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1. Introduction

025S Algebraic spaces were first introduced by Michael Artin, see [Art69b], [Art70],
[Art73], [Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. Some of the foun-
dational material was developed jointly with Knutson, who produced the book
[Knu71]. Artin defined (see [Art69c, Definition 1.3]) an algebraic space as a sheaf
for the étale topology which is locally in the étale topology representable. In most
of Artin’s work the categories of schemes considered are schemes locally of finite
type over a fixed excellent Noetherian base.
Our definition is slightly different from Artin’s original definition. Namely, our al-
gebraic spaces are sheaves for the fppf topology whose diagonal is representable and
which have an étale “cover” by a scheme. Working with the fppf topology instead
of the étale topology is just a technical point and scarcely makes any difference; we
will show in Bootstrap, Section 12 that we would have gotten the same category
of algebraic spaces if we had worked with the étale topology. In that same chapter
we will prove that the condition on the diagonal can in some sense be removed, see
Bootstrap, Section 6.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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After defining algebraic spaces we make some foundational observations. The main
result in this chapter is that with our definitions an algebraic space is the same thing
as an étale equivalence relation, see the discussion in Section 9 and Theorem 10.5.
The analogue of this theorem in Artin’s setting is [Art69c, Theorem 1.5], or [Knu71,
Proposition II.1.7]. In other words, the sheaf defined by an étale equivalence relation
has a representable diagonal. It follows that our definition agrees with Artin’s
original definition in a broad sense. It also means that one can give examples of
algebraic spaces by simply writing down an étale equivalence relation.

In Section 13 we introduce various separation axioms on algebraic spaces that we
have found in the literature. Finally in Section 14 we give some weird and not so
weird examples of algebraic spaces.

2. General remarks

025T We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if
not explicitly stated otherwise all schemes will be objects of Schfppf . In Section 15
we discuss what changes if you change the big fppf site.

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).

Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 13.7. Hence the topology on Schfppf is weaker than the canonical topology
and all representable presheaves are sheaves.

3. Representable morphisms of presheaves

025U Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf → Sets. Let
a : F → G be a representable transformation of functors, see Categories, Definition
8.2. This means that for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the
fiber product hU ×ξ,G F is representable. Choose a representing object Vξ and an
isomorphism hVξ

→ hU ×G F . By the Yoneda lemma, see Categories, Lemma 3.5,
the projection hVξ

→ hU ×G F → hU comes from a unique morphism of schemes
aξ : Vξ → U . Suggestively we could represent this by the diagram

Vξ //

aξ

��

hVξ

��

// F

a

��
U // hU

ξ // G

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas
about this notion that work in great generality.

Lemma 3.1.02W9 Let S be a scheme contained in Schfppf and let X, Y be objects of
(Sch/S)fppf . Let f : X → Y be a morphism of schemes. Then

hf : hX −→ hY

is a representable transformation of functors.

https://stacks.math.columbia.edu/tag/02W9
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Proof. This is formal and relies only on the fact that the category (Sch/S)fppf
has fibre products. □

Lemma 3.2.02WA Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be representable transformations of functors. Then

b ◦ a : F −→ H

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. □

Lemma 3.3.02WB Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let b : H → G
be any transformation of functors. Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Then the base change a′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. □

Lemma 3.4.02WC Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of
functors. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable transformation of functors.

Proof. Write a1 × a2 as the composition F1 ×F2 → G1 ×F2 → G1 ×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 3.2 and 3.3. □

Lemma 3.5.02WD Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. If G is a sheaf,
then so is F .

Proof. Let {φi : Ti → T} be a covering of the site (Sch/S)fppf . Let si ∈ F (Ti)
which satisfy the sheaf condition. Then σi = a(si) ∈ G(Ti) satisfy the sheaf
condition also. Hence there exists a unique σ ∈ G(T ) such that σi = σ|Ti

. By
assumption F ′ = hT ×σ,G,a F is a representable presheaf and hence (see remarks
in Section 2) a sheaf. Note that (φi, si) ∈ F ′(Ti) satisfy the sheaf condition also,
and hence come from some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F
we are looking for. □

Lemma 3.6.05L9 Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Then ∆F/G :
F → F ×G F is representable.

Proof. Let U ∈ Ob((Sch/S)fppf ). Let ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ =
a(ξ1) = a(ξ2) ∈ G(U). By assumption there exist a scheme V and a morphism
V → U representing the fibre product hU ×ξ′,GF . In particular, the elements ξ1, ξ2
give morphisms f1, f2 : U → V over U . Because V represents the fibre product

https://stacks.math.columbia.edu/tag/02WA
https://stacks.math.columbia.edu/tag/02WB
https://stacks.math.columbia.edu/tag/02WC
https://stacks.math.columbia.edu/tag/02WD
https://stacks.math.columbia.edu/tag/05L9
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hU ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2 we see that if g : U ′ → U is a morphism
then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that hU ×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2) U
which is a scheme. □

4. Lists of useful properties of morphisms of schemes

02WE For ease of reference we list in the following remarks the properties of morphisms
which possess some of the properties required of them in later results.

Remark 4.1.02WF Here is a list of properties/types of morphisms which are stable
under arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 18.2,
(2) quasi-compact, see Schemes, Lemma 19.3,
(3) universally closed, see Schemes, Definition 20.1,
(4) (quasi-)separated, see Schemes, Lemma 21.12,
(5) monomorphism, see Schemes, Lemma 23.5
(6) surjective, see Morphisms, Lemma 9.4,
(7) universally injective, see Morphisms, Lemma 10.2,
(8) affine, see Morphisms, Lemma 11.8,
(9) quasi-affine, see Morphisms, Lemma 13.5,

(10) (locally) of finite type, see Morphisms, Lemma 15.4,
(11) (locally) quasi-finite, see Morphisms, Lemma 20.13,
(12) (locally) of finite presentation, see Morphisms, Lemma 21.4,
(13) locally of finite type of relative dimension d, see Morphisms, Lemma 29.2,
(14) universally open, see Morphisms, Definition 23.1,
(15) flat, see Morphisms, Lemma 25.8,
(16) syntomic, see Morphisms, Lemma 30.4,
(17) smooth, see Morphisms, Lemma 34.5,
(18) unramified (resp. G-unramified), see Morphisms, Lemma 35.5,
(19) étale, see Morphisms, Lemma 36.4,
(20) proper, see Morphisms, Lemma 41.5,
(21) H-projective, see Morphisms, Lemma 43.8,
(22) (locally) projective, see Morphisms, Lemma 43.9,
(23) finite or integral, see Morphisms, Lemma 44.6,
(24) finite locally free, see Morphisms, Lemma 48.4,
(25) universally submersive, see Morphisms, Lemma 24.2,
(26) universal homeomorphism, see Morphisms, Lemma 45.2.

Add more as needed.

Remark 4.2.02WG Of the properties of morphisms which are stable under base change
(as listed in Remark 4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 24.3,
(2) quasi-compact, see Schemes, Lemma 19.4,
(3) universally closed, see Morphisms, Lemma 41.4,
(4) (quasi-)separated, see Schemes, Lemma 21.12,
(5) monomorphism, see Schemes, Lemma 23.4,
(6) surjective, see Morphisms, Lemma 9.2,
(7) universally injective, see Morphisms, Lemma 10.5,

https://stacks.math.columbia.edu/tag/02WF
https://stacks.math.columbia.edu/tag/02WG
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(8) affine, see Morphisms, Lemma 11.7,
(9) quasi-affine, see Morphisms, Lemma 13.4,

(10) (locally) of finite type, see Morphisms, Lemma 15.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 20.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 21.3,
(13) universally open, see Morphisms, Lemma 23.3,
(14) flat, see Morphisms, Lemma 25.6,
(15) syntomic, see Morphisms, Lemma 30.3,
(16) smooth, see Morphisms, Lemma 34.4,
(17) unramified (resp. G-unramified), see Morphisms, Lemma 35.4,
(18) étale, see Morphisms, Lemma 36.3,
(19) proper, see Morphisms, Lemma 41.4,
(20) H-projective, see Morphisms, Lemma 43.7,
(21) finite or integral, see Morphisms, Lemma 44.5,
(22) finite locally free, see Morphisms, Lemma 48.3,
(23) universally submersive, see Morphisms, Lemma 24.3,
(24) universal homeomorphism, see Morphisms, Lemma 45.3.

Add more as needed.

Remark 4.3.02WH Of the properties mentioned which are stable under base change
(as listed in Remark 4.1) the following are also fpqc local on the base (and a fortiori
fppf local on the base):

(1) for immersions we have this for
(a) closed immersions, see Descent, Lemma 23.19,
(b) open immersions, see Descent, Lemma 23.16, and
(c) quasi-compact immersions, see Descent, Lemma 23.21,

(2) quasi-compact, see Descent, Lemma 23.1,
(3) universally closed, see Descent, Lemma 23.3,
(4) (quasi-)separated, see Descent, Lemmas 23.2, and 23.6,
(5) monomorphism, see Descent, Lemma 23.31,
(6) surjective, see Descent, Lemma 23.7,
(7) universally injective, see Descent, Lemma 23.8,
(8) affine, see Descent, Lemma 23.18,
(9) quasi-affine, see Descent, Lemma 23.20,

(10) (locally) of finite type, see Descent, Lemmas 23.10, and 23.12,
(11) (locally) quasi-finite, see Descent, Lemma 23.24,
(12) (locally) of finite presentation, see Descent, Lemmas 23.11, and 23.13,
(13) locally of finite type of relative dimension d, see Descent, Lemma 23.25,
(14) universally open, see Descent, Lemma 23.4,
(15) flat, see Descent, Lemma 23.15,
(16) syntomic, see Descent, Lemma 23.26,
(17) smooth, see Descent, Lemma 23.27,
(18) unramified (resp. G-unramified), see Descent, Lemma 23.28,
(19) étale, see Descent, Lemma 23.29,
(20) proper, see Descent, Lemma 23.14,
(21) finite or integral, see Descent, Lemma 23.23,
(22) finite locally free, see Descent, Lemma 23.30,
(23) universally submersive, see Descent, Lemma 23.5,
(24) universal homeomorphism, see Descent, Lemma 23.9.

https://stacks.math.columbia.edu/tag/02WH
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Note that the property of being an “immersion” may not be fpqc local on the base,
but in Descent, Lemma 24.1 we proved that it is fppf local on the base.

