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1. Introduction

04X9 Please see Algebraic Stacks, Section 1 for a brief introduction to algebraic stacks,
and please read some of that chapter for our foundations of algebraic stacks. The in-
tent is that in that chapter we are careful to distinguish between schemes, algebraic
spaces, algebraic stacks, and starting with this chapter we employ the customary
abuse of language where all of these concepts are used interchangeably.
The goal of this chapter is to introduce some basic notions and properties of al-
gebraic stacks. A fundamental reference for the case of quasi-separated algebraic
stacks with representable diagonal is [LMB00].

2. Conventions and abuse of language

04XA We choose a big fppf site Schfppf . All schemes are contained in Schfppf . And all
rings A considered have the property that Spec(A) is (isomorphic) to an object of
this big site.
We also fix a base scheme S, by the conventions above an element of Schfppf . The
reader who is only interested in the absolute case can take S = Spec(Z).
Here are our conventions regarding algebraic stacks:

This is a chapter of the Stacks Project, version 2c3bdd57, compiled on Jun 18, 2024.
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(1) When we say algebraic stack we will mean an algebraic stacks over S, i.e.,
a category fibred in groupoids p : X → (Sch/S)fppf which satisfies the
conditions of Algebraic Stacks, Definition 12.1.

(2) We will say f : X → Y is a morphism of algebraic stacks to indicate a 1-
morphism of algebraic stacks over S, i.e., a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf , see Algebraic Stacks, Definition 12.3.

(3) A 2-morphism α : f → g will indicate a 2-morphism in the 2-category of
algebraic stacks over S, see Algebraic Stacks, Definition 12.3.

(4) Given morphisms X → Z and Y → Z of algebraic stacks we abusively call
the 2-fibre product X ×Z Y the fibre product.

(5) We will write X ×S Y for the product of the algebraic stacks X , Y.
(6) We will often abuse notation and say two algebraic stacks X and Y are

isomorphic if they are equivalent in this 2-category.

Here are our conventions regarding algebraic spaces.

(1) If we say X is an algebraic space then we mean that X is an algebraic space
over S, i.e., X is a presheaf on (Sch/S)fppf which satisfies the conditions
of Spaces, Definition 6.1.

(2) A morphism of algebraic spaces f : X → Y is a morphism of algebraic
spaces over S as defined in Spaces, Definition 6.3.

(3) We will not distinguish between an algebraic space X and the algebraic
stack SX → (Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 13.1.

(4) In particular, a morphism f : X → Y from X to an algebraic stack Y
means a morphism f : SX → Y of algebraic stacks. Similarly for morphisms
Y → X.

(5) Moreover, given an algebraic stack X we say X is an algebraic space to
indicate that X is representable by an algebraic space, see Algebraic Stacks,
Definition 8.1.

(6) We will use the following notational convention: If we indicate an algebraic
stack by a roman capital (such as X, Y, Z, A, B, . . .) then it will be the
case that its inertia stack is trivial, and hence it is an algebraic space, see
Algebraic Stacks, Proposition 13.3.

Here are our conventions regarding schemes.

(1) If we say X is a scheme then we mean that X is a scheme over S, i.e., X
is an object of (Sch/S)fppf .

(2) By a morphism of schemes we mean a morphism of schemes over S.
(3) We will not distinguish between a scheme X and the algebraic stack SX →

(Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 13.1.
(4) In particular, a morphism f : X → Y from a scheme X to an algebraic

stack Y means a morphism f : SX → Y of algebraic stacks. Similarly for
morphisms Y → X.

(5) Moreover, given an algebraic stack X we say X is a scheme to indicate that
X is representable, see Algebraic Stacks, Section 4.

Here are our conventions regarding morphisms of algebraic stacks:

(1) A morphism f : X → Y of algebraic stacks is representable, or representable
by schemes if for every scheme T and morphism T → Y the fibre product
T ×Y X is a scheme. See Algebraic Stacks, Section 6.
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(2) A morphism f : X → Y of algebraic stacks is representable by algebraic
spaces if for every scheme T and morphism T → Y the fibre product T×YX
is an algebraic space. See Algebraic Stacks, Definition 9.1. In this case
Z×Y X is an algebraic space whenever Z → Y is a morphism whose source
is an algebraic space, see Algebraic Stacks, Lemma 9.8.

(3) We may abuse notation and say that a diagram of algebraic stacks com-
mutes if the diagram is 2-commutative in the 2-category of algebraic stacks.

Note that every morphism X → Y from an algebraic space to an algebraic stack is
representable by algebraic spaces, see Algebraic Stacks, Lemma 10.11. We will use
this basic result without further mention.

3. Properties of morphisms representable by algebraic spaces

04XB We will study properties of (arbitrary) morphisms of algebraic stacks in its own
chapter. For morphisms representable by algebraic spaces we know what it means
to be surjective, smooth, or étale, etc. This applies in particular to morphisms
X → Y from algebraic spaces to algebraic stacks. In this section, we recall how
this works, we list the properties to which this applies, and we prove a few easy
lemmas.
Our first lemma says a morphism is representable by algebraic spaces if it is so after
a base change by a flat, locally finitely presented, surjective morphism.

Lemma 3.1.04ZP Let f : X → Y be a morphism of algebraic stacks. Let W be an
algebraic space and let W → Y be surjective, locally of finite presentation, and flat.
The following are equivalent

(1) f is representable by algebraic spaces, and
(2) W ×Y X is an algebraic space.

Proof. The implication (1) ⇒ (2) is Algebraic Stacks, Lemma 9.8. Conversely, let
W → Y be as in (2). To prove (1) it suffices to show that f is faithful on fibre
categories, see Algebraic Stacks, Lemma 15.2. Assumption (2) implies in particular
that W ×Y X → W is faithful. Hence the faithfulness of f follows from Stacks,
Lemma 6.9. □

Let P be a property of morphisms of algebraic spaces which is fppf local on the
target and preserved by arbitrary base change. Let f : X → Y be a morphism of
algebraic stacks representable by algebraic spaces. Then we say f has property P
if and only if for every scheme T and morphism T → Y the morphism of algebraic
spaces T ×Y X → T has property P , see Algebraic Stacks, Definition 10.1.
It turns out that if f : X → Y is representable by algebraic spaces and has property
P , then for any morphism of algebraic stacks Y ′ → Y the base change Y ′×YX → Y ′

has property P , see Algebraic Stacks, Lemmas 9.7 and 10.6. If the property P is
preserved under compositions, then this holds also in the setting of morphisms of
algebraic stacks representable by algebraic spaces, see Algebraic Stacks, Lemmas
9.9 and 10.5. Moreover, in this case products X1 × X2 → Y1 × Y2 of morphisms
representable by algebraic spaces having property P have property P, see Algebraic
Stacks, Lemma 10.8.
Finally, if we have two properties P, P ′ of morphisms of algebraic spaces which are
fppf local on the target and preserved by arbitrary base change and if P (f) ⇒

https://stacks.math.columbia.edu/tag/04ZP
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P ′(f) for every morphism f , then the same implication holds for the corresponding
property of morphisms of algebraic stacks representable by algebraic spaces, see
Algebraic Stacks, Lemma 10.9. We will use this without further mention in the
following and in the following chapters.

The discussion above applies to each of the following properties of morphisms of
algebraic spaces

(1) quasi-compact, see Morphisms of Spaces, Lemma 8.4 and Descent on Spaces,
Lemma 11.1,

(2) quasi-separated, see Morphisms of Spaces, Lemma 4.4 and Descent on
Spaces, Lemma 11.2,

(3) universally closed, see Morphisms of Spaces, Lemma 9.3 and Descent on
Spaces, Lemma 11.3,

(4) universally open, see Morphisms of Spaces, Lemma 6.3 and Descent on
Spaces, Lemma 11.4,

(5) universally submersive, see Morphisms of Spaces, Lemma 7.3 and Descent
on Spaces, Lemma 11.5,

(6) universal homeomorphism, see Morphisms of Spaces, Lemma 53.4 and De-
scent on Spaces, Lemma 11.8,

(7) surjective, see Morphisms of Spaces, Lemma 5.5 and Descent on Spaces,
Lemma 11.6,

(8) universally injective, see Morphisms of Spaces, Lemma 19.5 and Descent
on Spaces, Lemma 11.7,

(9) locally of finite type, see Morphisms of Spaces, Lemma 23.3 and Descent
on Spaces, Lemma 11.9,

(10) locally of finite presentation, see Morphisms of Spaces, Lemma 28.3 and
Descent on Spaces, Lemma 11.10,

(11) finite type, see Morphisms of Spaces, Lemma 23.3 and Descent on Spaces,
Lemma 11.11,

(12) finite presentation, see Morphisms of Spaces, Lemma 28.3 and Descent on
Spaces, Lemma 11.12,

(13) flat, see Morphisms of Spaces, Lemma 30.4 and Descent on Spaces, Lemma
11.13,

(14) open immersion, see Morphisms of Spaces, Section 12 and Descent on
Spaces, Lemma 11.14,

(15) isomorphism, see Descent on Spaces, Lemma 11.15,
(16) affine, see Morphisms of Spaces, Lemma 20.5 and Descent on Spaces, Lemma

11.16,
(17) closed immersion, see Morphisms of Spaces, Section 12 and Descent on

Spaces, Lemma 11.17,
(18) separated, see Morphisms of Spaces, Lemma 4.4 and Descent on Spaces,

Lemma 11.18,
(19) proper, see Morphisms of Spaces, Lemma 40.3 and Descent on Spaces,

Lemma 11.19,
(20) quasi-affine, see Morphisms of Spaces, Lemma 21.5 and Descent on Spaces,

Lemma 11.20,
(21) integral, see Morphisms of Spaces, Lemma 45.5 and Descent on Spaces,

Lemma 11.22,



PROPERTIES OF ALGEBRAIC STACKS 5

(22) finite, see Morphisms of Spaces, Lemma 45.5 and Descent on Spaces, Lemma
11.23,

(23) (locally) quasi-finite, see Morphisms of Spaces, Lemma 27.4 and Descent
on Spaces, Lemma 11.24,

(24) syntomic, see Morphisms of Spaces, Lemma 36.3 and Descent on Spaces,
Lemma 11.25,

(25) smooth, see Morphisms of Spaces, Lemma 37.3 and Descent on Spaces,
Lemma 11.26,

(26) unramified, see Morphisms of Spaces, Lemma 38.4 and Descent on Spaces,
Lemma 11.27,

(27) étale, see Morphisms of Spaces, Lemma 39.4 and Descent on Spaces, Lemma
11.28,

(28) finite locally free, see Morphisms of Spaces, Lemma 46.5 and Descent on
Spaces, Lemma 11.29,

(29) monomorphism, see Morphisms of Spaces, Lemma 10.5 and Descent on
Spaces, Lemma 11.30,

(30) immersion, see Morphisms of Spaces, Section 12 and Descent on Spaces,
Lemma 12.1,

(31) locally separated, see Morphisms of Spaces, Lemma 4.4 and Descent on
Spaces, Lemma 12.2,

Lemma 3.2.04XC Let P be a property of morphisms of algebraic spaces as above. Let
f : X → Y be a morphism of algebraic stacks representable by algebraic spaces. The
following are equivalent:

(1) f has P ,
(2) for every algebraic space Z and morphism Z → Y the morphism Z×Y X →

Z has P .

