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1. Introduction

0BH7 This chapter discusses resolution of singularities of Noetherian algebraic spaces of
dimension 2. We have already discussed resolution of surfaces for schemes following
Lipman [Lip78] in an earlier chapter. See Resolution of Surfaces, Section 1. Most
of the results in this chapter are straightforward consequences of the results on
schemes.

Unless specifically mentioned otherwise all geometric objects in this chapter will be
algebraic spaces. Thus if we say “let f : X → Y be a modification” then this means
that f is a morphism as in Spaces over Fields, Definition 8.1. Similarly for proper
morphism, etc, etc.

2. Modifications

0BH8 Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(2.0.1)0AE2

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U) → U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X → X ′

compatible with the structure morphisms over S. In Algebraization of Formal
Spaces, Section 30 we have seen that this category only depends on the completion
of A and we have proven some elementary properties of objects in this category. In
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this section we specifically study cases where dim(A) ≤ 2 or where the dimension
of the closed fibre is at most 1.

Lemma 2.1.0AE3 Let (A,m, κ) be a 2-dimensional Noetherian local domain such that
U = Spec(A) \ {m} is a normal scheme. Then any modification f : X → Spec(A)
is a morphism as in (2.0.1).

Proof. Let f : X → S be a modification. We have to show that f−1(U) → U is
an isomorphism. Since every closed point u of U has codimension 1, this follows
from Spaces over Fields, Lemma 3.3. □

Lemma 2.2.0AGM Let (A,m, κ) be a Noetherian local ring. Let g : X → Y be a
morphism in the category (2.0.1). If the induced morphism Xκ → Yκ of special
fibres is a closed immersion, then g is a closed immersion.

Proof. This is a special case of More on Morphisms of Spaces, Lemma 49.3. □

Lemma 2.3.0AYJ Let (A,m, κ) be a Noetherian local domain of dimension ≥ 1. Let
f : X → Spec(A) be a morphism of algebraic spaces. Assume at least one of the
following conditions is satisfied

(1) f is a modification (Spaces over Fields, Definition 8.1),
(2) f is an alteration (Spaces over Fields, Definition 8.3),
(3) f is locally of finite type, quasi-separated, X is integral, and there is exactly

one point of |X| mapping to the generic point of Spec(A),
(4) f is locally of finite type, X is decent, and the points of |X| mapping to the

generic point of Spec(A) are the generic points of irreducible components
of |X|,

(5) add more here.
Then dim(Xκ) ≤ dim(A) − 1.

Proof. Cases (1), (2), and (3) are special cases of (4). Choose an affine scheme
U = Spec(B) and an étale morphism U → X. The ring map A → B is of finite
type. We have to show that dim(Uκ) ≤ dim(A) − 1. Since X is decent, the generic
points of irreducible components of U are the points lying over generic points of
irreducible components of |X|, see Decent Spaces, Lemma 20.1. Hence the fibre of
Spec(B) → Spec(A) over (0) is the (finite) set of minimal primes q1, . . . , qr of B.
Thus Af → Bf is finite for some nonzero f ∈ A (Algebra, Lemma 122.10). We
conclude κ(qi) is a finite extension of the fraction field of A. Let q ⊂ B be a prime
lying over m. Then

dim(Bq) = max dim((B/qi)q) ≤ dim(A)
the inequality by the dimension formula for A ⊂ B/qi, see Algebra, Lemma 113.1.
However, the dimension of Bq/mBq (which is the local ring of Uκ at the corre-
sponding point) is at least one less because the minimal primes qi are not in V (m).
We conclude by Properties, Lemma 10.2. □

Lemma 2.4.0AGN If (A,m, κ) is a complete Noetherian local domain of dimension 2,
then every modification of Spec(A) is projective over A.

