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1. Introduction

0AHU The goal of this chapter is to discuss pushouts in the category of algebraic spaces.
This can be done with varying assumptions. A fairly general pushout construction
is given in [TT13]: one of the morphisms is affine and the other is a closed immer-
sion. We discuss a particular case of this in Section 6 where we assume one of the
morphisms is affine and the other is a thickening, a situation that often comes up
in deformation theory.
In Sections 10 and 11 we discuss diagrams

f−1(X \ Z) //

��

Y

f

��
X \ Z // X

where f is a quasi-compact and quasi-separated morphism of algebraic spaces,
Z → X is a closed immersion of finite presentation, the map f−1(Z) → Z is an
isomorphism, and f is flat along f−1(Z). In this situation we glue quasi-coherent
modules on X \ Z and Y (in Section 10) to quasi-coherent modules on X and we
glue algebraic spaces over X \Z and Y (in Section 11) to algebraic spaces over X.
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In Section 13 we discuss how proper birational morphisms of Noetherian algebraic
spaces give rise to coequalizer diagrams in algebraic spaces in some sense.
In Section 14 we use the construction of elementary distinguished squares in Section
9 to prove Nagata’s theorem on compactifications in the setting of algebraic spaces.

2. Conventions

0GFM The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Colimits of algebraic spaces

0GFN We briefly discuss colimits of algebraic spaces. Let S be a scheme. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram (see Categories, Section 14). For each i we
may consider the small étale site Xi,étale whose objects are schemes étale over Xi,
see Properties of Spaces, Section 18. For each morphism i → j of I we have the
morphism Xi → Xj and hence a pullback functor Xj,étale → Xi,étale. Hence we
obtain a pseudo functor from Iopp into the 2-category of categories. Denote

limiXi,étale

the 2-limit (see insert future reference here). What does this mean concretely? An
object of this limit is a system of étale morphisms Ui → Xi over I such that for
each i→ j in I the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → T is a family of morphisms such that for each i→ j the com-
position Xi → Xj → T is equal to fi. Then we get a functor Tétale → limXi,étale.
With this notation in hand we can formulate our lemma.

Lemma 3.1.07SX Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram of
schemes over S as above. Assume that

(1) X = colimXi exists in the category of schemes,
(2)

∐
Xi → X is surjective,

(3) if U → X is étale and Ui = Xi ×X U , then U = colimUi in the category of
schemes, and

(4) every object (Ui → Xi) of limXi,étale with Ui → Xi separated is in the
essential image of the functor Xétale → limXi,étale.

Then X = colimXi in the category of algebraic spaces over S also.

Proof. Let Z be an algebraic space over S. Suppose that fi : Xi → Z is a family
of morphisms such that for each i → j the composition Xi → Xj → Z is equal
to fi. We have to construct a morphism of algebraic spaces f : X → Z such that
we can recover fi as the composition Xi → X → Z. Let W → Z be a surjective

https://stacks.math.columbia.edu/tag/07SX
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étale morphism of a scheme to Z. We may assume that W is a disjoint union of
affines and in particular we may assume that W → Z is separated. For each i
set Ui = W ×Z,fi Xi and denote hi : Ui → W the projection. Then Ui → Xi

forms an object of limXi,étale with Ui → Xi separated. By assumption (4) we can
find an étale morphism U → X and (functorial) isomorphisms Ui = Xi ×X U . By
assumption (3) there exists a morphism h : U → W such that the compositions
Ui → U →W are hi. Let g : U → Z be the composition of h with the map W → Z.
To finish the proof we have to show that g : U → Z descends to a morphism X → Z.
To do this, consider the morphism (h, h) : U ×X U → W ×S W . Composing with
Ui ×Xi

Ui → U ×X U we obtain (hi, hi) which factors through W ×Z W . Since
U ×X U is the colimit of the schemes Ui ×Xi

Ui by (3) we see that (h, h) factors
through W ×Z W . Hence the two compositions U ×X U → U → W → Z are
equal. Because each Ui → Xi is surjective and assumption (2) we see that U → X
is surjective. As Z is a sheaf for the étale topology, we conclude that g : U → Z
descends to f : X → Z as desired. □

We can check that a cocone is a colimit (fpqc) locally on the cocone.

Lemma 3.2.0GFQ Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X)
be a cocone for the diagram in the category of algebraic spaces over B (Categories,
Remark 14.5). If there exists a fpqc covering {Ua → X}a∈A such that

(1) for all a ∈ A we have Ua = colimXi ×X Ua in the category of algebraic
spaces over B, and

(2) for all a, b ∈ A we have Ua ×X Ub = colimXi ×X Ua ×X Ub in the category
of algebraic spaces over B,

then X = colimXi in the category of algebraic spaces over B.

Proof. Namely, for an algebraic space Y over B a morphism X → Y over B is
the same thing as a collection of morphism Ua → Y which agree on the overlaps
Ua ×X Ub for all a, b ∈ A, see Descent on Spaces, Lemma 7.2. □

We are going to find a common partial generalization of Lemmas 3.1 and 3.2 which
can in particular be used to reduce a colimit construction to a subcategory of the
category of all algebraic spaces.

Let S be a scheme and let B be an algebraic space over S. Let I be an index
category and let i 7→ Xi be a diagram in the category of algebraic spaces over
B, see Categories, Section 14. For each i we may consider the small étale site
Xi,spaces,étale whose objects are algebraic spaces étale over Xi, see Properties of
Spaces, Section 18. For each morphism i→ j of I we have the morphism Xi → Xj

and hence a pullback functor Xj,spaces,étale → Xi,spaces,étale. Hence we obtain a
pseudo functor from Iopp into the 2-category of categories. Denote

limiXi,spaces,étale

the 2-limit (see insert future reference here). What does this mean concretely?
An object of this limit is a diagram i 7→ (Ui → Xi) in the category of arrows of

https://stacks.math.columbia.edu/tag/0GFQ
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algebraic spaces over B such that for each i→ j in I the diagram
Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → Z is a family of morphisms of algebraic spaces over B such that
for each i→ j the composition Xi → Xj → Z is equal to fi. Then we get a functor
Zspaces,étale → limXi,spaces,étale. With this notation in hand we can formulate our
next lemma.

Lemma 3.3.0GHL Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X)
be a cocone for the diagram in the category of algebraic spaces over B (Categories,
Remark 14.5). Assume that

(1) the base change functor Xspaces,étale → limXi,spaces,étale, sending U to
Ui = Xi ×X U is an equivalence,

(2) given
(a) B′ affine and étale over B,
(b) Z an affine scheme over B′,
(c) U → X ×B B′ an étale morphism of algebraic spaces with U affine,
(d) fi : Ui → Z a cocone over B′ of the diagram i 7→ Ui = U ×X Xi,
there exists a unique morphism f : U → Z over B′ such that fi equals the
composition Ui → U → Z.

Then X = colimXi in the category of all algebraic spaces over B.

Proof. In this paragraph we reduce to the case where B is an affine scheme. Let
B′ → B be an étale morphism of algebraic spaces. Observe that conditions (1)
and (2) are preserved if we replace B, Xi, X by B′, Xi ×B B′, X ×B B′. Let
{Ba → B}a∈A be an étale covering with Ba affine, see Properties of Spaces, Lemma
6.1. For a ∈ A denote Xa, Xa,i the base changes of X and the diagram to Ba. For
a, b ∈ A denote Xa,b and Xa,b,i the base changes of X and the diagram to Ba×BBb.
By Lemma 3.2 it suffices to prove that Xa = colimXa,i and Xa,b = colimXa,b,i.
This reduces us to the case where B = Ba (an affine scheme) or B = Ba ×B Bb (a
separated scheme). Repeating the argument once more, we conclude that we may
assume B is an affine scheme (this uses that the intersection of affine opens in a
separated scheme is affine).
Assume B is an affine scheme. Let Z be an algebraic space over B. We have to
show

MorB(X,Z) −→ lim MorB(Xi, Z)
is a bijection.
Proof of injectivity. Let f, g : X → Z be morphisms such that the compositions
fi, gi : Xi → Z are the same for all i. Choose an affine scheme Z ′ and an étale
morphism Z ′ → Z. By Properties of Spaces, Lemma 6.1 we know we can cover Z
by such affines. Set U = X×f,Z Z ′ and U ′ = X×g,Z Z ′ and denote p : U → X and
p′ : U ′ → X the projections. Since fi = gi for all i, we see that

Ui = Xi ×fi,Z Z
′ = Xi ×gi,Z Z

′ = U ′
i

https://stacks.math.columbia.edu/tag/0GHL
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compatible with transition morphisms. By (1) there is a unique isomorphism ϵ :
U → U ′ as algebraic spaces over X, i.e., with p = p′◦ϵ which is compatible with the
displayed identifications. Choose an étale covering {ha : Ua → U} with Ua affine.
By (2) we see that f ◦ p ◦ ha = g ◦ p′ ◦ ϵ ◦ ha = g ◦ p ◦ ha. Since {ha : Ua → U}
is an étale covering we conclude f ◦ p = g ◦ p. Since the collection of morphisms
p : U → X we obtain in this manner is an étale covering, we conclude that f = g.
Proof of surjectivity. Let fi : Xi → Z be an element of the right hand side
of the displayed arrow in the first paragraph of the proof. It suffices to find an
étale covering {Uc → X}c∈C such that the families fc,i ∈ limi MorB(Xi ×X Uc, Z)
come from morphisms fc : Uc → Z. Namely, by the uniqueness proved above the
morphisms fc will agree on Uc ×X Ub and hence will descend to give the desired
morphism f : X → Z. To find our covering, we first choose an étale covering
{ga : Za → Z}a∈A where each Za is affine. Then we let Ua,i = Xi ×fi,Z Za. By (1)
we find Ua,i = Xi×XUa for some algebraic spaces Ua étale over X. Then we choose
étale coverings {Ua,b → Ua}b∈Ba

with Ua,b affine and we consider the morphisms
Ua,b,i = Xi ×X Ua,b → Xi ×X Ua = Xi ×fi,Z Za → Za

By (2) we obtain morphisms fa,b : Ua,b → Za compatible with these morphisms.
Setting C =

∐
a∈ABa and for c ∈ C corresponding to b ∈ Ba setting Uc = Ua,b and

fc = ga ◦ fa,b : Uc → Z we conclude. □

Here is an application of these ideas to reduce the general case to the case of
separated algebraic spaces.

Lemma 3.4.0GFP Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Assume that

(1) each Xi is separated over B,
(2) X = colimXi exists in the category of algebraic spaces separated over B,
(3)

∐
Xi → X is surjective,

(4) if U → X is an étale separated morphism of algebraic spaces and Ui =
Xi ×X U , then U = colimUi in the category of algebraic spaces separated
over B, and

(5) every object (Ui → Xi) of limXi,spaces,étale with Ui → Xi separated is of
the form Ui = Xi ×X U for some étale separated morphism of algebraic
spaces U → X.

Then X = colimXi in the category of all algebraic spaces over B.

Proof. We encourage the reader to look instead at Lemma 3.3 and its proof.
Let Z be an algebraic space over B. Suppose that fi : Xi → Z is a family of
morphisms such that for each i→ j the composition Xi → Xj → Z is equal to fi.
We have to construct a morphism of algebraic spaces f : X → Z over B such that we
can recover fi as the composition Xi → X → Z. Let W → Z be a surjective étale
morphism of a scheme to Z. We may assume that W is a disjoint union of affines
and in particular we may assume that W → Z is separated and that W is separated
over B. For each i set Ui = W ×Z,fi

Xi and denote hi : Ui → W the projection.
Then Ui → Xi forms an object of limXi,spaces,étale with Ui → Xi separated. By
assumption (5) we can find a separated étale morphism U → X of algebraic spaces
and (functorial) isomorphisms Ui = Xi ×X U . By assumption (4) there exists a
morphism h : U →W over B such that the compositions Ui → U →W are hi. Let

https://stacks.math.columbia.edu/tag/0GFP
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g : U → Z be the composition of h with the map W → Z. To finish the proof we
have to show that g : U → Z descends to a morphism X → Z. To do this, consider
the morphism (h, h) : U ×X U →W ×SW . Composing with Ui ×Xi Ui → U ×X U
we obtain (hi, hi) which factors through W ×Z W . Since U ×X U is the colimit of
the algebraic spaces Ui ×Xi

Ui in the category of algebraic spaces separated over
B by (4) we see that (h, h) factors through W ×Z W . Hence the two compositions
U ×X U → U → W → Z are equal. Because each Ui → Xi is surjective and
assumption (2) we see that U → X is surjective. As Z is a sheaf for the étale
topology, we conclude that g : U → Z descends to f : X → Z as desired. □

4. Descending étale sheaves

0GFR This section is the analogue for algebraic spaces of Étale Cohomology, Section 104.

In order to conveniently express our results we need some notation. Let S be a
scheme. Let U = {fi : Xi → X} be a family of morphisms of algebraic spaces over
S with fixed target. A descent datum for étale sheaves with respect to U is a family
((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) φij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi ×X Xj)étale)

such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,small

φik &&

pr−1
01,small

φij
// pr−1

1,smallFj

pr−1
12,small

φjkxx
pr−1

2,smallFk

commute in Sh((Xi ×X Xj ×X Xk)étale). There is an obvious notion of mor-
phisms of descent data and we obtain a category of descent data. A descent datum
((Fi)i∈I , (φij)i,j∈I) is called effective if there exist a F in Sh(Xétale) and isomor-
phisms φi : f−1

i,smallF → Fi in Sh(Xi,étale) compatible with the φij , i.e., such that

φij = pr−1
1,small(φj) ◦ pr−1

0,small(φ
−1
i )

Another way to say this is the following. Given an object F of Sh(Xétale) we obtain
the canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (φij)i,j∈I) is effective if and only if it is isomorphic to
the canonical descent datum associated to some F in Sh(Xétale).

If the family consists of a single morphism {X → Y }, then we think of a descent
datum as a pair (F , φ) where F is an object of Sh(Xétale) and φ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF
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in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,small

φ &&

pr−1
01,small

φ
// pr−1

1,smallF

pr−1
12,small

φxx
pr−1

2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent
data and effectivity exactly as before.