5. Properties of representable morphisms of presheaves

02WI Here is the definition that makes this work.

Definition 5.1.025V With S, and a : F → G representable as above. Let P be a
property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 18.3, and
(2) is fppf local on the base, see Descent, Definition 22.1.

In this case we say that a has property P if for every U ∈ Ob((Sch/S)fppf ) and
any ξ ∈ G(U) the resulting morphism of schemes Vξ → U has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

Remark 5.2.02YN Consider the property P =“surjective”. In this case there could be
some ambiguity if we say “let F → G be a surjective map”. Namely, we could mean
the notion defined in Definition 5.1 above, or we could mean a surjective map of
presheaves, see Sites, Definition 3.1, or, if both F and G are sheaves, we could mean
a surjective map of sheaves, see Sites, Definition 11.1. If not mentioned otherwise
when discussing morphisms of algebraic spaces we will always mean the first. See
Lemma 5.9 for a case where surjectivity implies surjectivity as a map of sheaves.

Here is a sanity check.

Lemma 5.3.02WJ Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Let P be as in Definition 5.1. Then hX −→ hY has property P if and
only if f has property P.

Proof. Note that the lemma makes sense by Lemma 3.1. Proof omitted. □

Lemma 5.4.02WK Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1 which is stable under composition.
Let a : F → G, b : G → H be representable transformations of functors. If a and b
have property P so does b ◦ a : F −→ H.

Proof. Note that the lemma makes sense by Lemma 3.2. Proof omitted. □

Lemma 5.5.02WL Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a has property P then also the base change a′ has property P.

https://stacks.math.columbia.edu/tag/025V
https://stacks.math.columbia.edu/tag/02YN
https://stacks.math.columbia.edu/tag/02WJ
https://stacks.math.columbia.edu/tag/02WK
https://stacks.math.columbia.edu/tag/02WL
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Proof. Note that the lemma makes sense by Lemma 3.3. Proof omitted. □

Lemma 5.6.03KD Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Assume that b induces a surjective map of fppf sheaves H# → G#. In this case, if
a′ has property P, then also a has property P.

Proof. First we remark that by Lemma 3.3 the transformation a′ is representable.
Let U ∈ Ob((Sch/S)fppf ), and let ξ ∈ G(U). By assumption there exists an fppf
covering {Ui → U}i∈I and elements ξi ∈ H(Ui) mapping to ξ|U via b. From general
category theory it follows that for each i we have a fibre product diagram

Ui ×ξi,H,a′ (H ×b,G,a F ) //

��

U ×ξ,G,a F

��
Ui // U

By assumption the left vertical arrow is a morphism of schemes which has property
P. Since P is local in the fppf topology this implies that also the right vertical
arrow has property P as desired. □

Lemma 5.7.02WM Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of
functors. Let P be a property as in Definition 5.1 which is stable under composition.
If a1 and a2 have property P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 3.4. Proof omitted. □

Lemma 5.8.02YO Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let P, P ′

be properties as in Definition 5.1. Suppose that for any morphism of schemes
f : X → Y we have P(f) ⇒ P ′(f). If a has property P then a has property P ′.

Proof. Formal. □

Lemma 5.9.05VM Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable, flat, locally of finite presentation, and surjective. Then
a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G. By
assumption T ′ = F ×G T is (representable by) a scheme and the morphism T ′ → T
is a flat, locally of finite presentation, and surjective. Hence {T ′ → T} is an fppf
covering such that g|T ′ ∈ G(T ′) comes from an element of F (T ′), namely the map
T ′ → F . This proves the map is surjective as a map of sheaves, see Sites, Definition
11.1. □

Here is a characterization of those functors for which the diagonal is representable.

https://stacks.math.columbia.edu/tag/03KD
https://stacks.math.columbia.edu/tag/02WM
https://stacks.math.columbia.edu/tag/02YO
https://stacks.math.columbia.edu/tag/05VM
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Lemma 5.10.025W Let S be a scheme contained in Schfppf . Let F be a presheaf of
sets on (Sch/S)fppf . The following are equivalent:

(1) the diagonal F → F × F is representable,
(2) for U ∈ Ob((Sch/S)fppf ) and any a ∈ F (U) the map a : hU → F is

representable,
(3) for every pair U, V ∈ Ob((Sch/S)fppf ) and any a ∈ F (U), b ∈ F (V ) the

fibre product hU ×a,F,b hV is representable.

Proof. This is completely formal, see Categories, Lemma 8.4. It depends only on
the fact that the category (Sch/S)fppf has products of pairs of objects and fibre
products, see Topologies, Lemma 7.10. □

In the situation of the lemma, for any morphism ξ : hU → F as in the lemma, it
makes sense to say that ξ has property P, for any property as in Definition 5.1. In
particular this holds for P = “surjective” and P = “étale”, see Remark 4.3 above.
We will use this remark in the definition of algebraic spaces below.

Lemma 5.11.0CB7 Let S be a scheme contained in Schfppf . Let F be a presheaf
of sets on (Sch/S)fppf . Let P be a property as in Definition 5.1. If for every
U, V ∈ Ob((Sch/S)fppf ) and a ∈ F (U), b ∈ F (V ) we have

(1) hU ×a,F,b hV is representable, say by the scheme W , and
(2) the morphism W → U ×S V corresponding to hU ×a,F,b hV → hU × hV has

property P,
then ∆ : F → F × F is representable and has property P.

Proof. Observe that ∆ is representable by Lemma 5.10. We can formulate condi-
tion (2) as saying that the transformation hU ×a,F,b hV → hU×SV has property P,
see Lemma 5.3. Consider T ∈ Ob((Sch/S)fppf ) and (a, b) ∈ (F × F )(T ). Observe
that we have the commutative diagram

F ×∆,F×F,(a,b) hT

��

// hT

∆T/S

��
hT ×a,F,b hT //

��

hT×ST

(a,b)
��

F
∆ // F × F

both of whose squares are cartesian. In this way we see that the morphism F ×F×F
hT → hT is the base change of a morphism having property P by ∆T/S . Since P
is preserved under base change this finishes the proof. □

6. Algebraic spaces

025X Here is the definition.

Definition 6.1.025Y Let S be a scheme contained in Schfppf . An algebraic space over
S is a presheaf

F : (Sch/S)oppfppf −→ Sets
with the following properties

(1) The presheaf F is a sheaf.
(2) The diagonal morphism F → F × F is representable.

https://stacks.math.columbia.edu/tag/025W
https://stacks.math.columbia.edu/tag/0CB7
https://stacks.math.columbia.edu/tag/025Y
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(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a map hU → F which is
surjective, and étale.

There are two differences with the “usual” definition, for example the definition in
Knutson’s book [Knu71].

The first is that we require F to be a sheaf in the fppf topology. One reason
for doing this is that many natural examples of algebraic spaces satisfy the sheaf
condition for the fppf coverings (and even for fpqc coverings). Also, one of the
reasons that algebraic spaces have been so useful is via Michael Artin’s results on
algebraic spaces. Built into his method is a condition which guarantees the result
is locally of finite presentation over S. Combined it somehow seems to us that the
fppf topology is the natural topology to work with. In the end the category of
algebraic spaces ends up being the same. See Bootstrap, Section 12.

The second is that we only require the diagonal map for F to be representable,
whereas in [Knu71] it is required that it also be quasi-compact. If F = hU for some
scheme U over S this corresponds to the condition that U be quasi-separated. Our
point of view is to try to prove a certain number of the results that follow only
assuming that the diagonal of F be representable, and simply add an additional
hypothesis wherever this is necessary. In any case it has the pleasing consequence
that the following lemma is true.

Lemma 6.2.025Z A scheme is an algebraic space. More precisely, given a scheme
T ∈ Ob((Sch/S)fppf ) the representable functor hT is an algebraic space.

Proof. The functor hT is a sheaf by our remarks in Section 2. The diagonal
hT → hT × hT = hT×T is representable because (Sch/S)fppf has fibre products.
The identity map hT → hT is surjective étale. □

Definition 6.3.0260 Let F , F ′ be algebraic spaces over S. A morphism f : F → F ′

of algebraic spaces over S is a transformation of functors from F to F ′.

The category of algebraic spaces over S contains the category (Sch/S)fppf as a
full subcategory via the Yoneda embedding T/S 7→ hT . From now on we no longer
distinguish between a scheme T/S and the algebraic space it represents. Thus when
we say “Let f : T → F be a morphism from the scheme T to the algebraic space
F”, we mean that T ∈ Ob((Sch/S)fppf ), that F is an algebraic space over S, and
that f : hT → F is a morphism of algebraic spaces over S.

7. Fibre products of algebraic spaces

04T8 The category of algebraic spaces over S has both products and fibre products.

Lemma 7.1.02X0 Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Then F ×G is an algebraic space, and is a product in the category
of algebraic spaces over S.

Proof. It is clear that H = F ×G is a sheaf. The diagonal of H is simply the prod-
uct of the diagonals of F and G. Hence it is representable by Lemma 3.4. Finally, if
U → F and V → G are surjective étale morphisms, with U, V ∈ Ob((Sch/S)fppf ),
then U × V → F ×G is surjective étale by Lemma 5.7. □

https://stacks.math.columbia.edu/tag/025Z
https://stacks.math.columbia.edu/tag/0260
https://stacks.math.columbia.edu/tag/02X0
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Lemma 7.2.04T9 Let S be a scheme contained in Schfppf . Let H be a sheaf on
(Sch/S)fppf whose diagonal is representable. Let F,G be algebraic spaces over S.
Let F → H, G → H be maps of sheaves. Then F ×H G is an algebraic space.

