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1. Introduction

In this chapter we introduce some topologies on the category of algebraic spaces.
Compare with the material in [Gro71], [BLR90], and [Knu7l]. Before
doing so we would like to point out that there are many different choices of sites
(as defined in Sites, Definition which give rise to the same notion of sheaf on
the underlying category. Hence our choices may be slightly different from those in
the references but ultimately lead to the same cohomology groups, etc.

2. The general procedure

In this section we explain a general procedure for producing the sites we will be
working with. This discussion will make little or no sense unless the reader has
read Topologies, Section

Let S be a base scheme. Take any category Sch, constructed as in Sets, Lemma
[0:2) starting with .S and any set of schemes over S you want to be included. Choose
any set of coverings Covyspps on Sch, as in Sets, Lemma starting with the
category Sch, and the class of fppf coverings. Let Schy,,s denote the big fppf site
so obtained, and let (Sch/S)¢pps denote the corresponding big fppf site of S. (The
above is entirely as prescribed in Topologies, Section )

Given choices as above the category of algebraic spaces over S has a set of iso-
morphism classes. One way to see this is to use the fact that any algebraic space
over S is of the form U/R for some étale equivalence relation j : R — U xg U
with U, R € Ob((Sch/S)fpps), see Spaces, Lemma Hence we can find a full
subcategory Spaces/S of the category of algebraic spaces over S which has a set of
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objects such that each algebraic space is isomorphic to an object of Spaces/S. We
fix a choice of such a category.

In the sections below, given a topology 7, the big site (Spaces/S), (resp. the big
site (Spaces/X), of an algebraic space X over S) has as underlying category the
category Spaces/S (resp. the subcategory Spaces/X of Spaces/S, see Categories,
Example . The procedure for turning this into a site is as usual by defining a
class of T-coverings and using Sets, Lemma to choose a sufficiently large set of
coverings which defines the topology.

We point out that the small étale site Xeiqie of an algebraic space X has already
been defined in Properties of Spaces, Definition Its objects are schemes étale
over X, of which there are plenty by definition of an algebraic spaces. However,
a more natural site, from the perspective of this chapter (compare Topologies,
Deﬁnition is the site Xgpaces,étale Of Properties of Spaces, Deﬁnition These
two sites define the same topos, see Properties of Spaces, Lemma [18.3] We will not
redefine these in this chapter; instead we will simply use them.

3. Zariski topology

In Spaces, Section [I2] we introduced the notion of a Zariski covering of an algebraic
space by open subspaces. Here is the corresponding notion with open subspaces
replaced by open immersions.

Definition 3.1. Let S be a scheme, and let X be an algebraic space over S. A
Zariski covering of X is a family of morphisms {f; : X; — X };¢ of algebraic spaces
over S such that each f; is an open immersion and such that

xI=U_, 1100,
i.e., the morphisms are jointly surjective.

Although Zariski coverings are occasionally useful the corresponding topology on
the category of algebraic spaces is really too coarse, and not particularly useful.
Still, it does define a site.

Lemmal 3.2. Let S be a scheme. Let X be an algebraic space over S.
(1) If X! = X is an isomorphism then {X' — X} is a Zariski covering of X.
(2) If {X; = Xt}ier is a Zariski covering and for each i we have a Zariski
covering {X;; — X;}ieu,, then {X;; — X}ier jey, is a Zariski covering.
(3) If {Xi — Xt}ier is a Zariski covering and X' — X is a morphism of
algebraic spaces then {X' xx X; — X'}ier is a Zariski covering.

Proof. Omitted. O

4. Etale topology

In this section we discuss the notion of a étale covering of algebraic spaces, and
we define the big étale site of an algebraic space. Please compare with Topologies,
Section 4l

Definition 4.1. Let S be a scheme, and let X be an algebraic space over S. An
étale covering of X is a family of morphisms {f; : X; — X };cs of algebraic spaces
over S such that each f; is étale and such that

x1=U_, 1100,
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i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition In particular, if X and all
the X; are schemes, then we recover the usual notion of a étale covering of schemes.