Lemma 4.1.0GFS Let S be a scheme. Let {fi : Xi → X} be an étale covering of
algebraic spaces. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}
is an equivalence of categories.

Proof. In Properties of Spaces, Section 18 we have defined a site Xspaces,étale

whose objects are algebraic spaces étale over X with étale coverings. Moreover, we
have a identifications Sh(Xétale) = Sh(Xspaces,étale) compatible with morphisms
of algebraic spaces, i.e., compatible with pushforward and pullback. Hence the
statement of the lemma follows from the much more general discussion in Sites,
Section 26. □

Lemma 4.2.0GFT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let {Yi → Y }i∈I be an étale covering of algebraic spaces. If for each
i ∈ I the functor

Sh(Yi,étale) −→ descent data for étale sheaves wrt {X ×Y Yi → Yi}
is an equivalence of categories and for each i, j ∈ I the functor
Sh((Yi×Y Yj)étale) −→ descent data for étale sheaves wrt {X×Y Yi×Y Yj → Yi×Y Yj}
is an equivalence of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Formal consequence of Lemma 4.1 and the definitions. □

Lemma 4.3.0GFU Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is representable (by schemes) and f has one of the following
properties: surjective and integral, surjective and proper, or surjective and flat and
locally of finite presentation Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Each of the properties of morphisms of algebraic spaces mentioned in the
statement of the lemma is preserved by arbitrary base change, see the lists in Spaces,
Section 4. Thus we can apply Lemma 4.2 to see that we can work étale locally on
Y . In this way we reduce to the case where Y is a scheme; some details omitted. In
this case X is also a scheme and the result follows from Étale Cohomology, Lemma
104.2, 104.3, or 104.5. □

https://stacks.math.columbia.edu/tag/0GFS
https://stacks.math.columbia.edu/tag/0GFT
https://stacks.math.columbia.edu/tag/0GFU
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Lemma 4.4.0GFV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let π : X ′ → X be a morphism of algebraic spaces. Assume

(1) f ◦ π is representable (by schemes),
(2) f ◦ π has one of the following properties: surjective and integral, surjective

and proper, or surjective and flat and locally of finite presentation.
Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Formal consequence of Lemma 4.3 and Stacks, Lemma 3.7. □

Lemma 4.5.0GFW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which has one of the following properties: surjective and integral,
surjective and proper, or surjective and flat and locally of finite presentation. Then
the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Observe that the base change of a proper surjective morphism is proper
and surjective, see Morphisms of Spaces, Lemmas 40.3 and 5.5. Hence by Lemma
4.2 we may work étale locally on Y . Hence we reduce to Y being an affine scheme;
some details omitted.

Assume Y is affine. By Lemma 4.4 it suffices to find a morphism X ′ → X where
X ′ is a scheme such that X ′ → Y is surjective and integral, surjective and proper,
or surjective and flat and locally of finite presentation.

In case X → Y is integral and surjective, we can take X = X ′ as an integral
morphism is representable.

If f is proper and surjective, then the algebraic space X is quasi-compact and
separated, see Morphisms of Spaces, Section 8 and Lemma 4.9. Choose a scheme
X ′ and a surjective finite morphism X ′ → X, see Limits of Spaces, Proposition
16.1. Then X ′ → Y is surjective and proper.

Finally, if X → Y is surjective and flat and locally of finite presentation then we can
take an affine étale covering {Ui → X} and set X ′ equal to the disjoint

∐
Ui. □

Lemma 4.6.0GFX Let S be a scheme. Let {fi : Xi → X} be an fppf covering of
algebraic spaces over S. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.

Proof. We have Lemma 4.5 for the morphism f :
∐
Xi → X. Then a formal

argument shows that descent data for f are the same thing as descent data for the
covering, compare with Descent, Lemma 34.5. Details omitted. □

Lemma 4.7.0GFY Let S be a scheme. Let f : Y ′ → Y be a proper morphism of
algebraic spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′.

https://stacks.math.columbia.edu/tag/0GFV
https://stacks.math.columbia.edu/tag/0GFW
https://stacks.math.columbia.edu/tag/0GFX
https://stacks.math.columbia.edu/tag/0GFY
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Picture
E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z, then the functor
Sh(Yétale) −→ Sh(Y ′

étale)×Sh(Eétale) Sh(Zétale)
is an equivalence of categories.

Proof. Observe that X = Y ′ ∐
Z → Y is a proper surjective morphism. Thus it

suffice to construct an equivalence of categories
Sh(Y ′

étale)×Sh(Eétale) Sh(Zétale) −→ descent data for étale sheaves wrt {X → Y }
compatible with pullback functors from Y because then we can use Lemma 4.5 to
conclude. Thus let (G′,G, α) be an object of Sh(Y ′

étale) ×Sh(Eétale) Sh(Zétale) with
notation as in Categories, Example 31.3. Then we can consider the sheaf F on X
defined by taking G′ on the summand Y ′ and G on the summand Z. We have
X ×Y X = Y ′ ×Y Y ′ ⨿ Y ′ ×Y Z ⨿ Z ×Y Y ′ ⨿ Z ×Y Z = Y ′ ×Y Y ′ ⨿ E ⨿ E ⨿ Z

The isomorphisms of the two pullbacks of F to this algebraic space are obvious over
the summands E, E, Z. The interesting part of the proof is to find an isomorphism
pr−1

0,smallG′ → pr−1
1,smallG′ over Y ′ ×Y Y ′ satisfying the cocycle condition. However,

our assumption that Y ′ → Y is an isomorphism over Y \ Z implies that

h : Y
∐

E ×Z E −→ Y ′ ×Y Y ′

is a surjective proper morphism. (It is in fact a finite morphism as it is the disjoint
union of two closed immersions.) Hence it suffices to construct an isomorphism
of the pullbacks of pr−1

0,smallG′and pr−1
1,smallG′ by hsmall satisfying a certain cocycle

condition. For the diagonal, it is clear how to do this. And for the pullback to
E ×Z E we use that both sheaves pull back to the pullback of G by the morphism
E ×Z E → Z. We omit the details. □

5. Descending étale morphisms of algebraic spaces

0GFZ In this section we combine the glueing results for étale sheaves given in Section
4 with the flexibility of algebraic spaces to get some descent statements for étale
morphisms of algebraic spaces.

Lemma 5.1.0GG0 Let S be a scheme. Let f : X → Y be a proper surjective morphism
of algebraic spaces over S. Any descent datum (U/X,φ) relative to f (Descent on
Spaces, Definition 22.1) with U étale over X is effective (Descent on Spaces, Defi-
nition 22.10). More precisely, there exists an étale morphism V → Y of algebraic
spaces whose corresponding canonical descent datum is isomorphic to (U/X,φ).

Proof. Recall that U gives rise to a representable sheaf F = hU in Sh(Xspaces,étale) =
Sh(Xétale), see Properties of Spaces, Section 18. The descent datum on U relative to
f exactly gives a descent datum (F , φ) for étale sheaves with respect to {X → Y }.
By Lemma 4.5 this descent datum is effective. Let G be the corresponding sheaf on
Yétale. By Properties of Spaces, Lemma 27.3 we obtain an étale morphism V → Y
of algebraic spaces corresponding to G; we omit the verification of the set theoretic

https://stacks.math.columbia.edu/tag/0GG0
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condition1. The given isomorphism F → f−1
smallG corresponds to an isomorphism

U → V ×Y X compatible with the descent datum. □

Lemma 5.2.0GG1 Let S be a scheme. Let f : Y ′ → Y be a proper morphism of
algebraic spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′.
Picture

E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z, then the functor
Yspaces,étale −→ Y ′

spaces,étale ×Espaces,étale
Zspaces,étale

is an equivalence of categories.

Proof. Let (V ′ → Y ′,W → Z,α) be an object of the right hand side. Recall
that V ′, resp. W gives rise to a representable sheaf G′ = hV ′ in Sh(Y ′

spaces,étale) =
Sh(Y ′

étale), resp. G = hW in Sh(Zspaces,étale) = Sh(Zétale), see Properties of Spaces,
Section 18. The isomorphism α : V ′ ×Y ′ E →W ×Z E determines an isomorphism
j−1
smallG′ → g−1

smallG of sheaves on E. By Lemma 4.7 we obtain a unique sheaf F
on Y pulling pack to G′ and G compatibly with the isomorphism. By Properties
of Spaces, Lemma 27.3 we obtain an étale morphism V → Y of algebraic spaces
corresponding to F ; we omit the verification of the set theoretic condition2. The
given isomorphism G′ → f−1

smallF and G → i−1
smallF corresponds to isomorphisms

V ′ → V ×Y Y ′ and W → V ×Y Z compatible with α as desired. □

6. Pushouts along thickenings and affine morphisms

07SW This section is analogue of More on Morphisms, Section 14.

Lemma 6.1.07SY Let S be a scheme. Let X → X ′ be a thickening of schemes over
S and let X → Y be an affine morphism of schemes over S. Let Y ′ = Y ⨿X X ′

be the pushout in the category of schemes (see More on Morphisms, Lemma 14.3).
Then Y ′ is also a pushout in the category of algebraic spaces over S.

Proof. This is an immediate consequence of Lemma 3.1 and More on Morphisms,
Lemmas 14.3, 14.4, and 14.6. □

Lemma 6.2.07VX Let S be a scheme. Let X → X ′ be a thickening of algebraic spaces
over S and let X → Y be an affine morphism of algebraic spaces over S. Then
there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y ⨿X X ′

in the category of algebraic spaces over S. Moreover Y ′ = Y ⨿X X ′ is a thickening
of Y and

OY ′ = OY ×f∗OX
f ′

∗OX′

as sheaves on Yétale = (Y ′)étale.
1It follows from the fact that F satisfies the corresponding condition.
2It follows from the fact that G and G′ satisfies the corresponding condition.

https://stacks.math.columbia.edu/tag/0GG1
https://stacks.math.columbia.edu/tag/07SY
https://stacks.math.columbia.edu/tag/07VX
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Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
V ×Y X. This is a scheme affine over V with a surjective étale morphism U → X.
By More on Morphisms of Spaces, Lemma 9.6 there exists a U ′ → X ′ surjective
étale with U = U ′ ×X′ X. In particular the morphism of schemes U → U ′ is
a thickening too. Apply More on Morphisms, Lemma 14.3 to obtain a pushout
V ′ = V ⨿U U ′ in the category of schemes.

We repeat this procedure to construct a pushout

U ×X U

��

// U ′ ×X′ U ′

��
V ×Y V // R′

in the category of schemes. Consider the morphisms

U ×X U → U → V ′, U ′ ×X′ U ′ → U ′ → V ′, V ×Y V → V → V ′

where we use the first projection in each case. Clearly these glue to give a morphism
t′ : R′ → V ′ which is étale by More on Morphisms, Lemma 14.6. Similarly, we
obtain s′ : R′ → V ′ étale. The morphism j′ = (t′, s′) : R′ → V ′×S V ′ is unramified
(as t′ is étale) and a monomorphism when restricted to the closed subscheme V ×Y
V ⊂ R′. As V ×Y V ⊂ R′ is a thickening it follows that j′ is a monomorphism too.
Finally, j′ is an equivalence relation as we can use the functoriality of pushouts of
schemes to construct a morphism c′ : R′×s′,V ′,t′ R

′ → R′ (details omitted). At this
point we set Y ′ = U ′/R′, see Spaces, Theorem 10.5.

We have morphisms X ′ = U ′/U ′ ×X′ U ′ → V ′/R′ = Y ′ and Y = V/V ×Y V →
V ′/R′ = Y ′. By construction these fit into the commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

Since Y → Y ′ is a thickening we have Yétale = (Y ′)étale, see More on Morphisms of
Spaces, Lemma 9.6. The commutativity of the diagram gives a map of sheaves

OY ′ −→ OY ×f∗OX
f ′

∗OX′

on this set. By More on Morphisms, Lemma 14.3 this map is an isomorphism when
we restrict to the scheme V ′, hence it is an isomorphism.

To finish the proof we show that the diagram above is a pushout in the category of
algebraic spaces. To see this, let Z be an algebraic space and let a′ : X ′ → Z and
b : Y → Z be morphisms of algebraic spaces. By Lemma 6.1 we obtain a unique
morphism h : V ′ → Z fitting into the commutative diagrams

U ′

��

// V ′

h

��
X ′ a′

// Z

and

V //

��

V ′

h

��
Y

b // Z

The uniqueness shows that h◦t′ = h◦s′. Hence h factors uniquely as V ′ → Y ′ → Z
and we win. □
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In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 31.3.

Lemma 6.3.07VY Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S.
Let Y ′ = Y ⨿X X ′ be the pushout (see Lemma 6.2). Base change gives a functor

F : (Spaces/Y ′) −→ (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

given by V ′ 7−→ (V ′×Y ′Y, V ′×Y ′X ′, 1) which sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)
(Sch/X ′). The functor F has a left adjoint

G : (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′) −→ (Spaces/Y ′)

which sends the triple (V,U ′, φ) to the pushout V ⨿(V×Y X) U
′ in the category of

algebraic spaces over S. The functor G sends (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) into
(Sch/Y ′).

Proof. The proof is completely formal. Since the morphisms X → X ′ and X → Y
are representable it is clear that F sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)(Sch/X ′).

Let us construct G. Let (V,U ′, φ) be an object of the fibre product category.
Set U = U ′ ×X′ X. Note that U → U ′ is a thickening. Since φ : V ×Y X →
U ′ ×X′ X = U is an isomorphism we have a morphism U → V over X → Y
which identifies U with the fibre product X ×Y V . In particular U → V is affine,
see Morphisms of Spaces, Lemma 20.5. Hence we can apply Lemma 6.2 to get a
pushout V ′ = V ⨿U U ′. Denote V ′ → Y ′ the morphism we obtain in virtue of the
fact that V ′ is a pushout and because we are given morphisms V → Y and U ′ → X ′

agreeing on U as morphisms into Y ′. Setting G(V,U ′, φ) = V ′ gives the functor G.

