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1. Introduction

08MX In this chapter we write about derived categories associated to algebraic stacks.
This means in particular derived categories of quasi-coherent sheaves, i.e., we prove
analogues of the results on schemes (see Derived Categories of Schemes, Section 1)
and algebraic spaces (see Derived Categories of Spaces, Section 1). The results in
this chapter are different from those in [LMB00] mainly because we consistently use
the “big sites”. Before reading this chapter please take a quick look at the chapters
“Sheaves on Algebraic Stacks” and “Cohomology of Algebraic Stacks” where the
terminology we use here is introduced.

2. Conventions, notation, and abuse of language

08MY We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2. We use notation as explained in Cohomology of Stacks,
Section 3.

3. The lisse-étale and the flat-fppf sites

08MZ The section is the analogue of Cohomology of Stacks, Section 14 for derived cate-
gories.

Lemma 3.1.07AS Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemmas 14.2 and 14.4.

(1) The functor g! : Ab(Xlisse,étale)→ Ab(Xétale) has a left derived functor
Lg! : D(Xlisse,étale) −→ D(Xétale)

which is left adjoint to g−1 and such that g−1Lg! = id.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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(2) The functor g! : Mod(Xlisse,étale,OXlisse,étale
)→ Mod(Xétale,OX ) has a left

derived functor

Lg! : D(OXlisse,étale
) −→ D(Xétale,OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
(3) The functor g! : Ab(Xflat,fppf )→ Ab(Xfppf ) has a left derived functor

Lg! : D(Xflat,fppf ) −→ D(Xfppf )

which is left adjoint to g−1 and such that g−1Lg! = id.
(4) The functor g! : Mod(Xflat,fppf ,OXflat,fppf

) → Mod(Xfppf ,OX ) has a left
derived functor

Lg! : D(OXflat,fppf
) −→ D(OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
Warning: It is not clear (a priori) that Lg! on modules agrees with Lg! on abelian
sheaves, see Cohomology on Sites, Remark 37.3.

Proof. The existence of the functor Lg! and adjointness to g∗ is Cohomology on
Sites, Lemma 37.2. (For the case of abelian sheaves use the constant sheaf Z as the
structure sheaves.) Moreover, it is computed on a complex H• by taking a suitable
left resolution K• → H• and applying the functor g! to K•. Since g−1g!K• = K• by
Cohomology of Stacks, Lemmas 14.4 and 14.2 we see that the final assertion holds
in each case. □

Lemma 3.2.07AV With assumptions and notation as in Cohomology of Stacks, Lemma
15.1. We have

g−1 ◦Rf∗ = Rf ′
∗ ◦ (g′)−1 and L(g′)! ◦ (f ′)−1 = f−1 ◦ Lg!

on unbounded derived categories (both for the case of modules and for the case of
abelian sheaves).

Proof. Let τ = étale (resp. τ = fppf). Let F be an abelian sheaf on Xτ . By
Cohomology of Stacks, Lemma 15.3 the canonical (base change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism. The rest of the proof is formal. Since cohomology of abelian
groups and sheaves of modules agree we also conclude that g−1Rf∗F = Rf ′

∗(g′)−1F
when F is a sheaf of modules on Xτ .

Next we show that for G (either sheaf of modules or abelian groups) on Ylisse,étale

(resp. Yflat,fppf ) the canonical map

L(g′)!(f ′)−1G → f−1Lg!G

is an isomorphism. To see this it is enough to prove for any injective sheaf I on Xτ

the induced map

Hom(L(g′)!(f ′)−1G, I[n])← Hom(f−1Lg!G, I[n])

is an isomorphism for all n ∈ Z. (Hom’s taken in suitable derived categories.) By
the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their “primed”
versions this follows from the isomorphism g−1Rf∗I → Rf ′

∗(g′)−1I proved above.

https://stacks.math.columbia.edu/tag/07AV
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In the case of a bounded complex G• (of modules or abelian groups) on Ylisse,étale

(resp. Yfppf ) the canonical map

(3.2.1)07AX L(g′)!(f ′)−1G• → f−1Lg!G•

is an isomorphism as follows from the case of a sheaf by the usual arguments
involving truncations and the fact that the functors L(g′)!(f ′)−1 and f−1Lg! are
exact functors of triangulated categories.

Suppose that G• is a bounded above complex (of modules or abelian groups) on
Ylisse,étale (resp. Yfppf ). The canonical map (3.2.1) is an isomorphism because we
can use the stupid truncations σ≥−n (see Homology, Section 15) to write G• as a
colimit G• = colimG•

n of bounded complexes. This gives a distinguished triangle⊕
n≥1
G•

n →
⊕

n≥1
G•

n → G• → . . .

and each of the functors L(g′)!, (f ′)−1, f−1, Lg! commutes with direct sums (of
complexes).

