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1. Introduction

020L In this document we explain what the different topologies on the category of schemes
are. Some references are [Gro71] and [BLR90]. Before doing so we would like to
point out that there are many different choices of sites (as defined in Sites, Definition
6.2) which give rise to the same notion of sheaf on the underlying category. Hence
our choices may be slightly different from those in the references but ultimately
lead to the same cohomology groups, etc.

2. The general procedure

020M In this section we explain a general procedure for producing the sites we will be
working with. Suppose we want to study sheaves over schemes with respect to some
topology τ . In order to get a site, as in Sites, Definition 6.2, of schemes with that
topology we have to do some work. Namely, we cannot simply say “consider all
schemes with the Zariski topology” since that would give a “big” category. Instead,
in each section of this chapter we will proceed as follows:

(1) We define a class Covτ of coverings of schemes satisfying the axioms of
Sites, Definition 6.2. It will always be the case that a Zariski open covering
of a scheme is a covering for τ .

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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TOPOLOGIES ON SCHEMES 2

(2) We single out a notion of standard τ -covering within the category of affine
schemes.

(3) We define what is an “absolute” big τ -site Schτ . These are the sites one
gets by appropriately choosing a set of schemes and a set of coverings.

(4) For any object S of Schτ we define the big τ -site (Sch/S)τ and for suitable
τ the small1 τ -site Sτ .

(5) In addition there is a site (Aff/S)τ using the notion of standard τ -covering
of affines2 whose category of sheaves is equivalent to the category of sheaves
on (Sch/S)τ .

The above is a little clumsy in that we do not end up with a canonical choice for
the big τ -site of a scheme, or even the small τ -site of a scheme. If you are willing
to ignore set theoretic difficulties, then you can work with classes and end up with
canonical big and small sites...

3. The Zariski topology

020N
Definition 3.1.020O Let T be a scheme. A Zariski covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is an open immersion and
such that T =

⋃
fi(Ti).

This defines a (proper) class of coverings. Next, we show that this notion satisfies
the conditions of Sites, Definition 6.2.

Lemma 3.2.020P Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a Zariski covering of T .
(2) If {Ti → T}i∈I is a Zariski covering and for each i we have a Zariski

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a Zariski covering.
(3) If {Ti → T}i∈I is a Zariski covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a Zariski covering.

Proof. Omitted. □

Lemma 3.3.020Q Let T be an affine scheme. Let {Ti → T}i∈I be a Zariski covering
of T . Then there exists a Zariski covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is a standard open of T , see Schemes, Definition
5.2. Moreover, we may choose each Uj to be an open of one of the Ti.

Proof. Follows as T is quasi-compact and standard opens form a basis for its
topology. This is also proved in Schemes, Lemma 5.1. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 3.4.020R Compare Schemes, Definition 5.2. Let T be an affine scheme. A
standard Zariski covering of T is a Zariski covering {Uj → T}j=1,...,m with each
Uj → T inducing an isomorphism with a standard affine open of T .

Definition 3.5.020S A big Zariski site is any site SchZar as in Sites, Definition 6.2
constructed as follows:

1The words big and small here do not relate to bigness/smallness of the corresponding
categories.

2In the case of the ph topology we deviate very slightly from this approach, see Definition 8.11
and the surrounding discussion.

https://stacks.math.columbia.edu/tag/020O
https://stacks.math.columbia.edu/tag/020P
https://stacks.math.columbia.edu/tag/020Q
https://stacks.math.columbia.edu/tag/020R
https://stacks.math.columbia.edu/tag/020S
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(1) Choose any set of schemes S0, and any set of Zariski coverings Cov0 among
these schemes.

(2) As underlying category of SchZar take any category Schα constructed as
in Sets, Lemma 9.2 starting with the set S0.

(3) As coverings of SchZar choose any set of coverings as in Sets, Lemma 11.1
starting with the category Schα and the class of Zariski coverings, and the
set Cov0 chosen above.

It is shown in Sites, Lemma 8.8 that, after having chosen the category Schα, the
category of sheaves on Schα does not depend on the choice of coverings chosen in
(3) above. In other words, the topos Sh(SchZar) only depends on the choice of
the category Schα. It is shown in Sets, Lemma 9.9 that these categories are closed
under many constructions of algebraic geometry, e.g., fibre products and taking
open and closed subschemes. We can also show that the exact choice of Schα does
not matter too much, see Section 12.
Another approach would be to assume the existence of a strongly inaccessible car-
dinal and to define SchZar to be the category of schemes contained in a chosen
universe with set of coverings the Zariski coverings contained in that same uni-
verse.
Before we continue with the introduction of the big Zariski site of a scheme S, let
us point out that the topology on a big Zariski site SchZar is in some sense induced
from the Zariski topology on the category of all schemes.

Lemma 3.6.03WV Let SchZar be a big Zariski site as in Definition 3.5. Let T ∈
Ob(SchZar). Let {Ti → T}i∈I be an arbitrary Zariski covering of T . There exists
a covering {Uj → T}j∈J of T in the site SchZar which is tautologically equivalent
(see Sites, Definition 8.2) to {Ti → T}i∈I .

Proof. Since each Ti → T is an open immersion, we see by Sets, Lemma 9.9 that
each Ti is isomorphic to an object Vi of SchZar. The covering {Vi → T}i∈I is
tautologically equivalent to {Ti → T}i∈I (using the identity map on I both ways).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of
T in the site SchZar by Sets, Lemma 11.1. □

Definition 3.7.020T Let S be a scheme. Let SchZar be a big Zariski site containing
S.

(1) The big Zariski site of S, denoted (Sch/S)Zar, is the site SchZar/S intro-
duced in Sites, Section 25.

(2) The small Zariski site of S, which we denote SZar, is the full subcategory
of (Sch/S)Zar whose objects are those U/S such that U → S is an open
immersion. A covering of SZar is any covering {Ui → U} of (Sch/S)Zar

with U ∈ Ob(SZar).
(3) The big affine Zariski site of S, denoted (Aff/S)Zar, is the full subcategory

of (Sch/S)Zar consisting of objects U/S such that U is an affine scheme.
A covering of (Aff/S)Zar is any covering {Ui → U} of (Sch/S)Zar with
U ∈ Ob((Aff/S)Zar) which is a standard Zariski covering.

(4) The small affine Zariski site of S, denoted Saffine,Zar, is the full sub-
category of SZar whose objects are those U/S such that U is an affine
scheme. A covering of Saffine,Zar is any covering {Ui → U} of SZar with
U ∈ Ob(Saffine,Zar) which is a standard Zariski covering.

https://stacks.math.columbia.edu/tag/03WV
https://stacks.math.columbia.edu/tag/020T
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It is not completely clear that the small Zariski site, the big affine Zariski site, and
the small affine Zariski site are sites. We check this now.

Lemma 3.8.020U Let S be a scheme. Let SchZar be a big Zariski site containing S.
The structures SZar, (Aff/S)Zar, and Saffine,Zar defined above are sites.

Proof. Let us show that SZar is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of
Sites, Definition 6.2. Since (Sch/S)Zar is a site, it suffices to prove that given any
covering {Ui → U} of (Sch/S)Zar with U ∈ Ob(SZar) we also have Ui ∈ Ob(SZar).
This follows from the definitions as the composition of open immersions is an open
immersion.
Let us show that (Aff/S)Zar is a site. Reasoning as above, it suffices to show that
the collection of standard Zariski coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 6.2. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit
ideal. For each i ∈ {1, . . . , n} let gi1, . . . , gini

∈ Rfi
be elements generating the unit

ideal of Rfi . Write gij = fij/f
eij

i which is possible. After replacing fij by fifij if
necessary, we have that D(fij) ⊂ D(fi) ∼= Spec(Rfi

) is equal to D(gij) ⊂ Spec(Rfi
).

Hence we see that the family of morphisms {D(gij) → Spec(R)} is a standard
Zariski covering. From these considerations it follows that (2) holds for standard
Zariski coverings. We omit the verification of (1) and (3).
We omit the proof that Saffine,Zar is a site. □

Lemma 3.9.020V Let S be a scheme. Let SchZar be a big Zariski site containing S.
The underlying categories of the sites SchZar, (Sch/S)Zar, SZar, (Aff/S)Zar, and
Saffine,Zar have fibre products. In each case the obvious functor into the category
Sch of all schemes commutes with taking fibre products. The categories (Sch/S)Zar,
and SZar both have a final object, namely S/S.

Proof. For SchZar it is true by construction, see Sets, Lemma 9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V, W ∈ Ob(SchZar).
The fibre product V ×U W in SchZar is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)Zar. This proves the result for (Sch/S)Zar.
If U → S, V → U and W → U are open immersions then so is V ×U W → S and
hence we get the result for SZar. If U, V, W are affine, so is V ×U W and hence the
result for (Aff/S)Zar and Saffine,Zar. □

Next, we check that the big, resp. small affine site defines the same topos as the
big, resp. small site.

Lemma 3.10.020W Let S be a scheme. Let SchZar be a big Zariski site containing S.
The functor (Aff/S)Zar → (Sch/S)Zar is a special cocontinuous functor. Hence it
induces an equivalence of topoi from Sh((Aff/S)Zar) to Sh((Sch/S)Zar).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)Zar → (Sch/S)Zar. Being cocontinuous
just means that any Zariski covering of T/S, T affine, can be refined by a standard
Zariski covering of T . This is the content of Lemma 3.3. Hence (1) holds. We see
u is continuous simply because a standard Zariski covering is a Zariski covering.

https://stacks.math.columbia.edu/tag/020U
https://stacks.math.columbia.edu/tag/020V
https://stacks.math.columbia.edu/tag/020W
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Hence (2) holds. Parts (3) and (4) follow immediately from the fact that u is fully
faithful. And finally condition (5) follows from the fact that every scheme has an
affine open covering. □

Lemma 3.11.0F1B Let S be a scheme. Let SchZar be a big Zariski site containing S.
The functor Saffine,Zar → SZar is a special cocontinuous functor. Hence it induces
an equivalence of topoi from Sh(Saffine,Zar) to Sh(SZar).

Proof. Omitted. Hint: compare with the proof of Lemma 3.10. □

Let us check that the notion of a sheaf on the small Zariski site corresponds to
notion of a sheaf on S.

Lemma 3.12.020X The category of sheaves on SZar is equivalent to the category of
sheaves on the underlying topological space of S.

Proof. We will use repeatedly that for any object U/S of SZar the morphism
U → S is an isomorphism onto an open subscheme. Let F be a sheaf on S. Then
we define a sheaf on SZar by the rule F ′(U/S) = F(Im(U → S)). For the converse,
we choose for every open subscheme U ⊂ S an object U ′/S ∈ Ob(SZar) with
Im(U ′ → S) = U (here you have to use Sets, Lemma 9.9). Given a sheaf G on
SZar we define a sheaf on S by setting G′(U) = G(U ′/S). To see that G′ is a
sheaf we use that for any open covering U =

⋃
i∈I Ui the covering {Ui → U}i∈I is

combinatorially equivalent to a covering {U ′
j → U ′}j∈J in SZar by Sets, Lemma

11.1, and we use Sites, Lemma 8.4. Details omitted. □

From now on we will not make any distinction between a sheaf on SZar or a sheaf
on S. We will always use the procedures of the proof of the lemma to go between
the two notions. Next, we establish some relationships between the topoi associated
to these sites.

Lemma 3.13.020Y Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor TZar → (Sch/S)Zar is cocontinuous and induces a morphism
of topoi

if : Sh(TZar) −→ Sh((Sch/S)Zar)
For a sheaf G on (Sch/S)Zar we have the formula (i−1

f G)(U/T ) = G(U/S). The
functor i−1

f also has a left adjoint if,! which commutes with fibre products and
equalizers.

Proof. Denote the functor u : TZar → (Sch/S)Zar. In other words, given and open
immersion j : U → T corresponding to an object of TZar we set u(U → T ) = (f ◦j :
U → S). This functor commutes with fibre products, see Lemma 3.9. Moreover,
TZar has equalizers (as any two morphisms with the same source and target are the
same) and u commutes with them. It is clearly cocontinuous. It is also continuous
as u transforms coverings to coverings and commutes with fibre products. Hence
the lemma follows from Sites, Lemmas 21.5 and 21.6. □

Lemma 3.14.020Z Let S be a scheme. Let SchZar be a big Zariski site containing S.
The inclusion functor SZar → (Sch/S)Zar satisfies the hypotheses of Sites, Lemma
21.8 and hence induces a morphism of sites

πS : (Sch/S)Zar −→ SZar

https://stacks.math.columbia.edu/tag/0F1B
https://stacks.math.columbia.edu/tag/020X
https://stacks.math.columbia.edu/tag/020Y
https://stacks.math.columbia.edu/tag/020Z
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and a morphism of topoi
iS : Sh(SZar) −→ Sh((Sch/S)Zar)

such that πS ◦ iS = id. Moreover, iS = iidS
with iidS

as in Lemma 3.13. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : SZar → (Sch/S)Zar, in addition to the prop-
erties seen in the proof of Lemma 3.13 above, also is fully faithful and transforms
the final object into the final object. The lemma follows. □

Definition 3.15.04BS In the situation of Lemma 3.14 the functor i−1
S = πS,∗ is often

called the restriction to the small Zariski site, and for a sheaf F on the big Zariski
site we denote F|SZar

this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(SZar)(F|SZar
, G) = MorSh((Sch/S)Zar)(F , iS,∗G)

MorSh(SZar)(G, F|SZar
) = MorSh((Sch/S)Zar)(π−1

S G, F)

Moreover, we have (iS,∗G)|SZar
= G and we have (π−1

S G)|SZar
= G.

