1. Introduction

In this chapter we put material related to limits of algebraic stacks. Many results on limits of algebraic stacks and algebraic spaces have been obtained by David Rydh in \cite{Ryd08}.

2. Conventions

We continue to use the conventions and the abuse of language introduced in Properties of Stacks, Section \ref{section-conventions}.

3. Morphisms of finite presentation

This section is the analogue of Limits of Spaces, Section \ref{section-limits-spaces}. There we defined what it means for a transformation of functors on Sch to be limit preserving (we suggest looking at the characterization in Limits of Spaces, Lemma \ref{lemma-limit-preserving}). In Criteria for Representability, Section \ref{section-criteria-representability} we defined the notion “limit preserving on objects”. Recall that in Artin’s Axioms, Section \ref{section-artin-axioms} we have defined what it means for a category fibred in groupoids over Sch to be limit preserving. Combining these we get the following notion.

Definition 3.1. Let S be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a 1-morphism of categories fibred in groupoids over $(\text{Sch}/S)_{\text{fppf}}$. We say f is limit preserving if for every directed limit $U = \lim U_i$ of affine schemes over S the diagram

$$
\begin{array}{ccc}
\text{colim} \mathcal{X}_{U_i} & \longrightarrow & \mathcal{X}_U \\
\downarrow f & & \downarrow f \\
\text{colim} \mathcal{Y}_{U_i} & \longrightarrow & \mathcal{Y}_U
\end{array}
$$

of fibre categories is 2-cartesian.
Lemma 3.2. Let S be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a 1-morphism of categories fibred in groupoids over $(\text{Sch}/S)_{\text{fppf}}$. If f is limit preserving (Definition 3.1), then f is limit preserving on objects (Criteria for Representability, Section 5).

Proof. If for every directed limit $U = \lim_{i \in I} U_i$ of affine schemes over U, the functor
$$\text{colim} \mathcal{X}_{U_i} \to \text{colim} \mathcal{Y}_{U_i} \times_{\mathcal{Y}_U} \mathcal{X}_U$$
is essentially surjective, then f is limit preserving on objects. □

Lemma 3.3. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be 1-morphisms of categories fibred in groupoids over $(\text{Sch}/S)_{\text{fppf}}$. If $p : \mathcal{X} \to \mathcal{Y}$ is limit preserving, then so is the base change $p' : \mathcal{X} \times_{\mathcal{Y}} \mathcal{Z} \to \mathcal{Z}$ of p by q.

Proof. This is formal. Let $U = \lim_{i \in I} U_i$ be the directed limit of affine schemes U_i over S. For each i we have
$$(\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_{U_i} = \mathcal{X}_{U_i} \times_{\mathcal{Y}_{U_i}} \mathcal{Z}_{U_i}$$
Filtered colimits commute with 2-fibre products of categories (details omitted) hence if p is limit preserving we get
$$\text{colim} (\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_{U_i} = \text{colim} \mathcal{X}_{U_i} \times_{\text{colim} \mathcal{Y}_{U_i}} \text{colim} \mathcal{Z}_{U_i}$$
$$= \mathcal{X}_U \times_{\mathcal{Y}_U} \text{colim} \mathcal{Y}_{U_i} \times_{\text{colim} \mathcal{Y}_{U_i}} \text{colim} \mathcal{Z}_{U_i}$$
$$= \mathcal{X}_U \times_{\mathcal{Y}_U} \mathcal{Z}_{U_i} \times_{\text{colim} \mathcal{Z}_{U_i}} \text{colim} \mathcal{Z}_{U_i}$$
$$= (\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_U \times_{\text{colim} \mathcal{Z}_{U_i}} \text{colim} \mathcal{Z}_{U_i}$$
as desired. □

Lemma 3.4. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Y} \to \mathcal{Z}$ be 1-morphisms of categories fibred in groupoids over $(\text{Sch}/S)_{\text{fppf}}$. If p and q are limit preserving, then so is the composition $q \circ p$.

Proof. This is formal. Let $U = \lim_{i \in I} U_i$ be the directed limit of affine schemes U_i over S. If p and q are limit preserving we get
$$\text{colim} \mathcal{X}_{U_i} = \mathcal{X}_U \times_{\mathcal{Y}_U} \text{colim} \mathcal{Y}_{U_i}$$
$$= \mathcal{X}_U \times_{\mathcal{Y}_U} \mathcal{Y}_U \times_{\mathcal{Z}_U} \text{colim} \mathcal{Z}_{U_i}$$
$$= \mathcal{X}_U \times_{\mathcal{Y}_U} \mathcal{Z}_{U_i} \times_{\text{colim} \mathcal{Z}_{U_i}} \text{colim} \mathcal{Z}_{U_i}$$
as desired. □

Lemma 3.5. Let $p : \mathcal{X} \to \mathcal{Y}$ be a 1-morphism of categories fibred in groupoids over $(\text{Sch}/S)_{\text{fppf}}$. If p is representable by algebraic spaces, then the following are equivalent:

1. p is limit preserving,
2. p is limit preserving on objects, and
3. p is locally of finite presentation (see Algebraic Stacks, Definition 10.1).