Lemma 4.2. Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is
an étale morphism (this follows from Morphisms, Lemma via Spaces, Lemma
as immersions are representable). ]

Lemma 4.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X! = X is an isomorphism then {X' — X} is a étale covering of X.
(2) If {X; = X}icr is a étale covering and for each i we have a étale covering
{Xij = Xi}ieu,, then {X;; — Xtierjes; s a étale covering.
(3) If {X; — X}ier is a étale covering and X' — X is a morphism of algebraic
spaces then { X' xx X; = X'}ier is a étale covering.

Proof. Omitted. ]

The following lemma tells us that the sites (Spaces/X)staie and (Spaces/X)smooth
have the same categories of sheaves.

Lemma 4.4. Let S be a scheme. Let X be an algebraic space over S. Let {X; —
X}tier be a smooth covering of X. Then there exists an étale covering {U; — X},c
of X which refines {X; = X}ier.

Proof. First choose a scheme U and a surjective étale morphism U — X. For each i
choose a scheme W; and a surjective étale morphism W; — X;. Then {W; — X }c;r
is a smooth covering which refines {X; — X};cr. Hence {W; xx U — U}ier is a
smooth covering of schemes. By More on Morphisms, Lemma we can choose
an étale covering {U; — U} which refines {W; xx U — U}. Then {U; — X} c; is
an étale covering refining {X; — X }icr. O

Definition 4.5. Let S be a scheme. A big étale site (Spaces/S)etaie is any site
constructed as follows:
(1) Choose a big étale site (Sch/S)etare as in Topologies, Section
(2) As underlying category take the category Spaces/S of algebraic spaces over
S (see discussion in Section [2| why this is a set).
(3) Choose any set of coverings as in Sets, Lemma m starting with the cate-
gory Spaces/S and the class of étale coverings of Definition

Having defined this, we can localize to get the étale site of an algebraic space.

Definition 4.6. Let S be a scheme. Let (Spaces/S)¢tale be as in Deﬁnition
Let X be an algebraic space over S, i.e., an object of (Spaces/S)staie. Then the big
étale site (Spaces/X)etale of X is the localization of the site (Spaces/S)¢taie at X
introduced in Sites, Section

Recall that given an algebraic space X over S as in the definition, we already
have defined the small étale sites Xspqces,ctate ad Xetqie, See Properties of Spaces,
Section We will silently identify the corresponding topoi using the inclusion
functor Xerare C Xspaces,étale (Properties of Spaces, Lemma and we will call
it the small étale topos of X. Next, we establish some relationships between the
topoi associated to these sites.
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Lemma 4.7. Let S be a scheme. Let f : Y — X be a morphism of (Spaces/S)staie-
The inclusion functor Yspaces ctate — (Spaces/ X )eiate s cocontinuous and induces
a morphism of topoi

if : Sh(Yétale) — Sh((Spaces/X)émle)
For a sheaf G on (Spaces/X)etate we have the formula (i;lg)(U/Y) =g({U/X).
The functor i;l also has a left adjoint iy, which commutes with fibre products and

equalizers.

Proof. Denote the functor u : Yipacesétale — (Spaces/X)eiare. In other words,
given an étale morphism j : U — Y corresponding to an object of Yspaces, étale We
set w(U - T)=(foj:U—S). The category Yspaces,étale has fibre products and
equalizers and v commutes with them. It is immediate that u cocontinuous. The
functor u is also continuous as u transforms coverings to coverings and commutes
with fibre products. Hence the Lemma follows from Sites, Lemmas and

|

Lemma 4.8. Let S be a scheme. Let X be an object of (Spaces/S)¢tate- The
inclusion functor Xspaces,étate — (Spaces/X )eiaie satisfies the hypotheses of Sites,
Lemma and hence induces a morphism of sites

TX (SpaceS/X)étale — Xspaces,étale
and a morphism of topoi
ix : Sh(Xetare) — Sh((Spaces/X)staic)

such that mx oix = id. Moreover, ix = iy with ia, as in Lemma [{.7 In
particular the functor iy' = mx . is described by the rule i (G)(U/X) = G(U/X).

Proof. In this case the functor u : Xgpacesctale — (Spaces/X)etate, in addition
to the properties seen in the proof of Lemma [£.7] above, also is fully faithful and
transforms the final object into the final object. The lemma follows from Sites,
Lemma 2.8 O

Definition 4.9. In the situation of Lemma the functor z‘)_(l = Tx,« is often
called the restriction to the small étale site, and for a sheaf F on the big étale site
we often denote F|x this restriction.