If G• is an arbitrary complex (of modules or abelian groups) on Ylisse,étale (resp.
Yfppf ) then we use the canonical truncations τ≤n (see Homology, Section 15) to
write G• as a colimit of bounded above complexes and we repeat the argument of
the paragraph above.

Finally, by the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and
their “primed” versions we conclude that the first identity of the lemma follows
from the second in full generality. □

Lemma 3.3.07B3 Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemma 14.2.

(1) Let H be a quasi-coherent OXlisse,étale
-module on the lisse-étale site of X .

For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

(2) Let H be a quasi-coherent OXflat,fppf
-module on the flat-fppf site of X . For

all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with the
flat base change property on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By
Modules on Sites, Definition 23.1 there exists an étale (resp. fppf) covering {Ui →
U}i∈I such that each pullback f−1

i H has a global presentation (see Modules on
Sites, Definition 17.1). Here fi : Ui → X is the composition Ui → U → X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 9.2 and the discussion following.) After
refining the covering we may assume each Ui is an affine scheme. Since each fi

is smooth (resp. flat) by Lemma 3.2 we see that f−1
i Lg!H = Lgi,!(f ′

i)−1H. Using
Cohomology of Stacks, Lemma 8.2 we reduce the statement of the lemma to the
case where H has a global presentation and where X = (Sch/X)fppf for some affine
scheme X = Spec(A).

Say our presentation looks like⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

https://stacks.math.columbia.edu/tag/07B3
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where O = OXlisse,étale
(resp. O = OXflat,fppf

). Note that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object, namely X/X which is quasi-compact (see Cohomology
on Sites, Section 16). Hence we have

Γ(
⊕

i∈I
O) =

⊕
i∈I

A

by Sites, Lemma 17.7. Hence the map in the presentation corresponds to a similar
presentation ⊕

j∈J
A −→

⊕
i∈I

A −→M −→ 0

of an A-module M . Moreover, H is equal to the restriction to the lisse-étale (resp.
flat-fppf) site of the quasi-coherent sheaf Ma associated to M . Choose a resolution

. . .→ F2 → F1 → F0 →M → 0
by free A-modules. The complex

. . .O ⊗A F2 → O⊗A F1 → O⊗A F0 → H→ 0
is a resolution of H by free O-modules because for each object U/X of Xlisse,étale

(resp. Xflat,fppf ) the structure morphism U → X is flat. Hence by construction
the value of Lg!H is

. . .→ OX ⊗A F2 → OX ⊗A F1 → OX ⊗A F0 → 0→ . . .

Since this is a complex of quasi-coherent modules on Xétale (resp. Xfppf ) it follows
from Cohomology of Stacks, Proposition 8.1 that Hp(Lg!H) is quasi-coherent. □

4. Cohomology and the lisse-étale and flat-fppf sites

0H0Y We have already seen that cohomology of a sheaf on an algebraic stack X can be
computed on flat-fppf site. In this section we prove the same is true for (possibly)
unbounded objects of the direct category of X .

Lemma 4.1.0H0Z Let X be an algebraic stack. We have Lg!Z = Z for either Lg! as in
Lemma 3.1 part (1) or Lg! as in Lemma 3.1 part (3).

Proof. We prove this for the comparison between the flat-fppf site with the fppf
site; the case of the lisse-étale site is exactly the same. We have to show that
Hi(Lg!Z) is 0 for i ̸= 0 and that the canonical map H0(Lg!Z) → Z is an isomor-
phism. Let f : U → X be a surjective, flat morphism where U is a scheme such that
f is also locally of finite presentation. (For example, pick a presentation U → X
and let U be the algebraic stack corresponding to U .) By Sheaves on Stacks, Lem-
mas 19.6 and 19.10 it suffices to show that the pullback f−1Hi(Lg!Z) is 0 for i ̸= 0
and that the pullback H0(Lg!Z) → f−1Z is an isomorphism. By Lemma 3.2 we
find f−1Lg!Z = L(g′)!Z where g′ : Sh(Uflat,fppf ) → Sh(Ufppf ) is the correspond-
ing comparision morphism for U . This reduces us to the case studied in the next
paragraph.
Assume X = (Sch/X)fppf for some scheme X. In this case the category Xflat,fppf

has a final object e, namely X/X, and moreover the functor u : Xflat,fppf → Xfppf

sends e to the final object. Since Z is the free abelian sheaf on the final object
(provided the final object exists) we find that Lg!Z = Z by the very construction
of Lg! in Cohomology on Sites, Lemma 37.2. □

Lemma 4.2.0H10 Let X be an algebraic stack. Notation as in Lemma 3.1.

https://stacks.math.columbia.edu/tag/0H0Z
https://stacks.math.columbia.edu/tag/0H10
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(1) For K in D(Xétale) we have
(a) RΓ(Xétale, K) = RΓ(Xlisse,étale, g−1K), and
(b) RΓ(x, K) = RΓ(Xlisse,étale/x, g−1K) for any object x of Xlisse,étale.