Proof. In Criteria for Representability, Lemma 5.3 we have seen that (2) and (3) are equivalent. Thus it suffices to show that (1) and (2) are equivalent. One direction we saw in Lemma 3.2. For the other direction, let $U = \lim_{i \in I} U_i$ be the directed limit of affine schemes U_i over S. We have to show that
$$\text{colim} \mathcal{X}_{U_i} \to \mathcal{X}_U \times_{\mathcal{Y}_U} \text{colim} \mathcal{Y}_{U_i}$$
is an equivalence. Since we are assuming (2) we know that it is essentially surjective.
Hence we need to prove it is fully faithful. Since \(p \) is faithful on fibre categories
(AlgStacks, Lemma 9.2) we see that the functor is faithful. Let \(x_i \) and \(x'_i \) be objects in the fibre category of \(\mathcal{X} \) over \(U_i \). The functor above sends \(x_i \) to \((x_i|_U, p(x_i), \text{can})\) where \(\text{can} \) is the canonical isomorphism \(p(x_i|_U) \to p(x_i)|_U \).
Thus we assume given a morphism
\[
(\alpha, \beta_i) : (x_i|_U, p(x_i), \text{can}) \to (x'_i|_U, p(x'_i), \text{can})
\]
in the category of the right hand side of the first displayed arrow of this proof.
Our task is to produce an \(i' \geq i \) and a morphism \(x_i|_{U_{i'}} \to x'_i|_{U_{i'}} \) which maps to
\((\alpha, \beta_i|_{U_{i'}})\).

Set \(y_i = p(x_i) \) and \(y'_i = p(x'_i) \). By (AlgStacks, Lemma 9.2) the functor
\[
X_{y_i} : (\text{Sch}/U_i)^{\text{op}} \to \text{Sets}, \quad V/U_i \mapsto \{(x, \phi) \mid x \in \text{Ob}(X_V), \phi : f(x) \to y_i|_V \} \cong
\]
is an algebraic space over \(U_i \) and the same is true for the analogously defined functor
\(X_{y'_i} \). Since (2) is equivalent to (3) we see that \(X_{y'_i} \) is locally of finite presentation
over \(U_i \). Observe that \((x_i, \text{id})\) and \((x'_i, \text{id})\) define \(U_i \)-valued points of \(X_{y_i} \) and \(X_{y'_i} \).
There is a transformation of functors
\[
\beta_i : X_{y_i} \to X_{y'_i}, \quad (x/V, \phi) \mapsto (x/V, \beta_i|_V \circ \phi)
\]
in other words, this is a morphism of algebraic spaces over \(U_i \). We claim that
\[
\begin{array}{ccc}
U & \to & U_i \\
\downarrow & & \downarrow (x_i, \text{id}) \\
U_i & x_{y_i} & \beta_i \\
\downarrow & \downarrow (x'_i, \text{id}) & \downarrow \\
X_{y_i} & \to & X_{y'_i}
\end{array}
\]
commutes. Namely, this is equivalent to the condition that the pairs \((x_i|_U, \beta_i|_U)\) and
\((x'_i|_U, \text{id})\) as in the definition of the functor \(X_{y'_i} \) are isomorphic. And the morphism
\(\alpha : x_i|_U \to x'_i|_U \) exactly produces such an isomorphism. Arguing backwards the
reader sees that if we can find an \(i' \geq i \) such that the diagram
\[
\begin{array}{ccc}
U_{i'} & \to & U_i \\
\downarrow & & \downarrow (x_i, \text{id}) \\
U_i & x_{y_i} & \beta_i \\
\downarrow & \downarrow (x'_i, \text{id}) & \downarrow \\
X_{y_i} & \to & X_{y'_i}
\end{array}
\]
commutes, then we obtain an isomorphism \(x_i|_{U_{i'}} \to x'_i|_{U_{i'}} \), which is a solution to
the problem posed in the preceding paragraph. However, the diagonal morphism
\[
\Delta : X_{y'_i} \to X_{y'_i} \times_{U_i} X_{y'_i}
\]
is locally of finite presentation (Morphisms of Spaces, Lemma 28.10) hence the fact
that \(U \to U_i \) equalizes the two morphisms to \(X_{y'_i} \), means that for some \(i' \geq i \) the
morphism \(U_{i'} \to U_i \) equalizes the two morphisms, see Limits of Spaces, Proposition
3.8.

\[\square\]

0CMW Lemma 3.6. Let \(p : \mathcal{X} \to \mathcal{Y} \) be a 1-morphism of categories fibred in groupoids
over \((\text{Sch}/S)_{\text{fpf}}\). The following are equivalent.