Lemma 3.16.0210 Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor

u : (Sch/T )Zar −→ (Sch/S)Zar, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)Zar −→ (Sch/T )Zar, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )Zar) −→ Sh((Sch/S)Zar)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 3.13). Hence
Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the
existence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 3.17.0211 Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar.

(1) We have if = fbig ◦ iT with if as in Lemma 3.13 and iT as in Lemma 3.14.
(2) The functor SZar → TZar, (U → S) 7→ (U ×S T → T ) is continuous and

induces a morphism of topoi
fsmall : Sh(TZar) −→ Sh(SZar).

The functors f−1
small and fsmall,∗ agree with the usual notions f−1 and f∗

is we identify sheaves on TZar, resp. SZar with sheaves on T , resp. S via
Lemma 3.12.

https://stacks.math.columbia.edu/tag/04BS
https://stacks.math.columbia.edu/tag/0210
https://stacks.math.columbia.edu/tag/0211
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(3) We have a commutative diagram of morphisms of sites

TZar

fsmall

��

(Sch/T )Zar

fbig

��

πT

oo

SZar (Sch/S)Zar
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f−1
big which

is clear from the descriptions of these functors above. Thus we see (1).
Statement (2): See Sites, Example 14.2.
Part (3) follows because πS and πT are given by the inclusion functors and fsmall

and fbig by the base change functor U 7→ U ×S T .
Statement (4) follows from (3) by precomposing with iT . □

In the situation of the lemma, using the terminology of Definition 3.15 we have: for
F a sheaf on the big Zariski site of T

(fbig,∗F)|SZar
= fsmall,∗(F|TZar

),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small Zariski site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.

Lemma 3.18.0212 Given schemes X, Y , Z in (Sch/S)Zar and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 3.16. For the functors on the small sites
this is Sheaves, Lemma 21.2 via the identification of Lemma 3.12. □

Lemma 3.19.0DD9 Let SchZar be a big Zariski site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in SchZar. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′ ×S′ T ′ = U ′ ×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )Zar to the

sheaf U ′ 7→ F(U ′ ×S′ T ′) on S′
Zar (use Lemmas 3.13 and 3.17). The second equality

can be proved in the same manner or can be deduced from the very general Sites,
Lemma 28.1. □

We can think about a sheaf on the big Zariski site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 3.20.0213 Let S be a scheme contained in a big Zariski site SchZar. A sheaf
F on the big Zariski site (Sch/S)Zar is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)Zar) a sheaf FT on T ,

https://stacks.math.columbia.edu/tag/0212
https://stacks.math.columbia.edu/tag/0DD9
https://stacks.math.columbia.edu/tag/0213
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(2) for every f : T ′ → T in (Sch/S)Zar a map cf : f−1FT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)Zar the composition
cg ◦ g−1cf is equal to cf◦g, and

(b) if f : T ′ → T in (Sch/S)Zar is an open immersion then cf is an isomor-
phism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in
Sites, Remark 26.7. We also give a direct proof in this case.
Given a sheaf F on Sh((Sch/S)Zar) we set FT = i−1

p F where p : T → S is the
structure morphism. Note that FT (U) = F(U ′/S) for any open U ⊂ T , and
U ′ → T an open immersion in (Sch/T )Zar with image U , see Lemmas 3.12 and
3.13. Hence given f : T ′ → T over S and U, U ′ → T we get a canonical map
FT (U) = F(U ′/S) → F(U ′ ×T T ′/S) = FT ′(f−1(U)) where the middle is the
restriction map of F with respect to the morphism U ′ ×T T ′ → U ′ over S. The
collection of these maps are compatible with restrictions, and hence define an f -map
cf from FT to FT ′ , see Sheaves, Definition 21.7 and the discussion surrounding it.
It is clear that cf◦g is the composition of cf and cg, since composition of restriction
maps of F gives restriction maps.
Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F
on Sh((Sch/S)Zar) by simply setting F(T/S) = FT (T ). As restriction mapping,
given f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) (where we
think of cf as an f -map again). The condition on the cf guarantees that pullbacks
satisfy the required functoriality property. We omit the verification that this is a
sheaf. It is clear that the constructions so defined are mutually inverse. □

4. The étale topology

0214 Let S be a scheme. We would like to define the étale-topology on the category of
schemes over S. According to our general principle we first introduce the notion of
an étale covering.

Definition 4.1.0215 Let T be a scheme. An étale covering of T is a family of mor-
phisms {fi : Ti → T}i∈I of schemes such that each fi is étale and such that
T =

⋃
fi(Ti).

Lemma 4.2.0216 Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is
an étale morphism, see Morphisms, Lemma 36.9. □

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 4.3.0217 Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an étale covering of T .
(2) If {Ti → T}i∈I is an étale covering and for each i we have an étale covering

{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an étale covering.
(3) If {Ti → T}i∈I is an étale covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is an étale covering.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0215
https://stacks.math.columbia.edu/tag/0216
https://stacks.math.columbia.edu/tag/0217
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Lemma 4.4.0218 Let T be an affine scheme. Let {Ti → T}i∈I be an étale covering
of T . Then there exists an étale covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.

Proof. Omitted. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 4.5.0219 Let T be an affine scheme. A standard étale covering of T is
a family {fj : Uj → T}j=1,...,m with each Uj is affine and étale over T and T =⋃

fj(Uj).

In the definition above we do not assume the morphisms fj are standard étale.
The reason is that if we did then the standard étale coverings would not define a
site on Aff/S, for example because of Algebra, Lemma 144.2 part (4). On the other
hand, an étale morphism of affines is automatically standard smooth, see Algebra,
Lemma 143.2. Hence a standard étale covering is a standard smooth covering and
a standard syntomic covering.

Definition 4.6.021A A big étale site is any site Schétale as in Sites, Definition 6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of étale coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cate-
gory Schα and the class of étale coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding
the definition of big sites.
Before we continue with the introduction of the big étale site of a scheme S, let us
point out that the topology on a big étale site Schétale is in some sense induced
from the étale topology on the category of all schemes.

Lemma 4.7.03WW Let Schétale be a big étale site as in Definition 4.6. Let T ∈
Ob(Schétale). Let {Ti → T}i∈I be an arbitrary étale covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schétale which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard étale covering, then it is tautologically equiv-
alent to a covering in Schétale.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schétale.

Proof. For each i choose an affine open covering Ti =
⋃

j∈Ji
Tij such that each Tij

maps into an affine open subscheme of T . By Lemma 4.3 the refinement {Tij →
T}i∈I,j∈Ji

is an étale covering of T as well. Hence we may assume each Ti is affine,
and maps into an affine open Wi of T . Applying Sets, Lemma 9.9 we see that Wi

is isomorphic to an object of Schétale. But then Ti as a finite type scheme over Wi

is isomorphic to an object Vi of Schétale by a second application of Sets, Lemma
9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because they are isomorphic).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of

https://stacks.math.columbia.edu/tag/0218
https://stacks.math.columbia.edu/tag/0219
https://stacks.math.columbia.edu/tag/021A
https://stacks.math.columbia.edu/tag/03WW
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T in the site Schétale by Sets, Lemma 9.9. The covering {Uj → T}j∈J is a refinement
as in (1). In the situation of (2), (3) each of the schemes Ti is isomorphic to an
object of Schétale by Sets, Lemma 9.9, and another application of Sets, Lemma 11.1
gives what we want. □

Definition 4.8.021B Let S be a scheme. Let Schétale be a big étale site containing S.
(1) The big étale site of S, denoted (Sch/S)étale, is the site Schétale/S intro-

duced in Sites, Section 25.
(2) The small étale site of S, which we denote Sétale, is the full subcategory

of (Sch/S)étale whose objects are those U/S such that U → S is étale.
A covering of Sétale is any covering {Ui → U} of (Sch/S)étale with U ∈
Ob(Sétale).

(3) The big affine étale site of S, denoted (Aff/S)étale, is the full subcategory of
(Sch/S)étale whose objects are those U/S such that U is an affine scheme.
A covering of (Aff/S)étale is any covering {Ui → U} of (Sch/S)étale with
U ∈ Ob((Aff/S)étale) which is a standard étale covering.

(4) The small affine étale site of S, denoted Saffine,étale, is the full subcategory
of Sétale whose objects are those U/S such that U is an affine scheme.
A covering of Saffine,étale is any covering {Ui → U} of Sétale with U ∈
Ob(Saffine,étale) which is a standard étale covering.

It is not completely clear that the big affine étale site, the small étale site, and the
small affine étale site are sites. We check this now.

Lemma 4.9.021C Let S be a scheme. Let Schétale be a big étale site containing S.
The structures Sétale, (Aff/S)étale, and Saffine,étale are sites.

Proof. Let us show that Sétale is a site. It is a category with a given set of
families of morphisms with fixed target. Thus we have to show properties (1), (2)
and (3) of Sites, Definition 6.2. Since (Sch/S)étale is a site, it suffices to prove
that given any covering {Ui → U} of (Sch/S)étale with U ∈ Ob(Sétale) we also
have Ui ∈ Ob(Sétale). This follows from the definitions as the composition of étale
morphisms is an étale morphism.
Let us show that (Aff/S)étale is a site. Reasoning as above, it suffices to show that
the collection of standard étale coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 6.2. This is clear since for example, given a standard étale
covering {Ti → T}i∈I and for each i we have a standard étale covering {Tij →
Ti}j∈Ji

, then {Tij → T}i∈I,j∈Ji
is a standard étale covering because

⋃
i∈I Ji is

finite and each Tij is affine.
We omit the proof that Saffine,étale is a site. □

Lemma 4.10.021D Let S be a scheme. Let Schétale be a big étale site containing S.
The underlying categories of the sites Schétale, (Sch/S)étale, Sétale, (Aff/S)étale,
and Saffine,étale have fibre products. In each case the obvious functor into the
category Sch of all schemes commutes with taking fibre products. The categories
(Sch/S)étale, and Sétale both have a final object, namely S/S.

Proof. For Schétale it is true by construction, see Sets, Lemma 9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V, W ∈ Ob(Schétale).
The fibre product V ×U W in Schétale is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and

https://stacks.math.columbia.edu/tag/021B
https://stacks.math.columbia.edu/tag/021C
https://stacks.math.columbia.edu/tag/021D
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hence also a fibre product in (Sch/S)étale. This proves the result for (Sch/S)étale.
If U → S, V → U and W → U are étale then so is V ×U W → S and hence we get
the result for Sétale. If U, V, W are affine, so is V ×U W and hence the result for
(Aff/S)étale and Saffine,étale. □

Next, we check that the big, resp. small affine site defines the same topos as the
big, resp. small site.

Lemma 4.11.021E Let S be a scheme. Let Schétale be a big étale site containing S.
The functor (Aff/S)étale → (Sch/S)étale is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)étale) to Sh((Sch/S)étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)étale → (Sch/S)étale. Being cocontinuous
just means that any étale covering of T/S, T affine, can be refined by a standard
étale covering of T . This is the content of Lemma 4.4. Hence (1) holds. We see u is
continuous simply because a standard étale covering is a étale covering. Hence (2)
holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. □

Lemma 4.12.04HR Let S be a scheme. Let Schétale be a big étale site containing S. The
functor Saffine,étale → Sétale is special cocontinuous and induces an equivalence of
topoi from Sh(Saffine,étale) to Sh(Sétale).

Proof. Omitted. Hint: compare with the proof of Lemma 4.11. □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 4.13.021F Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor Tétale → (Sch/S)étale is cocontinuous and induces a mor-
phism of topoi

if : Sh(Tétale) −→ Sh((Sch/S)étale)

For a sheaf G on (Sch/S)étale we have the formula (i−1
f G)(U/T ) = G(U/S). The

functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.

Proof. Denote the functor u : Tétale → (Sch/S)étale. In other words, given an
étale morphism j : U → T corresponding to an object of Tétale we set u(U → T ) =
(f ◦ j : U → S). This functor commutes with fibre products, see Lemma 4.10. Let
a, b : U → V be two morphisms in Tétale. In this case the equalizer of a and b (in
the category of schemes) is

V ×∆V/T ,V ×T V,(a,b) U ×T U

which is a fibre product of schemes étale over T , hence étale over T . Thus Tétale

has equalizers and u commutes with them. It is clearly cocontinuous. It is also con-
tinuous as u transforms coverings to coverings and commutes with fibre products.
Hence the Lemma follows from Sites, Lemmas 21.5 and 21.6. □

https://stacks.math.columbia.edu/tag/021E
https://stacks.math.columbia.edu/tag/04HR
https://stacks.math.columbia.edu/tag/021F
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Lemma 4.14.021G Let S be a scheme. Let Schétale be a big étale site containing
S. The inclusion functor Sétale → (Sch/S)étale satisfies the hypotheses of Sites,
Lemma 21.8 and hence induces a morphism of sites

πS : (Sch/S)étale −→ Sétale

and a morphism of topoi

iS : Sh(Sétale) −→ Sh((Sch/S)étale)

such that πS ◦ iS = id. Moreover, iS = iidS
with iidS

as in Lemma 4.13. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Sétale → (Sch/S)étale, in addition to the proper-
ties seen in the proof of Lemma 4.13 above, also is fully faithful and transforms the
final object into the final object. The lemma follows from Sites, Lemma 21.8. □

Definition 4.15.04BT In the situation of Lemma 4.14 the functor i−1
S = πS,∗ is often

called the restriction to the small étale site, and for a sheaf F on the big étale site
we denote F|Sétale

this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the small site that

MorSh(Sétale)(F|Sétale
, G) = MorSh((Sch/S)étale)(F , iS,∗G)

MorSh(Sétale)(G, F|Sétale
) = MorSh((Sch/S)étale)(π−1

S G, F)

Moreover, we have (iS,∗G)|Sétale
= G and we have (π−1

S G)|Sétale
= G.