If (V,U ′, φ) is an object of (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) then U = U ′ ×X′ X is a
scheme too and we can form the pushout V ′ = V ⨿U U ′ in the category of schemes
by More on Morphisms, Lemma 14.3. By Lemma 6.1 this is also a pushout in the
category of schemes, hence G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Let us prove that G is a left adjoint to F . Let Z be an algebraic space over Y ′. We
have to show that

Mor(V ′, Z) = Mor((V,U ′, φ), F (Z))

where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, φ) → F (Z) is an element of the right hand side. We may consider
the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z,
resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the
universal property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element
of the left hand side. We omit the verification that these constructions are mutually
inverse. □

https://stacks.math.columbia.edu/tag/07VY
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Lemma 6.4.07VZ Let S be a scheme. Let

A //

��

C

��

// E

��
B // D // F

be a commutative diagram of algebraic spaces over S. Assume that A,B,C,D
and A,B,E, F form cartesian squares and that B → D is surjective étale. Then
C,D,E, F is a cartesian square.

Proof. This is formal. □

Lemma 6.5.07W0 In the situation of Lemma 6.3 the functor F ◦ G is isomorphic to
the identity functor.

Proof. We will prove that F ◦G is isomorphic to the identity by reducing this to
the corresponding statement of More on Morphisms, Lemma 14.4.
Choose a scheme Y1 and a surjective étale morphism Y1 → Y . Set X1 = Y1 ×Y X.
This is a scheme affine over Y1 with a surjective étale morphism X1 → X. By More
on Morphisms of Spaces, Lemma 9.6 there exists a X ′

1 → X ′ surjective étale with
X1 = X ′

1 ×X′ X. In particular the morphism of schemes X1 → X ′
1 is a thickening

too. Apply More on Morphisms, Lemma 14.3 to obtain a pushout Y ′
1 = Y1 ⨿X1 X

′
1

in the category of schemes. In the proof of Lemma 6.2 we constructed Y ′ as a
quotient of an étale equivalence relation on Y ′

1 such that we get a commutative
diagram

(6.5.1)07W1

X //

��

X ′

��

X1 //

��

>>

X ′
1

��

>>

Y // Y ′

Y1 //

>>

Y ′
1

>>

where all squares except the front and back squares are cartesian (the front and
back squares are pushouts) and the northeast arrows are surjective étale. Denote
F1, G1 the functors constructed in More on Morphisms, Lemma 14.4 for the front
square. Then the diagram of categories

(Sch/Y ′
1)

F1

//

��

(Sch/Y1)×(Sch/Y ′
1 ) (Sch/X ′

1)

��

G1oo

(Spaces/Y ′)
F
// (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

Goo

is commutative by simple considerations regarding base change functors and the
agreement of pushouts in schemes with pushouts in spaces of Lemma 6.1.

https://stacks.math.columbia.edu/tag/07VZ
https://stacks.math.columbia.edu/tag/07W0
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Let (V,U ′, φ) be an object of (Spaces/Y ) ×(Spaces/Y ′) (Spaces/X ′). Denote U =
U ′ ×X′ X so that G(V,U ′, φ) = V ⨿U U ′. Choose a scheme V1 and a surjective
étale morphism V1 → Y1 ×Y V . Set U1 = V1 ×Y X. Then
U1 = V1 ×Y X −→ (Y1 ×Y V )×Y X = X1 ×Y V = X1 ×X X ×Y V = X1 ×X U

is surjective étale too. By More on Morphisms of Spaces, Lemma 9.6 there exists
a thickening U1 → U ′

1 and a surjective étale morphism U ′
1 → X ′

1 ×X′ U ′ whose
base change to X1 ×X U is the displayed morphism. At this point (V1, U

′
1, φ1)

is an object of (Sch/Y1) ×(Sch/Y ′
1 ) (Sch/X ′

1). In the proof of Lemma 6.2 we con-
structed G(V,U ′, φ) = V ⨿U U ′ as a quotient of an étale equivalence relation on
G1(V1, U

′
1, φ1) = V1 ⨿U1 U

′
1 such that we get a commutative diagram

(6.5.2)07W2

U //

��

U ′

��

U1 //

��

??

U ′
1

��

66

V // G(V,U ′, φ)

V1 //

??

G1(V1, U
′
1, φ1)

77

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. In particular

G1(V1, U
′
1, φ1)→ G(V,U ′, φ)

is surjective étale.
Finally, we come to the proof of the lemma. We have to show that the adjunction
mapping (V,U ′, φ) → F (G(V,U ′, φ)) is an isomorphism. We know (V1, U

′
1, φ1) →

F1(G1(V1, U
′
1, φ1)) is an isomorphism by More on Morphisms, Lemma 14.4. Recall

that F and F1 are given by base change. Using the properties of (6.5.2) and
Lemma 6.4 we see that V → G(V,U ′, φ) ×Y ′ Y and U ′ → G(V,U ′, φ) ×Y ′ X ′ are
isomorphisms, i.e., (V,U ′, φ)→ F (G(V,U ′, φ)) is an isomorphism. □

Lemma 6.6.08KV Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S.
Let Y ′ = Y ⨿X X ′ be the pushout (see Lemma 6.2). Let V ′ → Y ′ be a morphism of
algebraic spaces over S. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and U = X ×Y ′ V ′.
There is an equivalence of categories between

(1) quasi-coherent OV ′-modules flat over Y ′, and
(2) the category of triples (G,F ′, φ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′-module flat over X, and
(c) φ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, φ). Then

(a) G′ is a finite type OV ′-module if and only if G and F ′ are finite type OY
and OU ′-modules.

https://stacks.math.columbia.edu/tag/08KV
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(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of
finite presentation if and only if G and F ′ are OY and OU ′-modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, φ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines étale over V ′ and Y ′ we
recover the equivalence of More on Algebra, Lemma 7.5. Details omitted.

Parts (a) and (b) reduce by étale localization (Properties of Spaces, Section 30) to
the case where V ′ and Y ′ are affine in which case the result follows from More on
Algebra, Lemmas 7.4 and 7.6. □

Lemma 6.7.07W3 In the situation of Lemma 6.5. If V ′ = G(V,U ′, φ) for some triple
(V,U ′, φ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′))→W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of spaces flat over Y ′ and the category of triples (V,U ′, φ) with V → Y and U ′ → X ′

flat.

Proof. Choose a diagram (6.5.1) as in the proof of Lemma 6.5.

Proof of (1) – (5). Let (V,U ′, φ) be an object of (Spaces/Y )×(Spaces/Y ′)(Spaces/X ′).
Construct a diagram (6.5.2) as in the proof of Lemma 6.5. Then the base change of
G(V,U ′, φ)→ Y ′ to Y ′

1 is G1(V1, U
′
1, φ1)→ Y ′

1 . Hence (1) – (5) follow immediately
from the corresponding statements of More on Morphisms, Lemma 14.6 for schemes.

Suppose that W ′ → Y ′ is flat. Choose a scheme W ′
1 and a surjective étale morphism

W ′
1 → Y ′

1 ×Y ′ W ′. Observe that W ′
1 → W ′ is surjective étale as a composition of

surjective étale morphisms. We know that G1(F1(W ′
1)) → W ′

1 is an isomorphism
by More on Morphisms, Lemma 14.6 applied to W ′

1 over Y ′
1 and the front of the

diagram (with functors G1 and F1 as in the proof of Lemma 6.5). Then the con-
struction of G(F (W ′)) (as a pushout, i.e., as constructed in Lemma 6.2) shows
that G1(F1(W ′

1)) → G(F (W )) is surjective étale. Whereupon we conclude that
G(F (W )) → W is étale, see for example Properties of Spaces, Lemma 16.3. But
G(F (W )) → W is an isomorphism on underlying reduced algebraic spaces (by
construction), hence it is an isomorphism. □

7. Pushouts along closed immersions and integral morphisms

0GG2 This section is analogue of More on Morphisms, Section 67.

https://stacks.math.columbia.edu/tag/07W3
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Lemma 7.1.0EDP In More on Morphisms, Situation 67.1 let Y ⨿Z X be the pushout
in the category of schemes (More on Morphisms, Proposition 67.3). Then Y ⨿Z X
is also a pushout in the category of algebraic spaces over S.

Proof. This is a consequence of Lemma 3.1, the proposition mentioned in the
lemma and More on Morphisms, Lemmas 67.6 and 67.7. Conditions (1) and (2) of
Lemma 3.1 follow immediately. To see (3) and (4) note that an étale morphism is
locally quasi-finite and use that the equivalence of categories of More on Morphisms,
Lemma 67.7 is constructed using the pushout construction of More on Morphisms,
Lemmas 67.6. Minor details omitted. □

8. Pushouts and derived categories

0DL6 In this section we discuss the behaviour of the derived category of modules under
pushouts.

Lemma 8.1.0DL7 Let S be a scheme. Consider a pushout

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

in the category of algebraic spaces over S as in Lemma 6.2. Assume i is a thickening.
Then the essential image of the functor3

D(OY ′) −→ D(OY )×D(OX ) D(OX′)

contains every triple (M,K ′, α) where M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-
coherent.

Proof. Let (M,K ′, α) be an object of the target of the functor of the lemma.
Here α : Lf∗M → Li∗K ′ is an isomorphism which is adjoint to a map β : M →
Rf∗Li

∗K ′. Thus we obtain maps

Rj∗M
Rj∗β−−−→ Rj∗Rf∗Li

∗K ′ = Rf ′
∗Ri∗Li

∗K ′ ← Rf ′
∗K

′

where the arrow pointing left comes from K ′ → Ri∗Li
∗K ′. Choose a distinguished

triangle
M ′ → Rj∗M ⊕Rf ′

∗K
′ → Rj∗Rf∗Li

∗K ′ →M ′[1]
in D(OY ′). The first arrow defines canonical maps Lj∗M ′ → M and L(f ′)∗M ′ →
K ′ compatible with α. Thus it suffices to show that the maps Lj∗M ′ → M and
L(f ′)∗M ′ → K are isomorphisms. This we may check étale locally on Y ′, hence we
may assume Y ′ is étale.

Assume Y ′ affine and M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-coherent. Say our
pushout corresponds to the fibre product

B B′oo

A

OO

A′oo

OO

3All functors given by derived pullback.

https://stacks.math.columbia.edu/tag/0EDP
https://stacks.math.columbia.edu/tag/0DL7
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of rings where B′ → B is surjective with locally nilpotent kernel I (and hence
A′ → A is surjective with locally nilpotent kernel I as well). The assumption on M
and K ′ imply that M comes from a pseudo-coherent object of D(A) and K ′ comes
from a pseudo-coherent object of D(B′), see Derived Categories of Spaces, Lemmas
13.6, 4.2, and 13.2 and Derived Categories of Schemes, Lemma 3.5 and 10.2. More-
over, pushforward and derived pullback agree with the corresponding operations
on derived categories of modules, see Derived Categories of Spaces, Remark 6.3
and Derived Categories of Schemes, Lemmas 3.7 and 3.8. This reduces us to the
statement formulated in the next paragraph. (To be sure these references show the
object M ′ lies DQCoh(OY ′) as this is a triangulated subcategory of D(OY ′).)

Given a diagram of rings as above and a triple (M,K ′, α) where M ∈ D(A),
K ′ ∈ D(B′) are pseudo-coherent and α : M ⊗L

A B → K ′ ⊗L
B′ B is an isomorphism

suppose we have distinguished triangle

M ′ →M ⊕K ′ → K ′ ⊗L
B′ B →M ′[1]

in D(A′). Goal: show that the induced maps M ′⊗L
A′ A→M and M ′⊗L

A′ B′ → K ′

are isomorphisms. To do this, choose a bounded above complex E• of finite free
A-modules representing M . Since (B′, I) is a henselian pair (More on Algebra,
Lemma 11.2) with B = B′/I we may apply More on Algebra, Lemma 75.8 to see
that there exists a bounded above complex P • of free B′-modules such that α is
represented by an isomorphism E• ⊗A B ∼= P • ⊗B′ B. Then we can consider the
short exact sequence

0→ L• → E• ⊕ P • → P • ⊗B′ B → 0

of complexes of B′-modules. More on Algebra, Lemma 6.9 implies L• is a bounded
above complex of finite projective A′-modules (in fact it is rather easy to show
directly that Ln is finite free in our case) and that we have L• ⊗A′ A = E• and
L• ⊗A′ B′ = P •. The short exact sequence gives a distinguished triangle

L• →M ⊕K ′ → K ′ ⊗L
B′ B → (L•)[1]

in D(A′) (Derived Categories, Section 12) which is isomorphic to the given dis-
tinguished triangle by general properties of triangulated categories (Derived Cat-
egories, Section 4). In other words, L• represents M ′ compatibly with the given
maps. Thus the maps M ′ ⊗L

A′ A → M and M ′ ⊗L
A′ B′ → K ′ are isomorphisms

because we just saw that the corresponding thing is true for L•. □

9. Constructing elementary distinguished squares

0DVH Elementary distinguished squares were defined in Derived Categories of Spaces,
Section 9.

Lemma 9.1.0DVI Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square. Then

U ×W V //

��

V

f

��
U // W

is a pushout in the category of algebraic spaces over S.

https://stacks.math.columbia.edu/tag/0DVI
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Proof. Observe that U⨿V →W is a surjective étale morphism. The fibre product
(U ⨿ V )×W (U ⨿ V )

is the disjoint union of four pieces, namely U = U ×W U , U ×W V , V ×W U , and
V ×W V . There is a surjective étale morphism

V ⨿ (U ×W V )×U (U ×W V ) −→ V ×W V

because f induces an isomorphism over W \ U (part of the definition of being
an elementary distinguished square). Let B be an algebraic space over S and let
g : V → B and h : U → B be morphisms over S which agree after restricting to
U ×W V . Then the description of (U ⨿ V ) ×W (U ⨿ V ) given above shows that
h ⨿ g : U ⨿ V → B equalizes the two projections. Since B is a sheaf for the étale
topology we obtain a unique factorization of h⨿ g through W as desired. □

Lemma 9.2.0DVJ Let S be a scheme. Let V , U be algebraic spaces over S. Let V ′ ⊂ V
be an open subspace and let f ′ : V ′ → U be a separated étale morphism of algebraic
spaces over S. Then there exists a pushout

V ′ //

��

V

f

��
U // W

in the category of algebraic spaces over S and moreover (U ⊂W, f : V →W ) is an
elementary distinguished square.