étale

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the small site that

MOt s (X spare) (FXerare s G) = MOTsn((spaces/ X) rare) (F ix,+G)
MorSh(Xémle)(g7 ]:|Xéta,1e) = MorSh((Spaces/X)é,,ale)(W;(lg, ]:)
Moreover, we have (ix.«G)|x.,... = G and we have (75'G)|x,,... = G.

Lemma 4.10. Let S be a scheme. Let f : Y — X be a morphism in (Spaces/S)¢étale-
The functor

w: (Spaces/Y )etate — (Spaces/X)etate, V/Y — V/X
is cocontinuous, and has a continuous right adjoint

v : (Spaces/ X )¢tale —> (Spaces/Y )etate, (U — X)— (UxxY —=Y).


https://stacks.math.columbia.edu/tag/0DF2
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They induce the same morphism of topoi
frig : Sh((Spaces/Y )etare) —> Sh((Spaces/ X )eétaie)

We have f;(G)(U/Y) = GU/X). We have foig«(F)(U/X) = F(U xx Y/Y).
Also, fb_ig1 has a left adjoint fi;q which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre prod-
ucts and equalizers (details omitted; compare with the proof of Lemmal4.7)). Hence
Sites, Lemmas m and @ apply and we deduce the formula for f,; , and the
existence of fy;q1. Moreover, the functor v is a right adjoint because given U/Y and
V/X we have Morx (u(U),V) = Mory (U,V xx Y) as desired. Thus we may apply
Sites, Lemmas and to get the formula for fg .. O

ODF6 Lemma 4.11. LetS be a scheme. Let f : Y — X be a morphism in (Spaces/S)etale-

(1) We have iy = fyig o iz with iy as in Lemma and ir as in Lemma .
(2) The functor Xspaces,étate — Tspaces,étale;, (U = X) = (UxxY = Y) is
continuous and induces a morphism of sites

fspaces,étale : }/spaces,étale — Xspaces,étale
The corresponding morphism of small étale topoi is denoted
fsmall : Sh(Y:étale) — Sh(Xétale)
We have fsmau,«(F)(U/X)=F(U xx Y/Y).

(3) We have a commutative diagram of morphisms of sites

Y;paces,étale <T (Spaces/y)étale

fspaces,étalel lfbig

X
Xspaces,étale < (SpaceS/X)étale

50 that feman © Ty = Tx © frig as morphisms of topoi.
(4) We have fsmai = Tx © frig0ty = Tx 0if.
Proof. The equality iy = fyiq 0ty follows from the equality i;l = i;l o fb_igl which
is clear from the descriptions of these functors above. Thus we see (1).
The functor u : Xgpacesétale — Yspaces,étale, WU — X) = (U xx Y — Y) was
shown to give rise to a morphism of sites and correspong morphism of small étale

topoi in Properties of Spaces, Lemma The description of the pushforward is
clear.

Part (3) follows because mx and 7y are given by the inclusion functors and fspaces,étate
and fyig by the base change functors U — U xx Y.

Statement (4) follows from (3) by precomposing with iy O

In the situation of the lemma, using the terminology of Definition [£.9 we have: for
F a sheaf on the big étale site of Y

(fbig,*f)|Xétale = fsmall,*(]:

This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small étale site of Y, resp. X is given by 7y ., resp. mx 4. A
similar formula involving pullbacks and restrictions is false.

Yétale)7
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Lemma 4.12. Let S be a scheme. Given morphisms f: X =Y, g:Y — Z in
(Spaces/s)étale we have Gbig © fbig = (g © f)big and Gsmall © fsmall = (g o f)small~

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma [£.10] For the functors on the small sites
this follows from the description of the pushforward functors in Lemma O

Lemma 4.13. Let S be a scheme. Consider a cartesian diagram

YIH/Y

Nt

x 4ox

in (Spaces/S)émle. Then Z;1 ° fbig,* = f.;mall7* ° (ig/)71 and gb_z_; °© fbig,* = fl;ig,* °©
-1
(glljig) .

