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1. Introduction

073Q In this chapter we write about cohomology of algebraic stacks. This means in
particular cohomology of quasi-coherent sheaves, i.e., we prove analogues of the
results in the chapters entitled “Cohomology of Schemes” and “Cohomology of
Algebraic Spaces”. The results in this chapter are different from those in [LMB00]
mainly because we consistently use the “big sites”. Before reading this chapter
please take a quick look at the chapter “Sheaves on Algebraic Stacks” in order
to become familiar with the terminology introduced there, see Sheaves on Stacks,
Section 1.

2. Conventions and abuse of language

073R We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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3. Notation

073S Different topologies. If we indicate an algebraic stack by a calligraphic letter, such as
X ,Y,Z, then the notation XZar,Xétale,Xsmooth,Xsyntomic,Xfppf indicates the site
introduced in Sheaves on Stacks, Definition 4.1. (Think “big site”.) Correspondingly
the structure sheaf of X is a sheaf on Xfppf . On the other hand, algebraic spaces
and schemes are usually indicated by roman capitals, such as X,Y, Z, and in this
case Xétale indicates the small étale site of X (as defined in Topologies, Definition
4.8 or Properties of Spaces, Definition 18.1). It seems that the distinction should
be clear enough.

The default topology is the fppf topology. Hence we will sometimes say “sheaf
on X ” or “sheaf of OX -modules” when we mean sheaf on Xfppf or object of
Mod(Xfppf ,OX ).

If f : X → Y is a morphism of algebraic stacks, then the functors f∗ and f−1

defined on presheaves preserves sheaves for any of the topologies mentioned above.
In particular when we discuss the pushforward or pullback of a sheaf we don’t
have to mention which topology we are working with. The same isn’t true when
we compute cohomology groups and/or higher direct images. In this case we will
always mention which topology we are working with.

Suppose that f : X → Y is a morphism from an algebraic space X to an algebraic
stack Y. Let G be a sheaf on Yτ for some topology τ . In this case f−1G is a sheaf
for the τ topology on SX (the algebraic stack associated to X) because (by our
conventions) f really is a 1-morphism f : SX → Y. If τ = étale or stronger, then
we write f−1G|Xétale

to denote the restriction to the étale site of X, see Sheaves on
Stacks, Section 22. If G is an OX -module we sometimes write f∗G and f∗G|Xétale

instead.

4. Pullback of quasi-coherent modules

076W Let f : X → Y be a morphism of algebraic stacks. It is a very general fact that
quasi-coherent modules on ringed topoi are compatible with pullbacks. In particular
the pullback f∗ preserves quasi-coherent modules and we obtain a functor

f∗ : QCoh(OY) −→ QCoh(OX ),

see Sheaves on Stacks, Lemma 11.2. In general this functor isn’t exact, but if f is
flat then it is.

Lemma 4.1.076X If f : X → Y is a flat morphism of algebraic stacks then f∗ :
QCoh(OY) → QCoh(OX ) is an exact functor.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Choose
a scheme U and a surjective smooth morphism U → V ×Y X . Then U → X is
still smooth and surjective as a composition of two such morphisms. From the
commutative diagram

U

��

f ′
// V

��
X

f // Y

https://stacks.math.columbia.edu/tag/076X
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we obtain a commutative diagram

QCoh(OU ) QCoh(OV )oo

QCoh(OX )

OO

QCoh(OY)oo

OO

of abelian categories. Our proof that the bottom two categories in this diagram
are abelian showed that the vertical functors are faithful exact functors (see proof
of Sheaves on Stacks, Lemma 15.1). Since f ′ is a flat morphism of schemes (by
our definition of flat morphisms of algebraic stacks) we see that (f ′)∗ is an exact
functor on quasi-coherent sheaves on V . Thus we win. □

Lemma 4.2.0GQF Let X be an algebraic stack. Let I be a set and for i ∈ I let
xi : Ui → X be an object of X . Assume that xi is flat and

∐
xi :

∐
Ui → X is

surjective. Let φ : F → G be an arrow of QCoh(OX ). Denote φi the restriction
of φ to (Ui)étale. Then φ is injective, resp. surjective, resp. an isomorphism if and
only if each φi is so.

Proof. Choose a scheme U and a surjective smooth morphism x : U → X . We
may and do think of x as an object of X . This produces a presentation X = [U/R]
for some groupoid in spaces (U,R, s, t, c) and correspondingly an equivalence

QCoh(OX ) = QCoh(U,R, s, t, c)
See discussion in Sheaves on Stacks, Section 15. The structure of abelian category
on the right hand is such that φ is injective, resp. surjective, resp. an isomorphism
if and only if the restriction φ|Uétale

is so, see Groupoids in Spaces, Lemma 12.6.
For each i we choose an étale covering {Wi,j → V ×X Ui}j∈Ji

by schemes. Denote
gi,j : Wi,j → V and hi,j : Wi,j → Ui the obvious arrows. Each of the morphisms of
schemes gi,j : Wi,j → U is flat and they are jointly surjective. Similarly, for each
fixed i the morphisms of schemes hi,j : Wi,j → Ui are flat and jointly surjective.
By Sheaves on Stacks, Lemma 12.2 the pullback by (gi,j)small of the restriction
φ|Uétale

is the restriction φ|(Wi,j)étale
and the pullback by (hi,j)small of the restriction

φ|(Ui)étale
is the restriction φ|(Wi,j)étale

. Pullback of quasi-coherent modules by a
flat morphism of schemes is exact and pullback by a jointly surjective family of
flat morphisms of schemes reflects injective, resp. surjective, resp. bijective maps of
quasi-coherent modules (in fact this holds for all modules as we can check exactness
at stalks). Thus we see
φ|Uétale

injective ⇔ φ|(Wi,j)étale
injective for all i, j ⇔ φ|(Ui)étale

injective for all i
This finishes the proof. □

5. Higher direct images of types of modules

076Y The following lemma is the basis for our understanding of higher direct images
of certain types of sheaves of modules. There are two versions: one for the étale
topology and one for the fppf topology.

Lemma 5.1.076Z Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(Xétale,OX ) such that

(1) MX is a weak Serre subcategory of Mod(Xétale,OX ) (see Homology, Defi-
nition 10.1) for all algebraic stacks X ,

https://stacks.math.columbia.edu/tag/0GQF
https://stacks.math.columbia.edu/tag/076Z
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(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps
MX into MY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fi|(|Xi|), then an object F of Mod(Xétale,OX ) is in MX if and

only if f∗
i F is in MXi

for all i, and
(4) if f : Y → X is a morphism of algebraic stacks such that X and Y are

representable by affine schemes, then Rif∗ maps MY into MX .
Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ maps MY into MX . (Higher direct images computed in étale topology.)

Proof. Let f : Y → X be a quasi-compact and quasi-separated morphism of alge-
braic stacks and let F be an object of MY . Choose a surjective smooth morphism
U → X where U is representable by a scheme. By Sheaves on Stacks, Lemma 21.3
taking higher direct images commutes with base change. Assumption (2) shows that
the pullback of F to U ×X Y is in MU×X Y because the projection U ×X Y → Y is
smooth as a base change of a smooth morphism. Hence (3) shows we may replace
Y → X by the projection U ×X Y → U . In other words, we may assume that X is
representable by a scheme. Using (3) once more, we see that the question is Zariski
local on X , hence we may assume that X is representable by an affine scheme.
Since f is quasi-compact this implies that also Y is quasi-compact. Thus we may
choose a surjective smooth morphism g : V → Y where V is representable by an
affine scheme.
In this situation we have the spectral sequence

Ep,q2 = Rq(f ◦ gp)∗g
∗
pF ⇒ Rp+qf∗F

of Sheaves on Stacks, Proposition 21.1. Recall that this is a first quadrant spectral
sequence hence we may use the last part of Homology, Lemma 25.3. Note that the
morphisms

gp : Vp = V ×Y . . .×Y V −→ Y
are smooth as compositions of base changes of the smooth morphism g. Thus the
sheaves g∗

pF are in MVp
by (2). Hence it suffices to prove that the higher direct

images of objects of MVp
under the morphisms

Vp = V ×Y . . .×Y V −→ X
are in MX . The algebraic stacks Vp are quasi-compact and quasi-separated by
Morphisms of Stacks, Lemma 7.8. Of course each Vp is representable by an algebraic
space (the diagonal of the algebraic stack Y is representable by algebraic spaces).
This reduces us to the case where Y is representable by an algebraic space and X
is representable by an affine scheme.
In the situation where Y is representable by an algebraic space and X is repre-
sentable by an affine scheme, we choose anew a surjective smooth morphism V → Y
where V is representable by an affine scheme. Going through the argument above
once again we once again reduce to the morphisms Vp → X . But in the current
situation the algebraic stacks Vp are representable by quasi-compact and quasi-
separated schemes (because the diagonal of an algebraic space is representable by
schemes).
Thus we may assume Y is representable by a scheme and X is representable by
an affine scheme. Choose (again) a surjective smooth morphism V → Y where V
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is representable by an affine scheme. In this case all the algebraic stacks Vp are
representable by separated schemes (because the diagonal of a scheme is separated).
Thus we may assume Y is representable by a separated scheme and X is repre-
sentable by an affine scheme. Choose (yet again) a surjective smooth morphism
V → Y where V is representable by an affine scheme. In this case all the algebraic
stacks Vp are representable by affine schemes (because the diagonal of a separated
scheme is a closed immersion hence affine) and this case is handled by assumption
(4). This finishes the proof. □

Here is the version for the fppf topology.

Lemma 5.2.0770 Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(OX ) such that

(1) OX is a weak Serre subcategory of Mod(OX ) for all algebraic stacks X ,
(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps

MX into MY ,
(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with

|X | =
⋃

|fi|(|Xi|), then an object F of Mod(OX ) is in MX if and only if
f∗
i F is in MXi

for all i, and
(4) if f : Y → X is a morphism of algebraic stacks and X and Y are repre-

sentable by affine schemes, then Rif∗ maps MY into MX .
Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ maps MY into MX . (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma 5.1. □

6. Locally quasi-coherent modules

075X Let X be an algebraic stack. Let F be a presheaf of OX -modules. We can ask
whether F is locally quasi-coherent, see Sheaves on Stacks, Definition 12.1. Briefly,
this means F is an OX -module for the étale topology such that for any morphism
f : U → X the restriction f∗F|Uétale

is quasi-coherent on Uétale. (The actual
definition is slightly different, but equivalent.) A useful fact is that

LQCoh(OX ) ⊂ Mod(Xétale,OX )
is a weak Serre subcategory, see Sheaves on Stacks, Lemma 12.4.

Lemma 6.1.075Y Let X be an algebraic stack. Let fj : Xj → X be a family of
smooth morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of

OX -modules on Xétale. If each f−1
j F is locally quasi-coherent, then so is F .

Proof. We may replace each of the algebraic stacks Xj by a scheme Uj (using
that any algebraic stack has a smooth covering by a scheme and that compositions
of smooth morphisms are smooth, see Morphisms of Stacks, Lemma 33.2). The
pullback of F to (Sch/Uj)étale is still locally quasi-coherent, see Sheaves on Stacks,
Lemma 12.3. Then f =

∐
fj : U =

∐
Uj → X is a surjective smooth morphism.

Let x be an object of X . By Sheaves on Stacks, Lemma 19.10 there exists an étale
covering {xi → x}i∈I such that each xi lifts to an object ui of (Sch/U)étale. This
just means that x, xi live over schemes V , Vi, that {Vi → V } is an étale covering,
and that xi comes from a morphism ui : Vi → U . The restriction x∗

iF|Vi,étale

is equal to the restriction of f∗F to Vi,étale, see Sheaves on Stacks, Lemma 9.3.

https://stacks.math.columbia.edu/tag/0770
https://stacks.math.columbia.edu/tag/075Y
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Hence x∗F|Vétale
is a sheaf on the small étale site of V which is quasi-coherent

when restricted to Vi,étale for each i. This implies that it is quasi-coherent (as
desired), for example by Properties of Spaces, Lemma 29.6. □

Lemma 6.2.075Z Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a locally quasi-coherent OX -module on Xétale. Then
Rif∗F (computed in the étale topology) is locally quasi-coherent on Yétale.

Proof. We will use Lemma 5.1 to prove this. We will check its assumptions (1)
– (4). Parts (1) and (2) follows from Sheaves on Stacks, Lemma 12.4. Part (3)
follows from Lemma 6.1. Thus it suffices to show (4).
Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . Choose any object y of Y lying over a
scheme V . For clarity, denote V = (Sch/V )fppf the algebraic stack corresponding
to V . Consider the cartesian diagram

Z

��

g
//

f ′

��

X

f

��
V

y // Y

Thus Z is representable by the scheme Z = V ×Y X and f ′ is quasi-compact and
separated (even affine). By Sheaves on Stacks, Lemma 22.3 we have

Rif∗F|Vétale
= Rif ′

small,∗
(
g∗F|Zétale

)
The right hand side is a quasi-coherent sheaf on Vétale by Cohomology of Spaces,
Lemma 3.1. This implies the left hand side is quasi-coherent which is what we had
to prove. □

Lemma 6.3.07AP Let X be an algebraic stack. Let fj : Xj → X be a family of flat and
locally finitely presented morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let

F be a sheaf of OX -modules on Xfppf . If each f−1
j F is locally quasi-coherent, then

so is F .