Lemma 4.16.021H Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor

u : (Sch/T )étale −→ (Sch/S)étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)étale −→ (Sch/T )étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )étale) −→ Sh((Sch/S)étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre prod-
ucts and equalizers (details omitted; compare with the proof of Lemma 4.13). Hence
Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the ex-
istence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 4.17.021I Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale.

(1) We have if = fbig ◦ iT with if as in Lemma 4.13 and iT as in Lemma 4.14.

https://stacks.math.columbia.edu/tag/021G
https://stacks.math.columbia.edu/tag/04BT
https://stacks.math.columbia.edu/tag/021H
https://stacks.math.columbia.edu/tag/021I
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(2) The functor Sétale → Tétale, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of sites

fsmall : Tétale −→ Sétale

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tétale

fsmall

��

(Sch/T )étale

fbig

��

πT

oo

Sétale (Sch/S)étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Sétale → Tétale, u(U → S) = (U ×S T → T ) transforms coverings
into coverings and commutes with fibre products, see Lemma 4.3 (3) and 4.10.
Moreover, both Sétale, Tétale have final objects, namely S/S and T/T and u(S/S) =
T/T . Hence by Sites, Proposition 14.7 the functor u corresponds to a morphism
of sites Tétale → Sétale. This in turn gives rise to the morphism of topoi, see Sites,
Lemma 15.2. The description of the pushforward is clear from these references.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall

and fbig by the base change functors U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . □

In the situation of the lemma, using the terminology of Definition 4.15 we have: for
F a sheaf on the big étale site of T

(fbig,∗F)|Sétale
= fsmall,∗(F|Tétale

),

This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small étale site of T , resp. S is given by πT,∗, resp. πS,∗. A
similar formula involving pullbacks and restrictions is false.

Lemma 4.18.021J Given schemes X, Y , Y in Schétale and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 4.16. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 4.17. □

Lemma 4.19.0DDA Let Schétale be a big étale site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schétale. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.

https://stacks.math.columbia.edu/tag/021J
https://stacks.math.columbia.edu/tag/0DDA


TOPOLOGIES ON SCHEMES 14

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′ ×S′ T ′ = U ′ ×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )étale to the

sheaf U ′ 7→ F(U ′×S′ T ′) on S′
étale (use Lemmas 4.13 and 4.16). The second equality

can be proved in the same manner or can be deduced from the very general Sites,
Lemma 28.1. □

We can think about a sheaf on the big étale site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 4.20.021K Let S be a scheme contained in a big étale site Schétale. A sheaf
F on the big étale site (Sch/S)étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)étale) a sheaf FT on Tétale,
(2) for every f : T ′ → T in (Sch/S)étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)étale the composition
cg ◦ g−1

smallcf is equal to cf◦g, and
(b) if f : T ′ → T in (Sch/S)étale is étale then cf is an isomorphism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in
Sites, Remark 26.7. We also give a direct proof in this case.

Given a sheaf F on Sh((Sch/S)étale) we set FT = i−1
p F where p : T → S is the

structure morphism. Note that FT (U) = F(U/S) for any U → T in Tétale see
Lemma 4.13. Hence given f : T ′ → T over S and U → T we get a canonical
map FT (U) = F(U/S) → F(U ×T T ′/S) = FT ′(U ×T T ′) where the middle is
the restriction map of F with respect to the morphism U ×T T ′ → U over S.
The collection of these maps are compatible with restrictions, and hence define a
map c′

f : FT → fsmall,∗FT ′ where u : Tétale → T ′
étale is the base change functor

associated to f . By adjunction of fsmall,∗ (see Sites, Section 13) with f−1
small this is

the same as a map cf : f−1
smallFT → FT ′ . It is clear that c′

f◦g is the composition of
c′

f and fsmall,∗c′
g, since composition of restriction maps of F gives restriction maps,

and this gives the desired relationship among cf , cg and cf◦g.

Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F
on Sh((Sch/S)étale) by simply setting F(T/S) = FT (T ). As restriction mapping,
given f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) where we
think of cf as a map FT → fsmall,∗FT ′ again. The condition on the cf guarantees
that pullbacks satisfy the required functoriality property. We omit the verification
that this is a sheaf. It is clear that the constructions so defined are mutually
inverse. □

5. The smooth topology

021Y In this section we define the smooth topology. This is a bit pointless as it will turn
out later (see More on Morphisms, Section 38) that this topology defines the same
topos as the étale topology. But still it makes sense and it is used occasionally.

Definition 5.1.021Z Let T be a scheme. A smooth covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is smooth and such that
T =

⋃
fi(Ti).

https://stacks.math.columbia.edu/tag/021K
https://stacks.math.columbia.edu/tag/021Z
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Lemma 5.2.0220 Any étale covering is a smooth covering, and a fortiori, any Zariski
covering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
see Morphisms, Definition 36.1 and Lemma 4.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 5.3.0221 Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a smooth covering of T .
(2) If {Ti → T}i∈I is a smooth covering and for each i we have a smooth

covering {Tij → Ti}j∈Ji
, then {Tij → T}i∈I,j∈Ji

is a smooth covering.
(3) If {Ti → T}i∈I is a smooth covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a smooth covering.

Proof. Omitted. □

Lemma 5.4.0222 Let T be an affine scheme. Let {Ti → T}i∈I be a smooth covering of
T . Then there exists a smooth covering {Uj → T}j=1,...,m which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme, and such that each morphism
Uj → T is standard smooth, see Morphisms, Definition 34.1. Moreover, we may
choose each Uj to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 137.10. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 5.5.0223 Let T be an affine scheme. A standard smooth covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard smooth and
T =

⋃
fj(Uj).

Definition 5.6.03WY A big smooth site is any site Schsmooth as in Sites, Definition 6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of smooth coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cat-
egory Schα and the class of smooth coverings, and the set Cov0 chosen
above.

See the remarks following Definition 3.5 for motivation and explanation regarding
the definition of big sites.
Before we continue with the introduction of the big smooth site of a scheme S,
let us point out that the topology on a big smooth site Schsmooth is in some sense
induced from the smooth topology on the category of all schemes.

Lemma 5.7.03WZ Let Schsmooth be a big smooth site as in Definition 5.6. Let T ∈
Ob(Schsmooth). Let {Ti → T}i∈I be an arbitrary smooth covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsmooth which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard smooth covering, then it is tautologically
equivalent to a covering of Schsmooth.

https://stacks.math.columbia.edu/tag/0220
https://stacks.math.columbia.edu/tag/0221
https://stacks.math.columbia.edu/tag/0222
https://stacks.math.columbia.edu/tag/0223
https://stacks.math.columbia.edu/tag/03WY
https://stacks.math.columbia.edu/tag/03WZ
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(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schsmooth.

Proof. For each i choose an affine open covering Ti =
⋃

j∈Ji
Tij such that each Tij

maps into an affine open subscheme of T . By Lemma 5.3 the refinement {Tij →
T}i∈I,j∈Ji is a smooth covering of T as well. Hence we may assume each Ti is affine,
and maps into an affine open Wi of T . Applying Sets, Lemma 9.9 we see that Wi is
isomorphic to an object of Schsmooth. But then Ti as a finite type scheme over Wi

is isomorphic to an object Vi of Schsmooth by a second application of Sets, Lemma
9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because they are isomorphic).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J

of T in the site Schsmooth by Sets, Lemma 9.9. The covering {Uj → T}j∈J is a
refinement as in (1). In the situation of (2), (3) each of the schemes Ti is isomorphic
to an object of Schsmooth by Sets, Lemma 9.9, and another application of Sets,
Lemma 11.1 gives what we want. □

Definition 5.8.03X0 Let S be a scheme. Let Schsmooth be a big smooth site containing
S.

(1) The big smooth site of S, denoted (Sch/S)smooth, is the site Schsmooth/S
introduced in Sites, Section 25.

(2) The big affine smooth site of S, denoted (Aff/S)smooth, is the full sub-
category of (Sch/S)smooth whose objects are affine U/S. A covering of
(Aff/S)smooth is any covering {Ui → U} of (Sch/S)smooth which is a stan-
dard smooth covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 5.9.06VC Let S be a scheme. Let Schsmooth be a big smooth site containing S.
The functor (Aff/S)smooth → (Sch/S)smooth is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)smooth) to Sh((Sch/S)smooth).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)smooth → (Sch/S)smooth. Being cocontin-
uous just means that any smooth covering of T/S, T affine, can be refined by a
standard smooth covering of T . This is the content of Lemma 5.4. Hence (1) holds.
We see u is continuous simply because a standard smooth covering is a smooth
covering. Hence (2) holds. Parts (3) and (4) follow immediately from the fact that
u is fully faithful. And finally condition (5) follows from the fact that every scheme
has an affine open covering. □

To be continued...

Lemma 5.10.04HC Let Schsmooth be a big smooth site. Let f : T → S be a morphism
in Schsmooth. The functor

u : (Sch/T )smooth −→ (Sch/S)smooth, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)smooth −→ (Sch/T )smooth, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )smooth) −→ Sh((Sch/S)smooth)

https://stacks.math.columbia.edu/tag/03X0
https://stacks.math.columbia.edu/tag/06VC
https://stacks.math.columbia.edu/tag/04HC
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We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the
formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right adjoint
because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired.
Thus we may apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

6. The syntomic topology

0224 In this section we define the syntomic topology. This topology is quite interesting in
that it often has the same cohomology groups as the fppf topology but is technically
easier to deal with.

Definition 6.1.0225 Let T be a scheme. An syntomic covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is syntomic and such that
T =

⋃
fi(Ti).

Lemma 6.2.0226 Any smooth covering is a syntomic covering, and a fortiori, any
étale or Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic, see Morphisms, Lemma 34.7 and Lemma 5.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 6.3.0227 Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a syntomic covering of T .
(2) If {Ti → T}i∈I is a syntomic covering and for each i we have a syntomic

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a syntomic covering.
(3) If {Ti → T}i∈I is a syntomic covering and T ′ → T is a morphism of

schemes then {T ′ ×T Ti → T ′}i∈I is a syntomic covering.

Proof. Omitted. □

Lemma 6.4.0228 Let T be an affine scheme. Let {Ti → T}i∈I be a syntomic covering
of T . Then there exists a syntomic covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme, and such that each morphism
Uj → T is standard syntomic, see Morphisms, Definition 30.1. Moreover, we may
choose each Uj to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 136.15. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 6.5.0229 Let T be an affine scheme. A standard syntomic covering of T is
a family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard syntomic
and T =

⋃
fj(Uj).

Definition 6.6.03X1 A big syntomic site is any site Schsyntomic as in Sites, Definition
6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of syntomic coverings Cov0
among these schemes.

https://stacks.math.columbia.edu/tag/0225
https://stacks.math.columbia.edu/tag/0226
https://stacks.math.columbia.edu/tag/0227
https://stacks.math.columbia.edu/tag/0228
https://stacks.math.columbia.edu/tag/0229
https://stacks.math.columbia.edu/tag/03X1
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(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cat-
egory Schα and the class of syntomic coverings, and the set Cov0 chosen
above.

See the remarks following Definition 3.5 for motivation and explanation regarding
the definition of big sites.
Before we continue with the introduction of the big syntomic site of a scheme S, let
us point out that the topology on a big syntomic site Schsyntomic is in some sense
induced from the syntomic topology on the category of all schemes.

Lemma 6.7.03X2 Let Schsyntomic be a big syntomic site as in Definition 6.6. Let
T ∈ Ob(Schsyntomic). Let {Ti → T}i∈I be an arbitrary syntomic covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsyntomic which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard syntomic covering, then it is tautologically
equivalent to a covering in Schsyntomic.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schsyntomic.

Proof. For each i choose an affine open covering Ti =
⋃

j∈Ji
Tij such that each Tij

maps into an affine open subscheme of T . By Lemma 6.3 the refinement {Tij →
T}i∈I,j∈Ji

is a syntomic covering of T as well. Hence we may assume each Ti is
affine, and maps into an affine open Wi of T . Applying Sets, Lemma 9.9 we see that
Wi is isomorphic to an object of Schsyntomic. But then Ti as a finite type scheme
over Wi is isomorphic to an object Vi of Schsyntomic by a second application of
Sets, Lemma 9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because they are
isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering
{Uj → T}j∈J of T in the site Schsyntomic by Sets, Lemma 9.9. The covering
{Uj → T}j∈J is a covering as in (1). In the situation of (2), (3) each of the schemes
Ti is isomorphic to an object of Schsyntomic by Sets, Lemma 9.9, and another
application of Sets, Lemma 11.1 gives what we want. □

Definition 6.8.03X3 Let S be a scheme. Let Schsyntomic be a big syntomic site
containing S.

(1) The big syntomic site of S, denoted (Sch/S)syntomic, is the site Schsyntomic/S
introduced in Sites, Section 25.

(2) The big affine syntomic site of S, denoted (Aff/S)syntomic, is the full sub-
category of (Sch/S)syntomic whose objects are affine U/S. A covering of
(Aff/S)syntomic is any covering {Ui → U} of (Sch/S)syntomic which is a
standard syntomic covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 6.9.06VD Let S be a scheme. Let Schsyntomic be a big syntomic site containing
S. The functor (Aff/S)syntomic → (Sch/S)syntomic is special cocontinuous and
induces an equivalence of topoi from Sh((Aff/S)syntomic) to Sh((Sch/S)syntomic).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.

https://stacks.math.columbia.edu/tag/03X2
https://stacks.math.columbia.edu/tag/03X3
https://stacks.math.columbia.edu/tag/06VD
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Denote the inclusion functor u : (Aff/S)syntomic → (Sch/S)syntomic. Being cocon-
tinuous just means that any syntomic covering of T/S, T affine, can be refined by
a standard syntomic covering of T . This is the content of Lemma 6.4. Hence (1)
holds. We see u is continuous simply because a standard syntomic covering is a
syntomic covering. Hence (2) holds. Parts (3) and (4) follow immediately from the
fact that u is fully faithful. And finally condition (5) follows from the fact that
every scheme has an affine open covering. □

To be continued...