Proof. We check the 3 conditions of Definition 6.1. A fibre product of sheaves is
a sheaf, hence F ×H G is a sheaf. The diagonal of F ×H G is the left vertical arrow
in

F ×H G //

∆
��

F ×G

∆F ×∆G

��
(F × F ) ×(H×H) (G×G) // (F × F ) × (G×G)

which is cartesian. Hence ∆ is representable as the base change of the morphism
on the right which is representable, see Lemmas 3.4 and 3.3. Finally, let U, V ∈
Ob((Sch/S)fppf ) and a : U → F , b : V → G be surjective and étale. As ∆H is
representable, we see that U ×H V is a scheme. The morphism

U ×H V −→ F ×H G

is surjective and étale as a composition of the base changes U ×H V → U ×H G
and U ×H G → F ×H G of the étale surjective morphisms U → F and V → G, see
Lemmas 3.2 and 3.3. This proves the last condition of Definition 6.1 holds and we
conclude that F ×H G is an algebraic space. □

Lemma 7.3.02X2 Let S be a scheme contained in Schfppf . Let F → H, G → H be
morphisms of algebraic spaces over S. Then F ×H G is an algebraic space, and is
a fibre product in the category of algebraic spaces over S.

Proof. It follows from the stronger Lemma 7.2 that F×HG is an algebraic space. It
is clear that F×HG is a fibre product in the category of algebraic spaces over S since
that is a full subcategory of the category of (pre)sheaves of sets on (Sch/S)fppf . □

8. Glueing algebraic spaces

02WN In this section we really start abusing notation and not distinguish between schemes
and the spaces they represent.

Lemma 8.1.0F15 Let S ∈ Ob(Schfppf ). Let F and G be sheaves on (Sch/S)oppfppf and
denote F ⨿ G the coproduct in the category of sheaves. The map F → F ⨿ G is
representable by open and closed immersions.

Proof. Let U be a scheme and let ξ ∈ (F ⨿ G)(U). Recall the coproduct in the
category of sheaves is the sheafification of the coproduct presheaf (Sites, Lemma
10.13). Thus there exists an fppf covering {gi : Ui → U}i∈I and a disjoint union
decomposition I = I ′ ⨿ I ′′ such that Ui → U → F ⨿G factors through F , resp. G
if and only if i ∈ I ′, resp. i ∈ I ′′. Since F and G have empty intersection in F ⨿G
we conclude that Ui ×U Uj is empty if i ∈ I ′ and j ∈ I ′′. Hence U ′ =

⋃
i∈I′ gi(Ui)

and U ′′ =
⋃
i∈I′′ gi(Ui) are disjoint open (Morphisms, Lemma 25.10) subschemes

of U with U = U ′ ⨿ U ′′. We omit the verification that U ′ = U ×F⨿G F . □

Lemma 8.2.02WO Let S ∈ Ob(Schfppf ). Let U ∈ Ob((Sch/S)fppf ). Given a set I
and sheaves Fi on Ob((Sch/S)fppf ), if U ∼=

∐
i∈I Fi as sheaves, then each Fi is

representable by an open and closed subscheme Ui and U ∼=
∐
Ui as schemes.

https://stacks.math.columbia.edu/tag/04T9
https://stacks.math.columbia.edu/tag/02X2
https://stacks.math.columbia.edu/tag/0F15
https://stacks.math.columbia.edu/tag/02WO
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Proof. By Lemma 8.1 the map Fi → U is representable by open and closed im-
mersions. Hence Fi is representable by an open and closed subscheme Ui of U . We
have U =

∐
Ui because we have U ∼=

∐
Fi as sheaves and we can test the equality

on points. □

Lemma 8.3.02WP Let S ∈ Ob(Schfppf ). Let F be an algebraic space over S. Given a
set I and sheaves Fi on Ob((Sch/S)fppf ), if F ∼=

∐
i∈I Fi as sheaves, then each Fi

is an algebraic space over S.

Proof. The representability of F → F × F implies that each diagonal morphism
Fi → Fi × Fi is representable (immediate from the definitions and the fact that
F ×(F×F ) (Fi × Fi) = Fi). Choose a scheme U in (Sch/S)fppf and a surjective
étale morphism U → F (this exist by hypothesis). The base change U ×F Fi → Fi
is surjective and étale by Lemma 5.5. On the other hand, U ×F Fi is a scheme by
Lemma 8.1. Thus we have verified all the conditions in Definition 6.1 and Fi is an
algebraic space. □

The condition on the size of I and the Fi in the following lemma may be ignored
by those not worried about set theoretic questions.

Lemma 8.4.02WQ Let S ∈ Ob(Schfppf ). Suppose given a set I and algebraic spaces Fi,
i ∈ I. Then F =

∐
i∈I Fi is an algebraic space provided I, and the Fi are not too

“large”: for example if we can choose surjective étale morphisms Ui → Fi such that∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf , then F is an algebraic space.

Proof. By construction F is a sheaf. We omit the verification that the diagonal
morphism of F is representable. Finally, if U is an object of (Sch/S)fppf isomorphic
to

∐
i∈I Ui then it is straightforward to verify that the resulting map U →

∐
Fi is

surjective and étale. □

Here is the analogue of Schemes, Lemma 15.4.

Lemma 8.5.02WR Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an algebraic space,
(b) each Fi → F is representable,
(c) each Fi → F is an open immersion (see Definition 5.1),
(d) the map

∐
Fi → F is surjective as a map of sheaves, and

(e)
∐
Fi is an algebraic space (set theoretic condition, see Lemma 8.4).

Then F is an algebraic space.

Proof. Let T be an object of (Sch/S)fppf . Let T → F be a morphism. By
assumption (2)(b) and (2)(c) the fibre product Fi×F T is representable by an open
subscheme Vi ⊂ T . It follows that (

∐
Fi) ×F T is represented by the scheme

∐
Vi

over T . By assumption (2)(d) there exists an fppf covering {Tj → T}j∈J such that
Tj → T → F factors through Fi, i = i(j). Hence Tj → T factors through the open
subscheme Vi(j) ⊂ T . Since {Tj → T} is jointly surjective, it follows that T =

⋃
Vi

is an open covering. In particular, the transformation of functors
∐
Fi → F is

representable and surjective in the sense of Definition 5.1 (see Remark 5.2 for a
discussion).

https://stacks.math.columbia.edu/tag/02WP
https://stacks.math.columbia.edu/tag/02WQ
https://stacks.math.columbia.edu/tag/02WR
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Next, let T ′ → F be a second morphism from an object in (Sch/S)fppf . Write as
above T ′ =

⋃
V ′
i with V ′

i = T ′ ×F Fi. To show that the diagonal F → F × F is
representable we have to show that G = T ×F T

′ is representable, see Lemma 5.10.
Consider the subfunctors Gi = G ×F Fi. Note that Gi = Vi ×Fi

V ′
i , and hence

is representable as Fi is an algebraic space. By the above the Gi form a Zariski
covering of G. Hence by Schemes, Lemma 15.4 we see G is representable.

Choose a scheme U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →
∐
Fi

(this exists by hypothesis). We may write U =
∐
Ui with Ui the inverse image

of Fi, see Lemma 8.2. We claim that U → F is surjective and étale. Surjectivity
follows as

∐
Fi → F is surjective (see first paragraph of the proof) by applying

Lemma 5.4. Consider the fibre product U ×F T where T → F is as above. We have
to show that U ×F T → T is étale. Since U ×F T =

∐
Ui ×F T it suffices to show

each Ui ×F T → T is étale. Since Ui ×F T = Ui ×Fi
Vi this follows from the fact

that Ui → Fi is étale and Vi → T is an open immersion (and Morphisms, Lemmas
36.9 and 36.3). □

9. Presentations of algebraic spaces

0261 Given an algebraic space we can find a “presentation” of it.

Lemma 9.1.0262 Let F be an algebraic space over S. Let f : U → F be a surjective
étale morphism from a scheme to F . Set R = U ×F U . Then

(1) j : R → U×SU defines an equivalence relation on U over S (see Groupoids,
Definition 3.1).

(2) the morphisms s, t : R → U are étale, and
(3) the diagram

R
//
// U // F

is a coequalizer diagram in Sh((Sch/S)fppf ).

Proof. Let T/S be an object of (Sch/S)fppf . Then R(T ) = {(a, b) ∈ U(T )×U(T ) |
f ◦ a = f ◦ b} which defines an equivalence relation on U(T ). The morphisms
s, t : R → U are étale because the morphism U → F is étale.

To prove (3) we first show that U → F is a surjection of sheaves, see Sites, Definition
11.1. Let ξ ∈ F (T ) with T as above. Let V = T ×ξ,F,f U . By assumption V is
a scheme and V → T is surjective étale. Hence {V → T} is a covering for the
fppf topology. Since ξ|V factors through U by construction we conclude U → F is
surjective. Surjectivity implies that F is the coequalizer of the diagram by Sites,
Lemma 11.3. □

This lemma suggests the following definitions.

Definition 9.2.02WS Let S be a scheme. Let U be a scheme over S. An étale equivalence
relation on U over S is an equivalence relation j : R → U×SU such that s, t : R → U
are étale morphisms of schemes.

Definition 9.3.0263 Let F be an algebraic space over S. A presentation of F is given
by a scheme U over S and an étale equivalence relation R on U over S, and a
surjective étale morphism U → F such that R = U ×F U .

https://stacks.math.columbia.edu/tag/0262
https://stacks.math.columbia.edu/tag/02WS
https://stacks.math.columbia.edu/tag/0263
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Equivalently we could ask for the existence of an isomorphism

U/R ∼= F

where the quotient U/R is as defined in Groupoids, Section 20. To construct
algebraic spaces we will study the converse question, namely, for which equivalence
relations the quotient sheaf U/R is an algebraic space. It will finally turn out this
is always the case if R is an étale equivalence relation on U over S, see Theorem
10.5.

10. Algebraic spaces and equivalence relations

0264 Suppose given a scheme U over S and an étale equivalence relation R on U over S.
We would like to show this defines an algebraic space. We will produce a series of
lemmas that prove the quotient sheaf U/R (see Groupoids, Definition 20.1) has all
the properties required of it in Definition 6.1.

