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In this chapter we write about cohomology of algebraic stacks.
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This means in

particular cohomology of quasi-coherent sheaves, i.e., we prove analogues of the
results in the chapters entitled “Cohomology of Schemes” and “Cohomology of
Algebraic Spaces”. The results in this chapter are different from those in

mainly because we consistently use the “big sites”.

Before reading this chapter

please take a quick look at the chapter “Sheaves on Algebraic Stacks” in order
to become familiar with the terminology introduced there, see Sheaves on Stacks,
Section [

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section [2|

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.

1



073S

076 W

076X

COHOMOLOGY OF ALGEBRAIC STACKS 2

3. Notation

Different topologies. If we indicate an algebraic stack by a calligraphic letter, such as
X,Y, Z, then the notation Xz.r, Xetaies Xsmooths Xsyntomic, Xfppy indicates the site
introduced in Sheaves on Stacks, Deﬁnition (Think “big site”.) Correspondingly
the structure sheaf of X is a sheaf on Xfp,¢. On the other hand, algebraic spaces
and schemes are usually indicated by roman capitals, such as X,Y, Z, and in this
case Xsiare indicates the small étale site of X (as defined in Topologies, Definition
or Properties of Spaces, Definition . It seems that the distinction should
be clear enough.

The default topology is the fppf topology. Hence we will sometimes say “sheaf
on X7 or “sheaf of Ox-modules” when we mean sheaf on Af,,; or object of
Mod(Xfpps, Ox).

If f: X — ) is a morphism of algebraic stacks, then the functors f, and f—!
defined on presheaves preserves sheaves for any of the topologies mentioned above.
In particular when we discuss the pushforward or pullback of a sheaf we don’t
have to mention which topology we are working with. The same isn’t true when
we compute cohomology groups and/or higher direct images. In this case we will
always mention which topology we are working with.

Suppose that f: X — Y is a morphism from an algebraic space X to an algebraic
stack V. Let G be a sheaf on ), for some topology 7. In this case f~'G is a sheaf
for the 7 topology on Sx (the algebraic stack associated to X) because (by our
conventions) f really is a 1-morphism f : Sx — Y. If 7 = étale or stronger, then
we write f7'G|x,,.,. to denote the restriction to the étale site of X, see Sheaves on
Stacks, Section If G is an Oy-module we sometimes write f*G and f*G|x
instead.

étale

4. Pullback of quasi-coherent modules

Let f : X — Y be a morphism of algebraic stacks. It is a very general fact that
quasi-coherent modules on ringed topoi are compatible with pullbacks. In particular
the pullback f* preserves quasi-coherent modules and we obtain a functor

f* 1 QCoh(Oy) — QCoh(Ox),

see Sheaves on Stacks, Lemma In general this functor isn’t exact, but if f is
flat then it is.

Lemma 4.1. If f : X — Y is a flat morphism of algebraic stacks then f* :
QCoh(Oy) — QCoh(Oyx) is an exact functor.

Proof. Choose a scheme V and a surjective smooth morphism V' — ). Choose
a scheme U and a surjective smooth morphism U — V xy X. Then U — X is
still smooth and surjective as a composition of two such morphisms. From the
commutative diagram

N~

—_—
f/
f
—_—

<L<—<
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we obtain a commutative diagram

QCoh(Oy) <—— QCoh(Oy)

| !

QCoh(Ox) <—— QCoh(Oy)

of abelian categories. Our proof that the bottom two categories in this diagram
are abelian showed that the vertical functors are faithful exact functors (see proof
of Sheaves on Stacks, Lemma . Since f’ is a flat morphism of schemes (by
our definition of flat morphisms of algebraic stacks) we see that (f)* is an exact
functor on quasi-coherent sheaves on V. Thus we win. O

Lemma 4.2. Let X be an algebraic stack. Let I be a set and for i € I let
x; : Uy = X be an object of X. Assume that x; is flat and [Jx; : [[U; — X is
surjective. Let ¢ : F — G be an arrow of QCoh(Ox). Denote ¢; the restriction
of ¢ to (Uj)eétate- Then o is injective, resp. surjective, resp. an isomorphism if and
only if each p; is so.

Proof. Choose a scheme U and a surjective smooth morphism z : U — X. We
may and do think of = as an object of X'. This produces a presentation X = [U/R]
for some groupoid in spaces (U, R, s,t,c¢) and correspondingly an equivalence

QCoh(Ox) = QCoh(U, R, s,t,c)

See discussion in Sheaves on Stacks, Section The structure of abelian category
on the right hand is such that ¢ is injective, resp. surjective, resp. an isomorphism
if and only if the restriction ¢|y is so, see Groupoids in Spaces, Lemmam

étale
For each i we choose an étale covering {W; ; — V xx U;}jes, by schemes. Denote
gij : Wi; =V and hy; : W; ; — U; the obvious arrows. Each of the morphisms of
schemes g; ; : W; ; — U is flat and they are jointly surjective. Similarly, for each
fixed i the morphisms of schemes h;; : W; ; — U; are flat and jointly surjective.
By Sheaves on Stacks, Lemma the pullback by (gi,;)smau of the restriction
0|V 101, 18 the restriction |, ,),,,,. and the pullback by (h; ;)smau of the restriction
Ol(U)erare 18 the restriction o|qy, y,,.,.- Pullback of quasi-coherent modules by a
flat morphism of schemes is exact and pullback by a jointly surjective family of
flat morphisms of schemes reflects injective, resp. surjective, resp. bijective maps of
quasi-coherent modules (in fact this holds for all modules as we can check exactness
at stalks). Thus we see

OlUs1a. Injective & @|w, ;).,.. injective for all i,j < ¢|(v,),,,,. injective for all i
This finishes the proof. ([

5. Higher direct images of types of modules

The following lemma is the basis for our understanding of higher direct images
of certain types of sheaves of modules. There are two versions: one for the étale
topology and one for the fppf topology.

Lemma 5.1. Let M be a rule which associates to every algebraic stack X a
subcategory Mx of Mod(X¢iate, Ox) such that

(1) My is a weak Serre subcategory of Mod(Xetare, Ox) (see Homology, Defi-
nition for all algebraic stacks X,
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(2) for a smooth morphism of algebraic stacks f: Y — X the functor f* maps
My into My,

(3) if fi + Xi — X is a family of smooth morphisms of algebraic stacks with
|X| = UIfil(|X:]), then an object F of Mod(Xeiate, Ox) is in My if and
only if fFF is in My, for alli, and

(4) if f Y — X is a morphism of algebraic stacks such that X and ) are
representable by affine schemes, then R'f. maps My into Mx.

Then for any quasi-compact and quasi-separated morphism f :Y — X of algebraic
stacks R f. maps My into Mx. (Higher direct images computed in étale topology.)

Proof. Let f:)Y — X be a quasi-compact and quasi-separated morphism of alge-
braic stacks and let F be an object of My. Choose a surjective smooth morphism
U — X where U is representable by a scheme. By Sheaves on Stacks, Lemma [21.3
taking higher direct images commutes with base change. Assumption (2) shows that
the pullback of F to U xx YV is in My« ,y because the projection U xx Y — Y is
smooth as a base change of a smooth morphism. Hence (3) shows we may replace
Y — X by the projection U x xy YV — U. In other words, we may assume that X is
representable by a scheme. Using (3) once more, we see that the question is Zariski
local on X, hence we may assume that X is representable by an affine scheme.
Since f is quasi-compact this implies that also ) is quasi-compact. Thus we may
choose a surjective smooth morphism ¢g : ¥V — ) where V is representable by an
affine scheme.

In this situation we have the spectral sequence
ES9 = RI(f o gp)egnF = RPYIf.F

of Sheaves on Stacks, Proposition Recall that this is a first quadrant spectral
sequence hence we may use the last part of Homology, Lemma Note that the
morphisms

gp: Vp =V Xxy...xyV-—)Y
are smooth as compositions of base changes of the smooth morphism g. Thus the
sheaves g, F are in My, by (2). Hence it suffices to prove that the higher direct
images of objects of My, under the morphisms

Vp:VXy...XyV—>X

are in My. The algebraic stacks V, are quasi-compact and quasi-separated by
Morphisms of Stacks, Lemma Of course each V), is representable by an algebraic
space (the diagonal of the algebraic stack ) is representable by algebraic spaces).
This reduces us to the case where ) is representable by an algebraic space and X
is representable by an affine scheme.

In the situation where ) is representable by an algebraic space and X is repre-
sentable by an affine scheme, we choose anew a surjective smooth morphism V — Y
where V is representable by an affine scheme. Going through the argument above
once again we once again reduce to the morphisms V, — X. But in the current
situation the algebraic stacks V), are representable by quasi-compact and quasi-
separated schemes (because the diagonal of an algebraic space is representable by
schemes).

Thus we may assume ) is representable by a scheme and X is representable by
an affine scheme. Choose (again) a surjective smooth morphism ¥V — ) where V
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is representable by an affine scheme. In this case all the algebraic stacks V, are
representable by separated schemes (because the diagonal of a scheme is separated).

Thus we may assume ) is representable by a separated scheme and X' is repre-
sentable by an affine scheme. Choose (yet again) a surjective smooth morphism
YV — Y where V is representable by an affine scheme. In this case all the algebraic
stacks V), are representable by affine schemes (because the diagonal of a separated
scheme is a closed immersion hence affine) and this case is handled by assumption
(4). This finishes the proof. O

Here is the version for the fppf topology.

Lemma 5.2. Let M be a rule which associates to every algebraic stack X a
subcategory My of Mod(Ox) such that

(1) Ox is a weak Serre subcategory of Mod(Ox) for all algebraic stacks X,

(2) for a smooth morphism of algebraic stacks f : Y — X the functor f* maps
My into My,

3) if fi : Xi = X is a family of smooth morphisms of algebraic stacks with
|X] = U|fil(|Xi]), then an object F of Mod(Ox) is in My if and only if
fiF isin My, for alli, and

(4) if f: Y — X is a morphism of algebraic stacks and X and ) are repre-
sentable by affine schemes, then R'f, maps My into My.

Then for any quasi-compact and quasi-separated morphism f:Y — X of algebraic
stacks R'f. maps My into M. (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma [5.1 (I

6. Locally quasi-coherent modules

Let & be an algebraic stack. Let F be a presheaf of Oy-modules. We can ask
whether F is locally quasi-coherent, see Sheaves on Stacks, Definition [12.1} Briefly,
this means F is an Oxy-module for the étale topology such that for any morphism
f U — X the restriction f*F|y,,.,. is quasi-coherent on Ugtqre. (The actual
definition is slightly different, but equivalent.) A useful fact is that

LQCoh(Ox) C Mod(Xesrare, Ox)

is a weak Serre subcategory, see Sheaves on Stacks, Lemma [12.4

Lemma 6.1. Let X be an algebraic stack. Let f; : X; — X be a family of
smooth morphisms of algebraic stacks with |X| = J|f;|(|X;]). Let F be a sheaf of

Ox-modules on Xgpqre- If each f;lf is locally quasi-coherent, then so is F.

Proof. We may replace each of the algebraic stacks X; by a scheme U; (using
that any algebraic stack has a smooth covering by a scheme and that compositions
of smooth morphisms are smooth, see Morphisms of Stacks, Lemma [33.2). The
pullback of F to (Sch/Uj)etale is still locally quasi-coherent, see Sheaves on Stacks,
Lemma Then f =[[f; : U =][U; = X is a surjective smooth morphism.
Let « be an object of X. By Sheaves on Stacks, Lemma [19.10] there exists an étale
covering {x; — x};ecr such that each z; lifts to an object u; of (Sch/U)¢tare. This
just means that x, x; live over schemes V, V;, that {V; — V} is an étale covering,
and that z; comes from a morphism u; : V; — U. The restriction x}Fly,

i,étale

is equal to the restriction of f*F to V] ¢tare, see Sheaves on Stacks, Lemma
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Hence z*Fl|y,,,,. is a sheaf on the small étale site of V' which is quasi-coherent
when restricted to V; ¢uqre for each i. This implies that it is quasi-coherent (as
desired), for example by Properties of Spaces, Lemma (]

Lemma 6.2. Let f: X — ) be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a locally quasi-coherent Ox-module on Xzqre. Then
R f.F (computed in the étale topology) is locally quasi-coherent on YVetale.

Proof. We will use Lemma to prove this. We will check its assumptions (1)
— (4). Parts (1) and (2) follows from Sheaves on Stacks, Lemma Part (3)
follows from Lemma Thus it suffices to show (4).