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). Let Z → Y be as in
(2). Choose a scheme U and a surjective étale morphism U → Z. By assumption
the morphism U ×Y X → U has P . But the diagram

U ×Y X

��

// Z ×Y X

��
U // Z

is cartesian, hence the right vertical arrow has P as {U → Z} is an fppf covering. □

The following lemma tells us it suffices to check P after a base change by a surjective,
flat, locally finitely presented morphism.

Lemma 3.3.04XD Let P be a property of morphisms of algebraic spaces as above. Let
f : X → Y be a morphism of algebraic stacks representable by algebraic spaces. Let
W be an algebraic space and let W → Y be surjective, locally of finite presentation,
and flat. Set V = W ×Y X . Then

(f has P )⇔ (the projection V →W has P ).

Proof. The implication from left to right follows from Lemma 3.2. Assume V →
W has P . Let T be a scheme, and let T → Y be a morphism. Consider the

https://stacks.math.columbia.edu/tag/04XC
https://stacks.math.columbia.edu/tag/04XD
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commutative diagram

T ×Y X

��

T ×Y V

��

oo // V

��
T T ×Y Woo // W

of algebraic spaces. The squares are cartesian. The bottom left morphism is a
surjective, flat morphism which is locally of finite presentation, hence {T×Y V → T}
is an fppf covering. Hence the fact that the right vertical arrow has property P
implies that the left vertical arrow has property P . □

Lemma 3.4.06TY Let P be a property of morphisms of algebraic spaces as above. Let
f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Let Z → Y be a morphism of algebraic stacks which is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Set W = Z ×Y X . Then

(f has P )⇔ (the projection W → Z has P ).

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By the discussion above the composition
W → Y is also surjective, flat, and locally of finite presentation. Denote V =
W ×Z W = V ×Y X . By Lemma 3.3 we see that f has P if and only if V → W
does and that W → Z has P if and only if V →W does. The lemma follows. □

Lemma 3.5.06M2 Let P be a property of morphisms of algebraic spaces as above. Let
τ ∈ {étale, smooth, syntomic, fppf}. Let X → Y and Y → Z be morphisms of
algebraic stacks representable by algebraic spaces. Assume

(1) X → Y is surjective and étale, smooth, syntomic, or flat and locally of
finite presentation,

(2) the composition has P , and
(3) P is local on the source in the τ topology.

Then Y → Z has property P .

Proof. Let Z be a scheme and let Z → Z be a morphism. Set X = X ×Z Z,
Y = Y ×Z Z. By (1) {X → Y } is a τ covering of algebraic spaces and by (2)
X → Z has property P . By (3) this implies that Y → Z has property P and we
win. □

Lemma 3.6.04Y6 Let g : X ′ → X be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. Let [U/R]→ X be a presentation. Set U ′ = U ×X X ′,
and R′ = R ×X X ′. Then there exists a groupoid in algebraic spaces of the form
(U ′, R′, s′, t′, c′), a presentation [U ′/R′]→ X ′, and the diagram

[U ′/R′]

[pr]
��

// X ′

g

��
[U/R] // X

is 2-commutative where the morphism [pr] comes from a morphism of groupoids
pr : (U ′, R′, s′, t′, c′)→ (U, R, s, t, c).

https://stacks.math.columbia.edu/tag/06TY
https://stacks.math.columbia.edu/tag/06M2
https://stacks.math.columbia.edu/tag/04Y6
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Proof. Since U → Y is surjective and smooth, see Algebraic Stacks, Lemma 17.2
the base change U ′ → X ′ is also surjective and smooth. Hence, by Algebraic
Stacks, Lemma 16.2 it suffices to show that R′ = U ′ ×X ′ U ′ in order to get a
smooth groupoid (U ′, R′, s′, t′, c′) and a presentation [U ′/R′] → X ′. Using that
R = V ×Y V (see Groupoids in Spaces, Lemma 22.2) this follows from

R′ = U ×X U ×X X ′ = (U ×X X ′)×X ′ (U ×X X ′)
see Categories, Lemmas 31.8 and 31.10. Clearly the projection morphisms U ′ →
U and R′ → R give the desired morphism of groupoids pr : (U ′, R′, s′, t′, c′) →
(U, R, s, t, c). Hence the morphism [pr] of quotient stacks by Groupoids in Spaces,
Lemma 21.1.
We still have to show that the diagram 2-commutes. It is clear that the diagram

U ′

prU

��

f ′
// X ′

g

��
U

f // X
2-commutes where prU : U ′ → U is the projection. There is a canonical 2-arrow
τ : f ◦t→ f ◦s in Mor(R,X ) coming from R = U×X U , t = pr0, and s = pr1. Using
the isomorphism R′ → U ′×X ′ U ′ we get similarly an isomorphism τ ′ : f ′◦t′ → f ′◦s′.
Note that g ◦ f ′ ◦ t′ = f ◦ t ◦ prR and g ◦ f ′ ◦ s′ = f ◦ s ◦ prR, where prR : R′ → R
is the projection. Thus it makes sense to ask if
(3.6.1)04Y7 τ ⋆ idprR

= idg ⋆ τ ′.

Now we make two claims: (1) if Equation (3.6.1) holds, then the diagram 2-
commutes, and (2) Equation (3.6.1) holds. We omit the proof of both claims.
Hints: part (1) follows from the construction of f = fcan and f ′ = f ′

can in Al-
gebraic Stacks, Lemma 16.1. Part (2) follows by carefully working through the
definitions. □

Remark 3.7.04ZQ Let Y be an algebraic stack. Consider the following 2-category:
(1) An object is a morphism f : X → Y which is representable by algebraic

spaces,
(2) a 1-morphism (g, β) : (f1 : X1 → Y) → (f2 : X2 → Y) consists of a

morphism g : X1 → X2 and a 2-morphism β : f1 → f2 ◦ g, and
(3) a 2-morphism between (g, β), (g′, β′) : (f1 : X1 → Y) → (f2 : X2 → Y) is a

2-morphism α : g → g′ such that (idf2 ⋆ α) ◦ β = β′.
Let us denote this 2-category Spaces/Y by analogy with the notation of Topologies
on Spaces, Section 2. Now we claim that in this 2-category the morphism categories

MorSpaces/Y((f1 : X1 → Y), (f2 : X2 → Y))
are all setoids. Namely, a 2-morphism α is a rule which to each object x1 of X1
assigns an isomorphism αx1 : g(x1) −→ g′(x1) in the relevant fibre category of X2
such that the diagram

f2(x1)
βx1

yy

β′
x1

%%
f2(g(x1))

f2(αx1 ) // f2(g′(x1))

https://stacks.math.columbia.edu/tag/04ZQ
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commutes. But since f2 is faithful (see Algebraic Stacks, Lemma 15.2) this means
that if αx1 exists, then it is unique! In other words the 2-category Spaces/Y is
very close to being a category. Namely, if we replace 1-morphisms by isomorphism
classes of 1-morphisms we obtain a category. We will often perform this replacement
without further mention.

4. Points of algebraic stacks

04XE Let X be an algebraic stack. Let K, L be two fields and let p : Spec(K) → X and
q : Spec(L)→ X be morphisms. We say that p and q are equivalent if there exists
a field Ω and a 2-commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // X .

Lemma 4.1.04XF The notion above does indeed define an equivalence relation on mor-
phisms from spectra of fields into the algebraic stack X .

Proof. It is clear that the relation is reflexive and symmetric. Hence we have to
prove that it is transitive. This comes down to the following: Given a diagram

Spec(Ω)
b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with both squares 2-commutative we have to show that p is equivalent to p′. By
the 2-Yoneda lemma (see Algebraic Stacks, Section 5) the morphisms p, p′, and
q are given by objects x, x′, and y in the fibre categories of X over Spec(K),
Spec(K ′), and Spec(L). The 2-commutativity of the squares means that there are
isomorphisms α : a∗x → b∗y and α′ : (a′)∗x′ → (b′)∗y in the fibre categories of
X over Spec(Ω) and Spec(Ω′). Choose any field Ω′′ and embeddings Ω → Ω′′ and
Ω′ → Ω′′ agreeing on L. Then we can extend the diagram above to

Spec(Ω′′)
c

xx
q′

��

c′

&&
Spec(Ω)

b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with commutative triangles and
(q′)∗(α′)−1 ◦ (q′)∗α : (a ◦ c)∗x −→ (a′ ◦ c′)∗x′

is an isomorphism in the fibre category over Spec(Ω′′). Hence p is equivalent to p′

as desired. □

Definition 4.2.04XG Let X be an algebraic stack. A point of X is an equivalence class
of morphisms from spectra of fields into X . The set of points of X is denoted |X |.

https://stacks.math.columbia.edu/tag/04XF
https://stacks.math.columbia.edu/tag/04XG
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This agrees with our definition of points of algebraic spaces, see Properties of
Spaces, Definition 4.1. Moreover, for a scheme we recover the usual notion of
points, see Properties of Spaces, Lemma 4.2. If f : X → Y is a morphism of
algebraic stacks then there is an induced map |f | : |X | → |Y| which maps a repre-
sentative x : Spec(K)→ X to the representative f ◦ x : Spec(K)→ Y. This is well
defined: namely 2-isomorphic 1-morphisms remain 2-isomorphic after pre- or post-
composing by a 1-morphism because you can horizontally pre- or post-compose by
the identity of the given 1-morphism. This holds in any (strict) (2, 1)-category. If

X

��

// Y

��
W // Z

is a 2-commutative diagram of algebraic stacks, then the diagram of sets

|X |

��

// |Y|

��
|W| // |Z|

is commutative. In particular, if X → Y is an equivalence then |X | → |Y| is a
bijection.