Proof. We are going to construct W as the quotient of an étale equivalence relation
R on U ⨿ V . Such a quotient is an algebraic space for example by Bootstrap,
Theorem 10.1. Moreover, the proof of Lemma 9.1 tells us to take

R = U ⨿ V ′ ⨿ V ′ ⨿ V ⨿ (V ′ ×U V ′ \∆V ′/U (V ′))
Since we assumed V ′ → U is separated, the image of ∆V ′/U is closed and hence
the complement is an open subspace. The morphism j : R→ (U ⨿ V )×S (U ⨿ V )
is given by

u, v′, v′, v, (v′
1, v

′
2) 7→ (u, u), (f ′(v′), v′), (v′, f ′(v′)), (v, v), (v′

1, v
′
2)

with obvious notation. It is immediately verified that this is a monomorphism, an
equivalence relation, and that the induced morphisms s, t : R → U ⨿ V are étale.
Let W = (U ⨿ V )/R be the quotient algebraic space. We obtain a commutative
diagram as in the statement of the lemma. To finish the proof it suffices to show
that this diagram is an elementary distinguished square, since then Lemma 9.1
implies that it is a pushout. Thus we have to show that U → W is open and that
f is étale and is an isomorphism over W \U . This follows from the choice of R; we
omit the details. □

10. Formal glueing of quasi-coherent modules

0AEP This section is the analogue of More on Algebra, Section 89. In the case of mor-
phisms of schemes, the result can be found in the paper by Joyet [Joy96]; this is a
good place to start reading. For a discussion of applications to descent problems
for stacks, see the paper by Moret-Bailly [MB96]. In the case of an affine morphism
of schemes there is a statement in the appendix of the paper [FR70] but one needs

https://stacks.math.columbia.edu/tag/0DVJ


PUSHOUTS OF ALGEBRAIC SPACES 19

to add the hypothesis that the closed subscheme is cut out by a finitely generated
ideal (as in the paper by Joyet) since otherwise the result does not hold. A gener-
alization of this material to (higher) derived categories with potential applications
to nonflat situations can be found in [Bha16, Section 5].
We start with a lemma on abelian sheaves supported on closed subsets.

Lemma 10.1.0AEQ Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). We have

(Rf∗Q)x = Qy

in D(Ab) for any object Q of D(Yétale) supported on |f−1Z|.

Proof. Consider the commutative diagram of algebraic spaces

f−1Z
i′
//

f ′

��

Y

f

��
Z

i // X

By Cohomology of Spaces, Lemma 9.4 we can write Q = Ri′∗K
′ for some object

K ′ of D(f−1Zétale). By Morphisms of Spaces, Lemma 53.7 we have K ′ = (f ′)−1K
with K = Rf ′

∗K
′. Then we have Rf∗Q = Rf∗Ri

′
∗K

′ = Ri∗Rf
′
∗K

′ = Ri∗K. Let z
be the geometric point of Z corresponding to x and let z′ be the geometric point
of f−1Z corresponding to y. We obtain the result of the lemma as follows

Qy = (Ri′∗K ′)y = K ′
z′ = (f ′)−1Kz′ = Kz = Ri∗Kx = Rf∗Qx

The middle equality holds because of the description of the stalk of a pullback given
in Properties of Spaces, Lemma 19.9. □

Lemma 10.2.0AER Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). Let G be an
abelian sheaf on Y . Then the map of two term complexes

(f∗Gx → (f ◦ j′)∗(G|V )x) −→ (Gy → j′
∗(G|V )y)

induces an isomorphism on kernels and an injection on cokernels. Here V = Y \
f−1Z and j′ : V → Y is the inclusion.

Proof. Choose a distinguished triangle
G → Rj′

∗G|V → Q→ G[1]
n D(Yétale). The cohomology sheaves of Q are supported on |f−1Z|. We apply Rf∗
and we obtain

Rf∗G → Rf∗Rj
′
∗G|V → Rf∗Q→ Rf∗G[1]

Taking stalks at x we obtain an exact sequence
0→ (R−1f∗Q)x → f∗Gx → (f ◦ j′)∗(G|V )x → (R0f∗Q)x

We can compare this with the exact sequence
0→ H−1(Q)y → Gy → j′

∗(G|V )y → H0(Q)y
Thus we see that the lemma follows because Qy = Rf∗Qx by Lemma 10.1. □

https://stacks.math.columbia.edu/tag/0AEQ
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Lemma 10.3.0AES Let S be a scheme. Let X be an algebraic space over S. Let
f : Y → X be a quasi-compact and quasi-separated morphism. Let x be a geometric
point of X and let Spec(OX,x) → X be the canonical morphism. For a quasi-
coherent module G on Y we have

f∗Gx = Γ(Y ×X Spec(OX,x), p∗F)
where p : Y ×X Spec(OX,x)→ Y is the projection.

Proof. Observe that f∗Gx = Γ(Spec(OX,x), h∗f∗G) where h : Spec(OX,x) → X.
Hence the result is true because h is flat so that Cohomology of Spaces, Lemma
11.2 applies. □

Lemma 10.4.0AET Let S be a scheme. Let X be an algebraic space over S. Let
i : Z → X be a closed immersion of finite presentation. Let Q ∈ DQCoh(OX) be
supported on |Z|. Let x be a geometric point of X and let Ix ⊂ OX,x be the stalk of
the ideal sheaf of Z. Then the cohomology modules Hn(Qx) are Ix-power torsion
(see More on Algebra, Definition 88.1).

Proof. Choose an affine scheme U and an étale morphism U → X such that x lifts
to a geometric point u of U . Then we can replace X by U , Z by U ×X Z, Q by the
restriction Q|U , and x by u. Thus we may assume that X = Spec(A) is affine. Let
I ⊂ A be the ideal defining Z. Since i : Z → X is of finite presentation, the ideal
I = (f1, . . . , fr) is finitely generated. The object Q comes from a complex of A-
modules M•, see Derived Categories of Spaces, Lemma 4.2 and Derived Categories
of Schemes, Lemma 3.5. Since the cohomology sheaves of Q are supported on Z
we see that the localization M•

f is acyclic for each f ∈ I. Take x ∈ Hp(M•). By
the above we can find ni such that fni

i x = 0 in Hp(M•) for each i. Then with
n =

∑
ni we see that In annihilates x. Thus Hp(M•) is I-power torsion. Since the

ring map A→ OX,x is flat and since Ix = IOX,x we conclude. □

Lemma 10.5.0AEU Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. Assume f−1Z → Z is an iso-
morphism and that f is flat in every point of f−1Z. For any Q in DQCoh(OY )
supported on |f−1Z| we have Lf∗Rf∗Q = Q.

Proof. We show the canonical map Lf∗Rf∗Q→ Q is an isomorphism by checking
on stalks at y. If y is not in f−1Z, then both sides are zero and the result is true.
Assume the image x of y is in Z. By Lemma 10.1 we have Rf∗Qx = Qy and since
f is flat at y we see that

(Lf∗Rf∗Q)y = (Rf∗Q)x ⊗OX,x
OY,y = Qy ⊗OX,x

OY,y
Thus we have to check that the canonical map

Qy ⊗OX,x
OY,y −→ Qy

is an isomorphism in the derived category. Let Ix ⊂ OX,x be the stalk of the
ideal sheaf defining Z. Since Z → X is locally of finite presentation this ideal is
finitely generated and the cohomology groups of Qy are Iy = IxOY,y-power torsion
by Lemma 10.4 applied to Q on Y . It follows that they are also Ix-power torsion.
The ring map OX,x → OY,y is flat and induces an isomorphism after dividing by Ix
and Iy because we assumed that f−1Z → Z is an isomorphism. Hence we see that
the cohomology modules of Qy⊗OX,x

OY,y are equal to the cohomology modules of
Qy by More on Algebra, Lemma 89.2 which finishes the proof. □

https://stacks.math.columbia.edu/tag/0AES
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Situation 10.6.0AEV Here S is a base scheme, f : Y → X is a quasi-compact and quasi-
separated morphism of algebraic spaces over S, and Z → X is a closed immersion
of finite presentation. We assume that f−1(Z)→ Z is an isomorphism and that f
is flat in every point x ∈ |f−1Z|. We set U = X \ Z and V = Y \ f−1(Z). Picture

V
j′
//

f |V

��

Y

f

��
U

j // X

In Situation 10.6 we define QCoh(Y → X,Z) as the category of triples (H,G, φ)
where H is a quasi-coherent sheaf of OU -modules, G is a quasi-coherent sheaf of
OY -modules, and φ : f∗H → G|V is an isomorphism of OV -modules. There is a
canonical functor
(10.6.1)0AEW QCoh(OX) −→ QCoh(Y → X,Z)
which maps F to the system (F|U , f∗F , can). By analogy with the proof given
in the affine case, we construct a functor in the opposite direction. To an object
(H,G, φ) we assign the OX -module
(10.6.2)0AEX Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )
Observe that j and j′ are quasi-compact morphisms as Z → X is of finite presen-
tation. Hence f∗, j∗, and (f ◦ j′)∗ transform quasi-coherent modules into quasi-
coherent modules (Morphisms of Spaces, Lemma 11.2). Thus the module (10.6.2)
is quasi-coherent.

Lemma 10.7.0AEY In Situation 10.6. The functor (10.6.2) is right adjoint to the
functor (10.6.1).

Proof. This follows easily from the adjointness of f∗ to f∗ and j∗ to j∗. Details
omitted. □

Lemma 10.8.0AEZ In Situation 10.6. Let X ′ → X be a flat morphism of algebraic
spaces. Set Z ′ = X ′ ×X Z and Y ′ = X ′ ×X Y . The pullbacks QCoh(OX) →
QCoh(OX′) and QCoh(Y → X,Z)→ QCoh(Y ′ → X ′, Z ′) are compatible with the
functors (10.6.2) and 10.6.1).

Proof. This is true because pullback commutes with pullback and because flat pull-
back commutes with pushforward along quasi-compact and quasi-separated mor-
phisms, see Cohomology of Spaces, Lemma 11.2. □

Proposition 10.9.0AF0 In Situation 10.6 the functor (10.6.1) is an equivalence with
quasi-inverse given by (10.6.2).

Proof. We first treat the special case where X and Y are affine schemes and
where the morphism f is flat. Say X = Spec(R) and Y = Spec(S). Then f
corresponds to a flat ring map R → S. Moreover, Z ⊂ X is cut out by a finitely
generated ideal I ⊂ R. Choose generators f1, . . . , ft ∈ I. By the description of
quasi-coherent modules in terms of modules (Schemes, Section 7), we see that the
category QCoh(Y → X,Z) is canonically equivalent to the category Glue(R →
S, f1, . . . , ft) of More on Algebra, Remark 89.10 such that the functors (10.6.1) and
(10.6.2) correspond to the functors Can and H0. Hence the result follows from
More on Algebra, Proposition 89.15 in this case.

https://stacks.math.columbia.edu/tag/0AEV
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We return to the general case. Let F be a quasi-coherent module on X. We will
show that

α : F −→ Ker (j∗F|U ⊕ f∗f
∗F → (f ◦ j′)∗f

∗F|V )
is an isomorphism. Let (H,G, φ) be an object of QCoh(Y → X,Z). We will show
that

β : f∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ G
and

γ : j∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ H
are isomorphisms. To see these statements are true it suffices to look at stalks. Let
y be a geometric point of Y mapping to the geometric point x of X.
Fix an object (H,G, φ) of QCoh(Y → X,Z). By Lemma 10.2 and a diagram chase
(omitted) the canonical map

Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )x −→ Ker(j∗Hx ⊕ Gy → j′
∗Gy)

is an isomorphism.
In particular, if y is a geometric point of V , then we see that j′

∗Gy = Gy and
hence that this kernel is equal to Hx. This easily implies that αx, βx, and βy are
isomorphisms in this case.
Next, assume that y is a point of f−1Z. Let Ix ⊂ OX,x, resp. Iy ⊂ OY,y be
the stalk of the ideal cutting out Z, resp. f−1Z. Then Ix is a finitely generated
ideal, Iy = IxOY,y, and OX,x → OY,y is a flat local homomorphism inducing an
isomorphism OX,x/Ix = OY,y/Iy. At this point we can bootstrap using the diagram
of categories

QCoh(OX)
(10.6.1)

//

��

QCoh(Y → X,Z)

��

(10.6.2)
yy

ModOX,x

Can // Glue(OX,x → OY,y, f1, . . . , ft)

H0
ee

Namely, as in the first paragraph of the proof we identify
Glue(OX,x → OY,y, f1, . . . , ft) = QCoh(Spec(OY,y)→ Spec(OX,x), V (Ix))

The right vertical functor is given by pullback, and it is clear that the inner square
is commutative. Our computation of the stalk of the kernel in the third paragraph
of the proof combined with Lemma 10.3 implies that the outer square (using the
curved arrows) commutes. Thus we conclude using the case of a flat morphism of
affine schemes which we handled in the first paragraph of the proof. □

Lemma 10.10.0AFJ In Situation 10.6 the functor Rf∗ induces an equivalence between
DQCoh,|f−1Z|(OY ) and DQCoh,|Z|(OX) with quasi-inverse given by Lf∗.