1. the diagonal \(\Delta : \mathcal{X} \to \mathcal{X} \times_{\mathcal{Y}} \mathcal{X} \) is limit preserving, and
(2) for every directed limit $U = \lim U_i$ of affine schemes over S the functor
\[\text{colim} X_{U_i} \longrightarrow X_U \times_{Y_U} \text{colim} Y_{U_i} \]
is fully faithful.
In particular, if p is limit preserving, then Δ is too.

Proof. Let $U = \lim U_i$ be a directed limit of affine schemes over S. We claim that the functor
\[\text{colim} X_{U_i} \longrightarrow X_U \times_{Y_U} \text{colim} Y_{U_i} \]
is fully faithful if and only if the functor
\[\text{colim} X_{U_i} \longrightarrow X_U \times_{(X \times_Y X)_U} \text{colim}(X \times_Y X)_{U_i} \]
is an equivalence. This will prove the lemma. Since $(X \times_Y X)_U = X_U \times_{Y_U} X_U$ and $(X \times_Y X)_{U_i} = X_{U_i} \times_{Y_{U_i}} X_{U_i}$ this is a purely category theoretic assertion which we discuss in the next paragraph.

Let \mathcal{I} be a filtered index category. Let (C_i) and (D_i) be systems of groupoids over \mathcal{I}. Let $p : (C_i) \rightarrow (D_i)$ be a map of systems of groupoids over \mathcal{I}. Suppose we have a functor $p : C \rightarrow D$ of groupoids and functors $f : \text{colim} C_i \rightarrow C$ and $g : \text{colim} D_i \rightarrow D$ fitting into a commutative diagram
\[
\begin{array}{ccc}
\text{colim} C_i & \xrightarrow{f} & C \\
\downarrow{p} & & \downarrow{p} \\
\text{colim} D_i & \xrightarrow{g} & D
\end{array}
\]
Then we claim that
\[A : \text{colim} C_i \longrightarrow C \times_D \text{colim} D_i \]
is fully faithful if and only if the functor
\[B : \text{colim} C_i \longrightarrow C \times_{\Delta_c \times_D, f \times_{s_f}} \text{colim}(C_i \times_D, C_i) \]
is an equivalence. Set $C' = \text{colim} C_i$ and $D' = \text{colim} D_i$. Since 2-fibre products commute with filtered colimits we see that A and B become the functors
\[
A' : C' \rightarrow C \times_D D' \quad \text{and} \quad B' : C' \rightarrow C \times_{\Delta_c \times_D, f \times_{s_f}} (C' \times_{D'} C')
\]
Thus it suffices to prove that if
\[
\begin{array}{ccc}
C' & \xrightarrow{f} & C \\
\downarrow{p} & & \downarrow{p} \\
D' & \xrightarrow{g} & D
\end{array}
\]
is a commutative diagram of groupoids, then A' is fully faithful if and only if B' is an equivalence. This follows from Categories, Lemma 34.9 (with trivial, i.e., punctual, base category) because
\[
C \times_{\Delta_c \times_D, f \times_{s_f}} (C' \times_{D'} C') = C' \times_{A', \Delta_c \times_{D'}, A'} C'
\]
This finishes the proof. \(\square \)

Lemma 3.7. Let S be a scheme. Let X be an algebraic stack over S. If $X \rightarrow S$ is locally of finite presentation, then X is limit preserving in the sense of Artin’s Axioms, Definition 11.1 (equivalently: the morphism $X \rightarrow S$ is limit preserving).
Proof. Choose a surjective smooth morphism \(U \to X \) for some scheme \(U \). Then \(U \to S \) is locally of finite presentation, see Morphisms of Stacks, Section 26. We can write \(X = [U/R] \) for some smooth groupoid in algebraic spaces \((U,R,s,t,c)\), see Algebraic Stacks, Lemma 16.2. Since \(U \) is locally of finite presentation over \(S \) it follows that the algebraic space \(R \) is locally of finite presentation over \(S \). Recall that \([U/R] \) is the stack in groupoids over \((Sch/S)_{\text{fppf}}\) obtained by stackifying the category fibred in groupoids whose fibre category over \(T \) is the groupoid \((U(T), R(T), s, t, c)\). Since \(U \) and \(R \) are limit preserving as functors (Limits of Spaces, Proposition 3.8) this category fibred in groupoids is limit preserving. Thus it suffices to show that fppf stackification preserves the property of being limit preserving. This is true (hint: use Topologies, Lemma 13.2). However, we give a direct proof below using that in this case we know what the stackyfication amounts to.