Lemma 10.1.02WT Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Let U ′ → U be an
étale morphism. Let R′ be the restriction of R to U ′, see Groupoids, Definition 3.3.
Then j′ : R′ → U ′ ×S U

′ is an étale equivalence relation also.

Proof. It is clear from the description of s′, t′ in Groupoids, Lemma 18.1 that
s′, t′ : R′ → U ′ are étale as compositions of base changes of étale morphisms (see
Morphisms, Lemma 36.4 and 36.3). □

We will often use the following lemma to find open subspaces of algebraic spaces.
A slight improvement (with more general hypotheses) of this lemma is Bootstrap,
Lemma 7.1.

Lemma 10.2.02WU Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be a pre-relation. Let g : U ′ → U be a morphism. Assume

(1) j is an equivalence relation,
(2) s, t : R → U are surjective, flat and locally of finite presentation,
(3) g is flat and locally of finite presentation.

Let R′ = R|U ′ be the restriction of R to U ′. Then U ′/R′ → U/R is representable,
and is an open immersion.

Proof. By Groupoids, Lemma 3.2 the morphism j′ = (s′, t′) : R′ → U ′ ×S U
′

defines an equivalence relation. Since g is flat and locally of finite presentation
we see that g is universally open as well (Morphisms, Lemma 25.10). For the
same reason s, t are universally open as well. Let W 1 = g(U ′) ⊂ U , and let
W = t(s−1(W 1)). Then W 1 and W are open in U . Moreover, as j is an equivalence
relation we have t(s−1(W )) = W (see Groupoids, Lemma 19.2 for example).

By Groupoids, Lemma 20.5 the map of sheaves F ′ = U ′/R′ → F = U/R is injective.
Let a : T → F be a morphism from a scheme into U/R. We have to show that
T ×F F

′ is representable by an open subscheme of T .

The morphism a is given by the following data: an fppf covering {φj : Tj → T}j∈J
of T and morphisms aj : Tj → U such that the maps

aj × aj′ : Tj ×T Tj′ −→ U ×S U

https://stacks.math.columbia.edu/tag/02WT
https://stacks.math.columbia.edu/tag/02WU
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factor through j : R → U ×S U via some (unique) maps rjj′ : Tj ×T Tj′ → R. The
system (aj) corresponds to a in the sense that the diagrams

Tj aj

//

��

U

��
T

a // F

commute.

Consider the open subsets Wj = a−1
j (W ) ⊂ Tj . Since t(s−1(W )) = W we see that

Wj ×T Tj′ = r−1
jj′ (t−1(W )) = r−1

jj′ (s−1(W )) = Tj ×T Wj′ .

By Descent, Lemma 13.6 this means there exists an open WT ⊂ T such that
φ−1
j (WT ) = Wj for all j ∈ J . We claim that WT → T represents T ×F F

′ → T .

First, let us show that WT → T → F is an element of F ′(WT ). Since {Wj →
WT }j∈J is an fppf covering of WT , it is enough to show that each Wj → U → F
is an element of F ′(Wj) (as F ′ is a sheaf for the fppf topology). Consider the
commutative diagram

W ′
j

//

��

##

U ′

g

��
s−1(W 1)

s
//

t

��

W 1

��
Wj

aj |Wj // W // F

where W ′
j = Wj ×W s−1(W 1) ×W 1 U ′. Since t and g are surjective, flat and

locally of finite presentation, so is W ′
j → Wj . Hence the restriction of the element

Wj → U → F to W ′
j is an element of F ′ as desired.

Suppose that f : T ′ → T is a morphism of schemes such that a|T ′ ∈ F ′(T ′). We
have to show that f factors through the open WT . Since {T ′ ×T Tj → T ′} is
an fppf covering of T ′ it is enough to show each T ′ ×T Tj → T factors through
WT . Hence we may assume f factors as φj ◦ fj : T ′ → Tj → T for some j. In
this case the condition a|T ′ ∈ F ′(T ′) means that there exists some fppf covering
{ψi : T ′

i → T ′}i∈I and some morphisms bi : T ′
i → U ′ such that

T ′
i bi

//

fj◦ψi

��

U ′
g
// U

��
Tj

aj // U // F

is commutative. This commutativity means that there exists a morphism r′
i : T ′

i →
R such that t◦r′

i = aj ◦fj ◦ψi, and s◦r′
i = g◦bi. This implies that Im(fj ◦ψi) ⊂ Wj

and we win. □

The following lemma is not completely trivial although it looks like it should be
trivial.
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Lemma 10.3.02WV Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. If the quotient U/R is
an algebraic space, then U → U/R is étale and surjective. Hence (U,R,U → U/R)
is a presentation of the algebraic space U/R.

Proof. Denote c : U → U/R the morphism in question. Let T be a scheme
and let a : T → U/R be a morphism. We have to show that the morphism
(of schemes) π : T ×a,U/R,c U → T is étale and surjective. The morphism a
corresponds to an fppf covering {φi : Ti → T} and morphisms ai : Ti → U such
that ai × ai′ : Ti ×T Ti′ → U ×S U factors through R, and such that c ◦ ai = a ◦φi.
Hence

Ti ×φi,T T ×a,U/R,c U = Ti ×c◦ai,U/R,c U = Ti ×ai,U U ×c,U/R,c U = Ti ×ai,U,t R.

Since t is étale and surjective we conclude that the base change of π to Ti is surjective
and étale. Since the property of being surjective and étale is local on the base in
the fpqc topology (see Remark 4.3) we win. □

Lemma 10.4.0265 Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U×SU be an étale equivalence relation on U over S. Assume that U is affine. Then
the quotient F = U/R is an algebraic space, and U → F is étale and surjective.

Proof. Since j : R → U ×S U is a monomorphism we see that j is separated (see
Schemes, Lemma 23.3). Since U is affine we see that U×SU (which comes equipped
with a monomorphism into the affine scheme U × U) is separated. Hence we see
that R is separated. In particular the morphisms s, t are separated as well as étale.

Since the composition R → U ×S U → U is locally of finite type we conclude that j
is locally of finite type (see Morphisms, Lemma 15.8). As j is also a monomorphism
it has finite fibres and we see that j is locally quasi-finite by Morphisms, Lemma
20.7. Altogether we see that j is separated and locally quasi-finite.

Our first step is to show that the quotient map c : U → F is representable. Consider
a scheme T and a morphism a : T → F . We have to show that the sheaf G =
T ×a,F,c U is representable. As seen in the proofs of Lemmas 10.2 and 10.3 there
exists an fppf covering {φi : Ti → T}i∈I and morphisms ai : Ti → U such that
ai × ai′ : Ti ×T Ti′ → U ×S U factors through R, and such that c ◦ ai = a ◦ φi. As
in the proof of Lemma 10.3 we see that

Ti ×φi,T G = Ti ×φi,T T ×a,U/R,c U

= Ti ×c◦ai,U/R,c U

= Ti ×ai,U U ×c,U/R,c U

= Ti ×ai,U,t R

Since t is separated and étale, and in particular separated and locally quasi-finite
(by Morphisms, Lemmas 35.10 and 36.16) we see that the restriction of G to each
Ti is representable by a morphism of schemes Xi → Ti which is separated and
locally quasi-finite. By Descent, Lemma 39.1 we obtain a descent datum (Xi, φii′)
relative to the fppf-covering {Ti → T}. Since each Xi → Ti is separated and locally
quasi-finite we see by More on Morphisms, Lemma 57.1 that this descent datum is
effective. Hence by Descent, Lemma 39.1 (2) we conclude that G is representable
as desired.

https://stacks.math.columbia.edu/tag/02WV
https://stacks.math.columbia.edu/tag/0265


ALGEBRAIC SPACES 16

The second step of the proof is to show that U → F is surjective and étale. This
is clear from the above since in the first step above we saw that G = T ×a,F,c U is
a scheme over T which base changes to schemes Xi → Ti which are surjective and
étale. Thus G → T is surjective and étale (see Remark 4.3). Alternatively one can
reread the proof of Lemma 10.3 in the current situation.
The third and final step is to show that the diagonal map F → F × F is repre-
sentable. We first observe that the diagram

R //

j

��

F

∆
��

U ×S U // F × F

is a fibre product square. By Lemma 3.4 the morphism U ×S U → F × F is
representable (note that hU×hU = hU×SU ). Moreover, by Lemma 5.7 the morphism
U ×S U → F × F is surjective and étale (note also that étale and surjective occur
in the lists of Remarks 4.3 and 4.2). It follows either from Lemma 3.3 and the
diagram above, or by writing R → F as R → U → F and Lemmas 3.1 and 3.2 that
R → F is representable as well. Let T be a scheme and let a : T → F × F be a
morphism. We have to show that G = T ×a,F×F,∆ F is representable. By what
was said above the morphism (of schemes)

T ′ = (U ×S U) ×F×F,a T −→ T

is surjective and étale. Hence {T ′ → T} is an étale covering of T . Note also that
T ′ ×T G = T ′ ×U×SU,j R

as can be seen contemplating the following cube

R //

��

F

��

T ′ ×T G //

��

88

G

��

<<

U ×S U // F × F

T ′ //

88

T

<<

Hence we see that the restriction of G to T ′ is representable by a scheme X, and
moreover that the morphism X → T ′ is a base change of the morphism j. Hence
X → T ′ is separated and locally quasi-finite (see second paragraph of the proof).
By Descent, Lemma 39.1 we obtain a descent datum (X,φ) relative to the fppf-
covering {T ′ → T}. Since X → T ′ is separated and locally quasi-finite we see by
More on Morphisms, Lemma 57.1 that this descent datum is effective. Hence by
Descent, Lemma 39.1 (2) we conclude that G is representable as desired. □

Theorem 10.5.02WW Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Then the quotient
U/R is an algebraic space, and U → U/R is étale and surjective, in other words
(U,R,U → U/R) is a presentation of U/R.

https://stacks.math.columbia.edu/tag/02WW
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Proof. By Lemma 10.3 it suffices to prove that U/R is an algebraic space. Let
U ′ → U be a surjective, étale morphism. Then {U ′ → U} is in particular an
fppf covering. Let R′ be the restriction of R to U ′, see Groupoids, Definition 3.3.
According to Groupoids, Lemma 20.6 we see that U/R ∼= U ′/R′. By Lemma 10.1
R′ is an étale equivalence relation on U ′. Thus we may replace U by U ′.