Proof. By More on Morphisms of Spaces, Lemma 43.6 it suffices to show that the
special fibre of any modification X of Spec(A) has dimension ≤ 1. This follows
from Lemma 2.3. □

https://stacks.math.columbia.edu/tag/0AE3
https://stacks.math.columbia.edu/tag/0AGM
https://stacks.math.columbia.edu/tag/0AYJ
https://stacks.math.columbia.edu/tag/0AGN


RESOLUTION OF SURFACES REVISITED 3

3. Strategy

0BH9 Let S be a scheme. Let X be a decent algebraic space over S. Let x1, . . . , xn ∈
|X| be pairwise distinct closed points. For each i we pick an elementary étale
neighbourhood (Ui, ui) → (X,xi) as in Decent Spaces, Lemma 11.4. This means
that Ui is an affine scheme, Ui → X is étale, ui is the unique point of Ui lying over
xi, and Spec(κ(ui)) → X is a monomorphism representing xi. After shrinking Ui

we may and do assume that for j ̸= i there does not exist a point of Ui mapping
to xj . Observe that ui ∈ Ui is a closed point.
Denote CX,{x1,...,xn} the category of morphisms of algebraic spaces f : Y → X

which induce an isomorphism f−1(X \ {x1, . . . , xn}) → X \ {x1, . . . , xn}. For each
i denote CUi,ui the category of morphisms of algebraic spaces gi : Yi → Ui which
induce an isomorphism g−1

i (Ui \ {ui}) → Ui \ {ui}. Base change defines an functor
(3.0.1)0BHA F : CX,{x1,...,xn} −→ CU1,u1 × . . .× CUn,un

To reduce at least some of the problems in this chapter to the case of schemes we
have the following lemma.

Lemma 3.1.0BHB The functor F (3.0.1) is an equivalence.

Proof. For n = 1 this is Limits of Spaces, Lemma 19.1. For n > 1 the lemma
can be proved in exactly the same way or it can be deduced from it. For example,
suppose that gi : Yi → Ui are objects of CUi,ui . Then by the case n = 1 we can find
f ′

i : Y ′
i → X which are isomorphisms over X \ {xi} and whose base change to Ui is

fi. Then we can set
f : Y = Y ′

1 ×X . . .×X Y ′
n → X

This is an object of CX,{x1,...,xn} whose base change by Ui → X recovers gi. Thus
the functor is essentially surjective. We omit the proof of fully faithfulness. □

Lemma 3.2.0BHC Let X,xi, Ui → X,ui be as in (3.0.1). If f : Y → X corresponds to
gi : Yi → Ui under F , then f is quasi-compact, quasi-separated, separated, locally of
finite presentation, of finite presentation, locally of finite type, of finite type, proper,
integral, finite, if and only if gi is so for i = 1, . . . , n.

Proof. Follows from Limits of Spaces, Lemma 19.2. □

Lemma 3.3.0BHD Let X,xi, Ui → X,ui be as in (3.0.1). If f : Y → X corresponds to
gi : Yi → Ui under F , then Yxi

∼= (Yi)ui as algebraic spaces.

Proof. This is clear because ui → xi is an isomorphism. □

4. Dominating by quadratic transformations

0AHG We define the blowup of a space at a point only if X is decent.

Definition 4.1.0BHE Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 14.6 we can represent x
by a closed immersion i : Spec(k) → X. The blowing up X ′ → X of X at x means
the blowing up of X in the closed subspace Z = i(Spec(k)) ⊂ X.

In this generality the blowing up of X at x is not necessarily proper. However,
if X is locally Noetherian, then it follows from Divisors on Spaces, Lemma 17.11
that the blowing up is proper. Recall that a locally Noetherian algebraic space is

https://stacks.math.columbia.edu/tag/0BHB
https://stacks.math.columbia.edu/tag/0BHC
https://stacks.math.columbia.edu/tag/0BHD
https://stacks.math.columbia.edu/tag/0BHE
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Noetherian if and only if it is quasi-compact and quasi-separated. Moreover, for
a locally Noetherian algebraic space, being quasi-separated is equivalent to being
decent (Decent Spaces, Lemma 14.1).