Let \(T = \lim T_\lambda \) be a directed limit of affine schemes over \(S \). We have to show that the functor

\[
\text{colim}[U/R]_{T_\lambda} \to [U/R]_T
\]

is an equivalence of categories. Let us show this functor is essentially surjective. Let \(x \in \text{Ob}([U/R]_T) \). In Groupoids in Spaces, Lemma 23.1 the reader finds a description of the category \([U/R]_T\). In particular \(x \) corresponds to an fppf covering \(\{T_i \to T\}_{i \in I} \) and a \([U/R]\)-descent datum \((u_i, r_{ij})\) relative to this covering. After refining this covering we may assume it is a standard fppf covering \(\{T_{\lambda,i} \to T_\lambda\}_{i \in I} \) whose base change to \(T \) is equal to \(\{T_i \to T\}_{i \in I} \). For each \(i \), after increasing \(\lambda \), we can find a \(u_{\lambda,i} : T_{\lambda,i} \to U \) whose composition with \(T_i \to T_{\lambda,i} \) is the given morphism \(u_i \) (this is where we use that \(U \) is limit preserving). Similarly, for each \(i, j \), after increasing \(\lambda \), we can find a \(r_{\lambda,ij} : T_{\lambda,i} \times_{T_{\lambda,j}} T_{\lambda,j} \to R \) whose composition with \(T_{ij} \to T_{\lambda,ij} \) is the given morphism \(r_{ij} \) (this is where we use that \(R \) is limit preserving). After increasing \(\lambda \) we can further assume that

\[
 s \circ r_{\lambda,ij} = u_{\lambda,i} \circ \text{pr}_0 \quad \text{and} \quad t \circ r_{\lambda,ij} = u_{\lambda,j} \circ \text{pr}_1,
\]

and

\[
 c \circ (r_{\lambda,jk} \circ \text{pr}_{12}, r_{\lambda,ij} \circ \text{pr}_{01}) = r_{\lambda,ik} \circ \text{pr}_{02}.
\]

In other words, we may assume that \((u_{\lambda,i}, r_{\lambda,ij})\) is a \([U/R]\)-descent datum relative to the covering \(\{T_{\lambda,i} \to T_\lambda\}_{i \in I} \). Then we obtain a corresponding object of \([U/R]\) over \(T_\lambda \) whose pullback to \(T \) is isomorphic to \(x \) as desired. The proof of fully faithfulness works in exactly the same way using the description of morphisms in the fibre categories of \([U/T]\) given in Groupoids in Spaces, Lemma 23.1.

\[\square\]

Proposition 3.8. Let \(f : X \to Y \) be a morphism of algebraic stacks. The following are equivalent:

1. \(f \) is limit preserving,
2. \(f \) is limit preserving on objects, and
3. \(f \) is locally of finite presentation.

Proof. Assume (3). Let \(T = \lim T_i \) be a directed limit of affine schemes. Consider the functor

\[
\text{colim} X_{T_i} \to X_T \times_Y \text{colim} Y_{T_i}
\]

Let \((x, y_i, \beta)\) be an object on the right hand side, i.e., \(x \in \text{Ob}(X_T) \), \(y_i \in \text{Ob}(Y_{T_i}) \), and \(\beta : f(x) \to y_i|_{T_i} \) in \(Y_T \). Then we can consider \((x, y_i, \beta)\) as an object of the algebraic stack \(X_{y_i} = X \times_Y y_i, T_i \) over \(T \). Since \(X_{y_i} \to T_i \) is locally of finite presentation
(as a base change of f) we see that it is limit preserving by Lemma \ref{lem:limit-preserving}. This means that (x, y_i, β) comes from an object over T'_i for some $i' \geq i$ and unwinding the definitions we find that (x, y_i, β) is in the essential image of the displayed functor. In other words, the displayed functor is essentially surjective. Another formulation is that this means f is limit preserving on objects. Now we apply this to the diagonal Δ of f. Namely, by Morphisms of Stacks, Lemma \ref{lem:diag-limits} the morphism Δ is locally of finite presentation. Thus the argument above shows that Δ is limit preserving on objects. By Lemma \ref{lem:limit-preserving} this implies that Δ is limit preserving. By Lemma \ref{lem:fully-faithful} we conclude that the displayed functor above is fully faithful. Thus it is an equivalence (as we already proved essential surjectivity) and we conclude that (1) holds.