We apply the previous remark to U ′ =
∐
Ui, where U =

⋃
Ui is an affine open

covering of U . Hence we may and do assume that U =
∐
Ui where each Ui is an

affine scheme.

Consider the restriction Ri of R to Ui. By Lemma 10.1 this is an étale equivalence
relation. Set Fi = Ui/Ri and F = U/R. It is clear that

∐
Fi → F is surjective.

By Lemma 10.2 each Fi → F is representable, and an open immersion. By Lemma
10.4 applied to (Ui, Ri) we see that Fi is an algebraic space. Then by Lemma 10.3
we see that Ui → Fi is étale and surjective. From Lemma 8.4 it follows that

∐
Fi

is an algebraic space. Finally, we have verified all hypotheses of Lemma 8.5 and it
follows that F = U/R is an algebraic space. □

11. Algebraic spaces, retrofitted

02WX We start building our arsenal of lemmas dealing with algebraic spaces. The first
result says that in Definition 6.1 we can weaken the condition on the diagonal as
follows.

Lemma 11.1.0BGQ Let S be a scheme contained in Schfppf . Let F be a sheaf on
(Sch/S)fppf such that there exists U ∈ Ob((Sch/S)fppf ) and a map U → F which
is representable, surjective, and étale. Then F is an algebraic space.

Proof. Set R = U ×F U . This is a scheme as U → F is assumed representable.
The projections s, t : R → U are étale as U → F is assumed étale. The map
j = (t, s) : R → U ×S U is a monomorphism and an equivalence relation as
R = U ×F U . By Theorem 10.5 the quotient sheaf F ′ = U/R is an algebraic space
and U → F ′ is surjective and étale. Again since R = U ×F U we obtain a canonical
factorization U → F ′ → F and F ′ → F is an injective map of sheaves. On the
other hand, U → F is surjective as a map of sheaves by Lemma 5.9. Thus F ′ → F
is also surjective and we conclude F ′ = F is an algebraic space. □

Lemma 11.2.0BGR Let S be a scheme contained in Schfppf . Let G be an algebraic
space over S, let F be a sheaf on (Sch/S)fppf , and let G → F be a representable
transformation of functors which is surjective and étale. Then F is an algebraic
space.

Proof. Pick a scheme U and a surjective étale morphism U → G. Since G is an
algebraic space U → G is representable. Hence the composition U → G → F
is representable, surjective, and étale. See Lemmas 3.2 and 5.4. Thus F is an
algebraic space by Lemma 11.1. □

Lemma 11.3.02WY Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let G → F be a representable transformation of functors. Then G is
an algebraic space.

https://stacks.math.columbia.edu/tag/0BGQ
https://stacks.math.columbia.edu/tag/0BGR
https://stacks.math.columbia.edu/tag/02WY
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Proof. By Lemma 3.5 we see that G is a sheaf. The diagram

G×F G //

��

F

∆F

��
G×G // F × F

is cartesian. Hence we see that G ×F G → G × G is representable by Lemma 3.3.
By Lemma 3.6 we see that G → G×F G is representable. Hence ∆G : G → G×G
is representable as a composition of representable transformations, see Lemma 3.2.
Finally, let U be an object of (Sch/S)fppf and let U → F be surjective and étale. By
assumption U ×F G is representable by a scheme U ′. By Lemma 5.5 the morphism
U ′ → G is surjective and étale. This verifies the final condition of Definition 6.1
and we win. □

Lemma 11.4.02WZ Let S be a scheme contained in Schfppf . Let F , G be algebraic
spaces over S. Let G → F be a representable morphism. Let U ∈ Ob((Sch/S)fppf ),
and q : U → F surjective and étale. Set V = G×F U . Finally, let P be a property
of morphisms of schemes as in Definition 5.1. Then G → F has property P if and
only if V → U has property P.

Proof. (This lemma follows from Lemmas 5.5 and 5.6, but we give a direct proof
here also.) It is clear from the definitions that if G → F has property P, then
V → U has property P. Conversely, assume V → U has property P. Let T → F
be a morphism from a scheme to F . Let T ′ = T ×F G which is a scheme since
G → F is representable. We have to show that T ′ → T has property P. Consider
the commutative diagram of schemes

V

��

T ×F V

��

oo // T ×F G

��

T ′

U T ×F Uoo // T

where both squares are fibre product squares. Hence we conclude the middle arrow
has property P as a base change of V → U . Finally, {T ×F U → T} is a fppf
covering as it is surjective étale, and hence we conclude that T ′ → T has property
P as it is local on the base in the fppf topology. □

Lemma 11.5.03I2 Let S be a scheme contained in Schfppf . Let G → F be a trans-
formation of presheaves on (Sch/S)fppf . Let P be a property of morphisms of
schemes. Assume

(1) P is preserved under any base change, fppf local on the base, and morphisms
of type P satisfy descent for fppf coverings, see Descent, Definition 36.1,

(2) G is a sheaf,
(3) F is an algebraic space,
(4) there exists a U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U → F

such that V = G×F U is representable, and
(5) V → U has P.

Then G is an algebraic space, G → F is representable and has property P.

Proof. Let R = U ×F U , and denote t, s : R → U the projection morphisms as
usual. Let T be a scheme and let T → F be a morphism. Then U ×F T → T is

https://stacks.math.columbia.edu/tag/02WZ
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surjective étale, hence {U ×F T → T} is a covering for the étale topology. Consider

W = G×F (U ×F T ) = V ×F T = V ×U (U ×F T ).

It is a scheme since F is an algebraic space. The morphism W → U ×F T has
property P since it is a base change of V → U . There is an isomorphism

W ×T (U ×F T ) = (G×F (U ×F T )) ×T (U ×F T )
= (U ×F T ) ×T (G×F (U ×F T ))
= (U ×F T ) ×T W

over (U ×F T ) ×T (U ×F T ). The middle equality maps ((g, (u1, t)), (u2, t)) to
((u1, t), (g, (u2, t))). This defines a descent datum for W/U ×F T/T , see Descent,
Definition 34.1. This follows from Descent, Lemma 39.1. Namely we have a sheaf
G ×F T , whose base change to U ×F T is represented by W and the isomorphism
above is the one from the proof of Descent, Lemma 39.1. By assumption on P
the descent datum above is representable. Hence by the last statement of Descent,
Lemma 39.1 we see that G ×F T is representable. This proves that G → F is a
representable transformation of functors.

As G → F is representable, we see that G is an algebraic space by Lemma 11.3.
The fact that G → F has property P now follows from Lemma 11.4. □

Lemma 11.6.02X1 Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Let a : F → G be a morphism. Given any V ∈ Ob((Sch/S)fppf )
and a surjective étale morphism q : V → G there exists a U ∈ Ob((Sch/S)fppf )
and a commutative diagram

U

p

��

α
// V

q

��
F

a // G

with p surjective and étale.

Proof. First choose W ∈ Ob((Sch/S)fppf ) with surjective étale morphism W →
F . Next, put U = W ×G V . Since G is an algebraic space we see that U is
isomorphic to an object of (Sch/S)fppf . As q is surjective étale, we see that U → W
is surjective étale (see Lemma 5.5). Thus U → F is surjective étale as a composition
of surjective étale morphisms (see Lemma 5.4). □

12. Immersions and Zariski coverings of algebraic spaces

02YT At this point an interesting phenomenon occurs. We have already defined the notion
of an open immersion of algebraic spaces (through Definition 5.1) but we have yet
to define the notion of a point1. Thus the Zariski topology of an algebraic space has
already been defined, but there is no space yet!

Perhaps superfluously we formally introduce immersions as follows.

Definition 12.1.02YU Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S.

1We will associate a topological space to an algebraic space in Properties of Spaces, Section 4,
and its opens will correspond exactly to the open subspaces defined below.

https://stacks.math.columbia.edu/tag/02X1
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(1) A morphism of algebraic spaces over S is called an open immersion if it is
representable, and an open immersion in the sense of Definition 5.1.

(2) An open subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is an open immersion.

(3) A morphism of algebraic spaces over S is called a closed immersion if it is
representable, and a closed immersion in the sense of Definition 5.1.

(4) A closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is a closed immersion.

(5) A morphism of algebraic spaces over S is called an immersion if it is rep-
resentable, and an immersion in the sense of Definition 5.1.

(6) A locally closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an
algebraic space and F ′ → F is an immersion.

We note that these definitions make sense since an immersion is in particular a
monomorphism (see Schemes, Lemma 23.8 and Lemma 5.8), and hence the image
of an immersion G → F of algebraic spaces is a subfunctor F ′ ⊂ F which is
(canonically) isomorphic to G. Thus some of the discussion of Schemes, Section 10
carries over to the setting of algebraic spaces.

Lemma 12.2.02YV Let S ∈ Ob(Schfppf ) be a scheme. A composition of (closed, resp.
open) immersions of algebraic spaces over S is a (closed, resp. open) immersion of
algebraic spaces over S.

Proof. See Lemma 5.4 and Remarks 4.3 (see very last line of that remark) and
4.2. □

Lemma 12.3.02YW Let S ∈ Ob(Schfppf ) be a scheme. A base change of a (closed, resp.
open) immersion of algebraic spaces over S is a (closed, resp. open) immersion of
algebraic spaces over S.

Proof. See Lemma 5.5 and Remark 4.3 (see very last line of that remark). □

Lemma 12.4.02YX Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. Let F1, F2 be locally closed subspaces of F . If F1 ⊂ F2 as subfunctors of F ,
then F1 is a locally closed subspace of F2. Similarly for closed and open subspaces.