(2) For K in D(Xfppf ) we have
(a) RΓ(Xfppf , K) = RΓ(Xflat,fppf , g−1K), and
(b) Hp(x, K) = RΓ(Xflat,fppf /x, g−1K) for any object x of Xflat,fppf .

In both cases, the same holds for modules, since we have g−1 = g∗ and there is no
difference in computing cohomology by Cohomology on Sites, Lemma 20.7.

Proof. We prove this for the comparison between the flat-fppf site with the fppf
site; the case of the lisse-étale site is exactly the same. By Lemma 4.1 we have
Lg!Z = Z. Then we obtain

RΓ(Xfppf , K) = R Hom(Z, K)
= R Hom(Lg!Z, K)
= R Hom(Z, g−1K)
= RΓ(Xlisse,étale, g−1K)

This proves (1)(a). Part (1)(b) follows from part (1)(a). Namely, if x lies over the
scheme U , then the site Xétale/x is equivalent to (Sch/U)étale and Xlisse,étale is
equivalent to Ulisse,étale. □

5. Derived categories of quasi-coherent modules

07B5 Let X be an algebraic stack. As the inclusion functor QCoh(OX )→ Mod(OX ) isn’t
exact, we cannot define DQCoh(OX ) as the full subcategory of D(OX ) consisting of
complexes with quasi-coherent cohomology sheaves. Instead we define the derived
category of quasi-coherent modules as a quotient by analogy with Cohomology of
Stacks, Remark 10.7.
Recall that LQCohfbc(OX ) ⊂ Mod(OX ) denotes the full subcategory of locally
quasi-coherent OX -modules with the flat base change property, see Cohomology of
Stacks, Section 8. We will abbreviate

DLQCohfbc(OX ) = DLQCohfbc(OX )(OX )
From Derived Categories, Lemma 17.1 and Cohomology of Stacks, Proposition 8.1
part (2) we deduce that DLQCohfbc(OX ) is a strictly full, saturated triangulated
subcategory of D(OX ).
Let Parasitic(OX ) ⊂ Mod(OX ) denote the full subcategory of parasiticOX -modules,
see Cohomology of Stacks, Section 9. Let us abbreviate

DParasitic(OX ) = DParasitic(OX )(OX )
As before this is a strictly full, saturated triangulated subcategory of D(OX ) since
Parasitic(OX ) is a Serre subcategory of Mod(OX ), see Cohomology of Stacks,
Lemma 9.2.
The intersection of the weak Serre subcategories Parasitic(OX ) ∩ LQCohfbc(OX )
of Mod(OX ) is another one. Let us similarly abbreviate

DParasitic∩LQCohfbc(OX ) = DParasitic(OX )∩LQCohfbc(OX )(OX )
= DParasitic(OX ) ∩DLQCohfbc(OX )
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As before this is a strictly full, saturated triangulated subcategory of D(OX ). Hence
a fortiori it is a strictly full, saturated triangulated subcategory of DLQCohfbc(OX ).

Definition 5.1.07B6 Let X be an algebraic stack. With notation as above we define
the derived category of OX -modules with quasi-coherent cohomology sheaves as the
Verdier quotient1

DQCoh(OX ) = DLQCohfbc(OX )/DParasitic∩LQCohfbc(OX )

The Verdier quotient is defined in Derived Categories, Section 6. A morphism
a : E → E′ of DLQCohfbc(OX ) becomes an isomorphism in DQCoh(OX ) if and only
if the cone C(a) has parasitic cohomology sheaves, see Derived Categories, Lemma
6.10.
Consider the functors

DLQCohfbc(OX ) Hi

−−→ LQCohfbc(OX ) Q−→ QCoh(OX )

Note that Q annihilates the subcategory Parasitic(OX ) ∩ LQCohfbc(OX ), see Co-
homology of Stacks, Lemma 10.2. By Derived Categories, Lemma 6.8 we obtain a
cohomological functor
(5.1.1)07B7 Hi : DQCoh(OX ) −→ QCoh(OX )
Moreover, note that E ∈ DQCoh(OX ) is zero if and only if Hi(E) = 0 for all
i ∈ Z since the kernel of Q is exactly equal to Parasitic(OX ) ∩ LQCohfbc(OX ) by
Cohomology of Stacks, Lemma 10.2.
Note that the categories Parasitic(OX ) ∩ LQCohfbc(OX ) and LQCohfbc(OX ) are
also weak Serre subcategories of the abelian category Mod(Xétale,OX ) of modules
in the étale topology, see Cohomology of Stacks, Proposition 8.1 and Lemma 9.2.
Hence the statement of the following lemma makes sense.