Lemma 4.2.0BHF Let X,xi, Ui → X,ui be as in (3.0.1) and assume f : Y → X
corresponds to gi : Yi → Ui under F . Then there exists a factorization

Y = Zm → Zm−1 → . . . → Z1 → Z0 = X

of f where Zj+1 → Zj is the blowing up of Zj at a closed point zj lying over
{x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi
→ Zi,mi−1 → . . . → Zi,1 → Zi,0 = Ui

of gi where Zi,j+1 → Zi,j is the blowing up of Zi,j at a closed point zi,j lying over
ui.

Proof. A blowing up is a representable morphism. Hence in either case we induc-
tively see that Zj → X or Zi,j → Ui is representable. Whence each Zj or Zi,j is a
decent algebraic space by Decent Spaces, Lemma 6.5. This shows that the assertions
make sense (since blowing up is only defined for decent spaces). To prove the equiv-
alence, let’s start with a sequence of blowups Zm → Zm−1 → . . . → Z1 → Z0 = X.
The first morphism Z1 → X is given by blowing up one of the xi, say x1. Applying
F to Z1 → X we find a blowup Z1,1 → U1 at u1 is the blowing up at u1 and
otherwise Zi,0 = Ui for i > 1. In the next step, we either blow up one of the xi,
i ≥ 2 on Z1 or we pick a closed point z1 of the fibre of Z1 → X over x1. In the first
case it is clear what to do and in the second case we use that (Z1)x1

∼= (Z1,1)u1

(Lemma 3.3) to get a closed point z1,1 ∈ Z1,1 corresponding to z1. Then we set
Z1,2 → Z1,1 equal to the blowing up in z1,1. Continuing in this manner we construct
the factorizations of each gi.

Conversely, given sequences of blowups Zi,mi → Zi,mi−1 → . . . → Zi,1 → Zi,0 = Ui

we construct the sequence of blowing ups of X in exactly the same manner. □

Lemma 4.3.0BHG Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let I ⊂ OX be a quasi-coherent sheaf
of ideals such that OX/I is supported on T . Then there exists a sequence

Xm → Xm−1 → . . . → X1 → X0 = X

where Xj+1 → Xj is the blowing up of Xj at a closed point xj lying above a point
of T such that IOXn

is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui) →
(X,xi) as in Section 3. For each i the restriction Ii = I|Ui

⊂ OUi
is a quasi-

coherent sheaf of ideals supported at ui. The local ring of Ui at ui is regular and
has dimension 2. Thus we may apply Resolution of Surfaces, Lemma 4.1 to find a
sequence

Xi,mi → Xi,mi−1 → . . . → X1 → Xi,0 = Ui

of blowing ups in closed points lying over ui such that IiOXi,mi
is invertible. By

Lemma 4.2 we find a sequence of blowing ups

Xm → Xm−1 → . . . → X1 → X0 = X

https://stacks.math.columbia.edu/tag/0BHF
https://stacks.math.columbia.edu/tag/0BHG
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as in the statement of the lemma whose base change to our Ui produces the given
sequences. It follows that IOXn is an invertible ideal sheaf. Namely, we know this
is true over X \ {x1, . . . , xn} and in an étale neighbourhood of the fibre of each xi

it is true by construction. □

Lemma 4.4.0BHH Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let f : Y → X be a proper morphism
of algebraic spaces which is an isomorphism over U = X \ T . Then there exists a
sequence

Xn → Xn−1 → . . . → X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T and a factorization Xn → Y → X of the composition.
Proof. By More on Morphisms of Spaces, Lemma 39.5 there exists a U -admissible
blowup X ′ → X which dominates Y → X. Hence we may assume there exists an
ideal sheaf I ⊂ OX such that OX/I is supported on T and such that Y is the
blowing up of X in I. By Lemma 4.3 there exists a sequence

Xn → Xn−1 → . . . → X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing
up (Divisors on Spaces, Lemma 17.5) we find the desired factorization. □