Proof. Since f is quasi-compact and quasi-separated we see that Rf∗ defines
a functor from DQCoh,|f−1Z|(OY ) to DQCoh,|Z|(OX), see Derived Categories of
Spaces, Lemma 6.1. By Derived Categories of Spaces, Lemma 5.5 we see that
Lf∗ maps DQCoh,|Z|(OX) into DQCoh,|f−1Z|(OY ). In Lemma 10.5 we have seen
that Lf∗Rf∗Q = Q for Q in DQCoh,|f−1Z|(OY ). By the dual of Derived Categories,

https://stacks.math.columbia.edu/tag/0AFJ
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Lemma 7.2 to finish the proof it suffices to show that Lf∗K = 0 implies K = 0 for
K in DQCoh,|Z|(OX). This follows from the fact that f is flat at all points of f−1Z

and the fact that f−1Z → Z is surjective. □

Lemma 10.11.0AF1 In Situation 10.6 there exists an fpqc covering {Xi → X}i∈I
refining the family {U → X,Y → X}.

Proof. For the definition and general properties of fpqc coverings we refer to
Topologies, Section 9. In particular, we can first choose an étale covering {Xi → X}
with Xi affine and by base changing Y , Z, and U to each Xi we reduce to the
case where X is affine. In this case U is quasi-compact and hence a finite union
U = U1 ∪ . . . ∪ Un of affine opens. Then Z is quasi-compact hence also f−1Z is
quasi-compact. Thus we can choose an affine scheme W and an étale morphism
h : W → Y such that h−1f−1Z → f−1Z is surjective. Say W = Spec(B) and
h−1f−1Z = V (J) where J ⊂ B is an ideal of finite type. By Pro-étale Cohomol-
ogy, Lemma 5.1 there exists a localization B → B′ such that points of Spec(B′)
correspond exactly to points of W = Spec(B) specializing to h−1f−1Z = V (J).
It follows that the composition Spec(B′) → Spec(B) = W → Y → X is flat as
by assumption f : Y → X is flat at all the points of f−1Z. Then {Spec(B′) →
X,U1 → X, . . . , Un → X} is an fpqc covering by Topologies, Lemma 9.2. □

11. Formal glueing of algebraic spaces

0AF2 In Situation 10.6 we consider the category Spaces(Y → X,Z) of commutative dia-
grams of algebraic spaces over S of the form

U ′

��

V ′oo

��

// Y ′

��
U Voo // Y

where both squares are cartesian. There is a canonical functor
(11.0.1)0AF3 Spaces/X −→ Spaces(Y → X,Z)
which maps X ′ → X to the morphisms U ×X X ′ ← V ×X X ′ → Y ×X X ′.

Lemma 11.1.0AF4 In Situation 10.6 the functor (11.0.1) restricts to an equivalence
(1) from the category of algebraic spaces affine over X to the full subcategory

of Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y affine,

(2) from the category of closed immersions X ′ → X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y closed immersions, and

(3) same statement as in (2) for finite morphisms.

Proof. The category of algebraic spaces affine over X is equivalent to the category
of quasi-coherent sheaves A of OX -algebras. The full subcategory of Spaces(Y →
X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and Y ′ → Y affine is
equivalent to the category of algebra objects of QCoh(Y → X,Z). In both cases
this follows from Morphisms of Spaces, Lemma 20.7 with quasi-inverse given by
the relative spectrum construction (Morphisms of Spaces, Definition 20.8) which
commutes with arbitrary base change. Thus part (1) of the lemma follows from
Proposition 10.9.
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Fully faithfulness in part (2) follows from part (1). For essential surjectivity, we
reduce by part (1) to proving that X ′ → X is a closed immersion if and only if
both U ×X X ′ → U and Y ×X X ′ → Y are closed immersions. By Lemma 10.11
{U → X,Y → X} can be refined by an fpqc covering. Hence the result follows
from Descent on Spaces, Lemma 11.17.

For (3) use the argument proving (2) and Descent on Spaces, Lemma 11.23. □

Lemma 11.2.0AF5 In Situation 10.6 the functor (11.0.1) reflects isomorphisms.

Proof. By a formal argument with base change, this reduces to the following ques-
tion: A morphism a : X ′ → X of algebraic spaces such that U ×X X ′ → U and
Y ×XX ′ → Y are isomorphisms, is an isomorphism. The family {U → X,Y → X}
can be refined by an fpqc covering by Lemma 10.11. Hence the result follows from
Descent on Spaces, Lemma 11.15. □

Lemma 11.3.0AF6 In Situation 10.6 the functor (11.0.1) is fully faithful on algebraic
spaces separated over X. More precisely, it induces a bijection

MorX(X ′
1, X

′
2) −→ MorSpaces(Y→X,Z)(F (X ′

1), F (X ′
2))

whenever X ′
2 → X is separated.

Proof. Since X ′
2 → X is separated, the graph i : X ′

1 → X ′
1 ×X X ′

2 of a morphism
X ′

1 → X ′
2 over X is a closed immersion, see Morphisms of Spaces, Lemma 4.6.

Moreover a closed immersion i : T → X ′
1 ×X X ′

2 is the graph of a morphism if and
only if pr1 ◦ i is an isomorphism. The same is true for

(1) the graph of a morphism U ×X X ′
1 → U ×X X ′

2 over U ,
(2) the graph of a morphism V ×X X ′

1 → V ×X X ′
2 over V , and

(3) the graph of a morphism Y ×X X ′
1 → Y ×X X ′

2 over Y .
Moreover, if morphisms as in (1), (2), (3) fit together to form a morphism in
the category Spaces(Y → X,Z), then these graphs fit together to give an object
of Spaces(Y ×X (X ′

1 ×X X ′
2) → X ′

1 ×X X ′
2, Z ×X (X ′

1 ×X X ′
2)) whose triple of

morphisms are closed immersions. The proof is finished by applying Lemmas 11.1
and 11.2. □

12. Glueing and the Beauville-Laszlo theorem

0F9M Let R→ R′ be a ring homomorphism and let f ∈ R be an element such that

0→ R→ Rf ⊕R′ → R′
f → 0

is a short exact sequence. This implies that R/fnR ∼= R′/fnR′ for all n and
(R → R′, f) is a glueing pair in the sense of More on Algebra, Section 90. Set
X = Spec(R), U = Spec(Rf ), X ′ = Spec(R′) and U ′ = Spec(R′

f ). Picture

U ′ //

��

X ′

��
U // X
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In this situation we can consider the category Spaces(U ← U ′ → X ′) whose objects
are commutative diagrams

V

��

V ′oo

��

// Y ′

��
U U ′oo // X ′

of algebraic spaces with both squares cartesian and whose morphism are defined
in the obvious manner. An object of this category will be denoted (V, V ′, Y ′) with
arrows surpressed from the notation. There is a functor
(12.0.1)0F9N Spaces/X −→ Spaces(U ← U ′ → X ′)
given by base change: Y 7→ (U ×X Y, U ′ ×X Y,X ′ ×X Y ).
We have seen in More on Algebra, Section 90 that not every R-module M can be
recovered from its gluing data. Similarly, the functor (12.0.1) won’t be fully faithful
on the category of all spaces over X. In order to single out a suitable subcategory
of algebraic spaces over X we need a lemma.

Lemma 12.1.0F9P Let (R→ R′, f) be a glueing pair, see above. Let Y be an algebraic
space over X. The following are equivalent

(1) there exists an étale covering {Yi → Y }i∈I with Yi affine and Γ(Yi,OYi
)

glueable as an R-module,
(2) for every étale morphism W → Y with W affine Γ(W,OW ) is a glueable

R-module.

Proof. It is immediate that (2) implies (1). Assume {Yi → Y } is as in (1) and
let W → Y be as in (2). Then {Yi ×Y W → W}i∈I is an étale covering, which
we may refine by an étale covering {Wj →W}j=1,...,m with Wj affine (Topologies,
Lemma 4.4). Thus to finish the proof it suffices to show the following three algebraic
statements:

(1) if R → A → B are ring maps with A → B étale and A glueable as an
R-module, then B is glueable as an R-module,

(2) finite products of glueable R-modules are glueable,
(3) if R → A → B are ring maps with A → B faithfully étale and B glueable

as an R-module, then A is glueable as an R-module.
Namely, the first of these will imply that Γ(Wj ,OWj

) is a glueable R-module, the
second will imply that

∏
Γ(Wj ,OWj

) is a glueable R-module, and the third will
imply that Γ(W,OW ) is a glueable R-module.
Consider an étale R-algebra homomorphism A → B. Set A′ = A ⊗R R′ and
B′ = B ⊗R R′ = A′ ⊗A B. Statements (1) and (3) then follow from the following
facts: (a) A, resp. B is glueable if and only if the sequence

0→ A→ Af ⊕A′ → A′
f → 0, resp. 0→ B → Bf ⊕B′ → B′

f → 0,

is exact, (b) the second sequence is equal to the functor −⊗AB applied to the first
and (c) (faithful) flatness of A→ B. We omit the proof of (2). □

Let (R→ R′, f) be a glueing pair, see above. We will say an algebraic space Y over
X = Spec(R) is glueable for (R→ R′, f) if the equivalent conditions of Lemma 12.1
are satisfied.
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Lemma 12.2.0F9Q Let (R→ R′, f) be a glueing pair, see above. The functor (12.0.1)
restricts to an equivalence between the category of affine Y/X which are glueable for
(R→ R′, f) and the full subcategory of objects (V, V ′, Y ′) of Spaces(U ← U ′ → X ′)
with V , V ′, Y ′ affine.

Proof. Let (V, V ′, Y ′) be an object of Spaces(U ← U ′ → X ′) with V , V ′, Y ′

affine. Write V = Spec(A1) and Y ′ = Spec(A′). By our definition of the category
Spaces(U ← U ′ → X ′) we find that V ′ is the spectrum of A1 ⊗Rf

R′
f = A1 ⊗R R′

and the spectrum of A′
f . Hence we get an isomorphism φ : A′

f → A1 ⊗R R′ of
R′
f -algebras. By More on Algebra, Theorem 90.17 there exists a unique glueable

R-module A and isomorphisms Af → A1 and A⊗RR′ → A′ of modules compatible
with φ. Since the sequence

0→ A→ A1 ⊕A′ → A′
f → 0

is short exact, the multiplications on A1 and A′ define a unique R-algebra structure
on A such that the maps A→ A1 and A→ A′ are ring homomorphisms. We omit
the verification that this construction defines a quasi-inverse to the functor (12.0.1)
restricted to the subcategories mentioned in the statement of the lemma. □

Lemma 12.3.0F9R Let P be one of the following properties of morphisms: “finite”,
“closed immersion”, “flat”, “finite type”, “flat and finite presentation”, “étale”. Un-
der the equivalence of Lemma 12.2 the morphisms having P correspond to mor-
phisms of triples whose components have P .

Proof. Let P ′ be one of the following properties of homomorphisms of rings: “fi-
nite”, “surjective”, “flat”, “finite type”, “flat and of finite presentation”, “étale”.
Translated into algebra, the statement means the following: If A → B is an R-
algebra homomorphism and A and B are glueable for (R→ R′, f), then Af → Bf
and A⊗R R′ → B ⊗R R′ have P ′ if and only if A→ B has P ′.

By More on Algebra, Lemmas 90.5 and 90.19 the algebraic statement is true for P ′

equal to “finite” or “flat”.

If Af → Bf and A⊗RR′ → B⊗RR′ are surjective, then N = B/A is an R-module
with Nf = 0 and N ⊗R R′ = 0 and hence vanishes by More on Algebra, Lemma
90.3. Thus A→ B is surjective.

If Af → Bf and A ⊗R R′ → B ⊗R R′ are finite type, then we can choose an
A-algebra homomorphism A[x1, . . . , xn] → B such that Af [x1, . . . , xn] → Bf and
(A⊗RR′)[x1, . . . , xn]→ B⊗RR′ are surjective (small detail omitted). We conclude
that A[x1, . . . , xn]→ B is surjective by the previous result. Thus A→ B is of finite
type.

If Af → Bf and A ⊗R R′ → B ⊗R R′ are flat and of finite presentation, then we
know that A→ B is flat and of finite type by what we have already shown. Choose
a surjection A[x1, . . . , xn] → B and denote I the kernel. By flatness of B over A
we see that If is the kernel of Af [x1, . . . , xn] → Bf and I ⊗R R′ is the kernel of
A ⊗R R′[x1, . . . , xn] → B ⊗R R′. Thus If is a finite Af [x1, . . . , xn]-module and
I⊗RR′ is a finite (A⊗RR′)[x1, . . . , xn]-module. By More on Algebra, Lemma 90.5
applied to I viewed as a module over A[x1, . . . , xn] we conclude that I is a finitely
generated ideal and we conclude A→ B is flat and of finite presentation.

https://stacks.math.columbia.edu/tag/0F9Q
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If Af → Bf and A ⊗R R′ → B ⊗R R′ are étale, then we know that A → B
is flat and of finite presentation by what we have already shown. Since the fi-
bres of Spec(B) → Spec(A) are isomorphic to fibres of Spec(Bf ) → Spec(Af ) or
Spec(B/fB) → Spec(A/fA), we conclude that A → B is unramified, see Mor-
phisms, Lemmas 35.11 and 35.12. We conclude that A→ B is étale by Morphisms,
Lemma 36.16 for example. □

Lemma 12.4.0F9S Let (R→ R′, f) be a glueing pair, see above. The functor (12.0.1)
is faithful on the full subcategory of algebraic spaces Y/X glueable for (R→ R′, f).
Proof. Let f, g : Y → Z be two morphisms of algebraic spaces over X with Y and
Z glueable for (R → R′, f) such that f and g are mapped to the same morphism
in the category Spaces(U ← U ′ → X ′). We have to show the equalizer E → Y of
f and g is an isomorphism. Working étale locally on Y we may assume Y is an
affine scheme. Then E is a scheme and the morphism E → Y is a monomorphism
and locally quasi-finite, see Morphisms of Spaces, Lemma 4.1. Moreover, the base
change of E → Y to U and to X ′ is an isomorphism. As Y is the disjoint union of
the affine open V = U ×X Y and the affine closed V (f)×X Y , we conclude E is the
disjoint union of their isomorphic inverse images. It follows in particular that E is
quasi-compact. By Zariski’s main theorem (More on Morphisms, Lemma 43.3) we
conclude that E is quasi-affine. Set B = Γ(E,OE) and A = Γ(Y,OY ) so that we
have an R-algebra homomorphism A→ B. Since E → Y becomes an isomorphism
after base change to U and X ′ we obtain ring maps B → Af and B → A ⊗R R′

agreeing as maps into A ⊗R R′
f . Since A is glueable for (R → R′, f) we get a

ring map B → A which is left inverse to the map A → B. The corresponding
morphism Y = Spec(A) → Spec(B) maps into the open subscheme E ⊂ Spec(B)
pointwise because this is true after base change to U and X ′. Hence we get a
morphism Y → E over Y . Since E → Y is a monomorhism we conclude Y → E is
an isomorphism as desired. □

