s argument showing this is true. However, when we
say that the algebraic space X satisfies the sheaf property for the fpqc topology we
really only consider fpqc coverings {fi : Ti → T}i∈I such that T, Ti are objects of
the big site (Sch/S)fppf (as per our conventions, see Section 2).

Proposition 17.1 (Gabber).0APL Let S be a scheme. Let X be an algebraic space
over S. Then X satisfies the sheaf property for the fpqc topology.

Proof. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : T ′ → T we have: X(T ) is the
equalizer of the two maps X(T ′) → X(T ′ ×T T ′). See Topologies, Lemma 9.13
(there is a little argument omitted here because the lemma cited is formulated for
functors defined on the category of all schemes).
Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Spaces, Lemma 13.1 the morphism ∆X/S is a representable monomorphism.
Hence E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f
implies that T ′ → T factors (uniquely) through E. Consider the commutative
diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′×T E → T ′ is a monomorphism with a section we conclude it
is an isomorphism. Hence we conclude that E → T is an isomorphism by Descent,
Lemma 23.17. This means a = b as desired.
Next, let c : T ′ → X be a morphism such that the two compositions T ′ ×T T ′ →
T ′ → X are the same. We have to find a morphism a : T → X whose composition
with T ′ → T is c. Choose an affine scheme U and an étale morphism U → X such
that the image of |U | → |X| contains the image of |c| : |T ′| → |X|. This is possible
by Lemmas 4.6 and 6.1, the fact that a finite disjoint union of affines is affine, and
the fact that |T ′| is quasi-compact (small argument omitted). Since U → X is
separated (Lemma 6.4), we see that

V = U ×X,c T ′ −→ T ′

is a surjective, étale, separated morphism of schemes (to see that it is surjective use
Lemma 4.3 and our choice of U → X). The fact that c ◦ pr0 = c ◦ pr1 means that
we obtain a descent datum on V/T ′/T (Descent, Definition 34.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0 (T ′ ×T T ′)
= (T ′ ×T T ′)×c◦pr1,X U

= (T ′ ×T T ′)×T ′ V
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The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 66.8
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma 36.6).
By More on Groupoids, Lemma 15.3 the descent datum is effective. Say W → T is
a morphism such that there is an isomorphism α : T ′ ×T W → V compatible with
the given descent datum on V and the canonical descent datum on T ′×T W . Then
W → T is surjective and étale (Descent, Lemmas 23.7 and 23.29). Consider the
composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions b′ ◦ (pr0, 1), b′ ◦ (pr1, 1) : (T ′ ×T T ′)×T W → T ′ ×T W → U
agree by our choice of α and the corresponding property of c (computation omitted).
Hence b′ descends to a morphism b : W → U by Descent, Lemma 13.7. The diagram

T ′ ×T W //

��

W
b
// U

��
T ′ c // X

is commutative. What this means is that we have proved the existence of a étale
locally on T , i.e., we have an a′ : W → X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solution satisfies the glueing
condition, i.e., we have pr∗

0a
′ = pr∗

1a
′ as elements of X(W ×T W ). Since X is an

étale sheaf we find a unique a ∈ X(T ) restricting to a′ on W . □

18. The étale site of an algebraic space

03EB In this section we define the small étale site of an algebraic space. This is the
analogue of the small étale site Sétale of a scheme. Lemma 16.1 implies that in the
definition below any morphism between objects of the étale site of X is étale, and
that any scheme étale over an object of Xétale is also an object of Xétale.

Definition 18.1.03ED Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The small étale site Xétale of X is
defined as follows:

(1) An object of Xétale is a morphism φ : U → X where U ∈ Ob((Sch/S)étale)
is a scheme and φ is an étale morphism,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) is given by a morphism of
schemes χ : U → U ′ such that φ = φ′ ◦ χ, and

(3) a family of morphisms {(Ui → X) → (U → X)}i∈I of Xétale is a covering
if and only if {Ui → U}i∈I is a covering of (Sch/S)étale.

A consequence of our choice is that the étale site of an algebraic space in general
does not have a final object! On the other hand, if X happens to be a scheme, then
the definition above agrees with Topologies, Definition 4.8.

The above is our default site, but there are a couple of variants which we will also
use. Namely, we can consider all algebraic spaces U which are étale over X and this
produces the site Xspaces,étale we define below or we can consider all affine schemes
U which are étale over X and this produces the site Xaffine,étale we define below.
The first of these two notions is used when discussing functoriality of the small
étale site, see Lemma 18.8.

https://stacks.math.columbia.edu/tag/03ED


PROPERTIES OF ALGEBRAIC SPACES 27

Definition 18.2.03G0 Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site Xspaces,étale of X is defined
as follows:

(1) An object of Xspaces,étale is a morphism φ : U → X where U is an algebraic
space over S and φ is an étale morphism of algebraic spaces over S,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) of Xspaces,étale is given by a
morphism of algebraic spaces χ : U → U ′ such that φ = φ′ ◦ χ, and

(3) a family of morphisms {φi : (Ui → X)→ (U → X)}i∈I of Xspaces,étale is a
covering if and only if |U | =

⋃
φi(|Ui|).

As usual we choose a set of coverings of this type, including at least the coverings
in Xétale, as in Sets, Lemma 11.1 to turn Xspaces,étale into a site.

Since the identity morphism of X is étale it is clear that Xspaces,étale does have a
final object. Let us show right away that the corresponding topos equals the small
étale topos of X.

Lemma 18.3.03G1 The functor

Xétale −→ Xspaces,étale, U/X 7−→ U/X

is a special cocontinuous functor (Sites, Definition 29.2) and hence induces an
equivalence of topoi Sh(Xétale)→ Sh(Xspaces,étale).

Proof. We have to show that the functor satisfies the assumptions (1) – (5) of
Sites, Lemma 29.1. It is clear that the functor is continuous and cocontinuous,
which proves assumptions (1) and (2). Assumptions (3) and (4) hold simply because
the functor is fully faithful. Assumption (5) holds, because an algebraic space by
definition has a covering by a scheme. □

Remark 18.4.03H7 Let us explain the meaning of Lemma 18.3. Let S be a scheme, and
let X be an algebraic space over S. Let F be a sheaf on the small étale site Xétale

of X. The lemma says that there exists a unique sheaf F ′ on Xspaces,étale which
restricts back to F on the subcategory Xétale. If U → X is an étale morphism
of algebraic spaces, then how do we compute F ′(U)? Well, by definition of an
algebraic space there exists a scheme U ′ and a surjective étale morphism U ′ → U .
Then {U ′ → U} is a covering in Xspaces,étale and hence we get an equalizer diagram

F ′(U) // F(U ′) //
// F(U ′ ×U U ′).

Note that U ′ ×U U ′ is a scheme, and hence we may write F and not F ′. Thus we
see how to compute F ′ when given the sheaf F .

Definition 18.5.0H01 Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site Xaffine,étale of X is defined
as follows:

(1) An object ofXaffine,étale is a morphism φ : U → X where U ∈ Ob((Sch/S)étale)
is an affine scheme and φ is an étale morphism,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) of Xaffine,étale is given by a
morphism of schemes χ : U → U ′ such that φ = φ′ ◦ χ, and
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(3) a family of morphisms {φi : (Ui → X) → (U → X)}i∈I of Xaffine,étale

is a covering if and only if {Ui → U} is a standard étale covering, see
Topologies, Definition 4.5.

As usual we choose a set of coverings of this type, as in Sets, Lemma 11.1 to turn
Xaffine,étale into a site.

Lemma 18.6.04JS Let S be a scheme. Let X be an algebraic space over S. The
functor Xaffine,étale → Xétale is special cocontinuous and induces an equivalence
of topoi from Sh(Xaffine,étale) to Sh(Xétale).

Proof. Omitted. Hint: compare with the proof of Topologies, Lemma 4.11. □

Definition 18.7.04JT Let S be a scheme. LetX be an algebraic space over S. The étale
topos of X, or more precisely the small étale topos of X is the category Sh(Xétale)
of sheaves of sets on Xétale.

By Lemma 18.3 we have Sh(Xétale) = Sh(Xspaces,étale), so we can also think of this
as the category of sheaves of sets on Xspaces,étale. Similarly, by Lemma 18.6 we see
that Sh(Xétale) = Sh(Xaffine,étale). It turns out that the topos is functorial with
respect to morphisms of algebraic spaces. Here is a precise statement.

Lemma 18.8.03G2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The continuous functor

Yspaces,étale −→ Xspaces,étale, V 7−→ X ×Y V

induces a morphism of sites

fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words
(f ◦ g)spaces,étale = fspaces,étale ◦ gspaces,étale (see Sites, Definition 14.5).

(3) The morphism of topoi associated to fspaces,étale induces, via Lemma 18.3,
a morphism of topoi fsmall : Sh(Xétale)→ Sh(Yétale) whose construction is
compatible with compositions.

(4) If f is a representable morphism of algebraic spaces, then fsmall comes
from a morphism of sites Xétale → Yétale, corresponding to the continuous
functor V 7→ X ×Y V .

Proof. Let us show that the functor described in (1) satisfies the assumptions of
Sites, Proposition 14.7. Thus we have to show that Yspaces,étale has a final object
(namely Y ) and that the functor transforms this into a final object in Xspaces,étale

(namely X). This is clear as X ×Y Y = X in any category. Next, we have to show
that Yspaces,étale has fibre products. This is true since the category of algebraic
spaces has fibre products, and since V ×Y V ′ is étale over Y if V and V ′ are étale
over Y (see Lemmas 16.4 and 16.5 above). OK, so the proposition applies and we
see that we get a morphism of sites as described in (1).

Part (2) you get by unwinding the definitions. Part (3) is clear by using the equiv-
alences for X and Y from Lemma 18.3 above. Part (4) follows, because if f is
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representable, then the functors above fit into a commutative diagram

Xétale
// Xspaces,étale

Yétale //

OO

Yspaces,étale

OO

of categories. □

We can do a little bit better than the lemma above in describing the relationship
between sheaves on X and sheaves on Y . Namely, we can formulate this in turns
of f -maps, compare Sheaves, Definition 21.7, as follows.

Definition 18.9.03G3 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets
on Yétale. An f -map φ : G → F is a collection of maps φ(U,V,g) : G(V ) → F(U)
indexed by commutative diagrams

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale such that whenever given an extended diagram

U ′ //

g′

��

U

g

��

// X

f

��
V ′ // V // Y

with V ′ → V and U ′ → U étale morphisms of schemes the diagram

G(V )
φ(U,V,g)

//

restriction of G
��

F(U)

restriction of F
��

G(V ′)
φ(U′,V ′,g′) // F(U ′)

commutes.

Lemma 18.10.03G4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets on
Yétale. There are canonical bijections between the following three sets:

(1) The set of maps G → fsmall,∗F .
(2) The set of maps f−1

smallG → F .
(3) The set of f -maps φ : G → F .