Lemma 4.3.04XH Let
Z ×Y X //

��

X

��
Z // Y

be a fibre product of algebraic stacks. Then the map of sets of points
|Z ×Y X| −→ |Z| ×|Y| |X |

is surjective.

Proof. Namely, suppose given fields K, L and morphisms Spec(K)→ X , Spec(L)→
Z, then the assumption that they agree as elements of |Y| means that there is a
common extension M/K and M/L such that Spec(M)→ Spec(K)→ X → Y and
Spec(M)→ Spec(L)→ Z → Y are 2-isomorphic. And this is exactly the condition
which says you get a morphism Spec(M)→ Z ×Y X . □

Lemma 4.4.04XI Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent:

(1) |f | : |X | → |Y| is surjective, and
(2) f is surjective (in the sense of Section 3).

Proof. Assume (1). Let T → Y be a morphism whose source is a scheme. To
prove (2) we have to show that the morphism of algebraic spaces T ×Y X → T
is surjective. By Morphisms of Spaces, Definition 5.2 this means we have to show
that |T ×Y X| → |T | is surjective. Applying Lemma 4.3 we see that this follows
from (1).
Conversely, assume (2). Let y : Spec(K) → Y be a morphism from the spectrum
of a field into Y. By assumption the morphism Spec(K) ×y,Y X → Spec(K) of

https://stacks.math.columbia.edu/tag/04XH
https://stacks.math.columbia.edu/tag/04XI
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algebraic spaces is surjective. By Morphisms of Spaces, Definition 5.2 this means
there exists a field extension K ′/K and a morphism Spec(K ′)→ Spec(K)×y,Y X
such that the left square of the diagram

Spec(K ′) //

��

Spec(K)×y,Y X

��

// X

��
Spec(K) Spec(K) y // Y

is commutative. This shows that |X| → |Y| is surjective. □

Here is a lemma explaining how to compute the set of points in terms of a presen-
tation.

Lemma 4.5.04XJ Let X be an algebraic stack. Let X = [U/R] be a presentation of
X , see Algebraic Stacks, Definition 16.5. Then the image of |R| → |U | × |U | is an
equivalence relation and |X | is the quotient of |U | by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid (U, R, s, t, c) in
algebraic spaces, and an equivalence f : [U/R] → X . We may assume X = [U/R].
The induced morphism p : U → X is smooth and surjective, see Algebraic Stacks,
Lemma 17.2. Hence |U | → |X | is surjective by Lemma 4.4. Note that R = U ×X U ,
see Groupoids in Spaces, Lemma 22.2. Hence Lemma 4.3 implies the map

|R| −→ |U | ×|X | |U |
is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X |. Combining these two
statements we get the result of the lemma. □

Remark 4.6.04XK The result of Lemma 4.5 can be generalized as follows. Let X be
an algebraic stack. Let U be an algebraic space and let f : U → X be a surjective
morphism (which makes sense by Section 3). Let R = U ×X U , let (U, R, s, t, c)
be the groupoid in algebraic spaces, and let fcan : [U/R] → X be the canonical
morphism as constructed in Algebraic Stacks, Lemma 16.1. Then the image of
|R| → |U | × |U | is an equivalence relation and |X | = |U |/|R|. The proof of Lemma
4.5 works without change. (Of course in general [U/R] is not an algebraic stack,
and in general fcan is not an isomorphism.)

Lemma 4.7.04XL There exists a unique topology on the sets of points of algebraic
stacks with the following properties:

(1) for every morphism of algebraic stacks X → Y the map |X | → |Y| is
continuous, and

(2) for every morphism U → X which is flat and locally of finite presenta-
tion with U an algebraic space the map of topological spaces |U | → |X | is
continuous and open.

Proof. Choose a morphism p : U → X which is surjective, flat, and locally of
finite presentation with U an algebraic space. Such exist by the definition of an
algebraic stack, as a smooth morphism is flat and locally of finite presentation (see
Morphisms of Spaces, Lemmas 37.5 and 37.7). We define a topology on |X | by
the rule: W ⊂ |X | is open if and only if |p|−1(W ) is open in |U |. To show that
this is independent of the choice of p, let p′ : U ′ → X be another morphism which

https://stacks.math.columbia.edu/tag/04XJ
https://stacks.math.columbia.edu/tag/04XK
https://stacks.math.columbia.edu/tag/04XL
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is surjective, flat, locally of finite presentation from an algebraic space to X . Set
U ′′ = U ×X U ′ so that we have a 2-commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are surjective, flat, locally of finite presentation we see
that U ′′ → U ′ and U ′′ → U are surjective, flat and locally of finite presentation, see
Lemma 3.2. Hence the maps |U ′′| → |U ′| and |U ′′| → |U | are continuous, open and
surjective, see Morphisms of Spaces, Definition 5.2 and Lemma 30.6. This clearly
implies that our definition is independent of the choice of p : U → X .
Let f : X → Y be a morphism of algebraic stacks. By Algebraic Stacks, Lemma
15.1 we can find a 2-commutative diagram

U

x

��

a
// V

y

��
X

f // Y
with surjective smooth vertical arrows. Consider the associated commutative dia-
gram

|U |

|x|
��

|a|
// |V |

|y|
��

|X |
|f | // |Y|

of sets. If W ⊂ |Y| is open, then by the definition above this means exactly that
|y|−1(W ) is open in |V |. Since |a| is continuous we conclude that |a|−1|y|−1(W ) =
|x|−1|f |−1(W ) is open in |W | which means by definition that |f |−1(W ) is open in
|X |. Thus |f | is continuous.
Finally, we have to show that if U is an algebraic space, and U → X is flat and
locally of finite presentation, then |U | → |X | is open. Let V → X be surjective,
flat, and locally of finite presentation with V an algebraic space. Consider the
commutative diagram

|U ×X V |
e
//

f
&&

|U | ×|X | |V |

c

��

d
// |V |

b

��
|U | a // |X |

Now the morphism U ×X V → U is surjective, i.e, f : |U ×X V | → |U | is surjective.
The left top horizontal arrow is surjective, see Lemma 4.3. The morphism U×X V →
V is flat and locally of finite presentation, hence d ◦ e : |U ×X V | → |V | is open,
see Morphisms of Spaces, Lemma 30.6. Pick W ⊂ |U | open. The properties above
imply that b−1(a(W )) = (d ◦ e)(f−1(W )) is open, which by construction means
that a(W ) is open as desired. □

Definition 4.8.04Y8 Let X be an algebraic stack. The underlying topological space of
X is the set of points |X | endowed with the topology constructed in Lemma 4.7.

https://stacks.math.columbia.edu/tag/04Y8
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This definition does not conflict with the already existing topology on |X | if X is
an algebraic space.

Lemma 4.9.04Y9 Let X be an algebraic stack. Every point of |X | has a fundamental
system of quasi-compact open neighbourhoods. In particular |X | is locally quasi-
compact in the sense of Topology, Definition 13.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X | of topological spaces. Namely, if U → X
is surjective and smooth, then Lemma 4.7 guarantees that |U | → |X | is continuous,
surjective, and open. □

5. Surjective morphisms

04ZR Let f : X → Y be a morphism of algebraic stacks which is representable by algebraic
spaces. In Section 3 we have already defined what it means for f to be surjective.
In Lemma 4.4 we have seen that this is equivalent to requiring |f | : |X | → |Y| to
be surjective. This clears the way for the following definition.

Definition 5.1.04ZS Let f : X → Y be a morphism of algebraic stacks. We say f is
surjective if the map |f | : |X | → |Y| of associated topological spaces is surjective.

Here are some lemmas.

Lemma 5.2.04ZT The composition of surjective morphisms is surjective.

Proof. Omitted. □

Lemma 5.3.04ZU The base change of a surjective morphism is surjective.

Proof. Omitted. Hint: Use Lemma 4.3. □

Lemma 5.4.06PM Let f : X → Y be a morphism of algebraic stacks. Let Y ′ → Y be a
surjective morphism of algebraic stacks. If the base change f ′ : Y ′ ×Y X → Y ′ of f
is surjective, then f is surjective.

Proof. Immediate from Lemma 4.3. □

Lemma 5.5.06PN Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
surjective so is Y → Z.

Proof. Immediate. □

6. Quasi-compact algebraic stacks

04YA The following definition is equivalent with the definition for algebraic spaces by
Properties of Spaces, Lemma 5.2.

Definition 6.1.04YB Let X be an algebraic stack. We say X is quasi-compact if and
only if |X | is quasi-compact.

Lemma 6.2.04YC Let X be an algebraic stack. The following are equivalent:
(1) X is quasi-compact,
(2) there exists a surjective smooth morphism U → X with U an affine scheme,
(3) there exists a surjective smooth morphism U → X with U a quasi-compact

scheme,

https://stacks.math.columbia.edu/tag/04Y9
https://stacks.math.columbia.edu/tag/04ZS
https://stacks.math.columbia.edu/tag/04ZT
https://stacks.math.columbia.edu/tag/04ZU
https://stacks.math.columbia.edu/tag/06PM
https://stacks.math.columbia.edu/tag/06PN
https://stacks.math.columbia.edu/tag/04YB
https://stacks.math.columbia.edu/tag/04YC
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(4) there exists a surjective smooth morphism U → X with U a quasi-compact
algebraic space, and

(5) there exists a surjective morphism U → X of algebraic stacks such that U
is quasi-compact.

Proof. We will use Lemma 4.4. Suppose U and U → X are as in (5). Then since
|U| → |X | is surjective and continuous we conclude that |X | is quasi-compact. Thus
(5) implies (1). The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate. Assume
(1), i.e., X is quasi-compact, i.e., that |X | is quasi-compact. Choose a scheme U
and a surjective smooth morphism U → X . Then since |U | → |X | is open we see
that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X| is surjective
(and still smooth). Choose a finite affine open covering U ′ = U1 ∪ . . . ∪ Un. Then
U1⨿. . .⨿Un → X is a surjective smooth morphism whose source is an affine scheme
(Schemes, Lemma 6.8). Hence (2) holds. □

Lemma 6.3.04YD A finite disjoint union of quasi-compact algebraic stacks is a quasi-
compact algebraic stack.

Proof. This is clear from the corresponding topological fact. □

7. Properties of algebraic stacks defined by properties of schemes

04YE Any smooth local property of schemes gives rise to a corresponding property of
algebraic stacks via the following lemma. Note that a property of schemes which
is smooth local is also étale local as any étale covering is also a smooth covering.
Hence for a smooth local property P of schemes we know what it means to say that
an algebraic space has P , see Properties of Spaces, Section 7.