The implication (1) \Rightarrow (2) is trivial. Assume (2). Choose a scheme V and a surjective smooth morphism $V \to Y$. By Criteria for Representability, Lemma \ref{lem:representable-morphisms} the base change $U \to X \times_Y V$ is limit preserving on objects. Choose a scheme U and a surjective smooth morphism $U \to X \times_Y V$. Since a smooth morphism is locally of finite presentation, we see that $U \to X \times_Y V$ is limit preserving (first part of the proof). By Criteria for Representability, Lemma \ref{lem:representable-morphisms} we find that the composition $U \to V$ is limit preserving on objects. We conclude that $U \to V$ is locally of finite presentation, see Criteria for Representability, Lemma \ref{lem:representable-morphisms}. This is exactly the condition that f is locally of finite presentation, see Morphisms of Stacks, Definition \ref{defn:locally-finite-presentation}.

\section{4. Descending properties}

\subsection{0CPY} This section is the analogue of Limits, Section \ref{sect:limits}

\subsection{0CPZ} \textbf{Lemma 4.2.} In Situation \ref{sit:4.1} assume that $X_0 \to Y_0$ is a morphism from algebraic stack to Y_0. Assume X_0 is quasi-compact and quasi-separated. If $Y \times_{Y_0} X_0 \to Y$ is separated, then $Y_i \times_{Y_0} X_0 \to Y_i$ is separated for all sufficiently large $i \in I$.

\subsubsection{Proof.} Write $\mathcal{X} = Y \times_{Y_0} X_0$ and $\mathcal{X}_i = Y_i \times_{Y_0} X_0$. Choose an affine scheme U_0 and a surjective smooth morphism $U_0 \to X_0$. Set $U = Y \times_{Y_0} U_0$ and $U_i = Y_i \times_{Y_0} U_0$. Then U and U_i are affine and $U \to \mathcal{X}$ and $U_i \to \mathcal{X}_i$ are smooth and surjective. Set $R_0 = U_0 \times_{X_0} U_0$. Set $R = Y \times_{Y_0} R_0$ and $R_i = Y_i \times_{Y_0} R_0$. Then $R = U \times_{\mathcal{X}} U$ and $R_i = U_i \times_{\mathcal{X}_i} U_i$.

With this notation note that $\mathcal{X} \to Y$ is separated implies that $R \to U \times_Y U$ is proper as the base change of $\mathcal{X} \to \mathcal{X} \times_Y \mathcal{X}$ by $U \times_Y U \to \mathcal{X} \times_Y \mathcal{X}$. Conversely, we see that $\mathcal{X}_i \to Y_i$ is separated if $R_i \to U_i \times_{Y_i} U_i$ is proper because $U_i \times_{Y_i} U_i \to \mathcal{X}_i \times_{Y_i} \mathcal{X}_i$ is surjective and smooth, see Properties of Stacks, Lemma \ref{lem:properties}. Observe that $R_0 \to U_0 \times_{X_0} U_0$ is locally of finite type and that R_0 is quasi-compact and quasi-separated. By Limits of Spaces, Lemma \ref{lem:limits} we see that $R_i \to U_i \times_{Y_i} U_i$ is proper for large enough i which finishes the proof.

\section{5. Descending relative objects}

\subsection{0CN3} This section is the analogue of Limits of Spaces, Section \ref{sect:limits}

\subsection{0CN4} \textbf{Lemma 5.1.} Let I be a directed set. Let $(X_i, f_{ii'})$ be an inverse system of algebraic spaces over I. Assume
(1) the morphisms $f_{i,i} : X_i \to X_i'$ are affine,
(2) the spaces X_i are quasi-compact and quasi-separated.

Let $X = \lim X_i$. If \mathcal{X} is an algebraic stack of finite presentation over X, then there exists an $i \in I$ and an algebraic stack X_i of finite presentation over X_i with $\mathcal{X} \cong \mathcal{X}_i \times_X X$ as algebraic stacks over X.