Lemma 12.5.0F9T Let (R→ R′, f) be a glueing pair, see above. The functor (12.0.1)
is fully faithful on the full subcategory of algebraic spaces Y/X which are (a) glueable
for (R→ R′, f) and (b) have affine diagonal Y → Y ×X Y .
Proof. Let Y,Z be two algebraic spaces over X which are both glueable for (R→
R′, f) and assume the diagonal of Z is affine. Let a : U ×X Y → U ×X Z over U
and b : X ′ ×X Y → X ′ ×X Z over X ′ be two morphisms of algebraic spaces which
induce the same morphism c : U ′ ×X Y → U ′ ×X Z over U ′. We want to construct
a morphism f : Y → Z over X which produces the morphisms a, b on base change
to U , X ′. By the faithfulness of Lemma 12.4, it suffices to construct the morphism
f étale locally on Y (details omitted). Thus we may and do assume Y is affine.
Let y ∈ |Y | be a point. If y maps into the open U ⊂ X, then U ×X Y is an open of
Y on which the morphism f is defined (we can just take a). Thus we may assume
y maps into the closed subset V (f) of X. Since R/fR = R′/fR′ there is a unique
point y′ ∈ |X ′ ×X Y | mapping to y. Denote z′ = b(y′) ∈ |X ′ ×X Z| and z ∈ |Z|
the images of y′. Choose an étale neighbourhood (W,w) → (Z, z) with W affine.
Observe that

(U ×X W )×U×XZ,a (U ×X Y ), (U ′ ×X W )×U ′×XZ,c (U ′ ×X Y ),
and

(X ′ ×X W )×X′×XZ,b (X ′ ×X Y )

https://stacks.math.columbia.edu/tag/0F9S
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form an object of Spaces(U ← U ′ → X ′) with affine parts (this is where we use that
Z has affine diagonal). Hence by Lemma 12.2 there exists a unique affine scheme
V glueable for (R→ R′, f) such that

(U ×X V,U ′ ×X V,X ′ ×X V )
is the triple displayed above. By fully faithfulness for the affine case (Lemma 12.2)
we get a unique morphisms V →W and V → Y agreeing with the first and second
projection morphisms over U and X ′ in the construction above. By Lemma 12.3
the morphism V → Y is étale. To finish the proof, it suffices to show that there is
a point v ∈ |V | mapping to y (because then f is defined on an étale neighbourhood
of y, namely V ). There is a unique point w′ ∈ |X ′ ×X W | mapping to w. By
uniqueness w′ is mapped to z′ under the map |X ′ ×X W | → |X ′ ×X Z|. Then we
consider the cartesian diagram

X ′ ×X V //

��

X ′ ×X W

��
X ′ ×X Y // X ′ ×X Z

to see that there is a point v′ ∈ |X ′ ×X V | mapping to y′ and w′, see Properties of
Spaces, Lemma 4.3. Of course the image v of v′ in |V | maps to y and the proof is
complete. □

Lemma 12.6.0F9U Let (R→ R′, f) be a glueing pair, see above. Any object (V, V ′, Y ′)
of Spaces(U ← U ′ → X ′) with V , V ′, Y ′ quasi-affine is isomorphic to the image
under the functor (12.0.1) of a separated algebraic space Y over X.

Proof. Choose n′, T ′ → Y ′ and n1, T1 → V as in Properties, Lemma 18.6. Picture

T1 ×V V ′ ×Y T ′

vv ((
T1

��

T1 ×V V ′oo

((

V ′ ×Y ′ T ′ //

vv

T ′

��
V V ′ //oo Y ′

Observe that T1×V V ′ and V ′×Y ′ T ′ are affine (namely the morphisms V ′ → V and
V ′ → Y ′ are affine as base changes of the affine morphisms U ′ → U and U ′ → X ′).
By construction we see that

An′

T1×V V ′ ∼= T1 ×V V ′ ×Y ′ T ′ ∼= An1
V ′×Y ′T ′

In other words, the affine schemes An′

T1
and An1

T ′ are part of a triple making an
affine object of Spaces(U ← U ′ → X ′). By Lemma 12.2 there exists a morphism
of affine schemes T → X and isomorphisms U ×X T ∼= An′

T1
and X ′ ×X T ∼= An1

T ′

compatible with the isomorphisms displayed above. These isomorphisms produce
morphisms

U ×X T −→ V and X ′ ×X T −→ Y ′

satisfying the property of Properties, Lemma 18.6 with n = n′ + n1 and moreover
define a morphism from the triple (U×XT,U ′×XT,X ′×XT ) to our triple (V, V ′, Y ′)
in the category Spaces(U ← U ′ → X ′).

https://stacks.math.columbia.edu/tag/0F9U
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By Lemma 12.2 there is an affine scheme W whose image in Spaces(U ← U ′ → X ′)
is isomorphic to the triple
((U ×X T )×V (U ×X T ), (U ′ ×X T )×V ′ (U ′ ×X T ), (X ′ ×X T )×Y ′ (X ′ ×X T ))

By fully faithfulness of this construction, we obtain two maps p0, p1 : W → T
whose base changes to U,U ′, X ′ are the projection morphisms. By Lemma 12.3 the
morphisms p0, p1 are flat and of finite presentation and the morphism (p0, p1) : W →
T ×X T is a closed immersion. In fact, W → T ×X T is an equivalence relation: by
the lemmas used above we may check symmetry, reflexivity, and transitivity after
base change to U and X ′, where these are obvious (details omitted). Thus the
quotient sheaf

Y = T/W

is an algebraic space for example by Bootstrap, Theorem 10.1. Since it is clear
that Y/X is sent to the triple (V, V ′, Y ′). The base change of the diagonal ∆ :
Y → Y ×X Y by the quasi-compact surjective flat morphism T ×X T → Y ×X Y
is the closed immersion W → T ×X T . Thus ∆ is a closed immersion by Descent
on Spaces, Lemma 11.17. Thus the algebraic space Y is separated and the proof is
complete. □

13. Coequalizers and glueing

0AGF Let X be a Noetherian algebraic space and Z → X a closed subspace. Let X ′ → X
be the blowing up in Z. In this section we show that X can be recovered from X ′,
Zn and glueing data where Zn is the nth infinitesimal neighbourhood of Z in X.

Lemma 13.1.0AGG Let S be a scheme. Let
g : Y −→ X

be a morphism of algebraic spaces over S. Assume X is locally Noetherian, and g
is proper. Let R = Y ×X Y with projection morphisms t, s : R→ Y . There exists a
coequalizer X ′ of s, t : R→ Y in the category of algebraic spaces over S. Moreover

(1) The morphism X ′ → X is finite.
(2) The morphism Y → X ′ is proper.
(3) The morphism Y → X ′ is surjective.
(4) The morphism X ′ → X is universally injective.
(5) If g is surjective, the morphism X ′ → X is a universal homeomorphism.

Proof. Denote h : R→ X denote the composition of either s or t with g. Then h
is proper by Morphisms of Spaces, Lemmas 40.3 and 40.4. The sheaves

g∗OY and h∗OR
are coherentOX -algebras by Cohomology of Spaces, Lemma 20.2. TheX-morphisms
s, t induce OX -algebra maps s♯, t♯ from the first to the second. Set

A = Equalizer
(
s♯, t♯ : g∗OY −→ h∗OR

)
Then A is a coherent OX -algebra and we can define

X ′ = Spec
X

(A)
as in Morphisms of Spaces, Definition 20.8. By Morphisms of Spaces, Remark 20.9
and functoriality of the Spec construction there is a factorization

Y −→ X ′ −→ X

https://stacks.math.columbia.edu/tag/0AGG
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and the morphism g′ : Y → X ′ equalizes s and t.

Before we show that X ′ is the coequalizer of s and t, we show that Y → X ′ and
X ′ → X have the desired properties. Since A is a coherent OX -module it is clear
that X ′ → X is a finite morphism of algebraic spaces. This proves (1). The
morphism Y → X ′ is proper by Morphisms of Spaces, Lemma 40.6. This proves
(2). Denote Y → Y ′ → X with Y ′ = Spec

X
(g∗OY ) the Stein factorization of g,

see More on Morphisms of Spaces, Theorem 36.4. Of course we obtain morphisms
Y → Y ′ → X ′ → X fitting with the morphisms studied above. Since OX′ ⊂ g∗OY
is a finite extension we see that Y ′ → X ′ is finite and surjective. Some details
omitted; hint: use Algebra, Lemma 36.17 and reduce to the affine case by étale
localization. Since Y → Y ′ is surjective (with geometrically connected fibres) we
conclude that Y → X ′ is surjective. This proves (3). To show that X ′ → X
is universally injective, we have to show that X ′ → X ′ ×X X ′ is surjective, see
Morphisms of Spaces, Definition 19.3 and Lemma 19.2. Since Y → X ′ is surjective
(see above) and since base changes and compositions of surjective morphisms are
surjective by Morphisms of Spaces, Lemmas 5.5 and 5.4 we see that Y ×X Y →
X ′ ×X X ′ is surjective. However, since Y → X ′ equalizes s and t, we see that
Y ×X Y → X ′ ×X X ′ factors through X ′ → X ′ ×X X ′ and we conclude this latter
map is surjective. This proves (4). Finally, if g is surjective, then since g factors
through X ′ → X we see that X ′ → X is surjective. Since a surjective, universally
injective, finite morphism is a universal homeomorphism (because it is universally
bijective and universally closed), this proves (5).

In the rest of the proof we show that Y → X ′ is the coequalizer of s and t in
the category of algebraic spaces over S. Observe that X ′ is locally Noetherian
(Morphisms of Spaces, Lemma 23.5). Moreover, observe that Y ×X′ Y → Y ×X Y
is an isomorphism as Y → X ′ equalizes s and t (this is a categorical statement).
Hence in order to prove the statement that Y → X ′ is the coequalizer of s and t,
we may and do assume X = X ′. In other words, OX is the equalizer of the maps
s♯, t♯ : g∗OY → h∗OR.

Let X1 → X be a flat morphism of algebraic spaces over S with X1 locally Noether-
ian. Denote g1 : Y1 → X1, h1 : R1 → X1 and s1, t1 : R1 → Y1 the base changes of
g, h, s, t to X1. Of course g1 is proper and R1 = Y1×X1 Y1. Since we have flat base
change for pushforward of quasi-coherent modules, Cohomology of Spaces, Lemma
11.2, we see that OX1 is the equalizer of the maps s♯1, t

♯
1 : g1,∗OY1 → h1,∗OR1 .

Hence all the assumptions we have are preserved by this base change.

At this point we are going to check conditions (1) and (2) of Lemma 3.3. Condition
(1) follows from Lemma 5.1 and the fact that g is proper and surjective (because
X = X ′). To check condition (2), by the remarks on base change above, we reduce
to the statement discussed and proved in the next paragraph.

Assume S = Spec(A) is an affine scheme, X = X ′ is an affine scheme, and Z is an
affine scheme over S. We have to show that

MorS(X,Z) −→ Equalizer(s, t : MorS(Y,Z)→ MorS(R,Z))

is bijective. However, this is clear from the fact that X = X ′ which implies OX is
the equalizer of the maps s♯, t♯ : g∗OY → h∗OR which in turn implies

Γ(X,OX) = Equalizer
(
s♯, t♯ : Γ(Y,OY )→ Γ(R,OR)

)
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Namely, we have
MorS(X,Z) = HomA(Γ(Z,OZ),Γ(X,OX))

and similarly for Y and R, see Properties of Spaces, Lemma 33.1. □

We will work in the following situation.

Situation 13.2.0AGH Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let Z → X be a closed immersion and let U ⊂ X be the complementary
open subspace. Finally, let f : X ′ → X be a proper morphism of algebraic spaces
such that f−1(U)→ U is an isomorphism.

Lemma 13.3.0AGI In Situation 13.2 let Y = X ′⨿Z and R = Y ×X Y with projections
t, s : R→ Y . There exists a coequalizer X1 of s, t : R→ Y in the category of alge-
braic spaces over S. The morphism X1 → X is a finite universal homeomorphism,
an isomorphism over U , and Z → X lifts to X1.

Proof. Existence of X1 and the fact that X1 → X is a finite universal homeomor-
phism is a special case of Lemma 13.1. The formation of X1 commutes with étale
localization on X (see proof of Lemma 13.1). Thus the morphism X1 → X is an
isomorphism over U . It is immediate from the construction that Z → X lifts to
X1. □

In Situation 13.2 for n ≥ 1 let Zn ⊂ X be the nth order infinitesimal neighbourhood
of Z in X, i.e., the closed subscheme defined by the nth power of the sheaf of ideals
cutting out Z. Consider Yn = X ′ ⨿ Zn and Rn = Yn ×X Yn and the coequalizer

Rn
//
// Yn // Xn

// X

as in Lemma 13.3. The maps Yn → Yn+1 and Rn → Rn+1 induce morphisms
(13.3.1)0AGJ X1 → X2 → X3 → . . .→ X

Each of these morphisms is a universal homeomorphism as the morphisms Xn → X
are universal homeomorphisms.

Lemma 13.4.0AGK In Situation 13.2 assume X quasi-compact. In (13.3.1) for all n
large enough, there exists an m such that Xn → Xn+m factors through a closed
immersion X → Xn+m.