Proof. First, suppose there is a morphism a : U → X which is surjective, flat,
locally of finite presentation, quasi-compact, and quasi-separated such that a∗F is
locally quasi-coherent. Then there is an exact sequence

0 → F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition 19.7
and Lemma 19.10. Moreover, the pullback b∗F is the pullback of a∗F via one of the
projection morphisms, hence is locally quasi-coherent (Sheaves on Stacks, Lemma
12.3). The modules a∗a

∗F and b∗b
∗F are locally quasi-coherent by Lemma 6.2.

(Note that a∗ and b∗ don’t care about which topology is used to calculate them.)
We conclude that F is locally quasi-coherent, see Sheaves on Stacks, Lemma 12.4.
We are going to reduce the proof of the general case the situation in the first
paragraph. Let x be an object of X lying over the scheme U . We have to show that
F|Uétale

is a quasi-coherent OU -module. It suffices to do this (Zariski) locally on U ,
hence we may assume that U is affine. By Morphisms of Stacks, Lemma 27.14 there
exists an fppf covering {ai : Ui → U} such that each x◦ai factors through some fj .
Hence a∗

iF is locally quasi-coherent on (Sch/Ui)fppf . After refining the covering

https://stacks.math.columbia.edu/tag/075Z
https://stacks.math.columbia.edu/tag/07AP
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we may assume {Ui → U}i=1,...,n is a standard fppf covering. Then x∗F is an fppf
module on (Sch/U)fppf whose pullback by the morphism a : U1 ⨿ . . . ⨿ Un → U
is locally quasi-coherent. Hence by the first paragraph we see that x∗F is locally
quasi-coherent, which certainly implies that F|Uétale

is quasi-coherent. □

7. Flat comparison maps

0760 Let X be an algebraic stack and let F be an object of Mod(Xétale,OX ). Given an
object x of X lying over the scheme U the restriction F|Uétale

is the restriction of
x−1F to the small étale site of U , see Sheaves on Stacks, Definition 9.2. Next, let
φ : x → x′ be a morphism of X lying over a morphism of schemes f : U → U ′.
Thus a 2-commutative diagram

U

x
��

f
// U ′

x′
~~

X
Associated to φ we obtain a comparison map between restrictions
(7.0.1)0761 cφ : f∗

small(F|U ′
étale

) −→ F|Uétale

see Sheaves on Stacks, Equation (9.4.1). In this situation we can consider the
following property of F .

Definition 7.1.0762 Let X be an algebraic stack and let F in Mod(Xétale,OX ). We say
F has the flat base change property1 if and only if cφ is an isomorphism whenever
f is flat.

Here is a lemma with some properties of this notion.

Lemma 7.2.0764 Let X be an algebraic stack. Let F be an OX -module on Xétale.
(1) If F has the flat base change property then for any morphism g : Y → X

of algebraic stacks, the pullback g∗F does too.
(2) The full subcategory of Mod(Xétale,OX ) consisting of modules with the flat

base change property is a weak Serre subcategory.
(3) Let fi : Xi → X be a family of smooth morphisms of algebraic stacks such

that |X | =
⋃
i |fi|(|Xi|). If each f∗

i F has the flat base change property then
so does F .

(4) The category of OX -modules on Xétale with the flat base change property
has colimits and they agree with colimits in Mod(Xétale,OX ).

(5) Given F and G in Mod(Xétale,OX ) with the flat base change property then
the tensor product F ⊗OX G has the flat base change property.

(6) Given F and G in Mod(Xétale,OX ) with F of finite presentation and G
having the flat base change property then the sheaf HomOX (F ,G) has the
flat base change property.

Proof. Let g : Y → X be as in (1). Let y be an object of Y lying over a scheme
V . By Sheaves on Stacks, Lemma 9.3 we have (g∗F)|Vétale

= F|Vétale
. Moreover a

comparison mapping for the sheaf g∗F on Y is a special case of a comparison map
for the sheaf F on X , see Sheaves on Stacks, Lemma 9.3. In this way (1) is clear.

1This may be nonstandard notation.

https://stacks.math.columbia.edu/tag/0762
https://stacks.math.columbia.edu/tag/0764
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Proof of (2). We use the characterization of weak Serre subcategories of Homology,
Lemma 10.3. Kernels and cokernels of maps between sheaves having the flat base
change property also have the flat base change property. This is clear because
f∗
small is exact for a flat morphism of schemes and since the restriction functors

(−)|Uétale
are exact (because we are working in the étale topology). Finally, if

0 → F1 → F2 → F3 → 0 is a short exact sequence of Mod(Xétale,OX ) and the
outer two sheaves have the flat base change property then the middle one does as
well, again because of the exactness of f∗

small and the restriction functors (and the
5 lemma).

Proof of (3). Let fi : Xi → X be a jointly surjective family of smooth morphisms of
algebraic stacks and assume each f∗

i F has the flat base change property. By part
(1), the definition of an algebraic stack, and the fact that compositions of smooth
morphisms are smooth (see Morphisms of Stacks, Lemma 33.2) we may assume
that each Xi is representable by a scheme. Let φ : x → x′ be a morphism of X
lying over a flat morphism a : U → U ′ of schemes. By Sheaves on Stacks, Lemma
19.10 there exists a jointly surjective family of étale morphisms U ′

i → U ′ such that
U ′
i → U ′ → X factors through Xi. Thus we obtain commutative diagrams

Ui = U ×U ′ U ′
i ai

//

��

U ′
i

x′
i

//

��

Xi

fi

��
U

a // U ′ x′
// X

Note that each ai is a flat morphism of schemes as a base change of a. Denote
ψi : xi → x′

i the morphism of Xi lying over ai with target x′
i. By assumption the

comparison maps cψi
: (ai)∗

small

(
f∗
i F|(U ′

i
)étale

)
→ f∗

i F|(Ui)étale
is an isomorphism.

Because the vertical arrows U ′
i → U ′ and Ui → U are étale, the sheaves f∗

i F|(U ′
i
)étale

and f∗
i F|(Ui)étale

are the restrictions of F|U ′
étale

and F|Uétale
and the map cψi

is the
restriction of cφ to (Ui)étale, see Sheaves on Stacks, Lemma 9.3. Since {Ui → U}
is an étale covering, this implies that the comparison map cφ is an isomorphism
which is what we wanted to prove.

Proof of (4). Let I → Mod(Xétale,OX ), i 7→ Fi be a diagram and assume each Fi
has the flat base change property. Let φ : x → x′ be a morphism of X lying over
the flat morphism of schemes f : U → U ′. Recall that colimi Fi is the sheafification
of the presheaf colimit. As we are using the étale topology, it is clear that

(colimi Fi)|Uétale
= colimi Fi|Uétale

and similarly for the restriction to U ′
étale. Hence

f∗
small((colimi Fi)|U ′

étale
) = f∗

small(colimi Fi|U ′
étale

)
= colimi f

∗
small(Fi|U ′

étale
)

colim cφ−−−−−→ colimi Fi|Uétale

= (colimi Fi)|Uétale

For the second equality we used that f∗
small commutes with colimits (as a left

adjoint). The arrow is an isomorphism as each Fi has the flat base change property.
Thus the colimit has the flat base change property and (4) is true.
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Part (5) holds because tensor products commute with pullbacks, see Modules on
Sites, Lemma 26.2. Details omitted.
Let F and G be as in (6). Since F is quasi-coherent it has the flat base change
property by Sheaves on Stacks, Lemma 12.2. Let φ : x → x′ be a morphism of X
lying over the flat morphism of schemes f : U → U ′. As we are using the étale
topology, we have

HomOX (F ,G)|Uétale
= HomOU

(F|Uétale
,G|Uétale

)
and similarly for the restriction to U ′

étale (details omitted). Hence
f∗
small(HomOX (F ,G)|U ′

étale
) = f∗

small(HomOU′ (F|U ′
étale

,G|U ′
étale

))
= HomOU′ (f∗

small(F|U ′
étale

), f∗
small(G|U ′

étale
))

cφ−→ HomOU
(F|Uétale

,G|Uétale
)

= HomOX (F ,G)|Uétale

Here the second equality is Modules on Sites, Lemma 31.4 which uses that f : U →
U ′ is flat and hence the morphism of ringed sites fsmall is flat too. The arrow is an
isomorphism as both F and G have the flat base change property. Thus our Hom
has the flat base change property too as desired. □

Lemma 7.3.0765 Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be an object of Mod(Xétale,OX ) which is locally quasi-
coherent and has the flat base change property. Then each Rif∗F (computed in the
étale topology) has the flat base change property.

Proof. We will use Lemma 5.1 to prove this. For every algebraic stack X let
LQCohfbc(OX ) denote the full subcategory of Mod(Xétale,OX ) consisting of locally
quasi-coherent sheaves with the flat base change property. Once we verify conditions
(1) – (4) of Lemma 5.1 the lemma will follow. Properties (1), (2), and (3) follow
from Sheaves on Stacks, Lemmas 12.3 and 12.4 and Lemmas 6.1 and 7.2. Thus it
suffices to show part (4).
Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . In this case, suppose that ψ : y → y′ is
a morphism of Y lying over a flat morphism b : V → V ′ of schemes. For clarity
denote V = (Sch/V )fppf and V ′ = (Sch/V ′)fppf the corresponding algebraic stacks.
Consider the diagram of algebraic stacks

Z

f ′′

��

a
// Z ′

x′
//

f ′

��

X

f

��
V b // V ′ y′

// Y

with both squares cartesian. As f is representable by schemes (and quasi-compact
and separated – even affine) we see that Z and Z ′ are representable by schemes Z
and Z ′ and in fact Z = V ×V ′ Z ′. Since F has the flat base change property we
see that

a∗
small

(
F|Z′

étale

)
−→ F|Zétale

is an isomorphism. Moreover,
Rif∗F|V ′

étale
= Ri(f ′)small,∗

(
F|Z′

étale

)

https://stacks.math.columbia.edu/tag/0765
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and
Rif∗F|Vétale

= Ri(f ′′)small,∗
(
F|Zétale

)
by Sheaves on Stacks, Lemma 22.3. Hence we see that the comparison map

cψ : b∗
small(Rif∗F|V ′

étale
) −→ Rif∗F|Vétale

is an isomorphism by Cohomology of Spaces, Lemma 11.2. Thus Rif∗F has the
flat base change property. Since Rif∗F is locally quasi-coherent by Lemma 6.2 we
win. □

8. Locally quasi-coherent modules with the flat base change property

0GQG Let X be an algebraic stack. We2 will denote
LQCohfbc(OX ) ⊂ Mod(Xétale,OX )

the full subcategory whose objects are étale OX -modules F which are both locally
quasi-coherent (Section 6) and have the flat base change property (Section 7). We
have

QCoh(OX ) ⊂ LQCohfbc(OX )
by Sheaves on Stacks, Lemma 12.2.
Proposition 8.1.0771 Summary of results on locally quasi-coherent modules having
the flat base change property.

(1) Let X be an algebraic stack. If F is in LQCohfbc(OX ), then F is a sheaf
for the fppf topology, i.e., it is an object of Mod(OX ).

(2) The category LQCohfbc(OX ) is a weak Serre subcategory of both Mod(OX )
and Mod(Xétale,OX ).

(3) Pullback f∗ along any morphism of algebraic stacks f : X → Y induces a
functor f∗ : LQCohfbc(OY) → LQCohfbc(OX ).

(4) If f : X → Y is a quasi-compact and quasi-separated morphism of algebraic
stacks and F is an object of LQCohfbc(OX ), then
(a) the total direct image Rf∗F and the higher direct images Rif∗F can be

computed in either the étale or the fppf topology with the same result,
and

(b) each Rif∗F is an object of LQCohfbc(OY).
(5) The category LQCohfbc(OX ) has colimits and they agree with colimits in

Mod(Xétale,OX ) as well as in Mod(OX ).
(6) Given F and G in LQCohfbc(OX ) then the tensor product F ⊗OX G is in

LQCohfbc(OX ).
(7) Given F of finite presentation and G in LQCohfbc(OX ) then HomOX (F ,G)

is in LQCohfbc(OX ).
Proof. Part (1) is Sheaves on Stacks, Lemma 23.1.
Part (2) for the embedding LQCohfbc(OX ) ⊂ Mod(Xétale,OX ) we have seen in
the proof of Lemma 7.3. Let us prove (2) for the embedding LQCohfbc(OX ) ⊂
Mod(OX ). Let φ : F → G be a morphism between objects of LQCohfbc(OX ). Since
Ker(φ) is the same whether computed in the étale or the fppf topology, we see that
Ker(φ) is in LQCohfbc(OX ) by the étale case. On the other hand, the cokernel
computed in the fppf topology is the fppf sheafification of the cokernel computed in

2Apologies for the horrendous notation.

https://stacks.math.columbia.edu/tag/0771
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the étale topology. However, this étale cokernel is in LQCohfbc(OX ) hence an fppf
sheaf by (1) and we see that the cokernel is in LQCohfbc(OX ). Finally, suppose
that

0 → F1 → F2 → F3 → 0
is an exact sequence in Mod(OX ) (i.e., using the fppf topology) with F1, F2 in
LQCohfbc(OX ). In order to show that F2 is an object of LQCohfbc(OX ) it suffices
to show that the sequence is also exact in the étale topology. To do this it suffices to
show that any element ofH1

fppf (x,F1) becomes zero on the members of an étale cov-
ering of x (for any object x of X ). This is true because H1

fppf (x,F1) = H1
étale(x,F1)

by Sheaves on Stacks, Lemma 23.2 and because of locality of cohomology, see Co-
homology on Sites, Lemma 7.3. This proves (2).
Part (3) follows from Lemma 7.2 and Sheaves on Stacks, Lemma 12.3.
Part (4)(b) for Rif∗F computed in the étale cohomology follows from Lemma 7.3.
Whereupon part (4)(a) follows from Sheaves on Stacks, Lemma 23.2 combined with
(1) above.
Part (5) for the étale topology follows from Sheaves on Stacks, Lemma 12.4 and
Lemma 7.2. The fppf version then follows as the colimit in the étale topology is
already an fppf sheaf by part (1).
Parts (6) and (7) follow from the corresponding parts of Lemma 7.2 and Sheaves
on Stacks, Lemma 12.4. □

Lemma 8.2.07AQ Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with

|X | =
⋃

|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each
f−1
j F is in LQCohfpc(OXi), then F is in LQCohfbc(OX ).

