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1. Introduction

09VJ This chapter develops some theory concerning simplicial topological spaces, simpli-
cial ringed spaces, simplicial schemes, and simplicial algebraic spaces. The theory
of simplicial spaces sometimes allows one to prove local to global principles which
appear difficult to prove in other ways. Some example applications can be found
in the papers [Fal03], [Kie72], and [Del74].
We assume throughout that the reader is familiar with the basic concepts and
results of the chapter Simplicial Methods, see Simplicial, Section 1. In particular,
we continue to write X and not X• for a simplicial object.

2. Simplicial topological spaces

09VK A simplicial space is a simplicial object in the category of topological spaces where
morphisms are continuous maps of topological spaces. (We will use “simplicial
algebraic space” to refer to simplicial objects in the category of algebraic spaces.)
We may picture a simplicial space X as follows

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.
Let X be a simplicial space. We associate a site XZar

1 to X as follows.
(1) An object of XZar is an open U of Xn for some n,
(2) a morphism U → V of XZar is given by a φ : [m] → [n] where n,m are

such that U ⊂ Xn, V ⊂ Xm and φ is such that X(φ)(U) ⊂ V , and
(3) a covering {Ui → U} in XZar means that U,Ui ⊂ Xn are open, the maps

Ui → U are given by id : [n]→ [n], and U =
⋃
Ui.

Note that in particular, if U → V is a morphism of XZar given by φ, then X(φ) :
Xn → Xm does in fact induce a continuous map U → V of topological spaces.
It is clear that the above is a special case of a construction that associates to any
diagram of topological spaces a site. We formulate the obligatory lemma.

Lemma 2.1.09VL Let X be a simplicial space. Then XZar as defined above is a site.

Proof. Omitted. □

Let X be a simplicial space. Let F be a sheaf on XZar. It is clear from the definition
of coverings, that the restriction of F to the opens of Xn defines a sheaf Fn on the
topological space Xn. For every φ : [m] → [n] the restriction maps of F for pairs
U ⊂ Xn, V ⊂ Xm with X(φ)(U) ⊂ V , define an X(φ)-map F(φ) : Fm → Fn, see
Sheaves, Definition 21.7. Moreover, given φ : [m]→ [n] and ψ : [l]→ [m] we have

F(φ) ◦ F(ψ) = F(φ ◦ ψ)
(LHS uses composition of f -maps, see Sheaves, Definition 21.9). Clearly, the con-
verse is true as well: if we have a system ({Fn}n≥0, {F(φ)}φ∈Arrows(∆)) as above,
satisfying the displayed equalities, then we obtain a sheaf on XZar.

1This notation is similar to the notation in Sites, Example 6.4 and Topologies, Definition 3.7.

https://stacks.math.columbia.edu/tag/09VL
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Lemma 2.2.09VM Let X be a simplicial space. There is an equivalence of categories
between

(1) Sh(XZar), and
(2) category of systems (Fn,F(φ)) described above.

Proof. See discussion above. □

Lemma 2.3.09VN Let f : Y → X be a morphism of simplicial spaces. Then the functor
u : XZar → YZar which associates to the open U ⊂ Xn the open f−1

n (U) ⊂ Yn
defines a morphism of sites fZar : YZar → XZar.

Proof. It is clear that u is a continuous functor. Hence we obtain functors fZar,∗ =
us and f−1

Zar = us, see Sites, Section 14. To see that we obtain a morphism of sites
we have to show that us is exact. We will use Sites, Lemma 14.6 to see this. Let
V ⊂ Yn be an open subset. The category IuV (see Sites, Section 5) consists of
pairs (U,φ) where φ : [m]→ [n] and U ⊂ Xm open such that Y (φ)(V ) ⊂ f−1

m (U).
Moreover, a morphism (U,φ) → (U ′, φ′) is given by a ψ : [m′] → [m] such that
X(ψ)(U) ⊂ U ′ and φ ◦ ψ = φ′. It is our task to show that IuV is cofiltered.
We verify the conditions of Categories, Definition 20.1. Condition (1) holds be-
cause (Xn, id[n]) is an object. Let (U,φ) be an object. The condition Y (φ)(V ) ⊂
f−1
m (U) is equivalent to V ⊂ f−1

n (X(φ)−1(U)). Hence we obtain a morphism
(X(φ)−1(U), id[n]) → (U,φ) given by setting ψ = φ. Moreover, given a pair of
objects of the form (U, id[n]) and (U ′, id[n]) we see there exists an object, namely
(U ∩ U ′, id[n]), which maps to both of them. Thus condition (2) holds. To verify
condition (3) suppose given two morphisms a, a′ : (U,φ)→ (U ′, φ′) given by ψ,ψ′ :
[m′] → [m]. Then precomposing with the morphism (X(φ)−1(U), id[n]) → (U,φ)
given by φ equalizes a, a′ because φ ◦ ψ = φ′ = φ ◦ ψ′. This finishes the proof. □

Lemma 2.4.09VP Let f : Y → X be a morphism of simplicial spaces. In terms of
the description of sheaves in Lemma 2.2 the morphism fZar of Lemma 2.3 can be
described as follows.

(1) If G is a sheaf on Y , then (fZar,∗G)n = fn,∗Gn.
(2) If F is a sheaf on X, then (f−1

ZarF)n = f−1
n Fn.

Proof. The first part is immediate from the definitions. For the second part, note
that in the proof of Lemma 2.3 we have shown that for a V ⊂ Yn open the category
(IuV )opp contains as a cofinal subcategory the category of opens U ⊂ Xn with
f−1
n (U) ⊃ V and morphisms given by inclusions. Hence we see that the restriction of
upF to opens of Yn is the presheaf fn,pFn as defined in Sheaves, Lemma 21.3. Since
f−1
ZarF = usF is the sheafification of upF and since sheafification uses only coverings

and since coverings in YZar use only inclusions between opens on the same Yn, the
result follows from the fact that f−1

n Fn is (correspondingly) the sheafification of
fn,pFn, see Sheaves, Section 21. □

Let X be a topological space. In Sites, Example 6.4 we denoted XZar the site
consisting of opens of X with inclusions as morphisms and coverings given by open
coverings. We identify the topos Sh(XZar) with the category of sheaves on X.

Lemma 2.5.09W0 Let X be a simplicial space. The functor Xn,Zar → XZar, U 7→ U
is continuous and cocontinuous. The associated morphism of topoi gn : Sh(Xn)→
Sh(XZar) satisfies

https://stacks.math.columbia.edu/tag/09VM
https://stacks.math.columbia.edu/tag/09VN
https://stacks.math.columbia.edu/tag/09VP
https://stacks.math.columbia.edu/tag/09W0
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(1) g−1
n associates to the sheaf F on X the sheaf Fn on Xn,

(2) g−1
n : Sh(XZar)→ Sh(Xn) has a left adjoint gShn! ,

(3) gShn! commutes with finite connected limits,
(4) g−1

n : Ab(XZar)→ Ab(Xn) has a left adjoint gn!, and
(5) gn! is exact.

Proof. Besides the properties of our functor mentioned in the statement, the cate-
gory Xn,Zar has fibre products and equalizers and the functor commutes with them
(beware that XZar does not have all fibre products). Hence the lemma follows from
the discussion in Sites, Sections 20 and 21 and Modules on Sites, Section 16. More
precisely, Sites, Lemmas 21.1, 21.5, and 21.6 and Modules on Sites, Lemmas 16.2
and 16.3. □

Lemma 2.6.09W1 Let X be a simplicial space. If I is an injective abelian sheaf on
XZar, then In is an injective abelian sheaf on Xn.

Proof. This follows from Homology, Lemma 29.1 and Lemma 2.5. □

Lemma 2.7.09W2 Let f : Y → X be a morphism of simplicial spaces. Then

Sh(Yn)

��

fn

// Sh(Xn)

��
Sh(YZar)

fZar // Sh(XZar)

is a commutative diagram of topoi.

Proof. Direct from the description of pullback functors in Lemmas 2.4 and 2.5. □

Lemma 2.8.09W4 Let Y be a simplicial space and let a : Y → X be an augmentation
(Simplicial, Definition 20.1). Let an : Yn → X be the corresponding morphisms of
topological spaces. There is a canonical morphism of topoi

a : Sh(YZar)→ Sh(X)

with the following properties:
(1) a−1F is the sheaf restricting to a−1

n F on Yn,
(2) am ◦ Y (φ) = an for all φ : [m]→ [n],
(3) a ◦ gn = an as morphisms of topoi with gn as in Lemma 2.5,
(4) a∗G for G ∈ Sh(YZar) is the equalizer of the two maps a0,∗G0 → a1,∗G1.

Proof. Part (2) holds for augmentations of simplicial objects in any category. Thus
Y (φ)−1a−1

m F = a−1
n F which defines an Y (φ)-map from a−1

m F to a−1
n F . Thus we

can use (1) as the definition of a−1F (using Lemma 2.2) and (4) as the definition
of a∗. If this defines a morphism of topoi then part (3) follows because we’ll have
g−1
n ◦ a−1 = a−1

n by construction. To check a is a morphism of topoi we have to
show that a−1 is left adjoint to a∗ and we have to show that a−1 is exact. The last
fact is immediate from the exactness of the functors a−1

n .

Let F be an object of Sh(X) and let G be an object of Sh(YZar). Given β : a−1F →
G we can look at the components βn : a−1

n F → Gn. These maps are adjoint to maps
βn : F → an,∗Gn. Compatibility with the simplicial structure shows that β0 maps

https://stacks.math.columbia.edu/tag/09W1
https://stacks.math.columbia.edu/tag/09W2
https://stacks.math.columbia.edu/tag/09W4
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into a∗G. Conversely, suppose given a map α : F → a∗G. For any n choose a
φ : [0]→ [n]. Then we can look at the composition

F α−→ a∗G → a0,∗G0
G(φ)−−−→ an,∗Gn

These are adjoint to maps a−1
n F → Gn which define a morphism of sheaves a−1F →

G. We omit the proof that the constructions given above define mutually inverse
bijections

MorSh(YZar)(a−1F ,G) = MorSh(X)(F , a∗G)
This finishes the proof. An interesting observation is here that this morphism
of topoi does not correspond to any obvious geometric functor between the sites
defining the topoi. □

Lemma 2.9.09W5 Let X be a simplicial topological space. The complex of abelian
presheaves on XZar

. . .→ ZX2 → ZX1 → ZX0

with boundary
∑

(−1)idni is a resolution of the constant presheaf Z.

Proof. Let U ⊂ Xm be an object of XZar. Then the value of the complex above
on U is the complex of abelian groups

. . .→ Z[Mor∆([2], [m])]→ Z[Mor∆([1], [m])]→ Z[Mor∆([0], [m])]

In other words, this is the complex associated to the free abelian group on the sim-
plicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy equivalent
to ∆[0], see Simplicial, Example 26.7, and since “taking free abelian groups” is a
functor, we see that the complex above is homotopy equivalent to the free abelian
group on ∆[0] (Simplicial, Remark 26.4 and Lemma 27.2). This complex is acyclic
in positive degrees and equal to Z in degree 0. □

Lemma 2.10.09W6 Let X be a simplicial topological space. Let F be an abelian sheaf
on X. There is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Xp,Fp)

converging to Hp+q(XZar,F). This spectral sequence is functorial in F .

Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Iq(Xp)
and first differential given by the alternating sum along the maps dp+1

i -maps Iqp →
Iqp+1, see Lemma 2.2. Note that

Ap,q = Γ(Xp, Iqp) = MorPSh(hXp , Iq) = MorPAb(ZXp , Iq)

Hence it follows from Lemma 2.9 and Cohomology on Sites, Lemma 10.1 that the
rows of the double complex are exact in positive degrees and evaluate to Γ(XZar, Iq)
in degree 0. On the other hand, since restriction is exact (Lemma 2.5) the map

Fp → I•
p

is a resolution. The sheaves Iqp are injective abelian sheaves on Xp (Lemma 2.6).
Hence the cohomology of the columns computes the groups Hq(Xp,Fp). We con-
clude by applying Homology, Lemmas 25.3 and 25.4. □

https://stacks.math.columbia.edu/tag/09W5
https://stacks.math.columbia.edu/tag/09W6
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Lemma 2.11.0D84 Let X be a simplicial space and let a : X → Y be an augmentation.
Let F be an abelian sheaf on XZar. Then Rna∗F is the sheaf associated to the
presheaf

V 7−→ Hn((X ×Y V )Zar,F|(X×Y V )Zar )

Proof. This is the analogue of Cohomology, Lemma 7.3 or of Cohomology on Sites,
Lemma 7.4 and we strongly encourge the reader to skip the proof. Choosing an
injective resolution of F on XZar and using the definitions we see that it suffices
to show: (1) the restriction of an injective abelian sheaf on XZar to (X ×Y V )Zar
is an injective abelian sheaf and (2) a∗F is equal to the rule

V 7−→ H0((X ×Y V )Zar,F|(X×Y V )Zar )

Part (2) follows from the following facts
(2a) a∗F is the equalizer of the two maps a0,∗F0 → a1,∗F1 by Lemma 2.8,
(2b) a0,∗F0(V ) = H0(a−1

0 (V ),F0) and a1,∗F1(V ) = H0(a−1
1 (V ),F1),

(2c) X0 ×Y V = a−1
0 (V ) and X1 ×Y V = a−1

1 (V ),
(2d) H0((X×Y V )Zar,F|(X×Y V )Zar ) is the equalizer of the two maps H0(X0×Y

V,F0)→ H0(X1 ×Y V,F1) for example by Lemma 2.10.
Part (1) follows after one defines an exact left adjoint j! : Ab((X ×Y V )Zar) →
Ab(XZar) (extension by zero) to restriction Ab(XZar) → Ab((X ×Y V )Zar) and
using Homology, Lemma 29.1. □

Let X be a topological space. Denote X• the constant simplicial topological space
with value X. By Lemma 2.2 a sheaf on X•,Zar is the same thing as a cosimplicial
object in the category of sheaves on X.

Lemma 2.12.09W3 Let X be a topological space. Let X• be the constant simplicial
topological space with value X. The functor

X•,Zar −→ XZar, U 7−→ U

is continuous and cocontinuous and defines a morphism of topoi g : Sh(X•,Zar)→
Sh(X) as well as a left adjoint g! to g−1. We have

(1) g−1 associates to a sheaf on X the constant cosimplicial sheaf on X,
(2) g! associates to a sheaf F on X•,Zar the sheaf F0, and
(3) g∗ associates to a sheaf F on X•,Zar the equalizer of the two maps F0 → F1.

Proof. The statements about the functor are straightforward to verify. The exis-
tence of g and g! follow from Sites, Lemmas 21.1 and 21.5. The description of g−1

is immediate from Sites, Lemma 21.5. The description of g∗ and g! follows as the
functors given are right and left adjoint to g−1. □

3. Simplicial sites and topoi

09WB It seems natural to define a simplicial site as a simplicial object in the (big) category
whose objects are sites and whose morphisms are morphisms of sites. See Sites,
Definitions 6.2 and 14.1 with composition of morphisms as in Sites, Lemma 14.4.
But here are some variants one might want to consider: (a) we could work with
cocontinuous functors (see Sites, Sections 20 and 21) between sites instead, (b)
we could work in a suitable 2-category of sites where one introduces the notion
of a 2-morphism between morphisms of sites, (c) we could work in a 2-category

https://stacks.math.columbia.edu/tag/0D84
https://stacks.math.columbia.edu/tag/09W3
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constructed out of cocontinuous functors. Instead of picking one of these variants
as a definition we will simply develop theory as needed.

Certainly a simplicial topos should probably be defined as a pseudo-functor from
∆opp into the 2-category of topoi. See Categories, Definition 29.5 and Sites, Section
15 and 36. We will try to avoid working with such a beast if possible.

Case A. Let C be a simplicial object in the category whose objects are sites and
whose morphisms are morphisms of sites. This means that for every morphism
φ : [m] → [n] of ∆ we have a morphism of sites fφ : Cn → Cm. This morphism
is given by a continuous functor in the opposite direction which we will denote
uφ : Cm → Cn.

Lemma 3.1.09WC Let C be a simplicial object in the category of sites. With notation
as above we construct a site Ctotal as follows.

(1) An object of Ctotal is an object U of Cn for some n,
(2) a morphism (φ, f) : U → V of Ctotal is given by a map φ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : U → uφ(V ) of Cn, and
(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (φ, f) : U → V with (ψ, g) : V → W is given by (φ ◦
ψ, uφ(g) ◦ f). This uses that uφ ◦ uψ = uφ◦ψ.

Let {(id, fi) : Ui → U} be a covering as in (3) and let (φ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(φ,g),U,(id,fi) Ui = W ×g,uφ(U),uφ(fi) uφ(Ui)

in the category Ctotal. This makes sense as by our definition of morphisms of
sites, the required fibre products in Cm exist since uφ transforms coverings into
coverings. The same reasoning implies the claim (details omitted). Thus we see
that the collection of coverings is stable under base change. The other axioms of a
site are immediate. □

Case B. Let C be a simplicial object in the category whose objects are sites and
whose morphisms are cocontinuous functors. This means that for every morphism
φ : [m] → [n] of ∆ we have a cocontinuous functor denoted uφ : Cn → Cm. The
associated morphism of topoi is denoted fφ : Sh(Cn)→ Sh(Cm).

Lemma 3.2.09WD Let C be a simplicial object in the category whose objects are sites
and whose morphisms are cocontinuous functors. With notation as above, assume
the functors uφ : Cn → Cm have property P of Sites, Remark 20.5. Then we can
construct a site Ctotal as follows.

(1) An object of Ctotal is an object U of Cn for some n,
(2) a morphism (φ, f) : U → V of Ctotal is given by a map φ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : uφ(U)→ V of Cm, and
(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (φ, f) : U → V with (ψ, g) : V →W is given by (φ ◦ ψ, g ◦
uψ(f)). This uses that uψ ◦ uφ = uφ◦ψ.

https://stacks.math.columbia.edu/tag/09WC
https://stacks.math.columbia.edu/tag/09WD
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Let {(id, fi) : Ui → U} be a covering as in (3) and let (φ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(φ,g),U,(id,fi) Ui = W ×g,U,fi Ui
in the category Ctotal where the right hand side is the object of Cm defined in
Sites, Remark 20.5 which exists by property P . Compatibility of this type of fibre
product with compositions of functors implies the claim (details omitted). Since
the family {W ×g,U,fi Ui →W} is a covering of Cm by property P we see that the
collection of coverings is stable under base change. The other axioms of a site are
immediate. □

Situation 3.3.09WE Here we have one of the following two cases:
(A) C is a simplicial object in the category whose objects are sites and whose

morphisms are morphisms of sites. For every morphism φ : [m]→ [n] of ∆
we have a morphism of sites fφ : Cn → Cm given by a continuous functor
uφ : Cm → Cn.

(B) C is a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors having property P of Sites, Remark
20.5. For every morphism φ : [m]→ [n] of ∆ we have a cocontinuous functor
uφ : Cn → Cm which induces a morphism of topoi fφ : Sh(Cn)→ Sh(Cm).

As usual we will denote f−1
φ and fφ,∗ the pullback and pushforward. We let Ctotal

denote the site defined in Lemma 3.1 (case A) or Lemma 3.2 (case B).

Let C be as in Situation 3.3. Let F be a sheaf on Ctotal. It is clear from the definition
of coverings, that the restriction of F to the objects of Cn defines a sheaf Fn on
the site Cn. For every φ : [m]→ [n] the restriction maps of F along the morphisms
(φ, f) : U → V with U ∈ Ob(Cn) and V ∈ Ob(Cm) define an element F(φ) of

MorSh(Cm)(Fm, fφ,∗Fn) = MorSh(Cn)(f−1
φ Fm,Fn)

Moreover, given φ : [m]→ [n] and ψ : [l]→ [m] the diagrams

Fl F(φ◦ψ)
//

F(ψ) ##

fφ◦ψ,∗Fn

fψ,∗Fm
fψ,∗F(φ)

99

and

f−1
φ◦ψFl F(φ◦ψ)

//

f−1
φ F(ψ) $$

Fn

f−1
φ Fm

F(φ)

<<

commute. Clearly, the converse statement is true as well: if we have a system
({Fn}n≥0, {F(φ)}φ∈Arrows(∆)) satisfying the commutativity constraints above, then
we obtain a sheaf on Ctotal.

Lemma 3.4.09WF In Situation 3.3 there is an equivalence of categories between
(1) Sh(Ctotal), and
(2) the category of systems (Fn,F(φ)) described above.

In particular, the topos Sh(Ctotal) only depends on the topoi Sh(Cn) and the mor-
phisms of topoi fφ.

Proof. See discussion above. □

Lemma 3.5.09WG In Situation 3.3 the functor Cn → Ctotal, U 7→ U is continuous and
cocontinuous. The associated morphism of topoi gn : Sh(Cn)→ Sh(Ctotal) satisfies

(1) g−1
n associates to the sheaf F on Ctotal the sheaf Fn on Cn,

https://stacks.math.columbia.edu/tag/09WE
https://stacks.math.columbia.edu/tag/09WF
https://stacks.math.columbia.edu/tag/09WG
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(2) g−1
n : Sh(Ctotal)→ Sh(Cn) has a left adjoint gShn! ,

(3) for G in Sh(Cn) the restriction of gShn! G to Cm is
∐
φ:[n]→[m] f

−1
φ G,

(4) gShn! commutes with finite connected limits,
(5) g−1

n : Ab(Ctotal)→ Ab(Cn) has a left adjoint gn!,
(6) for G in Ab(Cn) the restriction of gn!G to Cm is

⊕
φ:[n]→[m] f

−1
φ G, and

(7) gn! is exact.

Proof. Case A. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I
is a covering in Ctotal by definition (Lemma 3.1). For a morphism V → U of Cn,
the fibre product V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in
the proof of Lemma 3.1). Therefore our functor is continuous. On the other hand,
our functor defines a bijection between coverings of U in Cn and coverings of U in
Ctotal. Therefore it is certainly the case that our functor is cocontinuous.
Case B. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I is a
covering in Ctotal by definition (Lemma 3.2). For a morphism V → U of Cn, the
fibre product V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in the
proof of Lemma 3.2). Therefore our functor is continuous. On the other hand, our
functor defines a bijection between coverings of U in Cn and coverings of U in Ctotal.
Therefore it is certainly the case that our functor is cocontinuous.
At this point part (1) and the existence of gShn! and gn! in cases A and B follows
from Sites, Lemmas 21.1 and 21.5 and Modules on Sites, Lemma 16.2.
Proof of (3). Let G be a sheaf on Cn. Consider the sheaf H on Ctotal whose degree
m part is the sheaf

Hm =
∐

φ:[n]→[m]
f−1
φ G

given in part (3) of the statement of the lemma. Given a map ψ : [m] → [m′] the
map H(ψ) : f−1

ψ Hm → Hm′ is given on components by the identifications

f−1
ψ f−1

φ G → f−1
ψ◦φG

Observe that given a map α : H → F of sheaves on Ctotal we obtain a map G → Fn
corresponding to the restriction of αn to the component G in Hn. Conversely, given
a map β : G → Fn of sheaves on Cn we can define α : H → F by letting αm be the
map which on components

f−1
φ G → Fm

uses the maps adjoint to F(φ) ◦ f−1
φ β. We omit the arguments showing these two

constructions give mutually inverse maps
MorSh(Cn)(G,Fn) = MorSh(Ctotal)(H,F)

Thus H = gShn! G as desired.
Proof of (4). If G is an abelian sheaf on Cn, then we proceed in exactly the same
ammner as above, except that we define H is the abelian sheaf on Ctotal whose
degree m part is the sheaf ⊕

φ:[n]→[m]
f−1
φ G

with transition maps defined exactly as above. The bijection
MorAb(Cn)(G,Fn) = MorAb(Ctotal)(H,F)

is proved exactly as above. Thus H = gn!G as desired.
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The exactness properties of gShn! and gn! follow from formulas given for these func-
tors. □

Lemma 3.6.09WH In Situation 3.3. If I is injective in Ab(Ctotal), then In is injective
in Ab(Cn). If I• is a K-injective complex in Ab(Ctotal), then I•

n is K-injective in
Ab(Cn).

Proof. The first statement follows from Homology, Lemma 29.1 and Lemma 3.5.
The second statement from Derived Categories, Lemma 31.9 and Lemma 3.5. □

4. Augmentations of simplicial sites

0D93 We continue in the fashion described in Section 3 working out the meaning of
augmentations in cases A and B treated in that section.

Remark 4.1.0D6Z In Situation 3.3 an augmentation a0 towards a site D will mean
(A) a0 : C0 → D is a morphism of sites given by a continuous functor u0 : D →

C0 such that for all φ,ψ : [0]→ [n] we have uφ ◦ u0 = uψ ◦ u0.
(B) a0 : Sh(C0)→ Sh(D) is a morphism of topoi given by a cocontinuous functor

u0 : C0 → D such that for all φ,ψ : [0]→ [n] we have u0 ◦ uφ = u0 ◦ uψ.