Proof. Since the diagram is cartesian, we have for U’/ X’ that U'x x/ Y’ = U'xx Y.
Hence both iy o fyig. and fl, ., © (ig) " send a sheaf F on (Spaces/Y )state to
the sheaf U’ — F(U' xx+Y') on X}, ;. (use Lemmas and [4.10). The second
equality can be proved in the same manner or can be deduced from the very general
Sites, Lemma [28.1 O

Remark 4.14. The sites (Spaces/X)etare and Xspgces,étale cOme with structure
sheaves. For the small étale site we have seen this in Properties of Spaces, Section
The structure sheaf O on the big étale site (Spaces/ X )¢tale is defined by assign-
ing to an object U the global sections of the structure sheaf of U. This makes sense
because after all U is an algebraic space itself hence has a structure sheaf. Since
Oy is a sheaf on the étale site of U, the presheaf O so defined satisfies the sheaf
condition for coverings of U, i.e., O is a sheaf. We can upgrade the morphisms i,
Tx, ix, femail, and fi;y defined above to morphisms of ringed sites, respectively
topoi. Let us deal with these one by one.

(1) In Lemma denote O the structure sheaf on (Spaces/X)stare. We have
(i;l(’))(U/Y) = Op(U) = Oy (U) by construction. Hence an isomorphism
i 1710 = Oy.

(2) In Lemma it was noted that ix is a special case of iy with f = idx
hence we are back in case (1).

(3) In Lemma the morphism 7x satisfies (7x.0)(U) = O(U) = Ox(U).
Hence we can use this to define 7r§( :0x = 7x,. 0.

(4) In Lemma the extension of fg,,4;; to a morphism of ringed topoi was
discussed in Properties of Spaces, Lemma [21.3

(5) In Lemma the functor fb_igl is simply the restriction via the inclusion
functor (Spaces/Y )stare — (Spaces/X)e¢tare. Let O1 be the structure sheaf
on (Spaces/X)etaie and let Oy be the structure sheaf on (Spaces/Y )etate-
We obtain a canonical isomorphism fbﬁi - fb_ig1 01 — Os.

Moreover, with these definitions compositions work out correctly too. We omit
giving a detailed statement and proof.
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5. Smooth topology

In this section we discuss the notion of a smooth covering of algebraic spaces, and we
define the big smooth site of an algebraic space. Please compare with Topologies,
Section [l

Definition 5.1. Let S be a scheme, and let X be an algebraic space over S. A
smooth covering of X is a family of morphisms {f; : X; — X };er of algebraic spaces
over S such that each f; is smooth and such that

X1 =U,, 11X,
i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition[5.1] In particular, if X and all the
X; are schemes, then we recover the usual notion of a smooth covering of schemes.

Lemma 5.2. Any étale covering is a smooth covering, and a fortiori, any Zariski
covering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
(Morphisms of Spaces, Lemma [39.6)), and Lemma O

Lemma 5.3. Let S be a scheme. Let X be an algebraic space over S.

(1) If X' = X is an isomorphism then {X' — X} is a smooth covering of X.

(2) If {X; — X}icr is a smooth covering and for each i we have a smooth
covering {X;; — Xi}je,, then {X;; = X }ier jes, is a smooth covering.

(3) If {Xi; — X}ier is a smooth covering and X' — X is a morphism of
algebraic spaces then {X' xx X; — X'}ier is a smooth covering.

Proof. Omitted. O

To be continued...

6. Syntomic topology

In this section we discuss the notion of a syntomic covering of algebraic spaces,
and we define the big syntomic site of an algebraic space. Please compare with
Topologies, Section [6]

Definition 6.1. Let S be a scheme, and let X be an algebraic space over S. A
syntomic covering of X is a family of morphisms {f; : X; — X}ier of algebraic
spaces over S such that each f; is syntomic and such that

xI=U_, 1100,
i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition In particular, if X and all
the X; are schemes, then we recover the usual notion of a syntomic covering of
schemes.

Lemma 6.2. Any smooth covering is a syntomic covering, and a fortiori, any
étale or Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic (Morphisms of Spaces, Lemma [37.8), and Lemma (]
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Lemmal 6.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X' — X s an isomorphism then {X' — X} is a syntomic covering of
X.
(2) If {X; = X}ier is a syntomic covering and for each i we have a syntomic
covering {X;; = X;}icr,, then {X,;; = Xticrjes, is a syntomic covering.
(3) If {X; — X}icr is a syntomic covering and X' — X is a morphism of
algebraic spaces then {X' xx X; — X'}ier is a syntomic covering.