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules

on Xfppf . If each f−1
j F is in LQCohfbc(OXi), then F is in LQCohfbc(OX ).

Proof. Part (1) follows from a combination of Lemmas 6.1 and 7.2. The proof of
(2) is analogous to the proof of Lemma 6.3. Let F of a sheaf of OX -modules on
Xfppf .
First, suppose there is a morphism a : U → X which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that a∗F is locally
quasi-coherent and has the flat base change property. Then there is an exact se-
quence

0 → F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition
19.7 and Lemma 19.10. Moreover, the pullback b∗F is the pullback of a∗F via one
of the projection morphisms, hence is locally quasi-coherent and has the flat base
change property, see Proposition 8.1. The modules a∗a

∗F and b∗b
∗F are locally

quasi-coherent and have the flat base change property by Proposition 8.1. We
conclude that F is locally quasi-coherent and has the flat base change property by
Proposition 8.1.
Choose a scheme U and a surjective smooth morphism x : U → X . By part (1)
it suffices to show that x∗F is locally quasi-coherent and has the flat base change

https://stacks.math.columbia.edu/tag/07AQ
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property. Again by part (1) it suffices to do this (Zariski) locally on U , hence we
may assume that U is affine. By Morphisms of Stacks, Lemma 27.14 there exists
an fppf covering {ai : Ui → U} such that each x ◦ ai factors through some fj .
Hence the module a∗

iF on (Sch/Ui)fppf is locally quasi-coherent and has the flat
base change property. After refining the covering we may assume {Ui → U}i=1,...,n
is a standard fppf covering. Then x∗F is an fppf module on (Sch/U)fppf whose
pullback by the morphism a : U1 ⨿ . . . ⨿ Un → U is locally quasi-coherent and has
the flat base change property. Hence by the previous paragraph we see that x∗F
is locally quasi-coherent and has the flat base change property as desired. □

Lemma 8.3.0GQH Let f : X → Y be a morphism of algebraic stacks which is quasi-
compact, quasi-separated, and representable by algebraic spaces. Let F be in LQCohfbc(OX ).
Then for an object y : V → Y of Y we have

(Rif∗F)|Vétale
= Rif ′

small,∗(F|Uétale
)

where f ′ : U = V ×Y X → V is the base change of f .

Proof. By Sheaves on Stacks, Lemma 21.3 we can reduce to the case where X
is represented by U and Y is represented by V . Of course this also uses that the
pullback of F to U is in LQCohfbc(OU ) by Proposition 8.1. Then the result follows
from Sheaves on Stacks, Lemma 22.2 and the fact that Rif∗ may be computed in
the étale topology by Proposition 8.1. □

Lemma 8.4.0GQI Let f : X → Y be an affine morphism of algebraic stacks. The
functor f∗ : LQCohfbc(OX ) → LQCohfbc(OY) is exact and commutes with direct
sums. The functors Rif∗ for i > 0 vanish on LQCohfbc(OX ).

Proof. The functors exist by Proposition 8.1. By Lemma 8.3 this reduces to
the case of an affine morphism of algebraic spaces taking higher direct images
in the setting of quasi-coherent modules on algebraic spaces. By the discussion in
Cohomology of Spaces, Section 3 we reduce to the case of an affine morphism of
schemes. For affine morphisms of schemes we have the vanishing of higher direct
images on quasi-coherent modules by Cohomology of Schemes, Lemma 2.3. The
vanishing for R1f∗ implies exactness of f∗. Commuting with direct sums follows
from Morphisms, Lemma 11.6 for example. □

9. Parasitic modules

0772 The following definition is compatible with Descent, Definition 12.1.

Definition 9.1.0773 Let X be an algebraic stack. A presheaf of OX -modules F is
parasitic if we have F(x) = 0 for any object x of X which lies over a scheme U such
that the corresponding morphism x : U → X is flat.

Here is a lemma with some properties of this notion.

Lemma 9.2.0774 Let X be an algebraic stack. Let F be a presheaf of OX -modules.
(1) If F is parasitic and g : Y → X is a flat morphism of algebraic stacks, then

g∗F is parasitic.
(2) For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have

(a) the τ sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(Xτ ,OX ) consisting of parasitic modules is

a Serre subcategory.

https://stacks.math.columbia.edu/tag/0GQH
https://stacks.math.columbia.edu/tag/0GQI
https://stacks.math.columbia.edu/tag/0773
https://stacks.math.columbia.edu/tag/0774
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(3) Suppose F is a sheaf for the étale topology. Let fi : Xi → X be a family of
smooth morphisms of algebraic stacks such that |X | =

⋃
i |fi|(|Xi|). If each

f∗
i F is parasitic then so is F .

(4) Suppose F is a sheaf for the fppf topology. Let fi : Xi → X be a family of
flat and locally finitely presented morphisms of algebraic stacks such that
|X | =

⋃
i |fi|(|Xi|). If each f∗

i F is parasitic then so is F .

Proof. To see part (1) let y be an object of Y which lies over a scheme V such that
the corresponding morphism y : V → Y is flat. Then g(y) : V → Y → X is flat
as a composition of flat morphisms (see Morphisms of Stacks, Lemma 25.2) hence
F(g(y)) is zero by assumption. Since g∗F = g−1F(y) = F(g(y)) we conclude g∗F
is parasitic.

To see part (2)(a) note that if {xi → x} is a τ -covering of X , then each of the
morphisms xi → x lies over a flat morphism of schemes. Hence if x lies over a
scheme U such that x : U → X is flat, so do all of the objects xi. Hence the
presheaf F+ (see Sites, Section 10) is parasitic if the presheaf F is parasitic. This
proves (2)(a) as the sheafification of F is (F+)+.

Let F be a parasitic τ -module. It is immediate from the definitions that any
submodule of F is parasitic. On the other hand, if F ′ ⊂ F is a submodule, then it
is equally clear that the presheaf x 7→ F(x)/F ′(x) is parasitic. Hence the quotient
F/F ′ is a parasitic module by (2)(a). Finally, we have to show that given a short
exact sequence 0 → F1 → F2 → F3 → 0 with F1 and F3 parasitic, then F2 is
parasitic. This follows immediately on evaluating on x lying over a scheme flat over
X . This proves (2)(b), see Homology, Lemma 10.2.

Let fi : Xi → X be a jointly surjective family of smooth morphisms of algebraic
stacks and assume each f∗

i F is parasitic. Let x be an object of X which lies over
a scheme U such that x : U → X is flat. Consider a surjective smooth covering
Wi → U ×x,X Xi. Denote yi : Wi → Xi the projection. It follows that {fi(yi) → x}
is a covering for the smooth topology on X . Since a composition of flat morphisms
is flat we see that f∗

i F(yi) = 0. On the other hand, as we saw in the proof of
(1), we have f∗

i F(yi) = F(fi(yi)). Hence we see that for some smooth covering
{xi → x}i∈I in X we have F(xi) = 0. This implies F(x) = 0 because the smooth
topology is the same as the étale topology, see More on Morphisms, Lemma 38.7.
Namely, {xi → x}i∈I lies over a smooth covering {Ui → U}i∈I of schemes. By the
lemma just referenced there exists an étale covering {Vj → U}j∈J which refines
{Ui → U}i∈I . Denote x′

j = x|Vj . Then {x′
j → x} is an étale covering in X refining

{xi → x}i∈I . This means the map F(x) →
∏
j∈J F(x′

j), which is injective as F
is a sheaf in the étale topology, factors through F(x) →

∏
i∈I F(xi) which is zero.

Hence F(x) = 0 as desired.

Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). □

Parasitic modules are preserved under absolutely any pushforward.

Lemma 9.3.0775 Let τ ∈ {étale, fppf}. Let X be an algebraic stack. Let F be a
parasitic object of Mod(Xτ ,OX ).

(1) Hi
τ (X ,F) = 0 for all i.

(2) Let f : X → Y be a morphism of algebraic stacks. Then Rif∗F (computed
in τ -topology) is a parasitic object of Mod(Yτ ,OY).

https://stacks.math.columbia.edu/tag/0775
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Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma 21.2 we see that
Rif∗F is the sheaf associated to the presheaf

y 7−→ Hi
τ

(
V ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V . By Lemma 9.2 it suffices
to show that these cohomology groups are zero when y : V → Y is flat. Note that
pr : V ×y,Y X → X is flat as a base change of y. Hence by Lemma 9.2 we see that
pr−1F is parasitic. Thus it suffices to prove (1).
To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition 20.1 to
reduce this to the case where X is an algebraic stack representable by an algebraic
space. Note that in the spectral sequence each f−1

p F = f∗
pF is a parasitic module

by Lemma 9.2 because the morphisms fp : Up = U ×X . . . ×X U → X are flat.
Reusing this spectral sequence one more time (as in the proof of Lemma 5.1) we
reduce to the case where the algebraic stack X is representable by a scheme X.
Then Hi

τ (X ,F) = Hi((Sch/X)τ ,F). In this case the vanishing follows easily from
an argument with Čech coverings, see Descent, Lemma 12.2. □

The following lemma is one of the major reasons we care about parasitic modules.
To understand the statement, recall that the functors QCoh(OX ) → Mod(Xétale,OX )
and QCoh(OX ) → Mod(OX ) aren’t exact in general.

Lemma 9.4.0776 Let X be an algebraic stack. Let α : F → G and β : G → H be maps
in QCoh(OX ) with β ◦ α = 0. The following are equivalent:

(1) in the abelian category QCoh(OX ) the complex F → G → H is exact at G,
(2) Ker(β)/ Im(α) computed in either Mod(Xétale,OX ) or Mod(Xfppf ,OX ) is

parasitic.

Proof. We have QCoh(OX ) ⊂ LQCohfbc(OX ), see Section 8. Hence Ker(β)/ Im(α)
computed in Mod(Xétale,OX ) or Mod(Xfppf ,OX ) agree, see Proposition 8.1. From
now on we will use the étale topology on X .
Let E be the cohomology of F → G → H computed in the abelian category
QCoh(OX ). Let x : U → X be a flat morphism where U is a scheme. As we are us-
ing the étale topology, the restriction functor Mod(Xétale,OX ) → Mod(Uétale,OU )
is exact. On the other hand, by Lemma 4.1 and Sheaves on Stacks, Lemma 14.2
the restriction functor

QCoh(OX ) x∗

−→ QCoh((Sch/U)étale,O)
−|Uétale−−−−−→ QCoh(Uétale,OU )

is exact too. We conclude that E|Uétale
= (Ker(β)/ Im(α))|Uétale

.
If (1) holds, then E = 0 hence Ker(β)/ Im(α) restricts to zero on Uétale for all
U flat over X and this is the definition of a parasitic module. If (2) holds, then
Ker(β)/ Im(α) restricts to zero on Uétale for all U flat over X hence E restricts to
zero on Uétale for all U flat over X . This certainly implies that the quasi-coherent
module E is zero, for example apply Lemma 4.2 to the map 0 → E . □

10. Quasi-coherent modules

0777 We have seen that the category of quasi-coherent modules on an algebraic stack is
equivalent to the category of quasi-coherent modules on a presentation, see Sheaves
on Stacks, Section 15. This fact is the basis for the following.

https://stacks.math.columbia.edu/tag/0776


COHOMOLOGY OF ALGEBRAIC STACKS 15

Lemma 10.1.0778 Let X be an algebraic stack. Let LQCohfbc(OX ) be the category
of locally quasi-coherent modules with the flat base change property, see Section 8.
The inclusion functor i : QCoh(OX ) → LQCohfbc(OX ) has a right adjoint

Q : LQCohfbc(OX ) → QCoh(OX )

such that Q ◦ i is the identity functor.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Set
R = U ×X U so that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces
with the property that X = [U/R], see Algebraic Stacks, Lemma 16.2. We may
and do replace X by [U/R]. By Sheaves on Stacks, Proposition 14.3 there is an
equivalence

q1 : QCoh(U,R, s, t, c) −→ QCoh(OX )

Let us construct a functor

q2 : LQCohfbc(OX ) −→ QCoh(U,R, s, t, c)

by the following rule: if F is an object of LQCohfbc(OX ) then we set

q2(F) = (f∗F|Uétale
, α)

where α is the isomorphism

t∗small(f∗F|Uétale
) → t∗f∗F|Rétale

→ s∗f∗F|Rétale
→ s∗

small(f∗F|Uétale
)

where the outer two morphisms are the comparison maps. Note that q2(F) is
quasi-coherent precisely because F is locally quasi-coherent and that we used (and
needed) the flat base change property in the construction of the descent datum
α. We omit the verification that the cocycle condition (see Groupoids in Spaces,
Definition 12.1) holds. Looking at the proof of Sheaves on Stacks, Proposition 14.3
we see that q2 ◦ i is the quasi-inverse to q1. We define Q = q1 ◦ q2. Let F be an
object of LQCohfbc(OX ) and let G be an object of QCoh(OX ). We have

MorLQCohfbc(OX )(i(G),F) = MorQCoh(U,R,s,t,c)(q2(i(G)), q2(F))
= MorQCoh(OX )(G, Q(F))

where the first equality is Sheaves on Stacks, Lemma 14.4 and the second equality
holds because q1◦i and q2 are quasi-inverse equivalences of categories. The assertion
Q ◦ i ∼= id is a formal consequence of the fact that i is fully faithful. □

Lemma 10.2.0779 Let X be an algebraic stack. Let Q : LQCohfbc(OX ) → QCoh(OX )
be the functor constructed in Lemma 10.1.