Suppose f : X — ) is a morphism of algebraic stacks such that X and ) are
representable by affine schemes X and Y. Choose any object y of )} lying over a
scheme V. For clarity, denote V = (Sch/V')fpps the algebraic stack corresponding
to V. Consider the cartesian diagram

Z——X

g
f/l i ;
y—2Lsy
Thus Z is representable by the scheme Z = V xy X and f’ is quasi-compact and
separated (even affine). By Sheaves on Stacks, Lemma we have

Rif*f|vémle = Rifémall,*(g*‘r|zétale)
The right hand side is a quasi-coherent sheaf on Vg4 by Cohomology of Spaces,

Lemma 3.1} This implies the left hand side is quasi-coherent which is what we had
to prove. O

Lemma 6.3. Let X be an algebraic stack. Let f; : X; — X be a family of flat and
locally finitely presented morphisms of algebraic stacks with |X| = | f;|(|X;]). Let
F be a sheaf of Ox-modules on Xgppy. If each fj_l]-" is locally quasi-coherent, then
so is F.

Proof. First, suppose there is a morphism a : 4 — X which is surjective, flat,
locally of finite presentation, quasi-compact, and quasi-separated such that a*F is
locally quasi-coherent. Then there is an exact sequence

0— F — aa*F = bb*F

where b is the morphism b : U x x U — X, see Sheaves on Stacks, Proposition [19.7]
and Lemma Moreover, the pullback b*F is the pullback of a*F via one of the
projection morphisms, hence is locally quasi-coherent (Sheaves on Stacks, Lemma
12.3). The modules a.a*F and b,b*F are locally quasi-coherent by Lemma
(Note that a, and b, don’t care about which topology is used to calculate them.)
We conclude that F is locally quasi-coherent, see Sheaves on Stacks, Lemma [12.4

We are going to reduce the proof of the general case the situation in the first
paragraph. Let x be an object of X’ lying over the scheme U. We have to show that
Fl|Uspar. 18 & quasi-coherent Op-module. It suffices to do this (Zariski) locally on U,
hence we may assume that U is affine. By Morphisms of Stacks, Lemma [27.14] there
exists an fppf covering {a; : U; — U} such that each o a; factors through some f;.
Hence afF is locally quasi-coherent on (Sch/U;)fppy. After refining the covering
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we may assume {U; — U};=1,._, is a standard fppf covering. Then z*F is an fppf
module on (Sch/U) ¢pps whose pullback by the morphism a : U3 II... IIU,, - U
is locally quasi-coherent. Hence by the first paragraph we see that «*F is locally
quasi-coherent, which certainly implies that F|y,,,,. is quasi-coherent. (]

7. Flat comparison maps

Let X be an algebraic stack and let F be an object of Mod(Xstqie, Ox). Given an
object = of X lying over the scheme U the restriction F|y,,,,, is the restriction of
271 F to the small étale site of U, see Sheaves on Stacks, Definition Next, let
¢ : x — 2’ be a morphism of X lying over a morphism of schemes f : U — U’.
Thus a 2-commutative diagram

U————U
\f/
X

Associated to ¢ we obtain a comparison map between restrictions
(701> Cop - f:mall(]:|U/»

étale

see Sheaves on Stacks, Equation (9.4.1). In this situation we can consider the
following property of F.

Definition 7.1. Let X’ be an algebraic stack and let F in Mod(Xstqie, Ox). We say

F has the flat base change pmpertﬂ if and only if ¢, is an isomorphism whenever
f is flat.

)—)]:‘U

étale

Here is a lemma with some properties of this notion.

Lemma 7.2. Let X be an algebraic stack. Let F be an Ox-module on Xgqe.

(1) If F has the flat base change property then for any morphism g : )Y — X
of algebraic stacks, the pullback g*F does too.

(2) The full subcategory of Mod(Xetare, Ox) consisting of modules with the flat
base change property is a weak Serre subcategory.

(3) Let f; : X; — X be a family of smooth morphisms of algebraic stacks such
that |X| = U, |fil(|X:]). If each f;F has the flat base change property then
so does F.

(4) The category of Ox-modules on Xetqle with the flat base change property
has colimits and they agree with colimits in Mod(Xsiaie, Ox)-

(5) Given F and G in Mod(X¢tate, Ox) with the flat base change property then
the tensor product F ®p, G has the flat base change property.

(6) Given F and G in Mod(Xstaie, Ox) with F of finite presentation and G
having the flat base change property then the sheaf Homeo, (F,G) has the
flat base change property.

Proof. Let g : Y — X be as in (1). Let y be an object of ) lying over a scheme
V. By Sheaves on Stacks, Lemma [9.3| we have (¢*F)|v.,.,. = Fl|viu.- Moreover a
comparison mapping for the sheaf g*F on ) is a special case of a comparison map
for the sheaf 7 on &, see Sheaves on Stacks, Lemma In this way (1) is clear.

LThis may be nonstandard notation.
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Proof of (2). We use the characterization of weak Serre subcategories of Homology,
Lemma Kernels and cokernels of maps between sheaves having the flat base
change property also have the flat base change property. This is clear because
faan is exact for a flat morphism of schemes and since the restriction functors

)., are exact (because we are working in the étale topology). Finally, if
0 — F; = F» — F3 — 0 is a short exact sequence of Mod(Xsq1e, Ox) and the
outer two sheaves have the flat base change property then the middle one does as
well, again because of the exactness of f} . and the restriction functors (and the
5 lemma).

Proof of (3). Let f; : X; — X be a jointly surjective family of smooth morphisms of
algebraic stacks and assume each fF has the flat base change property. By part
(1), the definition of an algebraic stack, and the fact that compositions of smooth
morphisms are smooth (see Morphisms of Stacks, Lemma we may assume
that each X; is representable by a scheme. Let ¢ : x — 2’ be a morphism of X
lying over a flat morphism a : U — U’ of schemes. By Sheaves on Stacks, Lemma
there exists a jointly surjective family of étale morphisms U] — U’ such that
U! — U' — X factors through X;. Thus we obtain commutative diagrams

Ui:UXU/Ul{T)Ui/;/)Xi

N

U 4 U —=2s>x

Note that each a; is a flat morphism of schemes as a base change of a. Denote
¥; : ©; — x} the morphism of X; lying over a; with target z}. By assumption the
comparison maps cy, : (ai):mall(fz‘*f|(U{)émze) = fEFl W) erme 18 an isomorphism.
Because the vertical arrows U] — U’ and U; — U are étale, the sheaves f;F|w7),,0.
and f{F|(v,)s,u.. are the restrictions of }-|Uétaze and Fly,,,,. and the map ¢y, is the
restriction of ¢, to (U;)eétate, see Sheaves on Stacks, Lemma Since {U; — U}
is an étale covering, this implies that the comparison map c, is an isomorphism
which is what we wanted to prove.

Proof of (4). Let Z — Mod(Xstaie, Ox), @ — F; be a diagram and assume each F;
has the flat base change property. Let ¢ : x — 2’ be a morphism of X’ lying over
the flat morphism of schemes f : U — U’. Recall that colim; F; is the sheafification
of the presheaf colimit. As we are using the étale topology, it is clear that

(colim; F5) v, = colim; Filu

étale

and similarly for the restriction to U Hence

tale*
f:mall((COhmi ‘Fl) |U{ ) = f:mall (COHmi *Fi|U/, )
étale étale

= colim; f;mazz(]:i|Uémze)
.
N [T Filu

étale

= (colim; F;)

Ustale

For the second equality we used that f ., commutes with colimits (as a left
adjoint). The arrow is an isomorphism as each F; has the flat base change property.
Thus the colimit has the flat base change property and (4) is true.
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Part (5) holds because tensor products commute with pullbacks, see Modules on
Sites, Lemma Details omitted.

Let F and G be as in (6). Since F is quasi-coherent it has the flat base change
property by Sheaves on Stacks, Lemma Let ¢ : £ — z’ be a morphism of X
lying over the flat morphism of schemes f : U — U’. As we are using the étale
topology, we have

Homo, (F,G)|u

étale

= Homo, (‘F‘Uétalc e Uétalc)
(details omitted). Hence

’g|Ue{tale))

)7f:mall(g‘U{

étale

and similarly for the restriction to U

étale
f:mall (HO?TLOX (]:7 g)‘Uémle) = fs*mall (HOmOU, (‘7:|U/,

étale

= Homoy, (fimau(Flu

étale
C
- Homou (}—‘Uémzw g|Uétale)
= fﬂomox (]:7 g)|Uétale
Here the second equality is Modules on Sites, Lemma which uses that f: U —
U’ is flat and hence the morphism of ringed sites fq,,qy is flat too. The arrow is an

isomorphism as both F and G have the flat base change property. Thus our Hom
has the flat base change property too as desired. O

)

Lemma 7.3. Let f: X = Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be an object of Mod(X¢tare, Ox) which is locally quasi-
coherent and has the flat base change property. Then each R'f.F (computed in the
étale topology) has the flat base change property.

Proof. We will use Lemma to prove this. For every algebraic stack X let
LQCohfbc(OX) denote the full subcategory of Mod(Xstaie, Ox) consisting of locally
quasi-coherent sheaves with the flat base change property. Once we verify conditions
(1) = (4) of Lemma [5.1] the lemma will follow. Properties (1), (2), and (3) follow
from Sheaves on Stacks, Lemmas and and Lemmas and Thus it
suffices to show part (4).

Suppose f : X — ) is a morphism of algebraic stacks such that X and ) are
representable by affine schemes X and Y. In this case, suppose that 9 : y — ¢/ is
a morphism of Y lying over a flat morphism b : V' — V' of schemes. For clarity
denote V = (Sch/V) tppy and V' = (Sch/V') rppy the corresponding algebraic stacks.
Consider the diagram of algebraic stacks

Z—sZ — s X

a I,
f ”l f/l lf
y—Ley Yoy
with both squares cartesian. As f is representable by schemes (and quasi-compact
and separated — even affine) we see that Z and Z’ are representable by schemes Z

and Z' and in fact Z =V xy+ Z’'. Since F has the flat base change property we
see that

Zétale

*
Asmall (]:lzémle) F
is an isomorphism. Moreover,

Rif*F|V,’

étale

= Ri(f/)small,* (]:|Z’,

etale)
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and ‘ _
R’Lf*‘F|Vétale = Rl(f//)small,*(f|Zémle)
by Sheaves on Stacks, Lemma Hence we see that the comparison map

Cy - b:mall(Rif*]:|V,' ) — Rif*f|vé

étale ‘tale

is an isomorphism by Cohomology of Spaces, Lemma m Thus R'f.F has the
flat base change property. Since R!f,F is locally quasi-coherent by Lemma we
win. [l

8. Locally quasi-coherent modules with the flat base change property

Let & be an algebraic stack. WGEI will denote
LQCoh"(Ox) € Mod(Xerare, Ox)

the full subcategory whose objects are étale Oy-modules F which are both locally
quasi-coherent (Section @ and have the flat base change property (Section . We
have

QCoh(Ox) C LQCoA " (Ox)
by Sheaves on Stacks, Lemma [12.2

Proposition| 8.1. Summary of results on locally quasi-coherent modules having
the flat base change property.
(1) Let X be an algebraic stack. If F is in LQCoh'*(Ox), then F is a sheaf
for the fppf topology, i.e., it is an object of Mod(Oy).
(2) The category LQCoh'*(Ox) is a weak Serre subcategory of both Mod(Ox)
and MOd(Xétale, Ox)
(3) Pullback f* along any morphism of algebraic stacks f : X — Y induces a
functor f* : LQCoh!*(Oy) — LQCoh'*(Ox).
(4) If f : X = Y is a quasi-compact and quasi-separated morphism of algebraic
stacks and F is an object of LQCoh!*(Oy), then
(a) the total direct image Rf.F and the higher direct images R'f.JF can be
computed in either the étale or the fppf topology with the same result,
and
(b) each R f.F is an object of LQCoh'*(Oy).
(5) The category LQCohbe(OX) has colimits and they agree with colimits in
Mod(Xstaie, Ox) as well as in Mod(Ox).
(6) Given F and G in LQCoh'**(Ox) then the tensor product F ®o, G is in
LQCoh!*(Oy).
(7) Given F of finite presentation and G in LQCoh!*(Ox) then Homo,, (F,G)
is in LQCoh'*(Ox).

Proof. Part (1) is Sheaves on Stacks, Lemma [23.1]

Part (2) for the embedding LQCohbe(OX) C Mod(Xstaie, Ox) we have seen in
the proof of Lemma Let us prove (2) for the embedding LQCoh*(Ox) C
Mod(Ox). Let ¢ : F — G be a morphism between objects of LQCoh!"(O). Since
Ker(¢p) is the same whether computed in the étale or the fppf topology, we see that
Ker(y) is in LQCoh™(Ox) by the étale case. On the other hand, the cokernel
computed in the fppf topology is the fppf sheafification of the cokernel computed in

2Apologies for the horrendous notation.
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the étale topology. However, this étale cokernel is in LQCoh? b(Oy) hence an fppf
sheaf by (1) and we see that the cokernel is in LQCoh! ¢(Oy). Finally, suppose
that
0—=F = Fr—F3—=0

is an exact sequence in Mod(Oy) (i.e., using the fppf topology) with Fy, F» in
LQCoh'**(Oy). Tn order to show that F, is an object of LQCoh/**(Ox) it suffices
to show that the sequence is also exact in the étale topology. To do this it suffices to
show that any element of H }pp (@, F1) becomes zero on the members of an étale cov-
ering of z (for any object x of X'). This is true because H},, (x, F1) = H}, . (x, F1)
by Sheaves on Stacks, Lemma [23.2] and because of locality of cohomology, see Co-
homology on Sites, Lemma [7.3] This proves (2).