Proof. Let T → F2 be a morphism with T a scheme. Since F2 → F is a monomor-
phism, we see that T ×F2 F1 = T ×F F1. The lemma follows formally from this. □

Let us formally define the notion of a Zariski open covering of algebraic spaces.
Note that in Lemma 8.5 we have already encountered such open coverings as a
method for constructing algebraic spaces.

Definition 12.5.02YY Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. A Zariski covering {Fi ⊂ F}i∈I of F is given by a set I and a collection of
open subspaces Fi ⊂ F such that

∐
Fi → F is a surjective map of sheaves.

Note that if T is a schemes, and a : T → F is a morphism, then each of the fibre
products T ×F Fi is identified with an open subscheme Ti ⊂ T . The final condition
of the definition signifies exactly that T =

⋃
i∈I Ti.

It is clear that the collection FZar of open subspaces of F is a set (as (Sch/S)fppf
is a site, hence a set). Moreover, we can turn FZar into a category by letting the
morphisms be inclusions of subfunctors (which are automatically open immersions

https://stacks.math.columbia.edu/tag/02YV
https://stacks.math.columbia.edu/tag/02YW
https://stacks.math.columbia.edu/tag/02YX
https://stacks.math.columbia.edu/tag/02YY


ALGEBRAIC SPACES 21

by Lemma 12.4). Finally, Definition 12.5 provides the notion of a Zariski covering
{Fi → F ′}i∈I in the category FZar. Hence, just as in the case of a topological space
(see Sites, Example 6.4) by suitably choosing a set of coverings we may obtain a
Zariski site of the algebraic space F .

Definition 12.6.02YZ Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic
space over S. A small Zariski site FZar of an algebraic space F is one of the sites
described above.

Hence this gives a notion of what it means for something to be true Zariski locally
on an algebraic space, which is how we will use this notion. In general the Zariski
topology is not fine enough for our purposes. For example we can consider the
category of Zariski sheaves on an algebraic space. It will turn out that this is not
the correct thing to consider, even for quasi-coherent sheaves. One only gets the
desired result when using the étale or fppf site of F to define quasi-coherent sheaves.

13. Separation conditions on algebraic spaces

02X3 A separation condition on an algebraic space F is a condition on the diagonal
morphism F → F×F . Let us first list the properties the diagonal has automatically.
Since the diagonal is representable by definition the following lemma makes sense
(through Definition 5.1).

Lemma 13.1.02X4 Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism. Then

(1) ∆ is locally of finite type,
(2) ∆ is a monomorphism,
(3) ∆ is separated, and
(4) ∆ is locally quasi-finite.

Proof. Let F = U/R be a presentation of F . As in the proof of Lemma 10.4 the
diagram

R //

j

��

F

∆
��

U ×S U // F × F

is cartesian. Hence according to Lemma 11.4 it suffices to show that j has the
properties listed in the lemma. (Note that each of the properties (1) – (4) occur
in the lists of Remarks 4.1 and 4.3.) Since j is an equivalence relation it is a
monomorphism. Hence it is separated by Schemes, Lemma 23.3. As R is an étale
equivalence relation we see that s, t : R → U are étale. Hence s, t are locally of
finite type. Then it follows from Morphisms, Lemma 15.8 that j is locally of finite
type. Finally, as it is a monomorphism its fibres are finite. Thus we conclude that
it is locally quasi-finite by Morphisms, Lemma 20.7. □

Here are some common types of separation conditions, relative to the base scheme
S. There is also an absolute notion of these conditions which we will discuss in
Properties of Spaces, Section 3. Moreover, we will discuss separation conditions for
a morphism of algebraic spaces in Morphisms of Spaces, Section 4.

Definition 13.2.02X5 Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism.

https://stacks.math.columbia.edu/tag/02YZ
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(1) We say F is separated over S if ∆ is a closed immersion.
(2) We say F is locally separated over S2 if ∆ is an immersion.
(3) We say F is quasi-separated over S if ∆ is quasi-compact.
(4) We say F is Zariski locally quasi-separated over S3 if there exists a Zariski

covering F =
⋃
i∈I Fi such that each Fi is quasi-separated.

Note that if the diagonal is quasi-compact (when F is separated or quasi-separated)
then the diagonal is actually quasi-finite and separated, hence quasi-affine (by More
on Morphisms, Lemma 43.2).

14. Examples of algebraic spaces

02Z0 In this section we construct some examples of algebraic spaces. Some of these were
suggested by B. Conrad. Since we do not yet have a lot of theory at our disposal
the discussion is a bit awkward in some places.

Example 14.1.02Z1 Let k be a field of characteristic ̸= 2. Let U = A1
k. Set

j : R = ∆ ⨿ Γ −→ U ×k U

where ∆ = {(x, x) | x ∈ A1
k} and Γ = {(x,−x) | x ∈ A1

k, x ̸= 0}. It is clear that
s, t : R → U are étale, and hence j is an étale equivalence relation. The quotient
X = U/R is an algebraic space by Theorem 10.5. Since R is quasi-compact we see
that X is quasi-separated. On the other hand, X is not locally separated because
the morphism j is not an immersion.

Example 14.2.03FN Let k be a field. Let k′/k be a degree 2 Galois extension with
Gal(k′/k) = {1, σ}. Let S = Spec(k[x]) and U = Spec(k′[x]). Note that

U ×S U = Spec((k′ ⊗k k
′)[x]) = ∆(U) ⨿ ∆′(U)

where ∆′ = (1, σ) : U → U ×S U . Take
R = ∆(U) ⨿ ∆′(U \ {0U})

where 0U ∈ U denotes the k′-rational point whose x-coordinate is zero. It is easy
to see that R is an étale equivalence relation on U over S and hence X = U/R is
an algebraic space by Theorem 10.5. Here are some properties of X (some of which
will not make sense until later):

(1) X → S is an isomorphism over S \ {0S},
(2) the morphism X → S is étale (see Properties of Spaces, Definition 16.2)
(3) the fibre 0X of X → S over 0S is isomorphic to Spec(k′) = 0U ,
(4) X is not a scheme because if it were, then OX,0X

would be a local domain
(O,m, κ) with fraction field k(x), with x ∈ m and residue field κ = k′ which
is impossible,

(5) X is not separated, but it is locally separated and quasi-separated,
(6) there exists a surjective, finite, étale morphism S′ → S such that the base

change X ′ = S′ ×S X is a scheme (namely, if we base change to S′ =
Spec(k′[x]) then U splits into two copies of S′ and X ′ becomes isomorphic
to the affine line with 0 doubled, see Schemes, Example 14.3), and

(7) if we think of X as a finite type algebraic space over Spec(k), then similarly
the base change Xk′ is a scheme but X is not a scheme.

2In the literature this often refers to quasi-separated and locally separated algebraic spaces.
3This definition was suggested by B. Conrad.
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In particular, this gives an example of a descent datum for schemes relative to the
covering {Spec(k′) → Spec(k)} which is not effective.
See also Examples, Lemma 65.1, which shows that descent data need not be effective
even for a projective morphism of schemes. That example gives a smooth separated
algebraic space of dimension 3 over C which is not a scheme.
We will use the following lemma as a convenient way to construct algebraic spaces
as quotients of schemes by free group actions.
Lemma 14.3.02Z2 Let U → S be a morphism of Schfppf . Let G be an abstract group.
Let G → AutS(U) be a group homomorphism. Assume

(*) if u ∈ U is a point, and g(u) = u for some non-identity element g ∈ G,
then g induces a nontrivial automorphism of κ(u).

Then
j : R =

∐
g∈G

U −→ U ×S U, (g, x) 7−→ (g(x), x)

is an étale equivalence relation and hence
F = U/R

is an algebraic space by Theorem 10.5.
Proof. In the statement of the lemma the symbol AutS(U) denotes the group of
automorphisms of U over S. Assume (∗) holds. Let us show that

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

is a monomorphism. This signifies that if T is a nonempty scheme, and h : T → U is
a T -valued point such that g◦h = g′ ◦h then g = g′. Suppose T ̸= ∅, h : T → U and
g◦h = g′◦h. Let t ∈ T . Consider the composition Spec(κ(t)) → Spec(κ(h(t))) → U .
Then we conclude that g−1 ◦g′ fixes u = h(t) and acts as the identity on its residue
field. Hence g = g′ by (∗).
Thus if (∗) holds we see that j is a relation (see Groupoids, Definition 3.1). More-
over, it is an equivalence relation since on T -valued points for a connected scheme
T we see that R(T ) = G× U(T ) → U(T ) × U(T ) (recall that we always work over
S). Moreover, the morphisms s, t : R → U are étale since R is a disjoint product of
copies of U . This proves that j : R → U ×S U is an étale equivalence relation. □

Given a scheme U and an action of a group G on U we say the action of G on U is
free if condition (∗) of Lemma 14.3 holds. This is equivalent to the notion of a free
action of the constant group scheme GS on U as defined in Groupoids, Definition
10.2. The lemma can be interpreted as saying that quotients of schemes by free
actions of groups exist in the category of algebraic spaces.
Definition 14.4.02Z3 Notation U → S, G, R as in Lemma 14.3. If the action of G
on U satisfies (∗) we say G acts freely on the scheme U . In this case the algebraic
space U/R is denoted U/G and is called the quotient of U by G.
This notation is consistent with the notation U/G introduced in Groupoids, Defi-
nition 20.1. We will later make sense of the quotient as an algebraic stack without
any assumptions on the action whatsoever; when we do this we will use the notation
[U/G]. Before we discuss the examples we prove some more lemmas to facilitate
the discussion. Here is a lemma discussing the various separation conditions for
this quotient when G is finite.

https://stacks.math.columbia.edu/tag/02Z2
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Lemma 14.5.02Z4 Notation and assumptions as in Lemma 14.3. Assume G is finite.
Then

(1) if U → S is quasi-separated, then U/G is quasi-separated over S, and
(2) if U → S is separated, then U/G is separated over S.