Proof. Omitted. |

To be continued...

7. Fppf topology

In this section we discuss the notion of an fppf covering of algebraic spaces, and
we define the big fppf site of an algebraic space. Please compare with Topologies,
Section [7

Definition 7.1. Let S be a scheme, and let X be an algebraic space over S. An
fopf covering of X is a family of morphisms {f; : X; — X},er of algebraic spaces
over S such that each f; is flat and locally of finite presentation and such that

X =J,_, 1f:l(1 XD,
i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition In particular, if X and all
the X; are schemes, then we recover the usual notion of an fppf covering of schemes.

Lemma 7.2. Any syntomic covering is an fppf covering, and a fortiori, any
smooth, étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is flat
and locally of finite presentation (Morphisms of Spaces, Lemmas and [36.6))
and Lemma O

Lemmal 7.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X! = X is an isomorphism then {X' — X} is an fppf covering of X.
(2) If {X; — X}ier is an fppf covering and for each i we have an fppf covering
{Xij = Xi}ies,, then {X;; — X}ier jea, is an fppf covering.
(3) If {X; = X}icr is an fppf covering and X' — X is a morphism of algebraic
spaces then { X' xx X; — X'}ier is an fppf covering.

Proof. Omitted. O

Lemma 7.4. Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {f; : X; = X }ier s an fppf covering of X. Then there exists a refinement
V={g;: T; — X} of U which is an fppf covering such that each T; is a scheme.

Proof. Omitted. Hint: For each i choose a scheme T; and a surjective étale mor-
phism T; — X;. Then check that {T; — X} is an fppf covering. O

Lemma 7.5. Let S be a scheme. Let {f; : X; — X}ier be an fppf covering of
algebraic spaces over S. Then the map of sheaves

HXi—>X
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s surjective.

Proof. This follows from Spaces, Lemma[5.9] See also Spaces, Remark [5.2]in case
you are confused about the meaning of this lemma. O

Definition 7.6. Let S be a scheme. A big fppf site (Spaces/S)spps is any site
constructed as follows:

(1) Choose a big fppf site (Sch/S)¢pps as in Topologies, Section

(2) As underlying category take the category Spaces/S of algebraic spaces over
S (see discussion in Section 2| why this is a set).

(3) Choose any set of coverings as in Sets, Lemma m starting with the cate-
gory Spaces/S and the class of fppf coverings of Definition

Having defined this, we can localize to get the fppf site of an algebraic space.

Definition 7.7. Let S be a scheme. Let (Spaces/S)pps be as in Deﬁnition
Let X be an algebraic space over S, i.e., an object of (Spaces/S) tpps. Then the big
fppf site (Spaces/X) pps of X is the localization of the site (Spaces/S)ppy at X
introduced in Sites, Section

Next, we establish some relationships between the topoi associated to these sites.

Lemma 7.8. Let S be a scheme. Let f :' Y — X be a morphism of algebraic
spaces over S. The functor

u: (Spaces/Y) pppy —> (Spaces/X)spps, V/Y —V/X
is cocontinuous, and has a continuous right adjoint
v: (Spaces/X) pppr — (Spaces/Y ) fpps, (U —=Y)— (U xxY =Y).
They induce the same morphism of topoi

foig : Sh((Spaces/Y ) rpps) — Sh((Spaces/X) rpps)

We have fb;gl(g)(U/Y) = G(U/X). We have fuig+«(F)(U/X) = F(U xx Y/Y).
Also, fb;gl has a left adjoint fug which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas and apply and we deduce the
formula for f,; ; and the existence of fy;q1. Moreover, the functor v is a right ad-
joint because given U/T and V/X we have Morx (w(U),V) = Mory (U,V xx Y)
as desired. Thus we may apply Sites, Lemmas and to get the formula for
fbig,*~ O

Lemmal 7.9. Let S be a scheme. Given morphisms f : X — Y, g:Y — Z of
algebraic spaces over S we have gyig © frig = (90 fbig-

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma [7.8| O
8. The ph topology

In this section we define the ph topology. This is the topology generated by étale
coverings and proper surjective morphisms, see Lemma [8.7]
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Definition 8.1. Let S be a scheme and let X be an algebraic space over S. A
ph covering of X is a family of morphisms {X; — X };cr of algebraic spaces over
S such that f; is locally of finite type and such that for every U — X with U
affine there exists a standard ph covering {U; — U} =1, refining the family
{Xz xx U — U}ie[.