Proof. Let’s look a bit more closely at the construction of Xn and how it changes
as we increase n. We have Xn = Spec(An) where An is the equalizer of s♯n and
t♯n going from gn,∗OYn to hn,∗ORn . Here gn : Yn = X ′ ⨿ Zn → X and hn : Rn =
Yn ×X Yn → X are the given morphisms. Let I ⊂ OX be the coherent sheaf of
ideals corresponding to Z. Then

gn,∗OYn
= f∗OX′ ×OX/In

Similarly, we have a decomposition
Rn = X ′ ×X X ′ ⨿X ′ ×X Zn ⨿ Zn ×X X ′ ⨿ Zn ×X Zn

As Zn → X is a monomorphism, we see that X ′ ×X Zn = Zn ×X X ′ and that this
identification is compatible with the two morphisms to X, with the two morphisms
to X ′, and with the two morphisms to Zn. Denote fn : X ′ ×X Zn → X the
morphism to X. Denote

A = Equalizer( f∗OX′
//
// (f × f)∗OX′×XX′ )
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By the remarks above we find that

An = Equalizer( A×OX/In
//
// fn,∗OX′×XZn

)

We have canonical maps
OX → . . .→ A3 → A2 → A1

of coherent OX -algebras. The statement of the lemma means that for n large
enough there exists an m ≥ 0 such that the image of An+m → An is isomorphic to
OX . This we may check étale locally on X. Hence by Properties of Spaces, Lemma
6.3 we may assume X is an affine Noetherian scheme.
Since Xn → X is an isomorphism over U we see that the kernel of OX → An is
supported on |Z|. Since X is Noetherian, the sequence of kernels Jn = Ker(OX →
An) stabilizes (Cohomology of Spaces, Lemma 13.1). Say Jn0 = Jn0+1 = . . . = J .
By Cohomology of Spaces, Lemma 13.2 we find that ItJ = 0 for some t ≥ 0. On the
other hand, there is an OX -algebra map An → OX/In and hence J ⊂ In for all n.
By Artin-Rees (Cohomology of Spaces, Lemma 13.3) we find that J ∩In ⊂ In−cJ
for some c ≥ 0 and all n≫ 0. We conclude that J = 0.
Pick n ≥ n0 as in the previous paragraph. Then OX → An is injective. Hence
it now suffices to find m ≥ 0 such that the image of An+m → An is equal to the
image of OX . Observe that An sits in a short exact sequence

0→ Ker(A → fn,∗OX′×XZn)→ An → OX/In → 0
and similarly for An+m. Hence it suffices to show

Ker(A → fn+m,∗OX′×XZn+m) ⊂ Im(In → A)
for some m ≥ 0. To do this we may work étale locally on X and since X is
Noetherian we may assume that X is a Noetherian affine scheme. Say X = Spec(R)
and I corresponds to the ideal I ⊂ R. Let A = Ã for a finite R-algebra A. Let
f∗OX′ = B̃ for a finite R-algebra B. Then R → A ⊂ B and these maps become
isomorphisms on inverting any element of I.
Note that fn,∗OX′×XZn

is equal to f∗(OX′/InOX′) in the notation used in Coho-
mology of Spaces, Section 22. By Cohomology of Spaces, Lemma 22.4 we see that
there exists a c ≥ 0 such that

Ker(B → Γ(X, f∗(OX′/In+m+cOX′))
is contained in In+mB. On the other hand, as R→ B is finite and an isomorphism
after inverting any element of I we see that In+mB ⊂ Im(In → B) for m large
enough (can be chosen independent of n). This finishes the proof as A ⊂ B. □

Remark 13.5.0AGL The meaning of Lemma 13.4 is the system X1 → X2 → X3 → . . .
is essentially constant with value X. See Categories, Definition 22.1.

14. Compactifications

0F44 This section is the analogue of More on Flatness, Section 33. The theorem in this
section is the main theorem in [CLO12].
Let B be a quasi-compact and quasi-separated algebraic space over some base
scheme S. We will say an algebraic space X over B has a compactification over B
or is compactifyable over B if there exists a quasi-compact open immersion X → X

https://stacks.math.columbia.edu/tag/0AGL
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into an algebraic space X proper over B. If X has a compactification over B, then
X → B is separated and of finite type. The main theorem of this section is that
the converse is true as well.

Lemma 14.1.0F45 Let S be a scheme. Let X → Y be a morphism of algebraic spaces
over S. If (U ⊂ X, f : V → X) is an elementary distinguished square such that
U → Y and V → Y are separated and U ×X V → U ×Y V is closed, then X → Y
is separated.

Proof. We have to check that ∆ : X → X ×Y X is a closed immersion. There is
an étale covering of X×Y X given by the four parts U ×Y U , U ×Y V , V ×Y U , and
V ×Y V . Observe that (U ×Y U) ×(X×Y X),∆ X = U , (U ×Y V ) ×(X×Y X),∆ X =
U×X V , (V ×Y U)×(X×Y X),∆X = V ×XU , and (V ×Y V )×(X×Y X),∆X = V . Thus
the assumptions of the lemma exactly tell us that ∆ is a closed immersion. □

Lemma 14.2.0F46 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open.

(1) If Z1, Z2 ⊂ X are closed subspaces of finite presentation such that Z1∩Z2∩
U = ∅, then there exists a U -admissible blowing up X ′ → X such that the
strict transforms of Z1 and Z2 are disjoint.

(2) If T1, T2 ⊂ |U | are disjoint constructible closed subsets, then there is a U -
admissible blowing up X ′ → X such that the closures of T1 and T2 are
disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms of Spaces,
Lemma 28.12. Denote Z ⊂ X the closed subspace cut out by the product I1I2.
Observe that Z ∩ U is the disjoint union of Z1 ∩ U and Z2 ∩ U . By Divisors on
Spaces, Lemma 19.5 there is a U ∩Z-admissible blowup Z ′ → Z such that the strict
transforms of Z1 and Z2 are disjoint. Denote Y ⊂ Z the center of this blowing up.
Then Y → X is a closed immersion of finite presentation as the composition of
Y → Z and Z → X (Divisors on Spaces, Definition 19.1 and Morphisms of Spaces,
Lemma 28.2). Thus the blowing up X ′ → X of Y is a U -admissible blowing up. By
general properties of strict transforms, the strict transform of Z1, Z2 with respect
to X ′ → X is the same as the strict transform of Z1, Z2 with respect to Z ′ → Z,
see Divisors on Spaces, Lemma 18.3. Thus (1) is proved.
Proof of (2). By Limits of Spaces, Lemma 14.1 there exists a finite type quasi-
coherent sheaf of ideals Ji ⊂ OU such that Ti = V (Ji) (set theoretically). By
Limits of Spaces, Lemma 9.8 there exists a finite type quasi-coherent sheaf of ideals
Ii ⊂ OX whose restriction to U is Ji. Apply the result of part (1) to the closed
subspaces Zi = V (Ii) to conclude. □

Lemma 14.3.0F47 Let S be a scheme. Let f : X → Y be a proper morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let V ⊂ Y be a quasi-compact
open and U = f−1(V ). Let T ⊂ |V | be a closed subset such that f |U : U → V is
an isomorphism over an open neighbourhood of T in V . Then there exists a V -
admissible blowing up Y ′ → Y such that the strict transform f ′ : X ′ → Y ′ of f is
an isomorphism over an open neighbourhood of the closure of T in |Y ′|.

Proof. Let T ′ ⊂ |V | be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in |V | and T ∩ T ′ = ∅. Since |V | is a spectral
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topological space (Properties of Spaces, Lemma 15.2) we can find constructible
closed subsets Tc, T ′

c of |V | with T ⊂ Tc, T ′ ⊂ T ′
c such that Tc ∩ T ′

c = ∅ (choose a
quasi-compact open W of |V | containing T ′ not meeting T and set Tc = |V | \W ,
then choose a quasi-compact open W ′ of |V | containing Tc not meeting T ′ and
set T ′

c = |V | \W ′). By Lemma 14.2 we may, after replacing Y by a V -admissible
blowing up, assume that Tc and T ′

c have disjoint closures in |Y |. Let Y0 be the open
subspace of Y corresponding to the open |Y |\T ′

c and set V0 = V ∩Y0, U0 = U×V V0,
and X0 = X ×Y Y0. Since U0 → V0 is an isomorphism, we can find a V0-admissible
blowing up Y ′

0 → Y0 such that the strict transform X ′
0 of X0 maps isomorphically

to Y ′
0 , see More on Morphisms of Spaces, Lemma 39.4. By Divisors on Spaces,

Lemma 19.3 there exists a V -admissible blow up Y ′ → Y whose restriction to Y0
is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict transform of f , then we see what we
want is true because f ′ restricts to an isomorphism over Y ′

0 . □

Lemma 14.4.0F48 Let S be a scheme. Consider a diagram

X

f

��

Uoo

f |U

��

A

��

oo

Y Voo Boo

of quasi-compact and quasi-separated algebraic spaces over S. Assume
(1) f is proper,
(2) V is a quasi-compact open of Y , U = f−1(V ),
(3) B ⊂ V and A ⊂ U are closed subspaces,
(4) f |A : A→ B is an isomorphism, and f is étale at every point of A.

Then there exists a V -admissible blowing up Y ′ → Y such that the strict transform
f ′ : X ′ → Y ′ satisfies: for every geometric point a of the closure of |A| in |X ′|
there exists a quotient OX′,a → O such that OY ′,f ′(a) → O is finite flat.

As you can see from the proof, more is true, but the statement is already long
enough and this will be sufficient later on.

Proof. Let T ′ ⊂ |U | be the complement of the maximal open on which f |U is étale.
Then T ′ is closed in |U | and disjoint from |A|. Since |U | is a spectral topological
space (Properties of Spaces, Lemma 15.2) we can find constructible closed subsets
Tc, T

′
c of |U | with |A| ⊂ Tc, T ′ ⊂ T ′

c such that Tc∩T ′
c = ∅ (see proof of Lemma 14.3).

By Lemma 14.2 there is a U -admissible blowing up X1 → X such that Tc and T ′
c

have disjoint closures in |X1|. Let X1,0 be the open subspace of X1 corresponding
to the open |X1| \ T

′
c and set U0 = U ∩ X1,0. Observe that the scheme theoretic

image A1 ⊂ X1 of A is contained in X1,0 by construction.

After replacing Y by a V -admissible blowing up and taking strict transforms, we
may assume X1,0 → Y is flat, quasi-finite, and of finite presentation, see More on
Morphisms of Spaces, Lemmas 39.1 and 37.3. Consider the commutative diagram

X1 //

  

X

��
Y

and the diagram

A1 //

��

A

��
B

https://stacks.math.columbia.edu/tag/0F48
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of scheme theoretic images. The morphism A1 → A is surjective because it is
proper and hence the scheme theoretic image of A1 → A must be equal to A and
then we can use Morphisms of Spaces, Lemma 40.8. The statement on étale local
rings follows by choosing a lift of the geometric point a to a geometric point a1
of A1 and setting O = OX1,a1 . Namely, since X1 → Y is flat and quasi-finite on
X1,0 ⊃ A1, the map OY ′,f ′(a) → OX1,a1 is finite flat, see Algebra, Lemmas 156.3
and 153.3. □

Lemma 14.5.0F49 Let S be a scheme. Let X → B and Y → B be morphisms of
algebraic spaces over S. Let U ⊂ X be an open subspace. Let V → X ×B Y be a
quasi-compact morphism whose composition with the first projection maps into U .
Let Z ⊂ X ×B Y be the scheme theoretic image of V → X ×B Y . Let X ′ → X be
a U -admissible blowup. Then the scheme theoretic image of V → X ′ ×B Y is the
strict transform of Z with respect to the blowing up.

Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′ ×B Y which is a closed immersion (as Z ′ is a closed subspace
of X ′ ×X Z by definition). Thus to finish the proof it suffices to show that the
scheme theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed
subspace such that V → Z ′ factors through Z ′′. Since both V → X ×B Y and
V → X ′ ×B Y are quasi-compact (for the latter this follows from Morphisms of
Spaces, Lemma 8.9 and the fact that X ′ ×B Y → X ×B Y is separated as a
base change of a proper morphism), by Morphisms of Spaces, Lemma 16.3 we see
that Z ∩ (U ×B Y ) = Z ′′ ∩ (U ×B Y ). Thus the inclusion morphism Z ′′ → Z ′

is an isomorphism away from the exceptional divisor E of Z ′ → Z. However,
the structure sheaf of Z ′ does not have any nonzero sections supported on E (by
definition of strict transforms) and we conclude that the surjection OZ′ → OZ′′

must be an isomorphism. □

Lemma 14.6.0F4A Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let U be an algebraic space of finite type and separated over
B. Let V → U be an étale morphism. If V has a compactification V ⊂ Y over
B, then there exists a V -admissible blowing up Y ′ → Y and an open V ⊂ V ′ ⊂ Y ′

such that V → U extends to a proper morphism V ′ → U .

Proof. Consider the scheme theoretic image Z ⊂ Y ×B U of the “diagonal” mor-
phism V → Y ×B U . If we replace Y by a V -admissible blowing up, then Z is
replaced by the strict transform with respect to this blowing up, see Lemma 14.5.
Hence by More on Morphisms of Spaces, Lemma 39.4 we may assume Z → Y is
an open immersion. If V ′ ⊂ Y denotes the image, then we see that the induced
morphism V ′ → U is proper because the projection Y ×B U → U is proper and
V ′ ∼= Z is a closed subspace of Y ×B U . □

The following lemma is formulated for finite type separated algebraic spaces over
a finite type algebraic space over Z. The version for quasi-compact and quasi-
separated algebraic spaces is true as well (with essentially the same proof), but
will be trivially implied by the main theorem in this section. We strongly urge the
reader to read the proof of this lemma in the case of schemes first.

