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1. Introduction

0DQS This chapter discusses a few geometric properties of algebraic stacks. The initial
versions of Sections 3 and 5 were written by Matthew Emerton and Toby Gee and
can be found in their original form in [EG17].

2. Versal rings

0DQT In this section we elucidate the relationship between deformation rings and local
rings on algebraic stacks of finite type over a locally Noetherian base.

Situation 2.1.0DQU Here X is an algebraic stack locally of finite type over a locally
Noetherian scheme S.

Here is the definition.

Definition 2.2.0DQV In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k
is a finite type field over S. A versal ring to X at x0 is a complete Noetherian
local S-algebra A with residue field k such that there exists a versal formal object
(A, ξn, fn) as in Artin’s Axioms, Definition 12.1 with ξ1 ∼= x0 (a 2-isomorphism).

We want to prove that versal rings exist and are unique up to smooth factors. To
do this, we will use the predeformation categories of Artin’s Axioms, Section 3.
These are always deformation categories in our situation.

Lemma 2.3.0DQW In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a
finite type field over S. Then FX ,k,x0 is a deformation category and TFX ,k,x0 and
Inf(FX ,k,x0) are finite dimensional k-vector spaces.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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Proof. Choose an affine open Spec(Λ) ⊂ S such that Spec(k)→ S factors through
it. By Artin’s Axioms, Section 3 we obtain a predeformation category FX ,k,x0

over the category CΛ. (As pointed out in locus citatus this category only depends
on the morphism Spec(k) → S and not on the choice of Λ.) By Artin’s Axioms,
Lemmas 6.1 and 5.2 FX ,k,x0 is actually a deformation category. By Artin’s Axioms,
Lemma 8.1 we find that TFX ,k,x0 and Inf(FX ,k,x0) are finite dimensional k-vector
spaces. □

Lemma 2.4.0DQX In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a
finite type field over S. Then a versal ring to X at x0 exists. Given a pair A, A′

of these, then A ∼= A′[[t1, . . . , tr]] or A′ ∼= A[[t1, . . . , tr]] as S-algebras for some r.

Proof. By Lemma 2.3 and Formal Deformation Theory, Lemma 13.4 (note that the
assumptions of this lemma hold by Formal Deformation Theory, Lemmas 16.6 and
Definition 16.8). By the uniquness result of Formal Deformation Theory, Lemma
14.5 there exists a “minimal” versal ring A of X at x0 such that any other versal
ring of X at x0 is isomorphic to A[[t1, . . . , tr]] for some r. This clearly implies the
second statement. □

Lemma 2.5.0DQY In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k
is a finite type field over S. Let l/k be a finite extension of fields and denote
xl,0 : Spec(l) → X the induced morphism. Given a versal ring A to X at x0 there
exists a versal ring A′ to X at xl,0 such that there is a S-algebra map A → A′

which induces the given field extension l/k and is formally smooth in the mA′-adic
topology.

Proof. Follows immediately from Artin’s Axioms, Lemma 7.1 and Formal Defor-
mation Theory, Lemma 29.6. (We also use that X satisfies (RS) by Artin’s Axioms,
Lemma 5.2.) □

Lemma 2.6.0DQZ In Situation 2.1 let x : U → X be a morphism where U is a scheme
locally of finite type over S. Let u0 ∈ U be a finite type point. Set k = κ(u0) and
denote x0 : Spec(k)→ X the induced map. The following are equivalent

(1) x is versal at u0 (Artin’s Axioms, Definition 12.2),
(2) x̂ : FU,k,u0 → FX ,k,x0 is smooth,
(3) the formal object associated to x|Spec(O∧

U,u0
) is versal, and

(4) there is an open neighbourhood U ′ ⊂ U of x such that x|U ′ : U ′ → X is
smooth.

Moreover, in this case the completion O∧
U,u0

is a versal ring to X at x0.

Proof. Since U → S is locally of finite type (as a composition of such morphisms),
we see that Spec(k) → S is of finite type (again as a composition). Thus the
statement makes sense. The equivalence of (1) and (2) is the definition of x being
versal at u0. The equivalence of (1) and (3) is Artin’s Axioms, Lemma 12.3. Thus
(1), (2), and (3) are equivalent.
If x|U ′ is smooth, then the functor x̂ : FU,k,u0 → FX ,k,x0 is smooth by Artin’s
Axioms, Lemma 3.2. Thus (4) implies (1), (2), and (3). For the converse, assume
x is versal at u0. Choose a surjective smooth morphism y : V → X where V
is a scheme. Set Z = V ×X U and pick a finite type point z0 ∈ |Z| lying over
u0 (this is possible by Morphisms of Spaces, Lemma 25.5). By Artin’s Axioms,
Lemma 12.6 the morphism Z → V is smooth at z0. By definition we can find an

https://stacks.math.columbia.edu/tag/0DQX
https://stacks.math.columbia.edu/tag/0DQY
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open neighbourhood W ⊂ Z of z0 such that W → V is smooth. Since Z → U is
open, let U ′ ⊂ U be the image of W . Then we see that U ′ → X is smooth by our
definition of smooth morphisms of stacks.
The final statement follows from the definitions as O∧

U,u0
prorepresents FU,k,u0 . □

Lemma 2.7.0DZS In Situation 2.1. Let x0 : Spec(k) → X be a morphism such that
Spec(k)→ S is of finite type with image s. Let A be a versal ring to X at x0. The
following are equivalent

(1) x0 is in the smooth locus of X → S (Morphisms of Stacks, Lemma 33.6),
(2) OS,s → A is formally smooth in the mA-adic topology, and
(3) FX ,k,x0 is unobstructed.

Proof. The equivalence of (2) and (3) follows immediately from Formal Deforma-
tion Theory, Lemma 9.4.
Note that OS,s → A is formally smooth in the mA-adic topology if and only if
OS,s → A′ = A[[t1, . . . , tr]] is formally smooth in the mA′ -adic topology. Hence (2)
does not depend on the choice of our versal ring by Lemma 2.4. Next, let l/k be
a finite extension and choose A → A′ as in Lemma 2.5. If OS,s → A is formally
smooth in the mA-adic topology, then OS,s → A′ is formally smooth in the mA′ -adic
topology, see More on Algebra, Lemma 37.7. Conversely, if OS,s → A′ is formally
smooth in the mA′ -adic topology, then O∧

S,s → A′ and A → A′ are regular (More
on Algebra, Proposition 49.2) and hence O∧

S,s → A is regular (More on Algebra,
Lemma 41.7), hence OS,s → A is formally smooth in the mA-adic topology (same
lemma as before). Thus the equivalence of (2) and (1) holds for k and x0 if and
only if it holds for l and x0,l.
Choose a scheme U and a smooth morphism U → X such that Spec(k) ×X U is
nonempty. Choose a finite extension l/k and a point w0 : Spec(l)→ Spec(k)×X U .
Let u0 ∈ U be the image of w0. We may apply the above to l/k and to l/κ(u0)
to see that we can reduce to u0. Thus we may assume A = O∧

U,u0
, see Lemma

2.6. Observe that x0 is in the smooth locus of X → S if and only if u0 is in the
smooth locus of U → S, see for example Morphisms of Stacks, Lemma 33.6. Thus
the equivalence of (1) and (2) follows from More on Algebra, Lemma 38.6. □

We recall a consequence of Artin approximation.
Lemma 2.8.0DR0 In Situation 2.1. Let x0 : Spec(k) → X be a morphism such that
Spec(k) → S is of finite type with image s. Let A be a versal ring to X at x0. If
OS,s is a G-ring, then we may find a smooth morphism U → X whose source is a
scheme and a point u0 ∈ U with residue field k, such that

(1) Spec(k)→ U → X coincides with the given morphism x0,
(2) there is an isomorphism O∧

U,u0
∼= A.