In other words, there exists indices 71, ...,%, € I and morphisms h; : U; — X,
such that f;; o hj = hog;. Note that if X and all X; are representable, this is the
same as a ph covering of schemes by Topologies, Definition

Lemma 8.2. Any fppf covering is a ph covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is a ph covering.

Proof. We will show that an fppf covering is a ph covering, and then the rest
follows from Lemma Let {X; — X }ier be an fppf covering of algebraic spaces
over a base scheme S. Let U be an affine scheme and let U — X be a morphism. We
can refine the fppf covering {X; xy U — U}ier by an fppf covering {T; — U}ier
where T; is a scheme (Lemma . Then we can find a standard ph covering
{U; = U}j=1,....m refining {T; — U}icr by More on Morphisms, Lemma (and
the definition of ph coverings for schemes). Thus {X; — X };cr is a ph covering by
definition. O

Lemma 8.3. Let S be a scheme. Let f: Y — X be a surjective proper morphism
of algebraic spaces over S. Then {Y — X} is a ph covering.

Proof. Let U — X be a morphism with U affine. By Chow’s lemma (in the weak
form given as Cohomology of Spaces, Lemma we see that there is a surjective
proper morphism of schemes V' — U which factors through Y xx U — U. Taking
any finite affine open cover of V' we obtain a standard ph covering of U refining
{X xy U — U} as desired. O

Lemma 8.4. Let S be a scheme. Let X be an algebraic space over S.
(1) If X! = X is an isomorphism then {X' — X} is a ph covering of X.
(2) If {X; — X}icr is a ph covering and for each i we have a ph covering
{Xij = Xi}iey,, then {X;; — X}ier jeg; i a ph covering.
(3) If {X; — X}ier s a ph covering and X' — X is a morphism of algebraic
spaces then {X' xx X; — X'}ier is a ph covering.

Proof. Part (1) is clear. Consider g : X’ — X and {X; — X};er a ph covering
as in (3). By Morphisms of Spaces, Lemma the morphisms X’ xx X; — X'
are locally of finite type. If A’ : Z — X’ is a morphism from an affine scheme
towards X', then set h = goh’ : Z — X. The assumption on {X; — X };c; means
there exists a standard ph covering {Z; — Z},=1,... , and morphisms Z; — Xi(5)
covering h for certain i(j) € I. By the universal property of the fibre product we
obtain morphisms Z; — X’ xx X;(;) over h' also. Hence {X' xx X; — X'}ics is
a ph covering. This proves (3).

Let {X; — X}ier and {X;; — X;}jes, be asin (2). Let h : Z — X be a
morphism from an affine scheme towards X. By assumption there exists a standard
ph covering {Z; — Z};=1 .. n and morphisms h; : Z; — X covering h for
some indices i(j) € I. By assumption there exist standard ph coverings {Z;; —
Zj}i=1,....n(;) and morphisms Z;; — X;;);q) covering h; for some indices j(I) €
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Ji(j)- By Topologies, Lemma8.3|the family {Z;; — Z} can be refined by a standard
ph covering. Hence we conclude that {X;; — X}ier jey, is a ph covering. O

Definition 8.5. Let S be a scheme. A big ph site (Spaces/S)p is any site
constructed as follows:
(1) Choose a big ph site (Sch/S), as in Topologies, Section
(2) As underlying category take the category Spaces/S of algebraic spaces over
S (see discussion in Section 2| why this is a set).
(3) Choose any set of coverings as in Sets, Lemma m starting with the cate-
gory Spaces/S and the class of ph coverings of Definition

Having defined this, we can localize to get the ph site of an algebraic space.

Definition 8.6. Let S be a scheme. Let (Spaces/S)pn be as in Deﬁnition Let
X be an algebraic space over S, i.e., an object of (Spaces/S),n. Then the big ph
site (Spaces/X ), of X is the localization of the site (Spaces/S), at X introduced
in Sites, Section

Here is the promised characterization of ph sheaves.