(1) The kernel of Q is exactly the collection of parasitic objects of LQCohfbc(OX ).
(2) For any object F of LQCohfbc(OX ) both the kernel and the cokernel of the

adjunction map Q(F) → F are parasitic.
(3) The functor Q is exact and commutes with all limits and colimits.

Proof. Write X = [U/R] as in the proof of Lemma 10.1. Let F be an object of
LQCohfbc(OX ). It is clear from the proof of Lemma 10.1 that F is in the kernel of
Q if and only if F|Uétale

= 0. In particular, if F is parasitic then F is in the kernel.

https://stacks.math.columbia.edu/tag/0778
https://stacks.math.columbia.edu/tag/0779
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Next, let x : V → X be a flat morphism, where V is a scheme. Set W = V ×X U
and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗
smallF|Uétale

∼= q∗
smallF|Vétale

. Thus if F is in the kernel of Q, then F|Vétale
= 0

which completes the proof of (1).

Part (2) follows from the discussion above and the fact that the map Q(F) → F
becomes an isomorphism after restricting to Uétale.

To see part (3) note that Q is left exact as a right adjoint. Let 0 → F → G → H → 0
be a short exact sequence in LQCohfbc(OX ). Consider the following commutative
diagram

0 // Q(F) //

a

��

Q(G) //

b

��

Q(H) //

c

��

0

0 // F // G // H // 0

Since the kernels and cokernels of a, b, and c are parasitic by part (2) and since
the bottom row is a short exact sequence, we see that the top row as a complex of
OX -modules has parasitic cohomology sheaves (details omitted; this uses that the
category of parasitic modules is a Serre subcategory of the category of all modules).
By left exactness of Q we see that only exactness at Q(H) is at issue. However, the
cokernel Q of Q(G) → Q(H)) may be computed either in Mod(OX ) or in QCoh(OX )
with the same result because the inclusion functor QCoh(OX ) → LQCohfbc(OX ) is
a left adjoint and hence right exact. Hence Q = Q(Q) is both quasi-coherent and
parasitic, whence 0 by part (1) as desired.

As a right adjoint Q commutes with all limits. Since Q is exact, to show that Q
commutes with all colimits it suffices to show that Q commutes with direct sums, see
Categories, Lemma 14.12. Let Fi, i ∈ I be a family of objects of LQCohfbc(OX ). To
see that Q(

⊕
Fi) is equal to

⊕
Q(Fi) we look at the construction of Q in the proof

of Lemma 10.1. This uses a presentation X = [U/R] where U is a scheme. Then
Q(F) is computed by first taking the pair (F|Uétale

, α) in QCoh(U,R, s, t, c) and
then using the equivalence QCoh(U,R, s, t, c) ∼= QCoh(OX ). Since the restriction
functor Mod(OX ) → Mod(OUétale

), F 7→ F|Uétale
commutes with direct sums, the

desired equality is clear. □

Lemma 10.3.0GQJ Let f : X → Y be a flat morphism of algebraic stacks. Then
QX ◦ f∗ = f∗ ◦QY where QX and QY are as in Lemma 10.1.

Proof. Observe that f∗ preserves both QCoh and LQCohfbc, see Sheaves on
Stacks, Lemma 11.2 and Proposition 8.1. If F is in LQCohfbc(OY) then QY(F) →
F has parasitic kernel and cokernel by Lemma 10.2. As f is flat we get that

https://stacks.math.columbia.edu/tag/0GQJ
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f∗QY(F) → f∗F has parasitic kernel and cokernel by Lemma 9.2. Thus the in-
duced map f∗QY(F) → QX (f∗F) has parasitic kernel and cokernel and hence is
an isomorphism for example by Lemma 9.4. □

Lemma 10.4.0GQK Let X be an algebraic stack. Let x be an object of X lying over
the scheme U such that x : U → X is flat. Then for F in QCohfbc(OX ) we have
Q(F)|Uétale

= F|Uétale
.

Proof. True because the kernel and cokernel of Q(F) → F are parasitic, see
Lemma 10.2. □

Remark 10.5.0GQL Let X be an algebraic stack. The category QCoh(OX ) is abelian,
the inclusion functor QCoh(OX ) → Mod(OX ) is right exact, but not exact in gen-
eral, see Sheaves on Stacks, Lemma 15.1. We can use the functor Q from Lemmas
10.1 and 10.2 to understand this. Namely, let φ : F → G be a map of quasi-coherent
OX -modules. Then

(1) the cokernel Coker(φ) computed in Mod(OX ) is quasi-coherent and is the
cokernel of φ in QCoh(OX ),

(2) the image Im(φ) computed in Mod(OX ) is quasi-coherent and is the image
of φ in QCoh(OX ), and

(3) the kernel Ker(φ) computed in Mod(OX ) is in LQCohfbc(OX ) by Proposi-
tion 8.1 and Q(Ker(φ)) is the kernel in QCoh(OX ).

This follows from the references given.

Remark 10.6.0GQM Let X be an algebraic stack. Given two quasi-coherent OX -
modules F and G the tensor product module F ⊗OX G is quasi-coherent, see Sheaves
on Stacks, Lemma 15.1 part (5). Similarly, given two locally quasi-coherent modules
with the flat base change property, their tensor product has the same property, see
Proposition 8.1. Thus the inclusion functors

QCoh(OX ) → LQCohfbc(OX ) → Mod(OX )

are functors of symmetric monoidal categories. What is more interesting is that
the functor

Q : LQCohfbc(OX ) −→ QCoh(OX )
is a functor of symmetric monoidal categories as well. Namely, given F and G in
LQCohfbc(OX ) we obtain

Q(F) ⊗OX Q(G) //

((

F ⊗OX G

Q(F ⊗OX G)

77

where the south-west arrow comes from the universal property of the north-west
arrow (and the fact already mentioned that the object in the upper left corner is
quasi-coherent). If we restrict this diagram to Uétale for U → X flat, then all three
arrows become isomorphisms (see Lemmas 10.1 and 10.2 and Definition 9.1). Hence
Q(F) ⊗OX Q(G) → Q(F ⊗OX G) is an isomorphism, see for example Lemma 4.2.

Remark 10.7.07B2 Let X be an algebraic stack. Let Parasitic(OX ) ⊂ Mod(OX )
denote the full subcategory consiting of parasitic modules. The results of Lemmas

https://stacks.math.columbia.edu/tag/0GQK
https://stacks.math.columbia.edu/tag/0GQL
https://stacks.math.columbia.edu/tag/0GQM
https://stacks.math.columbia.edu/tag/07B2
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10.1 and 10.2 imply that
QCoh(OX ) = LQCohfbc(OX )/Parasitic(OX ) ∩ LQCohfbc(OX )

in words: the category of quasi-coherent modules is the category of locally quasi-
coherent modules with the flat base change property divided out by the Serre sub-
category consisting of parasitic objects. See Homology, Lemma 10.6. The existence
of the inclusion functor i : QCoh(OX ) → LQCohfbc(OX ) which is left adjoint to the
quotient functor is a key feature of the situation. In Derived Categories of Stacks,
Section 5 and especially Lemma 5.4 we prove that a similar result holds on the level
of derived categories.

Lemma 10.8.0GQN Let X be an algebraic stack. Let F be an OX -module of fi-
nite presentation and let G be a quasi-coherent OX -module. The internal homs
HomOX (F ,G) computed in Mod(Xétale,OX ) or Mod(OX ) agree and the common
value is an object of LQCohfbc(OX ). The quasi-coherent module hom(F ,G) =
Q(HomOX (F ,G)) has the following universal property

HomX (H, hom(F ,G)) = HomX (H ⊗OX F ,G)
for H in QCoh(OX ).

Proof. The construction of HomOX (F ,G) in Modules on Sites, Section 27 depends
only on F and G as presheaves of modules; the output Hom is a sheaf for the fppf
topology because F and G are assumed sheaves in the fppf topology, see Modules on
Sites, Lemma 27.1. By Sheaves on Stacks, Lemma 12.4 we see that HomOX (F ,G)
is locally quasi-coherent. By Lemma 7.2 we see that HomOX (F ,G) has the flat base
change property. Hence HomOX (F ,G) is an object of LQCohfbc(OX ) and it makes
sense to apply the functor Q of Lemma 10.1 to it. By the universal property of Q
we have

HomX (H, Q(HomOX (F ,G))) = HomX (H,HomOX (F ,G))
for H quasi-coherent, hence the displayed formula of the lemma follows from Mod-
ules on Sites, Lemma 27.6. □

Lemma 10.9.0GQP Let f : X → Y be a flat morphism of algebraic stacks. Let F be an
OY -module of finite presentation and let G be a quasi-coherent OY -module. Then
f∗hom(F ,G) = hom(f∗F , f∗G) with notation as in Lemma 10.8.

Proof. We have f∗ HomOY (F ,G) = HomOX (f∗F , f∗G) by Modules on Sites, Lemma
31.4. (Observe that this step is not where the flatness of f is used as the morphism
of ringed topoi associated to f is always flat, see Sheaves on Stacks, Remark 6.3.)
Then apply Lemma 10.3 (and here we do use flatness of f). □

11. Pushforward of quasi-coherent modules

070A Let f : X → Y be a morphism of algebraic stacks. Consider the pushforward
f∗ : Mod(OX ) −→ Mod(OY)

It turns out that this functor almost never preserves the subcategories of quasi-
coherent sheaves. For example, consider the morphism of schemes

j : X = A2
k \ {0} −→ A2

k = Y.

Associated to this we have the corresponding morphism of algebraic stacks
f = jbig : X = (Sch/X)fppf → (Sch/Y )fppf = Y

https://stacks.math.columbia.edu/tag/0GQN
https://stacks.math.columbia.edu/tag/0GQP
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The pushforward f∗OX of the structure sheaf has global sections k[x, y]. Hence if
f∗OX is quasi-coherent on Y then we would have f∗OX = OY . However, consider
T = Spec(k) → A2

k = Y mapping to 0. Then Γ(T, f∗OX ) = 0 because X ×Y T = ∅
whereas Γ(T,OY) = k. On the positive side, for any flat morphism T → Y we
have the equality Γ(T, f∗OX ) = Γ(T,OY) as follows from Cohomology of Schemes,
Lemma 5.2 using that j is quasi-compact and quasi-separated.
Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. We work around the problem mentioned above using the following three
observations:

(1) f∗ does preserve locally quasi-coherent modules (Lemma 6.2),
(2) f∗ transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf

whose flat comparison maps are isomorphisms (Lemma 7.3), and
(3) locally quasi-coherent OY -modules with the flat base change property give

rise to quasi-coherent modules on a presentation of Y and hence quasi-
coherent modules on Y, see Sheaves on Stacks, Section 15.

Thus we obtain a functor
fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

which is a right adjoint to f∗ : QCoh(OY) → QCoh(OX ) such that moreover
Γ(y, f∗F) = Γ(y, fQCoh,∗F)

for any y ∈ Ob(Y) such that the associated 1-morphism y : V → Y is flat, see
Lemma 11.2. Moreover, a similar construction will produce functors RifQCoh,∗.
However, these results will not be sufficient to produce a total direct image functor
(of complexes with quasi-coherent cohomology sheaves).

Proposition 11.1.077A Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. The functor f∗ : QCoh(OY) → QCoh(OX ) has a right
adjoint

fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)
which can be defined as the composition

QCoh(OX ) → LQCohfbc(OX ) f∗−→ LQCohfbc(OY) Q−→ QCoh(OY)
where the functors f∗ and Q are as in Proposition 8.1 and Lemma 10.1. Moreover,
if we define RifQCoh,∗ as the composition

QCoh(OX ) → LQCohfbc(OX ) Rif∗−−−→ LQCohfbc(OY) Q−→ QCoh(OY)
then the sequence of functors {RifQCoh,∗}i≥0 forms a cohomological δ-functor.