Lemma 4.2.0D70 In Situation 3.3 let a0 be an augmentation towards a site D as in
Remark 4.1. Then a0 induces

(1) a morphism of topoi an : Sh(Cn)→ Sh(D) for all n ≥ 0,
(2) a morphism of topoi a : Sh(Ctotal)→ Sh(D)

such that
(1) for all φ : [m]→ [n] we have am ◦ fφ = an,
(2) if gn : Sh(Cn)→ Sh(Ctotal) is as in Lemma 3.5, then a ◦ gn = an, and
(3) a∗F for F ∈ Sh(Ctotal) is the equalizer of the two maps a0,∗F0 → a1,∗F1.

Proof. Case A. Let un : D → Cn be the common value of the functors uφ ◦ u0
for φ : [0] → [n]. Then un corresponds to a morphism of sites an : Cn → D, see
Sites, Lemma 14.4. The same lemma shows that for all φ : [m] → [n] we have
am ◦ fφ = an.
Case B. Let un : Cn → D be the common value of the functors u0 ◦ uφ for φ : [0]→
[n]. Then un is cocontinuous and hence defines a morphism of topoi an : Sh(Cn)→
Sh(D), see Sites, Lemma 21.2. The same lemma shows that for all φ : [m] → [n]
we have am ◦ fφ = an.
Consider the functor a−1 : Sh(D)→ Sh(Ctotal) which to a sheaf of sets G associates
the sheaf F = a−1G whose components are a−1

n G and whose transition maps F(φ)
are the identifications

f−1
φ Fm = f−1

φ a−1
m G = a−1

n G = Fn
for φ : [m]→ [n], see the description of Sh(Ctotal) in Lemma 3.4. Since the functors
a−1
n are exact, a−1 is an exact functor. Finally, for a∗ : Sh(Ctotal)→ Sh(D) we take

the functor which to a sheaf F on Sh(D) associates

a∗F Equalizer(a0,∗F0
//
// a1,∗F1)

Here the two maps come from the two maps φ : [0]→ [1] via

a0,∗F0 → a0,∗fφ,∗f
−1
φ F0

F(φ)−−−→ a0,∗fφ,∗F1 = a1,∗F1

https://stacks.math.columbia.edu/tag/09WH
https://stacks.math.columbia.edu/tag/0D6Z
https://stacks.math.columbia.edu/tag/0D70
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where the first arrow comes from 1→ fφ,∗f
−1
φ . Let G• denote the constant simplicial

sheaf with value G and let a•,∗F denote the simplicial sheaf having an,∗Fn in
degree n. By the usual adjuntion for the morphisms of topoi an we see that a map
a−1G → F is the same thing as a map

G• −→ a•,∗F
of simplicial sheaves. By Simplicial, Lemma 20.2 this is the same thing as a map
G → a∗F . Thus a−1 and a∗ are adjoint functors and we obtain our morphism of
topoi a2. The equalities a ◦ gn = fn follow immediately from the definitions. □

5. Morphisms of simplicial sites

0D94 We continue in the fashion described in Section 3 working out the meaning of
morphisms of simplicial sites in cases A and B treated in that section.
Remark 5.1.0D95 Let Cn, fφ, uφ and C′

n, f
′
φ, u

′
φ be as in Situation 3.3. A morphism h

between simplicial sites will mean
(A) Morphisms of sites hn : Cn → C′

n such that f ′
φ ◦hn = hm ◦ fφ as morphisms

of sites for all φ : [m]→ [n].
(B) Cocontinuous functors vn : Cn → C′

n inducing morphisms of topoi hn :
Sh(Cn)→ Sh(C′

n) such that u′
φ ◦ vn = vm ◦ uφ as functors for all φ : [m]→

[n].
In both cases we have f ′

φ ◦ hn = hm ◦ fφ as morphisms of topoi, see Sites, Lemma
21.2 for case B and Sites, Definition 14.5 for case A.
Lemma 5.2.0D96 Let Cn, fφ, uφ and C′

n, f
′
φ, u

′
φ be as in Situation 3.3. Let h be a

morphism between simplicial sites as in Remark 5.1. Then we obtain a morphism
of topoi

htotal : Sh(Ctotal)→ Sh(C′
total)

and commutative diagrams

Sh(Cn)

gn

��

hn

// Sh(C′
n)

g′
n

��
Sh(Ctotal)

htotal // Sh(C′
total)

Moreover, we have (g′
n)−1 ◦ htotal,∗ = hn,∗ ◦ g−1

n .
Proof. Case A. Say hn corresponds to the continuous functor vn : C′

n → Cn. Then
we can define a functor vtotal : C′

total → Ctotal by using vn in degree n. This
is clearly a continuous functor (see definition of coverings in Lemma 3.1). Let
h−1
total = vtotal,s : Sh(C′

total)→ Sh(Ctotal) and htotal,∗ = vstotal = vptotal : Sh(Ctotal)→
Sh(C′

total) be the adjoint pair of functors constructed and studied in Sites, Sections
13 and 14. To see that htotal is a morphism of topoi we still have to verify that
h−1
total is exact. We first observe that (g′

n)−1 ◦htotal,∗ = hn,∗ ◦g−1
n ; this is immediate

by computing sections over an object U of C′
n. Thus, if we think of a sheaf F on

Ctotal as a system (Fn,F(φ)) as in Lemma 3.4, then htotal,∗F corresponds to the
system (hn,∗Fn, hn,∗F(φ)). Clearly, the functor (F ′

n,F ′(φ))→ (h−1
n F ′

n, h
−1
n F ′(φ))

is its left adjoint. By uniqueness of adjoints, we conclude that h−1
total is given by

2In case B the morphism a corresponds to the cocontinuous functor Ctotal → D sending U in
Cn to un(U).

https://stacks.math.columbia.edu/tag/0D95
https://stacks.math.columbia.edu/tag/0D96
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this rule on systems. In particular, h−1
total is exact (by the description of sheaves on

Ctotal given in the lemma and the exactness of the functors h−1
n ) and we have our

morphism of topoi. Finally, we obtain g−1
n ◦ h−1

total = h−1
n ◦ (g′

n)−1 as well, which
proves that the displayed diagram of the lemma commutes.

Case B. Here we have a functor vtotal : Ctotal → C′
total by using vn in degree n.

This is clearly a cocontinuous functor (see definition of coverings in Lemma 3.2).
Let htotal be the morphism of topoi associated to vtotal. The commutativity of
the displayed diagram of the lemma follows immediately from Sites, Lemma 21.2.
Taking left adjoints the final equality of the lemma becomes

h−1
total ◦ (g′

n)Sh! = gShn! ◦ h−1
n

This follows immediately from the explicit description of the functors (g′
n)Sh! and

gShn! in Lemma 3.5, the fact that h−1
n ◦ (f ′

φ)−1 = f−1
φ ◦h−1

m for φ : [m]→ [n], and the
fact that we already know h−1

total commutes with restrictions to the degree n parts
of the simplicial sites. □

Lemma 5.3.0D97 With notation and hypotheses as in Lemma 5.2. For K ∈ D(Ctotal)
we have (g′

n)−1Rhtotal,∗K = Rhn,∗g
−1
n K.

Proof. Let I• be a K-injective complex on Ctotal representing K. Then g−1
n K

is represented by g−1
n I• = I•

n which is K-injective by Lemma 3.6. We have
(g′
n)−1htotal,∗I• = hn,∗g

−1
n I•

n by Lemma 5.2 which gives the desired equality. □

Remark 5.4.0D98 Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 3.3. Let a0, resp.

a′
0 be an augmentation towards a site D, resp. D′ as in Remark 4.1. Let h be a

morphism between simplicial sites as in Remark 5.1. We say a morphism of topoi
h−1 : Sh(D)→ Sh(D′) is compatible with h, a0, a′

0 if
(A) h−1 comes from a morphism of sites h−1 : D → D′ such that a′

0 ◦ h0 =
h−1 ◦ a0 as morphisms of sites.

(B) h−1 comes from a cocontinuous functor v−1 : D → D′ such that u′
0 ◦ v0 =

v−1 ◦ u0 as functors.
In both cases we have a′

0 ◦ h0 = h−1 ◦ a0 as morphisms of topoi, see Sites, Lemma
21.2 for case B and Sites, Definition 14.5 for case A.

Lemma 5.5.0D99 Let Cn, fφ, uφ,D, a0, C′
n, f

′
φ, u

′
φ,D′, a′

0, and hn, n ≥ −1 be as in
Remark 5.4. Then we obtain a commutative diagram

Sh(Ctotal)

a

��

htotal

// Sh(C′
total)

a′

��
Sh(D)

h−1 // Sh(D′)

Proof. The morphism h is defined in Lemma 5.2. The morphisms a and a′ are
defined in Lemma 4.2. Thus the only thing is to prove the commutativity of the
diagram. To do this, we prove that a−1 ◦h−1

−1 = h−1
total ◦ (a′)−1. By the commutative

diagrams of Lemma 5.2 and the description of Sh(Ctotal) and Sh(C′
total) in terms of

https://stacks.math.columbia.edu/tag/0D97
https://stacks.math.columbia.edu/tag/0D98
https://stacks.math.columbia.edu/tag/0D99
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components in Lemma 3.4, it suffices to show that

Sh(Cn)

an

��

hn

// Sh(C′
n)

a′
n

��
Sh(D)

h−1 // Sh(D′)

commutes for all n. This follows from the case for n = 0 (which is an assumption
in Remark 5.4) and for n > 0 we pick φ : [0]→ [n] and then the required commu-
tativity follows from the case n = 0 and the relations an = a0 ◦ fφ and a′

n = a′
0 ◦ f ′

φ

as well as the commutation relations f ′
φ ◦ hn = h0 ◦ fφ. □

6. Ringed simplicial sites

0D71 Let us endow our simplicial topos with a sheaf of rings.

Lemma 6.1.0D72 In Situation 3.3. Let O be a sheaf of rings on Ctotal. There is
a canonical morphism of ringed topoi gn : (Sh(Cn),On) → (Sh(Ctotal),O) agree-
ing with the morphism gn of Lemma 3.5 on underlying topoi. The functor g∗

n :
Mod(O)→ Mod(On) has a left adjoint gn!. For G in Mod(On)-modules the restric-
tion of gn!G to Cm is ⊕

φ:[n]→[m]
f∗
φG

where fφ : (Sh(Cm),Om) → (Sh(Cn),On) is the morphism of ringed topoi agreeing
with the previously defined fφ on topoi and using the map O(φ) : f−1

φ On → Om on
sheaves of rings.

Proof. By Lemma 3.5 we have g−1
n O = On and hence we obtain our morphism of

ringed topoi. By Modules on Sites, Lemma 41.1 we obtain the adjoint gn!. To prove
the formula for gn! we first define a sheaf of O-modules H on Ctotal with degree m
component the Om-module

Hm =
⊕

φ:[n]→[m]
f∗
φG

Given a map ψ : [m]→ [m′] the mapH(ψ) : f−1
ψ Hm → Hm′ is given on components

by
f−1
ψ f∗

φG → f∗
ψf

∗
φG → f∗

ψ◦φG

Since this map f−1
ψ Hm → Hm′ is O(ψ) : f−1

ψ Om → Om′ -semi-linear, this indeed
does define an O-module (use Lemma 3.4). Then one proves directly that

MorOn
(G,Fn) = MorO(H,F)

proceeding as in the proof of Lemma 3.5. Thus H = gn!G as desired. □

Lemma 6.2.0D73 In Situation 3.3. Let O be a sheaf of rings on Ctotal. If I is injective
in Mod(O), then In is a totally acyclic sheaf on Cn.

Proof. This follows from Cohomology on Sites, Lemma 37.4 applied to the inclu-
sion functor Cn → Ctotal and its properties proven in Lemma 3.5. □

Lemma 6.3.0D74 With assumptions as in Lemma 6.1 the functor gn! : Mod(On) →
Mod(O) is exact if the maps f−1

φ On → Om are flat for all φ : [n]→ [m].

https://stacks.math.columbia.edu/tag/0D72
https://stacks.math.columbia.edu/tag/0D73
https://stacks.math.columbia.edu/tag/0D74
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Proof. Recall that gn!G is the O-module whose degree m part is the Om-module⊕
φ:[n]→[m]

f∗
φG

Here the morphism of ringed topoi fφ : (Sh(Cm),Om)→ (Sh(Cn),On) uses the map
f−1
φ On → Om of the statement of the lemma. If these maps are flat, then f∗

φ is
exact (Modules on Sites, Lemma 31.2). By definition of the site Ctotal we see that
these functors have the desired exactness properties and we conclude. □

Lemma 6.4.0D75 In Situation 3.3. Let O be a sheaf of rings on Ctotal such that
f−1
φ On → Om is flat for all φ : [n] → [m]. If I is injective in Mod(O), then In is

injective in Mod(On).

Proof. This follows from Homology, Lemma 29.1 and Lemma 6.3. □

7. Morphisms of ringed simplicial sites

0DGY We continue the discussion of Section 5.

Remark 7.1.0DGZ Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 3.3. Let O and O′ be

a sheaf of rings on Ctotal and C′
total. We will say that (h, h♯) is a morphism between

ringed simplicial sites if h is a morphism between simplicial sites as in Remark 5.1
and h♯ : h−1

totalO′ → O or equivalently h♯ : O′ → htotal,∗O is a homomorphism of
sheaves of rings.

Lemma 7.2.0DH0 Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 3.3. Let O and O′

be a sheaf of rings on Ctotal and C′
total. Let (h, h♯) be a morphism between simplicial

sites as in Remark 7.1. Then we obtain a morphism of ringed topoi

htotal : (Sh(Ctotal,O)→ (Sh(C′
total),O′)

and commutative diagrams

(Sh(Cn),On)

gn

��

hn

// (Sh(C′
n),O′

n)

g′
n

��
(Sh(Ctotal),O) htotal // (Sh(C′

total),O′)

of ringed topoi where gn and g′
n are as in Lemma 6.1. Moreover, we have (g′

n)∗ ◦
htotal,∗ = hn,∗ ◦ g∗

n as functor Mod(O)→ Mod(O′
n).

Proof. Follows from Lemma 5.2 and 6.1 by keeping track of the sheaves of rings.
A small point is that in order to define hn as a morphism of ringed topoi we
set h♯n = g−1

n h♯ : g−1
n h−1

totalO′ → g−1
n O which makes sense because g−1

n h−1
totalO′ =

h−1
n (g′

n)−1O′ = h−1
n O′

n and g−1
n O = On. Note that g∗

nF = g−1
n F for a sheaf of O-

modules F and similarly for g′
n and this helps explain why (g′

n)∗◦htotal,∗ = hn,∗◦g∗
n

follows from the corresponding statement of Lemma 5.2. □

Lemma 7.3.0DH1 With notation and hypotheses as in Lemma 7.2. For K ∈ D(O) we
have (g′

n)∗Rhtotal,∗K = Rhn,∗g
∗
nK.

Proof. Recall that g∗
n = g−1

n because g−1
n O = On by the construction in Lemma

6.1. In particular g∗
n is exact and Lg∗

n is given by applying g∗
n to any representa-

tive complex of modules. Similarly for g′
n. There is a canonical base change map

https://stacks.math.columbia.edu/tag/0D75
https://stacks.math.columbia.edu/tag/0DGZ
https://stacks.math.columbia.edu/tag/0DH0
https://stacks.math.columbia.edu/tag/0DH1
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(g′
n)∗Rhtotal,∗K → Rhn,∗g

∗
nK, see Cohomology on Sites, Remark 19.3. By Coho-

mology on Sites, Lemma 20.7 the image of this inD(C′
n) is the map (g′

n)−1Rhtotal,∗Kab →
Rhn,∗g

−1
n Kab where Kab is the image of K in D(Ctotal). This we proved to be an

isomorphism in Lemma 5.3 and the result follows. □

8. Cohomology on simplicial sites

0D76 Let C be as in Situation 3.3. In statement of the following lemmas we will let
gn : Sh(Cn)→ Sh(Ctotal) be the morphism of topoi of Lemma 3.5. If φ : [m]→ [n]
is a morphism of ∆, then the diagram of topoi

Sh(Cn)

gn %%

fφ

// Sh(Cm)

gmyy
Sh(Ctotal)

is not commutative, but there is a 2-morphism gn → gm ◦fφ coming from the maps
F(φ) : f−1

φ Fm → Fn. See Sites, Section 36.

Lemma 8.1.09WI In Situation 3.3 and with notation as above there is a complex
. . .→ g2!Z→ g1!Z→ g0!Z

of abelian sheaves on Ctotal which forms a resolution of the constant sheaf with value
Z on Ctotal.

Proof. We will use the description of the functors gn! in Lemma 3.5 without further
mention. As maps of the complex we take

∑
(−1)idni where dni : gn!Z→ gn−1!Z is

the adjoint to the map Z→
⊕

[n−1]→[n] Z = g−1
n gn−1!Z corresponding to the factor

labeled with δni : [n−1]→ [n]. Then g−1
m applied to the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

on Cm. In other words, this is the complex associated to the free abelian sheaf
on the simplicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 26.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to
the free abelian sheaf on ∆[0] (Simplicial, Remark 26.4 and Lemma 27.2). This
complex is acyclic in positive degrees and equal to Z in degree 0. □

Lemma 8.2.0D77 In Situation 3.3. Let F be an abelian sheaf on Ctotal there is a
canonical complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. Observe that Hom(Z,F) = Γ(Ctotal,F) and Hom(gn!Z,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 8.1 and the fact that
Hom(−,F) is exact if F is injective. □

Lemma 8.3.09WJ In Situation 3.3. For K in D+(Ctotal) there is a spectral sequence
(Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

https://stacks.math.columbia.edu/tag/09WI
https://stacks.math.columbia.edu/tag/0D77
https://stacks.math.columbia.edu/tag/09WJ
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Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = Γ(Cp, Iqp)

where the horizontal arrows come from Lemma 8.2 and the vertical arrows from the
differentials of the complex I•. The rows of the double complex are exact in positive
degrees and evaluate to Γ(Ctotal, Iq) in degree 0. On the other hand, since restriction
to Cp is exact (Lemma 3.5) the complex I•

p represents Kp in D(Cp). The sheaves
Iqp are injective abelian sheaves on Cp (Lemma 3.6). Hence the cohomology of the
columns computes the groups Hq(Cp,Kp). We conclude by applying Homology,
Lemmas 25.3 and 25.4. □

Remark 8.4.0H0V Assumptions and notation as in Lemma 8.3 except we do not require
K in D(Ctotal) to be bounded below. We claim there is a natural spectral sequence
in this case also. Namely, suppose that I• is a K-injective complex of sheaves on
Ctotal with injective terms representing K. We have

RΓ(Ctotal,K) = RHom(Z,K)
= RHom(. . .→ g2!Z→ g1!Z→ g0!Z,K)
= Γ(Ctotal,Hom•(. . .→ g2!Z→ g1!Z→ g0!Z, I•))
= Totπ(A•,•)

where A•,• is the double complex with terms Ap,q = Γ(Cp, Iqp) and Totπ denotes the
product totalization of this double complex. Namely, the first equality holds in any
site. The second equality holds by Lemma 8.1. The third equality holds because
I• is K-injective, see Cohomology on Sites, Sections 34 and 35. The final equality
holds by the construction of Hom• and the fact that Hom(gp!Z, Iq) = Γ(Cp, Iqp).
Then we get our spectral sequence by viewing Totπ(A•,•) as a filtered complex with
F iTotnπ(A•,•) =

∏
p+q=n, p≥iA

p,q. The spectral sequence we obtain behaves like the
spectral sequence (′Er,

′dr)r≥0 in Homology, Section 25 (where the case of the direct
sum totalization is discussed) except for regularity, boundedness, convergence, and
abutment issues. In particular we obtain Ep,q1 = Hq(Cp,Kp) as in Lemma 8.3.

Lemma 8.5.0H0W In Situation 3.3. Let K be an object of D(Ctotal).
(1) If H−p(Cp,Kp) = 0 for all p ≥ 0, then H0(Ctotal,K) = 0.
(2) If RΓ(Cp,Kp) = 0 for all p ≥ 0, then RΓ(Ctotal,K) = 0.

Proof. With notation as in Remark 8.4 we see that RΓ(Ctotal,K) is represented by
Totπ(A•,•). The assumption in (1) tells us that H−p(Ap,•) = 0. Thus the vanishing
in (1) follows from More on Algebra, Lemma 103.1. Part (2) follows from part (1)
and taking shifts. □

Lemma 8.6.0DBZ Let C be as in Situation 3.3. Let U ∈ Ob(Cn). Let F ∈ Ab(Ctotal).
Then Hp(U,F) = Hp(U, g−1

n F) where on the left hand side U is viewed as an object
of Ctotal.

Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 3.1 in case (A) and Lemma 3.2 in case (B). The equality then
follows from Lemma 3.6 and the definition of cohomology. □

https://stacks.math.columbia.edu/tag/0H0V
https://stacks.math.columbia.edu/tag/0H0W
https://stacks.math.columbia.edu/tag/0DBZ
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9. Cohomology and augmentations of simplicial sites

0D9A Consider a simplicial site C as in Situation 3.3. Let a0 be an augmentation towards
a site D as in Remark 4.1. By Lemma 4.2 we obtain a morphism of topoi

a : Sh(Ctotal) −→ Sh(D)

and morphisms of topoi gn : Sh(Cn) → Sh(Ctotal) as in Lemma 3.5. The com-
positions a ◦ gn are denoted an : Sh(Cn) → Sh(D). Furthermore, the simplicial
structure gives morphisms of topoi fφ : Sh(Cn) → Sh(Cm) such that an ◦ fφ = am
for all φ : [m]→ [n].

Lemma 9.1.0D78 In Situation 3.3 let a0 be an augmentation towards a site D as in
Remark 4.1. For any abelian sheaf G on D there is an exact complex

. . .→ g2!(a−1
2 G)→ g1!(a−1

1 G)→ g0!(a−1
0 G)→ a−1G → 0

of abelian sheaves on Ctotal.

Proof. We encourage the reader to read the proof of Lemma 8.1 first. We will use
Lemma 4.2 and the description of the functors gn! in Lemma 3.5 without further
mention. In particular gn!(a−1

n G) is the sheaf on Ctotal whose restriction to Cm is
the sheaf ⊕

φ:[n]→[m]
f−1
φ a−1

n G =
⊕

φ:[n]→[m]
a−1
m G

As maps of the complex we take
∑

(−1)idni where dni : gn!(a−1
n G)→ gn−1!(a−1

n−1G) is
the adjoint to the map a−1

n G →
⊕

[n−1]→[n] a
−1
n G = g−1

n gn−1!(a−1
n−1G) corresponding

to the factor labeled with δni : [n− 1]→ [n]. The map g0!(a−1
0 G)→ a−1G is adjoint

to the identity map of a−1
0 G. Then g−1

m applied to the chain complex in degrees
. . . , 2, 1, 0 gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
a−1
m G →

⊕
α∈Mor∆([1],[m])]

a−1
m G →

⊕
α∈Mor∆([0],[m])]

a−1
m G

on Cm. This is equal to a−1
m G tensored over the constant sheaf Z with the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

discussed in the proof of Lemma 8.1. There we have seen that this complex is
homotopy equivalent to Z placed in degree 0 which finishes the proof. □

Lemma 9.2.0D79 In Situation 3.3 let a0 be an augmentation towards a site D as in
Remark 4.1. For an abelian sheaf F on Ctotal there is a canonical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

on D which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any abelian
sheaf G on D to construct a complex

0→ Hom(G, a∗F)→ Hom(G, a0,∗F0)→ Hom(G, a1,∗F1)→ . . .

functorially in G. To do this apply Hom(−,F) to the exact complex of Lemma
9.1 and use adjointness of pullback and pushforward. The exactness properties in
degrees −1, 0 follow from the construction as Hom(−,F) is left exact. If F is an
injective abelian sheaf, then the complex is exact because Hom(−,F) is exact. □

https://stacks.math.columbia.edu/tag/0D78
https://stacks.math.columbia.edu/tag/0D79
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Lemma 9.3.0D7A In Situation 3.3 let a0 be an augmentation towards a site D as in
Remark 4.1. For any K in D+(Ctotal) there is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Rqap,∗Kp, dp,q1 : Ep,q1 → Ep+1,q
1

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 9.2 and the vertical arrows from
the differentials of the complex I•. The rows of the double complex are exact
in positive degrees and evaluate to a∗Iq in degree 0. On the other hand, since
restriction to Cp is exact (Lemma 3.5) the complex I•

p represents Kp in D(Cp). The
sheaves Iqp are injective abelian sheaves on Cp (Lemma 3.6). Hence the cohomology
of the columns computes Rqap,∗Kp. We conclude by applying Homology, Lemmas
25.3 and 25.4. □

10. Cohomology on ringed simplicial sites

0D7B This section is the analogue of Section 8 for sheaves of modules.
In Situation 3.3 let O be a sheaf of rings on Ctotal. In statement of the following
lemmas we will let gn : (Sh(Cn),On) → (Sh(Ctotal),O) be the morphism of ringed
topoi of Lemma 6.1. If φ : [m] → [n] is a morphism of ∆, then the diagram of
ringed topoi

(Sh(Cn),On)

gn ((

fφ

// (Sh(Cm),Om)

gmvv
(Sh(Ctotal),O)

is not commutative, but there is a 2-morphism gn → gm ◦fφ coming from the maps
F(φ) : f−1

φ Fm → Fn. See Sites, Section 36.