Proof. In the proof of Lemma 13.1 we saw that it suffices to prove the correspond-
ing properties for the morphism j : R → U×SU . If U → S is quasi-separated, then
for every affine open V ⊂ U which maps into an affine of S the opens g(V ) ∩ V
are quasi-compact. It follows that j is quasi-compact. If U → S is separated, the
diagonal ∆U/S is a closed immersion. Hence j : R → U ×S U is a finite coproduct
of closed immersions with disjoint images. Hence j is a closed immersion. □

Lemma 14.6.02Z5 Notation and assumptions as in Lemma 14.3. If Spec(k) → U/G
is a morphism, then there exist

(1) a finite Galois extension k′/k,
(2) a finite subgroup H ⊂ G,
(3) an isomorphism H → Gal(k′/k), and
(4) an H-equivariant morphism Spec(k′) → U .

Conversely, such data determine a morphism Spec(k) → U/G.

Proof. Consider the fibre product V = Spec(k) ×U/G U . Here is a diagram

V //

��

U

��
Spec(k) // U/G

Then V is a nonempty scheme étale over Spec(k) and hence is a disjoint union
V =

∐
i∈I Spec(ki) of spectra of fields ki finite separable over k (Morphisms, Lemma

36.7). We have

V ×Spec(k) V = (Spec(k) ×U/G U) ×Spec(k) (Spec(k) ×U/G U)
= Spec(k) ×U/G U ×U/G U

= Spec(k) ×U/G U ×G

= V ×G

The action of G on U induces an action of a : G× V → V . The displayed equality
means that G×V → V ×Spec(k)V , (g, v) 7→ (a(g, v), v) is an isomorphism. In partic-
ular we see that for every i we have an isomorphism Hi×Spec(ki) → Spec(ki⊗k ki)
where Hi ⊂ G is the subgroup of elements fixing i ∈ I. Thus Hi is finite and is the
Galois group of ki/k. We omit the converse construction. □

It follows from this lemma for example that if k′/k is a finite Galois extension, then
Spec(k′)/Gal(k′/k) ∼= Spec(k). What happens if the extension is infinite? Here is
an example.

Example 14.7.02Z6 Let S = Spec(Q). Let U = Spec(Q). Let G = Gal(Q/Q) with
obvious action on U . Then by construction property (∗) of Lemma 14.3 holds and
we obtain an algebraic space

X = Spec(Q)/G −→ S = Spec(Q).

https://stacks.math.columbia.edu/tag/02Z4
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Of course this is totally ridiculous as an approximation of S! Namely, by the Artin-
Schreier theorem, see [Jac64, Theorem 17, page 316], the only finite subgroups
of Gal(Q/Q) are {1} and the conjugates of the order two group Gal(Q/Q ∩ R).
Hence, if Spec(k) → X is a morphism with k algebraic over Q, then it follows from
Lemma 14.6 and the theorem just mentioned that either k is Q or isomorphic to
Q ∩ R.

What is wrong with the example above is that the Galois group comes equipped
with a topology, and this should somehow be part of any construction of a quotient
of Spec(Q). The following example is much more reasonable in my opinion and
may actually occur in “nature”.

Example 14.8.02Z7 Let k be a field of characteristic zero. Let U = A1
k and let G = Z.

As action we take n(x) = x+n, i.e., the action of Z on the affine line by translation.
The only fixed point is the generic point and it is clearly the case that Z injects into
the automorphism group of the field k(x). (This is where we use the characteristic
zero assumption.) Consider the morphism

γ : Spec(k(x)) −→ X = A1
k/Z

of the generic point of the affine line into the quotient. We claim that this morphism
does not factor through any monomorphism Spec(L) → X of the spectrum of a field
to X. (Contrary to what happens for schemes, see Schemes, Section 13.) In fact,
since Z does not have any nontrivial finite subgroups we see from Lemma 14.6 that
for any such factorization k(x) = L. Finally, γ is not a monomorphism since

Spec(k(x)) ×γ,X,γ Spec(k(x)) ∼= Spec(k(x)) × Z.

This example suggests that in order to define points of an algebraic space X we
should consider equivalence classes of morphisms from spectra of fields into X and
not the set of monomorphisms from spectra of fields.

We finish with a truly awful example.

Example 14.9.02Z8 Let k be a field. Let A =
∏
n∈N k be the infinite product. Set

U = Spec(A) seen as a scheme over S = Spec(k). Note that the projection maps
prn : A → k define open and closed immersions fn : S → U . Set

R = U ⨿
∐

(n,m)∈N2, n ̸=m
S

with morphism j equal to ∆U/S on the component U and j = (fn, fm) on the
component S corresponding to (n,m). It is clear from the remark above that s, t
are étale. It is also clear that j is an equivalence relation. Hence we obtain an
algebraic space

X = U/R.

To see what this means we specialize to the case where the field k is finite with q
elements. Let us first discuss the topological space |U | associated to the scheme
U a little bit. All elements of A satisfy xq = x. Hence every residue field of A is
isomorphic to k, and all points of U are closed. But the topology on U isn’t the
discrete topology. Let un ∈ |U | be the point corresponding to fn. As mentioned
above the points un are the open points (and hence isolated). This implies there
have to be other points since we know U is quasi-compact, see Algebra, Lemma
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17.10 (hence not equal to an infinite discrete set). Another way to see this is because
the (proper) ideal

I = {x = (xn) ∈ A | all but a finite number of xn are zero}

is contained in a maximal ideal. Note also that every element x of A is of the form
x = ue where u is a unit and e is an idempotent. Hence a basis for the topology of
A consists of open and closed subsets (see Algebra, Lemma 21.1.) So the topology
on |U | is totally disconnected, but nontrivial. Finally, note that {un} is dense in
|U |.

We will later define a topological space |X| associated toX, see Properties of Spaces,
Section 4. What can we say about |X|? It turns out that the map |U | → |X| is
surjective and continuous. All the points un map to the same point x0 of |X|, and
none of the other points get identified. Since {un} is dense in |U | we conclude that
the closure of x0 in |X| is |X|. In other words |X| is irreducible and x0 is a generic
point of |X|. This seems bizarre since also x0 is the image of a section S → X of
the structure morphism X → S (and in the case of schemes this would imply it was
a closed point, see Morphisms, Lemma 20.2).

Whatever you think is actually going on in this example, it certainly shows that
some care has to be exercised when defining irreducible components, connectedness,
etc of algebraic spaces.

15. Change of big site

03FO In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. Here is a precise statement of the result.

Lemma 15.1.03FP Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 12. Let S be an object of Schfppf .

Let

g : Sh((Sch/S)fppf ) −→ Sh((Sch′/S)fppf ),
f : Sh((Sch′/S)fppf ) −→ Sh((Sch/S)fppf )

be the morphisms of topoi of Topologies, Lemma 12.2. Let F be a sheaf of sets on
(Sch/S)fppf . Then

(1) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ) over S, then f−1F
is representable too, in fact it is representable by the same scheme X, now
viewed as an object of (Sch′/S)fppf , and

(2) if F is an algebraic space over S, then f−1F is an algebraic space over S
also.

Proof. Let X ∈ Ob((Sch/S)fppf ). Let us write hX for the representable sheaf on
(Sch/S)fppf associated to X, and h′

X for the representable sheaf on (Sch′/S)fppf
associated to X. By the description of f−1 in Topologies, Section 12 we see that
f−1hX = h′

X . This proves (1).

Next, suppose that F is an algebraic space over S. By Lemma 9.1 this means
that F = hU/hR for some étale equivalence relation R → U ×S U in (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/03FP
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Since f−1 is an exact functor we conclude that f−1F = h′
U/h

′
R. Hence f−1F is an

algebraic space over S by Theorem 10.5. □

Note that this lemma is purely set theoretical and has virtually no content. More-
over, it is not true (in general) that the restriction of an algebraic space over the
bigger site is an algebraic space over the smaller site (simply by reasons of cardi-
nality). Hence we can only ever use a simple lemma of this kind to enlarge the base
category and never to shrink it.
Lemma 15.2.04W1 Suppose Schfppf is contained in Sch′

fppf . Let S be an object of
Schfppf . Denote Spaces/S the category of algebraic spaces over S defined using
Schfppf . Similarly, denote Spaces′/S the category of algebraic spaces over S defined
using Sch′

fppf . The construction of Lemma 15.1 defines a fully faithful functor

Spaces/S −→ Spaces′/S

whose essential image consists of those X ′ ∈ Ob(Spaces′/S) such that there exist
U,R ∈ Ob((Sch/S)fppf )4 and morphisms

U −→ X ′ and R −→ U ×X′ U

in Sh((Sch′/S)fppf ) which are surjective as maps of sheaves (for example if the
displayed morphisms are surjective and étale).
Proof. In Sites, Lemma 21.8 we have seen that the functor f−1 : Sh((Sch/S)fppf ) →
Sh((Sch′/S)fppf ) is fully faithful (see discussion in Topologies, Section 12). Hence
we see that the displayed functor of the lemma is fully faithful.
Suppose that X ′ ∈ Ob(Spaces′/S) such that there exists U ∈ Ob((Sch/S)fppf )
and a map U → X ′ in Sh((Sch′/S)fppf ) which is surjective as a map of sheaves.
Let U ′ → X ′ be a surjective étale morphism with U ′ ∈ Ob((Sch′/S)fppf ). Let
κ = size(U), see Sets, Section 9. Then U has an affine open covering U =

⋃
i∈I Ui

with |I| ≤ κ. Observe that U ′ ×X′ U → U is étale and surjective. For each i we can
pick a quasi-compact open U ′

i ⊂ U ′ such that U ′
i ×X′ Ui → Ui is surjective (because

the scheme U ′ ×X′ Ui is the union of the Zariski opens W ×X′ Ui for W ⊂ U ′ affine
and because U ′ ×X′ Ui → Ui is étale hence open). Then