Proof. Note that (1) and (2) are the same because the functors fsmall,∗ and f−1
small

are a pair of adjoint functors. Suppose that α : f−1
smallG → F is a map of sheaves

on Yétale. Let a diagram
U

g

��

jU

// X

f

��
V

jV // Y
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as in Definition 18.9 be given. By the commutativity of the diagram we also get
a map g−1

small(jV )−1G → (jU )−1F (compare Sites, Section 25 for the description
of the localization functors). Hence we certainly get a map φ(V,U,g) : G(V ) =
(jV )−1G(V ) → (jU )−1F(U) = F(U). We omit the verification that this rule is
compatible with further restrictions and defines an f -map from G to F .

Conversely, suppose that we are given an f -map φ = (φ(U,V,g)). Let G′ (resp. F ′)
denote the extension of G (resp. F) to Yspaces,étale (resp. Xspaces,étale), see Lemma
18.3. Then we have to construct a map of sheaves

G′ −→ (fspaces,étale)∗F ′

To do this, let V → Y be an étale morphism of algebraic spaces. We have to
construct a map of sets

G′(V )→ F ′(X ×Y V )

Choose an étale surjective morphism V ′ → V with V ′ a scheme, and after that
choose an étale surjective morphism U ′ → X ×U V ′ with U ′ a scheme. We get a
morphism of schemes g′ : U ′ → V ′ and also a morphism of schemes

g′′ : U ′ ×X×Y V U
′ −→ V ′ ×V V ′

Consider the following diagram

F ′(X ×Y V ) // F(U ′) //
// F(U ′ ×X×Y V U

′)

G′(X ×Y V ) //

OO

G(V ′) //
//

φ(U′,V ′,g′)

OO

G(V ′ ×V V ′)

φ(U′′,V ′′,g′′)

OO

The compatibility of the maps φ... with restriction shows that the two right squares
commute. The definition of coverings in Xspaces,étale shows that the horizontal rows
are equalizer diagrams. Hence we get the dotted arrow. We leave it to the reader
to show that these arrows are compatible with the restriction mappings. □

If the morphism of algebraic spaces X → Y is étale, then the morphism of topoi
Sh(Xétale)→ Sh(Yétale) is a localization. Here is a statement.

Lemma 18.11.03LP Let S be a scheme, and let f : X → Y be a morphism of algebraic
spaces over S. Assume f is étale. In this case there is a functor

j : Xétale → Yétale, (φ : U → X) 7→ (f ◦ φ : U → Y )

which is cocontinuous. The morphism of topoi fsmall is the morphism of topoi
associated to j, see Sites, Lemma 21.1. Moreover, j is continuous as well, hence
Sites, Lemma 21.5 applies. In particular f−1

smallG(U) = G(jU) for all sheaves G on
Yétale.

Proof. Note that by our very definition of an étale morphism of algebraic spaces
(Definition 16.2) it is indeed the case that the rule given defines a functor j as
indicated. It is clear that j is cocontinuous and continuous, simply because a
covering {Ui → U} of j(φ : U → X) in Yétale is the same thing as a covering of
(φ : U → X) in Xétale. It remains to show that j induces the same morphism of
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topoi as fsmall. To see this we consider the diagram

Xétale
//

j

��

Xspaces,étale

jspaces

��
Yétale // Yspaces,étale

v:V 7→X×Y V

UU

of categories. Here the functor jspaces is the obvious extension of j to the category
Xspaces,étale. Thus the inner square is commutative. In fact jspaces can be identified
with the localization functor jX : Yspaces,étale/X → Yspaces,étale discussed in Sites,
Section 25. Hence, by Sites, Lemma 27.2 the cocontinuous functor jspaces and the
functor v of the diagram induce the same morphism of topoi. By Sites, Lemma 21.2
the commutativity of the inner square (consisting of cocontinuous functors between
sites) gives a commutative diagram of associated morphisms of topoi. Hence, by
the construction of fsmall in Lemma 18.8 we win. □

The lemma above says that the pullback of G via an étale morphism f : X → Y of
algebraic spaces is simply the restriction of G to the category Xétale. We will often
use the short hand

(18.11.1)03LQ G|Xétale
= f−1

smallG

to indicate this. Note that the functor j : Xétale → Yétale of the lemma in this
situation is faithful, but not fully faithful in general. We will discuss this in a more
technical fashion in Section 27.

Lemma 18.12.03LR Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Let F be a sheaf on Xétale. If g
is étale, then

(1) f ′
small,∗(F|X′) = (fsmall,∗F)|Y ′ in Sh(Y ′

étale)4, and
(2) if F is an abelian sheaf, then Rif ′

small,∗(F|X′) = (Rifsmall,∗F)|Y ′ .

Proof. Consider the following diagram of functors

X ′
spaces,étale j

// Xspaces,étale

Y ′
spaces,étale

j //

V ′ 7→V ′×Y ′X′

OO

Yspaces,étale

V 7→V×Y X

OO

The horizontal arrows are localizations and the vertical arrows induce morphisms
of sites. Hence the last statement of Sites, Lemma 28.1 gives (1). To see (2) apply
(1) to an injective resolution of F and use that restriction is exact and preserves
injectives (see Cohomology on Sites, Lemma 7.1). □

4Also (f ′)−1
small

(G|Y ′ ) = (f−1
small

G)|X′ because of commutativity of the diagram and (18.11.1)
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The following lemma says that you can think of a sheaf on the small étale site of
an algebraic space as a compatible collection of sheaves on the small étale sites of
schemes étale over the space. Please note that all the comparison mappings cf in
the lemma are isomorphisms, which is compatible with Topologies, Lemma 4.20
and the fact that all morphisms between objects of Xétale are étale.

Lemma 18.13.03LS Let S be a scheme. Let X be an algebraic space over S. A sheaf
F on Xétale is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f−1

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g−1
smallcf is equal to cf◦g.

Proof. We may interpret g−1
small as in Lemma 18.11. Then the lemma follows from

a general fact about sites, see Sites, Lemma 26.6. □

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism φ : U → X, see
Spaces, Definition 9.3. In particular, we obtain a groupoid (U,R, s, t, c, e, i) such
that j = (t, s) : R→ U ×S U , see Groupoids, Lemma 13.3.

Lemma 18.14.05YY With S, φ : U → X, and (U,R, s, t, c, e, i) as above. For any sheaf
F on Xétale the sheaf5 G = φ−1F comes equipped with a canonical isomorphism

α : t−1G −→ s−1G

such that the diagram

pr−1
1 t−1G

pr−1
1 α

// pr−1
1 s−1G

pr−1
0 s−1G c−1s−1G

pr−1
0 t−1G

pr−1
0 α

ff

c−1t−1G
c−1α

99

is a commutative. The functor F 7→ (G, α) defines an equivalence of categories
between sheaves on Xétale and pairs (G, α) as above.

First proof of Lemma 18.14. Let C = Xspaces,étale. By Lemma 18.11 and its
proof we have Uspaces,étale = C/U and the pullback functor φ−1 is just the restric-
tion functor. Moreover, {U → X} is a covering of the site C and R = U ×X U . The
isomorphism α is just the canonical identification(

F|C/U
)
|C/U×XU =

(
F|C/U

)
|C/U×XU

and the commutativity of the diagram is the cocycle condition for glueing data.
Hence this lemma is a special case of glueing of sheaves, see Sites, Section 26. □

5In this lemma and its proof we write simply φ−1 instead of φ−1
small

and similarly for all the
other pullbacks.
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Second proof of Lemma 18.14. The existence of α comes from the fact that
φ ◦ t = φ ◦ s and that pullback is functorial in the morphism, see Lemma 18.8. In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α fits into the commutative diagram. The construction F 7→ (φ−1F , α) is clearly
functorial in the sheaf F . Hence we obtain the functor.

Conversely, suppose that (G, α) is a pair. Let V → X be an object of Xétale. In this
case the morphism V ′ = U ×X V → V is a surjective étale morphism of schemes,
and hence {V ′ → V } is an étale covering of V . Set G′ = (V ′ → V )−1G. Since
R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V with
projection maps s′, t′ : V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence α
pulls back to an isomorphism α′ : (t′)−1G′ → (s′)−1G′. Having said this we simply
define

F(V ) Equalizer(G(V ′) //
// G(V ′ ×V V ′).

We omit the verification that this defines a sheaf. To see that G(V ) = F(V ) if
there exists a morphism V → U note that in this case the equalizer is H0({V ′ →
V },G) = G(V ). □

19. Points of the small étale site

04JU This section is the analogue of Étale Cohomology, Section 29.

Definition 19.1.0486 Let S be a scheme. Let X be an algebraic space over S.
(1) A geometric point of X is a morphism x : Spec(k) → X, where k is an

algebraically closed field. We often abuse notation and write x = Spec(k).
(2) For every geometric point x we have the corresponding “image” point x ∈
|X|. We say that x is a geometric point lying over x.

It turns out that we can take stalks of sheaves on Xétale at geometric points exactly
in the same way as was done in the case of the small étale site of a scheme. In order
to do this we define the notion of an étale neighbourhood as follows.

Definition 19.2.04JV Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X.

(1) An étale neighborhood of x of X is a commutative diagram

U

φ

��
x̄

x̄ //

ū

??

X

where φ is an étale morphism of algebraic spaces over S. We will use the
notation φ : (U, u)→ (X,x) to indicate this situation.

(2) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an X-morphism
h : U → U ′ such that u′ = h ◦ u.

Note that we allow U to be an algebraic space. When we take stalks of a sheaf
on Xétale we have to restrict to those U which are in Xétale, and so in this case
we will only consider the case where U is a scheme. Alternately we can work with
the site Xspace,étale and consider all étale neighbourhoods. And there won’t be any
difference because of the last assertion in the following lemma.
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Lemma 19.3.04JW Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. The category of étale neighborhoods is cofiltered. More
precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of x in X. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u)→ (U ′, u′) be two morphisms between étale neighborhoods
of s. Then there exist an étale neighborhood (U ′′, u′′) and a morphism h :
(U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that h1 ◦h = h2 ◦h.

Moreover, given any étale neighbourhood (U, u) → (X,x) there exists a morphism
of étale neighbourhoods (U ′, u′)→ (U, u) where U ′ is a scheme.

Proof. For part (1), consider the fibre product U = U1 ×X U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change and
composition, see Lemmas 16.5 and 16.4. The map u→ U defined by (u1, u2) gives
it the structure of an étale neighborhood mapping to both U1 and U2.

For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×X U ′.

Since u and u′ agree over X with x, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ ̸= ∅. Moreover, since U ′ is étale over X, so is the fibre
product U ′×X U ′ (as seen above in the case of U1×X U2). Hence the vertical arrow
(h1, h2) is étale by Lemma 16.6. Therefore U ′′ is étale over U ′ by base change, and
hence also étale over X (because compositions of étale morphisms are étale). Thus
(U ′′, u′′) is a solution to the problem posed by (2).