Lemma 7.1.04YF Let P be a property of schemes which is local in the smooth topol-
ogy, see Descent, Definition 15.1. Let X be an algebraic stack. The following are
equivalent

(1) for some scheme U and some surjective smooth morphism U → X the
scheme U has property P,

(2) for every scheme U and every smooth morphism U → X the scheme U has
property P,

(3) for some algebraic space U and some surjective smooth morphism U → X
the algebraic space U has property P, and

(4) for every algebraic space U and every smooth morphism U → X the alge-
braic space U has property P.

If X is a scheme this is equivalent to P(U). If X is an algebraic space this is
equivalent to X having property P.

Proof. Let U → X surjective and smooth with U an algebraic space. Let V → X
be a smooth morphism with V an algebraic space. Choose schemes U ′ and V ′ and
surjective étale morphisms U ′ → U and V ′ → V . Finally, choose a scheme W and a
surjective étale morphism W → V ′×X U ′. Then W → V ′ and W → U ′ are smooth
morphisms of schemes as compositions of étale and smooth morphisms of algebraic
spaces, see Morphisms of Spaces, Lemmas 39.6 and 37.2. Moreover, W → V ′ is
surjective as U ′ → X is surjective. Hence, we have

P(U)⇔ P(U ′)⇒ P(W )⇒ P(V ′)⇔ P(V )

https://stacks.math.columbia.edu/tag/04YD
https://stacks.math.columbia.edu/tag/04YF
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where the equivalences are by definition of property P for algebraic spaces, and the
two implications come from Descent, Definition 15.1. This proves (3) ⇒ (4).

The implications (2) ⇒ (1), (1) ⇒ (3), and (4) ⇒ (2) are immediate. □

Definition 7.2.04YG Let X be an algebraic stack. Let P be a property of schemes
which is local in the smooth topology. We say X has property P if any of the
equivalent conditions of Lemma 7.1 hold.

Remark 7.3.04YH Here is a list of properties which are local for the smooth topology
(keep in mind that the fpqc, fppf, and syntomic topologies are stronger than the
smooth topology):

(1) locally Noetherian, see Descent, Lemma 16.1,
(2) Jacobson, see Descent, Lemma 16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 17.1,
(4) Cohen-Macaulay, see Descent, Lemma 17.2,
(5) reduced, see Descent, Lemma 18.1,
(6) normal, see Descent, Lemma 18.2,
(7) locally Noetherian and (Rk), see Descent, Lemma 18.3,
(8) regular, see Descent, Lemma 18.4,
(9) Nagata, see Descent, Lemma 18.5.

Any smooth local property of germs of schemes gives rise to a corresponding prop-
erty of algebraic stacks. Note that a property of germs which is smooth local is
also étale local. Hence for a smooth local property of germs of schemes P we know
what it means to say that an algebraic space X has property P at x ∈ |X|, see
Properties of Spaces, Section 7.

Lemma 7.4.04YI Let X be an algebraic stack. Let x ∈ |X | be a point of X . Let P be
a property of germs of schemes which is smooth local, see Descent, Definition 21.1.
The following are equivalent

(1) for any smooth morphism U → X with U a scheme and u ∈ U with a(u) = x
we have P(U, u),

(2) for some smooth morphism U → X with U a scheme and some u ∈ U with
a(u) = x we have P(U, u),

(3) for any smooth morphism U → X with U an algebraic space and u ∈ |U |
with a(u) = x the algebraic space U has property P at u, and

(4) for some smooth morphism U → X with U a an algebraic space and some
u ∈ |U | with a(u) = x the algebraic space U has property P at u.

If X is representable, then this is equivalent to P(X , x). If X is an algebraic space
then this is equivalent to X having property P at x.

Proof. Let a : U → X and u ∈ |U | as in (3). Let b : V → X be another smooth
morphism with V an algebraic space and v ∈ |V | with b(v) = x also. Choose a
scheme U ′, an étale morphism U ′ → U and u′ ∈ U ′ mapping to u. Choose a scheme
V ′, an étale morphism V ′ → V and v′ ∈ V ′ mapping to v. By Lemma 4.3 there
exists a point w ∈ |V ′ ×X U ′| mapping to u′ and v′. Choose a scheme W and a
surjective étale morphism W → V ′ ×X U ′. We may choose a w ∈ |W | mapping to
w (see Properties of Spaces, Lemma 4.4). Then W → V ′ and W → U ′ are smooth
morphisms of schemes as compositions of étale and smooth morphisms of algebraic

https://stacks.math.columbia.edu/tag/04YG
https://stacks.math.columbia.edu/tag/04YH
https://stacks.math.columbia.edu/tag/04YI
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spaces, see Morphisms of Spaces, Lemmas 39.6 and 37.2. Hence

P(U, u)⇔ P(U ′, u′)⇔ P(W, w)⇔ P(V ′, v′)⇔ P(V, v)

The outer two equivalences by Properties of Spaces, Definition 7.5 and the other
two by what it means to be a smooth local property of germs of schemes. This
proves (4) ⇒ (3).

The implications (1) ⇒ (2), (2) ⇒ (4), and (3) ⇒ (1) are immediate. □

Definition 7.5.04YJ Let P be a property of germs of schemes which is smooth local.
Let X be an algebraic stack. Let x ∈ |X |. We say X has property P at x if any of
the equivalent conditions of Lemma 7.4 holds.

8. Monomorphisms of algebraic stacks

04ZV We define a monomorphism of algebraic stacks in the following way. We will see
in Lemma 8.4 that this is compatible with the corresponding 2-category theoretic
notion.

Definition 8.1.04ZW Let f : X → Y be a morphism of algebraic stacks. We say f is
a monomorphism if it is representable by algebraic spaces and a monomorphism in
the sense of Section 3.

First some basic lemmas.

Lemma 8.2.04ZX Let X → Y be a morphism of algebraic stacks. Let Z → Y be a
monomorphism. Then Z ×Y X → X is a monomorphism.

Proof. This follows from the general discussion in Section 3. □

Lemma 8.3.04ZY Compositions of monomorphisms of algebraic stacks are monomor-
phisms.

Proof. This follows from the general discussion in Section 3 and Morphisms of
Spaces, Lemma 10.4. □

Lemma 8.4.04ZZ Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent:

(1) f is a monomorphism,
(2) f is fully faithful,
(3) the diagonal ∆f : X → X ×Y X is an equivalence, and
(4) there exists an algebraic space W and a surjective, flat morphism W → Y

which is locally of finite presentation such that V = X ×Y W is an algebraic
space, and the morphism V →W is a monomorphism of algebraic spaces.

Proof. The equivalence of (1) and (4) follows from the general discussion in Section
3 and in particular Lemmas 3.1 and 3.3.

The equivalence of (2) and (3) is Categories, Lemma 35.10.

Assume the equivalent conditions (2) and (3). Then f is representable by algebraic
spaces according to Algebraic Stacks, Lemma 15.2. Moreover, the 2-Yoneda lemma
combined with the fully faithfulness implies that for every scheme T the functor

Mor(T,X ) −→ Mor(T,Y)

https://stacks.math.columbia.edu/tag/04YJ
https://stacks.math.columbia.edu/tag/04ZW
https://stacks.math.columbia.edu/tag/04ZX
https://stacks.math.columbia.edu/tag/04ZY
https://stacks.math.columbia.edu/tag/04ZZ
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is fully faithful. Hence given a morphism y : T → Y there exists up to unique
2-isomorphism at most one morphism x : T → X such that y ∼= f ◦x. In particular,
given a morphism of schemes h : T ′ → T there exists at most one lift h̃ : T ′ →
T ×Y X of h. Thus T ×Y X → T is a monomorphism of algebraic spaces, which
proves that (1) holds.
Finally, assume that (1) holds. Then for any scheme T and morphism y : T → Y the
fibre product T ×Y X is an algebraic space, and T ×Y X → T is a monomorphism.
Hence there exists up to unique isomorphism exactly one pair (x, α) where x : T →
X is a morphism and α : f ◦x→ y is a 2-morphism. Applying the 2-Yoneda lemma
this says exactly that f is fully faithful, i.e., that (2) holds. □

Lemma 8.5.0500 A monomorphism of algebraic stacks induces an injective map of
sets of points.

Proof. Let f : X → Y be a monomorphism of algebraic stacks. Suppose that
xi : Spec(Ki)→ X be morphisms such that f ◦x1 and f ◦x2 define the same element
of |Y|. Applying the definition we find a common extension Ω with corresponding
morphisms ci : Spec(Ω)→ Spec(Ki) and a 2-isomorphism β : f ◦x1◦c1 → f ◦x1◦c2.
As f is fully faithful, see Lemma 8.4, we can lift β to an isomorphism α : x1 ◦ c1 →
x1 ◦ c2. Hence x1 and x2 define the same point of |X | as desired. □

Lemma 8.6.0CBB Let X → X ′ → Y be morphisms of algebraic stacks. If X → X ′ is a
monomorphism then the canonical diagram

X //

��

X ×Y X

��
X ′ // X ′ ×Y X ′

is a fibre product square.

Proof. We have X = X ×X ′ X by Lemma 8.4. Thus the result by applying
Categories, Lemma 31.13. □

9. Immersions of algebraic stacks

04YK Immersions of algebraic stacks are defined as follows.

Definition 9.1.04YL Immersions.
(1) A morphism of algebraic stacks is called an open immersion if it is repre-

sentable, and an open immersion in the sense of Section 3.
(2) A morphism of algebraic stacks is called a closed immersion if it is repre-

sentable, and a closed immersion in the sense of Section 3.
(3) A morphism of algebraic stacks is called an immersion if it is representable,

and an immersion in the sense of Section 3.

This is not the most convenient way to think about immersions for us. For us it
is a little bit more convenient to think of an immersion as a morphism of algebraic
stacks which is representable by algebraic spaces and is an immersion in the sense of
Section 3. Similarly for closed and open immersions. Since this is clearly equivalent
to the notion just defined we shall use this characterization without further mention.
We prove a few simple lemmas about this notion.

https://stacks.math.columbia.edu/tag/0500
https://stacks.math.columbia.edu/tag/0CBB
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Lemma 9.2.0501 Let X → Y be a morphism of algebraic stacks. Let Z → Y be
a (closed, resp. open) immersion. Then Z ×Y X → X is a (closed, resp. open)
immersion.

Proof. This follows from the general discussion in Section 3. □

Lemma 9.3.0502 Compositions of immersions of algebraic stacks are immersions.
Similarly for closed immersions and open immersions.