Lemma 6.10.04HD Let Schsyntomic be a big syntomic site. Let f : T → S be a
morphism in Schsyntomic. The functor

u : (Sch/T )syntomic −→ (Sch/S)syntomic, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)syntomic −→ (Sch/T )syntomic, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )syntomic) −→ Sh((Sch/S)syntomic)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the
formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right adjoint
because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired.
Thus we may apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

7. The fppf topology

021L Let S be a scheme. We would like to define the fppf-topology3 on the category of
schemes over S. According to our general principle we first introduce the notion of
an fppf-covering.

Definition 7.1.021M Let T be a scheme. An fppf covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite presentation
and such that T =

⋃
fi(Ti).

Lemma 7.2.021N Any syntomic covering is an fppf covering, and a fortiori, any
smooth, étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is
flat and locally of finite presentation, see Morphisms, Lemmas 30.6 and 30.7, and
Lemma 6.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 7.3.021O Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an fppf covering of T .
(2) If {Ti → T}i∈I is an fppf covering and for each i we have an fppf covering

{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fppf covering.

3The letters fppf stand for “fidèlement plat de présentation finie”.

https://stacks.math.columbia.edu/tag/04HD
https://stacks.math.columbia.edu/tag/021M
https://stacks.math.columbia.edu/tag/021N
https://stacks.math.columbia.edu/tag/021O
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(3) If {Ti → T}i∈I is an fppf covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an fppf covering.

Proof. The first assertion is clear. The second follows as the composition of flat
morphisms is flat (see Morphisms, Lemma 25.6) and the composition of morphisms
of finite presentation is of finite presentation (see Morphisms, Lemma 21.3). The
third follows as the base change of a flat morphism is flat (see Morphisms, Lemma
25.8) and the base change of a morphism of finite presentation is of finite presen-
tation (see Morphisms, Lemma 21.4). Moreover, the base change of a surjective
family of morphisms is surjective (proof omitted). □

Lemma 7.4.021P Let T be an affine scheme. Let {Ti → T}i∈I be an fppf covering of
T . Then there exists an fppf covering {Uj → T}j=1,...,m which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each
Uj to be open affine in one of the Ti.

Proof. This follows directly from the definitions using that a morphism which is
flat and locally of finite presentation is open, see Morphisms, Lemma 25.10. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 7.5.021Q Let T be an affine scheme. A standard fppf covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, flat and of finite presentation
over T and T =

⋃
fj(Uj).

Definition 7.6.021R A big fppf site is any site Schfppf as in Sites, Definition 6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of fppf coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cate-
gory Schα and the class of fppf coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding
the definition of big sites.
Before we continue with the introduction of the big fppf site of a scheme S, let us
point out that the topology on a big fppf site Schfppf is in some sense induced from
the fppf topology on the category of all schemes.

Lemma 7.7.03WX Let Schfppf be a big fppf site as in Definition 7.6. Let T ∈
Ob(Schfppf ). Let {Ti → T}i∈I be an arbitrary fppf covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schfppf which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard fppf covering, then it is tautologically equiva-
lent to a covering of Schfppf .

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schfppf .

Proof. For each i choose an affine open covering Ti =
⋃

j∈Ji
Tij such that each Tij

maps into an affine open subscheme of T . By Lemma 7.3 the refinement {Tij →
T}i∈I,j∈Ji

is an fppf covering of T as well. Hence we may assume each Ti is affine,

https://stacks.math.columbia.edu/tag/021P
https://stacks.math.columbia.edu/tag/021Q
https://stacks.math.columbia.edu/tag/021R
https://stacks.math.columbia.edu/tag/03WX
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and maps into an affine open Wi of T . Applying Sets, Lemma 9.9 we see that Wi

is isomorphic to an object of Schfppf . But then Ti as a finite type scheme over Wi

is isomorphic to an object Vi of Schfppf by a second application of Sets, Lemma
9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because they are isomorphic).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of
T in the site Schfppf by Sets, Lemma 9.9. The covering {Uj → T}j∈J is a refinement
as in (1). In the situation of (2), (3) each of the schemes Ti is isomorphic to an
object of Schfppf by Sets, Lemma 9.9, and another application of Sets, Lemma 11.1
gives what we want. □

Definition 7.8.021S Let S be a scheme. Let Schfppf be a big fppf site containing S.
(1) The big fppf site of S, denoted (Sch/S)fppf , is the site Schfppf /S intro-

duced in Sites, Section 25.
(2) The big affine fppf site of S, denoted (Aff/S)fppf , is the full subcategory

of (Sch/S)fppf whose objects are affine U/S. A covering of (Aff/S)fppf is
any covering {Ui → U} of (Sch/S)fppf which is a standard fppf covering.

It is not completely clear that the big affine fppf site is a site. We check this now.

Lemma 7.9.021T Let S be a scheme. Let Schfppf be a big fppf site containing S.
Then (Aff/S)fppf is a site.

Proof. Let us show that (Aff/S)fppf is a site. Reasoning as in the proof of Lemma
4.9 it suffices to show that the collection of standard fppf coverings of affines satisfies
properties (1), (2) and (3) of Sites, Definition 6.2. This is clear since for example,
given a standard fppf covering {Ti → T}i∈I and for each i we have a standard
fppf covering {Tij → Ti}j∈Ji

, then {Tij → T}i∈I,j∈Ji
is a standard fppf covering

because
⋃

i∈I Ji is finite and each Tij is affine. □

Lemma 7.10.021U Let S be a scheme. Let Schfppf be a big fppf site containing S.
The underlying categories of the sites Schfppf , (Sch/S)fppf , and (Aff/S)fppf have
fibre products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The category (Sch/S)fppf has a final object,
namely S/S.

Proof. For Schfppf it is true by construction, see Sets, Lemma 9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V, W ∈ Ob(Schfppf ).
The fibre product V ×U W in Schfppf is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)fppf . This proves the result for (Sch/S)fppf .
If U, V, W are affine, so is V ×U W and hence the result for (Aff/S)fppf . □

Next, we check that the big affine site defines the same topos as the big site.

Lemma 7.11.021V Let S be a scheme. Let Schfppf be a big fppf site containing S. The
functor (Aff/S)fppf → (Sch/S)fppf is cocontinuous and induces an equivalence of
topoi from Sh((Aff/S)fppf ) to Sh((Sch/S)fppf ).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)fppf → (Sch/S)fppf . Being cocontinuous
just means that any fppf covering of T/S, T affine, can be refined by a standard
fppf covering of T . This is the content of Lemma 7.4. Hence (1) holds. We see u is

https://stacks.math.columbia.edu/tag/021S
https://stacks.math.columbia.edu/tag/021T
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continuous simply because a standard fppf covering is a fppf covering. Hence (2)
holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 7.12.021W Let Schfppf be a big fppf site. Let f : T → S be a morphism in
Schfppf . The functor

u : (Sch/T )fppf −→ (Sch/S)fppf , V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)fppf −→ (Sch/T )fppf , (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )fppf ) −→ Sh((Sch/S)fppf )

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the
formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right adjoint
because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired.
Thus we may apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 7.13.021X Given schemes X, Y , Y in (Sch/S)fppf and morphisms f : X →
Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 7.12. □

8. The ph topology

0DBC In this section we define the ph topology. This is the topology generated by Zariski
coverings and proper surjective morphisms, see Lemma 8.15.

We borrow our notation/terminology from the paper [GL01] by Goodwillie and
Lichtenbaum. These authors show that if we restrict to the subcategory of Noe-
therian schemes, then the ph topology is the same as the “h topology” as originally
defined by Voevodsky: this is the topology generated by Zariski open coverings and
finite type morphisms which are universally submersive. They also show that the
two topologies do not agree on non-Noetherian schemes, see [GL01, Example 4.5].
We return to (our version of) the h topology in More on Flatness, Section 34.

Before we can define the coverings in our topology we need to do a bit of work.

Definition 8.1.0DBD Let T be an affine scheme. A standard ph covering is a family
{fj : Uj → T}j=1,...,m constructed from a proper surjective morphism f : U → T
and an affine open covering U =

⋃
j=1,...,m Uj by setting fj = f |Uj

.

It follows immediately from Chow’s lemma that we can refine a standard ph covering
by a standard ph covering corresponding to a surjective projective morphism.

https://stacks.math.columbia.edu/tag/021W
https://stacks.math.columbia.edu/tag/021X
https://stacks.math.columbia.edu/tag/0DBD
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Lemma 8.2.0DBE Let {fj : Uj → T}j=1,...,m be a standard ph covering. Let T ′ → T
be a morphism of affine schemes. Then {Uj ×T T ′ → T ′}j=1,...,m is a standard ph
covering.

Proof. Let f : U → T be proper surjective and let an affine open covering U =⋃
j=1,...,m Uj be given as in Definition 8.1. Then U ×T T ′ → T ′ is proper surjective

(Morphisms, Lemmas 9.4 and 41.5). Also, U ×T T ′ =
⋃

j=1,...,m Uj ×T T ′ is an
affine open covering. This concludes the proof. □

Lemma 8.3.0DBF Let T be an affine scheme. Each of the following types of families
of maps with target T has a refinement by a standard ph covering:

(1) any Zariski open covering of T ,
(2) {Wji → T}j=1,...,m,i=1,...nj where {Wji → Uj}i=1,...,nj and {Uj → T}j=1,...,m

are standard ph coverings.

Proof. Part (1) follows from the fact that any Zariski open covering of T can be
refined by a finite affine open covering.
Proof of (3). Choose U → T proper surjective and U =

⋃
j=1,...,m Uj as in Definition

8.1. Choose Wj → Uj proper surjective and Wj =
⋃

Wji as in Definition 8.1. By
Chow’s lemma (Limits, Lemma 12.1) we can find W ′

j → Wj proper surjective and
closed immersions W ′

j → Pej

Uj
. Thus, after replacing Wj by W ′

j and Wj =
⋃

Wji by
a suitable affine open covering of W ′

j , we may assume there is a closed immersion
Wj ⊂ Pej

Uj
for all j = 1, . . . , m.

Let W j ⊂ Pej

U be the scheme theoretic closure of Wj . Then Wj ⊂ W j is an open
subscheme; in fact Wj is the inverse image of Uj ⊂ U under the morphism W j → U .
(To see this use that Wj → Pej

U is quasi-compact and hence formation of the scheme
theoretic image commutes with restriction to opens, see Morphisms, Section 6.) Let
Zj = U \ Uj with reduced induced closed subscheme structure. Then

Vj = W j ⨿ Zj → U

is proper surjective and the open subscheme Wj ⊂ Vj is the inverse image of Uj .
Hence for v ∈ Vj , v ̸∈ Wj we can pick an affine open neighbourhood v ∈ Vj,v ⊂ Vj

which maps into Uj′ for some 1 ≤ j′ ≤ m.
To finish the proof we consider the proper surjective morphism

V = V1 ×U V2 ×U . . . ×U Vm −→ U −→ T

and the covering of V by the affine opens
V1,v1 ×U . . . ×U Vj−1,vj−1 ×U Wji ×U Vj+1,vj+1 ×U . . . ×U Vm,vm

These do indeed form a covering, because each point of U is in some Uj and the
inverse image of Uj in V is equal to V1 × . . .×Vj−1 ×Wj ×Vj+1 × . . .×Vm. Observe
that the morphism from the affine open displayed above to T factors through Wji

thus we obtain a refinement. Finally, we only need a finite number of these affine
opens as V is quasi-compact (as a scheme proper over the affine scheme T ). □

Definition 8.4.0DBG Let T be a scheme. A ph covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that fi is locally of finite type and such that
for every affine open U ⊂ T there exists a standard ph covering {Uj → U}j=1,...,m

refining the family {Ti ×T U → U}i∈I .

https://stacks.math.columbia.edu/tag/0DBE
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https://stacks.math.columbia.edu/tag/0DBG
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A standard ph covering is a ph covering by Lemma 8.2.

Lemma 8.5.0DBH A Zariski covering is a ph covering4.

Proof. This is true because a Zariski covering of an affine scheme can be refined
by a standard ph covering by Lemma 8.3. □

Lemma 8.6.0DES Let f : Y → X be a surjective proper morphism of schemes. Then
{Y → X} is a ph covering.

Proof. Omitted. □

Lemma 8.7.0ET9 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
such that fi is locally of finite type for all i. The following are equivalent

(1) {Ti → T}i∈I is a ph covering,
(2) there is a ph covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a ph covering.

Proof. The equivalence of (1) and (2) follows immediately from Definition 8.4
and the fact that a refinement of a refinement is a refinement. Because of the
equivalence of (1) and (2) and since {Ti → T}i∈I refines {

∐
i∈I Ti → T} we see

that (1) implies (3). Finally, assume (3) holds. Let U ⊂ T be an affine open and let
{Uj → U}j=1,...,m be a standard ph covering which refines {U ×T

∐
i∈I Ti → U}.