To see the final assertion, choose any surjective étale morphism U ′ → U where U ′

is a scheme. Then U ′ ×U u is a scheme surjective and étale over u = Spec(k) with
k algebraically closed. It follows (see Morphisms, Lemma 36.7) that U ′ ×U u → u
has a section which gives us the desired u′. □

Lemma 19.4.05VN Let S be a scheme. Let X be an algebraic space over S. Let
x : Spec(k) → X be a geometric point of X lying over x ∈ |X|. Let φ : U → X be
an étale morphism of algebraic spaces and let u ∈ |U | with φ(u) = x. Then there
exists a geometric point u : Spec(k)→ U lying over u with x = φ ◦ u.

Proof. Choose an affine scheme U ′ with u′ ∈ U ′ and an étale morphism U ′ → U
which maps u′ to u. If we can prove the lemma for (U ′, u′)→ (X,x) then the lemma
follows. Hence we may assume that U is a scheme, in particular that U → X is
representable. Then look at the cartesian diagram

Spec(k)×x,X,φ U

pr1

��

pr2
// U

φ

��
Spec(k) x // X

The projection pr1 is the base change of an étale morphisms so it is étale, see Lemma
16.5. Therefore, the scheme Spec(k)×x,X,φ U is a disjoint union of finite separable
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extensions of k, see Morphisms, Lemma 36.7. But k is algebraically closed, so all
these extensions are trivial, so Spec(k) ×x,X,φ U is a disjoint union of copies of
Spec(k) and each of these corresponds to a geometric point u with φ ◦ u = x. By
Lemma 4.3 the map

|Spec(k)×x,X,φ U | −→ |Spec(k)| ×|X| |U |

is surjective, hence we can pick u to lie over u. □

Lemma 19.5.04JX Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X. Let (U, u) an étale neighborhood of x. Let {φi : Ui → U}i∈I
be an étale covering in Xspaces,étale. Then there exist i ∈ I and ui : x → Ui such
that φi : (Ui, ui)→ (U, u) is a morphism of étale neighborhoods.

Proof. Let u ∈ |U | be the image of u. As |U | =
⋃
i∈I φi(|Ui|) there exists an i and

a point ui ∈ Ui mapping to x. Apply Lemma 19.4 to (Ui, ui)→ (U, u) and u to get
the desired geometric point. □

Definition 19.6.04JY Let S be a scheme. Let X be an algebraic space over S. Let F
be a presheaf on Xétale. Let x be a geometric point of X. The stalk of F at x is

Fx̄ = colim(U,u) F(U)

where (U, u) runs over all étale neighborhoods of x in X with U ∈ Ob(Xétale).

By Lemma 19.3, this colimit is over a filtered index category, namely the opposite
of the category of étale neighborhoods in Xétale. More precisely Lemma 19.3 says
the opposite of the category of all étale neighbourhoods is filtered, and the full
subcategory of those which are in Xétale is a cofinal subcategory hence also filtered.

This means an element of Fx can be thought of as a triple (U, u, σ) where U ∈
Ob(Xétale) and σ ∈ F(U). Two triples (U, u, σ), (U ′, u′, σ′) define the same element
of the stalk if there exists a third étale neighbourhood (U ′′, u′′), U ′′ ∈ Ob(Xétale)
and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u), h′ : (U ′′, u′′) →
(U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section 19.

This also implies that if F ′ is the sheaf on Xspaces,étale corresponding to F on
Xétale, then

(19.6.1)04JZ Fx = colim(U,u) F ′(U)

where now the colimit is over all the étale neighbourhoods of x. We will often jump
between the point of view of using Xétale and Xspaces,étale without further mention.

In particular this means that if F is a presheaf of abelian groups, rings, etc then
Fx is an abelian group, ring, etc simply by the usual way of defining the group
structure on a directed colimit of abelian groups, rings, etc.

Lemma 19.7.04K0 Let S be a scheme. Let X be an algebraic space over S. Let x be
a geometric point of X. Consider the functor

u : Xétale −→ Sets, U 7−→ |Ux|

Then u defines a point p of the site Xétale (Sites, Definition 32.2) and its associated
stalk functor F 7→ Fp (Sites, Equation 32.1.1) is the functor F 7→ Fx defined above.
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Proof. In the proof of Lemma 19.5 we have seen that the scheme Ux is a disjoint
union of schemes isomorphic to x. Thus we can also think of |Ux| as the set of
geometric points of U lying over x, i.e., as the collection of morphisms u : x → U
fitting into the diagram of Definition 19.2. From this it follows that u(X) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Xétale. And, given a covering {Ui → U}i∈I in Xétale we see
that

∐
u(Ui) → u(U) is surjective by Lemma 19.5. Hence Sites, Proposition 33.3

applies, so p is a point of the site Xétale. Finally, the our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
32.1.1 which proves the final assertion. □

Lemma 19.8.04K1 Let S be a scheme. Let X be an algebraic space over S. Let x be
a geometric point of X.

(1) The stalk functor PAb(Xétale)→ Ab, F 7→ Fx is exact.
(2) We have (F#)x = Fx for any presheaf of sets F on Xétale.
(3) The functor Ab(Xétale)→ Ab, F 7→ Fx is exact.
(4) Similarly the functors PSh(Xétale)→ Sets and Sh(Xétale)→ Sets given by

the stalk functor F 7→ Fx are exact (see Categories, Definition 23.1) and
commute with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section
36. This is true because F 7→ Fx comes from a point of the small étale site of X,
see Lemma 19.7. See the proof of Étale Cohomology, Lemma 29.9 for a direct proof
of some of these statements in the setting of the small étale site of a scheme. □

We will see below that the stalk functor F 7→ Fx is really the pullback along the
morphism x. In that sense the following lemma is a generalization of the lemma
above.

Lemma 19.9.04K2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The functor f−1
small : Ab(Yétale)→ Ab(Xétale) is exact.

(2) The functor f−1
small : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes

with finite limits and colimits, see Categories, Definition 23.1.
(3) For any étale morphism V → Y of algebraic spaces we have f−1

smallhV =
hX×Y V .

(4) Let x→ X be a geometric point. Let G be a sheaf on Yétale. Then there is
a canonical identification

(f−1
smallG)x = Gy.

where y = f ◦ x.

Proof. Recall that fsmall is defined via fspaces,small in Lemma 18.8. Parts (1),
(2) and (3) are general consequences of the fact that fspaces,étale : Xspaces,étale →
Yspaces,étale is a morphism of sites, see Sites, Definition 14.1 for (2), Modules on
Sites, Lemma 31.2 for (1), and Sites, Lemma 13.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 34.2 via Lemma 19.7.
We also provide a direct proof. Note that by Lemma 19.8. taking stalks commutes
with sheafification. Let G′ be the sheaf on Yspaces,étale whose restriction to Yétale is
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G. Recall that f−1
spaces,étaleG′ is the sheaf associated to the presheaf

U −→ colimU→X×Y V G′(V ),

see Sites, Sections 13 and 5. Thus we have

(f−1
spaces,étaleG

′)x = colim(U,u) f
−1
spaces,étaleG

′(U)
= colim(U,u) colima:U→X×Y V G′(V )
= colim(V,v) G′(V )
= G′

y

in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u). Since the stalk of G′ (resp. f−1

spaces,étaleG′) agrees with the stalk
of G (resp. f−1

smallG), see Equation (19.6.1) the result follows. □

Remark 19.10.04K3 This remark is the analogue of Étale Cohomology, Remark 56.6.
Let S be a scheme. Let X be an algebraic space over S. Let x : Spec(k)→ X be a
geometric point of X. By Étale Cohomology, Theorem 56.3 the category of sheaves
on Spec(k)étale is equivalent to the category of sets (by taking a sheaf to its global
sections). Hence it follows from Lemma 19.9 part (4) applied to the morphism x
that the functor

Sh(Xétale) −→ Sets, F 7−→ Fx
is isomorphic to the functor

Sh(Xétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ x∗F

Hence we may view the stalk functors as pullback functors along geometric mor-
phisms (and not just some abstract morphisms of topoi as in the result of Lemma
19.7).

Remark 19.11.04K4 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. We claim that for any pair of geometric points x and x′ lying over x the
stalk functors are isomorphic. By definition of |X| we can find a third geometric
point x′′ so that there exists a commutative diagram

x′′ //

��

x′′

  

x′

x′

��
x

x // X.

Since the stalk functor F 7→ Fx is given by pullback along the morphism x (and
similarly for the others) we conclude by functoriality of pullbacks.

The following theorem says that the small étale site of an algebraic space has enough
points.

Theorem 19.12.04K5 Let S be a scheme. Let X be an algebraic space over S. A map
a : F → G of sheaves of sets is injective (resp. surjective) if and only if the map on
stalks ax : Fx → Gx is injective (resp. surjective) for all geometric points of X. A
sequence of abelian sheaves on Xétale is exact if and only if it is exact on all stalks
at geometric points of S.
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Proof. We know the theorem is true if X is a scheme, see Étale Cohomology,
Theorem 29.10. Choose a surjective étale morphism f : U → X where U is a
scheme. Since {U → X} is a covering (in Xspaces,étale) we can check whether a
map of sheaves is injective, or surjective by restricting to U . Now if u : Spec(k)→ U
is a geometric point of U , then (F|U )u = Fx where x = f ◦ u. (This is clear from
the colimits defining the stalks at u and x, but it also follows from Lemma 19.9.)
Hence the result for U implies the result for X and we win. □

The following lemma should be skipped on a first reading.

Lemma 19.13.04K6 Let S be a scheme. Let X be an algebraic space over S. Let
p : Sh(pt)→ Sh(Xétale) be a point of the small étale topos of X. Then there exists
a geometric point x of X such that the stalk functor F 7→ Fp is isomorphic to the
stalk functor F 7→ Fx.

Proof. By Sites, Lemma 32.7 there is a one to one correspondence between points
of the site and points of the associated topos. Hence we may assume that p is
given by a functor u : Xétale → Sets which defines a point of the site Xétale. Let
U ∈ Ob(Xétale) be an object whose structure morphism j : U → X is surjective.
Note that hU is a sheaf which surjects onto the final sheaf. Since taking stalks
is exact we see that (hU )p = u(U) is not empty (use Sites, Lemma 32.3). Pick
x ∈ u(U). By Sites, Lemma 35.1 we obtain a point q : Sh(pt) → Sh(Uétale) such
that p = jsmall◦q, so that Fp = (F|U )q functorially. By Étale Cohomology, Lemma
29.12 there is a geometric point u of U and a functorial isomorphism Gq = Gu for
G ∈ Sh(Uétale). Set x = j ◦ u. Then we see that Fx ∼= (F|U )u functorially in F on
Xétale by Lemma 19.9 and we win. □

20. Supports of abelian sheaves

04K7 First we talk about supports of local sections.

Lemma 20.1.04K8 Let S be a scheme. Let X be an algebraic space over S. Let F be a
subsheaf of the final object of the étale topos of X (see Sites, Example 10.2). Then
there exists a unique open W ⊂ X such that F = hW .