Lemma 10.1.0D9B In Situation 3.3 let O be a sheaf of rings on Ctotal. There is a
complex

. . .→ g2!O2 → g1!O1 → g0!O0

of O-modules which forms a resolution of O. Here gn! is as in Lemma 6.1.

Proof. We will use the description of gn! given in Lemma 3.5. As maps of the
complex we take

∑
(−1)idni where dni : gn!On → gn−1!On−1 is the adjoint to the

map On →
⊕

[n−1]→[n]On = g∗
ngn−1!On−1 corresponding to the factor labeled with

δni : [n− 1]→ [n]. Then g−1
m applied to the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Om →

⊕
α∈Mor∆([1],[m])]

Om →
⊕

α∈Mor∆([0],[m])]
Om

on Cm. In other words, this is the complex associated to the free Om-module on
the simplicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 26.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to
the free abelian sheaf on ∆[0] (Simplicial, Remark 26.4 and Lemma 27.2). This
complex is acyclic in positive degrees and equal to Om in degree 0. □

https://stacks.math.columbia.edu/tag/0D7A
https://stacks.math.columbia.edu/tag/0D9B
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Lemma 10.2.0D9C In Situation 3.3 let O be a sheaf of rings. Let F be a sheaf of
O-modules. There is a canonical complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

which is exact in degrees −1, 0 and exact everywhere if F is an injective O-module.

Proof. Observe that Hom(O,F) = Γ(Ctotal,F) and Hom(gn!On,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 10.1 and the fact that
Hom(−,F) is exact if F is injective. □

Lemma 10.3.0D7E In Situation 3.3 let O be a sheaf of rings. For K in D+(O) there
is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing
K. Consider the double complex with terms

Ap,q = Γ(Cp, Iqp)
where the horizontal arrows come from Lemma 10.2 and the vertical arrows from
the differentials of the complex I•. Observe that Γ(D,−) = HomOD (OD,−) on
Mod(OD). Hence the lemma says rows of the double complex are exact in positive
degrees and evaluate to Γ(Ctotal, Iq) in degree 0. Thus the total complex associated
to the double complex computes RΓ(Ctotal,K) by Homology, Lemma 25.4. On the
other hand, since restriction to Cp is exact (Lemma 3.5) the complex I•

p represents
Kp in D(Cp). The sheaves Iqp are totally acyclic on Cp (Lemma 6.2). Hence the
cohomology of the columns computes the groups Hq(Cp,Kp) by Leray’s acyclicity
lemma (Derived Categories, Lemma 16.7) and Cohomology on Sites, Lemma 14.3.
We conclude by applying Homology, Lemma 25.3. □

Lemma 10.4.0DH2 In Situation 3.3 let O be a sheaf of rings. Let U ∈ Ob(Cn). Let
F ∈ Mod(O). Then Hp(U,F) = Hp(U, g∗

nF) where on the left hand side U is
viewed as an object of Ctotal.

Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 3.1 in case (A) and Lemma 3.2 in case (B). In both cases the
functor Cn → C is continuous and cocontinuous, see Lemma 3.5, and g−1

n O = On
by definition. Hence the result is a special case of Cohomology on Sites, Lemma
37.5. □

11. Cohomology and augmentations of ringed simplicial sites

0D9D This section is the analogue of Section 9 for sheaves of modules.
Consider a simplicial site C as in Situation 3.3. Let a0 be an augmentation towards
a site D as in Remark 4.1. Let O be a sheaf of rings on Ctotal. Let OD be a sheaf
of rings on D. Suppose we are given a morphism

a♯ : OD −→ a∗O

where a is as in Lemma 4.2. Consequently, we obtain a morphism of ringed topoi
a : (Sh(Ctotal),O) −→ (Sh(D),OD)

https://stacks.math.columbia.edu/tag/0D9C
https://stacks.math.columbia.edu/tag/0D7E
https://stacks.math.columbia.edu/tag/0DH2
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We will think of gn : (Sh(Cn),On)→ (Sh(Ctotal),O) as a morphism of ringed topoi
as in Lemma 6.1, then taking the composition an = a◦gn (Lemma 4.2) as morphisms
of ringed topoi we obtain

an : (Sh(Cn),On) −→ (Sh(D),OD)

Using the transition maps f−1
φ Om → On we obtain morphisms of ringed topoi

fφ : (Sh(Cn),On)→ (Sh(Cm),Om)

such that an ◦ fφ = am as morphisms of ringed topoi for all φ : [m]→ [n].

Lemma 11.1.0DH3 With notation as above. The morphism a : (Sh(Ctotal),O) →
(Sh(D),OD) is flat if and only if an : (Sh(Cn),On) → (Sh(D),OD) is flat for
n ≥ 0.

Proof. Since gn : (Sh(Cn),On) → (Sh(Ctotal),O) is flat, we see that if a is flat,
then an = a ◦ gn is flat as a composition. Conversely, suppose that an is flat for all
n. We have to check that O is flat as a sheaf of a−1OD-modules. Let F → G be an
injective map of a−1OD-modules. We have to show that

F ⊗a−1OD O → G ⊗a−1OD O

is injective. We can check this on Cn, i.e., after applying g−1
n . Since g∗

n = g−1
n

because g−1
n O = On we obtain

g−1
n F ⊗g−1

n a−1OD
On → g−1

n G ⊗g−1
n a−1OD

On

which is injective because g−1
n a−1OD = a−1

n OD and we assume an was flat. □

Lemma 11.2.0D7C With notation as above. For a OD-module G there is an exact
complex

. . .→ g2!(a∗
2G)→ g1!(a∗

1G)→ g0!(a∗
0G)→ a∗G → 0

of sheaves of O-modules on Ctotal. Here gn! is as in Lemma 6.1.

Proof. Observe that a∗G is the O-module on Ctotal whose restriction to Cm is
the Om-module a∗

mG. The description of the functors gn! on modules in Lemma
6.1 shows that gn!(a∗

nG) is the O-module on Ctotal whose restriction to Cm is the
Om-module ⊕

φ:[n]→[m]
f∗
φa

∗
nG =

⊕
φ:[n]→[m]

a∗
mG

The rest of the proof is exactly the same as the proof of Lemma 9.1, replacing a−1
m G

by a∗
mG. □

Lemma 11.3.0D7D With notation as above. For an O-module F on Ctotal there is a
canonical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

of OD-modules which is exact in degrees −1, 0. If F is an injective O-module,
then the complex is exact in all degrees and remains exact on applying the functor
HomOD (G,−) for any OD-module G.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any OD-
modules G on D to construct a complex

0→ HomOD (G, a∗F)→ HomOD (G, a0,∗F0)→ HomOD (G, a1,∗F1)→ . . .

https://stacks.math.columbia.edu/tag/0DH3
https://stacks.math.columbia.edu/tag/0D7C
https://stacks.math.columbia.edu/tag/0D7D
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functorially in G. To do this apply HomO(−,F) to the exact complex of Lemma
11.2 and use adjointness of pullback and pushforward. The exactness properties in
degrees −1, 0 follow from the construction as HomO(−,F) is left exact. If F is an
injective O-module, then the complex is exact because HomO(−,F) is exact. □

Lemma 11.4.0D7F With notation as above for any K in D+(O) there is a spectral
sequence (Er, dr)r≥0 in Mod(OD) with

Ep,q1 = Rqap,∗Kp

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing
K. Consider the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 11.3 and the vertical arrows from
the differentials of the complex I•. The lemma says rows of the double complex
are exact in positive degrees and evaluate to a∗Iq in degree 0. Thus the total
complex associated to the double complex computes Ra∗K by Homology, Lemma
25.4. On the other hand, since restriction to Cp is exact (Lemma 3.5) the complex
I•
p represents Kp in D(Cp). The sheaves Iqp are totally acyclic on Cp (Lemma 6.2).

Hence the cohomology of the columns are the sheavesRqap,∗Kp by Leray’s acyclicity
lemma (Derived Categories, Lemma 16.7) and Cohomology on Sites, Lemma 14.3.
We conclude by applying Homology, Lemma 25.3. □

12. Cartesian sheaves and modules

0D7G Here is the definition.

Definition 12.1.07TF In Situation 3.3.
(1) A sheaf F of sets or of abelian groups on Ctotal is cartesian if the maps
F(φ) : f−1

φ Fm → Fn are isomorphisms for all φ : [m]→ [n].
(2) If O is a sheaf of rings on Ctotal, then a sheaf F of O-modules is cartesian

if the maps f∗
φFm → Fn are isomorphisms for all φ : [m]→ [n].

(3) An object K of D(Ctotal) is cartesian if the maps f−1
φ Km → Kn are iso-

morphisms for all φ : [m]→ [n].
(4) If O is a sheaf of rings on Ctotal, then an object K of D(O) is cartesian if

the maps Lf∗
φKm → Kn are isomorphisms for all φ : [m]→ [n].

Of course there is a general notion of a cartesian section of a fibred category and
the above are merely examples of this. The property on pullbacks needs only be
checked for the degeneracies.

Lemma 12.2.07TG In Situation 3.3.
(1) A sheaf F of sets or abelian groups is cartesian if and only if the maps

(fδn
j

)−1Fn−1 → Fn are isomorphisms.
(2) An object K of D(Ctotal) is cartesian if and only if the maps (fδn

j
)−1Kn−1 →

Kn are isomorphisms.
(3) If O is a sheaf of rings on Ctotal a sheaf F of O-modules is cartesian if and

only if the maps (fδn
j

)∗Fn−1 → Fn are isomorphisms.
(4) If O is a sheaf of rings on Ctotal an object K of D(O) is cartesian if and

only if the maps L(fδn
j

)∗Kn−1 → Kn are isomorphisms.

https://stacks.math.columbia.edu/tag/0D7F
https://stacks.math.columbia.edu/tag/07TF
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(5) Add more here.

Proof. In each case the key is that the pullback functors compose to pullback
functor; for part (4) see Cohomology on Sites, Lemma 18.3. We show how the
argument works in case (1) and omit the proof in the other cases. The category ∆
is generated by the morphisms the morphisms δnj and σnj , see Simplicial, Lemma 2.2.
Hence we only need to check the maps (fδn

j
)−1Fn−1 → Fn and (fσn

j
)−1Fn+1 → Fn

are isomorphisms, see Simplicial, Lemma 3.2 for notation. Since σnj ◦ δn+1
j = id[n]

the composition

Fn = (fσn
j

)−1(fδn+1
j

)−1Fn → (fσn
j

)−1Fn+1 → Fn

is the identity. Thus the result for δn+1
j implies the result for σnj . □

Lemma 12.3.0D7H In Situation 3.3 let a0 be an augmentation towards a site D as in
Remark 4.1.

(1) The pullback a−1G of a sheaf of sets or abelian groups on D is cartesian.
(2) The pullback a−1K of an object K of D(D) is cartesian.

Let O be a sheaf of rings on Ctotal and OD a sheaf of rings on D and a♯ : OD → a∗O
a morphism as in Section 11.

(3) The pullback a∗F of a sheaf of OD-modules is cartesian.
(4) The derived pullback La∗K of an object K of D(OD) is cartesian.

Proof. This follows immediately from the identities am ◦ fφ = an for all φ : [m]→
[n]. See Lemma 4.2 and the discussion in Section 11. □

Lemma 12.4.0D7I In Situation 3.3. The category of cartesian sheaves of sets (resp.
abelian groups) is equivalent to the category of pairs (F , α) where F is a sheaf of
sets (resp. abelian groups) on C0 and

α : (fδ1
1
)−1F −→ (fδ1

0
)−1F

is an isomorphism of sheaves of sets (resp. abelian groups) on C1 such that (fδ2
1
)−1α =

(fδ2
0
)−1α ◦ (fδ2

2
)−1α as maps of sheaves on C2.

Proof. We abbreviate dnj = fδn
j

: Sh(Cn) → Sh(Cn−1). The condition on α in the
statement of the lemma makes sense because

d1
1 ◦ d2

2 = d1
1 ◦ d2

1, d1
1 ◦ d2

0 = d1
0 ◦ d2

2, d1
0 ◦ d2

0 = d1
0 ◦ d2

1

as morphisms of topoi Sh(C2)→ Sh(C0), see Simplicial, Remark 3.3. Hence we can
picture these maps as follows

(d2
0)−1(d1

1)−1F
(d2

0)−1α

// (d2
0)−1(d1

0)−1F

(d2
2)−1(d1

0)−1F (d2
1)−1(d1

0)−1F

(d2
2)−1(d1

1)−1F
(d2

2)−1α

hh

(d2
1)−1(d1

1)−1F
(d2

1)−1α

66
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and the condition signifies the diagram is commutative. It is clear that given a
cartesian sheaf G of sets (resp. abelian groups) on Ctotal we can set F = G0 and α
equal to the composition

(d1
1)−1G0 → G1 ← (d0

1)−1G0

where the arrows are invertible as G is cartesian. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 3 from which we borrow
the notation τni : [0]→ [n], 0 7→ i and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Namely, given a
pair (F , α) as in the lemma we set Gn = (fτnn )−1F . Given φ : [n]→ [m] we define
G(φ) : (fφ)−1Gn → Gm using

(fφ)−1Gn (fφ)−1(fτnn )−1F (fτm
φ(n)

)−1F (fτm
φ(n)m

)−1(d1
1)−1F

(fτm
φ(n)m

)−1α

��
Gm (fτmm )−1F (fτm

φ(n)m
)−1(d1

0)−1F

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly and hence give rise to a sheaf on Ctotal, see
Lemma 3.4. We also omit the verification that the two functors are quasi-inverse
to each other. □

Lemma 12.5.07TH In Situation 3.3 let O be a sheaf of rings on Ctotal. The category
of cartesian O-modules is equivalent to the category of pairs (F , α) where F is a
O0-module and

α : (fδ1
1
)∗F −→ (fδ1

0
)∗F

is an isomorphism of O1-modules such that (fδ2
1
)∗α = (fδ2

0
)∗α ◦ (fδ2

2
)∗α as O2-

module maps.

Proof. The proof is identical to the proof of Lemma 12.4 with pullback of sheaves
of abelian groups replaced by pullback of modules. □

Lemma 12.6.0D7J In Situation 3.3.
(1) The full subcategory of cartesian abelian sheaves forms a weak Serre sub-

category of Ab(Ctotal). Colimits of systems of cartesian abelian sheaves are
cartesian.

(2) Let O be a sheaf of rings on Ctotal such that the morphisms
fδn
j

: (Sh(Cn),On)→ (Sh(Cn−1),On−1)
are flat. The full subcategory of cartesian O-modules forms a weak Serre
subcategory of Mod(O). Colimits of systems of cartesian O-modules are
cartesian.

Proof. To see we obtain a weak Serre subcategory in (1) we check the conditions
listed in Homology, Lemma 10.3. First, if φ : F → G is a map between cartesian
abelian sheaves, then Ker(φ) and Coker(φ) are cartesian too because the restriction
functors Sh(Ctotal)→ Sh(Cn) and the functors f−1

φ are exact. Similarly, if
0→ F → H → G → 0

is a short exact sequence of abelian sheaves on Ctotal with F and G cartesian, then
it follows that H is cartesian from the 5-lemma. To see the property of colimits,

https://stacks.math.columbia.edu/tag/07TH
https://stacks.math.columbia.edu/tag/0D7J
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use that colimits commute with pullback as pullback is a left adjoint. In the case of
modules we argue in the same manner, using the exactness of flat pullback (Modules
on Sites, Lemma 31.2) and the fact that it suffices to check the condition for fδn

j
,

see Lemma 12.2. □

Remark 12.7 (Warning).0D7K Lemma 12.6 notwithstanding, it can happen that the
category of cartesian O-modules is abelian without being a Serre subcategory of
Mod(O). Namely, suppose that we only know that fδ1

1
and fδ1

0
are flat. Then it

follows easily from Lemma 12.5 that the category of cartesian O-modules is abelian.
But if fδ2

0
is not flat (for example), there is no reason for the inclusion functor from

the category of cartesian O-modules to all O-modules to be exact.

Lemma 12.8.0D7L In Situation 3.3.
(1) An object K of D(Ctotal) is cartesian if and only if Hq(K) is a cartesian

abelian sheaf for all q.
(2) Let O be a sheaf of rings on Ctotal such that the morphisms fδn

j
: (Sh(Cn),On)→

(Sh(Cn−1),On−1) are flat. Then an object K of D(O) is cartesian if and
only if Hq(K) is a cartesian O-module for all q.

Proof. Part (1) is true because the pullback functors (fφ)−1 are exact. Part (2)
follows from the characterization in Lemma 12.2 and the fact that L(fδn

j
)∗ = (fδn

j
)∗

by flatness. □

Lemma 12.9.0D9E In Situation 3.3.
(1) An object K of D(Ctotal) is cartesian if and only the canonical map

gn!Kn −→ gn!Z⊗L
Z K

is an isomorphism for all n.
(2) Let O be a sheaf of rings on Ctotal such that the morphisms f−1

φ On → Om
are flat for all φ : [n]→ [m]. Then an object K of D(O) is cartesian if and
only if the canonical map

gn!Kn −→ gn!On ⊗L
O K

is an isomorphism for all n.

Proof. Proof of (1). Since gn! is exact, it induces a functor on derived categories
adjoint to g−1

n . The map is the adjoint of the map Kn → (g−1
n gn!Z)⊗L

Z Kn corre-
sponding to Z → g−1

n gn!Z which in turn is adjoint to id : gn!Z → gn!Z. Using the
description of gn! given in Lemma 3.5 we see that the restriction to Cm of this map
is ⊕

φ:[n]→[m]
f−1
φ Kn −→

⊕
φ:[n]→[m]

Km

Thus the statement is clear.
Proof of (2). Since gn! is exact (Lemma 6.3), it induces a functor on derived
categories adjoint to g∗

n (also exact). The map is the adjoint of the map Kn →
(g∗
ngn!On) ⊗L

On
Kn corresponding to On → g∗

ngn!On which in turn is adjoint to
id : gn!On → gn!On. Using the description of gn! given in Lemma 6.1 we see that
the restriction to Cm of this map is⊕

φ:[n]→[m]
f∗
φKn −→

⊕
φ:[n]→[m]

f∗
φOn ⊗Om

Km =
⊕

φ:[n]→[m]
Km

Thus the statement is clear. □

https://stacks.math.columbia.edu/tag/0D7K
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https://stacks.math.columbia.edu/tag/0D9E


SIMPLICIAL SPACES 25

Lemma 12.10.0D7M In Situation 3.3 let O be a sheaf of rings on Ctotal. Let F be a
sheaf of O-modules. Then F is quasi-coherent in the sense of Modules on Sites,
Definition 23.1 if and only if F is cartesian and Fn is a quasi-coherent On-module
for all n.

Proof. Assume F is quasi-coherent. Since pullbacks of quasi-coherent modules are
quasi-coherent (Modules on Sites, Lemma 23.4) we see that Fn is a quasi-coherent
On-module for all n. To show that F is cartesian, let U be an object of Cn for some
n. Let us view U as an object of Ctotal. Because F is quasi-coherent there exists a
covering {Ui → U} and for each i a presentation⊕

j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

Observe that {Ui → U} is a covering of Cn by the construction of the site Ctotal.
Next, let V be an object of Cm for some m and let V → U be a morphism of Ctotal
lying over φ : [n] → [m]. The fibre products Vi = V ×U Ui exist and we get an
induced covering {Vi → V } in Cm. Restricting the presentation above to the sites
Cn/Ui and Cm/Vi we obtain presentations⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0

and ⊕
j∈Ji
OCm/Vi →

⊕
k∈Ki

OCm/Vi → Fm|Cm/Vi → 0

These presentations are compatible with the map F(φ) : f∗
φFn → Fm (as this map

is defined using the restriction maps of F along morphisms of Ctotal lying over φ).
We conclude that F(φ)|Cm/Vi is an isomorphism. As {Vi → V } is a covering we
conclude F(φ)|Cm/V is an isomorphism. Since V and U were arbitrary this proves
that F is cartesian. (In case A use Sites, Lemma 14.10.)

Conversely, assume Fn is quasi-coherent for all n and that F is cartesian. Then for
any n and object U of Cn we can choose a covering {Ui → U} of Cn and for each i
a presentation ⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0

Pulling back to Ctotal/Ui we obtain complexes⊕
j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

of modules on Ctotal/Ui. Then the property that F is cartesian implies that this is
exact. We omit the details. □

13. Simplicial systems of the derived category

0D9F In this section we are going to prove a special case of [BBD82, Proposition 3.2.9] in
the setting of derived categories of abelian sheaves. The case of modules is discussed
in Section 14.

Definition 13.1.0D9G In Situation 3.3. A simplicial system of the derived category
consists of the following data

(1) for every n an object Kn of D(Cn),
(2) for every φ : [m]→ [n] a map Kφ : f−1

φ Km → Kn in D(Cn)

https://stacks.math.columbia.edu/tag/0D7M
https://stacks.math.columbia.edu/tag/0D9G
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subject to the condition that
Kφ◦ψ = Kφ ◦ f−1

φ Kψ : f−1
φ◦ψKl = f−1

φ f−1
ψ Kl −→ Kn

for any morphisms φ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial
system is cartesian if the maps Kφ are isomorphisms for all φ. Given two simpli-
cial systems of the derived category there is an obvious notion of a morphism of
simplicial systems of the derived category.

We have given this notion a ridiculously long name intentionally. The goal is to
show that a simplicial system of the derived category comes from an object of
D(Ctotal) under certain hypotheses.

Lemma 13.2.0D9H In Situation 3.3. If K ∈ D(Ctotal) is an object, then (Kn,K(φ))
is a simplicial system of the derived category. If K is cartesian, so is the system.

Proof. This is obvious. □

Lemma 13.3.0GME In Situation 3.3 suppose given K0 ∈ D(C0) and an isomorphism

α : f−1
δ1

1
K0 −→ f−1

δ1
0
K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = f−1
τnn
K0.

Then the Kn form a cartesian simplicial system of the derived category.

Proof. Please compare with Lemma 12.4 and its proof (also to see the cocycle
condition spelled out). The construction is analogous to the construction discussed
in Descent, Section 3 from which we borrow the notation τni : [0]→ [n], 0 7→ i and
τnij : [1] → [n], 0 7→ i, 1 7→ j. Given φ : [n] → [m] we define Kφ : f−1

φ Kn → Km

using
f−1
φ Kn f−1

φ f−1
τnn
K0 f−1

τm
φ(n)

K0 f−1
τm
φ(n)m

f−1
δ1

1
K0

f−1
τm
φ(n)m

α

��
Km f−1

τmm
K0 f−1

τm
φ(n)m

f−1
δ1

0
K0

We omit the verification that the cocycle condition implies the maps compose cor-
rectly (in their respective derived categories) and hence give rise to a simplicial
system in the derived category. □

Lemma 13.4.0D9I In Situation 3.3. Let K be an object of D(Ctotal). Set

Xn = (gn!Z)⊗L
Z K and Yn = (gn!Z→ . . .→ g0!Z)[−n]⊗L

Z K

as objects of D(Ctotal) where the maps are as in Lemma 8.1. With the evident
canonical maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(Ctotal).

Proof. First, if K = Z, then this is the construction of Derived Categories, Exam-
ple 41.2 applied to the complex

. . .→ g2!Z→ g1!Z→ g0!Z
in Ab(Ctotal) combined with the fact that this complex representsK = Z inD(Ctotal)
by Lemma 8.1. The general case follows from this, the fact that the exact functor

https://stacks.math.columbia.edu/tag/0D9H
https://stacks.math.columbia.edu/tag/0GME
https://stacks.math.columbia.edu/tag/0D9I
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−⊗L
ZK sends Postnikov systems to Postnikov systems, and that −⊗L

ZK commutes
with homotopy colimits. □

Lemma 13.5.0D9J In Situation 3.3. If K,K ′ ∈ D(Ctotal). Assume
(1) K is cartesian,
(2) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(3) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

Proof. Consider the objects Xn and the Postnikov system Yn associated to K in
Lemma 13.4. As K = hocolimYn[n] the map K → K ′ induces a compatible family
of morphisms Yn[n] → K ′. By (1) and Lemma 12.9 we have Xn = gn!Kn. Since
Y0 = X0 we find that K0 → K ′

0 being zero implies Y0 → K ′ is zero. Suppose we’ve
shown that the map Yn[n] → K ′ is zero for some n ≥ 0. From the distinguished
triangle

Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]→ Yn[n+ 1]
we get an exact sequence

Hom(Xn+1[n+ 1],K ′)→ Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)

As Xn+1[n+ 1] = gn+1!Kn+1[n+ 1] the first group is equal to

Hom(Kn+1[n+ 1],K ′
n+1)

which is zero by assumption (2). By induction we conclude all the maps Yn[n]→ K ′

are zero. Consider the defining distinguished triangle⊕
Yn[n]→

⊕
Yn[n]→ K → (

⊕
Yn[n])[1]

for the homotopy colimit. Arguing as above, we find that it suffices to show that

Hom((
⊕

Yn[n])[1],K ′) =
∏

Hom(Yn[n+ 1],K ′)

is zero for all n ≥ 0. To see this, arguing as above, it suffices to show that

Hom(Kn[n+ 1],K ′
n) = 0

for all n ≥ 0 which follows from condition (3). □

Lemma 13.6.0D9K In Situation 3.3. If K,K ′ ∈ D(Ctotal). Assume
(1) K is cartesian,
(2) Hom(Ki[i− 1],K ′

i) = 0 for i > 1.
Then any map {Kn → K ′

n} between the associated simplicial systems of K and K ′

comes from a map K → K ′ in D(Ctotal).