Lemma 5.2.07B8 Let X be an algebraic stack. Abbreviate PX = Parasitic(OX ) ∩
LQCohfbc(OX ). The comparison morphism ϵ : Xfppf → Xétale induces a commu-
tative diagram

DParasitic∩LQCohfbc(OX ) // DLQCohfbc(OX ) // D(OX )

DPX (Xétale,OX ) //

ϵ∗

OO

DLQCohfbc(OX )(Xétale,OX ) //

ϵ∗

OO

D(Xétale,OX )

ϵ∗

OO

Moreover, the left two vertical arrows are equivalences of triangulated categories,
hence we also obtain an equivalence

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX ) −→ DQCoh(OX )

Proof. Since ϵ∗ is exact it is clear that we obtain a diagram as in the statement of
the lemma. We will show the middle vertical arrow is an equivalence by applying
Cohomology on Sites, Lemma 29.1 to the following situation: C = X , τ = fppf ,
τ ′ = étale, O = OX , A = LQCohfbc(OX ), and B is the set of objects of X lying
over affine schemes. To see the lemma applies we have to check conditions (1), (2),
(3), (4). Conditions (1) and (2) are clear from the discussion above (explicitly this

1This definition is different from the one in the literature, see [Ols07, 6.3], but it agrees with
that definition by Lemma 5.3.

https://stacks.math.columbia.edu/tag/07B6
https://stacks.math.columbia.edu/tag/07B8
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follows from Cohomology of Stacks, Proposition 8.1). Condition (3) holds because
every scheme has a Zariski open covering by affines. Condition (4) follows from
Descent, Lemma 12.4.

We omit the verification that the equivalence of categories ϵ∗ : DLQCohfbc(OX )(Xétale,OX )→
DLQCohfbc(OX ) induces an equivalence of the subcategories of complexes with par-
asitic cohomology sheaves. □

Let X be an algebraic stack. By Cohomology of Stacks, Lemma 16.4 the category
of quasi-coherent modules QCoh(OXlisse,étale

) forms a weak Serre subcategory of
Mod(OXlisse,étale

) and the category of quasi-coherent modules QCoh(OXflat,fppf
)

forms a weak Serre subcategory of Mod(OXflat,fppf
). Thus we can consider

DQCoh(OXlisse,étale
) = DQCoh(OXlisse,étale

)(OXlisse,étale
) ⊂ D(OXlisse,étale

)

and similarly

DQCoh(OXflat,fppf
) = DQCoh(OXflat,fppf

)(OXflat,fppf
) ⊂ D(OXflat,fppf

)

As above these are strictly full, saturated triangulated subcategories. It turns out
that DQCoh(OX ) is equivalent to either of these.

Lemma 5.3.07B9 Let X be an algebraic stack. Set PX = Parasitic(OX )∩LQCohfbc(OX ).
(1) Let F• be an object of DLQCohfbc(OX )(Xétale,OX ). With g as in Cohomol-

ogy of Stacks, Lemma 14.2 for the lisse-étale site we have
(a) g∗F• is in DQCoh(OXlisse,étale

),
(b) g∗F• = 0 if and only if F• is in DPX (Xétale,OX ),
(c) Lg!H• is in DLQCohfbc(OX )(Xétale,OX ) for H• in DQCoh(OXlisse,étale

),
and

(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXlisse,étale

)
Lg!

oo

(2) Let F• be an object of DLQCohfbc(OX ). With g as in Cohomology of Stacks,
Lemma 14.2 for the flat-fppf site we have
(a) g∗F• is in DQCoh(OXflat,fppf

),
(b) g∗F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DLQCohfbc(OX ) for H• in DQCoh(OXflat,fppf

), and
(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXflat,fppf

)
Lg!

oo

Proof. The functor g∗ = g−1 is exact, hence (1)(a), (2)(a), (1)(b), and (2)(b)
follow from Cohomology of Stacks, Lemmas 16.3 and 14.6.

Proof of (1)(c) and (2)(c). The construction of Lg! in Lemma 3.1 (via Cohomology
on Sites, Lemma 37.2 which in turn uses Derived Categories, Proposition 29.2)
shows that Lg! on any object H• of D(OXlisse,étale

) is computed as

Lg!H• = colim g!K•
n = g! colimK•

n

https://stacks.math.columbia.edu/tag/07B9
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(termwise colimits) where the quasi-isomorphism colimK•
n → H• induces quasi-

isomorphisms K•
n → τ≤nH•. Since the inclusion functors

LQCohfbc(OX ) ⊂ Mod(Xétale,OX ) and LQCohfbc(OX ) ⊂ Mod(OX )

are compatible with filtered colimits we see that it suffices to prove (c) on bounded
above complexes H• in DQCoh(OXlisse,étale

) and in DQCoh(OXflat,fppf
). In this case

to show that Hn(Lg!H•) is in LQCohfbc(OX ) we can argue by induction on the
integer m such that Hi = 0 for i > m. If m < n, then Hn(Lg!H•) = 0 and the
result holds. In general consider the distinguished triangle

τ≤m−1H• → H• → Hm(H•)[−m]→ . . .