Proof. The condition means that F(U) is a singleton or empty for all φ : U →
X in Ob(Xspaces,étale). In particular local sections always glue. If F(U) ̸= ∅,
then F(φ(U)) ̸= ∅ because φ(U) ⊂ X is an open subspace (Lemma 16.7) and
{φ : U → φ(U)} is a covering in Xspaces,étale. Take W =

⋃
φ:U→S,F(U )̸=∅ φ(U) to

conclude. □

Lemma 20.2.04K9 Let S be a scheme. Let X be an algebraic space over S. Let F be
an abelian sheaf on Xspaces,étale. Let σ ∈ F(U) be a local section. There exists an
open subspace W ⊂ U such that

(1) W ⊂ U is the largest open subspace of U such that σ|W = 0,
(2) for every φ : V → U in Xétale we have

σ|V = 0⇔ φ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W

where s = (U → S) ◦ u.
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Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma 5.2. Let φ : V → U be an arrow of Xétale. Note
that φ(V ) ⊂ U is an open subspace (Lemma 16.7) and that {V → φ(V )} is an
étale covering. Hence if σ|V = 0, then by the sheaf condition for F we see that
σ|φ(V ) = 0. This proves (2). To prove (3) we have to show that if (U, u, σ) defines
the zero element of Fs, then u ∈ W . This is true because the assumption means
there exists a morphism of étale neighbourhoods (V, v)→ (U, u) such that σ|V = 0.
Hence by (2) we see that V → U maps into W , and hence u ∈W . □

Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. Let F be a
sheaf on Xétale. By Remark 19.11 the isomorphism class of the stalk of the sheaf
F at a geometric points lying over x is well defined.

Definition 20.3.04KA Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on Xétale.

(1) The support of F is the set of points x ∈ |X| such that Fx ̸= 0 for any
(some) geometric point x lying over x.

(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,
where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 20.2).

Lemma 20.4.04KB Let S be a scheme. Let X be an algebraic space over S. Let F be
an abelian sheaf on Xétale. Let U ∈ Ob(Xétale) and σ ∈ F(U).

(1) The support of σ is closed in |X|.
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(X).

(3) If φ : F → G is a map of abelian sheaves on Xétale, then the support of
φ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .

(5) If F → G is surjective then the support of G is a subset of the support of F .
(6) If F → G is injective then the support of F is a subset of the support of G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds
for the restriction of F and G to UZar, see Modules, Lemma 5.2. Part (4) is a
direct consequence of Lemma 20.2 part (3). Parts (5) and (6) follow from the other
parts. □

Lemma 20.5.04KC The support of a sheaf of rings on the small étale site of an algebraic
space is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

21. The structure sheaf of an algebraic space

04KD The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma 21.1.03G6 Let S be a scheme. Let X be an algebraic space over S. The rule
U 7→ Γ(U,OU ) defines a sheaf of rings on Xétale.
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Proof. Immediate from the definition of a covering and Descent, Lemma 8.1. □

Definition 21.2.03G7 Let S be a scheme. Let X be an algebraic space over S. The
structure sheaf of X is the sheaf of rings OX on the small étale site Xétale described
in Lemma 21.1.

According to Lemma 18.13 the sheaf OX corresponds to a system of étale sheaves
(OX)U for U ranging through the objects of Xétale. It is clear from the proof of
that lemma and our definition that we have simply (OX)U = OU where OU is the
structure sheaf of Uétale as introduced in Descent, Definition 8.2. In particular, if
X is a scheme we recover the sheaf OX on the small étale site of X.

Via the equivalence Sh(Xétale) = Sh(Xspaces,étale) of Lemma 18.3 we may also
think of OX as a sheaf of rings on Xspaces,étale. It is explained in Remark 18.4
how to compute OX(Y ), and in particular OX(X), when Y → X is an object of
Xspaces,étale.

Lemma 21.3.03G8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there is a canonical map f ♯ : f−1

smallOY → OX such that

(fsmall, f ♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

is a morphism of ringed topoi. Furthermore,
(1) The construction f 7→ (fsmall, f ♯) is compatible with compositions.
(2) If f is a morphism of schemes, then f ♯ is the map described in Descent,

Remark 8.4.

Proof. By Lemma 18.10 it suffices to give an f -map from OY to OX . In other
words, for every commutative diagram

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale we have to give a map of rings (f ♯)(U,V,g) : Γ(V,OV )→
Γ(U,OU ). Of course we just take (f ♯)(U,V,g) = g♯. It is clear that this is compatible
with restriction mappings and hence indeed gives an f -map. We omit checking
compatibility with compositions and agreement with the construction in Descent,
Remark 8.4. □

Lemma 21.4.0BGS Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is reduced,
(2) for every x ∈ |X| the local ring of X at x is reduced (Remark 7.6).

In this case Γ(X,OX) is a reduced ring and if f ∈ Γ(X,OX) has X = V (f), then
f = 0.

Proof. The equivalence of (1) and (2) follows from Properties, Lemma 3.2 applied
to affine schemes étale over X. The final statements follow the cited lemma and
fact that Γ(X,OX) is a subring of Γ(U,OU ) for some reduced scheme U étale over
X. □
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22. Stalks of the structure sheaf

04KE This section is the analogue of Étale Cohomology, Section 33.

Lemma 22.1.04KF Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. Let (U, u) be an étale neighbourhood of x where U is a
scheme. Then we have

OX,x = OU,u = OshU,u
where the left hand side is the stalk of the structure sheaf of X, and the right hand
side is the strict henselization of the local ring of U at the point u at which u is
centered.

Proof. We know that the structure sheaf OU on Uétale is the restriction of the
structure sheaf of X. Hence the first equality follows from Lemma 19.9 part (4).
The second equality is explained in Étale Cohomology, Lemma 33.1. □

Definition 22.2.04KG Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X lying over the point x ∈ |X|.

(1) The étale local ring of X at x is the stalk of the structure sheaf OX on
Xétale at x. Notation: OX,x.

(2) The strict henselization of X at x is the scheme Spec(OX,x).

The isomorphism type of the strict henselization of X at x (as a scheme over X)
depends only on the point x ∈ |X| and not on the choice of the geometric point
lying over x, see Remark 19.11.

Lemma 22.3.04KH Let S be a scheme. Let X be an algebraic space over S. The small
étale site Xétale endowed with its structure sheaf OX is a locally ringed site, see
Modules on Sites, Definition 40.4.

Proof. This follows because the stalks OX,x are local, and because Sétale has
enough points, see Lemmas 22.1 and Theorem 19.12. See Modules on Sites, Lemma
40.2 and 40.3 for the fact that this implies the small étale site is locally ringed. □

Lemma 22.4.04N9 Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) the dimension of the local ring of X at x (Definition 10.2) is d,
(2) dim(OX,x) = d for some geometric point x lying over x, and
(3) dim(OX,x) = d for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 19.11. Using Lemma 22.1
the equivalence of (1) and (2)+(3) comes down to the following statement: Given
any local ring R we have dim(R) = dim(Rsh). This is More on Algebra, Lemma
45.7. □

Lemma 22.5.0A4H Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Let x ∈ X. Then (1) dimx(X) = dimf(x)(Y ) and (2) the
dimension of the local ring of X at x equals the dimension of the local ring of Y at
f(x). If f is surjective, then (3) dim(X) = dim(Y ).

Proof. Choose a scheme U and a point u ∈ U and an étale morphism U → X
which maps u to x. Then the composition U → Y is also étale and maps u to f(x).
Thus the statements (1) and (2) follow as the relevant integers are defined in terms
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of the behaviour of the scheme U at u. See Definition 9.1 for (1). Part (3) is an
immediate consequence of (1), see Definition 9.2. □

Lemma 22.6.0E01 Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. The following are equivalent

(1) the local ring of X at x is reduced (Remark 7.6),
(2) OX,x is reduced for some geometric point x lying over x, and
(3) OX,x is reduced for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 19.11. Using Lemma 22.1 the
equivalence of (1) and (2)+(3) comes down to the following statement: a local ring
is reduced if and only if its strict henselization is reduced. This is More on Algebra,
Lemma 45.4. □

23. Local irreducibility

06DJ A point on an algebraic space has a well defined étale local ring, which corresponds
to the strict henselization of the local ring in the case of a scheme. In general we
cannot see how many irreducible components of a scheme or an algebraic space pass
through the given point from the étale local ring. We can only count the number
of geometric branches.

Lemma 23.1.06DK Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u has a unique minimal prime,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
there is a unique irreducible component of U through u,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u is unibranch,

(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u is geometrically unibranch,

(5) OX,x has a unique minimal prime for any geometric point x lying over x.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then OX,x is the
strict henselization of OU,u by Lemma 22.1. In particular (4) and (5) are equivalent
by More on Algebra, Lemma 106.5. The equivalence of (2), (3), and (4) follows
from More on Morphisms, Lemma 36.2. □

Definition 23.2.06DL Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. We say that X is geometrically unibranch at x if the equivalent conditions
of Lemma 23.1 hold. We say that X is geometrically unibranch if X is geometrically
unibranch at every x ∈ |X|.

This is consistent with the definition for schemes (Properties, Definition 15.1).

Lemma 23.3.0DQ3 Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent
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(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of minimal primes of the local ring OU,u is ≤ n and for at least
one choice of U, a, u it is n,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number irreducible components of U passing through u is ≤ n and for
at least one choice of U, a, u it is n,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of branches of U at u is ≤ n and for at least one choice of
U, a, u it is n,

(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of geometric branches of U at u is n, and

(5) the number of minimal prime ideals of OX,x is n.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then OX,x is the
strict henselization of OU,u by Lemma 22.1. Recall that the (geometric) number of
branches of U at u is the number of minimal prime ideals of the (strict) henseliza-
tion of OU,u. In particular (4) and (5) are equivalent. The equivalence of (2), (3),
and (4) follows from More on Morphisms, Lemma 36.2. □

Definition 23.4.0DQ4 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The number of geometric branches of X at x is either n ∈ N if the
equivalent conditions of Lemma 23.3 hold, or else ∞.

24. Noetherian spaces

03E9 We have already defined locally Noetherian algebraic spaces in Section 7.

Definition 24.1.03EA Let S be a scheme. Let X be an algebraic space over S. We say
X is Noetherian if X is quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic space X is not just quasi-compact and locally
Noetherian, but also quasi-separated. This does not conflict with the definition
of a Noetherian scheme, as a locally Noetherian scheme is quasi-separated, see
Properties, Lemma 5.4. This does not hold for algebraic spaces. Namely, X =
A1
k/Z, see Spaces, Example 14.8 is locally Noetherian and quasi-compact but not

quasi-separated (hence not Noetherian according to our definitions).