Part (3) follows from Lemma and Sheaves on Stacks, Lemma [12.3]

Part (4)(b) for R!f,F computed in the étale cohomology follows from Lemma
Whereupon part (4)(a) follows from Sheaves on Stacks, Lemma combined with
(1) above.

Part (5) for the étale topology follows from Sheaves on Stacks, Lemma and
Lemma The fppf version then follows as the colimit in the étale topology is
already an fppf sheaf by part (1).

Parts (6) and (7) follow from the corresponding parts of Lemma [7.2] and Sheaves
on Stacks, Lemma O

Lemma 8.2. Let X be an algebraic stack.

(1) Let fj : X; = X be a family of smooth morphisms of algebraic stacks with
|X| = UIf1(X;]). Let F be a sheaf of Ox-modules on Xeqie. If each
£V F is in LQCoh/"*(Oy,), then F is in LQCoh!*(Oy).

(2) Let fj : Xj = X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X| = J|f;|(|X;]). Let F be a sheaf of Ox-modules
on Xpppy. If each f; ' F is in LQCoh'**(Oy,), then F is in LQCoh/**(Ox).

Proof. Part (1) follows from a combination of Lemmas and The proof of
(2) is analogous to the proof of Lemma Let F of a sheaf of Ox-modules on

Xfppf-

First, suppose there is a morphism a : 4 — X which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that a*F is locally
quasi-coherent and has the flat base change property. Then there is an exact se-
quence

0= F = asa*F — bb*F

where b is the morphism b : U Xy U — X, see Sheaves on Stacks, Proposition
and Lemma Moreover, the pullback b*F is the pullback of a*F via one
of the projection morphisms, hence is locally quasi-coherent and has the flat base
change property, see Proposition 8.1} The modules a.a*F and b.b*F are locally
quasi-coherent and have the flat base change property by Proposition We
conclude that F is locally quasi-coherent and has the flat base change property by
Proposition

Choose a scheme U and a surjective smooth morphism z : U — X. By part (1)
it suffices to show that z*F is locally quasi-coherent and has the flat base change
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property. Again by part (1) it suffices to do this (Zariski) locally on U, hence we
may assume that U is affine. By Morphisms of Stacks, Lemma there exists
an fppf covering {a; : U; — U} such that each z o a; factors through some f;.
Hence the module a}F on (Sch/U;)¢pps is locally quasi-coherent and has the flat
base change property. After refining the covering we may assume {U; — U};=1,.. n
is a standard fppf covering. Then z*F is an fppf module on (Sch/U)spps whose
pullback by the morphism a : Uy IT... 11 U,, — U is locally quasi-coherent and has
the flat base change property. Hence by the previous paragraph we see that «*F
is locally quasi-coherent and has the flat base change property as desired. (Il

0GQH |Lemmal 8.3. Let f : X — Y be a morphism of algebraic stacks which is quasi-

compact, quasi-separated, and representable by algebraic spaces. Let F be in LQCohfbc(OX).
Then for an object y : V — Y of Y we have

(Rif*f”‘/émle = Rif.;mall,*(‘F|Uétale)
where f': U =V xy X — V is the base change of f.

Proof. By Sheaves on Stacks, Lemma we can reduce to the case where X
is represented by U and )Y is represented by V. Of course this also uses that the
pullback of F to U is in LQCoh!**(Oy) by Proposition Then the result follows
from Sheaves on Stacks, Lemma and the fact that R'f, may be computed in
the étale topology by Proposition [B1] (I

0GQI Lemmal 8.4. Let f : X — Y be an affine morphism of algebraic stacks. The
functor f, : LQCoR'**(Ox) — LQCoh!*(Oy) is exact and commutes with direct
sums. The functors R'f, fori > 0 vanish on LQCoh!*(O).

Proof. The functors exist by Proposition By Lemma this reduces to
the case of an affine morphism of algebraic spaces taking higher direct images
in the setting of quasi-coherent modules on algebraic spaces. By the discussion in
Cohomology of Spaces, Section [3| we reduce to the case of an affine morphism of
schemes. For affine morphisms of schemes we have the vanishing of higher direct
images on quasi-coherent modules by Cohomology of Schemes, Lemma The
vanishing for R!f, implies exactness of f,. Commuting with direct sums follows
from Morphisms, Lemma for example. O

9. Parasitic modules
0772  The following definition is compatible with Descent, Definition [I12.1]

0773 Definition 9.1. Let X be an algebraic stack. A presheaf of Oy-modules F is
parasitic if we have F(z) = 0 for any object x of X which lies over a scheme U such
that the corresponding morphism = : U — X is flat.

Here is a lemma with some properties of this notion.

0774 Lemma 9.2. Let X be an algebraic stack. Let F be a presheaf of Ox-modules.
(1) If F is parasitic and g : Y — X is a flat morphism of algebraic stacks, then
g*F is parasitic.
(2) For T € {Zariski, étale, smooth, syntomic, fppf} we have
(a) the T sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(X;,Ox) consisting of parasitic modules is
a Serre subcategory.
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(3) Suppose F is a sheaf for the étale topology. Let f; : X; — X be a family of
smooth morphisms of algebraic stacks such that |X| =, | fi|(|X5]). If each
fF is parasitic then so is F.

(4) Suppose F is a sheaf for the fppf topology. Let f; : Xi — X be a family of
flat and locally finitely presented morphisms of algebraic stacks such that
|X| = U, |fil(|1X:]). If each f}F is parasitic then so is F.

Proof. To see part (1) let y be an object of ) which lies over a scheme V such that
the corresponding morphism y : V' — ) is flat. Then ¢g(y) : V — Y — X is flat
as a composition of flat morphisms (see Morphisms of Stacks, Lemma hence
F(g(y)) is zero by assumption. Since g*F = g~ ' F(y) = F(g(y)) we conclude g*F
is parasitic.

To see part (2)(a) note that if {z; — x} is a 7-covering of X, then each of the
morphisms x; — z lies over a flat morphism of schemes. Hence if x lies over a
scheme U such that x : U — X is flat, so do all of the objects z;. Hence the
presheaf Ft (see Sites, Section is parasitic if the presheaf F is parasitic. This
proves (2)(a) as the sheafification of F is (F)*.

Let F be a parasitic 7-module. It is immediate from the definitions that any
submodule of F is parasitic. On the other hand, if 7/ C F is a submodule, then it
is equally clear that the presheaf x +— F(x)/F'(z) is parasitic. Hence the quotient
F/F'is a parasitic module by (2)(a). Finally, we have to show that given a short
exact sequence 0 — F; — Fo — F3 — 0 with F; and JF3 parasitic, then F5 is
parasitic. This follows immediately on evaluating on x lying over a scheme flat over
X. This proves (2)(b), see Homology, Lemma [10.2]

Let f; : &; — X be a jointly surjective family of smooth morphisms of algebraic
stacks and assume each f;F is parasitic. Let « be an object of X which lies over
a scheme U such that « : U — X is flat. Consider a surjective smooth covering
W; = U x4 x X;. Denote y; : W; — X, the projection. It follows that {f;(y;) — =}
is a covering for the smooth topology on X'. Since a composition of flat morphisms
is flat we see that f*F(y;) = 0. On the other hand, as we saw in the proof of
(1), we have f*F(y;) = F(fi(y:;)). Hence we see that for some smooth covering
{z; = x}ier in X we have F(x;) = 0. This implies F(z) = 0 because the smooth
topology is the same as the étale topology, see More on Morphisms, Lemma, |38.7]
Namely, {z; — x};¢c5 lies over a smooth covering {U; — U };¢r of schemes. By the
lemma just referenced there exists an étale covering {V; — U}, e; which refines
{Ui = Utier. Denote ) = z|y,. Then {z; — z} is an étale covering in X' refining
{zi = z}ier. This means the map F(z) — [[;c, F(2}), which is injective as F
is a sheaf in the étale topology, factors through F(z) — [[;c; F(x;) which is zero.
Hence F(z) = 0 as desired.

Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). O

Parasitic modules are preserved under absolutely any pushforward.

Lemma 9.3. Let 7 € {étale, fppf}. Let X be an algebraic stack. Let F be a
parasitic object of Mod(X,,Ox).
(1) Hi(X,F) =0 for all i.
(2) Let f: X — Y be a morphism of algebraic stacks. Then R'f.F (computed
in T-topology) is a parasitic object of Mod(Y,,Oy).
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Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma we see that
Rif,F is the sheaf associated to the presheaf

s (V1)

Here y is a typical object of Y lying over the scheme V. By Lemma [9.2] it suffices
to show that these cohomology groups are zero when y : V' — ) is flat. Note that
pr:V xyy X — X is flat as a base change of y. Hence by Lemma we see that
pr—1F is parasitic. Thus it suffices to prove (1).

To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition to
reduce this to the case where X' is an algebraic stack representable by an algebraic
space. Note that in the spectral sequence each f, “lF = JpF is a parasitic module
by Lemma @ because the morphisms f, : U, = U Xx ... Xx U — X are flat.
Reusing this spectral sequence one more time (as in the proof of Lemma [5 . we
reduce to the case where the algebraic stack X is representable by a scheme X.
Then Hi(X,F) = H'((Sch/X).,F). In this case the vanishing follows easily from
an argument with Cech coverings, see Descent, Lemma m 0

The following lemma is one of the major reasons we care about parasitic modules.
To understand the statement, recall that the functors QCoh(Ox) — Mod(Xstaie, Ox)
and QCoh(Ox) — Mod(Ox) aren’t exact in general.

Lemma 9.4. Let X be an algebraic stack. Let o : F — G and B : G — H be maps
in QCoh(Ox) with Boa =0. The following are equivalent:
(1) 4n the abelian category QCoh(Ox) the complexr F — G — H is exact at G,
(2) Ker(8)/Im(cr) computed in either Mod(Xeate, Ox) or Mod(Xyppps, Ox) is
parasitic.

Proof. We have QCoh(Ox) C LQCoh™™*(Ox), see Sectionl Hence Ker (S )/Im(a)
computed in Mod(Xzia1e, Ox) or Mod(Xypyr, Ox) agree, see Proposition From
now on we will use the étale topology on X.

Let £ be the cohomology of F — G — H computed in the abelian category
QCoh(Ox). Let x : U — X be a flat morphism where U is a scheme. As we are us-
ing the étale topology, the restriction functor Mod(Xstaie, Ox) — Mod(Ugtate, Ov)
is exact. On the other hand, by Lemma [4.I] and Sheaves on Stacks, Lemma
the restriction functor

QCoh(Ox) 5 QCoh((Sch/U)esate, O) —211%% QCO(Usgare, Ou)
is exact too. We conclude that &|y,,,,. = (Ker(8)/Im(a))|v. . -

If (1) holds, then & = 0 hence Ker(8)/Im(«) restricts to zero on Ugiqe for all
U flat over X’ and this is the definition of a parasitic module. If (2) holds, then
Ker(8)/Im(«) restricts to zero on Ugtqe for all U flat over X hence & restricts to
zero on Ugiqre for all U flat over X'. This certainly implies that the quasi-coherent
module & is zero, for example apply Lemma [.2] to the map 0 — £. (]

10. Quasi-coherent modules

We have seen that the category of quasi-coherent modules on an algebraic stack is
equivalent to the category of quasi-coherent modules on a presentation, see Sheaves
on Stacks, Section This fact is the basis for the following.
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Lemma 10.1. Let X be an algebraic stack. Let LQCoh'**(Ox) be the category
of locally quasi-coherent modules with the flat base change property, see Section[8
The inclusion functor i : QCoh(Ox) — LQCohfbc((’)X) has a right adjoint

Q : LQCol'*(Ox) — QCoh(Ox)
such that Q o i is the identity functor.