Proof. By Morphisms of Stacks, Definition 26.1 the morphism $\mathcal{X} \to X$ is quasi-compact, locally of finite presentation, and quasi-separated. Since X is quasi-compact and $\mathcal{X} \to X$ is quasi-compact, we see that \mathcal{X} is quasi-compact (Morphisms of Stacks, Definition 7.2). Hence we can find an affine scheme U and a surjective smooth morphism $U \to \mathcal{X}$ (Properties of Stacks, Lemma 6.2). Set $R = U \times_X U$. We obtain a smooth groupoid in algebraic spaces (U, R, s, t, c) over X such that $\mathcal{X} = [U/R]$, see Algebraic Stacks, Lemma 16.2. Since $\mathcal{X} \to X$ is quasi-separated and X is quasi-separated we see that \mathcal{X} is quasi-separated (Morphisms of Stacks, Lemma 4.10). Thus $R \to U \times U$ is quasi-compact and quasi-separated (Morphisms of Stacks, Lemma 4.7) and hence R is a quasi-separated and quasi-compact algebraic space. On the other hand $U \to X$ is locally of finite presentation and hence also $R \to X$ is locally of finite presentation (because $s : R \to U$ is smooth hence locally of finite presentation). Thus (U, R, s, t, c) is a groupoid object in the category of algebraic spaces which are of finite presentation over X. By Limits of Spaces, Lemma 7.1 there exists an i and a groupoid in algebraic spaces $(U_i, R_i, s_i, t_i, c_i)$ over X_i whose pullback to X is isomorphic to (U, R, s, t, c). After increasing i we may assume that s_i and t_i are smooth, see Limits of Spaces, Lemma 6.3. The quotient stack $\mathcal{X}_i = [U_i/R_i]$ is an algebraic stack (Algebraic Stacks, Theorem 17.3). There is a morphism $[U/R] \to [U_i/R_i]$, see Groupoids in Spaces, Lemma 20.1. We claim that combined with the morphisms $[U/R] \to X$ and $[U_i/R_i] \to X_i$ (Groupoids in Spaces, Lemma 19.2) we obtain an isomorphism (i.e., equivalence)

$$[U/R] \to [U_i/R_i] \times_{X_i} X$$

The corresponding map

$$[U/R] \to [U_i/R_i] \times_{X_i} X$$

on the level of “presheaves of groupoids” as in Groupoids in Spaces, Equation (19.0.1) is an isomorphism. Thus the claim follows from the fact that stackification commutes with fibre products, see Stacks, Lemma 8.4. \[\square\]

6. Finite type closed in finite presentation

This section is the analogue of Limits of Spaces, Section 11.

Let $\mathcal{X} \to Y$ be a morphism from an algebraic stack to an algebraic space. Assume:

(1) \mathcal{X} is of finite type and quasi-separated,
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation $f' : \mathcal{X}' \to Y$ and a closed immersion $\mathcal{X} \to \mathcal{X}'$ of algebraic stacks over Y.

Proof. Write $Y = \lim_{i \in I} Y_i$ as a limit of algebraic spaces over a directed set I with affine transition morphisms and with Y_i Noetherian, see Limits of Spaces, Proposition 8.1. We will use the material from Limits of Spaces, Section 22.
Choose a presentation $\mathcal{X} = [U/R]$. Denote (U, R, s, t, c, e, i) the corresponding groupoid in algebraic spaces over Y. We may and do assume U is affine. Then U, $R, R \times_{s, U, t} R$ are quasi-separated algebraic spaces of finite type over Y. We have two morphisms $s, t : R \to U$, three morphisms $c : R \times_{s, U, t} R \to R$, $pr_1 : R \times_{s, U, t} R \to R$, $pr_2 : R \times_{s, U, t} R \to R$, a morphism $e : U \to R$, and finally a morphism $i : R \to R$.

These morphisms satisfy a list of axioms which are detailed in Groupoids, Section 13.

According to Limits of Spaces, Remark 22.5 we can find an $i_0 \in I$ and inverse systems

1. $(U_i)_{i \geq i_0}$
2. $(R_i)_{i \geq i_0}$
3. $(T_i)_{i \geq i_0}$

over $(Y_i)_{i \geq i_0}$ such that $U = \lim_{i \geq i_0} U_i$, $R = \lim_{i \geq i_0} R_i$, and $R \times_{s, U, t} R = \lim_{i \geq i_0} T_i$ and such that there exist morphisms of systems

1. $(s_i)_{i \geq i_0} : (R_i)_{i \geq i_0} \to (U_i)_{i \geq i_0}$
2. $(t_i)_{i \geq i_0} : (R_i)_{i \geq i_0} \to (U_i)_{i \geq i_0}$
3. $(c_i)_{i \geq i_0} : (T_i)_{i \geq i_0} \to (R_i)_{i \geq i_0}$
4. $(p_i)_{i \geq i_0} : (T_i)_{i \geq i_0} \to (R_i)_{i \geq i_0}$
5. $(q_i)_{i \geq i_0} : (T_i)_{i \geq i_0} \to (R_i)_{i \geq i_0}$
6. $(e_i)_{i \geq i_0} : (U_i)_{i \geq i_0} \to (R_i)_{i \geq i_0}$
7. $(i_i)_{i \geq i_0} : (R_i)_{i \geq i_0} \to (R_i)_{i \geq i_0}$