A consequence of the choice made above is that an algebraic space of finite type over
a Noetherian algebraic space is not automatically Noetherian, i.e., the analogue of
Morphisms, Lemma 15.6 does not hold. The correct statement is that an algebraic
space of finite presentation over a Noetherian algebraic space is Noetherian (see
Morphisms of Spaces, Lemma 28.6).

A Noetherian algebraic space X is very close to being a scheme. In the rest of this
section we collect some lemmas to illustrate this.

Lemma 24.2.04ZF Let S be a scheme. Let X be an algebraic space over S.
(1) If X is locally Noetherian then |X| is a locally Noetherian topological space.
(2) If X is quasi-compact and locally Noetherian, then |X| is a Noetherian

topological space.
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Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective étale
morphism U → X. As X is locally Noetherian we see that U is locally Noetherian.
By Properties, Lemma 5.5 this means that |U | is a locally Noetherian topological
space. Since |U | → |X| is open and surjective we conclude that |X| is locally
Noetherian by Topology, Lemma 9.3. This proves (1). If X is quasi-compact and
locally Noetherian, then |X| is quasi-compact and locally Noetherian. Hence |X|
is Noetherian by Topology, Lemma 12.14. □

Lemma 24.3.04ZG Let S be a scheme. Let X be an algebraic space over S. If X is
Noetherian, then |X| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space,
see Lemma 15.1. It is Noetherian by Lemma 24.2. □

Lemma 24.4.08AH Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let x be a geometric point of X. Then OX,x is a Noetherian local ring.

Proof. Choose an étale neighbourhood (U, u) of x where U is a scheme. Then
OX,x is the strict henselization of the local ring of U at u, see Lemma 22.1. By
our definition of Noetherian spaces the scheme U is locally Noetherian. Hence we
conclude by More on Algebra, Lemma 45.3. □

25. Regular algebraic spaces

06LP We have already defined regular algebraic spaces in Section 7.

Lemma 25.1.06LQ Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. The following are equivalent

(1) X is regular, and
(2) every étale local ring OX,x is regular.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
assumption U is locally Noetherian. Moreover, every étale local ring OX,x is the
strict henselization of a local ring on U and conversely, see Lemma 22.1. Thus by
More on Algebra, Lemma 45.10 we see that (2) is equivalent to every local ring of
U being regular, i.e., U being a regular scheme (see Properties, Lemma 9.2). This
equivalent to (1) by Definition 7.2. □

We can use Descent, Lemma 21.4 to define what it means for an algebraic space X
to be regular at a point x.

Definition 25.2.0AH9 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. We say X is regular at x if OU,u is a regular local ring for any
(equivalently some) pair (a : U → X,u) consisting of an étale morphism a : U → X
from a scheme to X and a point u ∈ U with a(u) = x.

See Definition 7.5, Lemma 7.4, and Descent, Lemma 21.4.

Lemma 25.3.0AHA Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
be a point. The following are equivalent

(1) X is regular at x, and
(2) the étale local ring OX,x is regular for any (equivalently some) geometric

point x lying over x.
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Proof. Let U be a scheme, u ∈ U a point, and let a : U → X be an étale morphism
mapping u to x. For any geometric point x of X lying over x, the étale local ring
OX,x is the strict henselization of a local ring on U at u, see Lemma 22.1. Thus we
conclude by More on Algebra, Lemma 45.10. □

Lemma 25.4.0BGT A regular algebraic space is normal.

Proof. This follows from the definitions and the case of schemes See Properties,
Lemma 9.4. □

26. Sheaves of modules on algebraic spaces

03LT If X is an algebraic space, then a sheaf of modules on X is a sheaf of OX -modules
on the small étale site of X where OX is the structure sheaf of X. The category of
sheaves of modules is denoted Mod(OX).
Given a morphism f : X → Y of algebraic spaces, by Lemma 21.3 we get a
morphism of ringed topoi and hence by Modules on Sites, Definition 13.1 we get
well defined pullback and direct image functors
(26.0.1)03LU f∗ : Mod(OY ) −→ Mod(OX), f∗ : Mod(OX) −→ Mod(OY )
which are adjoint in the usual way. If g : Y → Z is another morphism of algebraic
spaces over S, then we have (g ◦ f)∗ = f∗ ◦ g∗ and (g ◦ f)∗ = g∗ ◦ f∗ simply because
the morphisms of ringed topoi compose in the corresponding way (by the lemma).

Lemma 26.1.03LV Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Then f−1OY = OX , and f∗G = f−1

smallG for any sheaf of
OY -modules G. In particular, f∗ : Mod(OY )→ Mod(OX) is exact.

Proof. By the description of inverse image in Lemma 18.11 and the definition of
the structure sheaves it is clear that f−1

smallOY = OX . Since the pullback

f∗G = f−1
smallG ⊗f−1

small
OY
OX

by definition we conclude that f∗G = f−1
smallG. The exactness is clear because f−1

small

is exact, as fsmall is a morphism of topoi. □

We continue our abuse of notation introduced in Equation (18.11.1) by writing
(26.1.1)03LW G|Xétale

= f∗G = f−1
smallG

in the situation of the lemma above. We will discuss this in a more technical fashion
in Section 27.

Lemma 26.2.03LX Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Let F ∈ Mod(OX). If g is étale,
then f ′

∗(F|X′) = (f∗F)|Y ′ 6 and Rif ′
∗(F|X′) = (Rif∗F)|Y ′ in Mod(OY ′).

Proof. This is a reformulation of Lemma 18.12 in the case of modules. □

6Also (f ′)∗(G|Y ′ ) = (f∗G)|X′ by commutativity of the diagram and (26.1.1)
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Lemma 26.3.03LY Let S be a scheme. Let X be an algebraic space over S. A sheaf
F of OX-modules is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU of OU -modules on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g∗
smallcf is equal to cf◦g.

Proof. Combine Lemmas 26.1 and 18.13, and use the fact that any morphism
between objects of Xétale is an étale morphism of schemes. □

27. Étale localization

04LX Reading this section should be avoided at all cost.
Let X → Y be an étale morphism of algebraic spaces. Then X is an object of
Yspaces,étale and it is immediate from the definitions, see also the proof of Lemma
18.11, that
(27.0.1)04LY Xspaces,étale = Yspaces,étale/X

where the right hand side is the localization of the site Yspaces,étale at the object X,
see Sites, Definition 25.1. Moreover, this identification is compatible with the struc-
ture sheaves by Lemma 26.1. Hence the ringed site (Xspaces,étale,OX) is identified
with the localization of the ringed site (Yspaces,étale,OY ) at the object X:
(27.0.2)04LZ (Xspaces,étale,OX) = (Yspaces,étale/X,OY |Yspaces,étale/X)
The localization of a ringed site used on the right hand side is defined in Modules
on Sites, Definition 19.1.
Assume now X → Y is an étale morphism of algebraic spaces and X is a scheme.
Then X is an object of Yétale and it follows that
(27.0.3)04M0 Xétale = Yétale/X

and
(27.0.4)04M1 (Xétale,OX) = (Yétale/X,OY |Yétale/X)
as above.
Finally, if X → Y is an étale morphism of algebraic spaces and X is an affine
scheme, then X is an object of Yaffine,étale and
(27.0.5)04M2 Xaffine,étale = Yaffine,étale/X

and
(27.0.6)04M3 (Xaffine,étale,OX) = (Yaffine,étale/X,OY |Yaffine,étale/X)
as above.
Next, we show that these localizations are compatible with morphisms.

Lemma 27.1.04M4 Let S be a scheme. Let

U

p

��

g
// V

q

��
X

f // Y
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be a commutative diagram of algebraic spaces over S with p and q étale. Via the
identifications (27.0.2) for U → X and V → Y the morphism of ringed topoi

(gspaces,étale, g♯) : (Sh(Uspaces,étale),OU ) −→ (Sh(Vspaces,étale),OV )
is 2-isomorphic to the morphism (fspaces,étale,c, f ♯c ) constructed in Modules on Sites,
Lemma 20.2 starting with the morphism of ringed sites (fspaces,étale, f ♯) and the
map c : U → V ×Y X corresponding to g.

Proof. The morphism (fspaces,étale,c, f ♯c ) is defined as a composition f ′ ◦ j of a
localization and a base change map. Similarly g is a composition U → V ×Y X → V .
Hence it suffices to prove the lemma in the following two cases: (1) f = id, and
(2) U = X ×Y V . In case (1) the morphism g : U → V is étale, see Lemma 16.6.
Hence (gspaces,étale, g♯) is a localization morphism by the discussion surrounding
Equations (27.0.1) and (27.0.2) which is exactly the content of the lemma in this
case. In case (2) the morphism gspaces,étale comes from the morphism of ringed sites
given by the functor Vspaces,étale → Uspaces,étale, V ′/V 7→ V ′×V U/U which is also
what the morphism f ′ is defined by, see Sites, Lemma 28.1. We omit the verification
that (f ′)♯ = g♯ in this case (both are the restriction of f ♯ to Uspaces,étale). □

Lemma 27.2.04M5 Same notation and assumptions as in Lemma 27.1 except that we
also assume U and V are schemes. Via the identifications (27.0.4) for U → X and
V → Y the morphism of ringed topoi

(gsmall, g♯) : (Sh(Uétale),OU ) −→ (Sh(Vétale),OV )
is 2-isomorphic to the morphism (fsmall,s, f ♯s) constructed in Modules on Sites,
Lemma 22.3 starting with (fsmall, f ♯) and the map s : hU → f−1

smallhV corresponding
to g.

Proof. Note that (gsmall, g♯) is 2-isomorphic as a morphism of ringed topoi to the
morphism of ringed topoi associated to the morphism of ringed sites (gspaces,étale, g♯).
Hence we conclude by Lemma 27.1 and Modules on Sites, Lemma 22.4. □

Finally, we discuss the relationship between sheaves of sets on the small étale site
Yétale of an algebraic space Y and algebraic spaces étale over Y . Let S be a scheme
and let Y be an algebraic space over S. Let F be an object of Sh(Yétale). Consider
the functor

X : (Sch/S)oppfppf −→ Sets
defined by the rule

X(T ) = {(y, s) | y : T → Y is a morphism over S and s ∈ Γ(T, y−1
smallF)}

Given a morphism g : T ′ → T the restriction map sends (y, s) to (y ◦ g, g−1
smalls).

This makes sense as ysmall ◦ gsmall = (y ◦ g)small by Lemma 18.8.

Lemma 27.3.0GF6 Let S be a scheme and let Y be an algebraic space over S. Let
F be a sheaf of sets on Yétale. Provided a set theoretic condition is satisfied (see
proof) the functor X associated to F above is an algebraic space and there is an
étale morphism f : X → Y of algebraic spaces such that F = fsmall,∗∗ where ∗ is
the final object of the category Sh(Xétale) (constant sheaf with value a singleton).