Proof. Let (ξn, fn) be the versal formal object over A. By Artin’s Axioms, Lemma
9.5 we know that ξ = (A, ξn, fn) is effective. By assumption X is locally of finite
presentation over S (use Morphisms of Stacks, Lemma 27.5), and hence limit pre-
serving by Limits of Stacks, Proposition 3.8. Thus Artin approximation as in Artin’s
Axioms, Lemma 12.7 shows that we may find a morphism U → X with source a
finite type S-scheme, containing a point u0 ∈ U of residue field k satisfying (1) and
(2) such that U → X is versal at u0. By Lemma 2.6 after shrinking U we may
assume U → X is smooth. □

https://stacks.math.columbia.edu/tag/0DZS
https://stacks.math.columbia.edu/tag/0DR0
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Remark 2.9 (Upgrading versal rings).0DR1 In Situation 2.1 let x0 : Spec(k) → X be
a morphism, where k is a finite type field over S. Let A be a versal ring to X at
x0. By Artin’s Axioms, Lemma 9.5 our versal formal object in fact comes from a
morphism

Spec(A) −→ X
over S. Moreover, the results above each can be upgraded to be compatible with
this morphism. Here is a list:

(1) in Lemma 2.4 the isomorphism A ∼= A′[[t1, . . . , tr]] or A′ ∼= A[[t1, . . . , tr]]
may be chosen compatible with these morphisms,

(2) in Lemma 2.5 the homomorphism A→ A′ may be chosen compatible with
these morphisms,

(3) in Lemma 2.6 the morphism Spec(O∧
U,u0

) → X is the composition of the
canonical map Spec(O∧

U,u0
)→ U and the given map U → X ,

(4) in Lemma 2.8 the isomorphism O∧
U,u0
∼= A may be chosen so Spec(A)→ X

corresponds to the canonical map in the item above.
In each case the statement follows from the fact that our maps are compatible
with versal formal elements; we note however that the implied diagrams are 2-
commutative only up to a (noncanonical) choice of a 2-arrow. Still, this means that
the implied map A′ → A or A → A′ in (1) is well defined up to formal homotopy,
see Formal Deformation Theory, Lemma 28.3.

Lemma 2.10.0DR2 In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k is
a finite type field over S. Let A be a versal ring to X at x0. Then the morphism
Spec(A)→ X of Remark 2.9 is flat.

Proof. If the local ring of S at the image point is a G-ring, then this follows
immediately from Lemma 2.8 and the fact that the map from a Noetherian local
ring to its completion is flat. In general we prove it as follows.
Step I. If A and A′ are two versal rings to X at x0, then the result is true for A
if and only if it is true for A′. Namely, after possible swapping A and A′, we may
assume there is a formally smooth map φ : A→ A′ such that the composition

Spec(A′)→ Spec(A)→ X
is the morphism Spec(A′)→ X , see Lemma 2.4 and Remark 2.9. Since A→ A′ is
faithfully flat we obtain the equivalence from Morphisms of Stacks, Lemmas 25.2
and 25.5.
Step II. Let l/k be a finite extension of fields. Let xl,0 : Spec(l)→ X be the induced
morphism. Let A be a versal ring to X at x0 and let A→ A′ be as in Lemma 2.5.
Then again the composition

Spec(A′)→ Spec(A)→ X
is the morphism Spec(A′)→ X , see Remark 2.9. Arguing as before and using step
I to see choice of versal rings is irrelevant, we see that the lemma holds for x0 if
and only if it holds for xl,0.
Step III. Choose a scheme U and a surjective smooth morphism U → X . Then we
can choose a finite type point z0 on Z = U ×X x0 (this is a nonempty algebraic
space). Let u0 ∈ U be the image of z0 in U . Choose a scheme and a surjective étale
map W → Z such that z0 is the image of a closed point w0 ∈ W (see Morphisms

https://stacks.math.columbia.edu/tag/0DR1
https://stacks.math.columbia.edu/tag/0DR2
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of Spaces, Section 25). Since W → Spec(k) and W → U are of finite type, we
see that κ(w0)/k and κ(w0)/κ(u0) are finite extensions of fields (see Morphisms,
Section 16). Applying Step II twice we may replace x0 by u0 → U → X . Then we
see our morphism is the composition

Spec(O∧
U,u0

)→ U → X

The first arrow is flat because completion of Noetherian local rings are flat (Algebra,
Lemma 97.2) and the second arrow is flat as a smooth morphism is flat. The
composition is flat as composition preserves flatness. □

Remark 2.11.0DR3 In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k
is a finite type field over S. By Lemma 2.3 and Formal Deformation Theory, The-
orem 26.4 we know that FX ,k,x0 has a presentation by a smooth prorepresentable
groupoid in functors on CΛ. Unwinding the definitions, this means we can choose

(1) a Noetherian complete local Λ-algebra A with residue field k and a versal
formal object ξ of FX ,k,x0 over A,

(2) a Noetherian complete local Λ-algebra B with residue field k and an iso-
morphism

B|CΛ −→ A|CΛ ×ξ,FX ,k,x0 ,ξ A|CΛ

The projections correspond to formally smooth maps t : A → B and s : A → B
(because ξ is versal). There is a map c : B → B⊗̂s,A,tB which turns (A, B, s, t, c)
into a cogroupoid in the category of Noetherian complete local Λ-algebras with
residue field k (on prorepresentable functors this map is constructed in Formal
Deformation Theory, Lemma 25.2). Finally, the cited theorem tells us that ξ induces
an equivalence

[A|CΛ/B|CΛ ] −→ FX ,k,x0

of groupoids cofibred over CΛ. In fact, we also get an equivalence

[A/B] −→ F̂X ,k,x0

of groupoids cofibred over the completed category ĈΛ (see discussion in Formal
Deformation Theory, Section 22 as to why this works). Of course A is a versal ring
to X at x0.

3. Multiplicities of components of algebraic stacks

0DR4 If X is a locally Noetherian scheme, then we may write X (thought of simply as
a topological space) as a union of irreducible components, say X =

⋃
Ti. Each

irreducible component is the closure of a unique generic point ξi, and the local ring
OX,ξi

is a local Artin ring. We may define the multiplicity of X along Ti or the
multiplicity of Ti in X by

mTi,X = lengthOX,ξi
OX,ξi

In other words, it is the length of the local Artinian ring. Please compare with
Chow Homology, Section 9.
Our goal here is to generalise this definition to locally Noetherian algebraic stacks.
If X is a stack, then its topological space |X | (see Properties of Stacks, Definition
4.8) is locally Noetherian (Morphisms of Stacks, Lemma 8.3). The irreducible
components of |X | are sometimes referred to as the irreducible components of X . If
X is quasi-separated, then |X | is sober (Morphisms of Stacks, Lemma 30.3), but it

https://stacks.math.columbia.edu/tag/0DR3
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need not be in the non-quasi-separated case. Consider for example the non-quasi-
separated algebraic space X = A1

C/Z. Furthermore, there is no structure sheaf on
|X | whose stalks can be used to define multiplicities.

Lemma 3.1.0DR5 Let f : U → X be a smooth morphism from a scheme to a locally
Noetherian algebraic stack. The closure of the image of any irreducible component
of |U | is an irreducible component of |X |. If U → X is surjective, then all irreducible
components of |X | are obtained in this way.

Proof. The map |U | → |X | is continuous and open by Properties of Stacks, Lemma
4.7. Let T ⊂ |U | be an irreducible component. Since U is locally Noetherian, we
can find a nonempty affine open W ⊂ U contained in T . Then f(T ) ⊂ |X | is
irreducible and contains the nonempty open subset f(W ). Thus the closure of
f(T ) is irreducible and contains a nonempty open. It follows that this closure is an
irreducible component.

Assume U → X is surjective and let Z ⊂ |X | be an irreducible component. Choose
a Noetherian open subset V of |X | meeting Z. After removing the other irreducible
components from V we may assume that V ⊂ Z. Take an irreducible component
of the nonempty open f−1(V ) ⊂ |U | and let T ⊂ |U | be its closure. This is an
irreducible component of |U | and the closure of f(T ) must agree with Z by our
choice of T . □

The preceding lemma applies in particular in the case of smooth morphisms be-
tween locally Noetherian schemes. This particular case is implicitly invoked in the
statement of the following lemma.

Lemma 3.2.0DR6 Let U → X be a smooth morphism of locally Noetherian schemes.
Let T ′ is an irreducible component of U . Let T be the irreducible component of X
obtained as the closure of the image of T ′. Then mT ′,U = mT,X .

Proof. Write ξ′ for the generic point of T ′, and ξ for the generic point of T . Let
A = OX,ξ and B = OU,ξ′ . We need to show that lengthAA = lengthBB. Since
A → B is a flat local homomorphism of rings (since smooth morphisms are flat),
we have

lengthA(A)lengthB(B/mAB) = lengthB(B)
by Algebra, Lemma 52.13. Thus it suffices to show mAB = mB , or equivalently, that
B/mAB is reduced. Since U → X is smooth, so is its base change Uξ → Spec κ(ξ).
As Uξ is a smooth scheme over a field, it is reduced, and thus so its local ring at
any point (Varieties, Lemma 25.4). In particular,

B/mAB = OU,ξ′/mX,ξOU,ξ′ = OUξ,ξ′

is reduced, as required. □

Using this result, we may show that there exists a good notion of multiplicity by
looking smooth locally.