Proof. This follows from the general discussion in Section 3 and Spaces, Lemma
12.2. □

Lemma 9.4.0503 Let f : X → Y be a morphism of algebraic stacks. Let W be an
algebraic space and let W → Y be a surjective, flat morphism which is locally of
finite presentation. The following are equivalent:

(1) f is an (open, resp. closed) immersion, and
(2) V = W ×Y X is an algebraic space, and V →W is an (open, resp. closed)

immersion.

Proof. This follows from the general discussion in Section 3 and in particular
Lemmas 3.1 and 3.3. □

Lemma 9.5.0504 An immersion is a monomorphism.

Proof. See Morphisms of Spaces, Lemma 10.7. □

Lemma 9.6.0H20 If f : X → Y is an immersion, then |f | : |X | → |Y| is a homeomor-
phism onto a locally closed subset. If f is a closed, resp. open immersion, then |f |
is closed, resp. open.

Proof. Omitted. □

The following two lemmas explain how to think about immersions in terms of
presentations.

Lemma 9.7.0505 Let (U, R, s, t, c) be a smooth groupoid in algebraic spaces. Let i :
Z → [U/R] be an immersion. Then there exists an R-invariant locally closed
subspace Z ⊂ U and a presentation [Z/RZ ] → Z where RZ is the restriction of R
to Z such that

[Z/RZ ]

$$

// Z

i}}
[U/R]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp.
open) subspace of U .

Proof. By Lemma 3.6 we get a commutative diagram

[U ′/R′]

$$

// Z

}}
[U/R]

where U ′ = Z ×[U/R] U and R′ = Z ×[U/R] R. Since Z → [U/R] is an immersion
we see that U ′ → U is an immersion of algebraic spaces. Let Z ⊂ U be the locally

https://stacks.math.columbia.edu/tag/0501
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closed subspace such that U ′ → U factors through Z and induces an isomorphism
U ′ → Z. It is clear from the construction of R′ that R′ = U ′ ×U,t R = R ×s,U U ′.
This implies that Z ∼= U ′ is R-invariant and that the image of R′ → R identifies R′

with the restriction RZ = s−1(Z) = t−1(Z) of R to Z. Hence the lemma holds. □

Lemma 9.8.04YN Let (U, R, s, t, c) be a smooth groupoid in algebraic spaces. Let X =
[U/R] be the associated algebraic stack, see Algebraic Stacks, Theorem 17.3. Let
Z ⊂ U be an R-invariant locally closed subspace. Then

[Z/RZ ] −→ [U/R]
is an immersion of algebraic stacks, where RZ is the restriction of R to Z. If Z ⊂ U
is open (resp. closed) then the morphism is an open (resp. closed) immersion of
algebraic stacks.

Proof. Recall that by Groupoids in Spaces, Definition 18.1 (see also discussion
following the definition) we have RZ = s−1(Z) = t−1(Z) as locally closed subspaces
of R. Hence the two morphisms RZ → Z are smooth as base changes of s and t.
Hence (Z, RZ , s|RZ

, t|RZ
, c|RZ ×s,Z,tRZ

) is a smooth groupoid in algebraic spaces,
and we see that [Z/RZ ] is an algebraic stack, see Algebraic Stacks, Theorem 17.3.
The assumptions of Groupoids in Spaces, Lemma 25.3 are all satisfied and it follows
that we have a 2-fibre square

Z

��

// [Z/RZ ]

��
U // [U/R]

It follows from this and Lemma 3.1 that [Z/RZ ] → [U/R] is representable by
algebraic spaces, whereupon it follows from Lemma 3.3 that the right vertical arrow
is an immersion (resp. closed immersion, resp. open immersion) if and only if the
left vertical arrow is. □

We can define open, closed, and locally closed substacks as follows.

Definition 9.9.04YM Let X be an algebraic stack.
(1) An open substack of X is a strictly full subcategory X ′ ⊂ X such that X ′

is an algebraic stack and X ′ → X is an open immersion.
(2) A closed substack of X is a strictly full subcategory X ′ ⊂ X such that X ′

is an algebraic stack and X ′ → X is a closed immersion.
(3) A locally closed substack of X is a strictly full subcategory X ′ ⊂ X such

that X ′ is an algebraic stack and X ′ → X is an immersion.

This definition should be used with caution. Namely, if f : X → Y is an equivalence
of algebraic stacks and X ′ ⊂ X is an open substack, then it is not necessarily the
case that the subcategory f(X ′) is an open substack of Y. The problem is that it
may not be a strictly full subcategory; but this is also the only problem. Here is a
formal statement.

Lemma 9.10.0506 For any immersion i : Z → X there exists a unique locally closed
substack X ′ ⊂ X such that i factors as the composition of an equivalence i′ : Z → X ′

followed by the inclusion morphism X ′ → X . If i is a closed (resp. open) immersion,
then X ′ is a closed (resp. open) substack of X .

https://stacks.math.columbia.edu/tag/04YN
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Proof. Omitted. □

Lemma 9.11.0507 Let [U/R]→ X be a presentation of an algebraic stack. There is a
canonical bijection

locally closed substacks Z of X −→ R-invariant locally closed subspaces Z of U

which sends Z to U ×X Z. Moreover, a morphism of algebraic stacks f : Y → X
factors through Z if and only if Y ×X U → U factors through Z. Similarly for
closed substacks and open substacks.

Proof. By Lemmas 9.7 and 9.8 we find that the map is a bijection. If Y → X
factors through Z then of course the base change Y ×X U → U factors through
Z. Converse, suppose that Y → X is a morphism such that Y ×X U → U factors
through Z. We will show that for every scheme T and morphism T → Y, given by
an object y of the fibre category of Y over T , the object y is in fact in the fibre
category of Z over T . Namely, the fibre product T ×X U is an algebraic space and
T ×X U → T is a surjective smooth morphism. Hence there is an fppf covering
{Ti → T} such that Ti → T factors through T ×X U → T for all i. Then Ti → X
factors through Y ×X U and hence through Z ⊂ U . Thus y|Ti

is an object of Z (as
Z is the fibre product of U with Z over X ). Since Z is a strictly full substack, we
conclude that y is an object of Z as desired. □

Lemma 9.12.06FJ Let X be an algebraic stack. The rule U 7→ |U| defines an inclusion
preserving bijection between open substacks of X and open subsets of |X |.

Proof. Choose a presentation [U/R]→ X , see Algebraic Stacks, Lemma 16.2. By
Lemma 9.11 we see that open substacks correspond to R-invariant open subschemes
of U . On the other hand Lemmas 4.5 and 4.7 guarantee these correspond bijectively
to open subsets of |X |. □

Lemma 9.13.05UP Let X be an algebraic stack. Let U be an algebraic space and
U → X a surjective smooth morphism. For an open immersion V ↪→ U , there
exists an algebraic stack Y, an open immersion Y → X , and a surjective smooth
morphism V → Y.

Proof. We define a category fibred in groupoids Y by letting the fiber category
YT over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
y ∈ Ob(XT ) such that the projection morphism V ×X ,y T → T surjective. Now for
any morphism x : T → X , the 2-fibred product T ×x,X Y has fiber category over
T ′ consisting of triples (f : T ′ → T, y ∈ XT ′ , f∗x ≃ y) such that V ×X ,y T ′ → T ′

is surjective. Note that T ×x,X Y is fibered in setoids since Y → X is faithful (see
Stacks, Lemma 6.7). Now the isomorphism f∗x ≃ y gives the diagram

V ×X ,y T ′

��

// V ×X ,x T //

��

V

��
T ′ f // T

x // X
where both squares are cartesian. The morphism V ×X ,x T → T is smooth by base
change, and hence open. Let T0 ⊂ T be its image. From the cartesian squares we
deduce that V ×X ,y T ′ → T ′ is surjective if and only if f lands in T0. Therefore
T ×x,X Y is representable by T0, so the inclusion Y → X is an open immersion.
By Algebraic Stacks, Lemma 15.5 we conclude that Y is an algebraic stack. Lastly
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if we denote the morphism V → X by g, we have V ×X V → V is surjective (the
diagonal gives a section). Hence g is in the image of YV → XV , i.e., we obtain a
morphism g′ : V → Y fitting into the commutative diagram

V //

g′

��

U

��
Y // X

Since V ×g,X Y → V is a monomorphism, it is in fact an isomorphism since (1, g′)
defines a section. Therefore g′ : V → Y is a smooth morphism, as it is the base
change of the smooth morphism g : V → X . It is surjective by our construction of
Y which finishes the proof of the lemma. □

Lemma 9.14.05UQ Let X be an algebraic stack and Xi ⊂ X a collection of open
substacks indexed by i ∈ I. Then there exists an open substack, which we denote⋃

i∈I Xi ⊂ X , such that the Xi are open substacks covering it.

Proof. We define a fibred subcategory X ′ =
⋃

i∈I Xi by letting the fiber category
over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
x ∈ Ob(XT ) such that the morphism

∐
i∈I(Xi ×X T ) → T is surjective. Let

xi ∈ Ob((Xi)T ). Then (xi, 1) gives a section of Xi ×X T → T , so we have an
isomorphism. Thus Xi ⊂ X ′ is a full subcategory. Now let x ∈ Ob(XT ). Then
Xi ×X T is representable by an open subscheme Ti ⊂ T . The 2-fibred product
X ′ ×X T has fiber over T ′ consisting of (y ∈ XT ′ , f : T ′ → T, f∗x ≃ y) such
that

∐
(Xi ×X ,y T ′) → T ′ is surjective. The isomorphism f∗x ≃ y induces an

isomorphism Xi ×X ,y T ′ ≃ Ti ×T T ′. Then the Ti ×T T ′ cover T ′ if and only if f
lands in

⋃
Ti. Therefore we have a diagram

Ti
//

��

⋃
Ti

//

��

T

��
Xi

// X ′ // X

with both squares cartesian. By Algebraic Stacks, Lemma 15.5 we conclude that
X ′ ⊂ X is algebraic and an open substack. It is also clear from the cartesian squares
above that the morphism

∐
i∈I Xi → X ′ which finishes the proof of the lemma. □

Lemma 9.15.05UR Let X be an algebraic stack and X ′ ⊂ X a quasi-compact open
substack. Suppose that we have a collection of open substacks Xi ⊂ X indexed by
i ∈ I such that X ′ ⊂

⋃
i∈I Xi, where we define the union as in Lemma 9.14. Then

there exists a finite subset I ′ ⊂ I such that X ′ ⊂
⋃

i∈I′ Xi.