Proof. Let us prove that X is a sheaf for the fppf topology. Namely, suppose that
{gi : Ti → T} is a covering of (Sch/S)fppf and (yi, si) ∈ X(Ti) satisfy the glueing
condition, i.e., the restriction of (yi, si) and (yj , sj) to Ti ×T Tj agree. Then since

https://stacks.math.columbia.edu/tag/04M5
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Y is a sheaf for the fppf topology, we see that the yi give rise to a unique morphism
y : T → Y such that yi = y ◦ gi. Then we see that y−1

i,smallF = g−1
i,smally

−1
smallF .

Hence the sections si glue uniquely to a section of y−1
smallF by Étale Cohomology,

Lemma 39.2.
The construction that sends F ∈ Ob(Sh(Yétale)) to X ∈ Ob((Sch/S)fppf ) preserves
finite limits and all colimits since each of the functors y−1

small have this property. Of
course, if V ∈ Ob(Yétale), then the construction sends the representable sheaf hV
on Yétale to the representable functor represented by V .
By Sites, Lemma 12.5 we can find a set I, for each i ∈ I an object Vi of Yétale and
a surjective map of sheaves ∐

hVi
−→ F

on Yétale. The set theoretic condition we need is that the index set I is not too
large7. Then V =

∐
Vi is an object of (Sch/S)fppf and therefore an object of Yétale

and we have a surjective map hV → F .
Observe that the product of hV with itself in Sh(Yétale) is hV×Y V . Consider the
fibre product

hV ×F hV ⊂ hV×Y V

There is an open subscheme R of V ×Y V such that hV ×F hV = hR, see Lemma 20.1
(small detail omitted). By the Yoneda lemma we obtain two morphisms s, t : R→ V
in Yétale and we find a coequalizer diagram

hR
//
// hV // F

in Sh(Yétale). Of course the morphisms s, t are étale and define an étale equivalence
relation (t, s) : R→ V ×S V .
By the discussion in the preceding two paragraphs we find a coequalizer diagram

R
//
// V // X

in (Sch/S)fppf . Thus X = V/R is an algebraic space by Spaces, Theorem 10.5.
The other statements follow readily from this; details omitted. □

28. Recovering morphisms

04KI In this section we prove that the rule which associates to an algebraic space its
locally ringed small étale topos is fully faithful in a suitable sense, see Theorem
28.4.

Lemma 28.1.04KJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The morphism of ringed topoi (fsmall, f ♯) associated to f is a mor-
phism of locally ringed topoi, see Modules on Sites, Definition 40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale
)

and (Yétale,OYétale
) are locally ringed sites, see Lemma 22.3. Moreover, we know

that Xétale has enough points, see Theorem 19.12. Hence it suffices to prove that
(fsmall, f ♯) satisfies condition (3) of Modules on Sites, Lemma 40.8. To see this
take a point p of Xétale. By Lemma 19.13 p corresponds to a geometric point x
of X. By Lemma 19.9 the point q = fsmall ◦ p corresponds to the geometric point

7It suffices if the supremum of the cardinalities of the stalks of F at geometric points of Y is
bounded by the size of some object of (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/04KJ


PROPERTIES OF ALGEBRAIC SPACES 49

y = f ◦ x of Y . Hence the assertion we have to prove is that the induced map of
étale local rings

OY,y −→ OX,x
is a local ring map. You can prove this directly, but instead we deduce it from the
corresponding result for schemes. To do this choose a commutative diagram

U

��

ψ
// V

��
X // Y

where U and V are schemes, and the vertical arrows are surjective étale (see Spaces,
Lemma 11.6). Choose a lift u : x → U (possible by Lemma 19.5). Set v = ψ ◦ u.
We obtain a commutative diagram of étale local rings

OU,u OV,voo

OX,x

OO

OY,y.oo

OO

By Étale Cohomology, Lemma 40.1 the top horizontal arrow is a local ring map.
Finally by Lemma 22.1 the vertical arrows are isomorphisms. Hence we win. □

Lemma 28.2.04KK Let S be a scheme. Let X, Y be algebraic spaces over S. Let
f : X → Y be a morphism of algebraic spaces over S. Let t be a 2-morphism from
(fsmall, f ♯) to itself, see Modules on Sites, Definition 8.1. Then t = id.

Proof. Let X ′, resp. Y ′ be X viewed as an algebraic space over Spec(Z), see
Spaces, Definition 16.2. It is clear from the construction that (Xsmall,O) is equal
to (X ′

small,O) and similarly for Y . Hence we may work with X ′ and Y ′. In other
words we may assume that S = Spec(Z).

Assume S = Spec(Z), f : X → Y and t are as in the lemma. This means that
t : f−1

small → f−1
small is a transformation of functors such that the diagram

f−1
smallOY

f♯
$$

f−1
smallOYt

oo

f♯
zz

OX

is commutative. Suppose V → Y is étale with V affine. Write V = Spec(B).
Choose generators bj ∈ B, j ∈ J for B as a Z-algebra. Set T = Spec(Z[{xj}j∈J ]).
In the following we will use that MorSch(U, T ) =

∏
j∈J Γ(U,OU ) for any scheme U

without further mention. The surjective ring map Z[xj ]→ B, xj 7→ bj corresponds
to a closed immersion V → T . We obtain a monomorphism

i : V −→ TY = T × Y

of algebraic spaces over Y . In terms of sheaves on Yétale the morphism i induces
an injection hi : hV →

∏
j∈J OY of sheaves. The base change i′ : X ×Y V → TX of

i to X is a monomorphism too (Spaces, Lemma 5.5). Hence i′ : X ×Y V → TX is a
monomorphism, which in turn means that hi′ : hX×Y V →

∏
j∈J OX is an injection

https://stacks.math.columbia.edu/tag/04KK
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of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 19.9 the map hi′

is equal to

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f♯

// ∏
j∈J OX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j∈J f

−1
smallOY

∏
f♯

//∏
t

��

∏
j∈J OX

id
��

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f♯

// ∏
j∈J OX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of
the form hV with V affine (combine Lemma 18.6 with Sites, Lemma 12.5). Thus
we conclude that t : f−1

small → f−1
small is the identity transformation as desired. □

Lemma 28.3.04M6 Let S be a scheme. Let X, Y be algebraic spaces over S. Any
two morphisms a, b : X → Y of algebraic spaces over S for which there exists a
2-isomorphism (asmall, a♯) ∼= (bsmall, b♯) in the 2-category of ringed topoi are equal.

Proof. Let t : a−1
small → b−1

small be the 2-isomorphism. We may equivalently think
of t as a transformation t : a−1

spaces,étale → b−1
spaces,étale since there is not difference

between sheaves on Xétale and sheaves on Xspaces,étale. Choose a commutative
diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective étale. Consider the diagram

hU α
// a−1
spaces,étalehV

t

��
hU // b−1

spaces,étalehV

Since the sheaf b−1
spaces,étalehV is isomorphic to hV×Y,bX we see that the dotted arrow

comes from a morphism of schemes β : U → V fitting into a commutative diagram

U

p

��

β
// V

q

��
X

b // Y

https://stacks.math.columbia.edu/tag/04M6
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We claim that there exists a sequence of 2-isomorphisms

(αsmall, α♯) ∼= (αspaces,étale, α♯)
∼= (aspaces,étale,c, a♯c)
∼= (bspaces,étale,d, b♯d)
∼= (βspaces,étale, β♯)
∼= (βsmall, β♯)

The first and the last 2-isomorphisms come from the identifications between sheaves
on Uspaces,étale and sheaves on Uétale and similarly for V . The second and fourth
2-isomorphisms are those of Lemma 27.1 with c : U → X ×a,Y V induced by α
and d : U → X ×b,Y V induced by β. The middle 2-isomorphism comes from the
transformation t. Namely, the functor a−1

spaces,étale,c corresponds to the functor

(H → hV ) 7−→ (a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU → hU )

and similarly for b−1
spaces,étale,d, see Sites, Lemma 28.3. This uses the identification

of sheaves on Yspaces,étale/V as arrows (H → hV ) in Sh(Yspaces,étale) and similarly
for U/X, see Sites, Lemma 25.4. Via this identification the structure sheaf OV
corresponds to the pair (OY × hV → hV ) and similarly for OU , see Modules on
Sites, Lemma 21.3. Since t switches α and β we see that t induces an isomorphism

t : a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU −→ b−1
spaces,étaleH×b−1

spaces,étale
hV ,β

hU

over hU functorially in (H → hV ). Also, t is compatible with a♯c and b♯d as t is
compatible with a♯ and b♯ by our description of the structure sheaves OU and
OV above. Hence, the morphisms of ringed topoi (αsmall, α♯) and (βsmall, β♯) are
2-isomorphic. By Étale Cohomology, Lemma 40.3 we conclude α = β! Since
p : U → X is a surjection of sheaves it follows that a = b. □

Here is the main result of this section.

Theorem 28.4.04KL Let X, Y be algebraic spaces over Spec(Z). Let

(g, g♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of
algebraic spaces f : X → Y such that (g, g♯) is isomorphic to (fsmall, f ♯). In other
words, the construction

Spaces/ Spec(Z) −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma 28.3. Thus it suffices to prove
existence. In this proof we will freely use the identifications of Equation (27.0.4) as
well as the result of Lemma 27.2.

Let U ∈ Ob(Xétale), let V ∈ Ob(Yétale) and let s ∈ g−1hV (U) be a section. We
may think of s as a map of sheaves s : hU → g−1hV . By Modules on Sites, Lemma
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22.3 we obtain a commutative diagram of morphisms of ringed topoi

(Sh(Xétale/U),OU )
(j,j♯)

//

(gs,g
♯
s)
��

(Sh(Xétale),OX)

(g,g♯)
��

(Sh(Vétale),OV ) // (Sh(Yétale),OY ).

By Étale Cohomology, Theorem 40.5 we obtain a unique morphism of schemes
fs : U → V such that (gs, g♯s) is 2-isomorphic to (fs,small, f ♯s). The construction
(U, V, s)⇝ fs just explained satisfies the following functoriality property: Suppose
given morphisms a : U ′ → U in Xétale and b : V ′ → V in Yétale and a map
s′ : hU ′ → g−1hV ′ such that the diagram

hU ′

a

��

s′
// g−1hV ′

g−1b

��
hU

s // g−1hV

commutes. Then the diagram

U ′
fs′
//

a

��

u(V ′)

u(b)
��

U
fs // u(V )

of schemes commutes. The reason this is true is that the same condition holds
for the morphisms (gs, g♯s) constructed in Modules on Sites, Lemma 22.3 and the
uniqueness in Étale Cohomology, Theorem 40.5.