Lemmal 8.7. Let S be a scheme. Let X be an algebraic space over S. Let F be a
presheaf on (Spaces/X)pn. Then F is a sheaf if and only if

(1) F satisfies the sheaf condition for étale coverings, and
(2) if f:V = U is a proper surjective morphism of (Spaces/X)pn, then F(U)
maps bijectively to the equalizer of the two maps F(V) — F(V xy V).

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {T; — T} be
a ph covering, i.e., a covering in (Spaces/X),n. We will verify the sheaf condition
for this covering. Let s; € F(T;) be sections which restrict to the same section
over T; xp T;. We will show that there exists a unique section s € F restricting
to s; over T;. Let {U; — T} be an étale covering with U; affine. By property
(1) it suffices to produce sections s; € F(U;) which agree on U; N U; in order to
produce s. Consider the ph coverings {T; x¢ U; — U;}. Then sj; = s; TixrU;
are sections agreeing over (T; x7 U;) xy, (Tir x U;). Choose a proper surjective
morphism V; — U; and a finite affine open covering V; = (JVj such that the
standard ph covering {V;; — U;} refines {T; xp U; — U, }. If sj, € F(Vj;) denotes
the pullback of s;; to Vj; by the implied morphisms, then we find that s;;. glue to a
section s;» € F(Vj;). Using the agreement on overlaps once more, we find that s} is
in the equalizer of the two maps F(V;) — F(V; xy, V). Hence by (2) we find that
s comes from a unique section s; € F(U;). We omit the verification that these
sections s; have all the desired properties. ([l

Next, we establish some relationships between the topoi associated to these sites.

Lemmal 8.8. Let S be a scheme. Let f :' Y — X be a morphism of algebraic
spaces over S. The functor

u: (Spaces/Y )p, — (Spaces/X)pn, V/Y +—V/X
is cocontinuous, and has a continuous right adjoint
v : (Spaces/X)pr, — (Spaces/Y )pn, (U —=Y)— (UxxY —=Y).
They induce the same morphism of topoi
frig : Sh((Spaces/Y )pn) — Sh((Spaces/X)pn)
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We have fb_igl(g)(U/Y) = G(U/X). We have fuig+«(F)U/X) = F(U xx Y/Y).
Also, fb_i; has a left adjoint fy;q which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas and apply and we deduce the
formula for fb_i; and the existence of fy;q1. Moreover, the functor v is a right ad-
joint because given U/T and V/X we have Morx (u(U),V) = Mory (U,V xx Y)
as desired. Thus we may apply Sites, Lemmas and to get the formula for
fbig,*~ O

Lemma 8.9. Let S be a scheme. Given morphisms [ : X =Y, g:Y — Z of
algebraic spaces over S we have Gpig © frig = (90 fig-

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma [3.8 O

Lemma 8.10. Let S be a scheme. Let X be an algebraic space over S. Let P be a
property of objects in (Spaces/X)fppr such that whenever {U; — U} is a covering
in (Spaces/X) rppy, then

P(Ui, xv ... xy Uy,) for allp >0, ig,...,i, € [ = P(U)
If P(U) for oll U affine and flat, locally of finite presentation over X, then P(X).

Proof. Let U be a separated algebraic space locally of finite presentation over X.
Then we can choose an étale covering {U; — U};er with V; affine. Since U is
separated, we conclude that U;, Xy ... xy Uy, is always affine. Whence P(Us, xu
...xyUs,) always. Hence P(U) holds. Choose a scheme U which is a disjoint union
of affines and a surjective étale morphism U — X. Then U xx ... xx U (with p+1
factors) is a separated algebraic space étale over X. Hence P(U Xx ... xx U) by
the above. We conclude that P(X) is true. O

9. Fpqc topology

We briefly discuss the notion of an fpqc covering of algebraic spaces. Please compare
with Topologies, Section[9] We will show in Descent on Spaces, Proposition [4.1] that
quasi-coherent sheaves descent along these.

Definition 9.1. Let S be a scheme, and let X be an algebraic space over S. An
fpgc covering of X is a family of morphisms {f; : X; — X };cr of algebraic spaces
such that each f; is flat and such that for every affine scheme Z and morphism
h : Z — X there exists a standard fpqc covering {g; : Z; — Z};=1,. » which
refines the family {X; Xxx Z — Z}ier.