Proof. Let {Kn → K ′
n}n≥0 be a morphism of simplicial systems of the derived

category. Consider the objects Xn and Postnikov system Yn associated to K of
Lemma 13.4. By (1) and Lemma 12.9 we have Xn = gn!Kn. In particular, the
map K0 → K ′

0 induces a morphism X0 → K ′. Since {Kn → K ′
n} is a morphism of

systems, a computation (omitted) shows that the composition

X1 → X0 → K ′

is zero. As Y0 = X0 and as Y1 fits into a distinguished triangle

Y1 → X1 → Y0 → Y1[1]

https://stacks.math.columbia.edu/tag/0D9J
https://stacks.math.columbia.edu/tag/0D9K
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we conclude that there exists a morphism Y1[1] → K ′ whose composition with
X0 = Y0 → Y1[1] is the morphism X0 → K ′ given above. Suppose given a map
Yn[n]→ K ′ for n ≥ 1. From the distinguished triangle

Xn+1[n]→ Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]
we get an exact sequence

Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)→ Hom(Xn+1[n],K ′)
As Xn+1[n] = gn+1!Kn+1[n] the last group is equal to

Hom(Kn+1[n],K ′
n+1)

which is zero by assumption (2). By induction we get a system of maps Yn[n] →
K ′ compatible with transition maps and reducing to the given map on Y0. This
produces a map

γ : K = hocolimYn[n] −→ K ′

This map in any case has the property that the diagram
X0

!!

// K

γ

��
K ′

is commutative. Restricting to C0 we deduce that the map γ0 : K0 → K ′
0 is the

same as the first map K0 → K ′
0 of the morphism of simplicial systems. Since K

is cartesian, this easily gives that {γn} is the map of simplicial systems we started
out with. □

Lemma 13.7.0D9L In Situation 3.3. Let (Kn,Kφ) be a simplicial system of the derived
category. Assume

(1) (Kn,Kφ) is cartesian,
(2) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(Ctotal) whose associated simplicial sys-
tem is isomorphic to (Kn,Kφ).

Proof. Set Xn = gn!Kn in D(Ctotal). For each n ≥ 1 we have

Hom(Xn, Xn−1) = Hom(Kn, g
−1
n gn−1!Kn−1) =

⊕
φ:[n−1]→[n]

Hom(Kn, f
−1
φ Kn−1)

Thus we get a map Xn → Xn−1 corresponding to the alternating sum of the maps
K−1
φ : Kn → f−1

φ Kn−1 where φ runs over δn0 , . . . , δnn . We can do this because Kφ

is invertible by assumption (1). Please observe the similarity with the definition of
the maps in the proof of Lemma 8.1. We obtain a complex

. . .→ X2 → X1 → X0

in D(Ctotal). We omit the computation which shows that the compositions are zero.
By Derived Categories, Lemma 41.6 if we have

Hom(Xi[i− j − 2], Xj) = 0 for i > j + 2
then we can extend this complex to a Postnikov system. The group is equal to

Hom(Ki[i− j − 2], g−1
i gj!Kj)

Again using that (Kn,Kφ) is cartesian we see that g−1
i gj!Kj is isomorphic to a

finite direct sum of copies of Ki. Hence the group vanishes by assumption (2).

https://stacks.math.columbia.edu/tag/0D9L
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Let the Postnikov system be given by Y0 = X0 and distinguished sequences Yn →
Xn → Yn−1 → Yn[1] for n ≥ 1. We set

K = hocolimYn[n]

To finish the proof we have to show that g−1
m K is isomorphic to Km for all m

compatible with the maps Kφ. Observe that

g−1
m K = hocolimg−1

m Yn[n]

and that g−1
m Yn[n] is a Postnikov system for g−1

m Xn. Consider the isomorphisms

g−1
m Xn =

⊕
φ:[n]→[m]

f−1
φ Kn

⊕
Kφ

−−−−→
⊕

φ:[n]→[m]
Km

These maps define an isomorphism of complexes

. . . // g−1
m X2 //

��

g−1
m X1 //

��

g−1
m X0

��
. . . //⊕

φ:[2]→[m] Km
//⊕

φ:[1]→[m] Km
//⊕

φ:[0]→[m] Km

in D(Cm) where the arrows in the bottom row are as in the proof of Lemma 8.1. The
squares commute by our choice of the arrows of the complex . . .→ X2 → X1 → X0;
we omit the computation. The bottom row complex has a postnikov tower given
by

Y ′
m,n =

(⊕
φ:[n]→[m]

Z→ . . .→
⊕

φ:[0]→[m]
Z

)
[−n]⊗L

Z Km

and hocolimY ′
m,n = Km (please compare with the proof of Lemma 13.4 and Derived

Categories, Example 41.2). Applying the second part of Derived Categories, Lemma
41.6 the vertical maps in the big diagram extend to an isomorphism of Postnikov
systems provided we have

Hom(g−1
m Xi[i− j − 1],

⊕
φ:[j]→[m]

Km) = 0 for i > j + 1

The is true if Hom(Km[i− j− 1],Km) = 0 for i > j+ 1 which holds by assumption
(2). Choose an isomorphism given by γm,n : g−1

m Yn → Y ′
m,n of Postnikov systems

in D(Cm). By uniqueness of homotopy colimits, we can find an isomorphism

g−1
m K = hocolimg−1

m Yn[n] γm−−→ hocolimY ′
m,n = Km

compatible with γm,n.

We still have to prove that the maps γm fit into commutative diagrams

f−1
φ g−1

m K

f−1
φ γm

��

K(φ)
// g−1
n K

γn

��
f−1
φ Km

Kφ // Kn
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for every φ : [m]→ [n]. Consider the diagram

f−1
φ (

⊕
ψ:[0]→[m] f

−1
ψ K0)

f−1
φ (

⊕
Kψ)
��

f−1
φ g−1

m X0

��

X0(φ)
// g−1
n X0

��

⊕
χ:[0]→[n] f

−1
χ K0⊕
Kχ

��
f−1
φ (

⊕
ψ:[0]→[m] Km) f−1

φ g−1
m K

f−1
φ γm

��

K(φ)
// g−1
n K

γn

��

⊕
χ:[0]→[n] Kn

f−1
φ Y ′

0,m
// f−1
φ Km

Kφ // Kn Y ′
0,n

oo

The top middle square is commutative as X0 → K is a morphism of simplicial
objects. The left, resp. the right rectangles are commutative as γm, resp. γn is
compatible with γ0,m, resp. γ0,n which are the arrows

⊕
Kψ and

⊕
Kχ in the

diagram. Going around the outer rectangle of the diagram is commutative as
(Kn,Kφ) is a simplical system and the map X0(φ) is given by the obvious iden-
tifications f−1

φ f−1
ψ K0 = f−1

φ◦ψK0. Note that the arrow
⊕

ψKm → Y ′
0,m → Km

induces an isomorphism on any of the direct summands (because of our explicit
construction of the Postnikov systems Y ′

i,j above). Hence, if we take a direct sum-
mand of the upper left and corner, then this maps isomorphically to f−1

φ g−1
m K as

γm is an isomorphism. Working out what the above says, but looking only at this
direct summand we conclude the lower middle square commutes as we well. This
concludes the proof. □

14. Simplicial systems of the derived category: modules

0D9M In this section we are going to prove a special case of [BBD82, Proposition 3.2.9] in
the setting of derived categories of O-modules. The (slightly) easier case of abelian
sheaves is discussed in Section 13.

Definition 14.1.0D9N In Situation 3.3. Let O be a sheaf of rings on Ctotal. A simplicial
system of the derived category of modules consists of the following data

(1) for every n an object Kn of D(On),
(2) for every φ : [m]→ [n] a map Kφ : Lf∗

φKm → Kn in D(On)
subject to the condition that

Kφ◦ψ = Kφ ◦ Lf∗
φKψ : Lf∗

φ◦ψKl = Lf∗
φLf

∗
ψKl −→ Kn

for any morphisms φ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial
system is cartesian if the maps Kφ are isomorphisms for all φ. Given two simpli-
cial systems of the derived category there is an obvious notion of a morphism of
simplicial systems of the derived category of modules.

We have given this notion a ridiculously long name intentionally. The goal is to
show that a simplicial system of the derived category of modules comes from an
object of D(O) under certain hypotheses.

Lemma 14.2.0D9P In Situation 3.3 let O be a sheaf of rings on Ctotal. If K ∈ D(O) is
an object, then (Kn,K(φ)) is a simplicial system of the derived category of modules.
If K is cartesian, so is the system.

Proof. This is immediate from the definitions. □

https://stacks.math.columbia.edu/tag/0D9N
https://stacks.math.columbia.edu/tag/0D9P
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Lemma 14.3.0GMF In Situation 3.3 let O be a sheaf of rings on Ctotal. Suppose given
K0 ∈ D(O0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = Lf∗
τnn
K0.

The objects Kn form the members of a cartesian simplicial system of the derived
category of modules.

Proof. Please compare with Lemmas 13.3 and 12.4 and its proof (also to see the
cocycle condition spelled out). The construction is analogous to the construction
discussed in Descent, Section 3 from which we borrow the notation τni : [0] → [n],
0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j. Given φ : [n] → [m] we define Kφ :
L(fφ)∗Kn → Km using

L(fφ)∗Kn L(fφ)∗L(fτnn )∗K0 L(fτm
φ(n)

)∗K0 L(fτm
φ(n)m

)∗L(fδ1
1
)∗K0

L(fτm
φ(n)m

)∗α

��
Km L(fτmm )∗K0 L(fτm

φ(n)m
)∗L(fδ1

0
)∗K0

We omit the verification that the cocycle condition implies the maps compose cor-
rectly (in their respective derived categories) and hence give rise to a simplicial
systems of the derived category of modules. □

Lemma 14.4.0D9Q In Situation 3.3 let O be a sheaf of rings on Ctotal. Let K be an
object of D(Ctotal). Set

Xn = (gn!On)⊗L
O K and Yn = (gn!On → . . .→ g0!O0)[−n]⊗L

O K

as objects of D(O) where the maps are as in Lemma 8.1. With the evident canonical
maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(O).

Proof. First, if K = O, then this is the construction of Derived Categories, Ex-
ample 41.2 applied to the complex

. . .→ g2!O2 → g1!O1 → g0!O0

in Ab(Ctotal) combined with the fact that this complex represents K = O in
D(Ctotal) by Lemma 10.1. The general case follows from this, the fact that the
exact functor − ⊗L

O K sends Postnikov systems to Postnikov systems, and that
−⊗L

O K commutes with homotopy colimits. □

Lemma 14.5.0D9R In Situation 3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈ D(O).
Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(4) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

https://stacks.math.columbia.edu/tag/0GMF
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Proof. The proof is exactly the same as the proof of Lemma 13.5 except using
Lemma 14.4 instead of Lemma 13.4. □

Lemma 14.6.0D9S In Situation 3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈ D(O).
Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i− 1],K ′

i) = 0 for i > 1.
Then any map {Kn → K ′

n} between the associated simplicial systems of K and K ′

comes from a map K → K ′ in D(O).

Proof. The proof is exactly the same as the proof of Lemma 13.6 except using
Lemma 14.4 instead of Lemma 13.4. □

Lemma 14.7.0D9T In Situation 3.3 let O be a sheaf of rings on Ctotal. Let (Kn,Kφ)
be a simplicial system of the derived category of modules. Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) (Kn,Kφ) is cartesian,
(3) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(O) whose associated simplicial system
is isomorphic to (Kn,Kφ).

Proof. The proof is exactly the same as the proof of Lemma 13.7 with the following
changes

(1) use g∗
n = Lg∗

n everywhere instead of g−1
n ,

(2) use f∗
φ = Lf∗

φ everywhere instead of f−1
φ ,

(3) refer to Lemma 10.1 instead of Lemma 8.1,
(4) in the construction of Y ′

m,n use Om instead of Z,
(5) compare with the proof of Lemma 14.4 rather than the proof of Lemma

13.4.
This ends the proof. □

15. The site associated to a semi-representable object

09WK Let C be a site. Recall that a semi-representable object of C is simply a family
{Ui}i∈I of objects of C. A morphism {Ui}i∈I → {Vj}j∈J of semi-representable
objects is given by a map α : I → J and for every i ∈ I a morphism fi : Ui →
Vα(i) of C. The category of semi-representable objects of C is denoted SR(C). See
Hypercoverings, Definition 2.1 and the enclosing section for more information.
For a semi-representable object K = {Ui}i∈I of C we let

C/K =
∐

i∈I
C/Ui

be the disjoint union of the localizations of C at Ui. There is a natural structure of
a site on this category, with coverings inherited from the localizations C/Ui. The
site C/K is called the localization of C at K. Observe that a sheaf on C/K is the
same thing as a family of sheaves Fi on C/Ui, i.e.,

Sh(C/K) =
∏

i∈I
Sh(C/Ui)

This is occasionally useful to understand what is going on.

https://stacks.math.columbia.edu/tag/0D9S
https://stacks.math.columbia.edu/tag/0D9T
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Let C be a site. Let K = {Ui}i∈I be an object of SR(C). There is a continuous
and cocontinuous localization functor j : C/K → C which is the product of the
localization functors ji : C/Vi → C. We obtain functors j!, j−1, j∗ exactly as in
Sites, Section 25. In terms of the product decomposition Sh(C/K) =

∏
i∈I Sh(C/Ui)

we have
j! : (Fi)i∈I 7−→

∐
ji,!Fi

j−1 : G 7−→ (j−1
i G)i∈I

j∗ : (Fi)i∈I 7−→
∏
ji,∗Fi

as the reader easily verifies.

Let f : K → L be a morphism of SR(C). Then we obtain a continuous and
cocontinuous functor

v : C/K −→ C/L
by applying the construction of Sites, Lemma 25.8 to the components. More pre-
cisely, suppose f = (α, fi) where K = {Ui}i∈I , L = {Vj}j∈J , α : I → J , and
fi : Ui → Vα(i). Then the functor v maps the component C/Ui into the component
C/Vα(i) via the construction of the aforementioned lemma. In particular we obtain
a morphism

f : Sh(C/K)→ Sh(C/L)
of topoi. In terms of the product decompositions Sh(C/K) =

∏
i∈I Sh(C/Ui) and

Sh(C/L) =
∏
j∈J Sh(C/Vj) the reader verifies that

f! : (Fi)i∈I 7−→ (
∐
i∈I,α(i)=j fi,!Fi)j∈J

f−1 : (Gj)j∈J 7−→ (f−1
i Gα(i))i∈I

f∗ : (Fi)i∈I 7−→ (
∏
i∈I,α(i)=j fi,∗Fi)j∈J

where fi : Sh(C/Ui) → Sh(C/Vα(i)) is the morphism associated to the localization
functor C/Ui → C/Vα(i) corresponding to fi : Ui → Vα(i).

Lemma 15.1.0D85 Let C be a site.
(1) For K in SR(C) the functor j : C/K → C is continuous, cocontinuous, and

has property P of Sites, Remark 20.5.
(2) For f : K → L in SR(C) the functor v : C/K → C/L (see above) is

continuous, cocontinuous, and has property P of Sites, Remark 20.5.

Proof. Proof of (2). In the notation of the discussion preceding the lemma, the
localization functors C/Ui → C/Vα(i) are continuous and cocontinuous by Sites,
Section 25 and satisfy P by Sites, Remark 25.11. It is formal to deduce v is
continuous and cocontinuous and has P . We omit the details. We also omit the
proof of (1). □

Lemma 15.2.0D86 Let C be a site and K in SR(C). For F in Sh(C) we have

j∗j
−1F = Hom(F (K)#,F)

where F is as in Hypercoverings, Definition 2.2.

Proof. Say K = {Ui}i∈I . Using the description of the functors j−1 and j∗ given
above we see that

j∗j
−1F =

∏
i∈I

ji,∗(F|C/Ui) =
∏

i∈I
Hom(h#

Ui
,F)

https://stacks.math.columbia.edu/tag/0D85
https://stacks.math.columbia.edu/tag/0D86


SIMPLICIAL SPACES 34

The second equality by Sites, Lemma 26.3. Since F (K) =
∐
hUi in PSh(C, we have

F (K)# =
∐
h#
Ui

in Sh(C) and since Hom(−,F) turns coproducts into products
(immediate from the construction in Sites, Section 26), we conclude. □

Lemma 15.3.0D87 Let C be a site.
(1) For K in SR(C) the functor j! gives an equivalence Sh(C/K)→ Sh(C)/F (K)#

where F is as in Hypercoverings, Definition 2.2.
(2) The functor j−1 : Sh(C) → Sh(C/K) corresponds via the identification of

(1) with F 7→ (F × F (K)# → F (K)#).
(3) For f : K → L in SR(C) the functor f−1 corresponds via the identifications

of (1) to the functor Sh(C)/F (L)# → Sh(C)/F (K)#, (G → F (L)#) 7→
(G ×F (L)# F (K)# → F (K)#).

Proof. Observe that if K = {Ui}i∈I then the category Sh(C/K) decomposes as the
product of the categories Sh(C/Ui). Observe that F (K)# =

∐
i∈I h

#
Ui

(coproduct in
sheaves). Hence Sh(C)/F (K)# is the product of the categories Sh(C)/h#

Ui
. Thus (1)

and (2) follow from the corresponding statements for each i, see Sites, Lemmas 25.4
and 25.7. Similarly, if L = {Vj}j∈J and f is given by α : I → J and fi : Ui → Vα(i),
then we can apply Sites, Lemma 25.9 to each of the re-localization morphisms
C/Ui → C/Vα(i) to get (3). □

Lemma 15.4.0D88 Let C be a site. For K in SR(C) the functor j−1 sends injective
abelian sheaves to injective abelian sheaves. Similarly, the functor j−1 sends K-
injective complexes of abelian sheaves to K-injective complexes of abelian sheaves.

Proof. The first statement is the natural generalization of Cohomology on Sites,
Lemma 7.1 to semi-representable objects. In fact, it follows from this lemma by
the product decomposition of Sh(C/K) and the description of the functor j−1 given
above. The second statement is the natural generalization of Cohomology on Sites,
Lemma 20.1 and follows from it by the product decomposition of the topos.
Alternative: since j induces a localization of topoi by Lemma 15.3 part (1) it also
follows immediately from Cohomology on Sites, Lemmas 7.1 and 20.1 by enlarging
the site; compare with the proof of Cohomology on Sites, Lemma 13.3 in the case
of injective sheaves. □

Remark 15.5 (Variant for over an object).0D89 Let C be a site. Let X ∈ Ob(C). The
category SR(C, X) of semi-representable objects over X is defined by the formula
SR(C, X) = SR(C/X). See Hypercoverings, Definition 2.1. Thus we may apply the
above discussion to the site C/X. Briefly, the constructions above give

(1) a site C/K for K in SR(C, X),
(2) a decomposition Sh(C/K) =

∏
Sh(C/Ui) if K = {Ui/X},

(3) a localization functor j : C/K → C/X,
(4) a morphism f : Sh(C/K)→ Sh(C/L) for f : K → L in SR(C, X).

All results of this section hold in this situation by replacing C everywhere by C/X.

Remark 15.6 (Ringed variant).0D9U Let C be a site. Let OC be a sheaf of rings on C.
In this case, for any semi-representable object K of C the site C/K is a ringed site
with sheaf of rings OK = j−1OC . The constructions above give

(1) a ringed site (C/K,OK) for K in SR(C),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

https://stacks.math.columbia.edu/tag/0D87
https://stacks.math.columbia.edu/tag/0D88
https://stacks.math.columbia.edu/tag/0D89
https://stacks.math.columbia.edu/tag/0D9U


SIMPLICIAL SPACES 35

(3) a localization morphism j : (Sh(C/K),OK)→ (Sh(C),OC) of ringed topoi,
(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :

K → L in SR(C).
Many of the results above hold in this setting. For example, the functor j∗ has an
exact left adjoint

j! : Mod(OK)→ Mod(OC),
which in terms of the product decomposition given in (2) sends (Fi)i∈I to

⊕
ji,!Fi.

Similarly, given f : K → L as above, the functor f∗ has an exact left adjoint
f! : Mod(OK)→ Mod(OL). Thus the functors j∗ and f∗ are exact, i.e., j and f are
flat morphisms of ringed topoi (also follows from the equalities OK = j−1OC and
OK = f−1OL).

Remark 15.7 (Ringed variant over an object).0D9V Let C be a site. Let OC be a sheaf
of rings on C. Let X ∈ Ob(C) and denote OX = OC |C/U . Then we can combine the
constructions given in Remarks 15.5 and 15.6 to get

(1) a ringed site (C/K,OK) for K in SR(C, X),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

(3) a localization morphism j : (Sh(C/K),OK) → (Sh(C/X),OX) of ringed
topoi,

(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :
K → L in SR(C, X).

Of course all of the results mentioned in Remark 15.6 hold in this setting as well.

16. The site associate to a simplicial semi-representable object

0D8A Let C be a site. Let K be a simplicial object of SR(C). As usual, set Kn = K([n])
and denote K(φ) : Kn → Km the morphism associated to φ : [m] → [n]. By the
construction in Section 15 we obtain a simplicial object n 7→ C/Kn in the category
whose objects are sites and whose morphisms are cocontinuous functors. In other
words, we get a gadget as in Case B of Section 3. The functors satisfy property P
by Lemma 15.1. Hence we may apply Lemma 3.2 to obtain a site (C/K)total.

We can describe the site (C/K)total explicitly as follows. Say Kn = {Un,i}i∈In . For
φ : [m] → [n] the morphism K(φ) : Kn → Km is given by a map α(φ) : In → Im
and morphisms fφ,i : Un,i → Um,α(φ)(i) for i ∈ In. Then we have

(1) an object of (C/K)total corresponds to an object (U/Un,i) of C/Un,i for
some n and some i ∈ In,

(2) a morphism between U/Un,i and V/Um,j is a pair (φ, f) where φ : [m]→ [n],
j = α(φ)(i), and f : U → V is a morphism of C such that

U
f
//

��

V

��
Un,i

fφ,i // Um,j

is commutative, and
(3) coverings of the object U/Un,i are constructed by starting with a covering
{fj : Uj → U} in C and letting {(id, fj) : Uj/Un,i → U/Un,i} be a covering
in (C/K)total.

https://stacks.math.columbia.edu/tag/0D9V
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All of our general theory developed for simplicial sites applies to (C/K)total. Ob-
serve that the obvious forgetful functor

jtotal : (C/K)total −→ C
is continuous and cocontinuous. It turns out that the associated morphism of topoi
comes from an (obvious) augmentation.

Lemma 16.1.0D8B Let C be a site. Let K be a simplicial object of SR(C). The
localization functor j0 : C/K0 → C defines an augmentation a0 : Sh(C/K0) →
Sh(C), as in case (B) of Remark 4.1. The corresponding morphisms of topoi

an : Sh(C/Kn) −→ Sh(C), a : Sh((C/K)total) −→ Sh(C)
of Lemma 4.2 are equal to the morphisms of topoi associated to the continuous and
cocontinuous localization functors jn : C/Kn → C and jtotal : (C/K)total → C.

Proof. This is immediate from working through the definitions. See in particular
the footnote in the proof of Lemma 4.2 for the relationship between a and jtotal. □

Lemma 16.2.09WM With assumption and notation as in Lemma 16.1 we have the
following properties:

(1) there is a functor aSh! : Sh((C/K)total) → Sh(C) left adjoint to a−1 :
Sh(C)→ Sh((C/K)total),

(2) there is a functor a! : Ab((C/K)total)→ Ab(C) left adjoint to a−1 : Ab(C)→
Ab((C/K)total),

(3) the functor a−1 associates to F in Sh(C) the sheaf on (C/K)total wich in
degree n is equal to a−1

n F ,
(4) the functor a∗ associates to G in Ab((C/K)total) the equalizer of the two

maps j0,∗G0 → j1,∗G1,

Proof. Parts (3) and (4) hold for any augmentation of a simplicial site, see Lemma
4.2. Parts (1) and (2) follow as jtotal is continuous and cocontinuous. The functor
aSh! is constructed in Sites, Lemma 21.5 and the functor a! is constructed in Modules
on Sites, Lemma 16.2. □

Lemma 16.3.0DC0 Let C be a site. Let K be a simplicial object of SR(C). Let U/Un,i
be an object of C/Kn. Let F ∈ Ab((C/K)total). Then

Hp(U,F) = Hp(U,Fn,i)
where

(1) on the left hand side U is viewed as an object of Ctotal, and
(2) on the right hand side Fn,i is the ith component of the sheaf Fn on C/Kn

in the decomposition Sh(C/Kn) =
∏

Sh(C/Un,i) of Section 15.