The problem is to glue the morphisms fs to a morphism of algebraic spaces. To
do this first choose a scheme V and a surjective étale morphism V → Y . This
means that hV → ∗ is surjective and hence g−1hV → ∗ is surjective too. This
means there exists a scheme U and a surjective étale morphism U → X and a
morphism s : hU → g−1hV . Next, set R = V ×Y V and R′ = U ×X U . Then
we get g−1hR = g−1hV × g−1hV as g−1 is exact. Thus s induces a morphism
s × s : hR′ → g−1hR. Applying the constructions above we see that we get a
commutative diagram of morphisms of schemes

R′

����

fs×s

// R

����
U

fs // V

Since we have X = U/R′ and Y = V/R (see Spaces, Lemma 9.1) we conclude
that this diagram defines a morphism of algebraic spaces f : X → Y fitting into
an obvious commutative diagram. Now we still have to show that (fsmall, f ♯) is
2-isomorphic to (g, g♯). Let tV : f−1

s,small → g−1
s and tR : f−1

s×s,small → g−1
s×s be the

2-isomorphisms which are given to us by the construction above. Let G be a sheaf
on Yétale. Then we see that tV defines an isomorphism

f−1
smallG|Uétale

= f−1
s,smallG|Vétale

tV−→ g−1
s G|Vétale

= g−1G|Uétale
.
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Moreover, this isomorphism pulled back to R′ via either projection R′ → U is the
isomorphism

f−1
smallG|R′

étale
= f−1

s×s,smallG|Rétale

tR−→ g−1
s×sG|Rétale

= g−1G|R′
étale

.

Since {U → X} is a covering in the site Xspaces,étale this means the first displayed
isomorphism descends to an isomorphism t : f−1

smallG → g−1G of sheaves (small
detail omitted). The isomorphism is functorial in G since tV and tR are transfor-
mations of functors. Finally, t is compatible with f ♯ and g♯ as tV and tR are (some
details omitted). This finishes the proof of the theorem. □

Lemma 28.5.05YZ Let X, Y be algebraic spaces over Z. If

(g, g♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

is an isomorphism of ringed topoi, then there exists a unique morphism f : X → Y
of algebraic spaces such that (g, g♯) is isomorphic to (fsmall, f ♯) and moreover f is
an isomorphism of algebraic spaces.

Proof. By Theorem 28.4 it suffices to show that (g, g♯) is a morphism of locally
ringed topoi. By Modules on Sites, Lemma 40.8 (and since the site Xétale has
enough points) it suffices to check that the map OY,q → OX,p induced by g♯ is a
local ring map where q = f ◦p and p is any point of Xétale. As it is an isomorphism
this is clear. □

29. Quasi-coherent sheaves on algebraic spaces

03G5 In Descent, Sections 8, 9, and 10 we have seen that for a scheme U , there is no
difference between a quasi-coherentOU -module on U , or a quasi-coherentO-module
on the small étale site of U . Hence the following definition is compatible with our
original notion of a quasi-coherent sheaf on a scheme (Schemes, Section 24), when
applied to a representable algebraic space.

Definition 29.1.03G9 Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent OX -module is a quasi-coherent module on the ringed site (Xétale,OX) in
the sense of Modules on Sites, Definition 23.1. The category of quasi-coherent
sheaves on X is denoted QCoh(OX).

Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites,
Lemma 23.2) this is equivalent to saying that the corresponding OX -module on
Xspaces,étale is quasi-coherent.

As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 29.2.03GA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The pullback functor f∗ : Mod(OY ) → Mod(OX) preserves quasi-
coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 23.4. □

Note that this pullback functor agrees with the usual pullback functor between
quasi-coherent sheaves of modules if X and Y happen to be schemes, see Descent,
Proposition 9.4. Here is the obligatory lemma comparing this with quasi-coherent
sheaves on the objects of the small étale site of X.
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Lemma 29.3.03LZ Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent OX-module F is given by the following data:

(1) for every U ∈ Ob(Xétale) a quasi-coherent OU -module FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g∗
smallcf is equal to cf◦g.

Proof. Combine Lemmas 29.2 and 26.3. □

Lemma 29.4.05VP Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX-module. Let x ∈ |X| be a point and let x be a geometric point
lying over x. Finally, let φ : (U, u)→ (X,x) be an étale neighbourhood where U is
a scheme. Then

(φ∗F)u ⊗OU,u
OX,x = Fx

where u ∈ U is the image of u.

Proof. Note that OX,x = OshU,u by Lemma 22.1 hence the tensor product makes
sense. Moreover, from Definition 19.6 it is clear that

Fu = colim(φ∗F)u

where the colimit is over φ : (U, u) → (X,x) as in the lemma. Hence there is a
canonical map from left to right in the statement of the lemma. We have a similar
colimit description for OX,x and by Lemma 29.3 we have

((φ′)∗F)u′ = (φ∗F)u ⊗OU,u
OU ′,u′

whenever (U ′, u′) → (U, u) is a morphism of étale neighbourhoods. To complete
the proof we use that ⊗ commutes with colimits. □

Lemma 29.5.05VQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. Let x be a geometric point of
X and let y = f ◦ x be the image in Y . Then there is a canonical isomorphism

(f∗G)x = Gy ⊗OY,y
OX,x

of the stalk of the pullback with the tensor product of the stalk with the local ring of
X at x.

Proof. Since f∗G = f−1
smallG ⊗f−1

small
OY
OX this follows from the description of

stalks of pullbacks in Lemma 19.9 and the fact that taking stalks commutes with
tensor products. A more direct way to see this is as follows. Choose a commutative
diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective étale. By Lemma 19.4 we
can choose a geometric point u of U such that x = p ◦ u. Set v = α ◦ u. Then we

https://stacks.math.columbia.edu/tag/03LZ
https://stacks.math.columbia.edu/tag/05VP
https://stacks.math.columbia.edu/tag/05VQ
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see that
(f∗G)x = (p∗f∗G)u ⊗OU,u

OX,x
= (α∗q∗G)u ⊗OU,u

OX,x
= (q∗G)v ⊗OV,v

OU,u ⊗OU,u
OX,x

= (q∗G)v ⊗OV,v
OX,x

= (q∗G)v ⊗OV,v
OY,y ⊗OY,y

OX,x
= Gy ⊗OY,y

OX,x
Here we have used Lemma 29.4 (twice) and the corresponding result for pullbacks
of quasi-coherent sheaves on schemes, see Sheaves, Lemma 26.4. □

Lemma 29.6.03M0 Let S be a scheme. Let X be an algebraic space over S. Let F be
a sheaf of OX-modules. The following are equivalent

(1) F is a quasi-coherent OX-module,
(2) there exists an étale morphism f : Y → X of algebraic spaces over S with
|f | : |Y | → |X| surjective such that f∗F is quasi-coherent on Y ,

(3) there exists a scheme U and a surjective étale morphism φ : U → X such
that φ∗F is a quasi-coherent OU -module, and

(4) for every affine scheme U and étale morphism φ : U → X the restriction
φ∗F is a quasi-coherent OU -module.

Proof. It is clear that (1) implies (2) by considering idX . Assume f : Y → X is
as in (2), and let V → Y be a surjective étale morphism from a scheme towards Y .
Then the composition V → X is surjective étale as well and by Lemma 29.2 the
pullback of F to V is quasi-coherent as well. Hence we see that (2) implies (3).
Let U → X be as in (3). Let us use the abuse of notation introduced in Equation
(26.1.1). As F|Uétale

is quasi-coherent there exists an étale covering {Ui → U}
such that F|Ui,étale

has a global presentation, see Modules on Sites, Definition 17.1
and Lemma 23.3. Let V → X be an object of Xétale. Since U → X is surjective
and étale, the family of maps {Ui ×X V → V } is an étale covering of V . Via the
morphisms Ui ×X V → Ui we can restrict the global presentations of F|Ui,étale

to
get a global presentation of F|(Ui×XV )étale

Hence the sheaf F on Xétale satisfies the
condition of Modules on Sites, Definition 23.1 and hence is quasi-coherent.
The equivalence of (3) and (4) comes from the fact that any scheme has an affine
open covering. □

Lemma 29.7.03M1 Let S be a scheme. Let X be an algebraic space over S. The
category QCoh(OX) of quasi-coherent sheaves on X has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(4) Given a short exact sequence of OX-modules 0 → F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(5) Given two quasi-coherent OX-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent OX-modules F , G such that F is of finite pre-

sentation (see Section 30), then the internal hom HomOX
(F ,G) is quasi-

coherent.

https://stacks.math.columbia.edu/tag/03M0
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Proof. If X is a scheme, then this is Descent, Lemma 10.3. We will reduce the
lemma to this case by étale localization.

Choose a scheme U and a surjective étale morphism φ : U → X. Our notation
will be that Mod(OU ) = Mod(Uétale,OU ) and QCoh(OU ) = QCoh(Uétale,OU ); in
other words, even though U is a scheme we think of quasi-coherent modules on U
as modules on the small étale site of U . By Lemma 29.2 we have a commutative
diagram

QCoh(OX)
φ∗
//

��

QCoh(OU )

��
Mod(OX) φ∗

// Mod(OU )

The bottom horizontal arrow is the restriction functor (26.1.1) G 7→ G|Uétale
. This

functor has both a left adjoint and a right adjoint, see Modules on Sites, Section
19, hence commutes with all limits and colimits. Moreover, we know that an object
of Mod(OX) is in QCoh(OX) if and only if its restriction to U is in QCoh(OU ), see
Lemma 29.6. With these preliminaries out of the way we can start the proof.

Proof of (1). Let Fi, i ∈ I be a family of quasi-coherent OX -modules. By the
discussion above we have ( ⊕

Fi
)
|Uétale

=
⊕
Fi|Uétale

Each of the modules Fi|Uétale
is quasi-coherent. Hence the direct sum is quasi-

coherent by the case of schemes. Hence
⊕
Fi is quasi-coherent as a module re-

stricting to a quasi-coherent module on U .

Proof of (2). Let I → QCoh(OX), i 7→ Fi be a diagram. Then

(colimFi)|Uétale
= colimFi|Uétale

by the discussion above and we conclude in the same manner.

Proof of (3). Let a : F → F ′ be an arrow of QCoh(OX). Then we have Ker(a)|Uétale
=

Ker(a|Uétale
) and Coker(a)|Uétale

= Coker(a|Uétale
) and we conclude in the same

manner.

Proof of (4). The restriction 0 → F1|Uétale
→ F2|Uétale

→ F3|Uétale
→ 0 is short

exact. Hence we have the 2-out-of-3 property for this sequence and we conclude as
before.

Proof of (5). Let F and G be in QCoh(OX). Then we have

(F ⊗OX
G)Uétale

= F|Uétale
⊗OU

G|Uétale

and we conclude as before.

Proof of (6). Let F and G be in QCoh(OX) with F of finite presentation. We have

HomOX
(F ,G)|Uétale

= HomOU
(F|Uétale

,G|Uétale
)

Namely, restriction is a localization, see Section 27, especially formula (27.0.4))
and formation of internal hom commutes with localization, see Modules on Sites,
Lemma 27.2. Thus we conclude as before. □
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It is in general not the case that the pushforward of a quasi-coherent sheaf along
a morphism of algebraic spaces is quasi-coherent. We will return to this issue in
Morphisms of Spaces, Section 11.