Proof. Since X is algebraic, there exists a scheme U with a surjective smooth
morphism U → X . Let Ui ⊂ U be the open subscheme representing Xi ×X U and
U ′ ⊂ U the open subscheme representing X ′ ×X U . By hypothesis, U ′ ⊂

⋃
i∈I Ui.

From the proof of Lemma 6.2, there is a quasi-compact open V ⊂ U ′ such that
V → X ′ is a surjective smooth morphism. Therefore there exists a finite subset
I ′ ⊂ I such that V ⊂

⋃
i∈I′ Ui. We claim that X ′ ⊂

⋃
i∈I′ Xi. Take x ∈ Ob(X ′

T )
for T ∈ Ob((Sch/S)fppf ). Since X ′ → X is a monomorphism, we have cartesian
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squares
V ×X T //

��

T

x

��

T

x

��
V // X ′ // X

By base change, V ×X T → T is surjective. Therefore
⋃

i∈I′ Ui ×X T → T is also
surjective. Let Ti ⊂ T be the open subscheme representing Xi ×X T . By a formal
argument, we have a Cartesian square

Ui ×Xi Ti
//

��

U ×X T

��
Ti

// T

where the vertical arrows are surjective by base change. Since Ui×Xi
Ti ≃ Ui×X T ,

we find that
⋃

i∈I′ Ti = T . Hence x is an object of (
⋃

i∈I′ Xi)T by definition of
the union. Observe that the inclusion X ′ ⊂

⋃
i∈I′ Xi is automatically an open

substack. □

Lemma 9.16.05WE Let X be an algebraic stack. Let Xi, i ∈ I be a set of open substacks
of X . Assume

(1) X =
⋃

i∈I Xi, and
(2) each Xi is an algebraic space.

Then X is an algebraic space.

Proof. Apply Stacks, Lemma 6.10 to the morphism
∐

i∈I Xi → X and the mor-
phism id : X → X to see that X is a stack in setoids. Hence X is an algebraic
space, see Algebraic Stacks, Proposition 13.3. □

Lemma 9.17.05WF Let X be an algebraic stack. Let Xi, i ∈ I be a set of open substacks
of X . Assume

(1) X =
⋃

i∈I Xi, and
(2) each Xi is a scheme

Then X is a scheme.

Proof. By Lemma 9.16 we see that X is an algebraic space. Since any algebraic
space has a largest open subspace which is a scheme, see Properties of Spaces,
Lemma 13.1 we see that X is a scheme. □

The following lemma is the analogue of More on Groupoids, Lemma 6.1.

Lemma 9.18.06M3 Let P,Q,R be properties of morphisms of algebraic spaces. Assume
(1) P,Q,R are fppf local on the target and stable under arbitrary base change,
(2) smooth⇒ R,
(3) for any morphism f : X → Y which has Q there exists a largest open

subspace W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is
the base change of f .

Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Assume f has Q. Then
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(A) there exists a largest open substack X ′ ⊂ X such that f |X ′ has P, and
(B) if Z → Y is a morphism of algebraic stacks representable by algebraic spaces

which has R then Z×YX ′ is the largest open substack of Z×YX over which
the base change idZ × f has property P.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Set U =
V ×Y X and let f ′ : U → V be the base change of f . The morphism of algebraic
spaces f ′ : U → V has property Q. Thus we obtain the open W (P, f ′) ⊂ U
by assumption (3). Note that U ×X U = (V ×Y V ) ×Y X hence the morphism
f ′′ : U ×X U → V ×Y V is the base change of f via either projection V ×Y V → V .
By our choice of V these projections are smooth, hence have property R by (2).
Thus by (4) we see that the inverse images of W (P, f ′) under the two projections
pri : U ×X U → U agree. In other words, W (P, f ′) is an R-invariant subspace of U
(where R = U ×X U). Let X ′ be the open substack of X corresponding to W (P, f)
via Lemma 9.7. By construction W (P, f ′) = X ′ ×Y V hence f |X ′ has property P
by Lemma 3.3. Also, X ′ is the largest open substack such that f |X ′ has P as the
same maximality holds for W (P, f). This proves (A).
Finally, if Z → Y is a morphism of algebraic stacks representable by algebraic
spaces which has R then we set T = V ×Y Z and we see that T → V is a morphism
of algebraic spaces having property R. Set f ′

T : T ×V U → T the base change of
f ′. By (4) again we see that W (P, f ′

T ) is the inverse image of W (P, f) in T ×V U .
This implies (B); some details omitted. □

Remark 9.19.06M4 Warning: Lemma 9.18 should be used with care. For example, it
applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite presentation”.
But given a morphism of algebraic spaces f : X → Y the largest open subspace
W ⊂ X such that f |W is flat is not the set of points where f is flat!
Remark 9.20.06M5 Notwithstanding the warning in Remark 9.19 there are some cases
where Lemma 9.18 can be used without causing ambiguity. We give a list. In each
case we omit the verification of assumptions (1) and (2) and we give references
which imply (3) and (4). Here is the list:

(1)06M6 Q =“locally of finite type”, R = ∅, and P =“relative dimension ≤ d”. See
Morphisms of Spaces, Definition 33.2 and Morphisms of Spaces, Lemmas
34.4 and 34.3.

(2)06M7 Q =“locally of finite type”, R = ∅, and P =“locally quasi-finite”. This is
the case d = 0 of the previous item, see Morphisms of Spaces, Lemma 34.6.
On the other hand, properties (3) and (4) are spelled out in Morphisms of
Spaces, Lemma 34.7.

(3)06M8 Q =“locally of finite type”, R = ∅, and P =“unramified”. This is Mor-
phisms of Spaces, Lemma 38.10.

(4)06M9 Q =“locally of finite presentation”, R =“flat and locally of finite presenta-
tion”, and P =“flat”. See More on Morphisms of Spaces, Theorem 22.1 and
Lemma 22.2. Note that here W (P, f) is always exactly the set of points
where the morphism f is flat because we only consider this open when f
has Q (see loc.cit.).

(5)06MA Q =“locally of finite presentation”, R =“flat and locally of finite presenta-
tion”, and P =“étale”. This follows on combining (3) and (4) because an
unramified morphism which is flat and locally of finite presentation is étale,
see Morphisms of Spaces, Lemma 39.12.
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(6) Add more here as needed (compare with the longer list at More on Groupoids,
Remark 6.3).

10. Reduced algebraic stacks

0508 We have already defined reduced algebraic stacks in Section 7.

Lemma 10.1.0509 Let X be an algebraic stack. Let T ⊂ |X | be a closed subset. There
exists a unique closed substack Z ⊂ X with the following properties: (a) we have
|Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective smooth morphism, where U is an algebraic
space. Set R = U ×X U , so that there is a presentation [U/R]→ X , see Algebraic
Stacks, Lemma 16.2. As usual we denote s, t : R → U the two smooth projection
morphisms. By Lemma 4.5 we see that T corresponds to a closed subset T ′ ⊂ |U |
such that |s|−1(T ′) = |t|−1(T ′). Let Z ⊂ U be the reduced induced algebraic
space structure on T ′, see Properties of Spaces, Definition 12.5. The fibre products
Z ×U,t R and R ×s,U Z are closed subspaces of R (Spaces, Lemma 12.3). The
projections Z ×U,t R→ Z and R×s,U Z → Z are smooth by Morphisms of Spaces,
Lemma 37.3. Thus as Z is reduced, it follows that Z ×U,t R and R ×s,U Z are
reduced, see Remark 7.3. Since

|Z ×U,t R| = |t|−1(T ′) = |s|−1(T ′) = R×s,U Z

we conclude from the uniqueness in Properties of Spaces, Lemma 12.3 that Z ×U,t

R = R×s,U Z. Hence Z is an R-invariant closed subspace of U . By the correspon-
dence of Lemma 9.11 we obtain a closed substack Z ⊂ X with Z = Z ×X U . Then
[Z/RZ ]→ Z is a presentation (Lemma 9.7). Then |Z| = |Z|/|RZ | = |T ′|/ ∼ is the
given closed subset T . We omit the proof of unicity. □

Lemma 10.2.050A Let X be an algebraic stack. If X ′ ⊂ X is a closed substack, X is
reduced and |X ′| = |X |, then X ′ = X .

Proof. Choose a presentation [U/R]→ X with U a scheme. As X is reduced, we
see that U is reduced (by definition of reduced algebraic stacks). By Lemma 9.11
X ′ corresponds to an R-invariant closed subscheme Z ⊂ U . But now |Z| ⊂ |U |
is the inverse image of |X ′|, and hence |Z| = |U |. Hence Z is a closed subscheme
of U whose underlying sets of points agree. By Schemes, Lemma 12.7 the map
idU : U → U factors through Z → U , and hence Z = U , i.e., X ′ = X . □

Lemma 10.3.050B Let X , Y be algebraic stacks. Let Z ⊂ X be a closed substack
Assume Y is reduced. A morphism f : Y → X factors through Z if and only if
f(|Y|) ⊂ |Z|.

Proof. Assume f(|Y|) ⊂ |Z|. Consider Y ×X Z → Y. There is an equivalence
Y ×X Z → Y ′ where Y ′ is a closed substack of Y, see Lemmas 9.2 and 9.10. Using
Lemmas 4.3, 8.5, and 9.5 we see that |Y ′| = |Y|. Hence we have reduced the lemma
to Lemma 10.2. □

Definition 10.4.050C Let X be an algebraic stack. Let Z ⊂ |X | be a closed subset. An
algebraic stack structure on Z is given by a closed substack Z of X with |Z| equal
to Z. The reduced induced algebraic stack structure on Z is the one constructed
in Lemma 10.1. The reduction Xred of X is the reduced induced algebraic stack
structure on |X |.
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In fact we can use this to define the reduced induced algebraic stack structure on
a locally closed subset.

Remark 10.5.06FK Let X be an algebraic stack. Let T ⊂ |X | be a locally closed
subset. Let ∂T be the boundary of T in the topological space |X |. In a formula

∂T = T \ T.

Let U ⊂ X be the open substack of X with |U| = |X | \ ∂T , see Lemma 9.12. Let Z
be the reduced closed substack of U with |Z| = T obtained by taking the reduced
induced closed subspace structure, see Definition 10.4. By construction Z → U is
a closed immersion of algebraic stacks and U → X is an open immersion, hence
Z → X is an immersion of algebraic stacks by Lemma 9.3. Note that Z is a reduced
algebraic stack and that |Z| = T as subsets of |X|. We sometimes say Z is the
reduced induced substack structure on T .