Proof. This is a combination of the results mentioned in the statement. The
adjointness can be shown as follows: Let F be a quasi-coherent OX -module and let
G be a quasi-coherent OY -module. Then we have

MorQCoh(OX )(f∗G,F) = MorLQCohfbc(OY )(G, f∗F)
= MorQCoh(OY )(G, Q(f∗F))
= MorQCoh(OY )(G, fQCoh,∗F)

the first equality by adjointness of f∗ and f∗ (for arbitrary sheaves of modules).
By Proposition 8.1 we see that f∗F is an object of LQCohfbc(OY) (and can be

https://stacks.math.columbia.edu/tag/077A
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computed in either the fppf or étale topology) and we obtain the second equality
by Lemma 10.1. The third equality is the definition of fQCoh,∗.
To see that {RifQCoh,∗}i≥0 is a cohomological δ-functor as defined in Homology,
Definition 12.1 let

0 → F1 → F2 → F3 → 0
be a short exact sequence of QCoh(OX ). This sequence may not be an exact
sequence in Mod(OX ) but we know that it is up to parasitic modules, see Lemma
9.4. Thus we may break up the sequence into short exact sequences

0 → P1 → F1 → I2 → 0
0 → I2 → F2 → Q2 → 0
0 → P2 → Q2 → I3 → 0
0 → I3 → F3 → P3 → 0

of Mod(OX ) with Pi parasitic. Note that each of the sheaves Pj , Ij , Qj is an
object of LQCohfbc(OX ), see Proposition 8.1. Applying Rif∗ we obtain long exact
sequences

0 → f∗P1 → f∗F1 → f∗I2 → R1f∗P1 → . . .
0 → f∗I2 → f∗F2 → f∗Q2 → R1f∗I2 → . . .
0 → f∗P2 → f∗Q2 → f∗I3 → R1f∗P2 → . . .
0 → f∗I3 → f∗F3 → f∗P3 → R1f∗I3 → . . .

where are the terms are objects of LQCohfbc(OY) by Proposition 8.1. By Lemma
9.3 the sheaves Rif∗Pj are parasitic, hence vanish on applying the functor Q, see
Lemma 10.2. Since Q is exact the maps

Q(Rif∗F3) ∼= Q(Rif∗I3) ∼= Q(Rif∗Q2) → Q(Ri+1f∗I2) ∼= Q(Ri+1f∗F1)
can serve as the connecting map which turns the family of functors {RifQCoh,∗}i≥0
into a cohomological δ-functor. □

Lemma 11.2.0GQQ Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let y : V → Y in Ob(Y) with y a flat morphism. Let F be in
QCoh(OX ). Then (f∗F)(y) = (fQCoh,∗F)(y) and (Rif∗F)(y) = (RifQCoh,∗F)(y)
for all i ∈ Z.

Proof. This follows from the construction of the functors RifQCoh,∗ in Proposition
11.1, the definition of parasitic modules in Definition 9.1, and Lemma 10.2 part
(2). □

Remark 11.3.0GQR Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F and G be in QCoh(OX ). Then there is a canonical
commutative diagram

fQCoh,∗F ⊗OY fQCoh,∗G //

��

f∗F ⊗OY f∗G

c

��
fQCoh,∗(F ⊗OX G) // f∗(F ⊗OX G)

The vertical arrow c on the right is the naive relative cup product (in degree 0), see
Cohomology on Sites, Section 33. The source and target of c are in LQCohfbc(OX ),
see Proposition 8.1. ApplyingQ to c we obtain the left vertical arrow asQ commutes
with tensor products, see Remark 10.6. This construction is functorial in F and G.

https://stacks.math.columbia.edu/tag/0GQQ
https://stacks.math.columbia.edu/tag/0GQR
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Lemma 11.4.0782 Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there exists a
spectral sequence with E2-page

Ep,q2 = Hp(Y, RqfQCoh,∗F)
converging to Hp+q(X ,F).

Proof. By Cohomology on Sites, Lemma 14.5 the Leray spectral sequence with
Ep,q2 = Hp(Y, Rqf∗F)

converges to Hp+q(X ,F). The kernel and cokernel of the adjunction map
RqfQCoh,∗F −→ Rqf∗F

are parasitic modules on Y (Lemma 10.2) hence have vanishing cohomology (Lemma
9.3). It follows formally that Hp(Y, RqfQCoh,∗F) = Hp(Y, Rqf∗F) and we win. □

Lemma 11.5.0783 Let f : X → Y and g : Y → Z be quasi-compact and quasi-separated
morphisms of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there
exists a spectral sequence with E2-page

Ep,q2 = RpgQCoh,∗(RqfQCoh,∗F)
converging to Rp+q(g ◦ f)QCoh,∗F .

Proof. By Cohomology on Sites, Lemma 14.7 the Leray spectral sequence with
Ep,q2 = Rpg∗(Rqf∗F)

converges to Rp+q(g ◦ f)∗F . By the results of Proposition 8.1 all the terms of
this spectral sequence are objects of LQCohfbc(OZ). Applying the exact functor
QZ : LQCohfbc(OZ) → QCoh(OZ) we obtain a spectral sequence in QCoh(OZ)
covering to Rp+q(g ◦ f)QCoh,∗F . Hence the result follows if we can show that

QZ(Rpg∗(Rqf∗F)) = QZ(Rpg∗(QX (Rqf∗F))
This follows from the fact that the kernel and cokernel of the map

QX (Rqf∗F) −→ Rqf∗F
are parasitic (Lemma 10.2) and that Rpg∗ transforms parasitic modules into para-
sitic modules (Lemma 9.3). □

To end this section we make explicit the spectral sequences associated to a smooth
covering by a scheme. Please compare with Sheaves on Stacks, Sections 20 and 21.

Proposition 11.6.0784 Let f : U → X be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces, surjective, flat, and locally of finite presentation.
Let F be a quasi-coherent OX -module. Then there is a spectral sequence

Ep,q2 = Hq(Up, f∗
pF) ⇒ Hp+q(X ,F)

where fp is the morphism U ×X . . .×X U → X (p+ 1 factors).

Proof. This is a special case of Sheaves on Stacks, Proposition 20.1. □

Proposition 11.7.0785 Let f : U → X and g : X → Y be composable morphisms of
algebraic stacks. Assume that

(1) f is representable by algebraic spaces, surjective, flat, locally of finite pre-
sentation, quasi-compact, and quasi-separated, and

https://stacks.math.columbia.edu/tag/0782
https://stacks.math.columbia.edu/tag/0783
https://stacks.math.columbia.edu/tag/0784
https://stacks.math.columbia.edu/tag/0785
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(2) g is quasi-compact and quasi-separated.
If F is in QCoh(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)QCoh,∗f
∗
pF ⇒ Rp+qgQCoh,∗F

in QCoh(OY).

Proof. Note that each of the morphisms fp : U ×X . . .×X U → X is quasi-compact
and quasi-separated, hence g ◦ fp is quasi-compact and quasi-separated, hence the
assertion makes sense (i.e., the functors Rq(g ◦ fp)QCoh,∗ are defined). There is a
spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

by Sheaves on Stacks, Proposition 21.1. Applying the exact functorQY : LQCohfbc(OY) →
QCoh(OY) gives the desired spectral sequence in QCoh(OY). □

12. Further remarks on quasi-coherent modules

0GQS In this section we collect some results that to help understand how to use quasi-
coherent modules on algebraic stacks.

Let f : U → X be a morphism of algebraic stacks. Assume U is represented by the
algebraic space U . Consider the functor

a : Mod(Xétale,OX ) −→ Mod(Uétale,OU ), F 7−→ f∗F|Uétale

given by pullback (Sheaves on Stacks, Section 7) followed by restriction (Sheaves
on Stacks, Section 10). Applying this functor to locally quasi-coherent modules we
obtain a functor

b : LQCoh(OX ) −→ QCoh(Uétale,OU )
See Sheaves on Stacks, Lemmas 12.3 and 14.1. We can further limit our functor to
even smaller subcategories to obtain

c : LQCohfbc(OX ) −→ QCoh(Uétale,OU )

and
d : QCoh(OX ) −→ QCoh(Uétale,OU )

About these functors we can say the following:3

(1) The functor a is exact. Namely, pullback f∗ = f−1 is exact (Sheaves on
Stacks, Section 7) and restriction to Uétale is exact, see Sheaves on Stacks,
Equation (10.2.1).

(2) The functor b is exact. Namely, by Sheaves on Stacks, Lemma 12.4 the
inclusion LQCoh(OX ) → Mod(Xétale,OX ) is exact.

(3) The functor c is exact. Namely, by Proposition 8.1 the inclusion functor
LQCohfbc(OX ) → Mod(Xétale,OX ) is exact.

(4) The functor d is right exact but not exact in general. Namely, by Sheaves on
Stacks, Lemma 12.5 the inclusion functor QCoh(OX ) → Mod(Xétale,OX )
is right exact. We omit giving an example showing non-exactness.

(5) If f is flat, then d is exact. This follows on combining Lemma 4.1 and
Sheaves on Stacks, Lemma 14.2.

3We suggest working out why these statements are true on a napkin instead of following the
references given.
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(6) If f is flat, then c kills parasitic objects. Namely, f∗ preserves parasitic
object by Lemma 9.2. Then for any scheme V étale over U and hence flat
over X we see that 0 = f∗F|Vétale

= c(F)|Vétale
by the compatibility of

restriction with étale localization Sheaves on Stacks, Remark 10.2. Hence
clearly c(F) = 0.

(7) If f is flat, then c = d ◦Q. Namely, the kernel and cokernel of Q(F) → F
are parasitic by Lemma 10.2. Thus, since c is exact (3) and kills parasitic
objects (6), we see that c applied to Q(F) → F is an isomorphism.

(8) The functors a, b, c, d commute with colimits and arbitrary direct sums.
This is true for f∗ and restriction as left adjoints and hence it holds for a.
Then it follows for b, c, d by the references given above.

(9) The functors a, b, c, d commute with tensor products.
(10) If f is flat and surjective, F is in LQCohfbc(OX ), and c(F) = 0, then

F is parasitic. Namely, by (7) we get d(Q(F)) = 0. We may assume U
is a scheme by the compatibility of restriction with étale localization (see
reference above). Then Lemma 4.2 applied to 0 → Q(F) and the morphism
f : U → X shows that Q(F) = 0. Thus F is parasitic by Lemma 10.2.

(11) If f is flat and surjective, then the functor d reflects exactness. More pre-
cisely, let F• be a complex in QCoh(OX ). Then F• is exact in QCoh(OX )
if and only if d(F•) is exact. Namely, we have seen one implication in (5).
For the other, suppose that Hi(d(F•)) = 0. Then G = Hi(F•) is an object
of QCoh(OX ) with d(G) = 0. Hence G is both quasi-coherent and parasitic
by (10), whence 0 for example by Remark 10.7.

(12)0GQT If f is flat, F ,G ∈ Ob(QCoh(OX )), and F of finite presentation and let
then we have

d(hom(F ,G)) = HomOU
(d(F), d(G))

with notation as in Lemma 10.8. Perhaps the easiest way to see this is as
follows

d(hom(F ,G)) = d(Q(HomOX (F ,G)))
= c(HomOX (F ,G))
= f∗ HomOX (F ,G)|Uétale

= HomOU (f∗F , f∗G)|Uétale

= HomOU
(f∗F|Uétale

, f∗G|Uétale
)

The first equality by construction of hom. The second equality by (7).
The third equality by definition of c. The fourth equality by Modules on
Sites, Lemma 31.4. The final equality by the same reference applied to the
flat morphism of ringed topoi iU (Uétale,OU ) → (Uétale,OU ) of Sheaves on
Stacks, Lemma 10.1.

(13) add more here.

13. Colimits and cohomology

0GQU The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 13.1.0GQV Let X be a quasi-compact and quasi-separated algebraic stack. Then

colimiH
p(X ,Fi) −→ Hp(X , colimi Fi)

https://stacks.math.columbia.edu/tag/0GQV
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is an isomorphism for every filtered diagram of abelian sheaves on X . The same is
true for abelian sheaves on Xétale taking cohomology in the étale topology.

Proof. Let τ = fppf , resp. τ = étale. The lemma follows from Cohomology on
Sites, Lemma 16.2 applied to the site Xτ . In order to check the assumptions we use
Cohomology on Sites, Remark 16.3. Namely, let B ⊂ Ob(Xτ ) be the set of objects
lying over affine schemes. In other words, an element of B is a morphism x : U → X
with U affine. We check each of the conditions (1) – (4) of the remark in turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
x : U → X with U affine (Properties of Stacks, Lemma 6.2). Then h#

x → ∗
is a surjective map of sheaves on Xτ .

(2) Since coverings in Xτ are fppf, resp. étale coverings, we see that every
covering of U ∈ B is refined by a finite affine fppf covering, see Topologies,
Lemma 7.4, resp. Lemma 4.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x ×h#

x′ in Sh(Xτ ) is
equal to the sheaf on Xτ determined by the algebraic spaceW = U×x,X ,x′U ′

over X : for an object y : V → X of Xτ we have (h#
x × h#

x′)(y) = {f : V →
W | y = x ◦ pr1 ◦ f = x′ ◦ pr2 ◦ f}. The algebraic space W is quasi-compact
because X is quasi-separated, see Morphisms of Stacks, Lemma 7.8 for
example. Hence we can choose an affine scheme U ′′ and a surjective étale
morphism U ′′ → W . Denote x′′ : U ′′ → X the composition of U ′′ → W

and W → X . Then h#
x′′ → h#

x × h#
x′ is surjective as desired.

(4) Let x : U → X and x′ : U ′ → X be in B. Let a, b : U → U ′ be a morphism
over X , i.e., a, b : x → x′ is a morphism in Xτ . Then the equalizer of ha and
hb is represented by the equalizer of a, b : U → U ′ which is affine scheme
over X and hence in B.

This finished the proof. □

Lemma 13.2.0GQW Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F = colim Fi be a filtered colimit of abelian sheaves on X .
Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

The same is true for abelian sheaves on Xétale taking higher direct images in the
étale topology.