Lemma 14.7.0F4B Let B be an algebraic space of finite type over Z. Let U be an
algebraic space of finite type and separated over B. Let (U2 ⊂ U, f : U1 → U) be an

https://stacks.math.columbia.edu/tag/0F49
https://stacks.math.columbia.edu/tag/0F4A
https://stacks.math.columbia.edu/tag/0F4B


PUSHOUTS OF ALGEBRAIC SPACES 36

elementary distinguished square. Assume U1 and U2 have compactifications over B
and U1 ×U U2 → U has dense image. Then U has a compactification over B.

Proof. Choose a compactification Ui ⊂ Xi over B for i = 1, 2. We may assume Ui
is scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and
a proper morphism ψi : Vi → U extending Ui → U , see Lemma 14.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

Denote Z1 ⊂ U the reduced closed subspace corresponding to the closed subset
|U | \ |U2|. Recall that f−1Z1 is a closed subspace of U1 mapping isomorphically to
Z1. Denote Z2 ⊂ U the reduced closed subspace corresponding to the closed subset
|U | \ Im(|f |) = |U2| \ Im(|U1 ×U U2| → |U2|). Thus we have

U = U2 ⨿ Z1 = Z2 ⨿ Im(f) = Z2 ⨿ Im(U1 ×U U2 → U2)⨿ Z1

set theoretically. Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that
ψ2 is an isomorphism over an open neighbourhood of Z2. Observe that Z1,1 =
ψ−1

1 Z1 = f−1Z1 ⨿ T for some closed subspace T ⊂ V1 disjoint from f−1Z1 and
furthermore ψ1 is étale along f−1Z1. Denote Zi,j ⊂ Vi the inverse image of Zj
under ψi. Observe that ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are
disjoint closed subspaces of U , we see that Zi,i and Zi,j are disjoint closed subspaces
of Vi.
Denote Zi,i and Zi,j the scheme theoretic images of Zi,i and Zi,j in Xi. We recall
that |Zi,j | is dense in |Zi,j |, see Morphisms of Spaces, Lemma 17.7. After replacing
Xi by a Vi-admissible blowup we may assume that Zi,i and Zi,j are disjoint, see
Lemma 14.2. We assume this holds for both X1 and X2. Observe that this property
is preserved if we replace Xi by a further Vi-admissible blowup. Hence we may
replace X1 by another V1-admissible blowup and assume |Z1,1| is the disjoint union
of the closures of |T | and |f−1Z1| in |X1|.
Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×B X2 which is the compo-
sition of the closed immersion V12 = V1 ×U V2 → V1 ×B V2 (Morphisms of Spaces,
Lemma 4.5) and the open immersion V1×B V2 → X1×B X2. Let X12 ⊂ X1×B X2
be the scheme theoretic image of V12 → X1 ×B X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2

are proper as X1 and X2 are proper over B. If we replace X1 by a V1-admissible
blowing up, then X12 is replaced by the strict transform with respect to this blowing
up, see Lemma 14.5.
Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subspace

Z12,2 = (p1|V12)−1Z1,2 = (p2|V12)−1Z2,2 = ψ−1Z2 ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood of
Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2 and
V12 = V1×U V2. By Lemma 14.3 there exists a V1-admissible blowing up X ′

1 → X1
such that the strict tranform p′

1 : X ′
12 → X ′

1 of p1 is an isomorphism over an open
neighbourhood of the closure of |Z1,2| in |X ′

1|. After replacing X1 by X ′
1 and X12
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by X ′
12 we may assume that p1 is an isomorphism over an open neighbourhood of

|Z1,2|.
The result of the previous paragraph tells us that

X12 ∩ (Z1,2 ×B Z2,1) = ∅

where the intersection taken in X1 ×B X2. Namely, the inverse image p−1
1 Z1,2

in X12 maps isomorphically to Z1,2. In particular, we see that |Z12,2| is dense in
|p−1

1 Z1,2|. Thus p2 maps |p−1
1 Z1,2| into |Z2,2|. Since |Z2,2|∩|Z2,1| = ∅ we conclude.

It turns out that we need to do one additional blowing up before we can conclude
the argument. Namely, let V2 ⊂ W2 ⊂ X2 be the open subspace with underlying
topological space

|W2| = |V2| ∪ (|X2| \ |Z2,1|) = |X2| \
(
|Z2,1| \ |Z2,1|

)
Since p2(p−1

1 Z1,2) is contained in W2 (see above) we see that replacing X2 by a
W2-admissible blowup and X21 by the corresponding strict transform will preserve
the property of p1 being an isomorphism over an open neighbourhood of Z1,2. Since
Z2,1 ∩W2 = Z2,1 ∩ V2 = Z2,1 we see that Z2,1 is a closed subspace of W2 and V2.
Observe that V12 = V1 ×U V2 = p−1

1 (V1) = p−1
2 (V2) as open subspaces of X12 as it

is the largest open subspace of X12 over which the morphism ψ : V12 → U extends;
details omitted4. We have the following equalities of closed subspaces of V12:

p−1
2 Z2,1 = p−1

2 ψ−1
2 Z1 = p−1

1 ψ−1
1 Z1 = p−1

1 Z1,1 = p−1
1 f−1Z1 ⨿ p−1

1 T

Here and below we use the slight abuse of notation of writing p2 in stead of the
restriction of p2 to V12, etc. Since p−1

2 (Z2,1) is a closed subspace of p−1
2 (W2) as Z2,1

is a closed subspace of W2 we conclude that also p−1
1 f−1Z1 is a closed subspace

of p−1
2 (W2). Finally, the morphism p2 : X12 → X2 is étale at points of p−1

1 f−1Z1
as ψ1 is étale along f−1Z1 and V12 = V1 ×U V2. Thus we may apply Lemma 14.4
to the morphism p2 : X12 → X2, the open W2, the closed subspace Z2,1 ⊂ W2,
and the closed subspace p−1

1 f−1Z1 ⊂ p−1
2 (W2). Hence after replacing X2 by a W2-

admissible blowup and X12 by the corresponding strict transform, we obtain for
every geometric point y of the closure of |p−1

1 f−1Z1| a local ring map OX12,y → O
such that OX2,p2(y) → O is finite flat.
Consider the algebraic space

W2 = U
∐

U2
(X2 \ Z2,1),

and with T ⊂ V1 as in the first paragraph the algebraic space

W1 = U
∐

U1
(X1 \ Z1,2 ∪ T ),

obtained by pushout, see Lemma 9.2. Let us apply Lemma 14.1 to see that Wi → B
is separated. First, U → B and Xi → B are separated. Let us check the quasi-
compact immersion Ui → U ×B (Xi \ Zi,j) is closed using the valuative criterion,
see Morphisms of Spaces, Lemma 42.1. Choose a valuation ring A over B with
fraction field K and compatible morphisms (u, xi) : Spec(A) → U ×B Xi and
ui : Spec(K) → Ui. Since ψi is proper, we can find a unique vi : Spec(A) → Vi

4Namely, V1 ×U V2 is proper over U so if ψ extends to a larger open of X12, then V1 ×U V2
would be closed in this open by Morphisms of Spaces, Lemma 40.6. Then we get equality as
V12 ⊂ X12 is dense.



PUSHOUTS OF ALGEBRAIC SPACES 38

compatible with u and ui. Since Xi is proper over B we see that xi = vi. If vi
does not factor through Ui ⊂ Vi, then we conclude that xi maps the closed point
of Spec(A) into Zi,j or T when i = 1. This finishes the proof because we removed
Zi,j and T in the construction of Wi.
On the other hand, for any valuation ring A over B with fraction field K and any
morphism

γ : Spec(K)→ Im(U1 ×U U2 → U)
over B, we claim that after replacing A by an extension of valuation rings, there
is an i and an extension of γ to a morphism hi : Spec(A) → Wi. Namely, we
first extend γ to a morphism g2 : Spec(A) → X2 using the valuative criterion of
properness. If the image of g2 does not meet Z2,1, then we obtain our morphism
into W2. Otherwise, denote z ∈ Z2,1 a geometric point lying over the image of the
closed point under g2. We may lift this to a geometric point y of X12 in the closure
of |p−1

1 f−1Z1| because the map of spaces |p−1
1 f−1Z1| → |Z2,1| is closed with image

containing the dense open |Z2,1|. After replacing A by its strict henselization (More
on Algebra, Lemma 123.6) we get the following diagram

A // A′

OX2,z
//

OO

OX12,y
// O

OO

where OX12,y → O is the map we found in the 5th paragraph of the proof. Since
the horizontal composition is finite and flat we can find an extension of valuation
rings A′/A and dotted arrow making the diagram commute. After replacing A by
A′ this means that we obtain a lift g12 : Spec(A) → X12 whose closed point maps
into the closure of |p−1

1 f−1Z1|. Then g1 = p1 ◦ g12 : Spec(A)→ X1 is a morphism
whose closed point maps into the closure of |f−1Z1|. Since the closure of |f−1Z1| is
disjoint from the closure of |T | and contained in |Z1,1| which is disjoint from |Z1,2|
we conclude that g1 defines a morphism h1 : Spec(A)→W1 as desired.
Consider a diagram

W ′
1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2

as in More on Morphisms of Spaces, Lemma 40.1. By the previous paragraph for
every solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// B

where Im(γ) ⊂ Im(U1 ×U U2 → U) there is an i and an extension hi : Spec(A) →
Wi of γ after possibly replacing A by an extension of valuation rings. Using the
valuative criterion of properness for W ′

i →Wi, we can then lift hi to h′
i : Spec(A)→

W ′
i . Hence the dotted arrow in the diagram exists after possibly extending A. Since

W is separated over B, we see that the choice of extension isn’t needed and the
arrow is unique as well, see Morphisms of Spaces, Lemmas 41.5 and 43.1. Then
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finally the existence of the dotted arrow implies that W → B is universally closed
by Morphisms of Spaces, Lemma 42.5. As W → B is already of finite type and
separated, we win. □

Lemma 14.8.0F4C Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let U ⊂ X be a proper dense open subspace. Then there exists an affine scheme V
and an étale morphism V → X such that

(1) the open subspace W = U ∪ Im(V → X) is strictly larger than U ,
(2) (U ⊂W,V →W ) is a distinguished square, and
(3) U ×W V → U has dense image.

Proof. Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and morphisms fp : Vp → Up as in Decent Spaces, Lemma 8.6. Let p be the
smallest integer such that Up ̸⊂ U (this is possible as U ̸= X). Choose an affine
open V ⊂ Vp such that the étale morphism fp|V : V → X does not factor through
U . Consider the open W = U ∪ Im(V → X) and the reduced closed subspace
Z ⊂W with |Z| = |W | \ |U |. Then f−1Z → Z is an isomorphism because we have
the corresponding property for the morphism fp, see the lemma cited above. Thus
(U ⊂ W, f : V → W ) is a distinguished square. It may not be true that the open
I = Im(U×W V → U) is dense in U . The algebraic space U ′ ⊂ U whose underlying
set is |U |\|I| is Noetherian and hence we can find a dense open subscheme U ′′ ⊂ U ′,
see for example Properties of Spaces, Proposition 13.3. Then we can find a dense
open affine U ′′′ ⊂ U ′′, see Properties, Lemmas 5.7 and 29.1. After we replace f by
V ⨿ U ′′′ → X everything is clear. □

Theorem 14.9.0F4D [CLO12]Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let X → B be a separated, finite type morphism. Then X
has a compactification over B.

Proof. We first reduce to the Noetherian case. We strongly urge the reader to skip
this paragraph. First, we may replace S by Spec(Z). See Spaces, Section 16 and
Properties of Spaces, Definition 3.1. There exists a closed immersion X → X ′ with
X ′ → B of finite presentation and separated. See Limits of Spaces, Proposition 11.7.
If we find a compactification of X ′ over B, then taking the scheme theoretic closure
of X in this will give a compactification of X over B. Thus we may assume X → B
is separated and of finite presentation. We may write B = limBi as a directed limit
of a system of Noetherian algebraic spaces of finite type over Spec(Z) with affine
transition morphisms. See Limits of Spaces, Proposition 8.1. We can choose an i
and a morphism Xi → Bi of finite presentation whose base change to B is X → B,
see Limits of Spaces, Lemma 7.1. After increasing i we may assume Xi → Bi is
separated, see Limits of Spaces, Lemma 6.9. If we can find a compactification of
Xi over Bi, then the base change of this to B will be a compactification of X over
B. This reduces us to the case discussed in the next paragraph.

Assume B is of finite type over Z in addition to being quasi-compact and quasi-
separated. Let U → X be an étale morphism of algebraic spaces such that U has
a compactification Y over Spec(Z). The morphism

U −→ B ×Spec(Z) Y

https://stacks.math.columbia.edu/tag/0F4C
https://stacks.math.columbia.edu/tag/0F4D


PUSHOUTS OF ALGEBRAIC SPACES 40

is separated and quasi-finite by Morphisms of Spaces, Lemma 27.10 (the displayed
morphism factors into an immersion hence is a monomorphism). Hence by Zariski’s
main theorem (More on Morphisms of Spaces, Lemma 34.3) there is an open im-
mersion of U into an algebraic space Y ′ finite over B ×Spec(Z) Y . Then Y ′ → B is
proper as the composition Y ′ → B ×Spec(Z) Y → B of two proper morphisms (use
Morphisms of Spaces, Lemmas 45.9, 40.4, and 40.3). We conclude that U has a
compactification over B.
There is a dense open subspace U ⊂ X which is a scheme. (Properties of Spaces,
Proposition 13.3). In fact, we may choose U to be an affine scheme (Properties,
Lemmas 5.7 and 29.1). Thus U has a compactification over Spec(Z); this is easily
shown directly but also follows from the theorem for schemes, see More on Flatness,
Theorem 33.8. By the previous paragraph U has a compactification over B. By
Noetherian induction we can find a maximal dense open subspace U ⊂ X which
has a compactification over B. We will show that the assumption that U ̸= X
leads to a contradiction. Namely, by Lemma 14.8 we can find a strictly larger open
U ⊂ W ⊂ X and a distinguished square (U ⊂ W, f : V → W ) with V affine and
U ×W V dense image in U . Since V is affine, as before it has a compactification
over B. Hence Lemma 14.7 applies to show that W has a compactification over B
which is the desired contradiction. □
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