(Derived Categories, Remark 12.4) and apply the functor Lg!. Since LQCohfbc(OX )
is a weak Serre subcategory of the module category it suffices to prove (c) for two
out of three. We have the result for Lg!τ≤m−1H• by induction and we have the
result for Lg!H

m(H•)[−m] by Lemma 3.3. Whence (c) holds.

Let us prove (2)(d). By (2)(a) and (2)(b) the functor g−1 = g∗ induces a functor

c : DQCoh(OX ) −→ DQCoh(OXflat,fppf
)

see Derived Categories, Lemma 6.8. Thus we have the following diagram of trian-
gulated categories

DLQCohfbc(OX )
g−1

))

q
// DQCoh(OX )

c
vv

DQCoh(OXflat,fppf
)

Lg!

ii

where q is the quotient functor, the inner triangle is commutative, and g−1Lg! = id.
For any object of E of DLQCohfbc(OX ) the map a : Lg!g

−1E → E maps to a quasi-
isomorphism in D(OXflat,fppf

). Hence the cone on a maps to zero under g−1 and
by (2)(b) we see that q(a) is an isomorphism. Thus q ◦ Lg! is a quasi-inverse to c.

In the case of the lisse-étale site exactly the same argument as above proves that

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX )

is equivalent to DQCoh(OXlisse,étale
). Applying the last equivalence of Lemma 5.2

finishes the proof. □

The following lemma tells us that the quotient functor DLQCohfbc(OX )→ DQCoh(OX )
has a left adjoint. See Remark 5.5.

Lemma 5.4.07BA Let X be an algebraic stack. Let E be an object of DLQCohfbc(OX ).
There exists a canonical distinguished triangle

E′ → E → P → E′[1]

in DLQCohfbc(OX ) such that P is in DParasitic∩LQCohfbc(OX ) and

HomD(OX )(E′, P ′) = 0

for all P ′ in DParasitic∩LQCohfbc(OX ).

https://stacks.math.columbia.edu/tag/07BA
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Proof. Consider the morphism of ringed topoi g : Sh(Xflat,fppf ) −→ Sh(Xfppf )
studied in Cohomology of Stacks, Section 14. Set E′ = Lg!g

∗E and let P be the
cone on the adjunction map E′ → E, see Lemma 3.1 part (4). By Lemma 5.3
parts (2)(a) and (2)(c) we have that E′ is in DLQCohfbc(OX ). Hence also P is in
DLQCohfbc(OX ). The map g∗E′ → g∗E is an isomorphism as g∗Lg! = id by Lemma
3.1 part (4). Hence g∗P = 0 and whence P is an object of DParasitic∩LQCohfbc(OX )
by Lemma 5.3 part (2)(b). Finally, for P ′ in DParasitic∩LQCohfbc(OX ) we have

Hom(E′, P ′) = Hom(Lg!g
∗E, P ′) = Hom(g∗E, g∗P ′) = 0

as g∗P ′ = 0 by Lemma 5.3 part (2)(b). The distinguished triangle E′ → E → P →
E′[1] is canonical (more precisely unique up to isomorphism of triangles induces
the identity on E) by the discussion in Derived Categories, Section 40. □

Remark 5.5.0H11 The result of Lemma 5.4 tells us that
DParasitic∩LQCohfbc(OX ) ⊂ DLQCohfbc(OX )

is a left admissible subcategory, see Derived Categories, Section 40. In particu-
lar, if A ⊂ DLQCohfbc(OX ) denotes its left orthogonal, then Derived Categories,
Proposition 40.10 implies that A is right admissible in DLQCohfbc(OX ) and that
the composition

A −→ DLQCohfbc(OX ) −→ DQCoh(OX )
is an equivalence. This means that we can view DQCoh(OX ) as a strictly full
saturated triangulated subcategory of DLQCohfbc(OX ) and also of D(Xfppf ,OX ).

6. Derived pushforward of quasi-coherent modules

07BB As a first application of the material above we construct the derived pushforward.
In Examples, Section 60 the reader can find an example of a quasi-compact and
quasi-separated morphism f : X → Y of algebraic stacks such that the direct image
functor Rf∗ does not induce a functor DQCoh(OX )→ DQCoh(OY). Thus restricting
to bounded below complexes is necessary.

Proposition 6.1.07BC Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. The functor Rf∗ induces a commutative diagram

D+
Parasitic∩LQCohfbc(OX ) //

Rf∗

��

D+
LQCohfbc(OX ) //

Rf∗

��

D(OX )

Rf∗

��
D+

Parasitic∩LQCohfbc(OY) // D+
LQCohfbc(OY) // D(OY)

and hence induces a functor
RfQCoh,∗ : D+

QCoh(OX ) −→ D+
QCoh(OY)

on quotient categories. Moreover, the functor RifQCoh of Cohomology of Stacks,
Proposition 11.1 are equal to Hi ◦RfQCoh,∗ with Hi as in (5.1.1).