Proof. Choose a scheme U and a surjective smooth morphism f : U — X. Set
R =U xx U so that we obtain a smooth groupoid (U, R, s,t, ¢) in algebraic spaces
with the property that X = [U/R], see Algebraic Stacks, Lemma We may

and do replace X by [U/R]. By Sheaves on Stacks, Proposition there is an
equivalence

q1 : QCoh(U, R, s,t,¢) — QCoh(Ox)
Let us construct a functor
¢ : LQCoh'*(Ox) — QCoh(U, R, s,t,c)
by the following rule: if F is an object of LQCohfbc(OX) then we set
@2(F) = (" Flueae @)
where « is the isomorphism
tamatt (S Floeia.) = CF*F

where the outer two morphisms are the comparison maps. Note that go(F) is
quasi-coherent precisely because F is locally quasi-coherent and that we used (and
needed) the flat base change property in the construction of the descent datum
«. We omit the verification that the cocycle condition (see Groupoids in Spaces,
Definition holds. Looking at the proof of Sheaves on Stacks, Proposition m
we see that ¢o 014 is the quasi-inverse to q;. We define Q) = ¢q1 0 g2. Let F be an
object of LQCoh!*(Ox) and let G be an object of QCoh(Ox). We have

Mor g consve(0) (1(G), F) = Mot @oonu,r,s,t,¢)(42(i(9)), 42(F))
= Mor gcon(ox) (9, Q(F))
where the first equality is Sheaves on Stacks, Lemma and the second equality

holds because g 0 and g5 are quasi-inverse equivalences of categories. The assertion
Q o =id is a formal consequence of the fact that ¢ is fully faithful. O

Rétare 7 S*f*]:

Rétare 7 SZmall(f*]: Uétale)

Lemma 10.2. Let X be an algebraic stack. Let Q : LQCoh!*(Ox) — QCoh(Ox)
be the functor constructed in Lemma [10.1}

(1) The kernel of Q is exactly the collection of parasitic objects of LQCoh™"*(Ox).

(2) For any object F of LQCoh'**(Ox) both the kernel and the cokernel of the
adjunction map Q(F) — F are parasitic.

(3) The functor @ is exact and commutes with all limits and colimits.

Proof. Write X = [U/R] as in the proof of Lemma Let F be an object of
LQCoh!*(Oy). Tt is clear from the proof of Lemma that F is in the kernel of
Q if and only if Fly, = 0. In particular, if F is parasitic then F is in the kernel.

étale
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Next, let  : V — X be a flat morphism, where V is a scheme. Set W =V xy U
and consider the diagram

U——X
Note that the projection p : W — U is flat and the projection ¢ : W — V is smooth
and surjective. This implies that ¢, is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain

DimatiF Usrare = CimanrF Virare- Thus if F is in the kernel of @, then Fly,,,,. =0
which completes the proof of (1).

tale

Part (2) follows from the discussion above and the fact that the map Q(F) — F
becomes an isomorphism after restricting to Ustqie-

To see part (3) note that @ is left exact as a right adjoint. Let 0 - F -G —H — 0
be a short exact sequence in LQCoh!*(Oy). Consider the following commutative
diagram

0—=Q(F) Q(9) Q(H) 0

R

0 F g H 0

Since the kernels and cokernels of a, b, and ¢ are parasitic by part (2) and since
the bottom row is a short exact sequence, we see that the top row as a complex of
Ox-modules has parasitic cohomology sheaves (details omitted; this uses that the
category of parasitic modules is a Serre subcategory of the category of all modules).
By left exactness of @) we see that only exactness at Q(H) is at issue. However, the
cokernel Q of Q(G) — Q(H)) may be computed either in Mod(Ox) or in QCoh(Ox)
with the same result because the inclusion functor QCoh(Ox) — LQCoh!*(Oy) is
a left adjoint and hence right exact. Hence Q = Q(Q) is both quasi-coherent and
parasitic, whence 0 by part (1) as desired.

As a right adjoint Q commutes with all limits. Since @ is exact, to show that @
commutes with all colimits it suffices to show that () commutes with direct sums, see
Categories, Lemma Let F;, i € I be a family of objects of LQCoh!**(O). To
see that Q(€D F;) is equal to @@ Q(F;) we look at the construction of @ in the proof
of Lemma This uses a presentation X = [U/R] where U is a scheme. Then
Q(F) is computed by first taking the pair (F|y,,,,.,«) in QCoh(U, R, s,t,c) and
then using the equivalence QCoh(U, R, s,t,c) = QCoh(Ox). Since the restriction
functor Mod(Ox) — Mod(Oy.,.,.), F — Flu commutes with direct sums, the
desired equality is clear. O

étale

Lemma 10.3. Let f : X — Y be a flat morphism of algebraic stacks. Then
Qx o f*= f*oQy where Qx and Qy are as in Lemma[10.1]

Proof. Observe that f* preserves both @QCoh and LQC’ohf b¢ " see Sheaves on
Stacks, Lemma and Proposition If F is in LQCoh/*(Oy) then Qy(F) —
F has parasitic kernel and cokernel by Lemma As f is flat we get that
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[*Qy(F) — f*F has parasitic kernel and cokernel by Lemma Thus the in-
duced map f*Qy(F) — Qx(f*F) has parasitic kernel and cokernel and hence is
an isomorphism for example by Lemma [9.4] O

Lemma 10.4. Let X be an algebraic stack. Let x be an object of X lying over
the scheme U such that = : U — X is flat. Then for F in QCoh!**(Ox) we have
Q(‘F)|Uétale = ]:|Uémze'

Proof. True because the kernel and cokernel of Q(F) — F are parasitic, see
Lemma [[0.2 O

Remark 10.5. Let X be an algebraic stack. The category QCoh(Oy) is abelian,
the inclusion functor QCoh(Ox) — Mod(Ox) is right exact, but not exact in gen-
eral, see Sheaves on Stacks, Lemma We can use the functor () from Lemmas
[10.1]and [10.2] to understand this. Namely, let ¢ : F — G be a map of quasi-coherent
Ox-modules. Then

(1) the cokernel Coker(y) computed in Mod(Ox) is quasi-coherent and is the
cokernel of ¢ in QCoh(Oy),

(2) the image Im(yp) computed in Mod(Oy) is quasi-coherent and is the image
of v in QCoh(Ox), and

(3) the kernel Ker(y) computed in Mod(Oy) is in LQCoh!**(Ox) by Proposi-
tion [8.1] and Q(Ker(¢)) is the kernel in QCoh(Ox).

This follows from the references given.

Remark| 10.6. Let X be an algebraic stack. Given two quasi-coherent Oy-
modules F and G the tensor product module F®o, G is quasi-coherent, see Sheaves
on Stacks, Lemmapart (5). Similarly, given two locally quasi-coherent modules
with the flat base change property, their tensor product has the same property, see
Proposition 81} Thus the inclusion functors

QCoh(Ox) = LQCoh*(Ox) — Mod(Ox)

are functors of symmetric monoidal categories. What is more interesting is that
the functor

Q : LQCoh!**(Ox) — QCoh(Ox)

is a functor of symmetric monoidal categories as well. Namely, given F and G in
F R0y G

LQCoh!"(Ox) we obtain
Q(9)
Q( g)

Q(]:) Xox
where the south-west arrow comes from the universal property of the north-west
arrow (and the fact already mentioned that the object in the upper left corner is
quasi-coherent). If we restrict this diagram to Ugygre for U — X flat, then all three
arrows become isomorphisms (see Lemmasandand Deﬁnition. Hence
Q(F) ®o, Q(G) = Q(F ®p, G) is an isomorphism, see for example Lemma

Remark 10.7. Let X be an algebraic stack. Let Parasitic(Oy) C Mod(Ox)
denote the full subcategory consiting of parasitic modules. The results of Lemmas

F R0
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[10.1] and [10.2) imply that
QCoh(Ox) = LQCoh'**(Ox)/ Parasitic(Ox) N LQCoh'*(Ox)

in words: the category of quasi-coherent modules is the category of locally quasi-
coherent modules with the flat base change property divided out by the Serre sub-
category consisting of parasitic objects. See Homology, Lemma [10.6] The existence
of the inclusion functor i : QCoh(Ox) — LQCoh*(Ox) which is left adjoint to the
quotient functor is a key feature of the situation. In Derived Categories of Stacks,
Section [5|and especially Lemma [5.4) we prove that a similar result holds on the level
of derived categories.

Lemma 10.8. Let X be an algebraic stack. Let F be an Ox-module of fi-
nite presentation and let G be a quasi-coherent Ox-module. The internal homs
Homo, (F,G) computed in Mod(Xsqie, Ox) or Mod(Ox) agree and the common
value is an object of LQCoh!*(Ox). The quasi-coherent module hom(F,G) =
Q(Homeo,, (F,G)) has the following universal property
Homy (H, hom(F,G)) = Homx(H Q0. F,G)

for H in QCoh(Ox).
Proof. The construction of Home, (F,G) in Modules on Sites, Sectiondepends
only on F and G as presheaves of modules; the output Hom is a sheaf for the fppf
topology because F and G are assumed sheaves in the fppf topology, see Modules on
Sites, Lemma By Sheaves on Stacks, Lemma we see that Homo,, (F,G)
is locally quasi-coherent. By Lemma [7.2] we see that Homo, (F,G) has the flat base
change property. Hence Homo ., (F,G) is an object of LQCoh/**(Ox) and it makes
sense to apply the functor @ of Lemma [10.1] to it. By the universal property of Q
we have

Homy (H, Q(Homo, (F,G))) = Homx (H, Home . (F,G))
for H quasi-coherent, hence the displayed formula of the lemma follows from Mod-
ules on Sites, Lemma [27.6 O

Lemma 10.9. Let f: X — Y be a flat morphism of algebraic stacks. Let F be an
Oy -module of finite presentation and let G be a quasi-coherent Oy -module. Then
f*hom(F,G) = hom(f*F, f*G) with notation as in Lemma[10.8

Proof. We have f* Homo,, (F,G) = Homo, (f*F, f*G) by Modules on Sites, Lemma
(Observe that this step is not where the flatness of f is used as the morphism
of ringed topoi associated to f is always flat, see Sheaves on Stacks, Remark )
Then apply Lemma [10.3] (and here we do use flatness of f). O

11. Pushforward of quasi-coherent modules
Let f: X — Y be a morphism of algebraic stacks. Consider the pushforward
f>,< : MOd(O/\/) — MOd(Oy)

It turns out that this functor almost never preserves the subcategories of quasi-
coherent sheaves. For example, consider the morphism of schemes

j:X=A3\{0} — A =Y.
Associated to this we have the corresponding morphism of algebraic stacks
[ = Jvig : X = (Sch/X) ppps — (Sch/Y ) ppps =Y
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The pushforward f.Ox of the structure sheaf has global sections k[x,y]. Hence if
f«Ox is quasi-coherent on Y then we would have f.Ox = Oy. However, consider
T = Spec(k) — A} =Y mapping to 0. Then I'(T, f.Ox) = 0 because X xy T = ()
whereas I'(T', Oy) = k. On the positive side, for any flat morphism 7" — Y we
have the equality T'(T, f,Ox) = T'(T, Oy) as follows from Cohomology of Schemes,
Lemma [5.2| using that j is quasi-compact and quasi-separated.

Let f : X — Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. We work around the problem mentioned above using the following three
observations:

(1) f« does preserve locally quasi-coherent modules (Lemma ,

(2) f.« transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf
whose flat comparison maps are isomorphisms (Lemma , and

(3) locally quasi-coherent Oy-modules with the flat base change property give
rise to quasi-coherent modules on a presentation of ) and hence quasi-
coherent modules on ), see Sheaves on Stacks, Section

Thus we obtain a functor

fQCoh,* : QCOh(Ox) — QCOh(Oy)
which is a right adjoint to f* : QCoh(Oy) — QCoh(Ox) such that moreover

F(ya f*]:) = F(yvaC’oh,*]:)

for any y € Ob()) such that the associated 1-morphism y : V' — Y is flat, see
Lemma m Moreover, a similar construction will produce functors R’ focon,x-
However, these results will not be sufficient to produce a total direct image functor
(of complexes with quasi-coherent cohomology sheaves).

Proposition| 11.1. Let f : X — Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. The functor f* : QCoh(Oy) — QCoh(Ox) has a right
adjoint
fqconx : QCoh(Ox) — QCoh(Oy)
which can be defined as the composition
QCoh(Ox) — LQCoW ™ (Ox) L5 LQCOW " (0y) 2 QCoh(Oy)

where the functors f. and Q are as in Proposition[8_1] and Lemma[I0.1 Moreover,
if we define R fqcon« as the composition

QCoh(Ox) — LQCoh™(0x) Ty LQCoh™™(0y) 2L QCoh(Oy)
then the sequence of functors {RifQC’oh,*}iZO forms a cohomological §-functor.