∐
i∈I U

′
i → X is surjective

étale because of our assumption that U → X and hence
∐
Ui → X is a surjection

of sheaves (details omitted). Because U ′
i ×X′ U → U ′

i is a surjection of sheaves and
because U ′

i is quasi-compact, we can find a quasi-compact open Wi ⊂ U ′
i×X′U such

that Wi → U ′
i is surjective as a map of sheaves (details omitted). Then Wi → U

is étale and we conclude that size(Wi) ≤ size(U), see Sets, Lemma 9.7. By Sets,
Lemma 9.11 we conclude that size(U ′

i) ≤ size(U). Hence
∐
i∈I U

′
i is isomorphic to

an object of (Sch/S)fppf by Sets, Lemma 9.5.
Now let X ′, U → X ′ and R → U ×X′ U be as in the statement of the lemma. In
the previous paragraph we have seen that we can find U ′ ∈ Ob((Sch/S)fppf ) and
a surjective étale morphism U ′ → X ′ in Sh((Sch′/S)fppf ). Then U ′ ×X′ U → U ′

is a surjection of sheaves, i.e., we can find an fppf covering {U ′
i → U ′} such that

U ′
i → U ′ factors through U ′ ×X′U → U ′. By Sets, Lemma 9.12 we can find Ũ → U ′

4Requiring the existence of R is necessary because of our choice of the function Bound in Sets,
Equation (9.1.1). The size of the fibre product U ×X′ U can grow faster than Bound in terms
of the size of U . We can illustrate this by setting S = Spec(A), U = Spec(A[xi, i ∈ I]) and
R =

∐
(λi)∈AI Spec(A[xi, yi]/(xi − λiyi)). In this case the size of R grows like κκ where κ is the

size of U .

https://stacks.math.columbia.edu/tag/04W1
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which is surjective, flat, and locally of finite presentation, with size(Ũ) ≤ size(U ′),
such that Ũ → U ′ factors through U ′ ×X′ U → U ′. Then we consider

U ′ ×X′ U ′

��

Ũ ×X′ Ũoo

��

// U ×X′ U

��
U ′ ×S U

′ Ũ ×S Ũoo // U ×S U

The squares are cartesian. We know the objects of the bottom row are represented
by objects of (Sch/S)fppf . By the result of the argument of the previous paragraph,
the same is true for U ×X′ U (as we have the surjection of sheaves R → U ×X′ U by
assumption). Since (Sch/S)fppf is closed under fibre products (by construction),
we see that Ũ ×X′ Ũ is represented by an object of (Sch/S)fppf . Finally, the map
Ũ ×X′ Ũ → U ′ ×X′ U ′ is a surjection of fppf sheaves as Ũ → U ′ is so. Thus
we can once more apply the result of the previous paragraph to conclude that
R′ = U ′ ×X′ U ′ is represented by an object of (Sch/S)fppf . At this point Lemma
9.1 and Theorem 10.5 imply that X = hU ′/hR′ is an object of Spaces/S such that
f−1X ∼= X ′ as desired. □

16. Change of base scheme

03I3 In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic space over S
can be viewed as an algebraic space over S′. And, given an algebraic space F ′ over
S′ there is a base change F ′

S which is an algebraic space over S. We explain only
what happens in case S → S′ is a morphism of the big fppf site under consideration,
if only S or S′ is contained in the big site, then one first enlarges the big site as in
Section 15.

Lemma 16.1.03I4 Suppose given a big site Schfppf . Let g : S → S′ be morphism
of Schfppf . Let j : (Sch/S)fppf → (Sch/S′)fppf be the corresponding localization
functor. Let F be a sheaf of sets on (Sch/S)fppf . Then

(1) for a scheme T ′ over S′ we have j!F (T ′/S′) =
∐
φ:T ′→S F (T ′ φ−→ S),

(2) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ), then j!F is repre-
sentable by j(X) which is X viewed as a scheme over S′, and

(3) if F is an algebraic space over S, then j!F is an algebraic space over S′,
and if F = U/R is a presentation, then j!F = j(U)/j(R) is a presentation.

Let F ′ be a sheaf of sets on (Sch/S′)fppf . Then
(4) for a scheme T over S we have j−1F ′(T/S) = F ′(T/S′),
(5) if F ′ is representable by a scheme X ′ ∈ Ob((Sch/S′)fppf ), then j−1F ′ is

representable, namely by X ′
S = S ×S′ X ′, and

(6) if F ′ is an algebraic space, then j−1F ′ is an algebraic space, and if F ′ =
U ′/R′ is a presentation, then j−1F ′ = U ′

S/R
′
S is a presentation.

Proof. The functors j!, j∗ and j−1 are defined in Sites, Lemma 25.8 where it is
also shown that j = jS/S′ is the localization of (Sch/S′)fppf at the object S/S′.
Hence all of the material on localization functors is available for j. The formula
in (1) is Sites, Lemma 27.1. By definition j! is the left adjoint to restriction j−1,
hence j! is right exact. By Sites, Lemma 25.5 it also commutes with fibre products
and equalizers. By Sites, Lemma 25.3 we see that j!hX = hj(X) hence (2) holds. If

https://stacks.math.columbia.edu/tag/03I4
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F is an algebraic space over S, then we can write F = U/R (Lemma 9.1) and we
get

j!F = j(U)/j(R)
because j! being right exact commutes with coequalizers, and moreover j(R) =
j(U)×j!F j(U) as j! commutes with fibre products. Since the morphisms j(s), j(t) :
j(R) → j(U) are simply the morphisms s, t : R → U (but viewed as morphisms of
schemes over S′), they are still étale. Thus (j(U), j(R), s, t) is an étale equivalence
relation. Hence by Theorem 10.5 we conclude that j!F is an algebraic space.
Proof of (4), (5), and (6). The description of j−1 is in Sites, Section 25. The
restriction of the representable sheaf associated to X ′/S′ is the representable sheaf
associated to X ′

S = S ×S′ Y ′ by Sites, Lemma 27.2. The restriction functor j−1

is exact, hence j−1F ′ = U ′
S/R

′
S . Again by exactness the sheaf R′

S is still an
equivalence relation on U ′

S . Finally the two maps R′
S → U ′

S are étale as base
changes of the étale morphisms R′ → U ′. Hence j−1F ′ = U ′

S/R
′
S is an algebraic

space by Theorem 10.5 and we win. □

Note how the presentation j!F = j(U)/j(R) is just the presentation of F but viewed
as a presentation by schemes over S′. Hence the following definition makes sense.

Definition 16.2.03I5 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site.

(1) If F ′ is an algebraic space over S′, then the base change of F ′ to S is the
algebraic space j−1F ′ described in Lemma 16.1. We denote it F ′

S .
(2) If F is an algebraic space over S, then F viewed as an algebraic space over

S′ is the algebraic space j!F over S′ described in Lemma 16.1. We often
simply denote this F ; if not then we will write j!F .

The algebraic space j!F comes equipped with a canonical morphism j!F → S of
algebraic spaces over S′. This is true simply because the sheaf j!F maps to hS
(see for example the explicit description in Lemma 16.1). In fact, in Sites, Lemma
25.4 we have seen that the category of sheaves on (Sch/S)fppf is equivalent to
the category of pairs (F ′,F ′ → hS) consisting of a sheaf on (Sch/S′)fppf and
a map of sheaves F ′ → hS . The equivalence assigns to the sheaf F the pair
(j!F , j!F → hS). This, combined with the above, leads to the following result for
categories of algebraic spaces.

Lemma 16.3.04SG Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The construction above give an equivalence of categories{

category of algebraic
spaces over S

}
↔

 category of pairs (F ′, F ′ → S) consisting
of an algebraic space F ′ over S′ and a

morphism F ′ → S of algebraic spaces over S′


Proof. Let F be an algebraic space over S. The functor from left to right assigns
the pair (j!F, j!F → S) ot F which is an object of the right hand side by Lemma
16.1. Since this defines an equivalence of categories of sheaves by Sites, Lemma
25.4 to finish the proof it suffices to show: if F is a sheaf and j!F is an algebraic
space, then F is an algebraic space. To do this, write j!F = U ′/R′ as in Lemma
9.1 with U ′, R′ ∈ Ob((Sch/S′)fppf ). Then the compositions U ′ → j!F → S and
R′ → j!F → S are morphisms of schemes over S′. Denote U,R the corresponding
objects of (Sch/S)fppf . The two morphisms R′ → U ′ are morphisms over S and

https://stacks.math.columbia.edu/tag/03I5
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hence correspond to morphisms R → U . Since these are simply the same morphisms
(but viewed over S) we see that we get an étale equivalence relation over S. As
j! defines an equivalence of categories of sheaves (see reference above) we see that
F = U/R and by Theorem 10.5 we see that F is an algebraic space. □

The following lemma is a slight rephrasing of the above.

Lemma 16.4.04SH Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. Let F ′ be a sheaf on (Sch/S′)fppf . The following are equivalent:

(1) The restriction F ′|(Sch/S)fppf
is an algebraic space over S, and

(2) the sheaf hS × F ′ is an algebraic space over S′.

Proof. The restriction and the product match under the equivalence of categories
of Sites, Lemma 25.4 so that Lemma 16.3 above gives the result. □

We finish this section with a lemma on a compatibility.

Lemma 16.5.03I6 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. Let F be an algebraic space over S. Let T be a scheme over S and let
f : T → F be a morphism over S. Let f ′ : T ′ → F ′ be the morphism over S′ we
get from f by applying the equivalence of categories described in Lemma 16.3. For
any property P as in Definition 5.1 we have P(f ′) ⇔ P(f).

Proof. Suppose that U is a scheme over S, and U → F is a surjective étale
morphism. Denote U ′ the scheme U viewed as a scheme over S′. In Lemma 16.1
we have seen that U ′ → F ′ is surjective étale. Since

j(T ×f,F U) = T ′ ×f ′,F ′ U ′

the morphism of schemes T ×f,F U → U is identified with the morphism of schemes
T ′×f ′,F ′U ′ → U ′. It is the same morphism, just viewed over different base schemes.
Hence the lemma follows from Lemma 11.4. □
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