5. Dominating by normalized blowups

0BHI In this section we prove that a modification of a surface can be dominated by a
sequence of normalized blowups in points.
Definition 5.1.0BHJ Let S be a scheme. Let X be a decent algebraic space over
S satisfying the equivalent conditions of Morphisms of Spaces, Lemma 49.1. Let
x ∈ |X| be a closed point. The normalized blowup of X at x is the composition
X ′′ → X ′ → X where X ′ → X is the blowup of X at x (Definition 4.1) and
X ′′ → X ′ is the normalization of X ′.
Here the normalization X ′′ → X ′ is defined as the algebraic space X ′ satisfies the
equivalent conditions of Morphisms of Spaces, Lemma 49.1 by Divisors on Spaces,
Lemma 17.8. See Morphisms of Spaces, Definition 49.6 for the definition of the
normalization.
In general the normalized blowing up need not be proper even when X is Noether-
ian. Recall that an algebraic space is Nagata if it has an étale covering by affines
which are spectra of Nagata rings (Properties of Spaces, Definition 7.2 and Remark
7.3 and Properties, Definition 13.1).
Lemma 5.2.0BHK In Definition 5.1 if X is Nagata, then the normalized blowing up of
X at x is a normal Nagata algebraic space proper over X.
Proof. The blowup morphism X ′ → X is proper (as X is locally Noetherian we
may apply Divisors on Spaces, Lemma 17.11). Thus X ′ is Nagata (Morphisms of
Spaces, Lemma 26.1). Therefore the normalization X ′′ → X ′ is finite (Morphisms
of Spaces, Lemma 49.9) and we conclude thatX ′′ → X is proper as well (Morphisms
of Spaces, Lemmas 45.9 and 40.4). It follows that the normalized blowing up is a
normal (Morphisms of Spaces, Lemma 49.8) Nagata algebraic space. □

https://stacks.math.columbia.edu/tag/0BHH
https://stacks.math.columbia.edu/tag/0BHJ
https://stacks.math.columbia.edu/tag/0BHK
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Here is the analogue of Lemma 4.2 for normalized blowups.

Lemma 5.3.0BHL Let X,xi, Ui → X,ui be as in (3.0.1) and assume f : Y → X
corresponds to gi : Yi → Ui under F . Assume X satisfies the equivalent conditions
of Morphisms of Spaces, Lemma 49.1. Then there exists a factorization

Y = Zm → Zm−1 → . . . → Z1 → Z0 = X

of f where Zj+1 → Zj is the normalized blowing up of Zj at a closed point zj lying
over {x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi
→ Zi,mi−1 → . . . → Zi,1 → Zi,0 = Ui

of gi where Zi,j+1 → Zi,j is the normalized blowing up of Zi,j at a closed point zi,j

lying over ui.

Proof. This follows by the exact same argument as used to prove Lemma 4.2. □

A Nagata algebraic space is locally Noetherian.

Lemma 5.4.0BHM Let S be a scheme. Let X be a Noetherian Nagata algebraic space
over S with dim(X) = 2. Let f : Y → X be a proper birational morphism. Then
there exists a commutative diagram

Xn
//

��

Xn−1 // . . . // X1 // X0

��
Y // X

where X0 → X is the normalization and where Xi+1 → Xi is the normalized
blowing up of Xi at a closed point.

Proof. Although one can prove this lemma directly for algebraic spaces, we will
continue the approach used above to reduce it to the case of schemes.

We will use that Noetherian algebraic spaces are quasi-separated and hence points
have well defined residue fields (for example by Decent Spaces, Lemma 11.4). We
will use the results of Morphisms of Spaces, Sections 26, 35, and 49 without further
mention. We may replace Y by its normalization. Let X0 → X be the normaliza-
tion. The morphism Y → X factors through X0. Thus we may assume that both
X and Y are normal.

Assume X and Y are normal. The morphism f : Y → X is an isomorphism over an
open which contains every point of codimension 0 and 1 in Y and every point of Y
over which the fibre is finite, see Spaces over Fields, Lemma 3.3. Hence we see that
there is a finite set of closed points T ⊂ |X| such that f is an isomorphism overX\T .
By More on Morphisms of Spaces, Lemma 39.5 there exists an X \ T -admissible
blowup Y ′ → X which dominates Y . After replacing Y by the normalization of Y ′

we see that we may assume that Y → X is representable.

Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui) → (X,xi) as
in Section 3. For each i the morphism Yi = Y ×X Ui → Ui is a proper birational
morphism which is an isomorphism over Ui \ {ui}. Thus we may apply Resolution
of Surfaces, Lemma 5.3 to find a sequence

Xi,mi
→ Xi,mi−1 → . . . → X1 → Xi,0 = Ui

https://stacks.math.columbia.edu/tag/0BHL
https://stacks.math.columbia.edu/tag/0BHM


RESOLUTION OF SURFACES REVISITED 7

of normalized blowing ups in closed points lying over ui such that Xi,mi
dominates

Yi. By Lemma 5.3 we find a sequence of normalized blowing ups
Xm → Xm−1 → . . . → X1 → X0 = X

as in the statement of the lemma whose base change to our Ui produces the given
sequences. It follows that Xm dominates Y by the equivalence of categories of
Lemma 3.1. □

6. Base change to the completion

0BHN The following simple lemma will turn out to be a useful tool in what follows.

Lemma 6.1.0BHP Let (A,m, κ) be a local ring with finitely generated maximal ideal m.
Let X be a decent algebraic space over A. Let Y = X ×Spec(A) Spec(A∧) where A∧

is the m-adic completion of A. For a point q ∈ |Y | with image p ∈ |X| lying over
the closed point of Spec(A) the map Oh

X,p → Oh
Y,q of henselian local rings induces

an isomorphism on completions.

Proof. This follows immediately from the case of schemes by choosing an elemen-
tary étale neighbourhood (U, u) → (X, p) as in Decent Spaces, Lemma 11.4, setting
V = U ×X Y = U ×Spec(A) Spec(A∧) and v = (u, q). The case of schemes is
Resolution of Surfaces, Lemma 11.1. □

Lemma 6.2.0BHQ Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be
a morphism which is locally of finite type with X a decent algebraic space. Set
Y = X ×Spec(A) Spec(A∧). Let y ∈ |Y | with image x ∈ |X|. Then

(1) if Oh
Y,y is regular, then Oh

X,x is regular,
(2) if y is in the closed fibre, then Oh

Y,y is regular ⇔ Oh
X,x is regular, and

(3) If X is proper over A, then X is regular if and only if Y is regular.

Proof. By étale localization the first two statements follow immediately from the
counter part to this lemma for schemes, see Resolution of Surfaces, Lemma 11.2.
For part (3), since Y → X is surjective (as A → A∧ is faithfully flat) we see that
Y regular implies X regular by part (1). Conversely, if X is regular, then the
henselian local rings of Y are regular for all points of the special fibre. Let y ∈ |Y |
be a general point. Since |Y | → | Spec(A∧)| is closed in the proper case, we can
find a specialization y ⇝ y0 with y0 in the closed fibre. Choose an elementary
étale neighbourhood (V, v0) → (Y, y0) as in Decent Spaces, Lemma 11.4. Since Y is
decent we can lift y ⇝ y0 to a specialization v ⇝ v0 in V (Decent Spaces, Lemma
12.2). Then we conclude that OV,v is a localization of OV,v0 hence regular and the
proof is complete. □

Lemma 6.3.0BHR Let (A,m) be a local Noetherian ring. Let X be an algebraic space
over A. Assume

(1) A is analytically unramified (Algebra, Definition 162.9),
(2) X is locally of finite type over A,
(3) X → Spec(A) is étale at every point of codimension 0 in X.

Then the normalization of X is finite over X.

Proof. Choose a scheme U and a surjective étale morphism U → X. Then
U → Spec(A) satisfies the assumptions and hence the conclusions of Resolution
of Surfaces, Lemma 11.5. □

https://stacks.math.columbia.edu/tag/0BHP
https://stacks.math.columbia.edu/tag/0BHQ
https://stacks.math.columbia.edu/tag/0BHR
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7. Implied properties

0BHS In this section we prove that for a Noetherian integral algebraic space the existence
of a regular alteration has quite a few consequences. This section should be skipped
by those not interested in “bad” Noetherian algebraic spaces.