Lemma 3.3.0DR7 Let U1 → X and U2 → X be two smooth morphisms from schemes
to a locally Noetherian algebraic stack X . Let T ′

1 and T ′
2 be irreducible components

of |U1| and |U2| respectively. Assume the closures of the images of T ′
1 and T ′

2 are
the same irreducible component T of |X |. Then mT ′

1,U1 = mT ′
2,U2 .

https://stacks.math.columbia.edu/tag/0DR5
https://stacks.math.columbia.edu/tag/0DR6
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Proof. Let V1 and V2 be dense subsets of T ′
1 and T ′

2, respectively, that are open
in U1 and U2 respectively (see proof of Lemma 3.1). The images of |V1| and |V2|
in |X | are non-empty open subsets of the irreducible subset T , and therefore have
non-empty intersection. By Properties of Stacks, Lemma 4.3, the map |V1×X V2| →
|V1| ×|X | |V2| is surjective. Consequently V1 ×X V2 is a non-empty algebraic space;
we may therefore choose an étale surjection V → V1 ×X V2 whose source is a (non-
empty) scheme. If we let T ′ be any irreducible component of V , then Lemma 3.1
shows that the closure of the image of T ′ in U1 (respectively U2) is equal to T ′

1
(respectively T ′

2).

Applying Lemma 3.2 twice we find that

mT ′
1,U1 = mT ′,V = mT ′

2,U2 ,

as required. □

At this point we have done enough work to show the following definition makes
sense.

Definition 3.4.0DR8 Let X be a locally Noetherian algebraic stack. Let T ⊂ |X | be
an irreducible component. The multiplicity of T in X is defined as mT,X = mT ′,U

where f : U → X is a smooth morphism from a scheme and T ′ ⊂ |U | is an
irreducible component with f(T ′) ⊂ T .

This is independent of the choice of f : U → X and the choice of the irreducible
component T ′ mapping to T by Lemmas 3.1 and 3.3.

As a closing remark, we note that it is sometimes convenient to think of an ir-
reducible component of X as a closed substack. To this end, if T ⊂ |X | is an
irreducible component, then we may consider the unique reduced closed substack
T ⊂ X with |T | = T , see Properties of Stacks, Definition 10.4. If X is quasi-
separated, then an irreducible component is an integral stack; see Morphisms of
Stacks, Section 50 for further discussion.

4. Formal branches and multiplicities

0DR9 It will be convenient to have a comparison between the notion of multiplicity of an
irreducible component given by Definition 3.4 and the related notion of multiplicities
of irreducible components of (the spectra of) versal rings of X at finite type points.

In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a finite type field
over S. Let A, A′ be versal rings to X at x0. After possibly swapping A and A′, we
know there is a formally smooth1 map φ : A → A′ compatible with versal formal
objects, see Lemma 2.4 and Remark 2.9. Moreover, φ is well defined up to formal
homotopy, see Formal Deformation Theory, Lemma 28.3. In particular, we find
that φ(p)A′ is a well defined ideal of A′ by Formal Deformation Theory, Lemma
28.4. Since A → A′ is formally smooth, in fact φ(p)A′ is a minimal prime of A′

and every minimal prime of A′ is of this form for a unique minimal prime p ⊂ A
(all of this is easy to prove by writing A′ as a power series ring over A). Therefore,
recalling that minimal primes correspond to irreducible components, the following
definition makes sense.

1In the sense that A′ becomes isomorphic to a power series ring over A.

https://stacks.math.columbia.edu/tag/0DR8
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Definition 4.1.0DRA Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of
finite type over S. The formal branches of X through x0 is the set of irreducible
components of Spec(A) for any choice of versal ring to X at x0 identified for different
choices of A by the procedure described above.

Suppose in the situation of Definition 4.1 we are given a finite extension l/k. Set
xl,0 : Spec(l) → X equal to the composition of Spec(l) → Spec(k) with x0. Let
A→ A′ be as in Lemma 2.5. Since A→ A′ is faithfully flat, the morphism

Spec(A′)→ Spec(A)
sends (generic points of) irreducible components to (generic points of) irreducible
components. This will be a surjective map, but in general this map will not be a
bijection. In other words, we obtain a surjective map

formal branches of X through xl,0 −→ formal branches of X through x0

It turns out that if l/k is purely inseparable, then the map is injective as well (we’ll
add a precise statement and proof here if we ever need this).

Lemma 4.2.0DRB In the situation of Definition 4.1 there is a canonical surjection from
the set of formal branches of X through x0 to the set of irreducible components of
|X | containing x0 in |X |.

Proof. Let A be as in Definition 4.1 and let Spec(A) → X be as in Remark 2.9.
We claim that the generic point of an irreducible component of Spec(A) maps to
a generic point of an irreducible component of |X |. Choose a scheme U and a
surjective smooth morphism U → X . Consider the diagram

Spec(A)×X U

p

��

q
// U

f

��
Spec(A) j // X

By Lemma 2.10 we see that j is flat. Hence q is flat. On the other hand, f is
surjective smooth hence p is surjective smooth. This implies that any generic point
η ∈ Spec(A) of an irreducible component is the image of a codimension 0 point η′ of
the algebraic space Spec(A)×X U (see Properties of Spaces, Section 11 for notation
and use going down on étale local rings). Since q is flat, q(η′) is a codimension 0
point of U (same argument). Since U is a scheme, q(η′) is the generic point of an
irreducible component of U . Thus the closure of the image of q(η′) in |X | is an
irreducible component by Lemma 3.1 as claimed.
Clearly the claim provides a mechanism for defining the desired map. To see that
it is surjective, we choose u0 ∈ U mapping to x0 in |X |. Choose an affine open
U ′ ⊂ U neighbourhood of u0. After shrinking U ′ we may assume every irreducible
component of U ′ passes through u0. Then we may replace X by the open substack
corresponding to the image of |U ′| → |X |. Thus we may assume U is affine has a
point u0 mapping to x0 ∈ |X | and every irreducible component of U passes through
u0. By Properties of Stacks, Lemma 4.3 there is a point t ∈ | Spec(A) ×X U |
mapping to the closed point of Spec(A) and to u0. Using going down for the flat
local ring homomorphisms

A −→ OSpec(A)×X U,t ←− OU,u0

https://stacks.math.columbia.edu/tag/0DRA
https://stacks.math.columbia.edu/tag/0DRB
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we see that every minimal prime of OU,u0 is the image of a minimal prime of the
local ring in the middle and such a minimal prime maps to a minimal prime of A.
This proves the surjectivity. Some details omitted. □

Let A be a Noetherian complete local ring. Then the irreducible components of
Spec(A) have multiplicities, see introduction to Section 3. If A′ = A[[t1, . . . , tr]],
then the morphism Spec(A′)→ Spec(A) induces a bijection on irreducible compo-
nents preserving multiplicities (we omit the easy proof). This and the discussion
preceding Definition 4.1 mean that the following definition makes sense.

Definition 4.3.0DRC Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field
of finite type over S. The multiplicity of a formal branch of X through x0 is the
multiplicity of the corresponding irreducible component of Spec(A) for any choice
of versal ring to X at x0 (see discussion above).

Lemma 4.4.0DRD Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of
finite type over S with image s ∈ S. If OS,s is a G-ring, then the map of Lemma
4.2 preserves multiplicities.

Proof. By Lemma 2.8 we may assume there is a smooth morphism U → X where
U is a scheme and a k-valued point u0 of U such that O∧

U,u0
is a versal ring to X

at x0. By construction of our map in the proof of Lemma 4.2 (which simplifies
greatly because A = O∧

U,u0
) we find that it suffices to show: the multiplicity of an

irreducible component of U passing through u0 is the same as the multiplicity of
any irreducible component of Spec(O∧

U,u0
) mapping into it.