Proof. We will prove this for the fppf topology; the proof for the étale topology is
the same. Recall that Rif∗F is the sheaf on Yfppf associated to the presheaf

(y : V → Y) 7−→ Hi(V ×y,Y X ,pr−1F)

See Sheaves on Stacks, Lemma 21.2. Recall that the colimit is the sheaf associated
to the presheaf colimit. When V is affine, the fibre product V ×Y X is quasi-compact
and quasi-separated. Hence we can apply Lemma 13.1 to Hp(V ×Y X ,−) where
V is affine. Since every V has an fppf covering by affine objects this proves the
lemma. Some details omitted. □

Lemma 13.3.0GQX Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor fQCoh,∗ and the functors RifQCoh,∗ commute with
direct sums and filtered colimits.

https://stacks.math.columbia.edu/tag/0GQW
https://stacks.math.columbia.edu/tag/0GQX
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Proof. The functors f∗ and Rif∗ commute with direct sums and filtered colimits
on all modules by Lemma 13.2. The lemma follows as fQCoh,∗ = Q ◦ f∗ and
RifQCoh,∗ = Q ◦Rif∗ and Q commutes with all colimits, see Lemma 10.2. □

Lemma 13.4.0GQY Let f : X → Y be an affine morphism of algebraic stacks. The
functors RifQCoh,∗, i > 0 vanish and the functor fQCoh,∗ is exact and commutes
with direct sums and all colimits.

Proof. Since we have RifQCoh,∗ = Q ◦Rif∗ we obtain the vanishing from Lemma
8.4. The vanishing implies that fQCoh,∗ is exact as {RifQCoh,∗}i≥0 form a δ-functor,
see Proposition 11.1. Then fQCoh,∗ commutes with direct sums for example by
Lemma 13.3. An exact functor which commutes with direct sums commutes with
all colimits. □

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic stacks.

Lemma 13.5.0GQZ Let X be a quasi-compact and quasi-separated algebraic stack. Let
I be a directed set and let (Fi, φii′) be a system over I of OX -modules. Let G be an
OX -module of finite presentation. Then we have

colimi HomX (G,Fi) = HomX (G, colimi Fi).

In particular, HomX (G,−) commutes with filtered colimits in QCoh(OX ).

Proof. The displayed equality is a special case of Modules on Sites, Lemma 27.12.
In order to apply it, we need to check the hypotheses of Sites, Lemma 17.8 part
(4) for the site Xfppf . In order to do this, we will check hypotheses (2)(a), (2)(b),
(2)(c) of Sites, Remark 17.9. Namely, let B ⊂ Ob(Xfppf ) be the set of objects lying
over affine schemes. In other words, an element of B is a morphism x : U → X with
U affine. We check each of the conditions (2)(a), (2)(b), and (2)(c) of the remark
in turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
x : U → X with U affine (Properties of Stacks, Lemma 6.2). Then h#

x → ∗
is a surjective map of sheaves on Xfppf .

(2) Since coverings in Xfppf are fppf coverings, we see that every covering of
U ∈ B is refined by a finite affine fppf covering, see Topologies, Lemma 7.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x × h#

x′ in
Sh(Xfppf ) is equal to the sheaf on Xfppf determined by the algebraic space
W = U ×x,X ,x′ U ′ over X : for an object y : V → X of Xfppf we have
(h#
x × h#

x′)(y) = {f : V → W | y = x ◦ pr1 ◦ f = x′ ◦ pr2 ◦ f}. The algebraic
space W is quasi-compact because X is quasi-separated, see Morphisms of
Stacks, Lemma 7.8 for example. Hence we can choose an affine scheme
U ′′ and a surjective étale morphism U ′′ → W . Denote x′′ : U ′′ → X the
composition of U ′′ → W and W → X . Then h#

x′′ → h#
x × h#

x′ is surjective
as desired.

For the final statement, observe that the inclusion functor QCoh(OX) → Mod(OX)
commutes with colimits and that finitely presented modules are quasi-coherent. See
Sheaves on Stacks, Lemma 15.1. □

https://stacks.math.columbia.edu/tag/0GQY
https://stacks.math.columbia.edu/tag/0GQZ


COHOMOLOGY OF ALGEBRAIC STACKS 26

14. The lisse-étale and the flat-fppf sites

0786 In the book [LMB00] many of the results above are proved using the lisse-étale site
of an algebraic stack. We define this site here. In Examples, Section 58 we show
that the lisse-étale site isn’t functorial. We also define its analogue, the flat-fppf
site, which is better suited to the development of algebraic stacks as given in the
Stacks project (because we use the fppf topology as our base topology). Of course
the flat-fppf site isn’t functorial either.
Definition 14.1.0787 Let X be an algebraic stack.

(1) The lisse-étale site of X is the full subcategory Xlisse,étale4 of X whose
objects are those x ∈ Ob(X ) lying over a scheme U such that x : U → X is
smooth. A covering of Xlisse,étale is a family of morphisms {xi → x}i∈I of
Xlisse,étale which forms a covering of Xétale.

(2) The flat-fppf site of X is the full subcategory Xflat,fppf of X whose objects
are those x ∈ Ob(X ) lying over a scheme U such that x : U → X is flat.
A covering of Xflat,fppf is a family of morphisms {xi → x}i∈I of Xflat,fppf
which forms a covering of Xfppf .

We denote OXlisse,étale
the restriction of OX to the lisse-étale site and similarly for

OXflat,fppf
. The relationship between the lisse-étale site and the étale site is as

follows (we mainly stick to “topological” properties in this lemma).
Lemma 14.2.0788 Let X be an algebraic stack.

(1) The inclusion functor Xlisse,étale → Xétale is fully faithful, continuous and
cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xlisse,étale) −→ Sh(Xétale)
with g−1 given by restriction,

(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id → g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id → g−1g! is an isomorphism, and
(f) we have g−1OX = OXlisse,étale

hence g induces a flat morphism of
ringed topoi such that g−1 = g∗.

(2) The inclusion functor Xflat,fppf → Xfppf is fully faithful, continuous and
cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xflat,fppf ) −→ Sh(Xfppf )
with g−1 given by restriction,

(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id → g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id → g−1g! is an isomorphism, and
(f) we have g−1OX = OXflat,fppf

hence g induces a flat morphism of
ringed topoi such that g−1 = g∗.

4In the literature the site is denoted Lis-ét(X ) or Lis-Et(X ) and the associated topos is de-
noted Xlis-ét or Xlis-et. In the Stacks project our convention is to name the site and denote the
corresponding topos by Sh(C).
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Proof. In both cases it is immediate that the functor is fully faithful, continuous,
and cocontinuous (see Sites, Definitions 13.1 and 20.1). Hence properties (a), (b),
(c) follow from Sites, Lemmas 21.5 and 21.7. Parts (d), (e) follow from Modules on
Sites, Lemmas 16.2 and 16.4. Part (f) is immediate. □

Lemma 14.3.0GR0 Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) For an abelian sheaf F on Xétale we have

(a) Hp(Xétale,F) = Hp(Xlisse,étale, g−1F), and
(b) Hp(x,F) = Hp(Xlisse,étale/x, g−1F) for any object x of Xlisse,étale.
The same holds for sheaves of modules.

(2) For an abelian sheaf F on Xfppf we have
(a) Hp(Xfppf ,F) = Hp(Xflat,fppf , g−1F), and
(b) Hp(x,F) = Hp(Xflat,fppf/x, g−1F) for any object x of Xflat,fppf .
The same holds for sheaves of modules.

Proof. Part (1)(a) follows from Sheaves on Stacks, Lemma 23.3 applied to the
inclusion functor Xlisse,étale → Xétale. Part (1)(b) follows from part (1)(a). Namely,
if x lies over the scheme U , then the site Xétale/x is equivalent to (Sch/U)étale and
Xlisse,étale is equivalent to Ulisse,étale. Part (2) is proved in the same manner. □

Lemma 14.4.0789 Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) There exists a functor

g! : Mod(Xlisse,étale,OXlisse,étale
) −→ Mod(Xétale,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on abelian
sheaves and g∗g! = id.

(2) There exists a functor

g! : Mod(Xflat,fppf ,OXflat,fppf
) −→ Mod(Xfppf ,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on abelian
sheaves and g∗g! = id.

Proof. In both cases, the existence of the functor g! follows from Modules on Sites,
Lemma 41.1. To see that g! agrees with the functor on abelian sheaves we will show
the maps Modules on Sites, Equation (41.2.1) are isomorphisms.

Lisse-étale case. Let x ∈ Ob(Xlisse,étale) lying over a scheme U with x : U → X
smooth. Consider the induced fully faithful functor

g′ : Xlisse,étale/x −→ Xétale/x

The right hand side is identified with (Sch/U)étale and the left hand side with
the full subcategory of schemes U ′/U such that the composition U ′ → U → X is
smooth. Thus Étale Cohomology, Lemma 49.2 applies.

Flat-fppf case. Let x ∈ Ob(Xflat,fppf ) lying over a scheme U with x : U → X flat.
Consider the induced fully faithful functor

g′ : Xflat,fppf/x −→ Xfppf/x

The right hand side is identified with (Sch/U)fppf and the left hand side with the
full subcategory of schemes U ′/U such that the composition U ′ → U → X is flat.
Thus Étale Cohomology, Lemma 49.2 applies.

https://stacks.math.columbia.edu/tag/0GR0
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In both cases the equality g∗g! = id follows from g∗ = g−1 and the equality for
abelian sheaves in Lemma 14.2. □

Lemma 14.5.078A Let X be an algebraic stack. Notation as in Lemmas 14.2 and 14.4.
(1) We have g!OXlisse,étale

= OX .
(2) We have g!OXflat,fppf

= OX .

Proof. In this proof we write C = Xétale (resp. C = Xfppf ) and we denote C′ =
Xlisse,étale (resp. C′ = Xflat,fppf ). Then C′ is a full subcategory of C. In this proof
we will think of objects V of C as schemes over X and objects U of C′ as schemes
smooth (resp. flat) over X . Finally, we write O = OX and O′ = OXlisse,étale

(resp. O′ = OXflat,fppf
). In the notation above we have O(V ) = Γ(V,OV ) and

O′(U) = Γ(U,OU ). Consider the O-module homomorphism g!O′ → O adjoint to
the identification O′ = g−1O.

Recall that g!O′ is the sheaf associated to the presheaf gp!O′ given by the rule

V 7−→ colimV→U O′(U)

where the colimit is taken in the category of abelian groups (Modules on Sites,
Definition 16.1). Below we will use frequently that if

V → U → U ′

are morphisms and if f ′ ∈ O′(U ′) restricts to f ∈ O′(U), then (V → U, f) and
(V → U ′, f ′) define the same element of the colimit. Also, g!O′ → O maps the
element (V → U, f) simply to the pullback of f to V .

Let us prove that g!O′ → O is surjective. Let h ∈ O(V ) for some object V of
C. It suffices to show that h is locally in the image. Choose an object U of C′

corresponding to a surjective smooth morphism U → X . Since U ×X V → V is
surjective smooth, after replacing V by the members of an étale covering of V we
may assume there exists a morphism V → U , see Topologies on Spaces, Lemma
4.4. Using h we obtain a morphism V → U×A1 such that writing A1 = Spec(Z[t])
the element t ∈ O(U × A1) pulls back to h. Since U × A1 is an object of C′ we see
that (V → U × A1, t) is an element of the colimit above which maps to h ∈ O(V )
as desired.

Suppose that s ∈ g!O′(V ) is a section mapping to zero in O(V ). To finish the proof
we have to show that s is zero. After replacing V by the members of a covering we
may assume s is an element of the colimit

colimV→U O′(U)

Say s =
∑

(φi, si) is a finite sum with φi : V → Ui, Ui smooth (resp. flat) over X ,
and si ∈ Γ(Ui,OUi). Choose a scheme W surjective étale over the algebraic space
U = U1 ×X . . .×X Un. Note that W is still smooth (resp. flat) over X , i.e., defines
an object of C′. The fibre product

V ′ = V ×(φ1,...,φn),U W

is surjective étale over V , hence it suffices to show that s maps to zero in g!O′(V ′).
Note that the restriction

∑
(φi, si)|V ′ corresponds to the sum of the pullbacks of

the functions si to W . In other words, we have reduced to the case of (φ, s) where

https://stacks.math.columbia.edu/tag/078A
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φ : V → U is a morphism with U in C′ and s ∈ O′(U) restricts to zero in O(V ).
By the commutative diagram

V
(φ,0)

//

φ

''

U × A1

U

(id,0)

OO

we see that ((φ, 0) : V → U ×A1,pr∗
2x) represents zero in the colimit above. Hence

we may replace U by U × A1, φ by (φ, 0) and s by pr∗
1s + pr∗

2x. Thus we may
assume that the vanishing locus Z : s = 0 in U of s is smooth (resp. flat) over X .
Then we see that (V → Z, 0) and (φ, s) have the same value in the colimit, i.e., we
see that the element s is zero as desired. □

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules
as follows.

Lemma 14.6.07AR Let X be an algebraic stack.
(1) Let F be an OX -module with the flat base change property on Xétale. The

following are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xlisse,étale) → Sh(Xétale) is as in Lemma 14.2.

(2) Let F be an OX -module on Xfppf . The following are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xflat,fppf ) → Sh(Xfppf ) is as in Lemma 14.2.