Lemma 7.1.0BHT Let S be a scheme. Let Y be a Noetherian integral algebraic space
over S. Assume there exists an alteration f : X → Y with X regular. Then the
normalization Y ν → Y is finite and Y has a dense open which is regular.

Proof. By étale localization, it suffices to prove this when Y = Spec(A) where A
is a Noetherian domain. Let B be the integral closure of A in its fraction field. Set
C = Γ(X,OX). By Cohomology of Spaces, Lemma 20.2 we see that C is a finite
A-module. As X is normal (Properties of Spaces, Lemma 25.4) we see that C is
normal domain (Spaces over Fields, Lemma 4.6). Thus B ⊂ C and we conclude
that B is finite over A as A is Noetherian.

There exists a nonempty open V ⊂ Y such that f−1V → V is finite, see Spaces
over Fields, Definition 8.3. After shrinking V we may assume that f−1V → V is
flat (Morphisms of Spaces, Proposition 32.1). Thus f−1V → V is faithfully flat.
Then V is regular by Algebra, Lemma 164.4. □

Lemma 7.2.0BHU Let (A,m, κ) be a local Noetherian domain. Assume there exists an
alteration f : X → Spec(A) with X regular. Then

(1) there exists a nonzero f ∈ A such that Af is regular,
(2) the integral closure B of A in its fraction field is finite over A,
(3) the m-adic completion of B is a normal ring, i.e., the completions of B at

its maximal ideals are normal domains, and
(4) the generic formal fibre of A is regular.

Proof. Parts (1) and (2) follow from Lemma 7.1. We have to redo part of the proof
of that lemma in order to set up notation for the proof of (3). Set C = Γ(X,OX).
By Cohomology of Spaces, Lemma 20.2 we see that C is a finite A-module. As
X is normal (Properties of Spaces, Lemma 25.4) we see that C is normal domain
(Spaces over Fields, Lemma 4.6). Thus B ⊂ C and we conclude that B is finite
over A as A is Noetherian. By Resolution of Surfaces, Lemma 13.2 in order to
prove (3) it suffices to show that the m-adic completion C∧ is normal.

By Algebra, Lemma 97.8 the completion C∧ is the product of the completions of
C at the prime ideals of C lying over m. There are finitely many of these and
these are the maximal ideals m1, . . . ,mr of C. (The corresponding result for B
explains the final statement of the lemma.) Thus replacing A by Cmi

and X by
Xi = X ×Spec(C) Spec(Cmi) we reduce to the case discussed in the next paragraph.
(Note that Γ(Xi,O) = Cmi

by Cohomology of Spaces, Lemma 11.2.)

Here A is a Noetherian local normal domain and f : X → Spec(A) is a regular
alteration with Γ(X,OX) = A. We have to show that the completion A∧ of A
is a normal domain. By Lemma 6.2 Y = X ×Spec(A) Spec(A∧) is regular. Since
Γ(Y,OY ) = A∧ by Cohomology of Spaces, Lemma 11.2. We conclude that A∧

is normal as before. Namely, Y is normal by Properties of Spaces, Lemma 25.4.
It is connected because Γ(Y,OY ) = A∧ is local. Hence Y is normal and integral
(as connected and normal implies integral for separated algebraic spaces). Thus

https://stacks.math.columbia.edu/tag/0BHT
https://stacks.math.columbia.edu/tag/0BHU
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Γ(Y,OY ) = A∧ is a normal domain by Spaces over Fields, Lemma 4.6. This proves
(3).
Proof of (4). Let η ∈ Spec(A) denote the generic point and denote by a subscript η
the base change to η. Since f is an alteration, the scheme Xη is finite and faithfully
flat over η. Since Y = X×Spec(A) Spec(A∧) is regular by Lemma 6.2 we see that Yη

is regular (as a limit of opens in Y ). Then Yη → Spec(A∧⊗Aκ(η)) is finite faithfully
flat onto the generic formal fibre. We conclude by Algebra, Lemma 164.4. □

8. Resolution

0BHV Here is a definition.

Definition 8.1.0BHW Let S be a scheme. Let Y be a Noetherian integral algebraic
space over S. A resolution of singularities of X is a modification f : X → Y such
that X is regular.