Translated into commutative algebra we find the following: Let C = OU,u0 . This
is essentially of finite type over OS,s and hence is a G-ring (More on Algebra,
Proposition 50.10). Then A = C∧. Therefore C → A is a regular ring map. Let
q ⊂ C be a minimal prime and let p ⊂ A be a minimal prime lying over q. Then

R = Cp −→ Ap = R′

is a regular ring map of Artinian local rings. For such a ring map it is always the
case that

lengthRR = lengthR′R′

This is what we have to show because the left hand side is the multiplicity of our
component on U and the right hand side is the multiplicity of our component on
Spec(A). To see the equality, first we use that

lengthR(R)lengthR′(R′/mRR′) = lengthR′(R′)
by Algebra, Lemma 52.13. Thus it suffices to show mRR′ = mR′ , which is a
consequence of being a regular homomorphism of zero dimensional local rings. □

5. Dimension theory of algebraic stacks

0DRE The main results on the dimension theory of algebraic stacks in the literature that
we are aware of are those of [Oss15], which makes a study of the notions of codimen-
sion and relative dimension. We make a more detailed examination of the notion
of the dimension of an algebraic stack at a point, and prove various results relating
the dimension of the fibres of a morphism at a point in the source to the dimension

https://stacks.math.columbia.edu/tag/0DRC
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of its source and target. We also prove a result (Lemma 6.4 below) which allow us
(under suitable hypotheses) to compute the dimension of an algebraic stack at a
point in terms of a versal ring.
While we haven’t always tried to optimise our results, we have largely tried to
avoid making unnecessary hypotheses. However, in some of our results, in which
we compare certain properties of an algebraic stack to the properties of a versal ring
to this stack at a point, we have restricted our attention to the case of algebraic
stacks that are locally finitely presented over a locally Noetherian scheme base,
all of whose local rings are G-rings. This gives us the convenience of having Artin
approximation available to compare the geometry of the versal ring to the geometry
of the stack itself. However, this restrictive hypothesis may not be necessary for
the truth of all of the various statements that we prove. Since it is satisfied in the
applications that we have in mind, though, we have been content to make it when
it helps.
If X is a scheme, then we define the dimension dim(X) of X to be the Krull
dimension of the topological space underlying X, while if x is a point of X, then we
define the dimension dimx(X) of X at x to be the minimum of the dimensions of
the open subsets U of X containing x, see Properties, Definition 10.1. One has the
relation dim(X) = supx∈X dimx(X), see Properties, Lemma 10.2. If X is locally
Noetherian, then dimx(X) coincides with the supremum of the dimensions at x of
the irreducible components of X passing through x.
If X is an algebraic space and x ∈ |X|, then we define dimx X = dimu U, where U is
any scheme admitting an étale surjection U → X, and u ∈ U is any point lying over
x, see Properties of Spaces, Definition 9.1. We set dim(X) = supx∈|X| dimx(X),
see Properties of Spaces, Definition 9.2.

Remark 5.1.0DRF In general, the dimension of the algebraic space X at a point x may
not coincide with the dimension of the underlying topological space |X| at x. E.g.
if k is a field of characteristic zero and X = A1

k/Z, then X has dimension 1 (the
dimension of A1

k) at each of its points, while |X| has the indiscrete topology, and
hence is of Krull dimension zero. On the other hand, in Algebraic Spaces, Example
14.9 there is given an example of an algebraic space which is of dimension 0 at each
of its points, while |X| is irreducible of Krull dimension 1, and admits a generic
point (so that the dimension of |X| at any of its points is 1); see also the discussion
of this example in Properties of Spaces, Section 9.
On the other hand, if X is a decent algebraic space, in the sense of Decent Spaces,
Definition 6.1 (in particular, if X is quasi-separated; see Decent Spaces, Section 6)
then in fact the dimension of X at x does coincide with the dimension of |X| at x;
see Decent Spaces, Lemma 12.5.

In order to define the dimension of an algebraic stack, it will be useful to first have
the notion of the relative dimension, at a point in the source, of a morphism whose
source is an algebraic space, and whose target is an algebraic stack. The definition
is slightly involved, just because (unlike in the case of schemes) the points of an
algebraic stack, or an algebraic space, are not describable as morphisms from the
spectrum of a field, but only as equivalence classes of such.

Definition 5.2.0DRG If f : T → X is a locally of finite type morphism from an algebraic
space to an algebraic stack, and if t ∈ |T | is a point with image x ∈ |X |, then we

https://stacks.math.columbia.edu/tag/0DRF
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define the relative dimension of f at t, denoted dimt(Tx), as follows: choose a
morphism Spec k → X , with source the spectrum of a field, which represents x,
and choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T |
(such a point t′ exists, by Properties of Stacks, Lemma 4.3); then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic space and X is an algebraic stack, the fibre product
T ×X Spec k is an algebraic space, and so the quantity on the right hand side of
this proposed definition is in fact defined (see discussion above).

Remark 5.3.0DRH (1) One easily verifies (for example, by using the invariance of
the relative dimension of locally of finite type morphisms of schemes under base-
change; see for example Morphisms, Lemma 28.3) that dimt(Tx) is well-defined,
independently of the choices used to compute it.
(2) In the case that X is also an algebraic space, it is straightforward to confirm that
this definition agrees with the definition of relative dimension given in Morphisms
of Spaces, Definition 33.1.

We next recall the following lemma, on which our study of the dimension of a locally
Noetherian algebraic stack is founded.

Lemma 5.4.0DRI If f : U → X is a smooth morphism of locally Noetherian algebraic
spaces, and if u ∈ |U | with image x ∈ |X|, then

dimu(U) = dimx(X) + dimu(Ux)
where dimu(Ux) is defined via Definition 5.2.

Proof. See Morphisms of Spaces, Lemma 37.10 noting that the definition of dimu(Ux)
used here coincides with the definition used there, by Remark 5.3 (2). □

Lemma 5.5.0DRJ If X is a locally Noetherian algebraic stack and x ∈ |X |. Let U → X
be a smooth morphism from an algebraic space to X , let u be any point of |U |
mapping to x. Then we have

dimx(X ) = dimu(U)− dimu(Ux)
where the relative dimension dimu(Ux) is defined by Definition 5.2 and the dimen-
sion of X at x is as in Properties of Stacks, Definition 12.2.

Proof. Lemma 5.4 can be used to verify that the right hand side dimu(U) +
dimu(Ux) is independent of the choice of the smooth morphism U → X and u ∈ |U |.
We omit the details. In particular, we may assume U is a scheme. In this case we
can compute dimu(Ux) by choosing the representative of x to be the composite
Spec κ(u) → U → X , where the first morphism is the canonical one with image
u ∈ U . Then, if we write R = U ×X U , and let e : U → R denote the di-
agonal morphism, the invariance of relative dimension under base-change shows
that dimu(Ux) = dime(u)(Ru). Thus we see that the right hand side is equal to
dimu(U)− dime(u)(Ru) = dimx(X ) as desired. □

Remark 5.6.0DRK For Deligne–Mumford stacks which are suitably decent (e.g. quasi-
separated), it will again be the case that dimx(X ) coincides with the topologically
defined quantity dimx |X |. However, for more general Artin stacks, this will typ-
ically not be the case. For example, if X = [A1/Gm] (over some field, with the

https://stacks.math.columbia.edu/tag/0DRH
https://stacks.math.columbia.edu/tag/0DRI
https://stacks.math.columbia.edu/tag/0DRJ
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quotient being taken with respect to the usual multiplication action of Gm on A1),
then |X | has two points, one the specialisation of the other (corresponding to the
two orbits of Gm on A1), and hence is of dimension 1 as a topological space; but
dimx(X ) = 0 for both points x ∈ |X |. (An even more extreme example is given by
the classifying space [Spec k/Gm], whose dimension at its unique point is equal to
−1.)

We can now extend Definition 5.2 to the context of (locally finite type) morphisms
between (locally Noetherian) algebraic stacks.

Definition 5.7.0DRL If f : T → X is a locally of finite type morphism between locally
Noetherian algebraic stacks, and if t ∈ |T | is a point with image x ∈ |X |, then
we define the relative dimension of f at t, denoted dimt(Tx), as follows: choose a
morphism Spec k → X , with source the spectrum of a field, which represents x, and
choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T | (such a
point t′ exists, by Properties of Stacks, Lemma 4.3; then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic stack and X is an algebraic stack, the fibre product
T ×X Spec k is an algebraic stack, which is locally Noetherian by Morphisms of
Stacks, Lemma 17.5. Thus the quantity on the right side of this proposed definition
is defined by Properties of Stacks, Definition 12.2.

Remark 5.8.0DRM Standard manipulations show that dimt(Tx) is well-defined, inde-
pendently of the choices made to compute it.

We now establish some basic properties of relative dimension, which are obvious
generalisations of the corresponding statements in the case of morphisms of schemes.

Lemma 5.9.0DRN Suppose given a Cartesian square of morphisms of locally Noetherian
stacks

T ′

��

// T

��
X ′ // X

in which the vertical morphisms are locally of finite type. If t′ ∈ |T ′|, with images
t, x′, and x in |T |, |X ′|, and |X | respectively, then dimt′(T ′

x′) = dimt(Tx).