This means that for each j we have a morphism

hj : Uj −→ U ×T

∐
i∈I

Ti =
∐

i∈I
U ×T Ti

over U . Since Uj is quasi-compact, we get disjoint union decompositions Uj =∐
i∈I Uj,i by open and closed subschemes almost all of which are empty such that

hj |Uj,i
maps Uj,i into U ×T Ti. It follows that

{Uj,i → U}j=1,...,m, i∈I, Uj,i ̸=∅

is a standard ph covering (small detail omitted) refining {U ×T Ti → U}i∈I . Thus
(1) holds. □

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 8.8.0DBI Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a ph covering of T .
(2) If {Ti → T}i∈I is a ph covering and for each i we have a ph covering

{Tij → Ti}j∈Ji
, then {Tij → T}i∈I,j∈Ji

is a ph covering.
(3) If {Ti → T}i∈I is a ph covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a ph covering.

Proof. Assertion (1) is clear.
Proof of (3). The base change Ti ×T T ′ → T ′ is locally of finite type by Morphisms,
Lemma 15.4. hence we only need to check the condition on affine opens. Let
U ′ ⊂ T ′ be an affine open subscheme. Since U ′ is quasi-compact we can find a
finite affine open covering U ′ = U ′

1 ∪ . . . ∪ U ′ such that U ′
j → T maps into an

affine open Uj ⊂ T . Choose a standard ph covering {Ujl → Uj}l=1,...,nj refining
{Ti ×T Uj → Uj}. By Lemma 8.2 the base change {Ujl ×Uj U ′

j → U ′
j} is a standard

4We will see in More on Morphisms, Lemma 48.7 that fppf coverings (and hence syntomic,
smooth, or étale coverings) are ph coverings as well.
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ph covering. Note that {U ′
j → U ′} is a standard ph covering as well. By Lemma

8.3 the family {Ujl ×Uj U ′
j → U ′} can be refined by a standard ph covering. Since

{Ujl ×Uj
U ′

j → U ′} refines {Ti ×T U ′ → U ′} we conclude.

Proof of (2). Composition preserves being locally of finite type, see Morphisms,
Lemma 15.3. Hence we only need to check the condition on affine opens. Let
U ⊂ T be affine open. First we pick a standard ph covering {Uk → U}k=1,...,m

refining {Ti ×T U → U}. Say the refinement is given by morphisms Uk → Tik
over

T . Then
{Tikj ×Tik

Uk → Uk}j∈Jik

is a ph covering by part (3). As Uk is affine, we can find a standard ph covering
{Uka → Uk}a=1,...,bk

refining this family. Then we apply Lemma 8.3 to see that
{Uka → U} can be refined by a standard ph covering. Since {Uka → U} refines
{Tij ×T U → U} this finishes the proof. □

Definition 8.9.0DBJ A big ph site is any site Schph as in Sites, Definition 6.2 con-
structed as follows:

(1) Choose any set of schemes S0, and any set of ph coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the cate-
gory Schα and the class of ph coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding
the definition of big sites.

Before we continue with the introduction of the big ph site of a scheme S, let us
point out that the topology on a big ph site Schph is in some sense induced from
the ph topology on the category of all schemes.

Lemma 8.10.0DBK Let Schph be a big ph site as in Definition 8.9. Let T ∈ Ob(Schph).
Let {Ti → T}i∈I be an arbitrary ph covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schph which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard ph covering, then it is tautologically equivalent
to a covering of Schph.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schph.

Proof. For each i choose an affine open covering Ti =
⋃

j∈Ji
Tij such that each Tij

maps into an affine open subscheme of T . By Lemmas 8.5 and 8.8 the refinement
{Tij → T}i∈I,j∈Ji

is a ph covering of T as well. Hence we may assume each Ti is
affine, and maps into an affine open Wi of T . Applying Sets, Lemma 9.9 we see that
Wi is isomorphic to an object of Schph. But then Ti as a finite type scheme over
Wi is isomorphic to an object Vi of Schph by a second application of Sets, Lemma
9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because they are isomorphic).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of
T in the site Schph by Sets, Lemma 9.9. The covering {Uj → T}j∈J is a refinement
as in (1). In the situation of (2), (3) each of the schemes Ti is isomorphic to an

https://stacks.math.columbia.edu/tag/0DBJ
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object of Schph by Sets, Lemma 9.9, and another application of Sets, Lemma 11.1
gives what we want. □

Definition 8.11.0DBL Let S be a scheme. Let Schph be a big ph site containing S.
(1) The big ph site of S, denoted (Sch/S)ph, is the site Schph/S introduced in

Sites, Section 25.
(2) The big affine ph site of S, denoted (Aff/S)ph, is the full subcategory of

(Sch/S)ph whose objects are affine U/S. A covering of (Aff/S)ph is any
finite covering {Ui → U} of (Sch/S)ph with Ui and U affine.

Observe that the coverings in (Aff/S)ph are not given by standard ph coverings.
The reason is simply that this would fail the second axiom of Sites, Definition 6.2.
Rather, the coverings in (Aff/S)ph are those finite families {Ui → U} of finite type
morphisms between affine objects of (Sch/S)ph which can be refined by a standard
ph covering. We explicitly state and prove that the big affine ph site is a site.
Lemma 8.12.0DBM Let S be a scheme. Let Schph be a big ph site containing S. Then
(Aff/S)ph is a site.
Proof. Reasoning as in the proof of Lemma 4.9 it suffices to show that the col-
lection of finite ph coverings {Ui → U} with U , Ui affine satisfies properties (1),
(2) and (3) of Sites, Definition 6.2. This is clear since for example, given a fi-
nite ph covering {Ti → T}i∈I with Ti, T affine, and for each i a finite ph covering
{Tij → Ti}j∈Ji

with Tij affine , then {Tij → T}i∈I,j∈Ji
is a ph covering (Lemma

8.8),
⋃

i∈I Ji is finite and each Tij is affine. □

Lemma 8.13.0DBN Let S be a scheme. Let Schph be a big ph site containing S.
The underlying categories of the sites Schph, (Sch/S)ph, and (Aff/S)ph have fibre
products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The category (Sch/S)ph has a final object,
namely S/S.
Proof. For Schph it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S, V → U , W → U morphisms of schemes with U, V, W ∈ Ob(Schph). The
fibre product V ×U W in Schph is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)ph. This proves the result for (Sch/S)ph. If U, V, W are
affine, so is V ×U W and hence the result for (Aff/S)ph. □

Next, we check that the big affine site defines the same topos as the big site.
Lemma 8.14.0DBP Let S be a scheme. Let Schph be a big ph site containing S. The
functor (Aff/S)ph → (Sch/S)ph is cocontinuous and induces an equivalence of topoi
from Sh((Aff/S)ph) to Sh((Sch/S)ph).
Proof. The notion of a special cocontinuous functor is introduced in Sites, Defi-
nition 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1.
Denote the inclusion functor u : (Aff/S)ph → (Sch/S)ph. Being cocontinuous fol-
lows because any ph covering of T/S, T affine, can be refined by a standard ph
covering of T by definition. Hence (1) holds. We see u is continuous simply because
a finite ph covering of an affine by affines is a ph covering. Hence (2) holds. Parts
(3) and (4) follow immediately from the fact that u is fully faithful. And finally
condition (5) follows from the fact that every scheme has an affine open covering
(which is a ph covering). □

https://stacks.math.columbia.edu/tag/0DBL
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Lemma 8.15.0DBQ Let F be a presheaf on (Sch/S)ph. Then F is a sheaf if and only
if

(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper surjective, then F(U) maps bijectively to the equal-

izer of the two maps F(V ) → F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be
a ph covering, i.e., a covering in (Sch/S)ph. We will verify the sheaf condition for
this covering. Let si ∈ F(Ti) be sections which restrict to the same section over
Ti ×T Ti′ . We will show that there exists a unique section s ∈ F(T ) restricting to
si over Ti. Let T =

⋃
Uj be an affine open covering. By property (1) it suffices

to produce sections sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to produce s.
Consider the ph coverings {Ti ×T Uj → Uj}. Then sji = si|Ti×T Uj

are sections
agreeing over (Ti ×T Uj) ×Uj (Ti′ ×T Uj). Choose a proper surjective morphism
Vj → Uj and a finite affine open covering Vj =

⋃
Vjk such that the standard

ph covering {Vjk → Uj} refines {Ti ×T Uj → Uj}. If sjk ∈ F(Vjk) denotes the
pullback of sji to Vjk by the implied morphisms, then we find that sjk glue to a
section s′

j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′
j is

in the equalizer of the two maps F(Vj) → F(Vj ×Uj Vj). Hence by (2) we find that
s′

j comes from a unique section sj ∈ F(Uj). We omit the verification that these
sections sj have all the desired properties.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U is
a morphism of (Sch/S)ph which is proper and surjective. Choose an affine open
covering U =

⋃
Ui and set Vi = V ×U Ui. Then we see that F(U) → F(V )

is injective because we know F(Ui) → F(Vi) is injective by (2’) and we know
F(U) →

∏
F(Ui) is injective by (1). Finally, suppose that we are given an t ∈

F(V ) in the equalizer of the two maps F(V ) → F(V ×U V ). Then t|Vi
is in the

equalizer of the two maps F(Vi) → F(Vi ×Ui
Vi) for all i. Hence we obtain a unique

section si ∈ F(Ui) mapping to t|Vi
for all i by (2’). We omit the verification that

si|Ui∩Uj = sj |Ui∩Uj for all i, j; this uses the uniqueness property just shown. By
the sheaf property for the covering U =

⋃
Ui we obtain a section s ∈ F(U). We

omit the proof that s maps to t in F(V ). □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 8.16.0DBR Let Schph be a big ph site. Let f : T → S be a morphism in Schph.
The functor

u : (Sch/T )ph −→ (Sch/S)ph, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)ph −→ (Sch/T )ph, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )ph) −→ Sh((Sch/S)ph)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

https://stacks.math.columbia.edu/tag/0DBQ
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the
formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right adjoint
because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired.
Thus we may apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. □

Lemma 8.17.0DBS Given schemes X, Y , Y in (Sch/S)ph and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 8.16. □

9. The fpqc topology

022A
Definition 9.1.022B Let T be a scheme. An fpqc covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat and such that for every affine
open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and affine opens
Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃

fi(Ti). It is slightly harder to recognize
an fpqc covering, hence we provide some lemmas to do so.

Lemma 9.2.03L7 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering,
(2) each fi is flat and for every affine open U ⊂ T there exist quasi-compact

opens Ui ⊂ Ti which are almost all empty, such that U =
⋃

fi(Ui),
(3) each fi is flat and there exists an affine open covering T =

⋃
α∈A Uα and

for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens
Uα,j ⊂ Tiα,j

such that Uα =
⋃

j=1,...,n(α) fiα,j
(Uα,j).

If T is quasi-separated, these are also equivalent to
(4) each fi is flat, and for every t ∈ T there exist i1, . . . , in ∈ I and quasi-

compact opens Uj ⊂ Tij
such that

⋃
j=1,...,n fij

(Uj) is a (not necessarily
open) neighbourhood of t in T .

Proof. We omit the proof of the equivalence of (1), (2), and (3). From now on
assume T is quasi-separated. We prove (4) implies (2). Let U ⊂ T be an affine
open. To prove (2) it suffices to show that for every t ∈ U there exist finitely many
quasi-compact opens Uj ⊂ Tij such that fij (Uj) ⊂ U and such that

⋃
fij (Uj) is a

neighbourhood of t in U . By assumption there do exist finitely many quasi-compact
opens U ′

j ⊂ Tij
such that such that

⋃
fij

(U ′
j) is a neighbourhood of t in T . Since T

is quasi-separated we see that Uj = U ′
j ∩ f−1

j (U) is quasi-compact open as desired.
Since it is clear that (2) implies (4) the proof is finished. □

Lemma 9.3.040I Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering, and
(2) setting T ′ =

∐
i∈I Ti, and f =

∐
i∈I fi the family {f : T ′ → T} is an fpqc

covering.

https://stacks.math.columbia.edu/tag/0DBS
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Proof. Suppose that U ⊂ T is an affine open. If (1) holds, then we find i1, . . . , in ∈
I and affine opens Uj ⊂ Tij such that U =

⋃
j=1,...,n fij (Uj). Then U1⨿. . .⨿Un ⊂ T ′

is a quasi-compact open surjecting onto U . Thus {f : T ′ → T} is an fpqc covering
by Lemma 9.2. Conversely, if (2) holds then there exists a quasi-compact open
U ′ ⊂ T ′ with U = f(U ′). Then Uj = U ′ ∩ Tj is quasi-compact open in Tj and
empty for almost all j. By Lemma 9.2 we see that (1) holds. □

Lemma 9.4.03L8 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) the family {fi : Ti → T}i∈I can be refined by an fpqc covering of T .