Proof. This is a combination of the results mentioned in the statement. The
adjointness can be shown as follows: Let F be a quasi-coherent Oy-module and let
G be a quasi-coherent Oy-module. Then we have

MOchoh(oX) (f*g, f) = MorLQCOhbe(Oy) (g, f*f)
= MorQCoh(oy)(@ Q(f*f))
= Mor gcon(0,)(G, fQcon«F)

the first equality by adjointness of f. and f* (for arbitrary sheaves of modules).
By Proposition we see that f,JF is an object of LQC’ohfbc(Oy) (and can be
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computed in either the fppf or étale topology) and we obtain the second equality
by Lemma The third equality is the definition of fgocon,«-

To see that {R'fgcon«}i>0 is a cohomological d-functor as defined in Homology,
Definition [2.7] let

0—=Fr—=Fa—=Fz3—=0

be a short exact sequence of QCoh(Oy). This sequence may not be an exact
sequence in Mod(Oy) but we know that it is up to parasitic modules, see Lemma
Thus we may break up the sequence into short exact sequences

0—=P—=>Fr—-Iy—0
0Ty = Fo— Q2 —0
0—=Py—= Qs —13—=0
0—>Z3 > F3—>P3—0

of Mod(Ox) with P; parasitic. Note that each of the sheaves P;, Z;, Q; is an
object of LQCoh'*(Oy), see Proposition Applying R’ f, we obtain long exact
sequences

0= f.P1— fuFi = fulo = R f.P1 — ...

0= fils = fuF2 — [ Q2 — le*IQ — ...

0= fiPs— fuQa — fuls — R f. Py — ...

0— fuils — fuF3 — fiP3 — RT3 — ...
where are the terms are objects of LQCoh' bc((’)y) by Proposition By Lemma

9.3| the sheaves R? f«P; are parasitic, hence vanish on applying the functor @, see
Lemma [10.2] Since @ is exact the maps

Q(Rif*]'—li) = Q(Rif*IB) = Q(sz* Q2) - Q(Ri+1f*I2) = Q(Ri+1f*-7'-1)

can serve as the connecting map which turns the family of functors { R focon « }i>0
into a cohomological d-functor.

Lemma 11.2. Let f: X — Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Lety: V — Y in Ob(Y) with y a flat morphism. Let F be in

J?CO?Z(OX)- Then (f.F)(y) = (fQoon«F)(y) and (R'f.F)(y) = (R’ fQcon«F) ()
or alli € 7.

Proof. This follows from the construction of the functors R? focon,« in Proposition
[[1] the definition of parasitic modules in Definition [0.I} and Lemma [I0.2] part
(2). O

Remark|/11.3. Let f: X — Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F and G be in QCoh(Oy). Then there is a canonical
commutative diagram

foconsxF @0y focon+«G — f+F ®o,, f:G

focon«(F @0y G) —— fo(F @04 G)

The vertical arrow ¢ on the right is the naive relative cup product (in degree 0), see
Cohomology on Sites, Section The source and target of ¢ are in LQCoh/**(Ox),
see Proposition[8.1] Applying @Q to ¢ we obtain the left vertical arrow as @ commutes
with tensor products, see Remark m This construction is functorial in F and G.
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Lemma 11.4. Let f: X — Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a quasi-coherent sheaf on X. Then there exists a
spectral sequence with Fo-page

Eg’q = Hp(yv quQCoh,*f)
converging to HPT4(X, F).
Proof. By Cohomology on Sites, Lemma the Leray spectral sequence with
By = (9, 1. )
converges to HPT4(X F). The kernel and cokernel of the adjunction map
Rifqcon«F — RIfF
are parasitic modules on ) (Lemmal/(10.2)) hence have vanishing cohomology (Lemma
. It follows formally that HP(Y, R? focon«F) = HP(Y, RI f.F) and we win. [

Lemma 11.5. Let f: X — Y andg:Y — Z be quasi-compact and quasi-separated
morphisms of algebraic stacks. Let F be a quasi-coherent sheaf on X. Then there
exists a spectral sequence with Es-page

EP9 = RPgocon« (R focon«F)
converging to RPT(g o f)gcon«F-
Proof. By Cohomology on Sites, Lemma the Leray spectral sequence with
B} = R'g.(R'L.F)
converges to RPT4(g o f).F. By the results of Proposition all the terms of
this spectral sequence are objects of LQCoh! ¢(0z). Applying the exact functor
Qz : LQCoh™(0z) — QCoh(Oz) we obtain a spectral sequence in QCoh(Oz)
covering to RP*9(g o f)ocon,«F. Hence the result follows if we can show that
Qz(RPg.(Rf.F)) = Qz(R?g.(Qx (R f..F))
This follows from the fact that the kernel and cokernel of the map
Qx(RIf.F) — RIf.F
are parasitic (Lemma [10.2)) and that RPg, transforms parasitic modules into para-

sitic modules (Lemma [9.3)). O

To end this section we make explicit the spectral sequences associated to a smooth
covering by a scheme. Please compare with Sheaves on Stacks, Sections [20] and

Proposition 11.6. Let f : U — X be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces, surjective, flat, and locally of finite presentation.
Let F be a quasi-coherent Ox-module. Then there is a spectral sequence

EY? = H'(U,, f3 F) = H'TI(X, F)
where f, is the morphism U Xx ... xx U — X (p+ 1 factors).
Proof. This is a special case of Sheaves on Stacks, Proposition [20.1} O

Proposition| 11.7. Let f: U — X and g : X — Y be composable morphisms of
algebraic stacks. Assume that

(1) f is representable by algebraic spaces, surjective, flat, locally of finite pre-
sentation, quasi-compact, and quasi-separated, and
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(2) g is quasi-compact and quasi-separated.

If F is in QCoh(Ox) then there is a spectral sequence
Equ = Rq(g o fl))QCoh,*f;f = Rp+qgQC0h,*F
in QCoh(Oy).

Proof. Note that each of the morphisms f, : U xx ... xx U — X is quasi-compact
and quasi-separated, hence g o f, is quasi-compact and quasi-separated, hence the
assertion makes sense (i.e., the functors RI(g o f,) Qcon,« are defined). There is a
spectral sequence

EY?=Ri(go fp).f, ' F = R'Tig.F

J2
by Sheaves on Stacks, Proposition Applying the exact functor Qy : LQCoh!**(Oy) —

QCoh(Oy) gives the desired spectral sequence in QCoh(Oy). O
12. Further remarks on quasi-coherent modules

0GQS In this section we collect some results that to help understand how to use quasi-
coherent modules on algebraic stacks.

Let f:U — X be a morphism of algebraic stacks. Assume U is represented by the
algebraic space U. Consider the functor

a : Mod(X¢tare, Ox) — Mod(Ustate, Ov), F +— f*F

Ustale

given by pullback (Sheaves on Stacks, Section [7)) followed by restriction (Sheaves
on Stacks, Section . Applying this functor to locally quasi-coherent modules we
obtain a functor

b: LQCoMOx) — QCoh(Ustaie, Ov)

See Sheaves on Stacks, Lemmas and We can further limit our functor to
even smaller subcategories to obtain

c: LQCOhbe(OX) — QCoh(Ustaie, Ov)

and
d: QCOh(O)() — QCOh(Uétal@, OU)
About these functors we can say the followingﬂ

(1) The functor a is exact. Namely, pullback f* = f~! is exact (Sheaves on
Stacks, Section and restriction to Ugye 1S exact, see Sheaves on Stacks,
Equation .

(2) The functor b is exact. Namely, by Sheaves on Stacks, Lemma the
inclusion LQCoh(Ox) — Mod(X¢taie, Ox) is exact.

(3) The functor ¢ is exact. Namely, by Proposition the inclusion functor
LQCohfbc(OX) — Mod(Xstaie, Ox) is exact.

(4) The functor d is right exact but not exact in general. Namely, by Sheaves on
Stacks, Lemma the inclusion functor QCoh(Ox) — Mod(Xe¢tate, Ox)
is right exact. We omit giving an example showing non-exactness.

(5) If f is flat, then d is exact. This follows on combining Lemma and
Sheaves on Stacks, Lemma, [14.2

3We suggest working out why these statements are true on a napkin instead of following the
references given.



COHOMOLOGY OF ALGEBRAIC STACKS 23

(6) If f is flat, then c kills parasitic objects. Namely, f* preserves parasitic
object by Lemma[0.2] Then for any scheme V étale over U and hence flat
over X we see that 0 = f*Flv,,.,. = ¢(F)|v,,.. by the compatibility of
restriction with étale localization Sheaves on Stacks, Remark Hence

clearly c¢(F) = 0.

(7) If f is flat, then ¢ = d o Q. Namely, the kernel and cokernel of Q(F) — F
are parasitic by Lemma Thus, since ¢ is exact (3) and kills parasitic
objects (6), we see that ¢ applied to Q(F) — F is an isomorphism.

(8) The functors a,b,c,d commute with colimits and arbitrary direct sums.
This is true for f* and restriction as left adjoints and hence it holds for a.
Then it follows for b, ¢, d by the references given above.

(9) The functors a, b, ¢, d commute with tensor products.

(10) If f is flat and surjective, F is in LQCoh'*(Oy), and ¢(F) = 0, then
F is parasitic. Namely, by (7) we get d(Q(F)) = 0. We may assume U
is a scheme by the compatibility of restriction with étale localization (see
reference above). Then Lemma [4.2|applied to 0 — Q(F) and the morphism
f:U — X shows that Q(F) = 0. Thus F is parasitic by Lemma [10.2]

(11) If f is flat and surjective, then the functor d reflects exactness. More pre-
cisely, let F7* be a complex in QCoh(Oy). Then F* is exact in QCoh(Ox)
if and only if d(F*) is exact. Namely, we have seen one implication in (5).
For the other, suppose that H*(d(F*)) = 0. Then G = H*(F*) is an object
of QCoh(Ox) with d(G) = 0. Hence G is both quasi-coherent and parasitic
by (10), whence 0 for example by Remark [10.7]

0GQT (12) If f is flat, F,G € Ob(QCoh(Ox)), and F of finite presentation and let
then we have

d(hom(F,G)) = Home,, (d(F),d(G))

with notation as in Lemma [I0.8] Perhaps the easiest way to see this is as
follows

d(hom(F,G)) = d(Q(Homo, (F,G)))
= c(Homp, (F,G))
= " Homo (F,9)|vsare
= Homo,, (f*F, [*Olv.rare
= Homoy (f* Flviae: [ GUsare)

The first equality by construction of hom. The second equality by (7).
The third equality by definition of ¢. The fourth equality by Modules on
Sites, Lemma The final equality by the same reference applied to the
flat morphism of ringed topoi iy (Ustaie, Ou) — (Uetate, Our) of Sheaves on
Stacks, Lemma [10.1

(13) add more here.

13. Colimits and cohomology

0GQU The following lemma in particular applies to diagrams of quasi-coherent sheaves.

0GQV |Lemmal13.1. Let X be a quasi-compact and quasi-separated algebraic stack. Then
colim; H? (X, F;) — HP(X, colim; F;)
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is an isomorphism for every filtered diagram of abelian sheaves on X. The same is
true for abelian sheaves on Xgpq1e taking cohomology in the étale topology.

Proof. Let 7 = fppf, resp. 7 = étale. The lemma follows from Cohomology on
Sites, Lemma applied to the site X;. In order to check the assumptions we use
Cohomology on Sites, Remark Namely, let B C Ob(X;) be the set of objects
lying over affine schemes. In other words, an element of B is a morphism x : U — X
with U affine. We check each of the conditions (1) — (4) of the remark in turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
z: U — X with U affine (Properties of Stacks, Lemma. Then h¥ — *
is a surjective map of sheaves on X’;.

(2) Since coverings in X, are fppf, resp. étale coverings, we see that every
covering of U € B is refined by a finite affine fppf covering, see Topologies,
Lemma [7.4] resp. Lemma [£.4]

(3) Letz: U — X and 2’ : U’ — X be in B. The product h x hf, in Sh(X;) is
equal to the sheaf on X; determined by the algebraic space W = U X x U’
over X: for an object y : V — X of X, we have (h¥ x hf,)(y) ={f: V-
W |y=axopr;of =1 opryo f}. The algebraic space W is quasi-compact
because X is quasi-separated, see Morphisms of Stacks, Lemma for
example. Hence we can choose an affine scheme U” and a surjective étale
morphism U” — W. Denote z” : U’ — X the composition of U" — W
and W — X. Then hf,, — h# x hj is surjective as desired.

(4) Let x: U — X and 2’ : U’ — X be in B. Let a,b: U — U’ be a morphism
over X, i.e., a,b: x — x’ is a morphism in X,. Then the equalizer of h, and
hy is represented by the equalizer of a,b : U — U’ which is affine scheme
over X and hence in B.

This finished the proof. O

Lemma 13.2. Let f: X — Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F = colim F; be a filtered colimit of abelian sheaves on X.
Then for any p > 0 we have

RP f,F = colim RP f,. F;.

The same is true for abelian sheaves on Xgqe taking higher direct images in the
étale topology.