Proof. Both sides can (by definition) be computed as the dimension of the same
fibre product. □

Lemma 5.10.0DRP If f : U → X is a smooth morphism of locally Noetherian algebraic
stacks, and if u ∈ |U| with image x ∈ |X |, then

dimu(U) = dimx(X ) + dimu(Ux).

Proof. Choose a smooth surjective morphism V → U whose source is a scheme,
and let v ∈ |V | be a point mapping to u. Then the composite V → U → X is
also smooth, and by Lemma 5.4 we have dimx(X ) = dimv(V ) − dimv(Vx), while
dimu(U) = dimv(V )− dimv(Vu). Thus

dimu(U)− dimx(X ) = dimv(Vx)− dimv(Vu).

https://stacks.math.columbia.edu/tag/0DRL
https://stacks.math.columbia.edu/tag/0DRM
https://stacks.math.columbia.edu/tag/0DRN
https://stacks.math.columbia.edu/tag/0DRP
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Choose a representative Spec k → X of x and choose a point v′ ∈ |V ×X Spec k| lying
over v, with image u′ in |U ×X Spec k|; then by definition dimu(Ux) = dimu′(U ×X
Spec k), and dimv(Vx) = dimv′(V ×X Spec k).
Now V ×X Spec k → U ×X Spec k is a smooth surjective morphism (being the base-
change of such a morphism) whose source is an algebraic space (since V and Spec k
are schemes, and X is an algebraic stack). Thus, again by definition, we have

dimu′(U ×X Spec k) = dimv′(V ×X Spec k)− dimv′(V ×X Spec k)u′)
= dimv(Vx)− dimv′((V ×X Spec k)u′).

Now V ×X Spec k ∼= V ×U (U×X Spec k), and so Lemma 5.9 shows that dimv′((V ×X
Spec k)u′) = dimv(Vu). Putting everything together, we find that

dimu(U)− dimx(X ) = dimu(Ux),
as required. □

Lemma 5.11.0DRQ Let f : T → X be a locally of finite type morphism of algebraic
stacks.

(1) The function t 7→ dimt(Tf(t)) is upper semi-continuous on |T |.
(2) If f is smooth, then the function t 7→ dimt(Tf(t)) is locally constant on |T |.

Proof. Suppose to begin with that T is a scheme T , let U → X be a smooth
surjective morphism whose source is a scheme, and let T ′ = T×X U . Let f ′ : T ′ → U
be the pull-back of f over U , and let g : T ′ → T be the projection.
Lemma 5.9 shows that dimt′(T ′

f ′(t′)) = dimg(t′)(Tf(g(t′))), for t′ ∈ T ′, while, since g

is smooth and surjective (being the base-change of a smooth surjective morphism)
the map induced by g on underlying topological spaces is continuous and open (by
Properties of Spaces, Lemma 4.6), and surjective. Thus it suffices to note that part
(1) for the morphism f ′ follows from Morphisms of Spaces, Lemma 34.4, and part
(2) from either of Morphisms, Lemma 29.4 or Morphisms, Lemma 34.12 (each of
which gives the result for schemes, from which the analogous results for algebraic
spaces can be deduced exactly as in Morphisms of Spaces, Lemma 34.4.
Now return to the general case, and choose a smooth surjective morphism h : V →
T whose source is a scheme. If v ∈ V , then, essentially by definition, we have

dimh(v)(Tf(h(v))) = dimv(Vf(h(v)))− dimv(Vh(v)).
Since V is a scheme, we have proved that the first of the terms on the right hand
side of this equality is upper semi-continuous (and even locally constant if f is
smooth), while the second term is in fact locally constant. Thus their difference is
upper semi-continuous (and locally constant if f is smooth), and hence the func-
tion dimh(v)(Tf(h(v))) is upper semi-continuous on |V | (and locally constant if f
is smooth). Since the morphism |V | → |T | is open and surjective, the lemma
follows. □

Before continuing with our development, we prove two lemmas related to the di-
mension theory of schemes.
To put the first lemma in context, we note that if X is a finite dimensional scheme,
then since dim X is defined to equal the supremum of the dimensions dimx X, there
exists a point x ∈ X such that dimx X = dim X. The following lemma shows that
we may furthermore take the point x to be of finite type.

https://stacks.math.columbia.edu/tag/0DRQ
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Lemma 5.12.0DRR If X is a finite dimensional scheme, then there exists a closed (and
hence finite type) point x ∈ X such that dimx X = dim X.

Proof. Let d = dim X, and choose a maximal strictly decreasing chain of irre-
ducible closed subsets of X, say
(5.12.1)0DRS Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.

The subset Zd is a minimal irreducible closed subset of X, and thus any point of
Zd is a generic point of Zd. Since the underlying topological space of the scheme
X is sober, we conclude that Zd is a singleton, consisting of a single closed point
x ∈ X. If U is any neighbourhood of x, then the chain

U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = Zd = {x}
is then a strictly descending chain of irreducible closed subsets of U , showing that
dim U ≥ d. Thus we find that dimx X ≥ d. The other inequality being obvious,
the lemma is proved. □

The next lemma shows that dimx X is a constant function on an irreducible scheme
satisfying some mild additional hypotheses.

Lemma 5.13.0DRT If X is an irreducible, Jacobson, catenary, and locally Noetherian
scheme of finite dimension, then dim U = dim X for every non-empty open subset
U of X. Equivalently, dimx X is a constant function on X.

Proof. The equivalence of the two claims follows directly from the definitions.
Suppose, then, that U ⊂ X is a non-empty open subset. Certainly dim U ≤ dim X,
and we have to show that dim U ≥ dim X. Write d = dim X, and choose a maximal
strictly decreasing chain of irreducible closed subsets of X, say

X = Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.

Since X is Jacobson, the minimal irreducible closed subset Zd is equal to {x} for
some closed point x.
If x ∈ U, then

U = U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = {x}
is a strictly decreasing chain of irreducible closed subsets of U , and so we conclude
that dim U ≥ d, as required. Thus we may suppose that x ̸∈ U.

Consider the flat morphism SpecOX,x → X. The non-empty (and hence dense)
open subset U of X pulls back to an open subset V ⊂ SpecOX,x. Replacing U by
a non-empty quasi-compact, and hence Noetherian, open subset, we may assume
that the inclusion U → X is a quasi-compact morphism. Since the formation
of scheme-theoretic images of quasi-compact morphisms commutes with flat base-
change Morphisms, Lemma 25.16 we see that V is dense in SpecOX,x, and so in
particular non-empty, and of course x ̸∈ V. (Here we use x also to denote the
closed point of SpecOX,x, since its image is equal to the given point x ∈ X.)
Now SpecOX,x \ {x} is Jacobson Properties, Lemma 6.4 and hence V contains a
closed point z of SpecOX,x \ {x}. The closure in X of the image of z is then an
irreducible closed subset Z of X containing x, whose intersection with U is non-
empty, and for which there is no irreducible closed subset properly contained in Z
and properly containing {x} (because pull-back to SpecOX,x induces a bijection
between irreducible closed subsets of X containing x and irreducible closed subsets

https://stacks.math.columbia.edu/tag/0DRR
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of SpecOX,x). Since U ∩ Z is a non-empty closed subset of U , it contains a point
u that is closed in X (since X is Jacobson), and since U ∩ Z is a non-empty (and
hence dense) open subset of the irreducible set Z (which contains a point not lying
in U , namely x), the inclusion {u} ⊂ U ∩ Z is proper.
As X is catenary, the chain

X = Z0 ⊃ Z ⊃ {x} = Zd

can be refined to a chain of length d + 1, which must then be of the form
X = Z0 ⊃W1 ⊃ . . . ⊃Wd−1 = Z ⊃ {x} = Zd.

Since U ∩ Z is non-empty, we then find that
U = U ∩ Z0 ⊃ U ∩W1 ⊃ . . . ⊃ U ∩Wd−1 = U ∩ Z ⊃ {u}

is a strictly decreasing chain of irreducible closed subsets of U of length d + 1,
showing that dim U ≥ d, as required. □

We will prove a stack-theoretic analogue of Lemma 5.13 in Lemma 5.17 below, but
before doing so, we have to introduce an additional definition, necessitated by the
fact that the notion of a scheme being catenary is not an étale local one (see the
example of Algebra, Remark 164.8 which makes it difficult to define what it means
for an algebraic space or algebraic stack to be catenary (see the discussion of [Oss15,
page 3]). For certain aspects of dimension theory, the following definition seems to
provide a good substitute for the missing notion of a catenary algebraic stack.