11. Residual gerbes

06ML In the Stacks project we would like to define the residual gerbe of an algebraic stack
X at a point x ∈ |X | to be a monomorphism of algebraic stacks mx : Zx → X where
Zx is a reduced algebraic stack having a unique point which is mapped by mx to
x. It turns out that there are many issues with this notion; existence is not clear
in general and neither is uniqueness. We resolve the uniqueness issue by imposing
a slightly stronger condition on the algebraic stacks Zx. We discuss this in more
detail by working through a few simple lemmas regarding reduced algebraic stacks
having a unique point.

Lemma 11.1.06MM Let Z be an algebraic stack. Let k be a field and let Spec(k)→ Z
be surjective and flat. Then any morphism Spec(k′) → Z where k′ is a field is
surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 31.5 (via the discussion in Section 3)
that Spec(k′)→ Z is flat. It is clear that it is surjective as by assumption |Z| is a
singleton. □

Lemma 11.2.06MN Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k)→ Z where k is a field, and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k) → Z

where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective smooth
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
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η → Z is flat (see Morphisms of Spaces, Lemma 30.3). It is also surjective as |Z|
is a singleton. In other words (2) holds.
Assume (2). Let W be a scheme and let W → Z be a surjective smooth morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is an algebraic space smooth over k, hence regular (see Spaces over Fields, Lemma
16.1) and in particular reduced. Since W ×Z Spec(k) → W is surjective and flat
we conclude that W is reduced (Descent on Spaces, Lemma 9.2). In other words
(1) holds.
It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and a smooth morphism W → Z. Pick a closed point w ∈W and set k = κ(w).
The composition

Spec(k) w−→W −→ Z
is locally of finite type by Morphisms of Spaces, Lemmas 23.2 and 37.6. It is also
flat and surjective by Lemma 11.1. Hence (3) holds. □

The following lemma singles out a slightly better class of singleton algebraic stacks
than the preceding lemma.

Lemma 11.3.06MP Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→
Z where k is a field.

Proof. Assume (2) holds. By Lemma 11.2 we see that Z is reduced and |Z| is
a singleton. Let W be a scheme and let W → Z be a surjective smooth mor-
phism. Choose a field k and a locally finitely presented, surjective, flat morphism
Spec(k)→ Z. Then W×Z Spec(k) is an algebraic space smooth over k, hence locally
Noetherian (see Morphisms of Spaces, Lemma 23.5). Since W ×Z Spec(k)→W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude that W is locally Noetherian (Descent on Spaces,
Lemma 9.3). In other words (1) holds.
Assume (1). Pick a nonempty affine scheme W and a smooth morphism W → Z.
Pick a closed point w ∈W and set k = κ(w). Because W is locally Noetherian the
morphism w : Spec(k)→ W is of finite presentation, see Morphisms, Lemma 21.7.
Hence the composition

Spec(k) w−→W −→ Z
is locally of finite presentation by Morphisms of Spaces, Lemmas 28.2 and 37.5. It
is also flat and surjective by Lemma 11.1. Hence (2) holds. □

Lemma 11.4.06MQ Let Z ′ → Z be a monomorphism of algebraic stacks. Assume there
exists a field k and a locally finitely presented, surjective, flat morphism Spec(k)→
Z. Then either Z ′ is empty or Z ′ → Z is an equivalence.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′ ×Z Spec(k) is nonempty, see Lemma 4.3. Now T is an algebraic space and the
projection T → Spec(k) is a monomorphism. Hence T = Spec(k), see Morphisms of
Spaces, Lemma 10.8. We conclude that Spec(k)→ Z factors through Z ′. Suppose
the morphism z : Spec(k)→ Z is given by the object ξ over Spec(k). We have just
seen that ξ is isomorphic to an object ξ′ of Z ′ over Spec(k). Since z is surjective, flat,
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and locally of finite presentation we see that every object of Z over any scheme is
fppf locally isomorphic to a pullback of ξ, hence also to a pullback of ξ′. By descent
of objects for stacks in groupoids this implies that Z ′ → Z is essentially surjective
(as well as fully faithful, see Lemma 8.4). Hence we win. □

Lemma 11.5.06MR Let Z be an algebraic stack. Assume Z satisfies the equivalent
conditions of Lemma 11.2. Then there exists a unique strictly full subcategory
Z ′ ⊂ Z such that Z ′ is an algebraic stack which satisfies the equivalent conditions
of Lemma 11.3. The inclusion morphism Z ′ → Z is a monomorphism of algebraic
stacks.

Proof. The last part is immediate from the first part and Lemma 8.4. Pick a field
k and a morphism Spec(k)→ Z which is surjective, flat, and locally of finite type.
Set U = Spec(k) and R = U×Z U . The projections s, t : R→ U are locally of finite
type. Since U is the spectrum of a field, it follows that s, t are flat and locally of
finite presentation (by Morphisms of Spaces, Lemma 28.7). We see that Z ′ = [U/R]
is an algebraic stack by Criteria for Representability, Theorem 17.2. By Algebraic
Stacks, Lemma 16.1 we obtain a canonical morphism

f : Z ′ −→ Z

which is fully faithful. Hence this morphism is representable by algebraic spaces, see
Algebraic Stacks, Lemma 15.2 and a monomorphism, see Lemma 8.4. By Criteria
for Representability, Lemma 17.1 the morphism U → Z ′ is surjective, flat, and
locally of finite presentation. Hence Z ′ is an algebraic stack which satisfies the
equivalent conditions of Lemma 11.3. By Algebraic Stacks, Lemma 12.4 we may
replace Z ′ by its essential image in Z. Hence we have proved all the assertions of
the lemma except for the uniqueness of Z ′ ⊂ Z. Suppose that Z ′′ ⊂ Z is a second
such algebraic stack. Then the projections

Z ′ ←− Z ′ ×Z Z ′′ −→ Z ′′

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
4.3. Hence the two projections are isomorphisms by Lemma 11.4 and we win. □

Example 11.6.06MS Here is an example where the morphism constructed in Lemma
11.5 isn’t an isomorphism. This example shows that imposing that residual gerbes
are locally Noetherian is necessary in Definition 11.8. In fact, the example is even
an algebraic space! Let Gal(Q/Q) be the absolute Galois group of Q with the
pro-finite topology. Let

U = Spec(Q)×Spec(Q) Spec(Q) = Gal(Q/Q)× Spec(Q)

(we omit a precise explanation of the meaning of the last equal sign). Let G
denote the absolute Galois group Gal(Q/Q) with the discrete topology viewed as
a constant group scheme over Spec(Q), see Groupoids, Example 5.6. Then G acts
freely and transitively on U . Let X = U/G, see Spaces, Definition 14.4. Then X is
a non-noetherian reduced algebraic space with exactly one point. Furthermore, X
has a (locally) finite type point:

x : Spec(Q) −→ U −→ X

Indeed, every point of U is actually closed! As X is an algebraic space over Q it
follows that x is a monomorphism. So x is the morphism constructed in Lemma
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11.5 but x is not an isomorphism. In fact Spec(Q)→ X is the residual gerbe of X
at x.

It will turn out later that under mild assumptions on the algebraic stack X the
equivalent conditions of the following lemma are satisfied for every point x ∈ |X |
(see Morphisms of Stacks, Section 31).

Lemma 11.7.06MT Let X be an algebraic stack. Let x ∈ |X | be a point. The following
are equivalent

(1) there exists an algebraic stack Z and a monomorphism Z → X such that
|Z| is a singleton and such that the image of |Z| in |X | is x,

(2) there exists a reduced algebraic stack Z and a monomorphism Z → X such
that |Z| is a singleton and such that the image of |Z| in |X | is x,

(3) there exists an algebraic stack Z, a monomorphism f : Z → X , and a
surjective flat morphism z : Spec(k) → Z where k is a field such that
x = f(z).

Moreover, if these conditions hold, then there exists a unique strictly full subcategory
Zx ⊂ X such that Zx is a reduced, locally Noetherian algebraic stack and |Zx| is a
singleton which maps to x via the map |Zx| → |X |.

Proof. If Z → X is as in (1), then Zred → X is as in (2). (See Section 10 for
the notion of the reduction of an algebraic stack.) Hence (1) implies (2). It is
immediate that (2) implies (1). The equivalence of (2) and (3) is immediate from
Lemma 11.2.

At this point we’ve seen the equivalence of (1) – (3). Pick a monomorphism f :
Z → X as in (2). Note that this implies that f is fully faithful, see Lemma 8.4.
Denote Z ′ ⊂ X the essential image of the functor f . Then f : Z → Z ′ is an
equivalence and hence Z ′ is an algebraic stack, see Algebraic Stacks, Lemma 12.4.
Apply Lemma 11.5 to get a strictly full subcategory Zx ⊂ Z ′ as in the statement
of the lemma. This proves all the statements of the lemma except for uniqueness.

In order to prove the uniqueness suppose that Zx ⊂ X and Z ′
x ⊂ X are two strictly

full subcategories as in the statement of the lemma. Then the projections

Z ′
x ←− Z ′

x ×X Zx −→ Zx

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
4.3. Hence the two projections are isomorphisms by Lemma 11.4 and we win. □

Having explained the above we can now make the following definition.

Definition 11.8.06MU Let X be an algebraic stack. Let x ∈ |X |.
(1) We say the residual gerbe of X at x exists if the equivalent conditions (1),

(2), and (3) of Lemma 11.7 hold.
(2) If the residual gerbe of X at x exists, then the residual gerbe of X at x1 is

the strictly full subcategory Zx ⊂ X constructed in Lemma 11.7.

1This clashes with [LMB00] in spirit, but not in fact. Namely, in Chapter 11 they associate to
any point on any quasi-separated algebraic stack a gerbe (not necessarily algebraic) which they
call the residual gerbe. We will see in Morphisms of Stacks, Lemma 31.1 that on a quasi-separated
algebraic stack every point has a residual gerbe in our sense which is then equivalent to theirs.
For more information on this topic see [Ryd10, Appendix B].
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In particular we know that Zx (if it exists) is a locally Noetherian, reduced algebraic
stack and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

We will see in Morphisms of Stacks, Lemma 28.12 that Zx is a gerbe. Existence of
residual gerbes is discussed in Morphisms of Stacks, Section 31.

Example 11.9.0H21 Let X be a scheme and let x ∈ X be a point. Then the monomor-
phism x→ X is the residual gerbe of X at x where we, as usual, identify x with the
scheme x = Spec(κ(x)). If X is an algebraic space and x ∈ |X|, then the residual
gerbe at x (which is called the residual space) always exists, see Decent Spaces,
Section 13.

The residual gerbe, if it exists, is a regular algebraic stack by the following lemma.