Proof. We will prove this for the fppf topology; the proof for the étale topology is
the same. Recall that R?f.F is the sheaf on Yypps associated to the presheaf

(y:V = Y)— H(V x,p X,pr ' F)

See Sheaves on Stacks, Lemma Recall that the colimit is the sheaf associated
to the presheaf colimit. When V is affine, the fibre product V xy & is quasi-compact
and quasi-separated. Hence we can apply Lemma to HP(V xy X, —) where
V is affine. Since every V has an fppf covering by affine objects this proves the
lemma. Some details omitted. O

Lemma 13.3. Let f: X — Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor focon» and the functors RifQCoh,* commute with
direct sums and filtered colimits.
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Proof. The functors f. and R'f, commute with direct sums and filtered colimits
on all modules by Lemma The lemma follows as fgoconx = @ o f« and
R focon« = Qo R'f, and @ commutes with all colimits, see Lemma O

Lemma 13.4. Let f : X — Y be an affine morphism of algebraic stacks. The

functors RifQCOh,*, i > 0 vanish and the functor foconx s exact and commutes
with direct sums and all colimits.

Proof. Since we have R’ focon« = Q o R f. we obtain the vanishing from Lemma

The vanishing implies that focon,« is exact as { R’ fgcon,« }i>o form a -functor,

see Proposition [I1.I} Then focon« commutes with direct sums for example by
Lemma [13.31 An exact functor which commutes with direct sums commutes with
all colimits. O

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic stacks.

Lemma 13.5. Let X be a quasi-compact and quasi-separated algebraic stack. Let
I be a directed set and let (F;, i) be a system over I of Ox-modules. Let G be an
Ox-module of finite presentation. Then we have

colim; Homx (G, F;) = Homy (G, colim; F;).
In particular, Homx (G, —) commutes with filtered colimits in QCoh(Ox).

Proof. The displayed equality is a special case of Modules on Sites, Lemma
In order to apply it, we need to check the hypotheses of Sites, Lemma [17.8| part
(4) for the site Xtppr. In order to do this, we will check hypotheses (2)(a), (2)(b),
(2)(c) of Sites, Remark [17.9} Namely, let B C Ob(Xyp,¢) be the set of objects lying
over affine schemes. In other words, an element of B is a morphism z : U — X with
U affine. We check each of the conditions (2)(a), (2)(b), and (2)(c) of the remark
in turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
x:U — X with U affine (Properties of Stacks, Lemma. Then h¥ — *
is a surjective map of sheaves on Xy, ;.

(2) Since coverings in Xy,,; are fppf coverings, we see that every covering of
U € B is refined by a finite affine fppf covering, see Topologies, Lemma#@

(3) Let # : U — X and 2’ : U’ — X be in B. The product h¥ x h7, in
Sh(Xfppr) is equal to the sheaf on Xyp, ¢ determined by the algebraic space
W = U Xg,x, U over X: for an object y : V. — X of Xf,,r we have
(h# xh?)(y) ={f:V =W |y=zopr,of=a'opryo f}. The algebraic
space W is quasi-compact because X is quasi-separated, see Morphisms of
Stacks, Lemma for example. Hence we can choose an affine scheme
U” and a surjective étale morphism U” — W. Denote z” : U” — X the
composition of U” — W and W — X. Then b, — h# x h¥ is surjective
as desired.

For the final statement, observe that the inclusion functor QCoh(Ox) — Mod(Ox)
commutes with colimits and that finitely presented modules are quasi-coherent. See
Sheaves on Stacks, Lemma [15.1 (]
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14. The lisse-étale and the flat-fppf sites

0786 In the book [LMB00] many of the results above are proved using the lisse-étale site
of an algebraic stack. We define this site here. In Examples, Section [58] we show
that the lisse-étale site isn’t functorial. We also define its analogue, the flat-fppf
site, which is better suited to the development of algebraic stacks as given in the
Stacks project (because we use the fppf topology as our base topology). Of course
the flat-fppf site isn’t functorial either.

0787 Definition 14.1. Let X be an algebraic stack.

(1) The lisse-étale site of X is the full subcategory Xlisse,étalﬁ of X whose
objects are those z € Ob(X) lying over a scheme U such that z : U — X is
smooth. A covering of Xjisse,étate is @ family of morphisms {x; — x},er of
Xiisse,étale Which forms a covering of Xgiqie.

(2) The flat-fppf site of X is the full subcategory Xfiqat, fpps of X whose objects
are those z € Ob(X) lying over a scheme U such that z : U — X is flat.
A covering of X4, rpps is & family of morphisms {z; — z}ier of Xfiat, fpps
which forms a covering of Xppp .

We denote Oy, .. ... the restriction of Oy to the lisse-étale site and similarly for
OX;101.pps- The relationship between the lisse-étale site and the étale site is as
follows (we mainly stick to “topological” properties in this lemma).

0788 Lemma 14.2. Let X be an algebraic stack.

(1) The inclusion functor Xisse étale — Xeétale 5 fully faithful, continuous and
cocontinuous. It follows that
(a) there is a morphism of topoi

g: Sh(Xlisse,étale) — Sh(Xétale)

with g~ given by restriction,
) the functor g~! has a left adjoint g!Sh on sheaves of sets,
(c) the adjunction maps g~ 'g. — id and id — gilg!Sh are isomorphisms,
(d) the functor g=' has a left adjoint g on abelian sheaves,
(e) the adjunction map id — g~'g is an isomorphism, and
) we have g 'Ox = Ox,,... ci. hence g induces a flat morphism of
ringed topoi such that g=1 = g*.
(2) The inclusion functor Xfiat, fpps — Xppps @8 fully faithful, continuous and
cocontinuous. It follows that

(a) there is a morphism of topoi

9+ Sh(Xgiat, fpps) — Sh(Xpppy)
with g~ given by restriction,
the functor g~ has a left adjoint g™ on sheaves of sets,
the adjunction maps g~ 'g. — id and id — g_lg!Sh are isomorphisms,

)
)
) the functor g=1 has a left adjoint g on abelian sheaves,
)
)

=

the adjunction map id — g~ ‘g is an isomorphism, and

we have g7'Ox = Oxy,, ;,,; hence g induces a flat morphism of
1

~T
a0

ringed topoi such that g~ = g*.

4In the literature the site is denoted Lis-6t(X) or Lis-Et(X) and the associated topos is de-
noted Xljs.¢¢ Or Xjs.et- In the Stacks project our convention is to name the site and denote the
corresponding topos by Sh(C).
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Proof. In both cases it is immediate that the functor is fully faithful, continuous,
and cocontinuous (see Sites, Definitions and [20.1)). Hence properties (a), (b),
(c) follow from Sites, Lemmas and Parts (d), (e) follow from Modules on
Sites, Lemmas and Part (f) is immediate. O

Lemma 14.3. Let X be an algebraic stack. Notation as in Lemma .

(1) For an abelian sheaf F on Xerare we have
(a) Hp(Xétaleer) = Hp(Xlisse,étalevgilf); and
(b) Hp(xy]:) = Hp(Xlisse,étale/m7g_1]:> fO?" any Obj€Ct x Of Xlisse,étale-
The same holds for sheaves of modules.

(2) For an abelian sheaf F on Xtppy we have
(a) HP(Xppps, F) = HP(Xpiat,ppps, 9~ ' F), and
(b) HP(z,F) = HP(Xfiat, pps /T, g F) for any object x of Xfiar, tpps-
The same holds for sheaves of modules.

Proof. Part (1)(a) follows from Sheaves on Stacks, Lemma applied to the
inclusion functor Xjisse étate — Xetate. Part (1)(b) follows from part (1)(a). Namely,
if « lies over the scheme U, then the site Xstq10/ is equivalent to (Sch/U)etare and
Xyisse,étale 18 equivalent to Upjsse étate- Part (2) is proved in the same manner. 0O

Lemma 14.4. Let X be an algebraic stack. Notation as in Lemma .
(1) There exists a functor
g MOd()(lisse,étalea OXl,isse,émle) — MOd(Xétalea OX)

which is left adjoint to g*. Moreover it agrees with the functor g1 on abelian
sheaves and g* g = id.
(2) There exists a functor

g1+ Mod(Xriat fops» OXpiar gy ) — Mod(Xpppy, Ox)
which is left adjoint to g*. Moreover it agrees with the functor gi on abelian

sheaves and g* g, = id.

Proof. In both cases, the existence of the functor g follows from Modules on Sites,
Lemma To see that ¢ agrees with the functor on abelian sheaves we will show
the maps Modules on Sites, Equation (41.2.1)) are isomorphisms.

Lisse-étale case. Let € Ob(Xjsse ctale) lying over a scheme U with z : U — X
smooth. Consider the induced fully faithful functor
gl : Xlisse,étale/x — ')C‘étale/flj

The right hand side is identified with (Sch/U)¢tare and the left hand side with
the full subcategory of schemes U’ /U such that the composition U' — U — X is
smooth. Thus Etale Cohomology, Lemma applies.

Flat-fppf case. Let @ € Ob(Xfiat, fppy) lying over a scheme U with  : U — X flat.
Consider the induced fully faithful functor

9" Xpat fpps /T — Xpppr /T

The right hand side is identified with (Sch/U) fpps and the left hand side with the
full subcategory of schemes U’/U such that the composition U’ — U — X is flat.
Thus Etale Cohomology, Lemma applies.
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In both cases the equality ¢g*¢ = id follows from g* = ¢! and the equality for
abelian sheaves in Lemma [14.2) ([

Lemma 14.5. Let X be an algebraic stack. Notation as in Lemmas and .

(1) We have g!OXlisse,éta.lE = OX'
(2) We have 1Ox ;0 00y = Ox-

Proof. In this proof we write C = Xgqie (resp. C = Xjppy) and we denote ' =
Xiisse,étate (resp. C' = Xyiar,spps). Then C’ is a full subcategory of C. In this proof
we will think of objects V' of C as schemes over X and objects U of C’ as schemes
smooth (resp. flat) over X. Finally, we write O = Ox and O" = Oux,,... ;i
(resp. O" = Ox;uy sppr)- In the notation above we have O(V) = I'(V,Oy) and
O'(U) =T(U,0p). Consider the O-module homomorphism O’ — O adjoint to
the identification O’ = g~1O.

Recall that 1O’ is the sheaf associated to the presheaf g, O’ given by the rule
V — colimy _,y O'(U)

where the colimit is taken in the category of abelian groups (Modules on Sites,
Definition [16.1)). Below we will use frequently that if

VsU—=U

are morphisms and if f’ € O'(U’) restricts to f € O'(U), then (V — U, f) and
(V. = U’, f') define the same element of the colimit. Also, O’ — O maps the
element (V — U, f) simply to the pullback of f to V.

Let us prove that O’ — O is surjective. Let h € O(V) for some object V of
C. Tt suffices to show that h is locally in the image. Choose an object U of C’
corresponding to a surjective smooth morphism U — &. Since U xx V — V is
surjective smooth, after replacing V' by the members of an étale covering of V' we
may assume there exists a morphism V — U, see Topologies on Spaces, Lemma
Using h we obtain a morphism V — U x A! such that writing A! = Spec(Z][t])
the element t € O(U x A') pulls back to h. Since U x A is an object of C’ we see
that (V — U x Al t) is an element of the colimit above which maps to h € O(V)
as desired.

Suppose that s € ¢O'(V) is a section mapping to zero in O(V'). To finish the proof
we have to show that s is zero. After replacing V' by the members of a covering we
may assume s is an element of the colimit

colimy iy O'(U)

Say s = > (¢, s;) is a finite sum with ¢; : V' — U, U; smooth (resp. flat) over X,
and s; € T'(U;, Op,). Choose a scheme W surjective étale over the algebraic space
U=U; Xy ... xx U,. Note that W is still smooth (resp. flat) over X, i.e., defines
an object of C’. The fibre product

V' =V X (om0 W

Pn)s

is surjective étale over V, hence it suffices to show that s maps to zero in O’ (V).
Note that the restriction > (;, s;)|v+ corresponds to the sum of the pullbacks of
the functions s; to W. In other words, we have reduced to the case of (¢, s) where
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¢ : V = U is a morphism with U in C’ and s € O'(U) restricts to zero in O(V).
By the commutative diagram

V—— > UxA!
(,0)
> T(id,o)
U

we see that ((¢,0) : V — U x Al priz) represents zero in the colimit above. Hence
we may replace U by U x Al ¢ by (¢,0) and s by pris + prijz. Thus we may
assume that the vanishing locus Z : s = 0 in U of s is smooth (resp. flat) over X.
Then we see that (V' — Z,0) and (, s) have the same value in the colimit, i.e., we
see that the element s is zero as desired. O

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules
as follows.

Lemma 14.6. Let X be an algebraic stack.