Definition 5.14.0DRU We say that a locally Noetherian algebraic stack X is pseudo-
catenary if there exists a smooth and surjective morphism U → X whose source is
a universally catenary scheme.

Example 5.15.0DRV If X is locally of finite type over a universally catenary locally
Noetherian scheme S, and U → X is a smooth surjective morphism whose source
is a scheme, then the composite U → X → S is locally of finite type, and so U is
universally catenary Morphisms, Lemma 17.2. Thus X is pseudo-catenary.

The following lemma shows that the property of being pseudo-catenary passes
through finite-type morphisms.

Lemma 5.16.0DRW If X is a pseudo-catenary locally Noetherian algebraic stack, and
if Y → X is a locally of finite type morphism, then there exists a smooth surjective
morphism V → Y whose source is a universally catenary scheme; thus Y is again
pseudo-catenary.

Proof. By assumption we may find a smooth surjective morphism U → X whose
source is a universally catenary scheme. The base-change U ×X Y is then an al-
gebraic stack; let V → U ×X Y be a smooth surjective morphism whose source
is a scheme. The composite V → U ×X Y → Y is then smooth and surjec-
tive (being a composite of smooth and surjective morphisms), while the morphism
V → U ×X Y → U is locally of finite type (being a composite of morphisms that
are locally finite type). Since U is universally catenary, we see that V is universally
catenary (by Morphisms, Lemma 17.2), as claimed. □

We now study the behaviour of the function dimx(X ) on |X | (for some locally
Noetherian stack X ) with respect to the irreducible components of |X |, as well as
various related topics.

https://stacks.math.columbia.edu/tag/0DRU
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Lemma 5.17.0DRX If X is a Jacobson, pseudo-catenary, and locally Noetherian al-
gebraic stack for which |X | is irreducible, then dimx(X ) is a constant function on
|X |.

Proof. It suffices to show that dimx(X ) is locally constant on |X |, since it will
then necessarily be constant (as |X | is connected, being irreducible). Since X is
pseudo-catenary, we may find a smooth surjective morphism U → X with U being
a universally catenary scheme. If {Ui} is an cover of U by quasi-compact open
subschemes, we may replace U by

∐
Ui,, and it suffices to show that the function

u 7→ dimf(u)(X ) is locally constant on Ui. Since we check this for one Ui at a
time, we now drop the subscript, and write simply U rather than Ui. Since U is
quasi-compact, it is the union of a finite number of irreducible components, say
T1 ∪ . . . ∪ Tn. Note that each Ti is Jacobson, catenary, and locally Noetherian,
being a closed subscheme of the Jacobson, catenary, and locally Noetherian scheme
U .

By Lemma 5.4, we have dimf(u)(X ) = dimu(U) − dimu(Uf(u)). Lemma 5.11 (2)
shows that the second term in the right hand expression is locally constant on U ,
as f is smooth, and hence we must show that dimu(U) is locally constant on U .
Since dimu(U) is the maximum of the dimensions dimu Ti, as Ti ranges over the
components of U containing u, it suffices to show that if a point u lies on two
distinct components, say Ti and Tj (with i ̸= j), then dimu Ti = dimu Tj , and then
to note that t 7→ dimt T is a constant function on an irreducible Jacobson, catenary,
and locally Noetherian scheme T (as follows from Lemma 5.13).

Let V = Ti \ (
⋃

i′ ̸=i Ti′) and W = Tj \ (
⋃

i′ ̸=j Ti′). Then each of V and W is
a non-empty open subset of U , and so each has non-empty open image in |X |.
As |X | is irreducible, these two non-empty open subsets of |X | have a non-empty
intersection. Let x be a point lying in this intersection, and let v ∈ V and w ∈ W
be points mapping to x. We then find that

dim Ti = dim V = dimv(U) = dimx(X ) + dimv(Ux)

and similarly that

dim Tj = dim W = dimw(U) = dimx(X ) + dimw(Ux).

Since u 7→ dimu(Uf(u)) is locally constant on U , and since Ti ∪ Tj is connected
(being the union of two irreducible, hence connected, sets that have non-empty in-
tersection), we see that dimv(Ux) = dimw(Ux), and hence, comparing the preceding
two equations, that dim Ti = dim Tj , as required. □

Lemma 5.18.0DRY If Z ↪→ X is a closed immersion of locally Noetherian algebraic
stacks, and if z ∈ |Z| has image x ∈ |X |, then dimz(Z) ≤ dimx(X ).

Proof. Choose a smooth surjective morphism U → X whose source is a scheme;
the base-changed morphism V = U ×X Z → Z is then also smooth and surjective,
and the projection V → U is a closed immersion. If v ∈ |V | maps to z ∈ |Z|, and
if we let u denote the image of v in |U |, then clearly dimv(V ) ≤ dimu(U), while
dimv(Vz) = dimu(Ux), by Lemma 5.9. Thus

dimz(Z) = dimv(V )− dimv(Vz) ≤ dimu(U)− dimu(Ux) = dimx(X ),

as claimed. □

https://stacks.math.columbia.edu/tag/0DRX
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Lemma 5.19.0DRZ If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
dimx(X ) = supT {dimx(T )}, where T runs over all the irreducible components of
|X | passing through x (endowed with their induced reduced structure).

Proof. Lemma 5.18 shows that dimx(T ) ≤ dimx(X ) for each irreducible compo-
nent T passing through the point x. Thus to prove the lemma, it suffices to show
that

(5.19.1)0DS0 dimx(X ) ≤ sup
T
{dimx(T )}.

Let U → X be a smooth cover by a scheme. If T is an irreducible component
of U then we let T denote the closure of its image in X , which is an irreducible
component of X . Let u ∈ U be a point mapping to x. Then we have dimx(X ) =
dimu U − dimu Ux = supT dimu T − dimu Ux, where the supremum is over the
irreducible components of U passing through u. Choose a component T for which
the supremum is achieved, and note that dimx(T ) = dimu T−dimu Tx. The desired
inequality (5.19.1) now follows from the evident inequality dimu Tx ≤ dimu Ux.
(Note that if Spec k → X is a representative of x, then T ×X Spec k is a closed
subspace of U ×X Spec k.) □

Lemma 5.20.0DS1 If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
for any open substack V of X containing x, there is a finite type point x0 ∈ |V| such
that dimx0(X ) = dimx(V).

Proof. Choose a smooth surjective morphism f : U → X whose source is a scheme,
and consider the function u 7→ dimf(u)(X ); since the morphism |U | → |X | induced
by f is open (as f is smooth) as well as surjective (by assumption), and takes finite
type points to finite type points (by the very definition of the finite type points of
|X |), it suffices to show that for any u ∈ U , and any open neighbourhood of u, there
is a finite type point u0 in this neighbourhood such that dimf(u0)(X ) = dimf(u)(X ).
Since, with this reformulation of the problem, the surjectivity of f is no longer
required, we may replace U by the open neighbourhood of the point u in question,
and thus reduce to the problem of showing that for each u ∈ U , there is a finite type
point u0 ∈ U such that dimf(u0)(X ) = dimf(u)(X ). By Lemma 5.4 dimf(u)(X ) =
dimu(U) − dimu(Uf(u)), while dimf(u0)(X ) = dimu0(U) − dimu0(Uf(u0)). Since f
is smooth, the expression dimu0(Uf(u0)) is locally constant as u0 varies over U (by
Lemma 5.11 (2)), and so shrinking U further around u if necessary, we may assume
it is constant. Thus the problem becomes to show that we may find a finite type
point u0 ∈ U for which dimu0(U) = dimu(U). Since by definition dimu U is the
minimum of the dimensions dim V , as V ranges over the open neighbourhoods V
of u in U , we may shrink U down further around u so that dimu U = dim U . The
existence of desired point u0 then follows from Lemma 5.12. □

Lemma 5.21.0DS2 Let T ↪→ X be a locally of finite type monomorphism of algebraic
stacks, with X (and thus also T ) being Jacobson, pseudo-catenary, and locally Noe-
therian. Suppose further that T is irreducible of some (finite) dimension d, and
that X is reduced and of dimension less than or equal to d. Then there is a non-
empty open substack V of T such that the induced monomorphism V ↪→ X is an
open immersion which identifies V with an open subset of an irreducible component
of X .

https://stacks.math.columbia.edu/tag/0DRZ
https://stacks.math.columbia.edu/tag/0DS1
https://stacks.math.columbia.edu/tag/0DS2
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Proof. Choose a smooth surjective morphism f : U → X with source a scheme,
necessarily reduced since X is, and write U ′ = T ×X U . The base-changed morphism
U ′ → U is a monomorphism of algebraic spaces, locally of finite type, and thus
representable Morphisms of Spaces, Lemma 51.1 and 27.10; since U is a scheme,
so is U ′. The projection f ′ : U ′ → T is again a smooth surjection. Let u′ ∈ U ′,
with image u ∈ U . Lemma 5.9 shows that dimu′(U ′

f(u′)) = dimu(Uf(u)), while
dimf ′(u′)(T ) = d ≥ dimf(u)(X ) by Lemma 5.17 and our assumptions on T and X .
Thus we see that
(5.21.1)

0DS3 dimu′(U ′) = dimu′(U ′
f(u′))+dimf ′(u′)(T ) ≥ dimu(Uf(u))+dimf(u)(X ) = dimu(U).