Then {fi : Ti → T}i∈I is an fpqc covering of T .
Proof. Let {gj : Xj → T}j∈J be an fpqc covering refining {fi : Ti → T}. Suppose
that U ⊂ T is affine open. Choose j1, . . . , jm ∈ J and Vk ⊂ Xjk

affine open such
that U =

⋃
gjk

(Vk). For each j pick ij ∈ I and a morphism hj : Xj → Tij such
that gj = fij

◦hj . Since hjk
(Vk) is quasi-compact we can find a quasi-compact open

hjk
(Vk) ⊂ Uk ⊂ f−1

ijk
(U). Then U =

⋃
fijk

(Uk). We conclude that {fi : Ti → T}i∈I

is an fpqc covering by Lemma 9.2. □

Lemma 9.5.03L9 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) there exists an fpqc covering {gj : Sj → T}j∈J such that each {Sj ×T Ti →

Sj}i∈I is an fpqc covering.
Then {fi : Ti → T}i∈I is an fpqc covering of T .
Proof. We will use Lemma 9.2 without further mention. Let U ⊂ T be an affine
open. By (2) we can find quasi-compact opens Vj ⊂ Sj for j ∈ J , almost all
empty, such that U =

⋃
gj(Vj). Then for each j we can choose quasi-compact

opens Wij ⊂ Sj ×T Ti for i ∈ I, almost all empty, with Vj =
⋃

i pr1(Wij). Thus
{Sj ×T Ti → T} is an fpqc covering. Since this covering refines {fi : Ti → T} we
conclude by Lemma 9.4. □

Lemma 9.6.022C Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.
Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 7.2. Let {fi : Ui → U}i∈I be an fppf covering. By definition
this means that the fi are flat which checks the first condition of Definition 9.1. To
check the second, let V ⊂ U be an affine open subset. Write f−1

i (V ) =
⋃

j∈Ji
Vij for

some affine opens Vij ⊂ Ui. Since each fi is open (Morphisms, Lemma 25.10), we
see that V =

⋃
i∈I

⋃
j∈Ji

fi(Vij) is an open covering of V . Since V is quasi-compact,
this covering has a finite refinement. This finishes the proof. □

The fpqc5 topology cannot be treated in the same way as the fppf topology6.
Namely, suppose that R is a nonzero ring. We will see in Lemma 9.14 that there
does not exist a set A of fpqc-coverings of Spec(R) such that every fpqc-covering

5The letters fpqc stand for “fidèlement plat quasi-compacte”.
6A more precise statement would be that the analogue of Lemma 7.7 for the fpqc topology

does not hold.
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can be refined by an element of A. If R = k is a field, then the reason for this
unboundedness is that there does not exist a field extension of k such that every
field extension of k is contained in it.

If you ignore set theoretic difficulties, then you run into presheaves which do not
have a sheafification, see [Wat75, Theorem 5.5]. A mildly interesting option is to
consider only those faithfully flat ring extensions R → R′ where the cardinality of
R′ is suitably bounded. (And if you consider all schemes in a fixed universe as in
SGA4 then you are bounding the cardinality by a strongly inaccessible cardinal.)
However, it is not so clear what happens if you change the cardinal to a bigger one.

For these reasons we do not introduce fpqc sites and we will not consider cohomology
with respect to the fpqc-topology.

On the other hand, given a contravariant functor F : Schopp → Sets it does make
sense to ask whether F satisfies the sheaf property for the fpqc topology, see below.
Moreover, we can wonder about descent of object in the fpqc topology, etc. Simply
put, for certain results the correct generality is to work with fpqc coverings.

Lemma 9.7.022D Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an fpqc covering of T .
(2) If {Ti → T}i∈I is an fpqc covering and for each i we have an fpqc covering

{Tij → Ti}j∈Ji
, then {Tij → T}i∈I,j∈Ji

is an fpqc covering.
(3) If {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is an fpqc covering.

Proof. Part (1) is immediate. Recall that the composition of flat morphisms is
flat and that the base change of a flat morphism is flat (Morphisms, Lemmas 25.8
and 25.6). Thus we can apply Lemma 9.2 in each case to check that our families
of morphisms are fpqc coverings.

Proof of (2). Assume {Ti → T}i∈I is an fpqc covering and for each i we have an
fpqc covering {fij : Tij → Ti}j∈Ji

. Let U ⊂ T be an affine open. We can find
quasi-compact opens Ui ⊂ Ti for i ∈ I, almost all empty, such that U =

⋃
fi(Ui).

Then for each i we can choose quasi-compact opens Wij ⊂ Tij for j ∈ Ji, almost
all empty, with Ui =

⋃
j fij(Uij). Thus {Tij → T} is an fpqc covering.

Proof of (3). Assume {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism
of schemes. Let U ′ ⊂ T ′ be an affine open which maps into the affine open U ⊂ T .
Choose quasi-compact opens Ui ⊂ Ti, almost all empty, such that U =

⋃
fi(Ui).

Then U ′ ×U Ui is a quasi-compact open of T ′ ×T Ti and U ′ =
⋃

pr1(U ′ ×U Ui). Since
T ′ can be covered by such affine opens U ′ ⊂ T ′ we see that {T ′ ×T Ti → T ′}i∈I is
an fpqc covering by Lemma 9.2. □

Lemma 9.8.022E Let T be an affine scheme. Let {Ti → T}i∈I be an fpqc covering of
T . Then there exists an fpqc covering {Uj → T}j=1,...,n which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each
Uj to be open affine in one of the Ti.

Proof. This follows directly from the definition. □

Definition 9.9.022F Let T be an affine scheme. A standard fpqc covering of T is a
family {fj : Uj → T}j=1,...,n with each Uj is affine, flat over T and T =

⋃
fj(Uj).
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Since we do not introduce the affine site we have to show directly that the collection
of all standard fpqc coverings satisfies the axioms.

Lemma 9.10.03LA Let T be an affine scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a standard fpqc covering of

T .
(2) If {Ti → T}i∈I is a standard fpqc covering and for each i we have a standard

fpqc covering {Tij → Ti}j∈Ji
, then {Tij → T}i∈I,j∈Ji

is a standard fpqc
covering.

(3) If {Ti → T}i∈I is a standard fpqc covering and T ′ → T is a morphism of
affine schemes then {T ′ ×T Ti → T ′}i∈I is a standard fpqc covering.

Proof. This follows formally from the fact that compositions and base changes of
flat morphisms are flat (Morphisms, Lemmas 25.8 and 25.6) and that fibre products
of affine schemes are affine (Schemes, Lemma 17.2). □

Lemma 9.11.03LB Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) every affine scheme Z and morphism h : Z → T there exists a standard

fpqc covering {Zj → Z}j=1,...,n which refines the family {Ti ×T Z → Z}i∈I .
Then {fi : Ti → T}i∈I is an fpqc covering of T .

Proof. Let T =
⋃

Uα be an affine open covering. For each α the pullback family
{Ti ×T Uα → Uα} can be refined by a standard fpqc covering, hence is an fpqc
covering by Lemma 9.4. As {Uα → T} is an fpqc covering we conclude that
{Ti → T} is an fpqc covering by Lemma 9.5. □

Definition 9.12.022G Let F be a contravariant functor on the category of schemes
with values in sets.

(1) Let {Ui → T}i∈I be a family of morphisms of schemes with fixed target.
We say that F satisfies the sheaf property for the given family if for any
collection of elements ξi ∈ F (Ui) such that ξi|Ui×T Uj

= ξj |Ui×T Uj
there

exists a unique element ξ ∈ F (T ) such that ξi = ξ|Ui
in F (Ui).

(2) We say that F satisfies the sheaf property for the fpqc topology if it satisfies
the sheaf property for any fpqc covering.

We try to avoid using the terminology “F is a sheaf” in this situation since we are
not defining a category of fpqc sheaves as we explained above.

Lemma 9.13.022H Let F be a contravariant functor on the category of schemes with
values in sets. Then F satisfies the sheaf property for the fpqc topology if and only
if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard fpqc covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for {V → U} with V , U affine and V → U faithfully

flat.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be an fpqc covering. Let
si ∈ F (Ti) be a family of elements such that si and sj map to the same element
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of F (Ti ×T Tj). Let W ⊂ T be the maximal open subset such that there exists a
unique s ∈ F (W ) with s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists

because F satisfies the sheaf property for Zariski coverings; in fact W is the union
of all opens with this property. Let t ∈ T . We will show t ∈ W . To do this we
pick an affine open t ∈ U ⊂ T and we will show there is a unique s ∈ F (U) with
s|f−1

i
(U) = si|f−1

i
(U) for all i.

By Lemma 9.8 we can find a standard fpqc covering {Uj → U}j=1,...,n refining
{U ×T Ti → U}, say by morphisms hj : Uj → Tij

. By (2) we obtain a unique
element s ∈ F (U) such that s|Uj

= F (hj)(sij
). Note that for any scheme V → U

over U there is a unique section sV ∈ F (V ) which restricts to F (hj ◦ pr2)(sij
) on

V ×U Uj for j = 1, . . . , n. Namely, this is true if V is affine by (2) as {V ×U Uj → V }
is a standard fpqc covering and in general this follows from (1) and the affine
case by choosing an affine open covering of V . In particular, sV = s|V . Now,
taking V = U ×T Ti and using that sij

|Tij
×T Ti

= si|Tij
×T Ti

we conclude that
s|U×T Ti = sV = si|U×T Ti which is what we had to show.
Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti →
T} is a standard fpqc covering, then

∐
Ti → T is a faithfully flat morphism of

affine schemes. In the presence of (1) we have F (
∐

Ti) =
∏

F (Ti) and similarly
F ((

∐
Ti) ×T (

∐
Ti)) =

∏
F (Ti ×T Ti′). Thus the sheaf condition for {Ti → T} and

{
∐

Ti → T} is the same. □

The following lemma is here just to point out set theoretical difficulties do indeed
arise and should be ignored by most readers.
Lemma 9.14.0BBK Let R be a nonzero ring. There does not exist a set A of fpqc-
coverings of Spec(R) such that every fpqc-covering can be refined by an element of
A.
Proof. Let us first explain this when R = k is a field. For any set I consider the
purely transcendental field extension kI = k({ti}i∈I)/k. Since k → kI is faith-
fully flat we see that {Spec(kI) → Spec(k)} is an fpqc covering. Let A be a set
and for each α ∈ A let Uα = {Sα,j → Spec(k)}j∈Jα

be an fpqc covering. If Uα

refines {Spec(kI) → Spec(k)} then the morphisms Sα,j → Spec(k) factor through
Spec(kI). Since Uα is a covering, at least some Sα,j is nonempty. Pick a point
s ∈ Sα,j . Since we have the factorization Sα,j → Spec(kI) → Spec(k) we obtain
a homomorphism of fields kI → κ(s). In particular, we see that the cardinality of
κ(s) is at least the cardinality of I. Thus if we take I to be a set of cardinality
bigger than the cardinalities of the residue fields of all the schemes Sα,j , then such
a factorization does not exist and the lemma holds for R = k.
General case. Since R is nonzero it has a maximal prime ideal m with residue
field κ. Let I be a set and consider RI = S−1

I R[{ti}i∈I ] where SI ⊂ R[{ti}i∈I ] is
the multiplicative subset of f ∈ R[{ti}i∈I ] such that f maps to a nonzero element
of R/p[{ti}i∈I ] for all primes p of R. Then RI is a faithfully flat R-algebra and
{Spec(RI) → Spec(R)} is an fpqc covering. We leave it as an exercise to the reader
to show that RI ⊗R κ ∼= κ({ti}i∈I) = κI with notation as above (hint: use that
R → κ is surjective and that any f ∈ R[{ti}i∈I ] one of whose monomials occurs
with coefficient 1 is an element of SI). Let A be a set and for each α ∈ A let Uα =
{Sα,j → Spec(R)}j∈Jα

be an fpqc covering. If Uα refines {Spec(RI) → Spec(R)},
then by base change we conclude that {Sα,j ×Spec(R) Spec(κ) → Spec(κ)} refines

https://stacks.math.columbia.edu/tag/0BBK
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{Spec(κI) → Spec(κ)}. Hence by the result of the previous paragraph, there exists
an I such that this is not the case and the lemma is proved. □

10. The V topology

0ETA The V topology is stronger than all other topologies in this chapter. Roughly speak-
ing it is generated by Zariski coverings and by quasi-compact morphisms satisfying
a lifting property for specializations (Lemma 10.13). However, the procedure we
will use to define V coverings is a bit different. We will first define standard V cov-
erings of affines and then use these to define V coverings in general. Typographical
point: in the literature sometimes “v-covering” is used instead of “V covering”.

Definition 10.1.0ETB Let T be an affine scheme. A standard V covering is a finite
family {Tj → T}j=1,...,m with Tj affine such that for every morphism g : Spec(V ) →
T where V is a valuation ring, there is an extension V ⊂ W of valuation rings (More
on Algebra, Definition 123.1), an index 1 ≤ j ≤ m, and a commutative diagram

Spec(W ) //

��

Tj

��
Spec(V ) g // T

We first prove a few basic lemmas about this notion.

Lemma 10.2.0ETC A standard fpqc covering is a standard V covering.

Proof. Let {Xi → X}i=1,...,n be a standard fpqc covering (Definition 9.9). Let
g : Spec(V ) → X be a morphism where V is a valuation ring. Let x ∈ X be the
image of the closed point of Spec(V ). Choose an i and a point xi ∈ Xi mapping
to x. Then Spec(V ) ×X Xi has a point x′

i mapping to the closed point of Spec(V ).
Since Spec(V ) ×X Xi → Spec(V ) is flat we can find a specialization x′′

i ⇝ x′
i of

points of Spec(V ) ×X Xi with x′′
i mapping to the generic point of Spec(V ), see

Morphisms, Lemma 25.9. By Schemes, Lemma 20.4 we can choose a valuation
ring W and a morphism h : Spec(W ) → Spec(V ) ×X Xi such that h maps the
generic point of Spec(W ) to x′′

i and the closed point of Spec(W ) to x′
i. We obtain

a commutative diagram

Spec(W ) //

��

Xi

��
Spec(V ) // X

where V → W is an extension of valuation rings. This proves the lemma. □

Lemma 10.3.0ETD A standard ph covering is a standard V covering.