Proof. We have to show that Rf∗E is an object of D+
LQCohfbc(OY) for E in

D+
LQCohfbc(OX ). This follows from Cohomology of Stacks, Proposition 8.1 and the

spectral sequence Rif∗Hj(E)⇒ Ri+jf∗E. The case of parasitic modules works the
same way using Cohomology of Stacks, Lemma 9.3. The final statement is clear
from the definition of Hi in (5.1.1). □

https://stacks.math.columbia.edu/tag/0H11
https://stacks.math.columbia.edu/tag/07BC
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7. Derived pullback of quasi-coherent modules

07BD Derived pullback of complexes with quasi-coherent cohomology sheaves exists in
general.

Proposition 7.1.07BE Let f : X → Y be a morphism of algebraic stacks. The exact
functor f∗ induces a commutative diagram

DLQCohfbc(OX ) // D(OX )

DLQCohfbc(OY) //

f∗

OO

D(OY)

f∗

OO

The composition

DLQCohfbc(OY) f∗

−→ DLQCohfbc(OX ) qX−−→ DQCoh(OX )

is left derivable with respect to the localization DLQCohfbc(OY)→ DQCoh(OY) and
we may define Lf∗

QCoh as its left derived functor

Lf∗
QCoh : DQCoh(OY) −→ DQCoh(OX )

(see Derived Categories, Definitions 14.2 and 14.9). If f is quasi-compact and
quasi-separated, then Lf∗

QCoh and RfQCoh,∗ satisfy the following adjointness:

HomDQCoh(OX )(Lf∗
QCohA, B) = HomDQCoh(OY )(A, RfQCoh,∗B)

for A ∈ DQCoh(OY) and B ∈ D+
QCoh(OX ).

Proof. To prove the first statement, we have to show that f∗E is an object of
DLQCohfbc(OX ) for E in DLQCohfbc(OY). Since f∗ = f−1 is exact this follows
immediately from the fact that f∗ maps LQCohfbc(OY) into LQCohfbc(OX ) by
Cohomology of Stacks, Proposition 8.1.

Set D = DLQCohfbc(OY). Let S be the collection of morphisms in D whose cone is
an object of DParasitic∩LQCohfbc(OY). Set D′ = DQCoh(OX ). Set F = qX ◦f∗ : D →
D′. Then D, S,D′, F are as in Derived Categories, Situation 14.1 and Definition
14.2. Let us prove that LF (E) is defined for any object E of D. Namely, consider
the triangle

E′ → E → P → E′[1]

constructed in Lemma 5.4. Note that s : E′ → E is an element of S. We claim that
E′ computes LF . Namely, suppose that s′ : E′′ → E is another element of S, i.e.,
fits into a triangle E′′ → E → P ′ → E′′[1] with P ′ in DParasitic∩LQCohfbc(OY). By
Lemma 5.4 (and its proof) we see that E′ → E factors through E′′ → E. Thus we
see that E′ → E is cofinal in the system S/E. Hence it is clear that E′ computes
LF .

To see the final statement, write B = qX (H) and A = qY(E). Choose E′ → E as
above. We will use on the one hand that RfQCoh,∗(B) = qY(Rf∗H) and on the

https://stacks.math.columbia.edu/tag/07BE
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other that Lf∗
QCoh(A) = qX (f∗E′).

HomDQCoh(OX )(Lf∗
QCohA, B) = HomDQCoh(OX )(qX (f∗E′), qX (H))

= colimH→H′ HomD(OX )(f∗E′, H ′)
= colimH→H′ HomD(OY )(E′, Rf∗H ′)
= HomD(OY )(E′, Rf∗H)
= HomDQCoh(OY )(A, RfQCoh,∗B)

Here the colimit is over morphisms s : H → H ′ in D+
LQCohfbc(OX ) whose cone P (s)

is an object of D+
Parasitic∩LQCohfbc(OX ). The first equality we’ve seen above. The

second equality holds by construction of the Verdier quotient. The third equal-
ity holds by Cohomology on Sites, Lemma 19.1. Since Rf∗P (s) is an object of
D+

Parasitic∩LQCohfbc(OY) by Proposition 6.1 we see that HomD(OY )(E′, Rf∗P (s)) =
0. Thus the fourth equality holds. The final equality holds by construction of
E′. □

8. Quasi-coherent objects in the derived category

0H12 This section is the continuation of Sheaves on Stacks, Section 26. Let X be an
algebraic stack. In that section we defined a triangulated category

QC (X ) = QC (Xaffine,O)

and we proved that if X is representable by an algebraic space X then QC (X ) is
equivalent to DQCoh(OX). It turns out that we have developed just enough theory
to prove the same thing is true for any algebraic stack.