Lemma 11.10.06MV A reduced, locally Noetherian algebraic stack Z such that |Z| is
a singleton is regular.

Proof. Let W → Z be a surjective smooth morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 11.3). The algebraic space T = W ×Z Spec(k) is smooth over k in
particular regular, see Spaces over Fields, Lemma 16.1. Since T → W is locally of
finite presentation, flat, and surjective it follows that W is regular, see Descent on
Spaces, Lemma 9.4. By definition this means that Z is regular. □

Lemma 11.11.06MW Let X be an algebraic stack. Let x ∈ |X |. Assume that the residual
gerbe Zx of X exists. Let f : Spec(K)→ X be a morphism where K is a field in the
equivalence class of x. Then f factors through the inclusion morphism Zx → X .

Proof. Choose a field k and a surjective flat locally finite presentation morphism
Spec(k)→ Zx. Set T = Spec(K)×X Zx. By Lemma 4.3 we see that T is nonempty.
As Zx → X is a monomorphism we see that T → Spec(K) is a monomorphism.
Hence by Morphisms of Spaces, Lemma 10.8 we see that T = Spec(K) which proves
the lemma. □

Lemma 11.12.06MX Let X be an algebraic stack. Let x ∈ |X |. Let Z be an algebraic
stack satisfying the equivalent conditions of Lemma 11.3 and let Z → X be a
monomorphism such that the image of |Z| → |X | is x. Then the residual gerbe Zx

of X at x exists and Z → X factors as Z → Zx → X where the first arrow is an
equivalence.

Proof. Let Zx ⊂ X be the full subcategory corresponding to the essential image
of the functor Z → X . Then Z → Zx is an equivalence, hence Zx is an algebraic
stack, see Algebraic Stacks, Lemma 12.4. Since Zx inherits all the properties of Z
from this equivalence it is clear from the uniqueness in Lemma 11.7 that Zx is the
residual gerbe of X at x. □

Lemma 11.13.0DTH Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
with image y ∈ |Y|. If the residual gerbes Zx ⊂ X and Zy ⊂ Y of x and y exist,

https://stacks.math.columbia.edu/tag/0H21
https://stacks.math.columbia.edu/tag/06MV
https://stacks.math.columbia.edu/tag/06MW
https://stacks.math.columbia.edu/tag/06MX
https://stacks.math.columbia.edu/tag/0DTH
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then f induces a commutative diagram

X

f

��

Zx
oo

��
Y Zy
oo

Proof. Choose a field k and a surjective, flat, locally finitely presented morphism
Spec(k) → Zx. The morphism Spec(k) → Y factors through Zy by Lemma 11.11.
Thus Zx×YZy is a nonempty substack of Zx hence equal to Zx by Lemma 11.4. □

Lemma 11.14.0DTI Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
with image y ∈ |Y|. Assume the residual gerbes Zx ⊂ X and Zy ⊂ Y of x and y
exist and that there exists a morphism Spec(k) → X in the equivalence class of x
such that

Spec(k)×X Spec(k) −→ Spec(k)×Y Spec(k)
is an isomorphism. Then Zx → Zy is an isomorphism.

Proof. Let k′/k be an extension of fields. Then
Spec(k′)×X Spec(k′) −→ Spec(k′)×Y Spec(k′)

is the base change of the morphism in the lemma by the faithfully flat morphism
Spec(k′ ⊗ k′) → Spec(k ⊗ k). Thus the property described in the lemma is inde-
pendent of the choice of the morphism Spec(k) → X in the equivalence class of
x. Thus we may assume that Spec(k)→ Zx is surjective, flat, and locally of finite
presentation. In this situation we have

Zx = [Spec(k)/R]
with R = Spec(k)×X Spec(k). See proof of Lemma 11.5. Since also R = Spec(k)×Y
Spec(k) we conclude that the morphism Zx → Zy of Lemma 11.13 is fully faithful
by Algebraic Stacks, Lemma 16.1. We conclude for example by Lemma 11.12. □

12. Dimension of a stack

0AFL We can define the dimension of an algebraic stack X at a point x, using the notion
of dimension of an algebraic space at a point (Properties of Spaces, Definition 9.1).
In the following lemma the output may be∞ either because X is not quasi-compact
or because we run into the phenomenon described in Examples, Section 16.

Lemma 12.1.0AFM Let X be a locally Noetherian algebraic stack over a scheme S.
Let x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic Stacks,
Definition 16.5) where U is a scheme. Let u ∈ U be a point that maps to x. Let
e : U → R be the “identity” map and let s : R → U be the “source” map, which is
a smooth morphism of algebraic spaces. Let Ru be the fiber of s : R → U over u.
The element

dimx(X ) = dimu(U)− dime(u)(Ru) ∈ Z ∪∞
is independent of the choice of presentation and the point u over x.

Proof. Since R → U is smooth, the scheme Ru is smooth over κ(u) and hence
has finite dimension. On the other hand, the scheme U is locally Noetherian, but
this does not guarantee that dimu(U) is finite. Thus the difference is an element of
Z ∪ {∞}.

https://stacks.math.columbia.edu/tag/0DTI
https://stacks.math.columbia.edu/tag/0AFM
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Let [U ′/R′] → X and u′ ∈ U ′ be a second presentation where U ′ is a scheme and
u′ maps to x. Consider the algebraic space P = U ×X U ′. By Lemma 4.3 there
exists a p ∈ |P | mapping to u and u′. Since P → U and P → U ′ are smooth we see
that dimp(P ) = dimu(U) + dimp(Pu) and dimp(P ) = dimu′(U ′) + dimp(Pu′), see
Morphisms of Spaces, Lemma 37.10. Note that

R′
u′ = Spec(κ(u′))×X U ′ and Pu = Spec(κ(u))×X U ′

Let us represent p ∈ |P | by a morphism Spec(Ω)→ P . Since p maps to both u and
u′ it induces a 2-morphism between the compositions Spec(Ω)→ Spec(κ(u′))→ X
and Spec(Ω)→ Spec(κ(u))→ X which in turn defines an isomorphism

Spec(Ω)×Spec(κ(u′)) R′
u′ ∼= Spec(Ω)×Spec(κ(u)) Pu

as algebraic spaces over Spec(Ω) mapping the Ω-rational point (1, e′(u′)) to (1, p)
(some details omitted). We conclude that

dime′(u′)(R′
u′) = dimp(Pu)

by Morphisms of Spaces, Lemma 34.3. By symmetry we have dime(u)(Ru) =
dimp(Pu′). Putting everything together we obtain the independence of choices. □

We can use the lemma above to make the following definition.

Definition 12.2.0AFN Let X be a locally Noetherian algebraic stack over a scheme S.
Let x ∈ |X | be a point of X . Let [U/R]→ X be a presentation (Algebraic Stacks,
Definition 16.5) where U is a scheme and let u ∈ U be a point that maps to x. We
define the dimension of X at x to be the element dimx(X ) ∈ Z ∪∞ such that

dimx(X ) = dimu(U)− dime(u)(Ru).

with notation as in Lemma 12.1.

The dimension of a stack at a point agrees with the usual notion when X is a
scheme (Topology, Definition 10.1), or more generally when X is a locally Noether-
ian algebraic space (Properties of Spaces, Definition 9.1).

Definition 12.3.0AFP Let S be a scheme. Let X be a locally Noetherian algebraic
stack over S. The dimension dim(X ) of X is defined to be

dim(X ) = supx∈|X | dimx(X )

This definition of dimension agrees with the usual notion if X is a scheme (Prop-
erties, Lemma 10.2) or an algebraic space (Properties of Spaces, Definition 9.2).

Remark 12.4.0AFQ If X is a nonempty stack of finite type over a field, then dim(X )
is an integer. For an arbitrary locally Noetherian algebraic stack X , dim(X ) is in
Z ∪ {±∞}, and dim(X ) = −∞ if and only if X is empty.

Example 12.5.0AFR Let X be a scheme of finite type over a field k, and let G be a
group scheme of finite type over k which acts on X. Then the dimension of the
quotient stack [X/G] is equal to dim(X) − dim(G). In particular, the dimension
of the classifying stack BG = [Spec(k)/G] is −dim(G). Thus the dimension of an
algebraic stack can be a negative integer, in contrast to what happens for schemes
or algebraic spaces.

https://stacks.math.columbia.edu/tag/0AFN
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13. Local irreducibility

0DQG We have defined the geometric number of branches of a scheme at a point in Prop-
erties, Section 15 and for an algebraic space at a point in Properties of Spaces,
Section 23. Let n ∈ N. For a local ring A set

Pn(A) = the number of geometric branches of A is n

For a smooth ring map A→ B and a prime ideal q of B lying over p of A we have
Pn(Ap)⇔ Pn(Bq)

by More on Algebra, Lemma 106.8. As in Properties of Spaces, Remark 7.6 we
may use Pn to define an étale local property Pn of germs (U, u) of schemes by
setting Pn(U, u) = Pn(OU,u). The corresponding property Pn of an algebraic space
X at a point x (see Properties of Spaces, Definition 7.5) is just the property “the
number of geometric branches of X at x is n”, see Properties of Spaces, Definition
23.4. Moreover, the property Pn is smooth local, see Descent, Definition 21.1. This
follows either from the equivalence displayed above or More on Morphisms, Lemma
36.4. Thus Definition 7.5 applies and we obtain a notion for algebraic stacks at a
point.

Definition 13.1.0DQH Let X be an algebraic stack. Let x ∈ |X |.
(1) The number of geometric branches of X at x is either n ∈ N if the equivalent

conditions of Lemma 7.4 hold for Pn defined above, or else ∞.
(2) We say X is geometrically unibranch at x if the number of geometric

branches of X at x is 1.

14. Finiteness conditions and points

0DTJ This section is the analogue of Decent Spaces, Section 4 for points of algebraic
stacks.

Lemma 14.1.0DTK Let X be an algebraic stack. Let x ∈ |X | be a point. The following
are equivalent

(1) some morphism Spec(k)→ X in the equivalence class of x is quasi-compact,
and

(2) any morphism Spec(k)→ X in the equivalence class of x is quasi-compact.

Proof. Let Spec(k) → X be in the equivalence class of x. Let k′/k be a field
extension. Then we have to show that Spec(k) → X is quasi-compact if and only
if Spec(k′)→ X is quasi-compact. This follows from Morphisms of Spaces, Lemma
8.6 and the principle of Algebraic Stacks, Lemma 10.9. □

Sometimes people say that a point x ∈ |X | satisfying the equivalent conditions of
Lemma 14.1 is a “quasi-compact point”.
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