Since U ′ → U is a monomorphism, locally of finite type, it is in particular unrami-
fied, and so by the étale local structure of unramified morphisms Étale Morphisms,
Lemma 17.3, we may find a commutative diagram

V ′ //

��

V

��
U ′ // U

in which the scheme V ′ is non-empty, the vertical arrows are étale, and the upper
horizontal arrow is a closed immersion. Replacing V by a quasi-compact open subset
whose image has non-empty intersection with the image of U ′, and replacing V ′ by
the preimage of V , we may further assume that V (and thus V ′) is quasi-compact.
Since V is also locally Noetherian, it is thus Noetherian, and so is the union of
finitely many irreducible components.

Since étale morphisms preserve pointwise dimension Descent, Lemma 21.2 we de-
duce from (5.21.1) that for any point v′ ∈ V ′, with image v ∈ V , we have
dimv′(V ′) ≥ dimv(V ). In particular, the image of V ′ can’t be contained in the
intersection of two distinct irreducible components of V , and so we may find at
least one irreducible open subset of V which has non-empty intersection with V ′;
replacing V by this subset, we may assume that V is integral (being both reduced
and irreducible). From the preceding inequality on dimensions, we conclude that
the closed immersion V ′ ↪→ V is in fact an isomorphism. If we let W denote the
image of V ′ in U ′, then W is a non-empty open subset of U ′ (as étale morphisms are
open), and the induced monomorphism W → U is étale (since it is so étale locally
on the source, i.e. after pulling back to V ′), and hence is an open immersion (being
an étale monomorphism). Thus, if we let V denote the image of W in T , then V
is a dense (equivalently, non-empty) open substack of T , whose image is dense in
an irreducible component of X . Finally, we note that the morphism is V → X is
smooth (since its composite with the smooth morphism W → V is smooth), and
also a monomorphism, and thus is an open immersion. □

Lemma 5.22.0DS4 Let f : T → X be a locally of finite type morphism of Jacobson,
pseudo-catenary, and locally Noetherian algebraic stacks, whose source is irreducible
and whose target is quasi-separated, and let Z ↪→ X denote the scheme-theoretic
image of T . Then for all t ∈ |T |, we have that dimt(Tf(t)) ≥ dim T − dimZ, and
there is a non-empty (equivalently, dense) open subset of |T | over which equality
holds.

https://stacks.math.columbia.edu/tag/0DS4


THE GEOMETRY OF ALGEBRAIC STACKS 19

Proof. Replacing X by Z, we may and do assume that f is scheme theoretically
dominant, and also that X is irreducible. By the upper semi-continuity of fibre
dimensions (Lemma 5.11 (1)), it suffices to prove that the equality dimt(Tf(t)) =
dim T − dimZ holds for t lying in some non-empty open substack of T . For this
reason, in the argument we are always free to replace T by a non-empty open
substack.

Let T ′ → T be a smooth surjective morphism whose source is a scheme, and let T
be a non-empty quasi-compact open subset of T ′. Since Y is quasi-separated, we
find that T → Y is quasi-compact (by Morphisms of Stacks, Lemma 7.7, applied
to the morphisms T → Y → Spec Z). Thus, if we replace T by the image of T in
T , then we may assume (appealing to Morphisms of Stacks, Lemma 7.6 that the
morphism f : T → X is quasi-compact.

If we choose a smooth surjection U → X with U a scheme, then Lemma 3.1 ensures
that we may find an irreducible open subset V of U such that V → X is smooth
and scheme-theoretically dominant. Since scheme-theoretic dominance for quasi-
compact morphisms is preserved by flat base-change, the base-change T ×X V →
V of the scheme-theoretically dominant morphism f is again scheme-theoretically
dominant. We let Z denote a scheme admitting a smooth surjection onto this fibre
product; then Z → T ×X V → V is again scheme-theoretically dominant. Thus we
may find an irreducible component C of Z which scheme-theoretically dominates
V . Since the composite Z → T ×X V → T is smooth, and since T is irreducible,
Lemma 3.1 shows that any irreducible component of the source has dense image
in |T |. We now replace C by a non-empty open subset W which is disjoint from
every other irreducible component of Z, and then replace T and X by the images
of W and V (and apply Lemma 5.17 to see that this doesn’t change the dimension
of either T or X ). If we let W denote the image of the morphism W → T ×X V ,
then W is open in T ×X V (since the morphism W → T ×X V is smooth), and
is irreducible (being the image of an irreducible scheme). Thus we end up with a
commutative diagram

W

!!

// W //

��

V

��
T // X

in which W and V are schemes, the vertical arrows are smooth and surjective,
the diagonal arrows and the left-hand upper horizontal arroware smooth, and the
induced morphism W → T ×X V is an open immersion. Using this diagram,
together with the definitions of the various dimensions involved in the statement
of the lemma, we will reduce our verification of the lemma to the case of schemes,
where it is known.

Fix w ∈ |W | with image w′ ∈ |W|, image t ∈ |T |, image v in |V |, and image x in
|X |. Essentially by definition (using the fact that W is open in T ×X V , and that
the fibre of a base-change is the base-change of the fibre), we obtain the equalities

dimv Vx = dimw′Wt

and
dimt Tx = dimw′Wv.
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By Lemma 5.4 (the diagonal arrow and right-hand vertical arrow in our diagram
realise W and V as smooth covers by schemes of the stacks T and X ), we find that

dimt T = dimw W − dimw Wt

and
dimx X = dimv V − dimv Vx.

Combining the equalities, we find that

dimt Tx−dimt T + dimx X = dimw′Wv−dimw W + dimw Wt + dimv V −dimw′Wt

Since W → W is a smooth surjection, the same is true if we base-change over the
morphism Spec κ(v) → V (thinking of W → W as a morphism over V ), and from
this smooth morphism we obtain the first of the following two equalities

dimw Wv − dimw′Wv = dimw(Wv)w′ = dimw Ww′ ;

the second equality follows via a direct comparison of the two fibres involved. Sim-
ilarly, if we think of W → W as a morphism of schemes over T , and base-change
over some representative of the point t ∈ |T |, we obtain the equalities

dimw Wt − dimw′Wt = dimw(Wt)w′ = dimw Ww′ .

Putting everything together, we find that

dimt Tx − dimt T + dimx X = dimw Wv − dimw W + dimv V.

Our goal is to show that the left-hand side of this equality vanishes for a non-empty
open subset of t. As w varies over a non-empty open subset of W , its image t ∈ |T |
varies over a non-empty open subset of |T | (as W → T is smooth).

We are therefore reduced to showing that if W → V is a scheme-theoretically
dominant morphism of irreducible locally Noetherian schemes that is locally of
finite type, then there is a non-empty open subset of points w ∈ W such that
dimw Wv = dimw W − dimv V (where v denotes the image of w in V ). This is a
standard fact, whose proof we recall for the convenience of the reader.