(1) Let F be an Ox-module with the flat base change property on Xsqre. The
following are equivalent
(a) F is parasitic, and
(b) ¢*F =0 where g : Sh(Xjisse,ctaie) = Sh(Xeétare) is as in Lemma .
(2) Let F be an Ox-module on Xpppr. The following are equivalent
(a) F is parasitic, and
(b) ¢*F =0 where g : SR(Xfiat, fppr) — SR(Xfpps) is as in Lemma ,

Proof. Part (2) is immediate from the definitions (this is one of the advantages
of the flat-fppf site over the lisse-étale site). The implication (1)(a) = (1)(b) is
immediate as well. To see (1)(b) = (1)(a) let U be a scheme and let z : U — X
be a surjective smooth morphism. Then z is an object of the lisse-étale site of X.
Hence we see that (1)(b) implies that F|y,,.,. = 0. Let V'— X be an flat morphism
where V is a scheme. Set W = U x y V and consider the diagram

w — v

U——X
Note that the projection p : W — U is flat and the projection ¢ : W — V is smooth
and surjective. This implies that ¢¥,, ., is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain

P e Uerare = ComannF Wesaro- Thus if F is in the kernel of g*, then Fly,,,,. =0
as desired. 0O

15. Functoriality of the lisse-étale and flat-fppf sites

The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the
flat-fppf site is functorial for flat morphisms of algebraic stacks. We warn the
reader that the lisse-étale and flat-fppf topoi are not functorial with respect to all
morphisms of algebraic stacks, see Examples, Section

Lemma 15.1. Let f: X — ) be a morphism of algebraic stacks.
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(1) If f is smooth, then f restricts to a continuous and cocontinuous functor
Xiisse,étale — Vlisse,étale Which gives a morphism of ringed topot fitting into
the following commutative diagram

Sh(Xlisse,étale) ,*> Sh(Xétale)

g
f’l lf
Sh(ylisse,étale) 94> Sh<yétale>

We have fi(g")~" =g fx and g{(f)' = f' g1

(2) If f is flat, then f restricts to a continuous and cocontinuous functor
Xttat, fppr — Vfiat,fops Which gives a morphism of ringed topoi fitting into
the following commutative diagram

Sh(Xfiat, fpps) T> Sh(Xfppy)

/| I

Sh(yflat,fppf) A Sh(yfppf)
We have f(g')"" =g~ ' fo and g{(f')~" = [

Proof. The initial statement comes from the fact that if z € Ob(X) lies over a
scheme U such that z : U — X is smooth (resp. flat) and if f is smooth (resp. flat)
then f(z) : U — Y is smooth (resp. flat), see Morphisms of Stacks, Lemmas and

The induced functor Xliss&étale — ylisse,étale (TeSP- Xflat,fppf — yflatjppf)
is continuous and cocontinuous by our definition of coverings in these categories.
Finally, the commutativity of the diagram is a consequence of the fact that the
horizontal morphisms are given by the inclusion functors (see Lemma and
Sites, Lemma [21.2

To show that f1(g')~! = g~'f. let F be a sheaf on X¢ae (resp. Xpppr). There is
a canonical pullback map

9 F — fllg) T F
see Sites, Section We claim this map is an isomorphism. To prove this pick an

object y of Viisse,ctaie (1€SP. Vfiat, fpps)- Say y lies over the scheme V' such that
y:V — Y is smooth (resp. flat). Since g~! is the restriction we find that

(97" F) (y) =T(V xyp X, pr'F)
by Sheaves on Stacks, Equation (5.0.1). Let (V x, 3y X) C V X,y X be the
full subcategory consisting of objects z : W — V x, y X such that the induced
morphism W — X is smooth (resp. flat). Denote
pr' s (V Xy y &) — Xisse étate (vesp. Xt fppf)

the restriction of the functor pr used in the formula above. Exactly the same
argument that proves Sheaves on Stacks, Equation (5.0.1) shows that for any sheaf
H on Xijsse,étate (r€Sp. Xfiar, fppr) We have

(15.1.1) FiH(y) =T((V xyp X), (pr')7'H)
Since (g’)? is restriction we see that
(fig) I F) () =TV xyp X)', pr ' Flovx, yay)
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By Sheaves on Stacks, Lemma we see that
T((V xyp &), pr Flvs, yay) =T(V xyp X, pr='F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V' — Y is smooth (resp. flat) is used to verify the
second condition.

Finally, the equality g{(f')~* = f~1g: follows formally from the equality f.(g')~! =
¢~ ' f. by the adjointness of f~! and f., the adjointness of ¢ and ¢!, and their
“primed” versions. [l

Lemma 15.2. With assumptions and notation as in Lemma . Let H be an
abelian sheaf on Xjisse ctaie (T€Sp. Xfiat,fppr). Then

(15.2.1) RP flH = sheaf associated to y — HP((V x,y X), (pr')""H)

Here y is an object of Viisse,étate (T€SD- Vfiat, fpps) Wying over the scheme V' and the
notation (V %,y X) and pr’ are explained in the proof.

Proof. As in the proof of Lemma let (V x4y X) CV x,y X be the full
subcategory consisting of objects (z, ) where x is an object of Xjisse ctate (reSD.

Xtiat,fppf) and ¢ @ f(x) = y is a morphism in V. By Equation ([15.1.1)) we have
FH@y) =TV xy» X)', (pr')7'H)

where pr’ is the projection. For an object (z,¢) of (V X,y X)" we can think of
¢ as a section of (f')~th, over z. Thus (V xy3 X)’ is the localization of the site
Xiisse,étate (reSp. Xpiat,fpps) at the sheaf of sets (f’)*lhy, see Sites, Lemmam
The morphism

pr' : (V xyy X) = Xisse,ctate (tesp. pr': (V Xy y X) = Xfiat, fops)
is the localization morphism. In particular, the pullback (pr’)~! preserves injective

abelian sheaves, see Cohomology on Sites, Lemma [13.3

Choose an injective resolution H — Z°® on Xjisse étate (reSp. Xfiat, fpps). By the
formula for pushforward we see that R’f.H is the sheaf associated to the presheaf
which associates to y the cohomology of the complex

L((V xy0 XY (') 171
l
D((V 0 ), ()T

P((V xy0 X), (o) 1T
Since (pr’) ! is exact and preserves injectives the complex (pr’)~1Z* is an injective
resolution of (pr’)~*#H and the proof is complete. O

Lemma 15.3. With assumptions and notation as in Lemma the canonical
(base change) map

g 'RE.F — RfL(g)F

is an isomorphism for any abelian sheaf F on Xeqre (resp. Xpppr).
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Proof. Comparing the formula for g7'RP f,F and RPf.(g')~'F given in Sheaves
on Stacks, Lemma and Lemma [T5.2] we see that it suffices to show

HP((V xyy X), pr ' Flvs, yay) = HE(V xyy X, pr ' F)

where 7 = étale (resp. 7 = fppf). Here y is an object of Y lying over a scheme
V such that the morphism y : V' — ) is smooth (resp. flat). This equality follows
from Sheaves on Stacks, Lemma Although we omit the verification of the
assumptions of the lemma, we note that the fact that V' — Y is smooth (resp. flat)
is used to verify the second condition. O

16. Quasi-coherent modules and the lisse-étale and flat-fppf sites

In this section we explain how to think of quasi-coherent modules on an algebraic
stack in terms of its lisse-étale or flat-fppf site.

Lemma 16.1. Let X be an algebraic stack.

(1) Let fj : X; — X be a family of smooth morphisms of algebraic stacks with
|X| = UIf1(1X;]). Let F be a sheaf of Ox-modules on Xeqre. If each
fj_l]-" 18 quasi-coherent, then so is F.

(2) Let f; : Xj = X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X| = J|f;|(|X;]). Let F be a sheaf of Ox-modules

on Xtppr. If each fj_l]-" is quasi-coherent, then so is F.

Proof. Proof of (1). We may replace each of the algebraic stacks X; by a scheme
U, (using that any algebraic stack has a smooth covering by a scheme and that
compositions of smooth morphisms are smooth, see Morphisms of Stacks, Lemma
. The pullback of F to (Sch/ Uj)étale is still quasi-coherent, see Modules on
Sites, Lemma Then f = [[f; : U = [[U; — X is a smooth surjective
morphism. Let 2 : V' — X be an object of X. By Sheaves on Stacks, Lemma [19.10]
there exists an étale covering {x; — x};cr such that each z; lifts to an object wu;
of (Sch/U)¢tate- This just means that x; lives over a scheme V;, that {V; — V}
is an étale covering, and that x; comes from a morphism u; : V; — U. Then
xfF = ul f*F is quasi-coherent. This implies that *F on (Sch/V)e¢tare is quasi-
coherent, for example by Modules on Sites, Lemma [23.3] By Sheaves on Stacks,
Lemma [I1.4) we see that «*F is an fppf sheaf and since x was arbitrary we see that
F is a sheaf in the fppf topology. Applying Sheaves on Stacks, Lemma we see
that F is quasi-coherent.

Proof of (2). This is proved using exactly the same argument, which we fully write
out here. We may replace each of the algebraic stacks X; by a scheme U; (using
that any algebraic stack has a smooth covering by a scheme and that flat and locally
finite presented morphisms are preserved by composition, see Morphisms of Stacks,
Lemmas and 27.2). The pullback of F to (Sch/Uj)state is still locally quasi-
coherent, see Sheaves on Stacks, Lemma[11.2] Then f =] f;: U =[[U; = X isa
surjective, flat, and locally finitely presented morphism. Let x : V' — & be an object
of X. By Sheaves on Stacks, Lemmathere exists an fppf covering {x; — x}icr
such that each z; lifts to an object u; of (Sch/U)¢tare. This just means that x; lives
over a scheme V;, that {V; — V} is an fppf covering, and that x; comes from a
morphism w; : V; = U. Then x}F = u} f*F is quasi-coherent. This implies that
x*F on (Sch/V)etate is quasi-coherent, for example by Modules on Sites, Lemma
By Sheaves on Stacks, Lemma [T1.3] we see that F is quasi-coherent. O
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We recall that we have defined the notion of a quasi-coherent module on any ringed
topos in Modules on Sites, Section

Lemma 16.2. Let X be an algebraic stack. Notation as in Lemma .

(1) Let H be a quasi-coherent Ou,,,.. suu1.-module on the lisse-étale site of X.
Then giH is a quasi-coherent module on X.

(2) Let H be a quasi-coherent Oxy,,,, ;,,;-module on the flat-fppf site of X.
Then g'H is a quasi-coherent module on X .

Proof. Pick a scheme U and a surjective smooth morphism z : U — X. By
Modules on Sites, Definition there exists an étale (resp. fppf) covering {U; —
Ulier such that each pullback fi_l’H has a global presentation (see Modules on
Sites, Definition . Here f; : U; — X is the composition U; - U — X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/ fi, see Sheaves on Stacks, Definition [9.2| and the dlscusswn following.) Since
each f; is smooth (resp. flat) by Lemma we see that f; 'gH = gii(f)) "' H.
Using Lemma [16.1] we reduce the statement of the lemma to the case where H has
a global presentation. Say we have

@jeJO%@idO—)HHO

of O-modules where O = Ou,,... ui. (resp. O = Oxyy, 5,0p)- Since gi commutes
with arbitrary colimits (as a left adjoint functor, see Lemma and Categories,
Lemma we conclude that there exists an exact sequence

@jggg(’) — @iel gg@ — ggH —0

Lemma shows that 1O = Ox. In case (2) we are done. In case (1) we apply
Sheaves on Stacks, Lemma to conclude. O

Lemma 16.3. Let X be an algebraic stack.

(1) With g as in Lemma[1{.9 for the lisse-étale site we have
(a) the functors g~ and gy define mutually inverse functors

-1

g
QCOh(Ox) - QCOh(Xlisse,étalea O-Xlisse,étale)
g
(b) if F is in LQCoh'**(Ox) then g~ ' F is in QCoh(Ox,,... com.) and
(¢) Q(F) = gig~ ' F where Q is as in Lemmam
(2) With g as in Lemma for the flat-fppf site we have
(a) the functors g1 and g define mutually inverse functors

o

-1

g
QOOh(OX) -— QOOh(XflatfPPf? OXflat,fppf)
g!
(b) if F is in LQCoh™**(Ox) then g~'F is in QCoh(Oxy,, ,,,,) and
(¢) Q(F) = gig~*F where Q is as in Lemma m

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-
coherent modules, see Modules on Sites, Lemmam Hence g—! preserves the cat-
egories of quasi-coherent modules; here we use that QCoh(Ox) = QCoh(Xstaie, Ox)
by Sheaves on Stacks, Lemma The same is true for gy by Lemma [16.2] We
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know that H — g~ tg/H is an isomorphism by Lemma Conversely, if F is in
QCoh(Oy) then the map gig~'F — F is a map of quasi-coherent modules on X
whose restriction to any scheme smooth over X is an isomorphism. Then the dis-
cussion in Sheaves on Stacks, Sections and (comparing with quasi-coherent
modules on presentations) shows it is an isomorphism. This proves (1)(a) and
(2)(a).