Proof. This follows immediately from Lemma 8.6 and the product decompositions
of Section 15. □

Remark 16.4 (Variant for over an object).0D8C Let C be a site. Let X ∈ Ob(C).
Recall that we have a category SR(C, X) = SR(C/X) of semi-representable objects
over X, see Remark 15.5. We may apply the above discussion to the site C/X.
Briefly, the constructions above give

(1) a site (C/K)total for a simplicial K object of SR(C, X),
(2) a localization functor jtotal : (C/K)total → C/X,

https://stacks.math.columbia.edu/tag/0D8B
https://stacks.math.columbia.edu/tag/09WM
https://stacks.math.columbia.edu/tag/0DC0
https://stacks.math.columbia.edu/tag/0D8C


SIMPLICIAL SPACES 37

(3) localization functors jn : C/Kn → C/X,
(4) a morphism of topoi a : Sh((C/K)total)→ Sh(C/X),
(5) morphisms of topoi an : Sh(C/Kn)→ Sh(C/X),
(6) a functor aSh! : Sh((C/K)total)→ Sh(C/X) left adjoint to a−1, and
(7) a functor a! : Ab((C/K)total)→ Ab(C/X) left adjoint to a−1.

All of the results of this section hold in this setting. To prove this one replaces the
site C everywhere by C/X.

Remark 16.5 (Ringed variant).0D9W Let C be a site. Let OC be a sheaf of rings. Given
a simplicial semi-representable object K of C we set O = a−1OC , where a is as in
Lemmas 16.1 and 16.2. The constructions above, keeping track of the sheaves of
rings as in Remark 15.6, give

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C),OC),
(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C),OC),
(4) a functor a! : Mod(O)→ Mod(OC) left adjoint to a∗.

The functor a! exists (but in general is not exact) because a−1OC = O and we
can replace the use of Modules on Sites, Lemma 16.2 in the proof of Lemma 16.2
by Modules on Sites, Lemma 41.1. As discussed in Remark 15.6 there are exact
functors an! : Mod(On) → Mod(OC) left adjoint to a∗

n. Consequently, the mor-
phisms a and an are flat. Remark 15.6 implies the morphism of ringed topoi fφ :
(Sh(C/Kn),On)→ (Sh(C/Km),Om) for φ : [m]→ [n] is flat and there exists an ex-
act functor fφ! : Mod(On)→ Mod(Om) left adjoint to f∗

φ. This in turn implies that
for the flat morphism of ringed topoi gn : (Sh(C/Kn),On) → (Sh((C/K)total),O)
the functor gn! : Mod(On)→ Mod(O) left adjoint to g∗

n is exact, see Lemma 6.3.

Remark 16.6 (Ringed variant over an object).0D9X Let C be a site. Let OC be a sheaf
of rings. Let X ∈ Ob(C) and denote OX = OC |C/X . Then we can combine the
constructions given in Remarks 16.4 and 16.5 to get

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C, X),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C/X),OX),
(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C/X),OX),
(4) a functor a! : Mod(O)→ Mod(OX) left adjoint to a∗.

Of course, all the results mentioned in Remark 16.5 hold in this setting as well.

17. Cohomological descent for hypercoverings

0D8D Let C be a site. In this section we assume C has equalizers and fibre products.
We let K be a hypercovering as defined in Hypercoverings, Definition 6.1. We will
study the augmentation

a : Sh((C/K)total) −→ Sh(C)
of Section 16.

Lemma 17.1.0D8E Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Then

(1) a−1 : Sh(C) → Sh((C/K)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C) → Ab((C/K)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

https://stacks.math.columbia.edu/tag/0D9W
https://stacks.math.columbia.edu/tag/0D9X
https://stacks.math.columbia.edu/tag/0D8E
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In both cases a∗ provides the quasi-inverse functor.

Proof. The case of abelian sheaves follows immediately from the case of sheaves of
sets as the functor a−1 commutes with products. In the rest of the proof we work
with sheaves of sets. Observe that a−1F is cartesian for F in Sh(C) by Lemma
12.3. It suffices to show that the adjunction map F → a∗a

−1F is an isomorphism
F in Sh(C) and that for a cartesian sheaf G on (C/K)total the adjunction map
a−1a∗G → G is an isomorphism.
Let F be a sheaf on C. Recall that a∗a

−1F is the equalizer of the two maps
a0,∗a

−1
0 F → a1,∗a

−1
1 F , see Lemma 16.2. By Lemma 15.2

a0,∗a
−1
0 F = Hom(F (K0)#,F) and a1,∗a

−1
1 F = Hom(F (K1)#,F)

On the other hand, we know that

F (K1)# //
// F (K0)# // final object ∗ of Sh(C)

is a coequalizer diagram in sheaves of sets by definition of a hypercovering. Thus
it suffices to prove that Hom(−,F) transforms coequalizers into equalizers which is
immediate from the construction in Sites, Section 26.
Let G be a cartesian sheaf on (C/K)total. We will show that G = a−1F for some
sheaf F on C. This will finish the proof because then a−1a∗G = a−1a∗a

−1F =
a−1F = G by the result of the previous paragraph. Set Kn = F (Kn)# for n ≥ 0.
Then we have maps of sheaves

K2
// //// K1

//// K0

coming from the fact that K is a simplicial semi-representable object. The fact
that K is a hypercovering means that

K1 → K0 ×K0 and K2 →
(

cosk1( K1
//// K0oo )

)
2

are surjective maps of sheaves. Using the description of cartesian sheaves on
(C/K)total given in Lemma 12.4 and using the description of Sh(C/Kn) in Lemma
15.3 we find that our problem can be entirely formulated3 in terms of

(1) the topos Sh(C), and
(2) the simplicial object K in Sh(C) whose terms are Kn.

Thus, after replacing C by a different site C′ as in Sites, Lemma 29.5, we may
assume C has all finite limits, the topology on C is subcanonical, a family {Vj → V }
of morphisms of C is a covering if and only if

∐
hVj → V is surjective, and there

exists a simplicial object U of C such that Kn = hUn as simplicial sheaves. Working
backwards through the equivalences we may assume Kn = {Un} for all n.
Let X be the final object of C. Then {U0 → X} is a covering, {U1 → U0 × U0}
is a covering, and {U2 → (cosk1sk1U)2} is a covering. Let us use dni : Un → Un−1
and snj : Un → Un+1 the morphisms corresponding to δni and σnj as in Simplicial,
Definition 2.1. By abuse of notation, given a morphism c : V →W of C we denote

3Even though it does not matter what the precise formulation is, we spell it out: the problem
is to show that given an object G0/K0 of Sh(C)/K0 and an isomorphism

α : G0 ×K0,K(δ1
1) K1 → G0 ×K0,K(δ1

0) K1

over K1 satisfying a cocycle condtion in Sh(C)/K2, there exists F in Sh(C) and an isomorphism
F × K0 → G0 over K0 compatible with α.
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the morphism of topoi c : Sh(C/V )→ Sh(C/W ) by the same letter. Now G is given
by a sheaf G0 on C/U0 and an isomorphism α : (d1

1)−1G0 → (d1
0)−1G0 satisfying the

cocycle condition on C/U2 formulated in Lemma 12.4. Since {U2 → (cosk1sk1U)2}
is a covering, the corresponding pullback functor on sheaves is faithful (small detail
omitted). Hence we may replace U by cosk1sk1U , because this replaces U2 by
(cosk1sk1U)2 and leaves U1 and U0 unchanged. Then

(d2
0, d

2
1, d

2
2) : U2 → U1 × U1 × U1

is a monomorphism whose its image on T -valued points is described in Simpli-
cial, Lemma 19.6. In particular, there is a morphism c fitting into a commutative
diagram

U1 ×(d1
1,d

1
0),U0×U0,(d1

1,d
1
0) U1

��

c
// U2

��
U1 × U1

(pr1,pr2,s
0
0◦d1

1◦pr1) // U1 × U1 × U1

as going around the other way defines a point of U2. Pulling back the cocycle
condition for α on U2 translates into the condition that the pullbacks of α via the
projections to U1 ×(d1

1,d
1
0),U0×U0,(d1

1,d
1
0) U1 are the same as the pullback of α via

s0
0 ◦ d1

1 ◦ pr1 is the identity map (namely, the pullback of α by s0
0 is the identity).

By Sites, Lemma 26.1 this means that α comes from an isomorphism

α′ : pr−1
1 G0 → pr−1

2 G0

of sheaves on C/U0×U0. Then finally, the morphism U2 → U0×U0×U0 is surjective
on associated sheaves as is easily seen using the surjectivity of U1 → U0 × U0 and
the description of U2 given above. Therefore α′ satisfies the cocycle condition on
U0 × U0 × U0. The proof is finished by an application of Sites, Lemma 26.5 to the
covering {U0 → X}. □

Lemma 17.2.0D8F Let C be a site with equalizers and fibre products. Let K be a
hypercovering. The Čech complex of Lemma 9.2 associated to a−1F

a0,∗a
−1
0 F → a1,∗a

−1
1 F → a2,∗a

−1
2 F → . . .

is equal to the complex Hom(s(Z#
F (K)),F). Here s(Z#

F (K)) is as in Hypercoverings,
Definition 4.1.

Proof. By Lemma 15.2 we have

an,∗a
−1
n F = Hom′(F (Kn)#,F)

whereHom′ is as in Sites, Section 26. The boundary maps in the complex of Lemma
9.2 come from the simplicial structure. Thus the equality of complexes comes from
the canonical identifications Hom′(G,F) = Hom(ZG ,F) for G in Sh(C). □

Lemma 17.3.0D8G Let C be a site with equalizers and fibre products. Let K be a
hypercovering. For E ∈ D(C) the map

E −→ Ra∗a
−1E

is an isomorphism.

https://stacks.math.columbia.edu/tag/0D8F
https://stacks.math.columbia.edu/tag/0D8G
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Proof. First, let I be an injective abelian sheaf on C. Then the spectral sequence
of Lemma 9.3 for the sheaf a−1I degenerates as (a−1I)p = a−1

p I is injective by
Lemma 15.4. Thus the complex

a0,∗a
−1
0 I → a1,∗a

−1
1 I → a2,∗a

−1
2 I → . . .

computes Ra∗a
−1I. By Lemma 17.2 this is equal to the complexHom(s(Z#

F (K)), I).
Because K is a hypercovering, we see that s(Z#

F (K)) is exact in degrees > 0 by
Hypercoverings, Lemma 4.4 applied to the simplicial presheaf F (K). Since I is
injective, the functor Hom(−, I) is exact and we conclude that Hom(s(Z#

F (K)), I)
is exact in positive degrees. We conclude that Rpa∗a

−1I = 0 for p > 0. On the
other hand, we have I = a∗a

−1I by Lemma 17.1.

Bounded case. Let E ∈ D+(C). Choose a bounded below complex I• of injec-
tives representing E. By the result of the first paragraph and Leray’s acyclicity
lemma (Derived Categories, Lemma 16.7) Ra∗a

−1I• is computed by the complex
a∗a

−1I• = I• and we conclude the lemma is true in this case.

Unbounded case. We urge the reader to skip this, since the argument is the same
as above, except that we use explicit representation by double complexes to get
around convergence issues. Let E ∈ D(C). To show the map E → Ra∗a

−1E is an
isomorphism, it suffices to show for every object U of C that

RΓ(U,E) = RΓ(U,Ra∗a
−1E)

We will compute both sides and show the map E → Ra∗a
−1E induces an iso-

morphism. Choose a K-injective complex I• representing E. Choose a quasi-
isomorphism a−1I• → J • for some K-injective complex J • on (C/K)total. We
have

RΓ(U,E) = RHom(Z#
U , E)

and

RΓ(U,Ra∗a
−1E) = RHom(Z#

U , Ra∗a
−1E) = RHom(a−1Z#

U , a
−1E)

By Lemma 9.1 we have a quasi-isomorphism(
. . .→ g2!(a−1

2 Z#
U )→ g1!(a−1

1 Z#
U )→ g0!(a−1

0 Z#
U )

)
−→ a−1Z#

U

Hence RHom(a−1Z#
U , a

−1E) is equal to

RΓ((C/K)total, RHom(. . .→ g2!(a−1
2 Z#

U )→ g1!(a−1
1 Z#

U )→ g0!(a−1
0 Z#

U ),J •))

By the construction in Cohomology on Sites, Section 35 and since J • is K-injective,
we see that this is represented by the complex of abelian groups with terms∏

p+q=n
Hom(gp!(a−1

p Z#
U ),J q) =

∏
p+q=n

Hom(a−1
p Z#

U , g
−1
p J q)

See Cohomology on Sites, Lemmas 34.6 and 35.1 for more information. Thus we
find that RΓ(U,Ra∗a

−1E) is computed by the product total complex Totπ(B•,•)
with Bp,q = Hom(a−1

p Z#
U , g

−1
p J q). For the other side we argue similarly. First we

note that
s(Z#

F (K)) −→ Z
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is a quasi-isomorphism of complexes on C by Hypercoverings, Lemma 4.4. Since
Z#
U is a flat sheaf of Z-modules we see that

s(Z#
F (K))⊗Z Z#

U −→ Z#
U

is a quasi-isomorphism. Therefore RHom(Z#
U , E) is equal to

RΓ(C, RHom(s(Z#
F (K))⊗Z Z#

U , I
•))

By the construction of RHom and since I• is K-injective, this is represented by
the complex of abelian groups with terms∏

p+q=n
Hom(Z#

Kp
⊗Z Z#

U , I
q) =

∏
p+q=n

Hom(a−1
p Z#

U , a
−1
p Iq)

The equality of terms follows from the fact that Z#
Kp
⊗ZZ#

U = ap!a
−1
p Z#

U by Modules
on Sites, Remark 27.10. Thus we find that RΓ(U,E) is computed by the product
total complex Totπ(A•,•) with Ap,q = Hom(a−1

p Z#
U , a

−1
p Iq).

Since I• is K-injective we see that a−1
p I• is K-injective, see Lemma 15.4. Since J •

is K-injective we see that g−1
p J • is K-injective, see Lemma 3.6. Both represent the

object a−1
p E. Hence for every p ≥ 0 the map of complexes

Ap,• = Hom(a−1
p Z#

U , a
−1
p I•) −→ Hom(a−1

p Z#
U , g

−1
p J •) = Bp,•

induced by g−1
p applied to the given map a−1I• → J • is a quasi-isomorphisms as

these complexes both compute

RHom(a−1
p Z#

U , a
−1
p E)

By More on Algebra, Lemma 103.2 we conclude that the right vertical arrow in the
commutative diagram

RΓ(U,E) //

��

Totπ(A•,•)

��
RΓ(U,Ra∗a

−1E) // Totπ(B•,•)

is a quasi-isomorphism. Since we saw above that the horizontal arrows are quasi-
isomorphisms, so is the left vertical arrow. □

Lemma 17.4.0D8H Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, a−1E)
for E ∈ D(C).

Proof. This follows from Lemma 17.3 because RΓ((C/K)total,−) = RΓ(C,−)◦Ra∗
by Cohomology on Sites, Remark 14.4. □

Lemma 17.5.0D8I Let C be a site with equalizers and fibre products. Let K be a hyper-
covering. Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory of cartesian
abelian sheaves. Then the functor a−1 defines an equivalence

D+(C) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.

https://stacks.math.columbia.edu/tag/0D8H
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Proof. Observe that A is a weak Serre subcategory by Lemma 12.6. The equiva-
lence is a formal consequence of the results obtained so far. Use Lemmas 17.1 and
17.3 and Cohomology on Sites, Lemma 28.5 □

We urge the reader to skip the following remark.

Remark 17.6.09X6 Let C be a site. Let G be a presheaf of sets on C. If C has
equalizers and fibre products, then we’ve defined the notion of a hypercovering of
G in Hypercoverings, Definition 6.1. We claim that all the results in this section
have a valid counterpart in this setting. To see this, define the localization C/G
of C at G exactly as in Sites, Lemma 30.3 (which is stated only for sheaves; the
topos Sh(C/G) is equal to the localization of the topos Sh(C) at the sheaf G#).
Then the reader easily shows that the site C/G has fibre products and equalizers
and that a hypercovering of G in C is the same thing as a hypercovering for the site
C/G. Hence replacing the site C by C/G in the lemmas on hypercoverings above we
obtain proofs of the corresponding results for hypercoverings of G. Example: for a
hypercovering K of G we have

RΓ(C/G, E) = RΓ((C/K)total, a−1E)

for E ∈ D+(C/G) where a : Sh((C/K)total)→ Sh(C/G) is the canonical augmenta-
tion. This is Lemma 17.4. Let RΓ(G,−) : D(C)→ D(Ab) be defined as the derived
functor of the functor H0(G,−) = H0(G#,−) discussed in Hypercoverings, Section
6 and Cohomology on Sites, Section 13. We have

RΓ(G, E) = RΓ(C/G, j−1E)

by the analogue of Cohomology on Sites, Lemma 7.1 for the localization fuctor
j : C/G → C. Putting everything together we obtain

RΓ(G, E) = RΓ((C/K)total, a−1j−1E) = RΓ((C/K)total, g−1E)

for E ∈ D+(C) where g : Sh((C/K)total)→ Sh(C) is the composition of a and j.

18. Cohomological descent for hypercoverings: modules

0D9Y Let C be a site. Let OC be a sheaf of rings. Assume C has equalizers and fibre
products and let K be a hypercovering as defined in Hypercoverings, Definition
6.1. We will study cohomological descent for the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C),OC)

of Remark 16.5.

Lemma 18.1.0D9Z Let C be a site with equalizers and fibre products. Let OC be a sheaf
of rings. Let K be a hypercovering. With notation as above

a∗ : Mod(OC)→ Mod(O)

is fully faithful with essential image the cartesian O-modules. The functor a∗ pro-
vides the quasi-inverse.

Proof. Since a−1OC = O we have a∗ = a−1. Hence the lemma follows immediately
from Lemma 17.1. □

https://stacks.math.columbia.edu/tag/09X6
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Lemma 18.2.0DA0 Let C be a site with equalizers and fibre products. Let OC be a sheaf
of rings. Let K be a hypercovering. For E ∈ D(OC) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. Since a−1OC = O we have La∗ = a∗ = a−1. Moreover Ra∗ agrees with
Ra∗ on abelian sheaves, see Cohomology on Sites, Lemma 20.7. Hence the lemma
follows immediately from Lemma 17.3. □

Lemma 18.3.0DA1 Let C be a site with equalizers and fibre products. Let OC be a sheaf
of rings. Let K be a hypercovering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, La∗E)
for E ∈ D(OC).

Proof. This follows from Lemma 18.2 because RΓ((C/K)total,−) = RΓ(C,−)◦Ra∗
by Cohomology on Sites, Remark 14.4 or by Cohomology on Sites, Lemma 20.5. □

Lemma 18.4.0DA2 Let C be a site with equalizers and fibre products. Let OC be a
sheaf of rings. Let K be a hypercovering. Let A ⊂ Mod(O) denote the weak Serre
subcategory of cartesian O-modules. Then the functor La∗ defines an equivalence

D+(OC) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Observe that A is a weak Serre subcategory by Lemma 12.6 (the required
hypotheses hold by the discussion in Remark 16.5). The equivalence is a formal con-
sequence of the results obtained so far. Use Lemmas 18.1 and 18.2 and Cohomology
on Sites, Lemma 28.5. □

19. Cohomological descent for hypercoverings of an object

0D8J In this section we assume C has fibre products and X ∈ Ob(C). We let K be a
hypercovering of X as defined in Hypercoverings, Definition 3.3. We will study the
augmentation

a : Sh((C/K)total) −→ Sh(C/X)
of Remark 16.4. Observe that C/X is a site which has equalizers and fibre products
and that K is a hypercovering for the site C/X4 by Hypercoverings, Lemma 3.9.
This means that every single result proved for hypercoverings in Section 17 has an
immediate analogue in the situation in this section.

Lemma 19.1.0D8K Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Then

(1) a−1 : Sh(C/X) → Sh((C/K)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X) → Ab((C/K)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

4The converse may not be the case, i.e., if K is a simplicial object of SR(C, X) = SR(C/X)
which defines a hypercovering for the site C/X as in Hypercoverings, Definition 6.1, then it may
not be true that K defines a hypercovering of X. For example, if K0 = {U0,i}i∈I0 then the latter
condition guarantees {U0,i → X} is a covering of C whereas the former condition only requires∐

h#
U0,i

→ h#
X to be a surjective map of sheaves.

https://stacks.math.columbia.edu/tag/0DA0
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In both cases a∗ provides the quasi-inverse functor.
Proof. Via Remarks 15.5 and 16.4 and the discussion in the introduction to this
section this follows from Lemma 17.1. □

Lemma 19.2.0D8L Let C be a site with fibre product and X ∈ Ob(C). Let K be a
hypercovering of X. For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.
Proof. Via Remarks 15.5 and 16.4 and the discussion in the introduction to this
section this follows from Lemma 17.3. □

Lemma 19.3.09X7 Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/K)total, a−1E)
for E ∈ D(C/X).
Proof. Via Remarks 15.5 and 16.4 this follows from Lemma 17.4. □

Lemma 19.4.0D8M Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory of
cartesian abelian sheaves. Then the functor a−1 defines an equivalence

D+(C/X) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.
Proof. Via Remarks 15.5 and 16.4 this follows from Lemma 17.5. □

20. Cohomological descent for hypercoverings of an object: modules

0DA3 In this section we assume C has fibre products and X ∈ Ob(C). We let K be a
hypercovering of X as defined in Hypercoverings, Definition 3.3. Let OC be a sheaf
of rings on C. Set OX = OC |C/X . We will study the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C/X),OX)
of Remark 16.6. Observe that C/X is a site which has equalizers and fibre products
and that K is a hypercovering for the site C/X. Therefore the results in this section
are immediate consequences of the corresponding results in Section 18.
Lemma 20.1.0DA4 Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let K be a hypercovering of X. With notation as above

a∗ : Mod(OX)→ Mod(O)
is fully faithful with essential image the cartesian O-modules. The functor a∗ pro-
vides the quasi-inverse.
Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this
section this follows from Lemma 18.1. □

Lemma 20.2.0DA5 Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let K be a hypercovering of X. For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

https://stacks.math.columbia.edu/tag/0D8L
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Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this
section this follows from Lemma 18.2. □

Lemma 20.3.0DA6 Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let K be a hypercovering of X. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/K)total, La∗E)
for E ∈ D(OC).

Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this
section this follows from Lemma 18.3. □

Lemma 20.4.0DA7 Let C be a site with fibre products and X ∈ Ob(C). Let OC be
a sheaf of rings. Let K be a hypercovering of X. Let A ⊂ Mod(O) denote the
weak Serre subcategory of cartesian O-modules. Then the functor La∗ defines an
equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this
section this follows from Lemma 18.4. □

21. Hypercovering by a simplicial object of the site

09X8 Let C be a site with fibre products and let X ∈ Ob(C). In this section we elucidate
the results of Section 19 in the case that our hypercovering is given by a simplicial
object of the site. Let U be a simplicial object of C. As usual we denote Un = U([n])
and fφ : Un → Um the morphism fφ = U(φ) corresponding to φ : [m] → [n].
Assume we have an augmentation

a : U → X

From this we obtain a simplicial site (C/U)total and an augmentation morphism
a : Sh((C/U)total) −→ Sh(C/X)

Namely, from U we obtain a simiplical object K of SR(C, X) with degree n part
Kn = {Un → X} and we can apply the constructions in Remark 16.4. More
precisely, an object of the site (C/U)total is given by a V/Un and a morphism
(φ, f) : V/Un →W/Um is given by a morphism φ : [m]→ [n] in ∆ and a morphism
f : V →W such that the diagram

V
f
//

��

W

��
Un

fφ // Um

is commutative. The morphism of topoi a is given by the cocontinuous functor
V/Un 7→ V/X. That’s all folks!
In this section we will say the augmentation a : U → X is a hypercovering of X in
C if the following hold

(1) {U0 → X} is a covering of C,
(2) {U1 → U0 ×X U0} is a covering of C,
(3) {Un+1 → (cosknsknU)n+1} is a covering of C for n ≥ 1.

https://stacks.math.columbia.edu/tag/0DA6
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This is equivalent to the condition that K (as above) is a hypercovering of X, see
Hypercoverings, Example 3.5.

Lemma 21.1.0DA8 Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. Then

(1) a−1 : Sh(C/X) → Sh((C/U)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X) → Ab((C/U)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. This is a special case of Lemma 19.1. □

Lemma 21.2.0D8N Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.