In the case of surfaces we sometimes want a bit more information.

Definition 8.2.0BHX Let S be a scheme. Let Y be a 2-dimensional Noetherian integral
algebraic space over S. We say Y has a resolution of singularities by normalized
blowups if there exists a sequence

Yn → Xn−1 → . . . → Y1 → Y0 → Y

where
(1) Yi is proper over Y for i = 0, . . . , n,
(2) Y0 → Y is the normalization,
(3) Yi → Yi−1 is a normalized blowup for i = 1, . . . , n, and
(4) Yn is regular.

Observe that condition (1) implies that the normalization Y0 of Y is finite over Y
and that the normalizations used in the normalized blowing ups are finite as well.
We finally come to the main theorem of this chapter.

Theorem 8.3.0BHY Let S be a scheme. Let Y be a two dimensional integral Noetherian
algebraic space over S. The following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) Y has a resolution of singularities by normalized blowups,
(4) the normalization Y ν → Y is finite, Y ν has finitely many singular points

y1, . . . , ym ∈ |Y |, and for each i the completion of the henselian local ring
Oh

Y ν ,yi
is normal.

Proof. The implications (3) ⇒ (2) ⇒ (1) are immediate.
Let X → Y be an alteration with X regular. Then Y ν → Y is finite by Lemma
7.1. Consider the factorization f : X → Y ν from Morphisms of Spaces, Lemma
49.8. The morphism f is finite over an open V ⊂ Y ν containing every point of
codimension ≤ 1 in Y ν by Spaces over Fields, Lemma 3.2. Then f is flat over V
by Algebra, Lemma 128.1 and the fact that a normal local ring of dimension ≤ 2 is
Cohen-Macaulay by Serre’s criterion (Algebra, Lemma 157.4). Then V is regular by
Algebra, Lemma 164.4. As Y ν is Noetherian we conclude that Y ν\V = {y1, . . . , ym}
is finite. For each i let Oh

Y ν ,yi
be the henselian local ring. Then X×Y Spec(Oh

Y ν ,yi
)

https://stacks.math.columbia.edu/tag/0BHW
https://stacks.math.columbia.edu/tag/0BHX
https://stacks.math.columbia.edu/tag/0BHY
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is a regular alteration of Spec(Oh
Y ν ,yi

) (some details omitted). By Lemma 7.2 the
completion of Oh

Y ν ,yi
is normal. In this way we see that (1) ⇒ (4).

Assume (4). We have to prove (3). We may immediately replace Y by its nor-
malization. Let y1, . . . , ym ∈ |Y | be the singular points. Choose a collection of
elementary étale neighbourhoods (Vi, vi) → (Y, yi) as in Section 3. For each i the
henselian local ring Oh

Y ν ,yi
is the henselization of OVi,vi . Hence these rings have

isomorphic completions. Thus by the result for schemes (Resolution of Surfaces,
Theorem 14.5) we see that there exist finite sequences of normalized blowups

Xi,ni
→ Xi,ni−1 → . . . → Vi

blowing up only in points lying over vi such that Xi,ni
is regular. By Lemma 5.3

there is a sequence of normalized blowing ups

Xn → Xn−1 → . . . → X1 → Y

and of course Xn is regular too (look at the local rings). This completes the
proof. □

9. Examples

0AE8 Some examples related to the results earlier in this chapter.

Example 9.1.0AE9 [Sam68, 4(c)]Let k be a field. The ring A = k[x, y, z]/(xr + ys + zt) is a UFD
for r, s, t pairwise coprime integers. Namely, since xr + ys + zt is irreducible A is a
domain. The element z is a prime element, i.e., generates a prime ideal in A. On
the other hand, if t = 1 + ers for some e, then

A[1/z] ∼= k[x′, y′, 1/z]

where x′ = x/zes, y′ = y/zer and z = (x′)r + (y′)s. Thus A[1/z] is a localization of
a polynomial ring and hence a UFD. It follows from an argument of Nagata that A
is a UFD. See Algebra, Lemma 120.7. A similar argument can be given if t is not
congruent to 1 modulo rs.