with $s = \lim_{i \geq i_0} s_i$, $t = \lim_{i \geq i_0} t_i$, $c = \lim_{i \geq i_0} c_i$, $pr_1 = \lim_{i \geq i_0} p_i$, $pr_2 = \lim_{i \geq i_0} q_i$, $e = \lim_{i \geq i_0} e_i$, and $i = \lim_{i \geq i_0} i_i$. By Limits of Spaces, Lemma 22.7 we see that we may assume that s_i and t_i are smooth (this may require increasing i_0). By Limits of Spaces, Lemma 22.6 we may assume that the maps $R \to U \times_{U_i, s_i} R_i$ given by s and $R \to R_i$ and $R \to U \times_{U_i, t_i} R_i$ given by t and $R \to R_i$ are isomorphisms for all $i \geq i_0$. By Limits of Spaces, Lemma 22.9 we see that we may assume that the diagrams

$$
\begin{array}{ccc}
T_i & \xrightarrow{q_i} & R_i \\
p_i \downarrow & & \downarrow t_i \\
R_i & \xrightarrow{s_i} & U_i
\end{array}
$$

are cartesian. The uniqueness of Limits of Spaces, Lemma 22.4 then guarantees that for a sufficiently large i the relations between the morphisms s, t, c, e, i mentioned above are satisfied by s_i, t_i, c_i, e_i, i_i. Fix such an i.

It follows that $(U_i, R_i, s_i, t_i, c_i, e_i, i_i)$ is a smooth groupoid in algebraic spaces over Y_i. Hence $\mathcal{X}_i = [U_i/R_i]$ is an algebraic stack (Algebraic Stacks, Theorem 17.3). The morphism of groupoids

$$(U, R, s, t, c, e, i) \to (U_i, R_i, s_i, t_i, c_i, e_i, i_i)$$

over $Y \to Y_i$ determines a commutative diagram

$$
\begin{array}{ccc}
\mathcal{X} & \xrightarrow{i} & \mathcal{X}_i \\
\downarrow & & \downarrow \\
Y & \xrightarrow{i} & Y_i
\end{array}
$$
We claim that the morphism \(X \to Y \times_Y X_i \) is a closed immersion. The claim finishes the proof because the algebraic stack \(X_i \to Y_i \) is of finite presentation by construction. To prove the claim, note that the left diagram
\[
\begin{array}{ccc}
U & \to & U_i \\
\downarrow & & \downarrow \\
X & \to & X_i
\end{array}
\]
is cartesian by Groupoids in Spaces, Lemma \[20.1\] and the results mentioned above. Hence the right commutative diagram is cartesian too. Then the desired result follows from the fact that \(U \to Y \times_Y U_i \) is a closed immersion by construction of the inverse system \((U_i)\) in Limits of Spaces, Lemma \[22.3\], the fact that \(Y \times_Y U_i \to Y \times_Y X_i \) is smooth and surjective, and Properties of Stacks, Lemma \[9.4\]. □

There is a version for separated algebraic stacks.

\textbf{Lemma 6.2.} Let \(f : X \to Y \) be a morphism from an algebraic stack to an algebraic space. Assume:

1. \(f \) is of finite type and separated,
2. \(Y \) is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation \(f' : X' \to Y \) and a closed immersion \(X \to X' \) of algebraic stacks over \(Y \).

\textbf{Proof.} First we use exactly the same procedure as in the proof of Lemma \[6.1\] (and we borrow its notation) to construct the embedding \(X \to X' \) as a morphism \(X \to X' = Y \times_Y X_i \) with \(X_i = [U_i/R_i] \). Thus it is enough to show that \(X_i \to Y_i \) is separated for sufficiently large \(i \). In other words, it is enough to show that \(X_i \to X_i \times_Y X_i \) is proper for \(i \) sufficiently large. Since the morphism \(U_i \times_Y U_i \to X_i \times_Y X_i \) is surjective and smooth and since \(R_i = X_i \times_Y X_i \times Y U_i \times Y U_i \) it is enough to show that the morphism \((s_i, t_i) : R_i \to U_i \times_Y U_i \) is proper for \(i \) sufficiently large, see Properties of Stacks, Lemma \[3.3\]. We prove this in the next paragraph.