Lemma 8.1.0H13 Let X be an algebraic stack. Let K be an object of D(Xfppf ) whose
cohomology sheaves are parasitic. Then RΓ(x, K) = 0 for all objects x of X lying
over a scheme U such that U → X is flat.

Proof. Denote g : Sh(Xflat,fppf )→ Sh(Xfppf ) the morphism of topoi discussed in
Section 3. Let x be an object of X lying over a scheme U such that U → X is flat,
i.e., x is an object of Xflat,fppf . By Lemma 4.2 part (2)(b) we have RΓ(x, K) =
RΓ(Xflat,fppf /x, g−1K). However, our assumption means that the cohomology
sheaves of the object g−1K of D(Xflat,fppf ) are zero, see Cohomology of Stacks,
Definition 9.1. Hence g−1K = 0 and we win. □

Lemma 8.2.0H14 Let X be an algebraic stack. Let K be an object of D(Xfppf ) such
that RΓ(x, K) = 0 for all objects x of X lying over an affine scheme U such that
U → X is flat. Then Hi(X , K) = 0 for all i.

Proof. Denote g : Sh(Xflat,fppf )→ Sh(Xfppf ) the morphism of topoi discussed in
Section 3. By Lemma 4.2 part (2)(b) our assumption means that g−1K has van-
ishing cohomology over every object of Xflat,fppf which lies over an affine scheme.
Since every object x of Xflat,fppf has a covering by such objects, we conclude that
g−1K has vanishing cohomology sheaves, i.e., we conclude g−1K = 0. Then of
course RΓ(Xflat,fppf , g−1K) = 0 which in turn implies what we want by Lemma
4.2 part (2)(a). □

https://stacks.math.columbia.edu/tag/0H13
https://stacks.math.columbia.edu/tag/0H14


DERIVED CATEGORIES OF STACKS 12

Lemma 8.3.0H15 Let X be an algebraic stack. Let K be an object of DQCoh(OXflat,fppf
).

Then Lg!K satisfies the following property: for any morphism x → x′ of Xaffine

the map
RΓ(x′, Lg!K)⊗L

O(x′) O(x) −→ RΓ(x, Lg!K)
is a quasi-isomorphism.

Proof. By Lemma 5.3 part (2)(c) the object Lg!K is in DLQCohfbc(OX ). It follows
readily from this that the map displayed in the lemma is an isomorphism if O(x′)→
O(x) is a flat ring map; we omit the details.
In this paragraph we argue that the question is local for the étale topology. Let x→
x′ be a general morphism of Xaffine. Let {x′

i → x′} be a covering in Xaffine,étale.
Set xi = x×x′ x′

i so that {xi → x} is a covering of Xaffine,étale too. Then O(x′)→∏
O(x′

i) is a faithfully flat étale ring map and∏
O(xi) = O(x)⊗O(x′)

(∏
O(x′

i)
)

Thus a simple algebra argument we omit shows that it suffices to prove the result
in the statement of the lemma holds for each of the morphisms xi → x′

i in Xaffine.
In other words, the problem is local in the étale topology.
Choose a scheme X and a surjective smooth morphism f : X → X . We may view
f as an object of X (by our abuse of notation) and then (Sch/X)fppf = X/f , see
Sheaves on Stacks, Section 9. By Sheaves on Stacks, Lemma 19.10 for example,
there exist an étale covering {x′

i → x′} such that x′
i : U ′

i = p(x′
i) → X factors

through f . By the result of the previous paragraph, we may assume that x→ x′ is
a morphism which is the image of a morphism U → U ′ of (Aff/X)fppf by the functor
(Sch/X)fppf → X . At this point we see use that the restriction to (Sch/X)fppf

of Lg!K is equal to f∗Lg!K = L(g′)!(f ′)∗K by Lemma 3.2. This reduces us to the
case discussed in the next paragraph.
Assume X = (Sch/X)fppf and x → x′ corresponds to the morphism of affine
schemes U → U ′. We may still work étale (or Zariski) locally on U ′ and hence we
may assume U ′ → X factors through some affine open of X. This reduces us to
the case discussed in the next paragraph.
Assume X = (Sch/X)fppf where X = Spec(R) is an affine scheme and x → x′

corresponds to the morphism of affine schemes U → U ′. Let M• be a complex of R-
modules representing RΓ(X, K). By the construction in More on Algebra, Lemma
59.10 we may assume M• = colim P •

n where each P •
n is a bounded above complex of

free R-modules. Details omitted; see also More on Algebra, Remark 59.11. Consider
the complex of modules M•

flat,fppf on Xflat,fppf = (Sch/X)flat,fppf given by the
rule

U 7−→ Γ(U, M• ⊗R OU )
This is a complex of sheaves by the discussion in Descent, Section 8. There is a
canonical map M•

flat,fppf → K which by our initial remarks of the proof produces
an isomorphism on sections over the affine objects of Xflat,fppf . Since every object
of Xflat,fppf has a covering by affine objects we see that M•

flat,fppf agrees with K.