We may replace W and V by their underlying reduced subschemes without altering
the validity (or not) of this equation, and thus we may assume that they are in
fact integral schemes. Since dimw Wv is locally constant on W, replacing W by
a non-empty open subset if necessary, we may assume that dimw Wv is constant,
say equal to d. Choosing this open subset to be affine, we may also assume that
the morphism W → V is in fact of finite type. Replacing V by a non-empty open
subset if necessary (and then pulling back W over this open subset; the resulting
pull-back is non-empty, since the flat base-change of a quasi-compact and scheme-
theoretically dominant morphism remains scheme-theoretically dominant), we may
furthermore assume that W is flat over V . The morphism W → V is thus of
relative dimension d in the sense of Morphisms, Definition 29.1 and it follows from
Morphisms, Lemma 29.6 that dimw(W ) = dimv(V ) + d, as required. □

Remark 5.23.0DS5 We note that in the context of the preceding lemma, it need not
be that dim T ≥ dimZ; this does not contradict the inequality in the statement of
the lemma, because the fibres of the morphism f are again algebraic stacks, and
so may have negative dimension. This is illustrated by taking k to be a field, and
applying the lemma to the morphism [Spec k/Gm]→ Spec k.

https://stacks.math.columbia.edu/tag/0DS5
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If the morphism f in the statement of the lemma is assumed to be quasi-DM (in the
sense of Morphisms of Stacks, Definition 4.1; e.g. morphisms that are representable
by algebraic spaces are quasi-DM), then the fibres of the morphism over points of
the target are quasi-DM algebraic stacks, and hence are of non-negative dimension.
In this case, the lemma implies that indeed dim T ≥ dimZ. In fact, we obtain the
following more general result.

Lemma 5.24.0DS6 Let f : T → X be a locally of finite type morphism of Jacobson,
pseudo-catenary, and locally Noetherian algebraic stacks which is quasi-DM, whose
source is irreducible and whose target is quasi-separated, and let Z ↪→ X denote the
scheme-theoretic image of T . Then dimZ ≤ dim T , and furthermore, exactly one
of the following two conditions holds:

(1) for every finite type point t ∈ |T |, we have dimt(Tf(t)) > 0, in which case
dimZ < dim T ; or

(2) T and Z are of the same dimension.

Proof. As was observed in the preceding remark, the dimension of a quasi-DM
stack is always non-negative, from which we conclude that dimt Tf(t) ≥ 0 for all
t ∈ |T |, with the equality

dimt Tf(t) = dimt T − dimf(t)Z

holding for a dense open subset of points t ∈ |T |. □

6. The dimension of the local ring

0DS7 An algebraic stack doesn’t really have local rings in the usual sense, but we can
define the dimension of the local ring as follows.

Lemma 6.1.0DS8 Let X be a locally Noetherian algebraic stack. Let U → X be a
smooth morphism and let u ∈ U . Then

dim(OU,u)− dim(ORu,e(u)) = 2 dim(OU,u)− dim(OR,e(u))

Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is
the fibre of s : R→ U over u.

Proof. This is true because s : OU,u → OR,e(u) is a flat local homomorphism of
Noetherian local rings and hence

dim(OR,e(u)) = dim(OU,u) + dim(ORu,e(u))

by Algebra, Lemma 112.7. □

Lemma 6.2.0DS9 Let X be a locally Noetherian algebraic stack. Let x ∈ |X | be a finite
type point Morphisms of Stacks, Definition 18.2). Let d ∈ Z. The following are
equivalent

(1) there exists a scheme U , a smooth morphism U → X , and a finite type
point u ∈ U mapping to x such that 2 dim(OU,u)− dim(OR,e(u)) = d, and

(2) for any scheme U , a smooth morphism U → X , and finite type point u ∈ U
mapping to x we have 2 dim(OU,u)− dim(OR,e(u)) = d.

Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is
the fibre of s : R→ U over u.

https://stacks.math.columbia.edu/tag/0DS6
https://stacks.math.columbia.edu/tag/0DS8
https://stacks.math.columbia.edu/tag/0DS9
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Proof. Suppose we have two smooth neighbourhoods (U, u) and (U ′, u′) of x with
u and u′ finite type points. After shrinking U and U ′ we may assume that u and u′

are closed points (by definition of finite type points). Then we choose a surjective
étale morphism W → U ×X U ′. Let Wu be the fibre of W → U over u and let Wu′

be the fibre of W → U ′ over u′. Since u and u′ map to the same point of |X | we see
that Wu ∩Wu′ is nonempty. Hence we may choose a closed point w ∈W mapping
to both u and u′. This reduces us to the discussion in the next paragraph.

Assume (U ′, u′) → (U, u) is a smooth morphism of smooth neightbourhoods of x
with u and u′ closed points. Goal: prove the invariant defined for (U, u) is the same
as the invariant defined for (U ′, u′). To see this observe that OU,u → OU ′,u′ is a
flat local homomorphism of Noetherian local rings and hence

dim(OU ′,u′) = dim(OU,u) + dim(OU ′
u,u′)

by Algebra, Lemma 112.7. (We omit working through all the steps to relate prop-
erties of local rings and their strict henselizations, see More on Algebra, Section
45). On the other hand we have

R′ = U ′ ×U,t R×s,U U ′

Thus we see that

dim(OR′,e(u′)) = dim(OR,e(u)) + dim(OU ′
u×uU ′

u,(u′,u′))

To prove the lemma it suffices to show that

dim(OU ′
u×uU ′

u,(u′,u′)) = 2 dim(OU ′
u,u′)

Observe that this isn’t always true (example: if U ′
u is a curve and u′ is the generic

point of this curve). However, we know that u′ is a closed point of the algebraic
space U ′

u locally of finite type over u. In this case the equality holds because,
first dim(u′,u′)(U ′

u ×u U ′
u) = 2 dimu′(U ′

u) by Varieties, Lemma 20.5 and second the
agreement of dimension with dimension of local rings in closed points of locally
algebraic schemes, see Varieties, Lemma 20.3. We omit the translation of these
results for schemes into the language of algebraic spaces. □

Definition 6.3.0DSA Let X be a locally Noetherian algebraic stack. Let x ∈ |X | be a
finite type point. The dimension of the local ring of X at x is d ∈ Z if the equivalent
conditions of Lemma 6.2 are satisfied.

To be sure, this is motivated by Lemma 6.1 and Properties of Stacks, Definition 12.2.
We close this section by establishing a formula allowing us to compute dimx(X ) in
terms of properties of the versal ring to X at x.

Lemma 6.4.0DSB Suppose that X is an algebraic stack, locally of finite type over a
locally Noetherian scheme S. Let x0 : Spec(k) → X be a morphism where k is a
field of finite type over S. Represent FX ,k,x0 as in Remark 2.11 by a cogroupoid
(A, B, s, t, c) of Noetherian complete local S-algebras with residue field k. Then

the dimension of the local ring of X at x0 = 2 dim A− dim B

Proof. Let s ∈ S be the image of x0. If OS,s is a G-ring (a condition that is almost
always satisfied in practice), then we can prove the lemma as follows. By Lemma
2.8, we may find a smooth morphism U → X , whose source is a scheme, containing
a point u0 ∈ U of residue field k, such that induced morphism Spec(k) → U → X

https://stacks.math.columbia.edu/tag/0DSA
https://stacks.math.columbia.edu/tag/0DSB
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coincides with x0 and such that A = O∧
U,u0

. Write R = U ×X U . Then we may
identify O∧

R,e(u0) with B. Hence the equality follows from the definitions.
In the rest of this proof we explain how to prove the lemma in general, but we urge
the reader to skip this.
First let us show that the right hand side is independent of the choice of (A, B, s, t, c).
Namely, suppose that (A′, B′, s′, t′, c′) is a second choice. Since A and A′ are versal
rings to X at x0, we can choose, after possibly switching A and A′, a formally
smooth map A → A′ compatible with the given versal formal objects ξ and ξ′

over A and A′. Recall that ĈΛ has coproducts and that these are given by com-
pleted tensor product over Λ, see Formal Deformation Theory, Lemma 4.4. Then
B prorepresents the functor of isomorphisms between the two pushforwards of ξ to
A⊗̂ΛA. Similarly for B′. We conclude that

B′ = B ⊗(A⊗̂ΛA) (A′⊗̂ΛA′)

It is straightforward to see that
A⊗̂ΛA −→ A⊗̂ΛA′ −→ A′⊗̂ΛA′

is formally smooth of relative dimension equal to 2 times the relative dimension
of the formally smooth map A → A′. (This follows from general principles, but
also because in this particular case A′ is a power series ring over A in r variables.)
Hence B → B′ is formally smooth of relative dimension 2(dim(A′) − dim(A)) as
desired.
Next, let l/k be a finite extension. let xl,0 : Spec(l)→ X be the induced point. We
claim that the right hand side of the formula is the same for x0 as it is for xl,0.
This can be shown by choosing A→ A′ as in Lemma 2.5 and arguing exactly as in
the preceding paragraph. We omit the details.
Finally, arguing as in the proof of Lemma 2.10 we can use the compatibilities in
the previous two paragraphs to reduce to the case (discussed in the first paragraph)
where A is the complete local ring of U at u0 for some scheme smooth over X and
finite type point u0. Details omitted. □
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