Proof. Let T be an affine scheme. Let f : U → T be a proper surjective morphism.
Let U =

⋃
j=1,...,m Uj be a finite affine open covering. We have to show that

{Uj → T} is a standard V covering, see Definition 8.1. Let g : Spec(V ) → T be
a morphism where V is a valuation ring with fraction field K. Since U → T is

https://stacks.math.columbia.edu/tag/0ETB
https://stacks.math.columbia.edu/tag/0ETC
https://stacks.math.columbia.edu/tag/0ETD
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surjective, we may choose a field extension L/K and a commutative diagram

Spec(L) //

��

U

��
Spec(K) // Spec(V ) g // T

By Algebra, Lemma 50.2 we can choose a valuation ring W ⊂ L dominating V . By
the valuative criterion of properness (Morphisms, Lemma 42.1) we can then find
the morphism h in the commutative diagram

Spec(L) //

��

Spec(W )
h

//

��

U

��
Spec(K) // Spec(V ) g // X

Since Spec(W ) has a unique closed point, we see that Im(h) is contained in Uj for
some j. Thus h : Spec(W ) → Uj is the desired lift and we conclude {Uj → T} is a
standard V covering. □

Lemma 10.4.0ETE Let {Tj → T}j=1,...,m be a standard V covering. Let T ′ → T be
a morphism of affine schemes. Then {Tj ×T T ′ → T ′}j=1,...,m is a standard V
covering.

Proof. Let Spec(V ) → T ′ be a morphism where V is a valuation ring. By assump-
tion we can find an extension of valuation rings V ⊂ W , an i, and a commutative
diagram

Spec(W ) //

��

Ti

��
Spec(V ) // T

By the universal property of fibre products we obtain a morphism Spec(W ) →
T ′ ×T Ti as desired. □

Lemma 10.5.0ETF Let T be an affine scheme. Let {Tj → T}j=1,...,m be a standard V
covering. Let {Tji → Tj}i=1,...nj

be a standard V covering. Then {Tji → T}i,j is a
standard V covering.

Proof. This follows formally from the observation that if V ⊂ W and W ⊂ Ω are
extensions of valuation rings, then V ⊂ Ω is an extension of valuation rings. □

Lemma 10.6.0ETG Let T be an affine scheme. Let {Tj → T}j=1,...,m be a family of
morphisms with Tj affine for all j. The following are equivalent

(1) {Tj → T}j=1,...,m is a standard V covering,
(2) there is a standard V covering which refines {Tj → T}j=1,...,m, and
(3) {

∐
j=1,...,m Tj → T} is a standard V covering.

Proof. Omitted. Hints: This follows almost immediately from the definition. The
only slightly interesting point is that a morphism from the spectrum of a local ring
into

∐
j=1,...,m Tj must factor through some Tj . □

https://stacks.math.columbia.edu/tag/0ETE
https://stacks.math.columbia.edu/tag/0ETF
https://stacks.math.columbia.edu/tag/0ETG
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Definition 10.7.0ETH Let T be a scheme. A V covering of T is a family of morphisms
{Ti → T}i∈I of schemes such that for every affine open U ⊂ T there exists a
standard V covering {Uj → U}j=1,...,m refining the family {Ti ×T U → U}i∈I .

The V topology has the same set theoretical problems as the fpqc topology. Thus
we refrain from defining V sites and we will not consider cohomology with respect
to the V topology. On the other hand, given a F : Schopp → Sets it does make
sense to ask whether F satisfies the sheaf property for the V topology, see below.
Moreover, we can wonder about descent of object in the V topology, etc.

Lemma 10.8.0ETI Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms.
The following are equivalent

(1) {Ti → T}i∈I is a V covering,
(2) there is a V covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a V covering.

Proof. Omitted. Hint: compare with the proof of Lemma 8.7. □

Lemma 10.9.0ETJ Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a V covering of T .
(2) If {Ti → T}i∈I is a V covering and for each i we have a V covering {Tij →

Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a V covering.
(3) If {Ti → T}i∈I is a V covering and T ′ → T is a morphism of schemes then

{T ′ ×T Ti → T ′}i∈I is a V covering.

Proof. Assertion (1) is clear.
Proof of (3). Let U ′ ⊂ T ′ be an affine open subscheme. Since U ′ is quasi-compact
we can find a finite affine open covering U ′ = U ′

1 ∪ . . . ∪ U ′ such that U ′
j → T maps

into an affine open Uj ⊂ T . Choose a standard V covering {Ujl → Uj}l=1,...,nj

refining {Ti ×T Uj → Uj}. By Lemma 10.4 the base change {Ujl ×Uj
U ′

j → U ′
j} is a

standard V covering. Note that {U ′
j → U ′} is a standard V covering (for example

by Lemma 10.2). By Lemma 10.5 the family {Ujl ×Uj
U ′

j → U ′} is a standard V
covering. Since {Ujl ×Uj

U ′
j → U ′} refines {Ti ×T U ′ → U ′} we conclude.

Proof of (2). Let U ⊂ T be affine open. First we pick a standard V covering {Uk →
U}k=1,...,m refining {Ti ×T U → U}. Say the refinement is given by morphisms
Uk → Tik

over T . Then
{Tikj ×Tik

Uk → Uk}j∈Jik

is a V covering by part (3). As Uk is affine, we can find a standard V covering
{Uka → Uk}a=1,...,bk

refining this family. Then we apply Lemma 10.5 to see that
{Uka → U} is a standard V covering which refines {Tij ×T U → U}. This finishes
the proof. □

Lemma 10.10.0ETK Any fpqc covering is a V covering. A fortiori, any fppf, syntomic,
smooth, étale or Zariski covering is a V covering. Also, a ph covering is a V
covering.

Proof. An fpqc covering can affine locally be refined by a standard fpqc covering,
see Lemmas 9.8. A standard fpqc covering is a standard V covering, see Lemma
10.2. Hence the first statement follows from our definition of V covers in terms of
standard V coverings. The conclusion for fppf, syntomic, smooth, étale or Zariski
coverings follows as these are fpqc coverings, see Lemma 9.6.

https://stacks.math.columbia.edu/tag/0ETH
https://stacks.math.columbia.edu/tag/0ETI
https://stacks.math.columbia.edu/tag/0ETJ
https://stacks.math.columbia.edu/tag/0ETK
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The statement on ph coverings follows from Lemma 10.3 in the same manner. □

Definition 10.11.0ETL Let F be a contravariant functor on the category of schemes
with values in sets. We say that F satisfies the sheaf property for the V topology if
it satisfies the sheaf property for any V covering (see Definition 9.12).

We try to avoid using the terminology “F is a sheaf” in this situation since we are
not defining a category of V sheaves as we explained above.

Lemma 10.12.0ETM Let F be a contravariant functor on the category of schemes with
values in sets. Then F satisfies the sheaf property for the V topology if and only if
it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard V covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for a standard V covering of the form {V → U}, i.e.,

consisting of a single arrow.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be a V covering. Let
si ∈ F (Ti) be a family of elements such that si and sj map to the same element
of F (Ti ×T Tj). Let W ⊂ T be the maximal open subset such that there exists a
unique s ∈ F (W ) with s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists

because F satisfies the sheaf property for Zariski coverings; in fact W is the union
of all opens with this property. Let t ∈ T . We will show t ∈ W . To do this we
pick an affine open t ∈ U ⊂ T and we will show there is a unique s ∈ F (U) with
s|f−1

i
(U) = si|f−1

i
(U) for all i.

We can find a standard V covering {Uj → U}j=1,...,n refining {U ×T Ti → U}, say
by morphisms hj : Uj → Tij

. By (2) we obtain a unique element s ∈ F (U) such
that s|Uj

= F (hj)(sij
). Note that for any scheme V → U over U there is a unique

section sV ∈ F (V ) which restricts to F (hj ◦ pr2)(sij ) on V ×U Uj for j = 1, . . . , n.
Namely, this is true if V is affine by (2) as {V ×U Uj → V } is a standard V covering
(Lemma 10.4) and in general this follows from (1) and the affine case by choosing
an affine open covering of V . In particular, sV = s|V . Now, taking V = U ×T Ti

and using that sij
|Tij

×T Ti
= si|Tij

×T Ti
we conclude that s|U×T Ti

= sV = si|U×T Ti

which is what we had to show.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti →
T}i=1,...,n is a standard V covering, then

∐
i=1,...,n Ti → T is a morphism of affine

schemes which is clearly also a standard V covering. In the presence of (1) we have
F (

∐
Ti) =

∏
F (Ti) and similarly F ((

∐
Ti)×T (

∐
Ti)) =

∏
F (Ti ×T Ti′). Thus the

sheaf condition for {Ti → T} and {
∐

Ti → T} is the same. □

The following lemma shows that being a V covering is related to the possibility of
lifting specializations.

Lemma 10.13.0ETN Let X → Y be a quasi-compact morphism of schemes. The
following are equivalent

(1) {X → Y } is a V covering,

https://stacks.math.columbia.edu/tag/0ETL
https://stacks.math.columbia.edu/tag/0ETM
https://stacks.math.columbia.edu/tag/0ETN
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(2) for any valuation ring V and morphism g : Spec(V ) → Y there exists an
extension of valuation rings V ⊂ W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Y

(3) for any morphism Z → Y and specialization z′ ⇝ z of points in Z, there
is a specialization w′ ⇝ w of points in Z ×Y X mapping to z′ ⇝ z.

Proof. Assume (1) and let g : Spec(V ) → Y be as in (2). Since V is a local ring
there is an affine open U ⊂ Y such that g factors through U . By Definition 10.7 we
can find a standard V covering {Uj → U} refining {X ×Y U → U}. By Definition
10.1 we can find a j, an extension of valuation rings V ⊂ W and a commutative
diagram

Spec(W ) //

��

Uj

��

// X

��
Spec(V ) // Y

We have the dotted arrow making the diagram commute by the refinement property
of the covering and we see that (2) holds.

Assume (2) and let Z → Y and z′ ⇝ z be as in (3). By Schemes, Lemma 20.4
we can find a valuation ring V and a morphism Spec(V ) → Z such that the closed
point of Spec(V ) maps to z and the generic point of Spec(V ) maps to z′. By (2)
we can find an extension of valuation rings V ⊂ W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Z // Y

The generic and closed points of Spec(W ) map to points w′ ⇝ w in Z ×Y X via
the induced morphism Spec(W ) → Z ×Y X. This shows that (3) holds.

Assume (3) holds and let U ⊂ Y be an affine open. Choose a finite affine open
covering U ×Y X =

⋃
j=1,...,m Uj . This is possible as X → Y is quasi-compact. We

claim that {Uj → U} is a standard V covering. The claim implies (1) is true and
finishes the proof of the lemma. In order to prove the claim, let V be a valuation
ring and let g : Spec(V ) → U be a morphism. By (3) we find a specialization
w′ ⇝ w of points of

T = Spec(V ) ×X Y = Spec(V ) ×U (U ×X Y )

such that w′ maps to the generic point of Spec(V ) and w maps to the closed
point of Spec(V ). By Schemes, Lemma 20.4 we can find a valuation ring W and a
morphism Spec(W ) → T such that the generic point of Spec(W ) maps to w′ and the
closed point of Spec(W ) maps to w. The composition Spec(W ) → T → Spec(V )
corresponds to an inclusion V ⊂ W which presents W as an extension of the
valuation ring V . Since T =

⋃
Spec(V ) ×U Uj is an open covering, we see that
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Spec(W ) → T factors through Spec(V ) ×U Uj for some j. Thus we obtain a
commutative diagram

Spec(W )

��

// Uj

��
Spec(V ) // U

and the proof of the claim is complete. □

A V covering gives a universally submersive family of maps. The converse of this
lemma is false, see Examples, Section 78.

Lemma 10.14.0ETP Let {fi : Xi → X}i∈I be a V covering. Then∐
i∈I

fi :
∐

i∈I
Xi −→ X

is a universally submersive morphism of schemes (Morphisms, Definition 24.1).

Proof. We will use without further mention that the base change of a V covering
is a V covering (Lemma 10.9). In particular it suffices to show that the morphism
is submersive. Being submersive is clearly Zariski local on the base. Thus we may
assume X is affine. Then {Xi → X} can be refined by a standard V covering
{Yj → X}. If we can show that

∐
Yj → X is submersive, then since there is a

factorization
∐

Yj →
∐

Xi → X we conclude that
∐

Xi → X is submersive. Set
Y =

∐
Yj and consider the morphism of affines f : Y → X. By Lemma 10.13

we know that we can lift any specialization x′ ⇝ x in X to some specialization
y′ ⇝ y in Y . Thus if T ⊂ X is a subset such that f−1(T ) is closed in Y , then
T ⊂ X is closed under specialization. Since f−1(T ) ⊂ Y with the reduced induced
closed subscheme structure is an affine scheme, we conclude that T ⊂ X is closed
by Algebra, Lemma 41.5. Hence f is submersive. □

11. Change of topologies

03FE Let f : X → Y be a morphism of schemes over a base scheme S. In this case we
have the following morphisms of sites7 (with suitable choices of sites as in Remark
11.1 below):

(1) (Sch/X)fppf −→ (Sch/Y )fppf ,
(2) (Sch/X)fppf −→ (Sch/Y )syntomic,
(3) (Sch/X)fppf −→ (Sch/Y )smooth,
(4) (Sch/X)fppf −→ (Sch/Y )étale,
(5) (Sch/X)fppf −→ (Sch/Y )Zar,
(6) (Sch/X)syntomic −→ (Sch/Y )syntomic,
(7) (Sch/X)syntomic −→ (Sch/Y )smooth,
(8) (Sch/X)syntomic −→ (Sch/Y )étale,
(9) (Sch/X)syntomic −→ (Sch/Y )Zar,

(10) (Sch/X)smooth −→ (Sch/Y )smooth,
(11) (Sch/X)smooth −→ (Sch/Y )étale,
(12) (Sch/X)smooth −→ (Sch/Y )Zar,
(13) (Sch/X)étale −→ (Sch/Y )étale,

7We have not included the comparison between the ph topology and the others; for this see
More on Morphisms, Remark 48.8.

https://stacks.math.columbia.edu/tag/0ETP
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(14) (Sch/X)étale −→ (Sch/Y )Zar,
(15) (Sch/X)Zar −→ (Sch/Y )Zar,
(16) (Sch/X)fppf −→ Yétale,
(17) (Sch/X)syntomic −→ Yétale,
(18) (Sch/X)smooth −→ Yétale,
(19) (Sch/X)étale −→ Yétale,
(20) (Sch/X)fppf −→ YZar,
(21) (Sch/X)syntomic −→ YZar,
(22) (Sch/X)smooth −→ YZar,
(23) (Sch/X)étale −→ YZar,
(24) (Sch/X)Zar −→ YZar,
(25) Xétale −→ Yétale,
(26) Xétale −→ YZar,
(27) XZar −→ YZar,

In each case the underlying continuous functor Sch/Y → Sch/X, or Yτ → Sch/X
is the functor Y ′/Y 7→ X ×Y Y ′/X. Namely, in the sections above we have seen the
morphisms fbig : (Sch/X)τ → (Sch/Y )τ and fsmall : Xτ → Yτ for τ as above. We
also have seen the morphisms of sites πY : (Sch/Y )τ → Yτ for τ ∈ {étale, Zariski}.
On the other hand, it is clear that the identity functor (Sch/X)τ → (Sch/X)τ ′

defines a morphism of sites when τ is a stronger topology than τ ′. Hence composing
these gives the list of possible morphisms above.