Proof. This is a special case of Lemma 19.2. □

Lemma 21.3.09X9 Let C be a site with fibre products and X ∈ Ob(C). Let a : U → X be
a hypercovering of X in C as defined above. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/U)total, a−1E)
for E ∈ D(C/X).

Proof. This is a special case of Lemma 19.3. □

Lemma 21.4.0DA9 Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. Let A ⊂ Ab((C/U)total) denote the
weak Serre subcategory of cartesian abelian sheaves. Then the functor a−1 defines
an equivalence

D+(C/X) −→ D+
A((C/U)total)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 19.4 □

Lemma 21.5.09WL Let U be a simplicial object of a site C with fibre products.
(1) C/U has the structure of a simplicial object in the category whose objects

are sites and whose morphisms are morphisms of sites,
(2) the construction of Lemma 3.1 applied to the structure in (1) reproduces

the site (C/U)total above,
(3) if a : U → X is an augmentation, then a0 : C/U0 → C/X is an augmen-

tation as in Remark 4.1 part (A) and gives the same morphism of topoi
a : Sh((C/U)total)→ Sh(C/X) as the one above.

Proof. Given a morphism of objects V → W of C the localization morphism j :
C/V → C/W is a left adjoint to the base change functor C/W → C/V . The base
change functor is continuous and induces the same morphism of topoi as j. See
Sites, Lemma 27.3. This proves (1).
Part (2) holds because a morphism V/Un →W/Um of the category constructed in
Lemma 3.1 is a morphism V → W ×Um,fφ Un over Un which is the same thing as

https://stacks.math.columbia.edu/tag/0DA8
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a morphism f : V → W over the morphism fφ : Un → Um, i.e., the same thing as
a morphism in the category (C/U)total defined above. Equality of sets of coverings
is immediate from the definition.

We omit the proof of (3). □

22. Hypercovering by a simplicial object of the site: modules

0DAA Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf of rings
on C. Let U → X be a hypercovering of X in C as defined in Section 21. In this
section we study the augmentation

a : (Sh((C/U)total),O) −→ (Sh(C/X),OX)

we obtain by thinking of U as a simiplical semi-representable object of C/X whose
degree n part is the singleton element {Un/X} and applying the constructions in
Remark 16.6. Thus all the results in this section are immediate consequences of
the corresponding results in Section 20.

Lemma 22.1.0DAB Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. With notation as above

a∗ : Mod(OX)→ Mod(O)

is fully faithful with essential image the cartesian O-modules. The functor a∗ pro-
vides the quasi-inverse.

Proof. This is a special case of Lemma 20.1. □

Lemma 22.2.0DAC Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. This is a special case of Lemma 20.2. □

Lemma 22.3.0DAD Let C be a site with fibre products and X ∈ Ob(C). Let OC be
a sheaf of rings. Let U be a hypercovering of X in C. Then we have a canonical
isomorphism

RΓ(X,E) = RΓ((C/U)total, La∗E)
for E ∈ D(OC).

Proof. This is a special case of Lemma 20.3. □

Lemma 22.4.0DAE Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. Let A ⊂ Mod(O) denote the
weak Serre subcategory of cartesian O-modules. Then the functor La∗ defines an
equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 20.4. □

https://stacks.math.columbia.edu/tag/0DAB
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23. Unbounded cohomological descent for hypercoverings

0DC1 In this section we discuss unbounded cohomological descent. The results themselves
will be immediate consequences of our results on bounded cohomological descent
in the previous sections and Cohomology on Sites, Lemmas 28.6 and/or 28.7; the
real work lies in setting up notation and choosing appropriate assumptions. Our
discussion is motivated by the discussion in [LO08] although the details are a good
bit different.
Let (C,OC) be a ringed site. Assume given for every object U of C a weak Serre
subcategory AU ⊂ Mod(OU ) satisfying the following properties

(1)0DC2 given a morphism U → V of C the restriction functor Mod(OV )→ Mod(OU )
sends AV into AU ,

(2)0DC3 given a covering {Ui → U}i∈I of C an object F of Mod(OU ) is in AU if and
only if the restriction of F to C/Ui is in AUi for all i ∈ I.

(3)0DC4 there exists a subset B ⊂ Ob(C) such that
(a) every object of C has a covering whose members are in B, and
(b) for every V ∈ B there exists an integer dV and a cofinal system CovV

of coverings of V such that
Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(AV )

Note that we require this to be true for F in AV and not just for “global” objects
(and thus it is stronger than the condition imposed in Cohomology on Sites, Sit-
uation 25.1). In this situation, there is a weak Serre subcategory A ⊂ Mod(OC)
consisting of objects whose restriction to C/U is in AU for all U ∈ Ob(C). Moreover,
there are derived categoriesDA(OC) andDAU

(OU ) and the restriction functors send
these into each other.

Example 23.1.0DC5 Let S be a scheme and let X be an algebraic space over S. Let
C = Xspaces,étale be the étale site on the category of algebraic spaces étale over X,
see Properties of Spaces, Definition 18.2. Denote OC the structure sheaf, i.e., the
sheaf given by the rule U 7→ Γ(U,OU ). Denote AU the category of quasi-coherent
OU -modules. Let B = Ob(C) and for V ∈ B set dV = 0 and let CovV denote the
coverings {Vi → V } with Vi affine for all i. Then the assumptions (1), (2), (3) are
satisfied. See Properties of Spaces, Lemmas 29.2 and 29.7 for properties (1) and
(2) and the vanishing in (3) follows from Cohomology of Schemes, Lemma 2.2 and
the discussion in Cohomology of Spaces, Section 3.

Example 23.2.0DC6 Let S be one of the following types of schemes
(1) the spectrum of a finite field,
(2) the spectrum of a separably closed field,
(3) the spectrum of a strictly henselian Noetherian local ring,
(4) the spectrum of a henselian Noetherian local ring with finite residue field,
(5) add more here.

Let Λ be a finite ring whose order is invertible on S. Let C ⊂ (Sch/S)étale be the
full subcategory consisting of schemes locally of finite type over S endowed with
the étale topology. Let OC = Λ be the constant sheaf. Set AU = Mod(OU ), in
other words, we consider all étale sheaves of Λ-modules. Let B ⊂ Ob(C) be the set
of quasi-compact objects. For V ∈ B set

dV = 1 + 2 dim(S) + supv∈V (trdegκ(s)(κ(v)) + 2 dimOV,v)

https://stacks.math.columbia.edu/tag/0DC5
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and let CovV denote the étale coverings {Vi → V } with Vi quasi-compact for
all i. Our choice of bound dV comes from Gabber’s theorem on cohomological
dimension. To see that condition (3) holds with this choice, use [ILO14, Exposé
VIII-A, Corollary 1.2 and Lemma 2.2] plus elementary arguments on cohomological
dimensions of fields. We add 1 to the formula because our list contains cases where
we allow S to have finite residue field. We will come back to this example later
(insert future reference).

Let (C,OC) be a ringed site. Assume given weak Serre subcategoriesAU ⊂ Mod(OU )
satisfying condition (1). Then

(1) given a semi-representable object K = {Ui}i∈I we get a weak Serre sub-
category AK ⊂ Mod(OK) by taking

∏
AUi ⊂

∏
Mod(OUi) = Mod(OK),

and
(2) given a morphism of semi-representable objects f : K → L the pullback

map f∗ : Mod(OL)→ Mod(OL) sends AL into AK .
See Remark 15.6 for notation and explanation. In particular, given a simplicial
semi-representable object K it is unambiguous to say what it means for an object
F of Mod(O) as in Remark 16.5 to have restrictions Fn in AKn for all n.

Lemma 23.3.0DC7 Let (C,OC) be a ringed site. Assume given weak Serre subcategories
AU ⊂ Mod(OU ) satisfying conditions (1), (2), and (3) above. Assume C has equal-
izers and fibre products and let K be a hypercovering. Let ((C/K)total,O) be as in
Remark 16.5. Let Atotal ⊂ Mod(O) denote the weak Serre subcategory of cartesian
O-modules F whose restriction Fn is in AKn for all n (as defined above). Then
the functor La∗ defines an equivalence

DA(OC) −→ DAtotal
(O)

with quasi-inverse Ra∗.

Proof. The cartesian O-modules form a weak Serre subcategory by Lemma 12.6
(the required hypotheses hold by the discussion in Remark 16.5). Since the restric-
tion functor g∗

n : Mod(O) → Mod(On) are exact, it follows that Atotal is a weak
Serre subcategory.
Let us show that a∗ : A → Atotal is an equivalence of categories with inverse given
by La∗. We already know that La∗a

∗F = F by the bounded version (Lemma 18.4).
It is clear that a∗F is in Atotal for F in A. Conversely, assume that G ∈ Atotal.
Because G is cartesian we see that G = a∗F for some OC-module F by Lemma
18.1. We want to show that F is in A. Take U ∈ Ob(C). We have to show that
the restriction of F to C/U is in AU . As usual, write K0 = {U0,i}i∈I0 . Since K is
a hypercovering, the map

∐
i∈I0

hU0,i → ∗ becomes surjective after sheafification.
This implies there is a covering {Uj → U}j∈J and a map τ : J → I0 and for each
j ∈ J a morphism φj : Uj → U0,τ(j). Since G0 = a∗

0F we find that the restriction
of F to C/Uj is equal to the restriction of the τ(j)th component of G0 to C/Uj via
the morphism φj : Uj → U0,τ(i). Hence by (1) we find that F|C/Uj is in AUj and in
turn by (2) we find that F|C/U is in AU .
In particular the statement of the lemma makes sense. The lemma now follows from
Cohomology on Sites, Lemma 28.6. Assumption (1) is clear (see Remark 16.5).
Assumptions (2) and (3) we proved in the preceding paragraph. Assumption (4) is
immediate from (3). For assumption (5) let Btotal be the set of objects U/Un,i of the
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site (C/K)total such that U ∈ B where B is as in (3). Here we use the description
of the site (C/K)total given in Section 16. Moreover, we set CovU/Un,i equal to
CovU and dU/Un,i equal dU where CovU and dU are given to us by (3). Then
we claim that condition (5) holds with these choices. This follows immediately
from Lemma 16.3 and the fact that F ∈ Atotal implies Fn ∈ AKn and hence
Fn,i ∈ AUn,i . (The reader who worries about the difference between cohomology of
abelian sheaves versus cohomology of sheaves of modules may consult Cohomology
on Sites, Lemma 12.4.) □

24. Glueing complexes

0DC8 This section is the continuation of Cohomology, Section 45. The goal is to prove
a slight generalization of [BBD82, Theorem 3.2.4]. Our method will be a tiny bit
different in that we use the material from Sections 13 and 14. We will also reprove
the unbounded version as it is proved in [LO08].
Advice to the reader: We suggest the reader first look at the statement of Lemma
24.5 as well as the second proof of this lemma.
Here is the situation we are interested in.

Situation 24.1.0DC9 Let (C,OC) be a ringed site. We are given
(1) a category B and a functor u : B → C,
(2) an object EU in D(Ou(U)) for U ∈ Ob(B),
(3) an isomorphism ρa : EU |C/u(V ) → EV in D(Ou(V )) for a : V → U in B

such that whenever we have composable arrows b : W → V and a : V → U of B,
then ρa◦b = ρb ◦ ρa|C/u(W ).

We won’t be able to prove anything about this without making more assumptions.
An interesting case is where B is a full subcategory such that every object of C has
a covering whose members are objects of B (this is the case considered in [BBD82]).
For us it is important to allow cases where this is not the case; the main alternative
case is where we have a morphism of sites f : C → D and B is a full subcategory of
D such that every object of D has a covering whose members are objects of B.
In Situation 24.1 a solution will be a pair (E, ρU ) where E is an object of D(OC)
and ρU : E|C/u(U) → EU for U ∈ Ob(B) are isomorphisms such that we have
ρa ◦ ρU |C/u(V ) = ρV for a : V → U in B.

Lemma 24.2.0DCA In Situation 24.1. Assume negative self-exts of EU in D(Ou(U))
are zero. Let L be a simplicial object of SR(B). Consider the simplicial object
K = u(L) of SR(C) and let ((C/K)total,O) be as in Remark 16.5. There exists a
cartesian object E of D(O) such that writing Ln = {Un,i}i∈In the restriction of E
to D(OC/u(Un,i)) is EUn,i compatibly (see proof for details). Moreover, E is unique
up to unique isomorphism.

Proof. Recall that Sh(C/Kn) =
∏
i∈In Sh(C/u(Un,i)) and similarly for the cate-

gories of modules. This product decomposition is also inherited by the derived
categories of sheaves of modules. Moreover, this product decomposition is com-
patible with the morphisms in the simplicial semi-representable object K. See
Section 15. Hence we can set En =

∏
i∈In EUn,i (“formal” product) in D(On).

Taking (formal) products of the maps ρa of Situation 24.1 we obtain isomorphisms
Eφ : f∗

φEn → Em. The assumption about compostions of the maps ρa immediately

https://stacks.math.columbia.edu/tag/0DC9
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implies that (En, Eφ) defines a simplicial system of the derived category of modules
as in Definition 14.1. The vanishing of negative exts assumed in the lemma implies
that Hom(En[t], En) = 0 for n ≥ 0 and t > 0. Thus by Lemma 14.7 we obtain E.
Uniqueness up to unique isomorphism follows from Lemmas 14.5 and 14.6. □

Lemma 24.3 (BBD glueing lemma).0DCB In Situation 24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor

u : D → C such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,
(c) every object of D has a covering whose members are objects of B,

(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exists a t ∈ Z such that Hi(EU ) = 0 for i < t and U ∈ Ob(B).

Then there exists a solution unique up to unique isomorphism.

Proof. By Hypercoverings, Lemma 12.3 there exists a hypercovering L for the site
D such that Ln = {Un,i}i∈In with Ui,n ∈ Ob(B). Set K = u(L). Apply Lemma
24.2 to get a cartesian object E of D(O) on the site (C/K)total restricting to EUn,i
on C/u(Un,i) compatibly. The assumption on t implies that E ∈ D+(O). By
Hypercoverings, Lemma 12.4 we see that K is a hypercovering too. By Lemma
18.4 we find that E = a∗F for some F in D+(OC).
To prove that F is a solution we will use the construction of L0 and L1 given in
the proof of Hypercoverings, Lemma 12.3. (This is a bit inelegant but there does
not seem to be a completely straightforward way around it.)
Namely, we have I0 = Ob(B) and so L0 = {U}U∈Ob(B). Hence the isomorphism
a∗F → E restricted to the components C/u(U) of C/K0 defines isomorphisms
ρU : F |C/u(U) → EU for U ∈ Ob(B) by our choice of E.
To prove that ρU satisfy the requirement of compatibility with the maps ρa of
Situation 24.1 we use that I1 contains the set

Ω = {(U, V,W, a, b) | U, V,W ∈ B, a : U → V, b : U →W}
and that for i = (U, V,W, a, b) in Ω we have U1,i = U . Moreover, the component
maps fδ1

0 ,i
and fδ1

1 ,i
of the two morphisms K1 → K0 are the morphisms

a : U → V and b : U → V

Hence the compatibility mentioned in Lemma 24.2 gives that
ρa ◦ ρV |C/u(U) = ρU and ρb ◦ ρW |C/u(U) = ρU

Taking i = (U, V, U, a, idU ) ∈ Ω for example, we find that we have the desired
compatibility. The uniqueness of F follows from the uniqueness of E in the previous
lemma (small detail omitted). □

Lemma 24.4 (Unbounded BBD glueing lemma).0DCC In Situation 24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor

u : D → C such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,

https://stacks.math.columbia.edu/tag/0DCB
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(c) every object of D has a covering whose members are objects of B,
(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exist weak Serre subcategories AU ⊂ Mod(OU ) for all U ∈ Ob(C)

satisfying conditions (1), (2), and (3),
(5) EU ∈ DAU

(OU ).
Then there exists a solution unique up to unique isomorphism.

Proof. The proof is exactly the same as the proof of Lemma 24.3. The only
change is that E is an object of DAtotal

(O) and hence we use Lemma 23.3 to obtain
F with E = a∗F instead of Lemma 18.4. □

Here is an example application of the general theory above.

Lemma 24.5.0GMG Email of Martin
Olsson dated Sep 9,
2021.

Let (C,OC) be a ringed site. Assume C has fibre products. Let
{Ui → X}i∈I be a covering in C. For i ∈ I let Ei be an object of D(OUi) and for
i, j ∈ I let

ρij : Ei|C/Uij −→ Ej |C/Uij
be an isomorphism in D(OUij ) where Uij = Ui ×X Uj. Assume

(1) the ρij satisfy the cocycle condition on Ui ×X Uj ×X Uk for all i, j, k ∈ I,
(2) ExtpOUi

(Ei, Ei) = 0 for all p < 0 and i ∈ I, and
(3) there exists a t ∈ Z such that Hp(Ei) = 0 for p < t and all i ∈ I.

Then there exists a unique pair (E, ρi) where E is an object of D(OX) and ρi :
E|Ui → Ei are isomorphisms in D(OUi) compatible with the ρij.

First proof. In this proof we deduce the lemma from the very general Lemma
24.3. We urge the reader to look at the second proof in stead.
We may replace C with C/X. Thus we may and do assume X is the final object of
C and that C has all finite limits.
Let B be the full subcategory of C consisting of U ∈ Ob(C) such that there exists
an i(U) ∈ I and a morphism aU : U → Ui(U). We denote EU = a∗

UEi(U) in D(OU )
the pullback (restriction) of Ei via aU . Given a morphism a : U → U ′ of B we
obtain a morphism (aU ′ ◦ a, aU ) : U → Ui(U ′) ×X Ui(U) = Ui(U ′)i(U) and hence an
isomorphism

ρa : a∗EU ′ = a∗a∗
U ′Ei(U ′)

(aU′ ◦a,aU )∗ρi(U′)i(U)−−−−−−−−−−−−−−→ a∗
UEi(U) = EU

in D(OU ). The data B, EU , ρa are as in Situation 24.1; the isomorphisms ρa satisfy
the cocycle condition exactly because of condition (1) in the statement of the lemma
(details omitted).
We are going to apply Lemma 24.3 with B, EU , ρa as above and with D = C and
f : C → D the identity morphism. Assumptions (1) and (2)(a) of Lemma 24.3 we
have seen above. Assumption (2)(b) of Lemma 24.3 is clear. Assumption (2)(c) of
Lemma 24.3 holds because {Ui → X} is a covering5. Assumption (3) of Lemma
24.3 holds because we have assumed the vanishing of all negative Ext sheaves of Ei
which certainly implies that for any object U lying over Ui the negative self-Exts
of Ei|U are zero. Assumption (4) of Lemma 24.3 holds because we have assumed
the cohomology sheaves of each Ei are zero to the left of t.

5In fact, it would suffice if the map
∐

i∈I
hUi → hX becomes surjective on sheafification and

the lemma holds in this case with the same proof.

https://stacks.math.columbia.edu/tag/0GMG
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We obtain a unique solution (E, ρU ). Setting ρi = ρUi the lemma follows. □

Second proof. We sketch a more direct proof. Denote K the Čech hypercovering
of X associated to the covering {Ui → X}i∈I , see Hypercoverings, Example 3.4.
Thus for example K0 = {Ui → X}i∈I and K1 = {Ui ×X Uj → X}i,j∈I and so
on. Let ((C/K)total,O), a, an be as in Remark 16.6. The objects Ei determine an
object M0 in D(O0) =

∏
D(OUi). Similarly, the isomorphisms ρij determine an

isomorphism
α : L(fδ1

1
)∗M0 −→ L(fδ1

0
)∗M0

in D(O1) satisfying the cocycle condition. By Lemma 14.3 we obtain a cartesian
simplicial system (Mn) of the derived category. By the assumed vanishing of the
negative Ext sheaves we see that the objects Mn have vanishing negative self-exts.
Thus we find a cartesian object M of D(O) whose associated simplicial system is
isomorphic to (Mn) by Lemma 14.7. Since the cohomology sheaves of M are zero in
degrees < t we see that by Lemma 20.4 we have M = La∗E for some E in D(OX).
The isomorphism La∗E →M restricted to C/Ui produces the isomorphisms ρi. We
omit the verification of the compatibility with the isomorphisms ρij . □

25. Proper hypercoverings in topology

09XA Let’s work in the category LC of Hausdorff and locally quasi-compact topological
spaces and continuous maps, see Cohomology on Sites, Section 31. Let X be
an object of LC and let U be a simplicial object of LC. Assume we have an
augmentation

a : U → X

We say that U is a proper hypercovering of X if
(1) U0 → X is a proper surjective map,
(2) U1 → U0 ×X U0 is a proper surjective map,
(3) Un+1 → (cosknsknU)n+1 is a proper surjective map for n ≥ 1.

The category LC has all finite limits, hence the coskeleta used in the formulation
above exist.

Principle: Proper hypercoverings can be used to compute cohomology.

A key idea behind the proof of the principle is to find a topology on LC which is
stronger than the usual one such that (a) a surjective proper map defines a covering,
and (b) cohomology of usual sheaves with respect to this stronger topology agrees
with the usual cohomology. Properties (a) and (b) hold for the qc topology, see
Cohomology on Sites, Section 31. Once we have (a) and (b) we deduce the principle
via the earlier work done in this chapter.

Lemma 25.1.0DAF Let U be a simplicial object of LC and let a : U → X be an
augmentation. There is a commutative diagram

Sh((LCqc/U)total)
h
//

aqc

��

Sh(UZar)

a

��
Sh(LCqc/X)

h−1 // Sh(X)

where the left vertical arrow is defined in Section 21 and the right vertical arrow is
defined in Lemma 2.8.

https://stacks.math.columbia.edu/tag/0DAF
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Proof. Write Sh(X) = Sh(XZar). Observe that both (LCqc/U)total and UZar fall
into case A of Situation 3.3. This is immediate from the construction of UZar in
Section 2 and it follows from Lemma 21.5 for (LCqc/U)total. Next, consider the
functors Un,Zar → LCqc/Un, U 7→ U/Un and XZar → LCqc/X, U 7→ U/X. We
have seen that these define morphisms of sites in Cohomology on Sites, Section 31.
Thus we obtain a morphism of simplicial sites compatible with augmentations as
in Remark 5.4 and we may apply Lemma 5.5 to conclude. □

Lemma 25.2.0DAG Let U be a simplicial object of LC and let a : U → X be an
augmentation. If a : U → X gives a proper hypercovering of X, then

a−1 : Sh(X)→ Sh(UZar) and a−1 : Ab(X)→ Ab(UZar)
are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 25.1.
By Cohomology on Sites, Lemma 31.6 the functor (h−1)−1 is fully faithful with
quasi-inverse h−1,∗. The same holds true for the components hn of h. By the
description of the functors h−1 and h∗ of Lemma 5.2 we conclude that h−1 is fully
faithful with quasi-inverse h∗. Observe that U is a hypercovering of X in LCqc
(as defined in Section 21) by Cohomology on Sites, Lemma 31.4. By Lemma 21.1
we see that a−1

qc is fully faithful with quasi-inverse aqc,∗ and with essential image
the cartesian sheaves on (LCqc/U)total. A formal argument (chasing around the
diagram) now shows that a−1 is fully faithful.
Finally, suppose that G is a cartesian sheaf on UZar. Then h−1G is a cartesian sheaf
on LCqc/U . Hence h−1G = a−1

qc H for some sheaf H on LCqc/X. We compute

(h−1)−1(a∗G) = (h−1)−1Eq( a0,∗G0
//
// a1,∗G1 )

= Eq( (h−1)−1a0,∗G0
//
// (h−1)−1a1,∗G1 )

= Eq( aqc,0,∗h−1
0 G0

//
// aqc,1,∗h

−1
1 G1 )

= Eq( aqc,0,∗a−1
qc,0H

//
// aqc,1,∗a

−1
qc,1H )

= aqc,∗a
−1
qc H

= H
Here the first equality follows from Lemma 2.8, the second equality follows as
(h−1)−1 is an exact functor, the third equality follows from Cohomology on Sites,
Lemma 31.8 (here we use that a0 : U0 → X and a1 : U1 → X are proper), the
fourth follows from a−1

qc H = h−1G, the fifth from Lemma 4.2, and the sixth we’ve
seen above. Since a−1

qc H = h−1G we deduce that h−1G ∼= h−1a−1a∗G which ends
the proof by fully faithfulness of h−1. □

Lemma 25.3.09XS Let U be a simplicial object of LC and let a : U → X be an
augmentation. If a : U → X gives a proper hypercovering of X, then for K ∈
D+(X)

K → Ra∗(a−1K)
is an isomorphism where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

https://stacks.math.columbia.edu/tag/0DAG
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Proof. Consider the diagram of Lemma 25.1. Observe that Rhn,∗h−1
n is the iden-

tity functor on D+(Un) by Cohomology on Sites, Lemma 31.11. Hence Rh∗h
−1 is

the identity functor on D+(UZar) by Lemma 5.3. We have
Ra∗(a−1K) = Ra∗Rh∗h

−1a−1K

= Rh−1,∗Raqc,∗a
−1
qc (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 (U is
a hypercovering of X in LCqc by Cohomology on Sites, Lemma 31.4), and the last
equality by the already used Cohomology on Sites, Lemma 31.11. □

Lemma 25.4.09XC Let U be a simplicial object of LC and let a : U → X be an
augmentation. If U is a proper hypercovering of X, then

RΓ(X,K) = RΓ(UZar, a−1K)
for K ∈ D+(X) where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. This follows from Lemma 25.3 because RΓ(UZar,−) = RΓ(X,−) ◦Ra∗ by
Cohomology on Sites, Remark 14.4. □

Lemma 25.5.0DAH Let U be a simplicial object of LC and let a : U → X be an
augmentation. Let A ⊂ Ab(UZar) denote the weak Serre subcategory of cartesian
abelian sheaves. If U is a proper hypercovering of X, then the functor a−1 defines
an equivalence

D+(X) −→ D+
A(UZar)

with quasi-inverse Ra∗ where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. Observe that A is a weak Serre subcategory by Lemma 12.6. The equiva-
lence is a formal consequence of the results obtained so far. Use Lemmas 25.2 and
25.3 and Cohomology on Sites, Lemma 28.5. □

Lemma 25.6.09XB Let U be a simplicial object of LC and let a : U → X be an
augmentation. Let F be an abelian sheaf on X. Let Fn be the pullback to Un. If U
is a proper hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq(Up,Fp)
converging to Hp+q(X,F).