Example 9.2.0AEA See [Bri68] and
[Lip69] for
nonvanishing of
local Picard groups
in general.

The ring A = C[[x, y, z]]/(xr +ys +zt) is not a UFD when 1 < r <
s < t are pairwise coprime integers and not equal to 2, 3, 5. For example consider
the special case A = C[[x, y, z]]/(x2 + y5 + z7). Consider the maps

ψζ : C[[x, y, z]]/(x2 + y5 + z7) → C[[t]]

given by
x 7→ t7, y 7→ t3, z 7→ −ζt2(1 + t)1/7

where ζ is a 7th root of unity. The kernel pζ of ψζ is a height one prime, hence if
A is a UFD, then it is principal, say given by fζ ∈ C[[x, y, z]]. Note that V (x3 −
y7) =

⋃
V (pζ) and A/(x3 − y7) is reduced away from the closed point. Hence, still

assuming A is a UFD, we would obtain∏
ζ
fζ = u(x3 − y7) + a(x2 + y5 + z7) in C[[x, y, z]]

for some unit u ∈ C[[x, y, z]] and some element a ∈ C[[x, y, z]]. After scaling by a
constant we may assume u(0, 0, 0) = 1. Note that the left hand side vanishes to
order 7. Hence a = −x mod m2. But then we get a term xy5 on the right hand
side which does not occur on the left hand side. A contradiction.

https://stacks.math.columbia.edu/tag/0AE9
https://stacks.math.columbia.edu/tag/0AEA
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Example 9.3.0AEB There exists an excellent 2-dimensional Noetherian local ring and
a modification X → S = Spec(A) which is not a scheme. We sketch a construction.
Let X be a normal surface over C with a unique singular point x ∈ X. Assume that
there exists a resolution π : X ′ → X such that the exceptional fibre C = π−1(x)red

is a smooth projective curve. Furthermore, assume there exists a point c ∈ C such
that if OC(nc) is in the image of Pic(X ′) → Pic(C), then n = 0. Then we let
X ′′ → X ′ be the blowing up in the nonsingular point c. Let C ′ ⊂ X ′′ be the
strict transform of C and let E ⊂ X ′′ be the exceptional fibre. By Artin’s results
([Art70]; use for example [Mum61] to see that the normal bundle of C ′ is negative)
we can blow down the curve C ′ in X ′′ to obtain an algebraic space X ′′′. Picture

X ′′

}} ""
X ′

!!

X ′′′

||
X

We claim that X ′′′ is not a scheme. This provides us with our example because
X ′′′ is a scheme if and only if the base change of X ′′′ to A = OX,x is a scheme
(details omitted). If X ′′′ where a scheme, then the image of C ′ in X ′′′ would
have an affine neighbourhood. The complement of this neighbourhood would be an
effective Cartier divisor on X ′′′ (because X ′′′ is nonsingular apart from 1 point).
This effective Cartier divisor would correspond to an effective Cartier divisor on
X ′′ meeting E and avoiding C ′. Taking the image in X ′ we obtain an effective
Cartier divisor meeting C (set theoretically) in c. This is impossible as no multiple
of c is the restriction of a Cartier divisor by assumption.
To finish we have to find such a singular surface X. We can just take X to be the
affine surface given by

x3 + y3 + z3 + x4 + y4 + z4 = 0
in A3

C = Spec(C[x, y, z]) and singular point (0, 0, 0). Then (0, 0, 0) is the only
singular point. Blowing up X in the maximal ideal corresponding to (0, 0, 0) we
find three charts each isomorphic to the smooth affine surface

1 + s3 + t3 + x(1 + s4 + t4) = 0
which is nonsingular with exceptional divisor C given by x = 0. The reader will
recognize C as an elliptic curve. Finally, the surface X is rational as projection
from (0, 0, 0) shows, or because in the equation for the blowup we can solve for x.
Finally, the Picard group of a nonsingular rational surface is countable, whereas the
Picard group of an elliptic curve over the complex numbers is uncountable. Hence
we can find a closed point c as indicated.
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