Observe that \(U \times_Y U \to Y \) is quasi-separated and of finite type. Hence we can use the construction of Limits of Spaces, Remark \[22.5\] to find an \(i_1 \in I \) and an inverse system \((V_i)_{i \geq i_1} \) with \(U \times_Y U = \lim_{i \geq i_1} V_i \). By Limits of Spaces, Lemma \[22.9\] for \(i \) sufficiently large the functoriality of the construction applied to the projections \(U \times_Y U \to U \) gives closed immersions
\[
V_i \to U_i \times_Y U_i
\]
(There is a small mismatch here because in truth we should replace \(Y_i \) by the scheme theoretic image of \(Y \to Y_i \), but clearly this does not change the fibre product.) On the other hand, by Limits of Spaces, Lemma \[22.8\] the functoriality applied to the proper morphism \((s, t) : R \to U \times_Y U \) (here we use that \(X \) is separated) leads to morphisms \(R_i \to V_i \) which are proper for large enough \(i \). Composing these morphisms we obtain a proper morphisms \(R_i \to U_i \times_Y U_i \) for all \(i \) large enough. The functoriality of the construction of Limits of Spaces, Remark \[22.5\] shows that this is the morphism is the same as \((s_i, t_i) \) for large enough \(i \) and the proof is complete. □
7. Other chapters

Preliminaries

1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks
9. Fields
10. Commutative Algebra
11. Brauer Groups
12. Homological Algebra
13. Derived Categories
14. Simplicial Methods
15. More on Algebra
16. Smoothing Ring Maps
17. Sheaves of Modules
18. Modules on Sites
19. Injectives
20. Cohomology of Sheaves
21. Cohomology on Sites
22. Differential Graded Algebra
23. Divided Power Algebra
24. Hypercoverings

Schemes

25. Schemes
26. Constructions of Schemes
27. Properties of Schemes
28. Morphisms of Schemes
29. Cohomology of Schemes
30. Divisors
31. Limits of Schemes
32. Varieties
33. Topologies on Schemes
34. Descent
35. Derived Categories of Schemes
36. More on Morphisms
37. More on Flatness
38. Groupoid Schemes
39. More on Groupoid Schemes
40. Étale Morphisms of Schemes

Algebraic Spaces

41. Algebraic Spaces
42. Properties of Algebraic Spaces
43. Morphisms of Algebraic Spaces
44. Decent Algebraic Spaces
45. Cohomology of Algebraic Spaces
46. Limits of Algebraic Spaces
47. Divisors on Algebraic Spaces
48. Algebraic Spaces over Fields
49. Topologies on Algebraic Spaces
50. Descent and Algebraic Spaces
51. Derived Categories of Spaces
52. More on Morphisms of Spaces
53. Flatness on Algebraic Spaces
54. Groupoids in Algebraic Spaces
55. More on Groupoids in Spaces
56. Bootstrap
57. Pushouts of Algebraic Spaces

Topics in Geometry

58. Chow Groups of Spaces
59. Quotients of Groupoids
60. More on Cohomology of Spaces
61. Simplicial Spaces
62. Duality for Spaces
63. Formal Algebraic Spaces
64. Restricted Power Series
65. Resolution of Surfaces Revisited

Topics in Scheme Theory

66. Chow Homology
67. Intersection Theory

Deformation Theory

68. Picard Schemes of Curves
69. Weil Cohomology Theories
70. Adequate Modules
71. Dualizing Complexes
72. Duality for Schemes
73. Discriminants and Differences
74. Local Cohomology
75. Algebraic and Formal Geometry
76. Algebraic Curves
77. Resolution of Surfaces
78. Semistable Reduction
79. Fundamental Groups of Schemes
80. Étale Cohomology
81. Crystalline Cohomology
82. Pro-étale Cohomology
83. More Étale Cohomology
84. The Trace Formula
| (85) Formal Deformation Theory | (100) Introducing Algebraic Stacks |
| (86) Deformation Theory | (101) More on Morphisms of Stacks |
| (87) The Cotangent Complex | (102) The Geometry of Stacks |
| (88) Deformation Problems | |
| | Topics in Moduli Theory |
| Algebraic Stacks | (103) Moduli Stacks |
| (89) Algebraic Stacks | (104) Moduli of Curves |
| (90) Examples of Stacks | |
| (91) Sheaves on Algebraic Stacks | (105) Examples |
| (92) Criteria for Representability | (106) Exercises |
| (93) Artin’s Axioms | (107) Guide to Literature |
| (94) Quot and Hilbert Spaces | (108) Desirables |
| (95) Properties of Algebraic Stacks | (109) Coding Style |
| (96) Morphisms of Algebraic Stacks | (110) Obsolete |
| (97) Limits of Algebraic Stacks | (111) GNU Free Documentation License |
| (98) Cohomology of Algebraic Stacks | |
| (99) Derived Categories of Stacks | (112) Auto Generated Index |

References