Proof. Immediate consequence of Lemmas 25.4 and 2.10. □

26. Simplicial schemes

09XT A simplicial scheme is a simplicial object in the category of schemes, see Simplicial,
Definition 3.1. Recall that a simplicial scheme looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 =

d1
1 ◦ s0

0, see Simplicial, Lemma 3.2. It is useful to think of dni : Xn → Xn−1 as the
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“projection forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as the
“diagonal map repeating the jth coordinate”.

A morphism of simplicial schemes h : X → Y is the same thing as a morphism of
simplicial objects in the category of schemes, see Simplicial, Definition 3.1. Thus h
consists of morphisms of schemes hn : Xn → Yn such that hn−1 ◦ dnj = dnj ◦ hn and
hn+1 ◦ snj = snj ◦ hn whenever this makes sense.

An augmentation of a simplicial scheme X is a morphism of schemes a0 : X0 → S
such that a0 ◦ d1

0 = a0 ◦ d1
1. See Simplicial, Section 20.

Let X be a simplicial scheme. The construction of Section 2 applied to the un-
derlying simplicial topological space gives a site XZar. On the other hand, for
every n we have the small Zariski site Xn,Zar (Topologies, Definition 3.7) and for
every morphism φ : [m] → [n] we have a morphism of sites fφ = X(φ)small :
Xn,Zar → Xm,Zar, associated to the morphism of schemes X(φ) : Xn → Xm

(Topologies, Lemma 3.17). This gives a simplicial object C in the category of sites.
In Lemma 3.1 we constructed an associated site Ctotal. Assigning to an open im-
mersion its image defines an equivalence Ctotal → XZar which identifies sheaves,
i.e., Sh(Ctotal) = Sh(XZar). The difference between Ctotal and XZar is similar to
the difference between the small Zariski site SZar and the underlying topological
space of S. We will silently identify these sites in what follows.

Let XZar be the site associated to a simplicial scheme X. There is a sheaf of
rings O on XZar whose restriction to Xn is the structure sheaf OXn . This follows
from Lemma 2.2 or from Lemma 3.4. We will say O is the structure sheaf of the
simplicial scheme X. At this point all the material developed for simplicial (ringed)
sites applies, see Sections 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, and 14.

Let X be a simplicial scheme with structure sheaf O. As on any ringed topos, there
is a notion of a quasi-coherent O-module on XZar, see Modules on Sites, Definition
23.1. However, a quasi-coherent O-module on XZar is just a cartesian O-module
F whose restrictions Fn are quasi-coherent on Xn, see Lemma 12.10.

Let h : X → Y be a morphism of simplicial schemes. Either by Lemma 2.3 or
by (the proof of) Lemma 5.2 we obtain a morphism of sites hZar : XZar → YZar.
Recall that h−1

Zar and hZar,∗ have a simple description in terms of the components,
see Lemma 2.4 or Lemma 5.2. Let OX , resp. OY denote the structure sheaf of X,
resp. Y . We define h♯Zar : hZar,∗OX → OY to be the map of sheaves of rings on
YZar given by h♯n : hn,∗OXn → OYn on Yn. We obtain a morphism of ringed sites

hZar : (XZar,OX) −→ (YZar,OY )

Let X be a simplicial scheme with structure sheaf O. Let S be a scheme and let
a0 : X0 → S be an augmentation of X. Either by Lemma 2.8 or by Lemma 4.2 we
obtain a corresponding morphism of topoi a : Sh(XZar) → Sh(S). Observe that
a−1G is the sheaf on XZar with components a−1

n G. Hence we can use the maps
a♯n : a−1

n OS → OXn to define a map a♯ : a−1OS → O, or equivalently by adjunction
a map a♯ : OS → a∗O (which as usual has the same name). This puts us in the
situation discussed in Section 11. Therefore we obtain a morphism of ringed topoi

a : (Sh(XZar),O) −→ (Sh(S),OS)



SIMPLICIAL SPACES 57

A final observation is the following. Suppose we are given a morphism h : X → Y
of simplicial schemes X and Y with structure sheaves OX , OY , augmentations
a0 : X0 → X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative
diagram of morphisms of ringed topoi as follows

(Sh(XZar),OX)
hZar

//

a

��

(Sh(YZar),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)

27. Descent in terms of simplicial schemes

0248 Cartesian morphisms are defined as follows.

Definition 27.1.0249 Let a : Y → X be a morphism of simplicial schemes. We say a
is cartesian, or that Y is cartesian over X, if for every morphism φ : [n] → [m] of
∆ the corresponding diagram

Ym a
//

Y (φ)
��

Xm

X(φ)
��

Yn
a // Xn

is a fibre square in the category of schemes.

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian simplicial schemes over a fixed simplicial scheme.
In this lemma we denote f∗ : Sch/X → Sch/Y the base change functor associated
to a morphism of schemes f : Y → X.

Lemma 27.2.07TC Let X be a simplicial scheme. The category of simplicial schemes
cartesian over X is equivalent to the category of pairs (V, φ) where V is a scheme
over X0 and

φ : V ×X0,d1
1
X1 −→ X1 ×d1

0,X0 V

is an isomorphism over X1 such that (s0
0)∗φ = idV and such that

(d2
1)∗φ = (d2

0)∗φ ◦ (d2
2)∗φ

as morphisms of schemes over X2.

Proof. The statement of the displayed equality makes sense because d1
1 ◦ d2

2 =
d1

1 ◦ d2
1, d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see

https://stacks.math.columbia.edu/tag/0249
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Simplicial, Remark 3.3 hence we can picture these maps as follows

X2 ×d1
1◦d2

0,X0 V (d2
0)∗φ

// X2 ×d1
0◦d2

0,X0 V

X2 ×d1
0◦d2

2,X0 V X2 ×d1
0◦d2

1,X0 V

X2 ×d1
1◦d2

2,X0 V

(d2
2)∗φ

hh

X2 ×d1
1◦d2

1,X0 V

(d2
1)∗φ

66

and the condition signifies the diagram is commutative. It is clear that given a
simplicial scheme Y cartesian over X we can set V = Y0 and φ equal to the
composition

V ×X0,d1
1
X1 = Y0 ×X0,d1

1
X1 = Y1 = X1 ×X0,d1

0
Y0 = X1 ×X0,d1

0
V

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 3 from which we borrow
the notation τni : [0]→ [n], 0 7→ i and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Namely, given a
pair (V, φ) as in the lemma we set Yn = Xn×X(τnn ),X0 V . Then given β : [n]→ [m]
we define V (β) : Ym → Yn as the pullback by X(τmβ(n)m) of the map φ postcomposed
by the projection Xm ×X(β),Xn Yn → Yn. This makes sense because

Xm ×X(τm
β(n)m),X1 X1 ×d1

1,X0 V = Xm ×X(τmm ),X0 V = Ym

and
Xm ×X(τm

β(n)m),X1 X1 ×d1
0,X0 V = Xm ×X(τm

β(n)),X0 V = Xm ×X(β),Xn Yn.

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly. We also omit the verification that the two
functors are quasi-inverse to each other. □

Definition 27.3.024A Let f : X → S be a morphism of schemes. The simplicial scheme
associated to f , denoted (X/S)•, is the functor ∆opp → Sch, [n] 7→ X ×S . . .×S X
described in Simplicial, Example 3.5.

Thus (X/S)n is the (n + 1)-fold fibre product of X over S. The morphism d1
0 :

X×SX → X is the map (x0, x1) 7→ x1 and the morphism d1
1 is the other projection.

The morphism s0
0 is the diagonal morphism X → X ×S X.

Lemma 27.4.024B Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes. Set V = Y0 considered as a scheme
over X. The morphisms d1

0, d
1
1 : Y1 → Y0 and the morphism π1 : Y1 → X ×S X

induce isomorphisms

V ×S X Y1
(d1

1,pr1◦π1)oo (pr0◦π1,d
1
0) // X ×S V.

Denote φ : V ×S X → X ×S V the resulting isomorphism. Then the pair (V, φ) is
a descent datum relative to X → S.

Proof. This is a special case of (part of) Lemma 27.2 as the displayed equation of
that lemma is equivalent to the cocycle condition of Descent, Definition 34.1. □

https://stacks.math.columbia.edu/tag/024A
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Lemma 27.5.024C Let f : X → S be a morphism of schemes. The construction

category of cartesian
schemes over (X/S)•

−→ category of descent data
relative to X/S

of Lemma 27.4 is an equivalence of categories.

Proof. The functor from left to right is given in Lemma 27.4. Hence this is a
special case of Lemma 27.2. □

We may reinterpret the pullback of Descent, Lemma 34.6 as follows. Suppose
given a morphism of simplicial schemes f : X ′ → X and a cartesian morphism of
simplicial schemes Y → X. Then the fibre product (viewed as a “pullback”)

f∗Y = Y ×X X ′

of simplicial schemes is a simplicial scheme cartesian over X ′. Suppose given a
commutative diagram of morphisms of schemes

X ′
f
//

��

X

��
S′ // S.

This gives rise to a morphism of simplicial schemes
f• : (X ′/S′)• −→ (X/S)•.

We claim that the “pullback” f∗
• along the morphism f• : (X ′/S′)• → (X/S)•

corresponds via Lemma 27.5 with the pullback defined in terms of descent data in
the aforementioned Descent, Lemma 34.6.

28. Quasi-coherent modules on simplicial schemes

07TE
Lemma 28.1.07TI Let f : V → U be a morphism of simplicial schemes. Given a
quasi-coherent module F on UZar the pullback f∗F is a quasi-coherent module on
VZar.

Proof. Recall that F is cartesian with Fn quasi-coherent, see Lemma 12.10. By
Lemma 2.4 we see that (f∗F)n = f∗

nFn (some details omitted). Hence (f∗F)n is
quasi-coherent. The same fact and the cartesian property for F imply the cartesian
property for f∗F . Thus F is quasi-coherent by Lemma 12.10 again. □

Lemma 28.2.07TJ Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un
are quasi-compact and quasi-separated. For a quasi-coherent module G on VZar the
pushforward f∗G is a quasi-coherent module on UZar.

Proof. If F = f∗G, then Fn = fn,∗Gn by Lemma 2.4. The maps F(φ) are defined
using the base change maps, see Cohomology, Section 17. The sheaves Fn are
quasi-coherent by Schemes, Lemma 24.1 and the fact that Gn is quasi-coherent by
Lemma 12.10. The base change maps along the degeneracies dnj are isomorphisms
by Cohomology of Schemes, Lemma 5.2 and the fact that G is cartesian by Lemma
12.10. Hence F is cartesian by Lemma 12.2. Thus F is quasi-coherent by Lemma
12.10. □

https://stacks.math.columbia.edu/tag/024C
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Lemma 28.3.07TK Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un
are quasi-compact and quasi-separated. Then f∗ and f∗ form an adjoint pair of
functors between the categories of quasi-coherent modules on UZar and VZar.

Proof. We have seen in Lemmas 28.1 and 28.2 that the statement makes sense.
The adjointness property follows immediately from the fact that each f∗

n is adjoint
to fn,∗. □

Lemma 28.4.07TL Let f : X → S be a morphism of schemes which has a section6. Let
(X/S)• be the simplicial scheme associated to X → S, see Definition 27.3. Then
pullback defines an equivalence between the category of quasi-coherent OS-modules
and the category of quasi-coherent modules on ((X/S)•)Zar.

Proof. Let σ : S → X be a section of f . Let (F , α) be a pair as in Lemma 12.5.
Set G = σ∗F . Consider the diagram

X
(σ◦f,1)

//

f

��

X ×S X
pr0

��

pr1
// X

S
σ // X

Note that pr0 = d1
1 and pr1 = d1

0. Hence we see that (σ ◦ f, 1)∗α defines an
isomorphism

f∗G = (σ ◦ f, 1)∗pr∗
0F −→ (σ ◦ f, 1)∗pr∗

1F = F
We omit the verification that this isomorphism is compatible with α and the canon-
ical isomorphism pr∗

0f
∗G → pr∗

1f
∗G. □

29. Groupoids and simplicial schemes

07TM Given a groupoid in schemes we can build a simplicial scheme. It will turn out that
the category of quasi-coherent sheaves on a groupoid is equivalent to the category
of cartesian quasi-coherent sheaves on the associated simplicial scheme.

Lemma 29.1.07TN Let (U,R, s, t, c, e, i) be a groupoid scheme over S. There exists a
simplicial scheme X over S with the following properties

(1) X0 = U , X1 = R, X2 = R×s,U,t R,
(2) s0

0 = e : X0 → X1,
(3) d1

0 = s : X1 → X0, d1
1 = t : X1 → X0,

(4) s1
0 = (e ◦ t, 1) : X1 → X2, s1

1 = (1, e ◦ t) : X1 → X2,
(5) d2

0 = pr1 : X2 → X1, d2
1 = c : X2 → X1, d2

2 = pr0, and
(6) X = cosk2sk2X.

For all n we have Xn = R ×s,U,t . . . ×s,U,t R with n factors. The map dnj : Xn →
Xn−1 is given on functors of points by

(r1, . . . , rn) 7−→ (r1, . . . , c(rj , rj+1), . . . , rn)

for 1 ≤ j ≤ n − 1 whereas dn0 (r1, . . . , rn) = (r2, . . . , rn) and dnn(r1, . . . , rn) =
(r1, . . . , rn−1).

6In fact, it would be enough to assume that f has fpqc locally on S a section, since we have
descent of quasi-coherent modules by Descent, Section 5.

https://stacks.math.columbia.edu/tag/07TK
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Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5)
define a 2-truncated simplicial scheme U ′ over S, since then (6) allows us to set
X = cosk2U

′, see Simplicial, Lemma 19.2. Using the functor of points approach,
all we have to verify is that if (Ob,Arrows, s, t, c, e, i) is a groupoid, then

Arrows×s,Ob,t Arrows

pr0

��
c

��
pr1

��
Arrows

t

��
s

��

1,e

OO
e,1

OO

Ob

e

OO

is a 2-truncated simplicial set. We omit the details.
Finally, the description of Xn for n > 2 follows by induction from the description
of X0, X1, X2, and Simplicial, Remark 19.9 and Lemma 19.6. Alternately, one
shows that cosk2 applied to the 2-truncated simplicial set displayed above gives a
simplicial set whose nth term equals Arrows×s,Ob,t . . .×s,Ob,tArrows with n factors
and degeneracy maps as given in the lemma. Some details omitted. □

Lemma 29.2.07TP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let X be the simplicial scheme over S constructed in Lemma 29.1. Then the
category of quasi-coherent modules on (U,R, s, t, c) is equivalent to the category of
quasi-coherent modules on XZar.

Proof. This is clear from Lemmas 12.10 and 12.5 and Groupoids, Definition 14.1.
□

In the following lemma we will use the concept of a cartesian morphism V → U of
simplicial schemes as defined in Definition 27.1.

Lemma 29.3.07TQ Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Let X be
the simplicial scheme over S constructed in Lemma 29.1. Let (R/U)• be the simpli-
cial scheme associated to s : R → U , see Definition 27.3. There exists a cartesian
morphism t• : (R/U)• → X of simplicial schemes with low degree morphisms given
by

R×s,U,s R×s,U,s R
pr12
//

pr02
//

pr01
//

(r0,r1,r2) 7→(r0◦r−1
1 ,r1◦r−1

2 )

��

R×s,U,s R pr1
//

pr0
//

(r0,r1) 7→r0◦r−1
1

��

R

t

��
R×s,U,t R

pr1
//

c
//

pr0
//
R s

//

t
//
U

Proof. For arbitrary n we define (R/U)• → Xn by the rule
(r0, . . . , rn) −→ (r0 ◦ r−1

1 , . . . , rn−1 ◦ r−1
n )

Compatibility with degeneracy maps is clear from the description of the degenera-
cies in Lemma 29.1. We omit the verification that the maps respect the morphisms
snj . Groupoids, Lemma 13.5 (with the roles of s and t reversed) shows that the two

https://stacks.math.columbia.edu/tag/07TP
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right squares are cartesian. In exactly the same manner one shows all the other
squares are cartesian too. Hence the morphism is cartesian. □

30. Descent data give equivalence relations

024D In Section 27 we saw how descent data relative to X → S can be formulated in
terms of cartesian simplicial schemes over (X/S)•. Here we link this to equivalence
relations as follows.

Lemma 30.1.024E Let f : X → S be a morphism of schemes. Let π : Y → (X/S)• be
a cartesian morphism of simplicial schemes, see Definitions 27.1 and 27.3. Then
the morphism

j = (d1
1, d

1
0) : Y1 → Y0 ×S Y0

defines an equivalence relation on Y0 over S, see Groupoids, Definition 3.1.

Proof. Note that j is a monomorphism. Namely the composition Y1 → Y0×SY0 →
Y0 ×S X is an isomorphism as π is cartesian.

Consider the morphism

(d2
2, d

2
0) : Y2 → Y1 ×d1

0,Y0,d1
1
Y1.

This works because d0 ◦ d2 = d1 ◦ d0, see Simplicial, Remark 3.3. Also, it is a
morphism over (X/S)2. It is an isomorphism because Y → (X/S)• is cartesian.
Note for example that the right hand side is isomorphic to Y0×π0,X,pr1 (X×SX×S
X) = X ×S Y0 ×S X because π is cartesian. Details omitted.

As in Groupoids, Definition 3.1 we denote t = pr0 ◦ j = d1
1 and s = pr1 ◦ j = d1

0.
The isomorphism above, combined with the morphism d2

1 : Y2 → Y1 give us a
composition morphism

c : Y1 ×s,Y0,t Y1 −→ Y1

over Y0 ×S Y0. This immediately implies that for any scheme T/S the relation
Y1(T ) ⊂ Y0(T )× Y0(T ) is transitive.

Reflexivity follows from the fact that the restriction of the morphism j to the
diagonal ∆ : X → X ×S X is an isomorphism (again use the cartesian property of
π).

To see symmetry we consider the morphism

(d2
2, d

2
1) : Y2 → Y1 ×d1

1,Y0,d1
1
Y1.

This works because d1◦d2 = d1◦d1, see Simplicial, Remark 3.3. It is an isomorphism
because Y → (X/S)• is cartesian. Note for example that the right hand side is
isomorphic to Y0×π0,X,pr0 (X ×S X ×S X) = Y0×S X ×S X because π is cartesian.
Details omitted.

Let T/S be a scheme. Let a ∼ b for a, b ∈ Y0(T ) be synonymous with (a, b) ∈ Y1(T ).
The isomorphism (d2

2, d
2
1) above implies that if a ∼ b and a ∼ c, then b ∼ c.

Combined with reflexivity this shows that ∼ is an equivalence relation. □

https://stacks.math.columbia.edu/tag/024E
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31. An example case

024F In this section we show that disjoint unions of spectra of Artinian rings can be
descended along a quasi-compact surjective flat morphism of schemes.

Lemma 31.1.024G Let X → S be a morphism of schemes. Suppose Y → (X/S)• is a
cartesian morphism of simplicial schemes. For y ∈ Y0 a point define

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}

as a subset of Y0. Then y ∈ Ty and Ty ∩ Ty′ ̸= ∅ ⇒ Ty = Ty′ .

Proof. Combine Lemma 30.1 and Groupoids, Lemma 3.4. □

Lemma 31.2.024H Let X → S be a morphism of schemes. Suppose Y → (X/S)• is
a cartesian morphism of simplicial schemes. Let y ∈ Y0 be a point. If X → S is
quasi-compact, then

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}

is a quasi-compact subset of Y0.

Proof. Let Fy be the scheme theoretic fibre of d1
1 : Y1 → Y0 at y. Then we see

that Ty is the image of the morphism

Fy //

��

Y1
d1

0 //

d1
1
��

Y0

y // Y0

Note that Fy is quasi-compact. This proves the lemma. □

Lemma 31.3.024I Let X → S be a quasi-compact flat surjective morphism. Let (V, φ)
be a descent datum relative to X → S. If V is a disjoint union of spectra of Artinian
rings, then (V, φ) is effective.

Proof. Let Y → (X/S)• be the cartesian morphism of simplicial schemes corre-
sponding to (V, φ) by Lemma 27.5. Observe that Y0 = V . Write V =

∐
i∈I Spec(Ai)

with each Ai local Artinian. Moreover, let vi ∈ V be the unique closed point of
Spec(Ai) for all i ∈ I. Write i ∼ j if and only if vi ∈ Tvj with notation as in
Lemma 31.1 above. By Lemmas 31.1 and 31.2 this is an equivalence relation with
finite equivalence classes. Let I = I/ ∼. Then we can write V =

∐
i∈I Vi with

Vi =
∐
i∈i Spec(Ai). By construction we see that φ : V ×S X → X ×S V maps the

open and closed subspaces Vi ×S X into the open and closed subspaces X ×S Vi.
In other words, we get descent data (Vi, φi), and (V, φ) is the coproduct of them
in the category of descent data. Since each of the Vi is a finite union of spectra of
Artinian local rings the morphism Vi → X is affine, see Morphisms, Lemma 11.13.
Since {X → S} is an fpqc covering we see that all the descent data (Vi, φi) are
effective by Descent, Lemma 37.1. □

To be sure, the lemma above has very limited applicability!

https://stacks.math.columbia.edu/tag/024G
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32. Simplicial algebraic spaces

0DE7 Let S be a scheme. A simplicial algebraic space is a simplicial object in the category
of algebraic spaces over S, see Simplicial, Definition 3.1. Recall that a simplicial
algebraic space looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 =

d1
1 ◦ s0

0, see Simplicial, Lemma 3.2. It is useful to think of dni : Xn → Xn−1 as the
“projection forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as the
“diagonal map repeating the jth coordinate”.
A morphism of simplicial algebraic spaces h : X → Y is the same thing as a mor-
phism of simplicial objects in the category of algebraic spaces over S, see Simplicial,
Definition 3.1. Thus h consists of morphisms of algebraic spaces hn : Xn → Yn such
that hn−1 ◦ dnj = dnj ◦ hn and hn+1 ◦ snj = snj ◦ hn whenever this makes sense.
An augmentation a : X → X−1 of a simplicial algebraic space X is given by a
morphism of algebraic spaces a0 : X0 → X−1 such that a0 ◦ d1

0 = a0 ◦ d1
1. See

Simplicial, Section 20. In this situation we always indicate an : Xn → X−1 the
induced morphisms for n ≥ 0.
Let X be a simplicial algebraic space. For every n we have the site Xn,spaces,étale

(Properties of Spaces, Definition 18.2) and for every morphism φ : [m] → [n] we
have a morphism of sites

fφ = X(φ)spaces,étale : Xn,spaces,étale → Xm,spaces,étale,

associated to the morphism of algebraic spaces X(φ) : Xn → Xm (Properties of
Spaces, Lemma 18.8). This gives a simplicial object in the category of sites. In
Lemma 3.1 we constructed an associated site which we denote Xspaces,étale. An
object of the site Xspaces,étale is a an algebraic space U étale over Xn for some n
and a morphism (φ, f) : U/Xn → V/Xm is given by a morphism φ : [m] → [n] in
∆ and a morphism f : U → V of algebraic spaces such that the diagram

U
f
//

��

V

��
Xn

fφ // Xm

is commutative. Consider the full subcategories
Xaffine,étale ⊂ Xétale ⊂ Xspaces,étale

whose objects are U/Xn with U affine, respectively a scheme. Endowing these
categories with their natural topologies (see Properties of Spaces, Lemma 18.6,
Definition 18.1, and Lemma 18.3) these inclusion functors define equivalences of
topoi

Sh(Xaffine,étale) = Sh(Xétale) = Sh(Xspaces,étale)
In the following we will silently identify these topoi. We will say that Xétale is the
small étale site of X and its topos is the small étale topos of X.
Let Xétale be the small étale site of a simplicial algebraic space X. There is a
sheaf of rings O on Xétale whose restriction to Xn is the structure sheaf OXn . This
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follows from Lemma 3.4. We will say O is the structure sheaf of the simplicial
algebraic space X. At this point all the material developed for simplicial (ringed)
sites applies, see Sections 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, and 14.