In other words, there exists indices i1,...,i, € I and morphisms h; : U; — Xj,
such that f;; o hj = hog;. Note that if X and all X; are representable, this is the
same as a fpqc covering of schemes by Topologies, Lemma [9.11

Lemma 9.2. Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma Let {f; : U; — U};er be an fppf covering of algebraic
spaces over S. By definition this means that the f; are flat which checks the first
condition of Definition [0.1] To check the second, let V' — U be a morphism with
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V affine. We may choose an étale covering {V;; — V xy U;} with V;; affine. Then
the compositions f;; : Vi; = V xy U; — V are flat and locally of finite presentation
as compositions of such (Morphisms of Spaces, Lemmas [28.2 [30.3} [39.7} and [39.8]).
Hence these morphisms are open (Morphisms of Spaces, Lemma and we see
that |V = U;er Ujes, fis(IVij]) is an open covering of [V|. Since [V is quasi-

compact, this covering has a finite refinement. Say V; ;,,...,Viyjx do the job.
Then {V, ;. — V}g=1,. n~ is a standard fpqc covering of V refinining the family
{U; xuy V' — V'}. This finishes the proof. O

Lemmal 9.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X! = X is an isomorphism then {X' — X} is an fpgc covering of X.
(2) If {X; — X}ier s an fpgc covering and for each i we have an fpqc covering
{Xij = Xi}ieu,, then {X;; — Xtier jeg, i an fpge covering.
(3) If {X; = X}icr is an fpgc covering and X' — X is a morphism of algebraic
spaces then { X' x x X; — X'}ier is an fpge covering.

Proof. Part (1) is clear. Consider g : X' — X and {X; — X };¢; an fpqc covering
as in (3). By Morphisms of Spaces, Lemma the morphisms X' xx X; — X'
are flat. If ’ : Z — X' is a morphism from an affine scheme towards X', then
set h = goh’ : Z — X. The assumption on {X; — X},c;r means there exists
a standard fpqc covering {Z; — Z};—1,..., and morphisms Z; — Xj(;) covering
h for certain i(j) € I. By the universal property of the fibre product we obtain
morphisms Z; — X' xx X,y over h' also. Hence {X’ xx X; — X'}er is an fpqe
covering. This proves (3).

Let {X; — X}tier and {X;; — Xi}jes, be asin (2). Let h : Z — X be a
morphism from an affine scheme towards X. By assumption there exists a standard
fpgc covering {Z; — Z}j—1,..» and morphisms h; : Z; — X,y covering h for
some indices i(j) € I. By assumption there exist standard fpqc coverings {Z;; —
Zj}ti=1,...n(;) and morphisms Z;; — X,(;y;¢) covering hj; for some indices j(I) €
Ji(;)- By Topologies, Lemmathe family {Z;; — Z} is a standard fpqc covering.
Hence we conclude that {X;; — X }ier jes, is an fpgc covering. O

Lemma 9.4. Let S be a scheme, and let X be an algebraic space over S. Suppose
that {f; : X; = Xt}ier is a family of morphisms of algebraic spaces with target
X. Let U — X be a surjective étale morphism from a scheme towards X. Then
{fi : Xi; = X}ier is an fpge covering of X if and only if {U xXx X; — U}ier is an
frqc covering of U.

Proof. If {X; — X},cr is an fpqe covering, then so is {U xx X; — U};er by
Lemma Assume that {U xx X; = U},cr is an fpqe covering. Let h: Z — X
be a morphism from an affine scheme towards X. Then we see that U xx Z — Z
is a surjective étale morphism of schemes, in particular open. Hence we can find
finitely many affine opens Wy, ..., W, of U X x Z whose images cover Z. For each
j we may apply the condition that {U xx X; — U};cr is an fpqc covering to the
morphism W; — U, and obtain a standard fpqc covering {W;; — W;} which refines
{W; xx X; = W;}tier. Hence {W;; — Z} is a standard fpqc covering of Z (see
Topologies, Lemma [9.10)) which refines {Z x x X; — X} and we win. O

Lemmal 9.5. Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {f; : X; = X }ier is an fpge covering of X. Then there exists a refinement
V=A{g;:T; = X} of U which is an fpqc covering such that each T; is a scheme.
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Proof. Omitted. Hint: For each i choose a scheme T; and a surjective étale mor-
phism T; — X;. Then check that {T; — X} is an fpqc covering. O

To be continued...
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