Let M•
fppf be the complex of modules on Xfppf given by the same formula as

displayed above. Recall that Lg!O = g!O = O. Since Lg! is the left derived functor
of g! we conclude that Lg!P

•
n,flat,fppf = P •

n,fppf . Since the functor Lg! commutes

https://stacks.math.columbia.edu/tag/0H15
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with homotopy colimits (or by its construction in Cohomology on Sites, Lemma
37.2) and since M• = colim P •

n we conclude that Lg!M
•
flat,fppf = M•

fppf . Say
U = Spec(A), U ′ = Spec(A′) and U → U ′ corresponds to the ring map A′ → A.
From the above we see that

RΓ(U, Lg!K) = M• ⊗R A and RΓ(U ′, Lg!K) = M• ⊗R A′

Since M• is a K-flat complex of R-modules, by transitivity of tensor product it
follows that

RΓ(U ′, Lg!K)⊗L
A′ A −→ RΓ(U, Lg!K)

is a quasi-isomorphism as desired. □

Proposition 8.4.0H16 Let X be an algebraic stack. Then QC (X ) is canonically equiv-
alent to DQCoh(OX ).

Proof. By Sheaves on Stacks, Lemma 26.6 pullback by the comparison morphism
ϵ : Xaffine,fppf → Xaffine identifies QC (X ) with a full subcategory QX ⊂ D(Xaffine,fppf ,O).
Using the equivalence of ringed topoi in Sheaves on Stacks, Equation (24.3.1) we
may and do view QX as a full subcategory of D(Xfppf ,O).

Similarly by Lemma 5.4 and Remark 5.5 we find that DQCoh(OX ) may be viewed
as the left orthogonal A of the left admissible subcategory DParasitic∩LQCohfbc(OX )
of DLQCohfbc(OX ).

To finish we will show that QX is equal to A as subcategories of D(Xfppf ,O).

Step 1: QX is contained in DLQCohfbc(OX ). An object K of QX is characterized
by the property that K, viewed as an object of D(Xaffine,fppf ,O) satisfies Rϵ∗K
is an object of QC (Xaffine,O). This in turn means exactly that for all morphisms
x→ x′ of Xaffine the map

RΓ(x′, K)⊗L
O(x′) O(x) −→ RΓ(x, K)

is an isomorphism, see footnote in statement of Cohomology on Sites, Lemma 43.12.
Now, if x′ → x lies over a flat morphism of affine schemes, then this means that

Hi(x′, K)⊗O(x′) O(x) ∼= Hi(x, K)

This clearly means that Hi(K) is a sheaf for the étale topology (Sheaves on Stacks,
Lemma 25.1) and that it has the flat base change property (small detail omitted).

Step 2: QX is contained in A. To see this it suffices to show that for K in QX we
have Hom(K, P ) = 0 for all P in DParasitic∩LQCohfbc(OX ). Consider the object

H = RHomOX (K, P )

Let x be an object of X which lies over an affine scheme U = p(x). By Cohomology
on Sites, Lemma 35.1 we have the first equality in

RΓ(x, H) = R HomOX (K|X /x, P |X /x) = R HomO(K|Xaffine/x, P |Xaffine/x)

The second equality stems from the fact that the topos of the site X/x is equivalent
to the topos of the site Xaffine/x, see Sheaves on Stacks, Equation (24.3.1). We
may write K = ϵ∗N for some N in QC (O). Then by Cohomology on Sites, Lemma
43.13 we see that

RΓ(x, H) = R HomD(O(x))(RΓ(x, N), RΓ(x, P ))

https://stacks.math.columbia.edu/tag/0H16
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By Lemma 8.1 we see that RΓ(x, P ) = 0 if U → X is flat and hence RΓ(x, H) = 0
under the same hypothesis. By Lemma 8.2 we conclude that RΓ(X , H) = 0 and
therefore Hom(K, P ) = 0.
Step 3: A is contained in QX . Let K be an object of A and let x → x′ be a
morphism of Xaffine. We have to show that

RΓ(x′, K)⊗L
O(x′) O(x) −→ RΓ(x, K)

is a quasi-isomorphism, see footnote in statement of Cohomology on Sites, Lemma
43.12. By the proof of Lemma 5.4 and the discussion in Remark 5.5 we see that A
is the image of the restriction of Lg! to DQCoh(OXflat,fppf

). Thus we may assume
K = Lg!M for some M in DQCoh(OXflat,fppf

). Then the desired equality follow
from Lemma 8.3. □
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