Let X be a simplicial algebraic space with structure sheaf O. As on any ringed
topos, there is a notion of a quasi-coherent O-module on Xétale, see Modules on
Sites, Definition 23.1. However, a quasi-coherent O-module on Xétale is just a
cartesian O-module F whose restrictions Fn are quasi-coherent on Xn, see Lemma
12.10.

Let h : X → Y be a morphism of simplicial algebraic spaces over S. By Lemma
5.2 applied to the morphisms of sites (hn)spaces,étale : Xspaces,étale → Yspaces,étale
(Properties of Spaces, Lemma 18.8) we obtain a morphism of small étale topoi
hétale : Sh(Xétale) → Sh(Yétale). Recall that h−1

étale and hétale,∗ have a simple
description in terms of the components, see Lemma 5.2. Let OX , resp. OY denote
the structure sheaf of X, resp. Y . We define h♯étale : hétale,∗OX → OY to be the
map of sheaves of rings on Yétale given by h♯n : hn,∗OXn → OYn on Yn. We obtain
a morphism of ringed topoi

hétale : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

Let X be a simplicial algebraic space with structure sheaf O. Let X−1 be an alge-
braic space over S and let a0 : X0 → X−1 be an augmentation of X. By Lemma 4.2
applied to the morphism of sites (a0)spaces,étale : X0,spaces,étale → X−1,spaces,étale
we obtain a corresponding morphism of topoi a : Sh(Xétale)→ Sh(X−1,étale). Ob-
serve that a−1G is the sheaf on Xétale with components a−1

n G. Hence we can use
the maps a♯n : a−1

n OX−1 → OXn to define a map a♯ : a−1OX−1 → O, or equivalently
by adjunction a map a♯ : OX−1 → a∗O (which as usual has the same name). This
puts us in the situation discussed in Section 11. Therefore we obtain a morphism
of ringed topoi

a : (Sh(Xétale),O) −→ (Sh(X−1),OX−1)

A final observation is the following. Suppose we are given a morphism h : X → Y of
simplicial algebraic spaces X and Y with structure sheaves OX , OY , augmentations
a0 : X0 → X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative
diagram of morphisms of ringed topoi as follows

(Sh(Xétale),OX)
hétale

//

a

��

(Sh(Yétale),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)
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33. Fppf hypercoverings of algebraic spaces

0DH4 This section is the analogue of Section 25 for the case of algebraic spaces and fppf
hypercoverings. The reader who wishes to do so, can replace “algebraic space”
everywhere with “scheme” and get equally valid results. This has the advantage of
replacing the references to More on Cohomology of Spaces, Section 6 with references
to Étale Cohomology, Section 100.
We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

See Section 32. We say that U is an fppf hypercovering of X if
(1) U0 → X is flat, locally of finite presentation, and surjective,
(2) U1 → U0 ×X U0 is flat, locally of finite presentation, and surjective,
(3) Un+1 → (cosknsknU)n+1 is flat, locally of finite presentation, and surjective

for n ≥ 1.
The category of algebraic spaces over S has all finite limits, hence the coskeleta
used in the formulation above exist.

Principle: Fppf hypercoverings can be used to compute étale cohomology.

The key idea behind the proof of the principle is to compare the fppf and étale
topologies on the category Spaces/S. Namely, the fppf topology is stronger than
the étale topology and we have (a) a flat, locally finitely presented, surjective map
defines an fppf covering, and (b) fppf cohomology of sheaves pulled back from
the small étale site agrees with étale cohomology as we have seen in More on
Cohomology of Spaces, Section 6.
Lemma 33.1.0DH5 Let S be a scheme. Let X be an algebraic space over S. Let U be
a simplicial algebraic space over S. Let a : U → X be an augmentation. There is
a commutative diagram

Sh((Spaces/U)fppf,total)
h
//

afppf

��

Sh(Uétale)

a

��
Sh((Spaces/X)fppf )

h−1 // Sh(Xétale)

where the left vertical arrow is defined in Section 21 and the right vertical arrow is
defined in Section 32.
Proof. The notation (Spaces/U)fppf,total indicates that we are using the construc-
tion of Section 21 for the site (Spaces/S)fppf and the simplicial object U of this
site7. We will use the sites Xspaces,étale and Uspaces,étale for the topoi on the right
hand side; this is permissible see discussion in Section 32.
Observe that both (Spaces/U)fppf,total and Uspaces,étale fall into case A of Situ-
ation 3.3. This is immediate from the construction of Uétale in Section 32 and
it follows from Lemma 21.5 for (Spaces/U)fppf,total. Next, consider the functors
Un,spaces,étale → (Spaces/Un)fppf , U 7→ U/Un and Xspaces,étale → (Spaces/X)fppf ,
U 7→ U/X. We have seen that these define morphisms of sites in More on Co-
homology of Spaces, Section 6 where these were denoted aUn = ϵUn ◦ πun and

7We could also use the étale topology and this would be denoted (Spaces/U)étale,total.

https://stacks.math.columbia.edu/tag/0DH5
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aX = ϵX ◦ πX . Thus we obtain a morphism of simplicial sites compatible with
augmentations as in Remark 5.4 and we may apply Lemma 5.5 to conclude. □

Lemma 33.2.0DH6 Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)

are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 33.1.
In the proof of this lemma we have seen that h−1 is the morphism aX of More
on Cohomology of Spaces, Section 6. Thus it follows from More on Cohomology
of Spaces, Lemma 6.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The
same holds true for the components hn of h. By the description of the functors
h−1 and h∗ of Lemma 5.2 we conclude that h−1 is fully faithful with quasi-inverse
h∗. Observe that U is a hypercovering of X in (Spaces/S)fppf as defined in Section
21. By Lemma 21.1 we see that a−1

fppf is fully faithful with quasi-inverse afppf,∗
and with essential image the cartesian sheaves on (Spaces/U)fppf,total. A formal
argument (chasing around the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a carte-
sian sheaf on (Spaces/U)fppf,total. Hence h−1G = a−1

fppfH for some sheaf H on
(Spaces/X)fppf . In particular we find that h−1

0 G0 = (a0,big,fppf )−1H. Recalling
that h0 = aU0 and that U0 → X is flat, locally of finite presentation, and surjec-
tive, we find from More on Cohomology of Spaces, Lemma 6.7 that there exists
a sheaf F on Xétale and isomorphism H = (h−1)−1F . Since a−1

fppfH = h−1G
we deduce that h−1G ∼= h−1a−1F . By fully faithfulness of h−1 we conclude that
a−1F ∼= G.

Fix an isomorphism θ : a−1F → G. To finish the proof we have to show G =
a−1a∗G (in order to show that the quasi-inverse is given by a∗; everything else
has been proven above). Because a−1 is fully faithful we have id ∼= a∗a

−1 by
Categories, Lemma 24.4. Thus F ∼= a∗a

−1F and a∗θ : a∗a
−1F → a∗G combine to

an isomorphism F → a∗G. Pulling back by a and precomposing by θ−1 we find the
desired isomorphism. □

Lemma 33.3.0DH7 Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 33.1. Observe that Rhn,∗h−1
n is the iden-

tity functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 6.2. Hence
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Rh∗h
−1 is the identity functor on D+(Uétale) by Lemma 5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Rafppf,∗a
−1
fppf (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 as
U is a hypercovering of X in (Spaces/S)fppf , and the last equality by the already
used More on Cohomology of Spaces, Lemma 6.2. □

Lemma 33.4.0DH8 Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)

for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. This follows from Lemma 33.3 because RΓ(Uétale,−) = RΓ(Xétale,−)◦Ra∗
by Cohomology on Sites, Remark 14.4. □

Lemma 33.5.0DH9 Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
A ⊂ Ab(Uétale) denote the weak Serre subcategory of cartesian abelian sheaves. If
U is an fppf hypercovering of X, then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Observe that A is a weak Serre subcategory by Lemma 12.6. The equiva-
lence is a formal consequence of the results obtained so far. Use Lemmas 33.2 and
33.3 and Cohomology on Sites, Lemma 28.5. □

Lemma 33.6.0DHA Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let F
be an abelian sheaf on Xétale. Let Fn be the pullback to Un,étale. If U is an fppf
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 33.4 and 8.3. □

34. Fppf hypercoverings of algebraic spaces: modules

0DHB We continue the discussion of (cohomological) descent for fppf hypercoverings started
in Section 33 but in this section we discuss what happens for sheaves of modules. We
mainly discuss quasi-coherent modules and it turns out that we can do unbounded
cohomological descent for those.
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Lemma 34.1.0DHC Let S be a scheme. Let X be an algebraic space over S. Let U be
a simplicial algebraic space over S. Let a : U → X be an augmentation. There is
a commutative diagram

(Sh((Spaces/U)fppf,total),Obig,total)
h
//

afppf

��

(Sh(Uétale),OU )

a

��
(Sh((Spaces/X)fppf ),Obig)

h−1 // (Sh(Xétale),OX)

of ringed topoi where the left vertical arrow is defined in Section 22 and the right
vertical arrow is defined in Section 32.

Proof. For the underlying diagram of topoi we refer to the discussion in the proof
of Lemma 33.1. The sheaf OU is the structure sheaf of the simplicial algebraic
space U as defined in Section 32. The sheaf OX is the usual structure sheaf of the
algebraic space X. The sheaves of rings Obig,total and Obig come from the structure
sheaf on (Spaces/S)fppf in the manner explained in Section 22 which also constructs
afppf as a morphism of ringed topoi. The component morphisms hn = aUn and
h−1 = aX are morphisms of ringed topoi by More on Cohomology of Spaces, Section
7. Finally, since the continuous functor u : Uspaces,étale → (Spaces/U)fppf,total used
to define h8 is given by V/Un 7→ V/Un we see that h∗Obig,total = OU which is how
we endow h with the structure of a morphism of ringed simplicial sites as in Remark
7.1. Then we obtain h as a morphism of ringed topoi by Lemma 7.2. Please observe
that the morphisms hn indeed agree with the morphisms aUn described above. We
omit the verification that the diagram is commutative (as a diagram of ringed topoi
– we already know it is commutative as a diagram of topoi). □

Lemma 34.2.0DHD Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then

a∗ : QCoh(OX)→ QCoh(OU )
is an equivalence fully faithful with quasi-inverse given by a∗. Here a : Sh(Uétale)→
Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 34.1. In the proof of this lemma we have
seen that h−1 is the morphism aX of More on Cohomology of Spaces, Section 7.
Thus it follows from More on Cohomology of Spaces, Lemma 7.1 that

(h−1)∗ : QCoh(OX) −→ QCoh(Obig)
is an equivalence with quasi-inverse h−1,∗. The same holds true for the components
hn of h. Recall that QCoh(OU ) and QCoh(Obig,total) consist of cartesian modules
whose components are quasi-coherent, see Lemma 12.10. Since the functors h∗ and
h∗ of Lemma 7.2 agree with the functors h∗

n and hn,∗ on components we conclude
that

h∗ : QCoh(OU ) −→ QCoh(Obig,total)
is an equivalence with quasi-inverse h∗. Observe that U is a hypercovering of X in
(Spaces/S)fppf as defined in Section 21. By Lemma 22.1 we see that a∗

fppf is fully
faithful with quasi-inverse afppf,∗ and with essential image the cartesian sheaves of

8This happened in the proof of Lemma 33.1 via an application of Lemma 5.5.
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Ofppf,total-modules. Thus, by the description of QCoh(Obig) and QCoh(Obig,total)
of Lemma 12.10, we get an equivalence

a∗
fppf : QCoh(Obig) −→ QCoh(Obig,total)

with quasi-inverse given by afppf,∗. A formal argument (chasing around the dia-
gram) now shows that a∗ is fully faithful on QCoh(OX) and has image contained
in QCoh(OU ).
Finally, suppose that G is in QCoh(OU ). Then h∗G is in QCoh(Obig,total). Hence
h∗G = a∗

fppfH with H = afppf,∗h
∗G in QCoh(Obig) (see above). In turn we see

that H = (h−1)∗F with F = h−1,∗H in QCoh(OX). Going around the diagram we
deduce that h∗G ∼= h∗a∗F . By fully faithfulness of h∗ we conclude that a∗F ∼= G.
Since F = h−1,∗afppf,∗h

∗G = a∗h∗h
∗G = a∗G we also obtain the statement that

the quasi-inverse is given by a∗. □

Lemma 34.3.0DHE Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then for F a quasi-coherent OX-module the map

F → Ra∗(a∗F)
is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 33.1. Let Fn = a∗
nF be the nth component

of a∗F . This is a quasi-coherent OUn-module. Then Fn = Rhn,∗h
∗
nFn by More on

Cohomology of Spaces, Lemma 7.2. Hence a∗F = Rh∗h
∗a∗F by Lemma 7.3. We

have
Ra∗(a∗F) = Ra∗Rh∗h

∗a∗F
= Rh−1,∗Rafppf,∗a

∗
fppf (h−1)∗F

= Rh−1,∗(h−1)∗F
= F

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 25.1, the third equality by Lemma 22.2 as U is
a hypercovering of X in (Spaces/S)fppf and La∗

fppf = a∗
fppf as afppf is flat (namely

a−1
fppfObig = Obig,total, see Remark 16.5), and the last equality by the already used

More on Cohomology of Spaces, Lemma 7.2. □

Lemma 34.4.0DHF Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation.
Assume a : U → X is an fppf hypercovering of X. Then QCoh(OU ) is a weak Serre
subcategory of Mod(OU ) and

a∗ : DQCoh(OX) −→ DQCoh(OU )
is an equivalence of categories with quasi-inverse given by Ra∗. Here a : Sh(Uétale)→
Sh(Xétale) is as in Section 32.

Proof. First observe that the maps an : Un → X and dni : Un → Un−1 are flat,
locally of finite presentation, and surjective by Hypercoverings, Remark 8.4.
Recall that an OU -module F is quasi-coherent if and only if it is cartesian and
Fn is quasi-coherent for all n. See Lemma 12.10. By Lemma 12.6 (and flatness of
the maps dni : Un → Un−1 shown above) the cartesian modules for a weak Serre
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subcategory of Mod(OU ). On the other hand QCoh(OUn) ⊂ Mod(OUn) is a weak
Serre subcategory for each n (Properties of Spaces, Lemma 29.7). Combined we
see that QCoh(OU ) ⊂ Mod(OU ) is a weak Serre subcategory.

To finish the proof we check the conditions (1) – (5) of Cohomology on Sites, Lemma
28.6 one by one.

Ad (1). This holds since an flat (seen above) implies a is flat by Lemma 11.1.

Ad (2). This is the content of Lemma 34.2.

Ad (3). This is the content of Lemma 34.3.

Ad (4). Recall that we can use either the site Uétale or Uspaces,étale to define the
small étale topos Sh(Uétale), see Section 32. The assumption of Cohomology on
Sites, Situation 25.1 holds for the triple (Uspaces,étale,OU ,QCoh(OU )) and by the
same reasoning for the triple (Uétale,OU ,QCoh(OU )). Namely, take

B ⊂ Ob(Uétale) ⊂ Ob(Uspaces,étale)

to be the set of affine objects. For V/Un ∈ B take dV/Un = 0 and take CovV/Un
to be the set of étale coverings {Vi → V } with Vi affine. Then we get the desired
vanishing because for F ∈ QCoh(OU ) and any V/Un ∈ B we have

Hp(V/Un,F) = Hp(V,Fn)

by Lemma 10.4. Here on the right hand side we have the cohomology of the quasi-
coherent sheaf Fn on Un over the affine obect V of Un,étale. This vanishes for p > 0
by the discussion in Cohomology of Spaces, Section 3 and Cohomology of Schemes,
Lemma 2.2.

Ad (5). Follows by taking B ⊂ Ob(Xspaces,étale) the set of affine objects and the
references given above. □

Lemma 34.5.0DHG Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is an fppf hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a∗K)

for K ∈ DQCoh(OX). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. This follows from Lemma 34.4 because RΓ(Uétale,−) = RΓ(Xétale,−)◦Ra∗
by Cohomology on Sites, Remark 14.4. □

Lemma 34.6.0DHH Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let F
be quasi-coherent OX-module. Let Fn be the pullback to Un,étale. If U is an fppf
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 34.5 and 10.3. □
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35. Fppf descent of complexes

0DL8 In this section we pull some of the previously shown results together for fppf cov-
erings of algebraic spaces and derived categories of quasi-coherent modules.

Lemma 35.1.0DL9 Let X be an algebraic space over a scheme S. Let K,E ∈ DQCoh(OX).
Let a : U → X be an fppf hypercovering. Assume that for all n ≥ 0 we have

ExtiOUn
(La∗

nK,La
∗
nE) = 0 for i < 0

Then we have
(1) ExtiOX

(K,E) = 0 for i < 0, and
(2) there is an exact sequence

0→ HomOX
(K,E)→ HomOU0

(La∗
0K,La

∗
0E)→ HomOU1

(La∗
1K,La

∗
1E)

Proof. Write Kn = La∗
nK and En = La∗

nE. Then these are the simplicial systems
of the derived category of modules (Definition 14.1) associated to La∗K and La∗E
(Lemma 14.2) where a : Uétale → Xétale is as in Section 32. Let us prove (2) first.
By Lemma 34.4 we have

HomOX
(K,E) = HomOU

(La∗K,La∗E)
Thus the sequence looks like this:

0→ HomOU
(La∗K,La∗E)→ HomOU0

(K0, E0)→ HomOU1
(K1, E1)

The first arrow is injective by Lemma 14.5. The image of this arrow is the kernel
of the second by Lemma 14.6. This finishes the proof of (2). Part (1) follows by
applying part (2) with K[i] and E for i > 0. □

Lemma 35.2.0DLA Let X be an algebraic space over a scheme S. Let a : U → X be
an fppf hypercovering. Suppose given K0 ∈ DQCoh(U0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition on U1. Set τni : [0] → [n], 0 7→ i and set Kn =
Lf∗

τnn
K0. Assume ExtiOUn

(Kn,Kn) = 0 for i < 0. Then there exists an object
K ∈ DQCoh(OX) and an isomorphism La∗

0K → K compatible with α.

Proof. The objects Kn form the members of a simplicial system of the derived cat-
egory of modules by Lemma 14.3. Then we obtain an object K ′ ∈ DQCoh(OUétale)
such that (Kn,Kφ) is the system deduced from K ′, see Lemma 14.7. Finally, we
apply Lemma 34.4 to see that K ′ = La∗K for some K ∈ DQCoh(OX) as desired. □

36. Proper hypercoverings of algebraic spaces

0DHI This section is the analogue of Section 25 for the case of algebraic spaces. The reader
who wishes to do so, can replace “algebraic space” everywhere with “scheme” and
get equally valid results. This has the advantage of replacing the references to More
on Cohomology of Spaces, Section 8 with references to Étale Cohomology, Section
102.
We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

See Section 32. We say that U is a proper hypercovering of X if
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(1) U0 → X is proper and surjective,
(2) U1 → U0 ×X U0 is proper and surjective,
(3) Un+1 → (cosknsknU)n+1 is proper and surjective for n ≥ 1.

The category of algebraic spaces over S has all finite limits, hence the coskeleta
used in the formulation above exist.

Principle: Proper hypercoverings can be used to compute étale cohomology.

The key idea behind the proof of the principle is to compare the ph and étale
topologies on the category Spaces/S. Namely, the ph topology is stronger than the
étale topology and we have (a) a proper surjective map defines a ph covering, and
(b) ph cohomology of sheaves pulled back from the small étale site agrees with étale
cohomology as we have seen in More on Cohomology of Spaces, Section 8.
All results in this section generalize to the case where U → X is merely a “ph
hypercovering”, meaning a hypercovering of X in the site (Spaces/S)ph as defined
in Section 21. If we ever need this, we will precisely formulate and prove this here.

Lemma 36.1.0DHJ Let S be a scheme. Let X be an algebraic space over S. Let U be
a simplicial algebraic space over S. Let a : U → X be an augmentation. There is
a commutative diagram

Sh((Spaces/U)ph,total)
h
//

aph

��

Sh(Uétale)

a

��
Sh((Spaces/X)ph)

h−1 // Sh(Xétale)

where the left vertical arrow is defined in Section 21 and the right vertical arrow is
defined in Section 32.

Proof. The notation (Spaces/U)ph,total indicates that we are using the construction
of Section 21 for the site (Spaces/S)ph and the simplicial object U of this site9. We
will use the sites Xspaces,étale and Uspaces,étale for the topoi on the right hand side;
this is permissible see discussion in Section 32.
Observe that both (Spaces/U)ph,total and Uspaces,étale fall into case A of Situa-
tion 3.3. This is immediate from the construction of Uétale in Section 32 and
it follows from Lemma 21.5 for (Spaces/U)ph,total. Next, consider the functors
Un,spaces,étale → (Spaces/Un)ph, U 7→ U/Un and Xspaces,étale → (Spaces/X)ph,
U 7→ U/X. We have seen that these define morphisms of sites in More on Co-
homology of Spaces, Section 8 where these were denoted aUn = ϵUn ◦ πun and
aX = ϵX ◦ πX . Thus we obtain a morphism of simplicial sites compatible with
augmentations as in Remark 5.4 and we may apply Lemma 5.5 to conclude. □

Lemma 36.2.0DHK Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is a proper hypercovering of X, then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)
are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

9To distinguish from (Spaces/U)fppf,total defined using the fppf topology in Section 33.
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Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 36.1.
In the proof of this lemma we have seen that h−1 is the morphism aX of More on
Cohomology of Spaces, Section 8. Thus it follows from More on Cohomology of
Spaces, Lemma 8.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The same
holds true for the components hn of h. By the description of the functors h−1 and h∗
of Lemma 5.2 we conclude that h−1 is fully faithful with quasi-inverse h∗. Observe
that U is a hypercovering of X in (Spaces/S)ph as defined in Section 21 since a
surjective proper morphism gives a ph covering by Topologies on Spaces, Lemma
8.3. By Lemma 21.1 we see that a−1

ph is fully faithful with quasi-inverse aph,∗ and
with essential image the cartesian sheaves on (Spaces/U)ph,total. A formal argument
(chasing around the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a cartesian sheaf
on (Spaces/U)ph,total. Hence h−1G = a−1

phH for some sheaf H on (Spaces/X)ph. We
compute using somewhat pedantic notation

(h−1)−1(a∗G) = (h−1)−1Eq( a0,small,∗G0
//
// a1,small,∗G1 )

= Eq( (h−1)−1a0,small,∗G0
//
// (h−1)−1a1,small,∗G1 )

= Eq( a0,big,ph,∗h
−1
0 G0

//
// a1,big,ph,∗h

−1
1 G1 )

= Eq( a0,big,ph,∗(a0,big,ph)−1H //
// a1,big,ph,∗(a1,big,ph)−1H )

= aph,∗a
−1
phH

= H

Here the first equality follows from Lemma 4.2, the second equality follows as
(h−1)−1 is an exact functor, the third equality follows from More on Cohomology
of Spaces, Lemma 8.5 (here we use that a0 : U0 → X and a1 : U1 → X are proper),
the fourth follows from a−1

phH = h−1G, the fifth from Lemma 4.2, and the sixth
we’ve seen above. Since a−1

phH = h−1G we deduce that h−1G ∼= h−1a−1a∗G which
ends the proof by fully faithfulness of h−1. □

Lemma 36.3.0DHL Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is a proper hypercovering of X, then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 36.1. Observe that Rhn,∗h−1
n is the iden-

tity functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 8.2. Hence
Rh∗h

−1 is the identity functor on D+(Uétale) by Lemma 5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Raph,∗a
−1
ph (h−1)−1K

= Rh−1,∗(h−1)−1K

= K
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The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 as
U is a hypercovering of X in (Spaces/S)ph by Topologies on Spaces, Lemma 8.3,
and the last equality by the already used More on Cohomology of Spaces, Lemma
8.2. □

Lemma 36.4.0DHM Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X
is a proper hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)
for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. This follows from Lemma 36.3 because RΓ(Uétale,−) = RΓ(Xétale,−)◦Ra∗
by Cohomology on Sites, Remark 14.4. □

Lemma 36.5.0DHN Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
A ⊂ Ab(Uétale) denote the weak Serre subcategory of cartesian abelian sheaves. If
U is a proper hypercovering of X, then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Observe that A is a weak Serre subcategory by Lemma 12.6. The equiva-
lence is a formal consequence of the results obtained so far. Use Lemmas 36.2 and
36.3 and Cohomology on Sites, Lemma 28.5. □

Lemma 36.6.0DHP Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
F be an abelian sheaf on Xétale. Let Fn be the pullback to Un,étale. If U is a ph
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 36.4 and 8.3. □
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