Let F be an object of LQCohfbc(OX). By Lemma @ the kernel and cokernel
of the map Q(F) — F are parasitic. Hence by Lemma @ and since ¢* = ¢!
is exact, we conclude ¢g*Q(F) — g¢g*F is an isomorphism. Thus g*F is quasi-
coherent. This proves (1)(b) and (2)(b). Finally, (1)(c) and (2)(c) follow because
919*Q(F) — Q(F) is an isomorphism by our arguments above. O

Lemma 16.4. Let X be an algebraic stack.

(1) QCoh(Oux,,,.. i1u.) is a weak Serre subcategory of Mod(Ox,,.,.. sra1e)-
(2) QCoh(Ox;y, ;o) s a weak Serre subcategory of Mod(Ox;,a, 500s)-

Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma [10.3]
Since 0 is a quasi-coherent module on any ringed site we see that (1) holds.
By definition QCoh(O) is a strictly full subcategory Mod(O), so (2) holds.

Let ¢ : G — F be a morphism of quasi-coherent modules on Xj;sse ¢tate OF Xtiat, fppf-
We have g*giF = F and similarly for G and ¢, see Lemma [I£.4 By Lemma
we see that ¢ F and ¢G are quasi-coherent Oy-modules. By Sheaves on Stacks,
Lemma we have that Coker(gi¢) is a quasi-coherent module on X (and the
cokernel in the category of quasi-coherent modules on X'). Since g* is exact (see
Lemma [14.2]) g* Coker(gip) = Coker(g*gip) = Coker(yp) is quasi-coherent too (see
Lemma [16.3). By Proposition the kernel Ker(gip) is in LQCoh!*(Oy). Since

g* is exact, we have g* Ker(gip) = Ker(g*gip) = Ker(p). Since g* maps objects of
LQCoh*(Ox) to quasi-coherent modules by Lemma we conclude that Ker(ip)

is quasi-coherent as well. This proves (3).

Finally, suppose that
0>F—=>&—-G—-0

is an extension of Ox,,,.. ...-modules (resp. Ox,,,, ;,,,-modules) with F and G
quasi-coherent. To prove (4) and finish the proof we have to show that &£ is quasi-
coherent on Xjjsse étate (r€Sp. Xfiat, fpps). Let U be an object of Xjigse étate (resp.
Xfiat, fppsf; we think of U as a scheme smooth (resp. flat) over X. We have to show
that the restriction of € to Ujisse,étate (r€8p. = Ufiat, fpps) is quasi-coherent. Thus
we may assume that X = U is a scheme. Because G is quasi-coherent on Up;gse,étaie
(resp. Utiat, fppf), We may assume, after replacing U by the members of an étale
(resp. fppf) covering, that G has a presentation

@jEJOH@iE[OHQHO

on Ujisse,étate (TeSp. Uyiar, ppy) Where O is the structure sheaf on the site. We may
also assume U is affine. Since F is quasi-coherent, we have

Hl(Ulisse,étale;]:) = Oa resp. Hl(Uflat,fppfvj:) =0

Namely, F is the pullback of a quasi-coherent module F on the big site of U (by
Lemma[16.3)), cohomology of F and F’ agree (by Lemma [14.3]), and we know that
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the cohomology of F’ on the big site of the affine scheme U is zero (to get this in
the current situation you have to combine Descent, Propositions and with
Cohomology of Schemes, Lemma . Thus we can lift the map @,.; O — G to
E. A diagram chase shows that we obtain an exact sequence

D, ,0-Fe®, ,0-€-0

By (3) proved above, we conclude that £ is quasi-coherent as desired. O

17. Coherent sheaves on locally Noetherian stacks

This section is the analogue of Cohomology of Spaces, Section We have defined
the notion of a coherent module on any ringed topos in Modules on Sites, Section
However, for any algebraic stack X the category of coherent Oxy-modules is zero,
essentially because the site X’ contains too many non-Noetherian objects (even if
X is itself locally Noetherian). Instead, we will define coherent modules using the
following lemma.

Lemma 17.1. Let X be a locally Noetherian algebraic stack. Let F be an Ox-
module. The following are equivalent

(1) F is a quasi-coherent, finite type Ox-module,

(2) F is an Ox-module of finite presentation,

(3) F is quasi-coherent and for any morphism f:U — X where U is a locally
Noetherian algebraic space, the pullback f*F|y.,,,. s coherent, and

(4) F is quasi-coherent and there exists an algebraic space U and a morphism
f:U — X which is locally of finite type, flat, and surjective, such that the
pullback f*Flu,,.. is coherent.

Proof. Let f : U — X be as in (4). Then U is locally Noetherian (Morphisms
of Stacks, Lemma and we see that the statement of the lemma makes sense.
Additionally, f is locally of finite presentation by Morphisms of Stacks, Lemma
Let x be an object of X' lying over the scheme V. In order to prove (2) we
have to show that, after replacing V' by the members of an fppf covering of V,
the restriction *F has a global finite presentation on X' /x = (Sch/V)fppr. The
projection W = U xx V — V is locally of finite presentation, flat, and surjective.
Hence we may replace V' by the members of an étale covering of W by schemes and
assume we have a morphism h : V — U with f o h = z. Since F is quasi-coherent,
we see that the restriction *F is the pullback of A% .,(f*F)|v.,m. by v, see
Sheaves on Stacks, Lemma Since f*Flu,,... locally in the étale topology has
a finite presentation by assumption, we conclude (4) = (2).

Part (2) implies (1) for any ringed topos (immediate from the definition). The
properties “finite type” and “quasi-coherent” are preserved under pullback by any
morphism of ringed topoi, see Modules on Sites, Lemma Hence (1) implies
(3), see Cohomology of Spaces, Lemma[12.2] Finally, (3) trivially implies (4). O

Definition 17.2. Let X be a locally Noetherian algebraic stack. An Oy-module
F is called coherent if F satisfies one (and hence all) of the equivalent conditions
of Lemma [17.1} The category of coherent Ox-modules is denote Coh(Ox).

Lemma 17.3. Let X be a locally Noetherian algebraic stack. The module Oy
is coherent, any invertible Ox-module is coherent, and more generally any finite
locally free Ox-module is coherent.
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Proof. Follows from the definition and Cohomology of Spaces, Lemma d

Lemma 17.4. Let f : X — Y be a morphism of locally Noetherian algebraic
stacks. Then f* sends coherent modules on ) to coherent modules on X .

Proof. Immediate from the definition and the fact that pullback for any morphism
of ringed topoi preserves finitely presented modules, see Modules on Sites, Lemma

23.4 O

Lemma 17.5. Let X be a locally Noetherian algebraic stack. The category of
coherent Ox-modules is abelian. If ¢ : F — G is a map of coherent Ox-modules,
then

(1) the cokernel Coker(y) computed in Mod(Ox) is a coherent Ox-module,
(2) the image Im(p) computed in Mod(Ox) is a coherent Ox-module, and
(3) the kernel Ker(yp) computed in Mod(Ox) may not be coherent, but it is
in LQCoh'*(Ox) and Q(Ker(p)) is coherent and is the kernel of ¢ in
COh(O/\/)
The inclusion functor Coh(Ox) — QCoh(Ox) is exact.

Proof. The rules given for taking kernels, images, and cokernels in Coh(Oy) agree
with the prescription for quasi-coherent modules in Remark Hence the lemma
will follow if we can show that the quasi-coherent modules Coker(y), Im(p), and
Q(Ker(p)) are coherent. By Lemma it suffices to prove this after restricting
to Ugtare for some surjective smooth morphism f : U — X. The functor F —
F*Flusa. is exact. Hence f* Coker(y) and f*Im(p) are the cokernel and image
of a map between coherent Op-modules hence coherent as desired. The functor
F = [*F|vsra. kills parasitic modules by Lemma[9.2} Hence f*Q(Ker(¢))|v.,... =
f*Ker(o)|v,,.,. by part (2) of Lemma Thus we conclude that Q(Ker(y)) is
coherent in the same way. O

Lemmal 17.6. Let X be a locally Noetherian algebraic stack. Given a short exact
sequence 0 — F; — Fo — F3 — 0 in Mod(Ox) with F1 and F3 coherent, then JFo
is coherent.

Proof. By Sheaves on Stacks, Lemma part (7) we see that Fy is quasi-
coherent. Then we can check that F5 is coherent by restricting to Ugtqie for some
U — X surjective and smooth. This follows from Cohomology of Spaces, Lemma
Some details omitted. O

Coherent modules form a Serre subcategory of the category of quasi-coherent O -
modules. This does not hold for modules on a general ringed topos.

Lemma 17.7. Let X be a locally Noetherian algebraic stack. Then Coh(Oyx) is
a Serre subcategory of QCoh(Ox). Let ¢ : F — G be a map of quasi-coherent
Ox-modules. We have

(1) if F is coherent and ¢ surjective, then G is coherent,
(2) if F is coherent, then Im(yp) is coherent, and
(3) if G coherent and Ker(p) parasitic, then F is coherent.

Proof. Choose a scheme U and a surjective smooth morphism f : U — &X. Then
the functor f* : QCoh(Ox) — QCoh(Oy) is exact (Lemma and moreover by
definition Coh(Oy) is the full subcategory of QCoh(Ox) consisting of objects F
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such that f*F is in Coh(Oy). The statement that Coh(Oy) is a Serre subcategory
of QCoh(Oy) follows immediately from this and the corresponding fact for U, see
Cohomology of Spaces, Lemmas [12.3] and [12.4, We omit the proof of (1), (2), and
(3). Hint: compare with the proof of Lemma [17.5] O

Let X be a locally Noetherian algebraic stack. Let U be an algebraic space and let
f U — X be surjective, locally of finite presentation, and flat. Observe that U
is locally Noetherian (Morphisms of Stacks, Lemma . Let (U, R, s,t,c) be the
groupoid in algebraic spaces and feqn : [U/R] = X the isomorphism constructed in
Algebraic Stacks, Lemma and Remark As in Sheaves on Stacks, Section
we obtain equivalences

QCoh(Ox) = QCoh(Oy/r)) = QCoh(U, R, s,t,c)

where the second equivalence is Sheaves on Stacks, Proposition Recall that
in Groupoids in Spaces, Section [L3| we have defined the full subcategory

Coh(U, R, s,t,c) C QCoh(U, R, s,t,c)
of coherent modules as those (G, ) such that G is a coherent Oy-module.

~

Lemma 17.8. In the situation discussed above, the equivalence QCoh(Oyx) =
QCoh(U, R, s,t,c) sends coherent sheaves to coherent sheaves and vice versa, i.e.,
induces an equivalence Coh(Ox) = Coh(U, R, s,t,c).

Proof. This is immediate from the definition of coherent O -modules. For book-
keeping purposes: the material above uses Morphisms of Stacks, Lemma[I7.5] Alge-
braic Stacks, Lemma [16.1]and Remark [I6.3] Sheaves on Stacks, Section[I5] Sheaves
on Stacks, Proposition [14.3] and Groupoids in Spaces, Section a

Lemmal 17.9. Let X be a locally Noetherian algebraic stack. Let F and G be
coherent be Ox-modules. Then the internal hom hom(F,G) constructed in Lemma
is a coherent Ox-module.

Proof. Let U — & be a smooth surjective morphism from a scheme. By item
in Section [12| we see that the restriction of hom(F,G) to U is the Hom sheaf of
the restrictions. Hence this lemma follows from the case of algebraic spaces, see
Cohomology of Spaces, Lemma [12.5 O

18. Coherent sheaves on Noetherian stacks
This section is the analogue of Cohomology of Spaces, Section

Lemma 18.1. Let X be a Noetherian algebraic stack. FEvery quasi-coherent O -
module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent Ox-module. If G,H C F are coherent Ox-
submodules then the image of G & H — F is another coherent Oy-submodule
which contains both of them, see Lemma In this way we see that the system
is directed. Hence it now suffices to show that F can be written as a filtered colimit
of coherent modules, as then we can take the images of these modules in F to
conclude there are enough of them.

Let U be an affine scheme and U — X a surjective smooth morphism (Properties
of Stacks, Lemma [6.2). Set R = U xx U so that X = [U/R] as in Algebraic
Stacks, Lemma By Lemma we have QCoh(Ox) = QCoh(U, R, s,t,c)
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and Coh(Ox) = Coh(U, R, s,t,c). In this way we reduce to the problem of proving
the corresponding thing for QCoh(U, R, s,t, ¢). This is Groupoids in Spaces, Lemma
[[3:4} we check its assumptions in the next paragraph.

We urge the reader to skip the rest of the proof. The affine scheme U is Noetherian;
this follows from our definition of X being locally Noetherian, see Properties of
Stacks, Definition and Remark The projection morphisms s,t : R —
U are smooth (see reference given above) and quasi-separated and quasi-compact
(Morphisms of Stacks, Lemma. In particular, R is a quasi-compact and quasi-
separated algebraic space smooth over U and hence Noetherian (Morphisms of

Spaces, Lemma [28.6)). O
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