30. Properties of modules

05VR In Modules on Sites, Sections 17, 23, and Definition 28.1 we have defined a number
of intrinsic properties of modules of O-module on any ringed topos. If X is an
algebraic space, we will apply these notions freely to modules on the ringed site
(Xétale,OX), or equivalently on the ringed site (Xspaces,étale,OX).

Global properties P:
(a) free,
(b) finite free,
(c) generated by global sections,
(d) generated by finitely many global sections,
(e) having a global presentation, and
(f) having a global finite presentation.

Local properties P:
(g) locally free,
(f) finite locally free,
(h) locally generated by sections,
(i) locally generated by r sections,
(j) finite type,
(k) quasi-coherent (see Section 29),
(l) of finite presentation,

(m) coherent, and
(n) flat.

Here are some results which follow immediately from the definitions:
(1) In each case, except for P =“coherent”, the property is preserved under

pullback, see Modules on Sites, Lemmas 17.2, 23.4, and 39.1.
(2) Each of the properties above (including coherent) are preserved under pull-

backs by étale morphisms of algebraic spaces (because in this case pullback
is given by restriction, see Lemma 18.11).

(3) Assume f : Y → X is a surjective étale morphism of algebraic spaces. For
each of the local properties (g) – (m), the fact that f∗F has P implies
that F has P. This follows as {Y → X} is a covering in Xspaces,étale and
Modules on Sites, Lemma 23.3.

(4) If X is a scheme, F is a quasi-coherent module on Xétale, and P any
property except “coherent” or “locally free”, then P for F on Xétale is
equivalent to the corresponding property for F|XZar

, i.e., it corresponds to
P for F when we think of it as a quasi-coherent sheaf on the scheme X.
See Descent, Lemma 8.10.

(5) If X is a locally Noetherian scheme, F is a quasi-coherent module on Xétale,
then F is coherent on Xétale if and only if F|XZar

is coherent, i.e., it cor-
responds to the usual notion of a coherent sheaf on the scheme X being
coherent. See Descent, Lemma 8.10.
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31. Locally projective modules

060P Recall that in Properties, Section 21 we defined the notion of a locally projective
quasi-coherent module.

Lemma 31.1.060Q Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX-module. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the restriction
F|U is locally projective on U , and

(2) for any scheme U and any étale morphism U → X the restriction F|U is
locally projective on U .

Proof. Let U → X be as in (1) and let V → X be étale where V is a scheme. Then
{U ×X V → V } is an fppf covering of schemes. Hence if F|U is locally projective,
then F|U×XV is locally projective (see Properties, Lemma 21.3) and hence F|V is
locally projective, see Descent, Lemma 7.7. □

Definition 31.2.060R Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. We say F is locally projective if the equivalent
conditions of Lemma 31.1 are satisfied.

Lemma 31.3.060S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. If G is locally projective on
Y , then f∗G is locally projective on X.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Denote ψ : U → V the
induced morphism. Then

f∗G|U = ψ∗(G|V )
Hence the lemma follows from the definition and the result in the case of schemes,
see Properties, Lemma 21.3. □

32. Quasi-coherent sheaves and presentations

03M2 Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism φ : U → X, see
Spaces, Definition 9.3. In particular, we obtain a groupoid (U,R, s, t, c), such that
j = (t, s) : R→ U×SU , see Groupoids, Lemma 13.3. In Groupoids, Definition 14.1
we have the defined the notion of a quasi-coherent sheaf on an arbitrary groupoid.
With these notions in place we have the following observation.

Proposition 32.1.03M3 With S, φ : U → X, and (U,R, s, t, c) as above. For any quasi-
coherent OX-module F the sheaf φ∗F comes equipped with a canonical isomorphism

α : t∗φ∗F −→ s∗φ∗F

which satisfies the conditions of Groupoids, Definition 14.1 and therefore defines
a quasi-coherent sheaf on (U,R, s, t, c). The functor F 7→ (φ∗F , α) defines an
equivalence of categories

Quasi-coherent
OX-modules ←→

Quasi-coherent modules
on (U,R, s, t, c)

https://stacks.math.columbia.edu/tag/060Q
https://stacks.math.columbia.edu/tag/060R
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Proof. In the statement of the proposition, and in this proof we think of a quasi-
coherent sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that
scheme. This is permissible by the results of Descent, Sections 8, 9, and 10.
The existence of α comes from the fact that φ ◦ t = φ ◦ s and that pullback
is functorial in the morphism, see discussion surrounding Equation (26.0.1). In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α satisfies condition (1) of Groupoids, Definition 14.1. To see condition (2) of the
definition it suffices to see that α is an isomorphism which is clear. The construction
F 7→ (φ∗F , α) is clearly functorial in the quasi-coherent sheaf F . Hence we obtain
the functor from left to right in the displayed formula of the lemma.
Conversely, suppose that (F , α) is a quasi-coherent sheaf on (U,R, s, t, c). Let
V → X be an object of Xétale. In this case the morphism V ′ = U ×X V → V is a
surjective étale morphism of schemes, and hence {V ′ → V } is an étale covering of
V . Moreover, the quasi-coherent sheaf F pulls back to a quasi-coherent sheaf F ′ on
V ′. Since R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V
with projection maps V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence
α pulls back to an isomorphism α′ : pr∗

0F ′ → pr∗
1F ′, and the pair (F ′, α′) is a

descend datum for quasi-coherent sheaves with respect to {V ′ → V }. By Descent,
Proposition 5.2 this descent datum is effective, and we obtain a quasi-coherent
OV -module FV on Vétale. To see that this gives a quasi-coherent sheaf on Xétale

we have to show (by Lemma 29.3) that for any morphism f : V1 → V2 in Xétale

there is a canonical isomorphism cf : FV1 → FV2 compatible with compositions
of morphisms. We omit the verification. We also omit the verification that this
defines a functor from the category on the right to the category on the left which
is inverse to the functor described above. □

Proposition 32.2.077V Let S be a scheme. Let X be an algebraic space over S.
(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,

QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX)→ Mod(OX) has a right adjoint8

Q : Mod(OX) −→ QCoh(OX)
such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition 23.4. We advise the reader to read that proof first.
Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are exact, and (c)
has a generator, see Injectives, Section 10. By Lemma 29.7 colimits in QCoh(OX)
exist and agree with colimits in Mod(OX). By Modules on Sites, Lemma 14.2
filtered colimits are exact. Hence (a) and (b) hold.
To construct a generator, choose a presentation X = U/R so that (U,R, s, t, c) is
an étale groupoid scheme and in particular s and t are flat morphisms of schemes.
Pick a cardinal κ as in Groupoids, Lemma 15.7. Pick a collection (Et, αt)t∈T of
κ-generated quasi-coherent modules on (U,R, s, t, c) as in Groupoids, Lemma 15.6.
Let Ft be the quasi-coherent module on X which corresponds to the quasi-coherent
module (Et, αt) via the equivalence of categories of Proposition 32.1. Then we see

8This functor is sometimes called the coherator.

https://stacks.math.columbia.edu/tag/077V
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that every quasi-coherent module H is the directed colimit of its quasi-coherent
submodules which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 11.7 and Lemma
13.2.
Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)
This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial iso-
morphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 3.5) the construction F ⇝ Q(F) is functorial in F . By
construction Q is a right adjoint to the inclusion functor. The fact that Q(F)→ F
is an isomorphism when F is quasi-coherent is a formal consequence of the fact
that the inclusion functor QCoh(OX)→ Mod(OX) is fully faithful. □

33. Morphisms towards schemes

05Z0 Here is the analogue of Schemes, Lemma 6.4.

Lemma 33.1.05Z1 Let X be an algebraic space over Z. Let T be an affine scheme.
The map

Mor(X,T ) −→ Hom(Γ(T,OT ),Γ(X,OX))
which maps f to f ♯ (on global sections) is bijective.

Proof. We construct the inverse of the map. Let φ : Γ(T,OT ) → Γ(X,OX) be a
ring map. Choose a presentation X = U/R, see Spaces, Definition 9.3. By Schemes,
Lemma 6.4 the composition

Γ(T,OT )→ Γ(X,OX)→ Γ(U,OU )
corresponds to a unique morphism of schemes g : U → T . By the same lemma the
two compositions R → U → T are equal. Hence we obtain a morphism f : X =
U/R→ T such that U → X → T equals g. By construction the diagram

Γ(U,OU ) Γ(X,OX)oo

Γ(T,OT )
g♯

ff
φ f♯

OO

commutes. Hence f ♯ equals φ because U → X is an étale covering and OX is a
sheaf on Xétale. The uniqueness of f follows from the uniqueness of g. □

34. Quotients by free actions

071R Let S be a scheme. Let X be an algebraic space over S. Let G be an abstract
group. Let a : G → Aut(X) be a homomorphism, i.e., a is an action of G on X.
We will say the action is free if for every scheme T over S the map

G×X(T ) −→ X(T )
is free. (We cannot use a criterion as in Spaces, Lemma 14.3 because points may
not have well defined residue fields.) In case the action is free we’re going to

https://stacks.math.columbia.edu/tag/05Z1
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construct the quotient X/G as an algebraic space. This is a special case of the
general Bootstrap, Lemma 11.7 that we will prove later.

Lemma 34.1.071S Let S be a scheme. Let X be an algebraic space over S. Let G
be an abstract group with a free action on X. Then the quotient sheaf X/G is an
algebraic space.

Proof. The statement means that the sheaf F associated to the presheaf
T 7−→ X(T )/G

is an algebraic space. To see this we will construct a presentation. Namely, choose
a scheme U and a surjective étale morphism φ : U → X. Set V =

∐
g∈G U and set

ψ : V → X equal to a(g) ◦ φ on the component corresponding to g ∈ G. Let G act
on V by permuting the components, i.e., g0 ∈ G maps the component corresponding
to g to the component corresponding to g0g via the identity morphism of U . Then
ψ is a G-equivariant morphism, i.e., we reduce to the case dealt with in the next
paragraph.
Assume that there exists a G-action on U and that U → X is surjective, étale
and G-equivariant. In this case there is an induced action of G on R = U ×X U
compatible with the projection mappings t, s : R→ U . Now we claim that

X/G = U/
∐

g∈G
R

where the map
j :

∐
g∈G

R −→ U ×S U

is given by (r, g) 7→ (t(r), g(s(r))). Note that j is a monomorphism: If (t(r), g(s(r))) =
(t(r′), g′(s(r′))), then t(r) = t(r′), hence r and r′ have the same image in X under
both s and t, hence g = g′ (as G acts freely on X), hence s(r) = s(r′), hence r = r′

(as R is an equivalence relation on U). Moreover j is an equivalence relation (de-
tails omitted). Both projections

∐
g∈GR→ U are étale, as s and t are étale. Thus

j is an étale equivalence relation and U/
∐
g∈GR is an algebraic space by Spaces,

Theorem 10.5. There is a map

U/
∐

g∈G
R −→ X/G

induced by the map U → X. We omit the proof that it is an isomorphism of
sheaves. □
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