Proof. Part (2) is immediate from the definitions (this is one of the advantages
of the flat-fppf site over the lisse-étale site). The implication (1)(a) ⇒ (1)(b) is
immediate as well. To see (1)(b) ⇒ (1)(a) let U be a scheme and let x : U → X
be a surjective smooth morphism. Then x is an object of the lisse-étale site of X .
Hence we see that (1)(b) implies that F|Uétale

= 0. Let V → X be an flat morphism
where V is a scheme. Set W = U ×X V and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗
smallF|Uétale

∼= q∗
smallF|Vétale

. Thus if F is in the kernel of g∗, then F|Vétale
= 0

as desired. □

15. Functoriality of the lisse-étale and flat-fppf sites

0GR1 The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the
flat-fppf site is functorial for flat morphisms of algebraic stacks. We warn the
reader that the lisse-étale and flat-fppf topoi are not functorial with respect to all
morphisms of algebraic stacks, see Examples, Section 58.

Lemma 15.1.07AT Let f : X → Y be a morphism of algebraic stacks.
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(1) If f is smooth, then f restricts to a continuous and cocontinuous functor
Xlisse,étale → Ylisse,étale which gives a morphism of ringed topoi fitting into
the following commutative diagram

Sh(Xlisse,étale)
g′

//

f ′

��

Sh(Xétale)

f

��
Sh(Ylisse,étale)

g // Sh(Yétale)

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.
(2) If f is flat, then f restricts to a continuous and cocontinuous functor

Xflat,fppf → Yflat,fppf which gives a morphism of ringed topoi fitting into
the following commutative diagram

Sh(Xflat,fppf )
g′
//

f ′

��

Sh(Xfppf )

f

��
Sh(Yflat,fppf ) g // Sh(Yfppf )

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.

Proof. The initial statement comes from the fact that if x ∈ Ob(X ) lies over a
scheme U such that x : U → X is smooth (resp. flat) and if f is smooth (resp. flat)
then f(x) : U → Y is smooth (resp. flat), see Morphisms of Stacks, Lemmas 33.2 and
25.2. The induced functor Xlisse,étale → Ylisse,étale (resp. Xflat,fppf → Yflat,fppf )
is continuous and cocontinuous by our definition of coverings in these categories.
Finally, the commutativity of the diagram is a consequence of the fact that the
horizontal morphisms are given by the inclusion functors (see Lemma 14.2) and
Sites, Lemma 21.2.
To show that f ′

∗(g′)−1 = g−1f∗ let F be a sheaf on Xétale (resp. Xfppf ). There is
a canonical pullback map

g−1f∗F −→ f ′
∗(g′)−1F

see Sites, Section 45. We claim this map is an isomorphism. To prove this pick an
object y of Ylisse,étale (resp. Yflat,fppf ). Say y lies over the scheme V such that
y : V → Y is smooth (resp. flat). Since g−1 is the restriction we find that(

g−1f∗F
)

(y) = Γ(V ×y,Y X , pr−1F)
by Sheaves on Stacks, Equation (5.0.1). Let (V ×y,Y X )′ ⊂ V ×y,Y X be the
full subcategory consisting of objects z : W → V ×y,Y X such that the induced
morphism W → X is smooth (resp. flat). Denote

pr′ : (V ×y,Y X )′ −→ Xlisse,étale (resp. Xflat,fppf )
the restriction of the functor pr used in the formula above. Exactly the same
argument that proves Sheaves on Stacks, Equation (5.0.1) shows that for any sheaf
H on Xlisse,étale (resp. Xflat,fppf ) we have

(15.1.1)07AU f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

Since (g′)−1 is restriction we see that(
f ′

∗(g′)−1F
)

(y) = Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′)
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By Sheaves on Stacks, Lemma 23.3 we see that

Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Γ(V ×y,Y X , pr−1F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition.

Finally, the equality g′
!(f ′)−1 = f−1g! follows formally from the equality f ′

∗(g′)−1 =
g−1f∗ by the adjointness of f−1 and f∗, the adjointness of g! and g−1, and their
“primed” versions. □

Lemma 15.2.0GR2 With assumptions and notation as in Lemma 15.1. Let H be an
abelian sheaf on Xlisse,étale (resp. Xflat,fppf ). Then

(15.2.1)07AW Rpf ′
∗H = sheaf associated to y 7−→ Hp((V ×y,Y X )′, (pr′)−1H)

Here y is an object of Ylisse,étale (resp. Yflat,fppf ) lying over the scheme V and the
notation (V ×y,Y X )′ and pr′ are explained in the proof.

Proof. As in the proof of Lemma 15.1 let (V ×y,Y X )′ ⊂ V ×y,Y X be the full
subcategory consisting of objects (x, φ) where x is an object of Xlisse,étale (resp.
Xflat,fppf ) and φ : f(x) → y is a morphism in Y. By Equation (15.1.1) we have

f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

where pr′ is the projection. For an object (x, φ) of (V ×y,Y X )′ we can think of
φ as a section of (f ′)−1hy over x. Thus (V ×Y X )′ is the localization of the site
Xlisse,étale (resp. Xflat,fppf ) at the sheaf of sets (f ′)−1hy, see Sites, Lemma 30.3.
The morphism

pr′ : (V ×y,Y X )′ → Xlisse,étale (resp. pr′ : (V ×y,Y X )′ → Xflat,fppf )

is the localization morphism. In particular, the pullback (pr′)−1 preserves injective
abelian sheaves, see Cohomology on Sites, Lemma 13.3.

Choose an injective resolution H → I• on Xlisse,étale (resp. Xflat,fppf ). By the
formula for pushforward we see that Rif ′

∗H is the sheaf associated to the presheaf
which associates to y the cohomology of the complex

Γ
(

(V ×y,Y X )′, (pr′)−1Ii−1
)

↓
Γ

(
(V ×y,Y X )′, (pr′)−1Ii

)
↓

Γ
(

(V ×y,Y X )′, (pr′)−1Ii+1
)

Since (pr′)−1 is exact and preserves injectives the complex (pr′)−1I• is an injective
resolution of (pr′)−1H and the proof is complete. □

Lemma 15.3.0GR3 With assumptions and notation as in Lemma 15.1 the canonical
(base change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism for any abelian sheaf F on Xétale (resp. Xfppf ).

https://stacks.math.columbia.edu/tag/0GR2
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Proof. Comparing the formula for g−1Rpf∗F and Rpf ′
∗(g′)−1F given in Sheaves

on Stacks, Lemma 21.2 and Lemma 15.2 we see that it suffices to show
Hp((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Hp

τ (V ×y,Y X , pr−1F)
where τ = étale (resp. τ = fppf). Here y is an object of Y lying over a scheme
V such that the morphism y : V → Y is smooth (resp. flat). This equality follows
from Sheaves on Stacks, Lemma 23.3. Although we omit the verification of the
assumptions of the lemma, we note that the fact that V → Y is smooth (resp. flat)
is used to verify the second condition. □

16. Quasi-coherent modules and the lisse-étale and flat-fppf sites

07AY In this section we explain how to think of quasi-coherent modules on an algebraic
stack in terms of its lisse-étale or flat-fppf site.

Lemma 16.1.07AZ Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with

|X | =
⋃

|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each
f−1
j F is quasi-coherent, then so is F .

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules

on Xfppf . If each f−1
j F is quasi-coherent, then so is F .

Proof. Proof of (1). We may replace each of the algebraic stacks Xj by a scheme
Uj (using that any algebraic stack has a smooth covering by a scheme and that
compositions of smooth morphisms are smooth, see Morphisms of Stacks, Lemma
33.2). The pullback of F to (Sch/Uj)étale is still quasi-coherent, see Modules on
Sites, Lemma 23.4. Then f =

∐
fj : U =

∐
Uj → X is a smooth surjective

morphism. Let x : V → X be an object of X . By Sheaves on Stacks, Lemma 19.10
there exists an étale covering {xi → x}i∈I such that each xi lifts to an object ui
of (Sch/U)étale. This just means that xi lives over a scheme Vi, that {Vi → V }
is an étale covering, and that xi comes from a morphism ui : Vi → U . Then
x∗
iF = u∗

i f
∗F is quasi-coherent. This implies that x∗F on (Sch/V )étale is quasi-

coherent, for example by Modules on Sites, Lemma 23.3. By Sheaves on Stacks,
Lemma 11.4 we see that x∗F is an fppf sheaf and since x was arbitrary we see that
F is a sheaf in the fppf topology. Applying Sheaves on Stacks, Lemma 11.3 we see
that F is quasi-coherent.
Proof of (2). This is proved using exactly the same argument, which we fully write
out here. We may replace each of the algebraic stacks Xj by a scheme Uj (using
that any algebraic stack has a smooth covering by a scheme and that flat and locally
finite presented morphisms are preserved by composition, see Morphisms of Stacks,
Lemmas 25.2 and 27.2). The pullback of F to (Sch/Uj)étale is still locally quasi-
coherent, see Sheaves on Stacks, Lemma 11.2. Then f =

∐
fj : U =

∐
Uj → X is a

surjective, flat, and locally finitely presented morphism. Let x : V → X be an object
of X . By Sheaves on Stacks, Lemma 19.10 there exists an fppf covering {xi → x}i∈I
such that each xi lifts to an object ui of (Sch/U)étale. This just means that xi lives
over a scheme Vi, that {Vi → V } is an fppf covering, and that xi comes from a
morphism ui : Vi → U . Then x∗

iF = u∗
i f

∗F is quasi-coherent. This implies that
x∗F on (Sch/V )étale is quasi-coherent, for example by Modules on Sites, Lemma
23.3. By Sheaves on Stacks, Lemma 11.3 we see that F is quasi-coherent. □

https://stacks.math.columbia.edu/tag/07AZ
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We recall that we have defined the notion of a quasi-coherent module on any ringed
topos in Modules on Sites, Section 23.

Lemma 16.2.07B0 Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) Let H be a quasi-coherent OXlisse,étale

-module on the lisse-étale site of X .
Then g!H is a quasi-coherent module on X .

(2) Let H be a quasi-coherent OXflat,fppf
-module on the flat-fppf site of X .

Then g!H is a quasi-coherent module on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By
Modules on Sites, Definition 23.1 there exists an étale (resp. fppf) covering {Ui →
U}i∈I such that each pullback f−1

i H has a global presentation (see Modules on
Sites, Definition 17.1). Here fi : Ui → X is the composition Ui → U → X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 9.2 and the discussion following.) Since
each fi is smooth (resp. flat) by Lemma 15.1 we see that f−1

i g!H = gi,!(f ′
i)−1H.

Using Lemma 16.1 we reduce the statement of the lemma to the case where H has
a global presentation. Say we have⊕

j∈J
O −→

⊕
i∈I

O −→ H −→ 0

of O-modules where O = OXlisse,étale
(resp. O = OXflat,fppf

). Since g! commutes
with arbitrary colimits (as a left adjoint functor, see Lemma 14.4 and Categories,
Lemma 24.5) we conclude that there exists an exact sequence⊕

j∈J
g!O −→

⊕
i∈I

g!O −→ g!H −→ 0

Lemma 14.5 shows that g!O = OX . In case (2) we are done. In case (1) we apply
Sheaves on Stacks, Lemma 11.4 to conclude. □

Lemma 16.3.07B1 Let X be an algebraic stack.
(1) With g as in Lemma 14.2 for the lisse-étale site we have

(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xlisse,étale,OXlisse,étale

)
g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXlisse,étale
) and

(c) Q(F) = g!g
−1F where Q is as in Lemma 10.1.

(2) With g as in Lemma 14.2 for the flat-fppf site we have
(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xflat,fppf ,OXflat,fppf

)
g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXflat,fppf
) and

(c) Q(F) = g!g
−1F where Q is as in Lemma 10.1.

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-
coherent modules, see Modules on Sites, Lemma 23.4. Hence g−1 preserves the cat-
egories of quasi-coherent modules; here we use that QCoh(OX ) = QCoh(Xétale,OX )
by Sheaves on Stacks, Lemma 11.4. The same is true for g! by Lemma 16.2. We
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know that H → g−1g!H is an isomorphism by Lemma 14.2. Conversely, if F is in
QCoh(OX ) then the map g!g

−1F → F is a map of quasi-coherent modules on X
whose restriction to any scheme smooth over X is an isomorphism. Then the dis-
cussion in Sheaves on Stacks, Sections 14 and 15 (comparing with quasi-coherent
modules on presentations) shows it is an isomorphism. This proves (1)(a) and
(2)(a).

Let F be an object of LQCohfbc(OX ). By Lemma 10.2 the kernel and cokernel
of the map Q(F) → F are parasitic. Hence by Lemma 14.6 and since g∗ = g−1

is exact, we conclude g∗Q(F) → g∗F is an isomorphism. Thus g∗F is quasi-
coherent. This proves (1)(b) and (2)(b). Finally, (1)(c) and (2)(c) follow because
g!g

∗Q(F) → Q(F) is an isomorphism by our arguments above. □

Lemma 16.4.07B4 Let X be an algebraic stack.
(1) QCoh(OXlisse,étale

) is a weak Serre subcategory of Mod(OXlisse,étale
).

(2) QCoh(OXflat,fppf
) is a weak Serre subcategory of Mod(OXflat,fppf

).

Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma 10.3.
Since 0 is a quasi-coherent module on any ringed site we see that (1) holds.
By definition QCoh(O) is a strictly full subcategory Mod(O), so (2) holds.
Let φ : G → F be a morphism of quasi-coherent modules on Xlisse,étale or Xflat,fppf .
We have g∗g!F = F and similarly for G and φ, see Lemma 14.4. By Lemma 16.2
we see that g!F and g!G are quasi-coherent OX -modules. By Sheaves on Stacks,
Lemma 15.1 we have that Coker(g!φ) is a quasi-coherent module on X (and the
cokernel in the category of quasi-coherent modules on X ). Since g∗ is exact (see
Lemma 14.2) g∗ Coker(g!φ) = Coker(g∗g!φ) = Coker(φ) is quasi-coherent too (see
Lemma 16.3). By Proposition 8.1 the kernel Ker(g!φ) is in LQCohfbc(OX ). Since
g∗ is exact, we have g∗ Ker(g!φ) = Ker(g∗g!φ) = Ker(φ). Since g∗ maps objects of
LQCohfbc(OX ) to quasi-coherent modules by Lemma 16.3 we conclude that Ker(φ)
is quasi-coherent as well. This proves (3).
Finally, suppose that

0 → F → E → G → 0
is an extension of OXlisse,étale

-modules (resp. OXflat,fppf
-modules) with F and G

quasi-coherent. To prove (4) and finish the proof we have to show that E is quasi-
coherent on Xlisse,étale (resp. Xflat,fppf ). Let U be an object of Xlisse,étale (resp.
Xflat,fppf ; we think of U as a scheme smooth (resp. flat) over X . We have to show
that the restriction of E to Ulisse,étale (resp. = Uflat,fppf ) is quasi-coherent. Thus
we may assume that X = U is a scheme. Because G is quasi-coherent on Ulisse,étale
(resp. Uflat,fppf ), we may assume, after replacing U by the members of an étale
(resp. fppf) covering, that G has a presentation⊕

j∈J
O −→

⊕
i∈I

O −→ G −→ 0

on Ulisse,étale (resp. Uflat,fppf ) where O is the structure sheaf on the site. We may
also assume U is affine. Since F is quasi-coherent, we have

H1(Ulisse,étale,F) = 0, resp. H1(Uflat,fppf ,F) = 0
Namely, F is the pullback of a quasi-coherent module F ′ on the big site of U (by
Lemma 16.3), cohomology of F and F ′ agree (by Lemma 14.3), and we know that

https://stacks.math.columbia.edu/tag/07B4
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the cohomology of F ′ on the big site of the affine scheme U is zero (to get this in
the current situation you have to combine Descent, Propositions 8.9 and 9.3 with
Cohomology of Schemes, Lemma 2.2). Thus we can lift the map

⊕
i∈I O → G to

E . A diagram chase shows that we obtain an exact sequence⊕
j∈J

O → F ⊕
⊕

i∈I
O → E → 0

By (3) proved above, we conclude that E is quasi-coherent as desired. □

17. Coherent sheaves on locally Noetherian stacks

0GR4 This section is the analogue of Cohomology of Spaces, Section 12. We have defined
the notion of a coherent module on any ringed topos in Modules on Sites, Section 23.
However, for any algebraic stack X the category of coherent OX -modules is zero,
essentially because the site X contains too many non-Noetherian objects (even if
X is itself locally Noetherian). Instead, we will define coherent modules using the
following lemma.

Lemma 17.1.0GR5 Let X be a locally Noetherian algebraic stack. Let F be an OX -
module. The following are equivalent

(1) F is a quasi-coherent, finite type OX -module,
(2) F is an OX -module of finite presentation,
(3) F is quasi-coherent and for any morphism f : U → X where U is a locally

Noetherian algebraic space, the pullback f∗F|Uétale
is coherent, and

(4) F is quasi-coherent and there exists an algebraic space U and a morphism
f : U → X which is locally of finite type, flat, and surjective, such that the
pullback f∗F|Uétale

is coherent.

Proof. Let f : U → X be as in (4). Then U is locally Noetherian (Morphisms
of Stacks, Lemma 17.5) and we see that the statement of the lemma makes sense.
Additionally, f is locally of finite presentation by Morphisms of Stacks, Lemma
27.5. Let x be an object of X lying over the scheme V . In order to prove (2) we
have to show that, after replacing V by the members of an fppf covering of V ,
the restriction x∗F has a global finite presentation on X/x ∼= (Sch/V )fppf . The
projection W = U ×X V → V is locally of finite presentation, flat, and surjective.
Hence we may replace V by the members of an étale covering of W by schemes and
assume we have a morphism h : V → U with f ◦ h = x. Since F is quasi-coherent,
we see that the restriction x∗F is the pullback of h∗

small(f∗F)|Uétale
by πV , see

Sheaves on Stacks, Lemma 14.2. Since f∗F|Uétale
locally in the étale topology has

a finite presentation by assumption, we conclude (4) ⇒ (2).
Part (2) implies (1) for any ringed topos (immediate from the definition). The
properties “finite type” and “quasi-coherent” are preserved under pullback by any
morphism of ringed topoi, see Modules on Sites, Lemma 23.4. Hence (1) implies
(3), see Cohomology of Spaces, Lemma 12.2. Finally, (3) trivially implies (4). □

Definition 17.2.0GR6 Let X be a locally Noetherian algebraic stack. An OX -module
F is called coherent if F satisfies one (and hence all) of the equivalent conditions
of Lemma 17.1. The category of coherent OX -modules is denote Coh(OX ).

Lemma 17.3.0GR7 Let X be a locally Noetherian algebraic stack. The module OX
is coherent, any invertible OX -module is coherent, and more generally any finite
locally free OX -module is coherent.

https://stacks.math.columbia.edu/tag/0GR5
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Proof. Follows from the definition and Cohomology of Spaces, Lemma 12.2. □

Lemma 17.4.0GR8 Let f : X → Y be a morphism of locally Noetherian algebraic
stacks. Then f∗ sends coherent modules on Y to coherent modules on X .

Proof. Immediate from the definition and the fact that pullback for any morphism
of ringed topoi preserves finitely presented modules, see Modules on Sites, Lemma
23.4. □

Lemma 17.5.0GR9 Let X be a locally Noetherian algebraic stack. The category of
coherent OX -modules is abelian. If φ : F → G is a map of coherent OX -modules,
then

(1) the cokernel Coker(φ) computed in Mod(OX ) is a coherent OX -module,
(2) the image Im(φ) computed in Mod(OX ) is a coherent OX -module, and
(3) the kernel Ker(φ) computed in Mod(OX ) may not be coherent, but it is

in LQCohfbc(OX ) and Q(Ker(φ)) is coherent and is the kernel of φ in
Coh(OX ).

The inclusion functor Coh(OX ) → QCoh(OX ) is exact.

Proof. The rules given for taking kernels, images, and cokernels in Coh(OX ) agree
with the prescription for quasi-coherent modules in Remark 10.5. Hence the lemma
will follow if we can show that the quasi-coherent modules Coker(φ), Im(φ), and
Q(Ker(φ)) are coherent. By Lemma 17.1 it suffices to prove this after restricting
to Uétale for some surjective smooth morphism f : U → X . The functor F 7→
f∗F|Uétale

is exact. Hence f∗ Coker(φ) and f∗ Im(φ) are the cokernel and image
of a map between coherent OU -modules hence coherent as desired. The functor
F 7→ f∗F|Uétale

kills parasitic modules by Lemma 9.2. Hence f∗Q(Ker(φ))|Uétale
=

f∗ Ker(φ)|Uétale
by part (2) of Lemma 10.2. Thus we conclude that Q(Ker(φ)) is

coherent in the same way. □

Lemma 17.6.0GRA Let X be a locally Noetherian algebraic stack. Given a short exact
sequence 0 → F1 → F2 → F3 → 0 in Mod(OX ) with F1 and F3 coherent, then F2
is coherent.

Proof. By Sheaves on Stacks, Lemma 15.1 part (7) we see that F2 is quasi-
coherent. Then we can check that F2 is coherent by restricting to Uétale for some
U → X surjective and smooth. This follows from Cohomology of Spaces, Lemma
12.3. Some details omitted. □

Coherent modules form a Serre subcategory of the category of quasi-coherent OX -
modules. This does not hold for modules on a general ringed topos.

Lemma 17.7.0GRB Let X be a locally Noetherian algebraic stack. Then Coh(OX ) is
a Serre subcategory of QCoh(OX ). Let φ : F → G be a map of quasi-coherent
OX -modules. We have

(1) if F is coherent and φ surjective, then G is coherent,
(2) if F is coherent, then Im(φ) is coherent, and
(3) if G coherent and Ker(φ) parasitic, then F is coherent.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Then
the functor f∗ : QCoh(OX ) → QCoh(OU ) is exact (Lemma 4.1) and moreover by
definition Coh(OX ) is the full subcategory of QCoh(OX ) consisting of objects F

https://stacks.math.columbia.edu/tag/0GR8
https://stacks.math.columbia.edu/tag/0GR9
https://stacks.math.columbia.edu/tag/0GRA
https://stacks.math.columbia.edu/tag/0GRB
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such that f∗F is in Coh(OU ). The statement that Coh(OX ) is a Serre subcategory
of QCoh(OX ) follows immediately from this and the corresponding fact for U , see
Cohomology of Spaces, Lemmas 12.3 and 12.4. We omit the proof of (1), (2), and
(3). Hint: compare with the proof of Lemma 17.5. □

Let X be a locally Noetherian algebraic stack. Let U be an algebraic space and let
f : U → X be surjective, locally of finite presentation, and flat. Observe that U
is locally Noetherian (Morphisms of Stacks, Lemma 17.5). Let (U,R, s, t, c) be the
groupoid in algebraic spaces and fcan : [U/R] → X the isomorphism constructed in
Algebraic Stacks, Lemma 16.1 and Remark 16.3. As in Sheaves on Stacks, Section
15 we obtain equivalences

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)
where the second equivalence is Sheaves on Stacks, Proposition 14.3. Recall that
in Groupoids in Spaces, Section 13 we have defined the full subcategory

Coh(U,R, s, t, c) ⊂ QCoh(U,R, s, t, c)
of coherent modules as those (G, α) such that G is a coherent OU -module.

Lemma 17.8.0GRC In the situation discussed above, the equivalence QCoh(OX ) ∼=
QCoh(U,R, s, t, c) sends coherent sheaves to coherent sheaves and vice versa, i.e.,
induces an equivalence Coh(OX ) ∼= Coh(U,R, s, t, c).

Proof. This is immediate from the definition of coherent OX -modules. For book-
keeping purposes: the material above uses Morphisms of Stacks, Lemma 17.5, Alge-
braic Stacks, Lemma 16.1 and Remark 16.3, Sheaves on Stacks, Section 15, Sheaves
on Stacks, Proposition 14.3, and Groupoids in Spaces, Section 13. □

Lemma 17.9.0GRD Let X be a locally Noetherian algebraic stack. Let F and G be
coherent be OX -modules. Then the internal hom hom(F ,G) constructed in Lemma
10.8 is a coherent OX -module.

Proof. Let U → X be a smooth surjective morphism from a scheme. By item (12)
in Section 12 we see that the restriction of hom(F ,G) to U is the Hom sheaf of
the restrictions. Hence this lemma follows from the case of algebraic spaces, see
Cohomology of Spaces, Lemma 12.5. □

18. Coherent sheaves on Noetherian stacks

0GRE This section is the analogue of Cohomology of Spaces, Section 13.

Lemma 18.1.0GRF Let X be a Noetherian algebraic stack. Every quasi-coherent OX -
module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule
which contains both of them, see Lemma 17.7. In this way we see that the system
is directed. Hence it now suffices to show that F can be written as a filtered colimit
of coherent modules, as then we can take the images of these modules in F to
conclude there are enough of them.
Let U be an affine scheme and U → X a surjective smooth morphism (Properties
of Stacks, Lemma 6.2). Set R = U ×X U so that X = [U/R] as in Algebraic
Stacks, Lemma 16.2. By Lemma 17.8 we have QCoh(OX) = QCoh(U,R, s, t, c)

https://stacks.math.columbia.edu/tag/0GRC
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and Coh(OX) = Coh(U,R, s, t, c). In this way we reduce to the problem of proving
the corresponding thing for QCoh(U,R, s, t, c). This is Groupoids in Spaces, Lemma
13.4; we check its assumptions in the next paragraph.
We urge the reader to skip the rest of the proof. The affine scheme U is Noetherian;
this follows from our definition of X being locally Noetherian, see Properties of
Stacks, Definition 7.2 and Remark 7.3. The projection morphisms s, t : R →
U are smooth (see reference given above) and quasi-separated and quasi-compact
(Morphisms of Stacks, Lemma 7.8). In particular, R is a quasi-compact and quasi-
separated algebraic space smooth over U and hence Noetherian (Morphisms of
Spaces, Lemma 28.6). □

19. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties

(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces



COHOMOLOGY OF ALGEBRAIC STACKS 39

(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex

(93) Deformation Problems
Algebraic Stacks

(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index

References
[LMB00] Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete. 3. Folge., vol. 39, Springer-Verlag, 2000.


	1. Introduction
	2. Conventions and abuse of language
	3. Notation
	4. Pullback of quasi-coherent modules
	5. Higher direct images of types of modules
	6. Locally quasi-coherent modules
	7. Flat comparison maps
	8. Locally quasi-coherent modules with the flat base change property
	9. Parasitic modules
	10. Quasi-coherent modules
	11. Pushforward of quasi-coherent modules
	12. Further remarks on quasi-coherent modules
	13. Colimits and cohomology
	14. The lisse-étale and the flat-fppf sites
	15. Functoriality of the lisse-étale and flat-fppf sites
	16. Quasi-coherent modules and the lisse-étale and flat-fppf sites
	17. Coherent sheaves on locally Noetherian stacks
	18. Coherent sheaves on Noetherian stacks
	19. Other chapters
	References