Because of the simple description of the underlying functor it is clear that given
morphisms of schemes X → Y → Z the composition of two of the morphisms of
sites above, e.g.,

(Sch/X)τ0 −→ (Sch/Y )τ1 −→ (Sch/Z)τ2

is the corresponding morphism of sites associated to the morphism of schemes
X → Z.

Remark 11.1.03FF Take any category Schα constructed as in Sets, Lemma 9.2 start-
ing with the set of schemes {X, Y, S}. Choose any set of coverings Covfppf on
Schα as in Sets, Lemma 11.1 starting with the category Schα and the class of
fppf coverings. Let Schfppf denote the big fppf site so obtained. Next, for τ ∈
{Zariski, étale, smooth, syntomic} let Schτ have the same underlying category as
Schfppf with coverings Covτ ⊂ Covfppf simply the subset of τ -coverings. It is
straightforward to check that this gives rise to a big site Schτ .

12. Change of big sites

022I In this section we explain what happens on changing the big Zariski/fppf/étale
sites.

Let τ, τ ′ ∈ {Zariski, étale, smooth, syntomic, fppf}. Given two big sites Schτ

and Sch′
τ ′ we say that Schτ is contained in Sch′

τ ′ if Ob(Schτ ) ⊂ Ob(Sch′
τ ′) and

Cov(Schτ ) ⊂ Cov(Sch′
τ ′). In this case τ is stronger than τ ′, for example, no fppf

site can be contained in an étale site.

Lemma 12.1.022J Any set of big Zariski sites is contained in a common big Zariski
site. The same is true, mutatis mutandis, for big fppf and big étale sites.

https://stacks.math.columbia.edu/tag/03FF
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Proof. This is true because the union of a set of sets is a set, and the constructions
in Sets, Lemmas 9.2 and 11.1 allow one to start with any initially given set of
schemes and coverings. □

Lemma 12.2.022K Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Suppose given
big sites Schτ and Sch′

τ . Assume that Schτ is contained in Sch′
τ . The inclusion

functor Schτ → Sch′
τ satisfies the assumptions of Sites, Lemma 21.8. There are

morphisms of topoi

g : Sh(Schτ ) −→ Sh(Sch′
τ )

f : Sh(Sch′
τ ) −→ Sh(Schτ )

such that f ◦ g ∼= id. For any object S of Schτ the inclusion functor (Sch/S)τ →
(Sch′/S)τ satisfies the assumptions of Sites, Lemma 21.8 also. Hence similarly we
obtain morphisms

g : Sh((Sch/S)τ ) −→ Sh((Sch′/S)τ )
f : Sh((Sch′/S)τ ) −→ Sh((Sch/S)τ )

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 21.8 are immediate for
the functors Schτ → Sch′

τ and (Sch/S)τ → (Sch′/S)τ . Property (a) holds by
Lemma 3.6, 4.7, 5.7, 6.7, or 7.7. Property (d) holds because fibre products in the
categories Schτ , Sch′

τ exist and are compatible with fibre products in the category
of schemes. □

Discussion: The functor g−1 = f∗ is simply the restriction functor which associates
to a sheaf G on Sch′

τ the restriction G|Schτ
. Hence this lemma simply says that

given any sheaf of sets F on Schτ there exists a canonical sheaf F ′ on Sch′
τ such

that F|Sch′
τ

= F ′. In fact the sheaf F ′ has the following description: it is the
sheafification of the presheaf

Sch′
τ −→ Sets, V 7−→ colimV →U F(U)

where U is an object of Schτ . This is true because F ′ = f−1F = (upF)# according
to Sites, Lemmas 21.5 and 21.8.

13. Extending functors

0EUV Let us start with a simple example which explains what we are doing. Let R be a
ring. Suppose F is a functor defined on the category C of R-algebras of the form

A = R[x1, . . . , xn]/(f1, . . . , fm)

for n, m ≥ 0 integers and f1, . . . , fm ∈ R[x1, . . . , xm] elements. Then for any R-
algebra B we can define

F ′(B) = colimA→B, A∈C F (A)

It turns out F ′ is the unique functor on the category of all R-algebras which extends
F and commutes with filtered colimits. The same procedure works in the category
of schemes if we impose that our functor is a Zariski sheaf.

Lemma 13.1.0EUW Let S be a scheme. Let C be a full subcategory of the category
Sch/S of all schemes over S. Assume

https://stacks.math.columbia.edu/tag/022K
https://stacks.math.columbia.edu/tag/0EUW
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(1) if X → S is an object of C and U ⊂ X is an affine open, then U → S is
isomorphic to an object of C,

(2) if V is an affine scheme lying over an affine open U ⊂ S such that V → U
is of finite presentation, then V → S is isomorphic to an object of C.

Let F : Copp → Sets be a functor. Assume
(a) for any Zariski covering {fi : Xi → X}i∈I with X, Xi objects of C we have

the sheaf condition for F and this family8,
(b) if X = lim Xi is a directed limit of affine schemes over S with X, Xi objects

of C, then F (X) = colim F (Xi).
Then there is a unique way to extend F to a functor F ′ : (Sch/S)opp → Sets
satisfying the analogues of (a) and (b), i.e., F ′ satisfies the sheaf condition for any
Zariski covering and F ′(X) = colim F ′(Xi) whenever X = lim Xi is a directed limit
of affine schemes over S.
Proof. The idea will be to first extend F to a sufficiently large collection of affine
schemes over S and then use the Zariski sheaf property to extend to all schemes.
Suppose that V is an affine scheme over S whose structure morphism V → S factors
through some affine open U ⊂ S. In this case we can write

V = lim Vi

as a cofiltered limit with Vi → U of finite presentation and Vi affine. See Algebra,
Lemma 127.2. By conditions (1) and (2) we may replace our Vi by objects of C.
Observe that Vi → S is locally of finite presentation (if S is quasi-separated, then
these morphisms are actually of finite presentation). Then we set

F ′(V ) = colim F (Vi)
Actually, we can give a more canonical expression, namely

F ′(V ) = colimV →V ′ F (V ′)
where the colimit is over the category of morphisms V → V ′ over S where V ′ is an
object of C whose structure morphism V ′ → S is locally of finite presentation. The
reason this is the same as the first formula is that by Limits, Proposition 6.1 our
inverse system Vi is cofinal in this category! Finally, note that if V were an object
of C, then F ′(V ) = F (V ) by assumption (b).
The second formula turns F ′ into a contravariant functor on the category formed by
affine schemes V over S whose structure morphism factors through an affine open
of S. Let V be such an affine scheme over S and suppose that V =

⋃
k=1,...,n Vk is

a finite open covering by affines. Then it makes sense to ask if the sheaf condition
holds for F ′ and this open covering. This is true and easy to show: write V = lim Vi

as in the previous paragraph. By Limits, Lemma 4.11 for all sufficiently large i we
can find affine opens Vi,k ⊂ Vi compatible with transition maps pulling back to Vk

in V . Thus
F ′(Vk) = colim F (Vi,k) and F ′(Vk ∩ Vl) = colim F (Vi,k ∩ Vi,l)

Strictly speaking in these formulas we need to replace Vi,k and Vi,k ∩ Vi,l by iso-
morphic affine objects of C before applying the functor F . Since I is directed the

8As we do not know that Xi ×X Xj is in C this has to be interpreted as follows: by property
(1) there exist Zariski coverings {Uijk → Xi ×X Xj}k∈Kij

with Uijk an object of C. Then the
sheaf condition says that F (X) is the equalizer of the two maps from

∏
F (Xi) to

∏
F (Uijk).
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colimits pass through equalizers. Hence the sheaf condition (b) for F and the
Zariski coverings {Vi,k → Vi} implies the sheaf condition for F ′ and this covering.

Let X be a general scheme over S. Let BX denote the collection of affine opens of
X whose structure morphism to S maps into an affine open of S. It is clear that
BX is a basis for the topology of X. By the result of the previous paragraph and
Sheaves, Lemma 30.4 we see that F ′ is a sheaf on BX . Hence F ′ restricted to BX

extends uniquely to a sheaf F ′
X on X, see Sheaves, Lemma 30.6. If X is an object

of C then we have a canonical identification F ′
X(X) = F (X) by the agreement of F ′

and F on the objects for which they are both defined and the fact that F satisfies
the sheaf condition for Zariski coverings.

Let f : X → Y be a morphism of schemes over S. We get a unique f -map from F ′
Y

to F ′
X compatible with the maps F ′(V ) → F ′(U) for all U ∈ BX and V ∈ BY with

f(U) ⊂ V , see Sheaves, Lemma 30.16. We omit the verification that these maps
compose correctly given morphisms X → Y → Z of schemes over S. We also omit
the verification that if f is a morphism of C, then the induced map F ′

Y (Y ) → F ′
X(X)

is the same as the map F (Y ) → F (X) via the identifications F ′
X(X) = F (X) and

F ′
Y (Y ) = F (Y ) above. In this way we see that the desired extension of F is the

functor which sends X/S to F ′
X(X).

Property (a) for the functor X 7→ F ′
X(X) is almost immediate from the construc-

tion; we omit the details. Suppose that X = limi∈I Xi is a directed limit of affine
schemes over S. We have to show that

F ′
X(X) = colimi∈I F ′

Xi
(Xi)

First assume that there is some i ∈ I such that Xi → S factors through an affine
open U ⊂ S. Then F ′ is defined on X and on Xi′ for i′ ≥ i and we see that
F ′

Xi′ (Xi′) = F ′(Xi′) for i′ ≥ i and F ′
X(X) = F ′(X). In this case every arrow

X → V with V locally of finite presentation over S factors as X → Xi′ → V for
some i′ ≥ i, see Limits, Proposition 6.1. Thus we have

F ′
X(X) = F ′(X)

= colimX→V F (V )
= colimi′≥i colimXi′ →V F (V )
= colimi′≥i F ′(Xi′)
= colimi′≥i F ′

Xi′ (Xi′)
= colimi′∈I F ′

Xi′ (Xi′)

as desired. Finally, in general we pick any i ∈ I and we choose a finite affine open
covering Vi = Vi,1 ∪ . . . ∪ Vi,n such that Vi,k → S factors through an affine open of
S. Let Vk ⊂ V and Vi′,k for i′ ≥ i be the inverse images of Vi,k. By the previous
case we see that

F ′
Vk

(Vk) = colimi′≥i F ′
Vi′,k

(Vi′,k)
and

F ′
Vk∩Vl

(Vk ∩ Vl) = colimi′≥i F ′
Vi′,k∩Vi′,l

(Vi′,k ∩ Vi′,l)
By the sheaf property and exactness of filtered colimits we find that F ′

X(X) =
colimi∈I F ′

Xi
(Xi) also in this case. This finishes the proof of property (b) and

hence finishes the proof of the lemma. □
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Lemma 13.2.049N Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let T be an
affine scheme which is written as a limit T = limi∈I Ti of a directed inverse system
of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard τ -covering of T , see Definitions
3.4, 4.5, 5.5, 6.5, and 7.5. Then there exists an index i and a standard
τ -covering Vi = {Vi,j → Ti}j=1,...,m whose base change T ×Ti Vi to T is
isomorphic to V.

(2) Let Vi, V ′
i be a pair of standard τ -coverings of Ti. If f : T ×Ti

Vi → T ×Ti
V ′

i

is a morphism of coverings of T , then there exists an index i′ ≥ i and a
morphism fi′ : Ti′ ×Ti

V → Ti′ ×Ti
V ′

i whose base change to T is f .
(3) If f, g : V → V ′

i are morphisms of standard τ -coverings of Ti whose base
changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard τ -coverings of T is the colimit over I of
the categories of standard τ -coverings of Ti.

Proof. Let us prove this for τ = fppf . By Limits, Lemma 10.1 the category of
schemes of finite presentation over T is the colimit over I of the categories of finite
presentation over Ti. By Limits, Lemmas 8.2 and 8.7 the same is true for category
of schemes which are affine, flat and of finite presentation over T . To finish the proof
of the lemma it suffices to show that if {Vj,i → Ti}j=1,...,m is a finite family of flat
finitely presented morphisms with Vj,i affine, and the base change

∐
j T ×Ti Vj,i → T

is surjective, then for some i′ ≥ i the morphism
∐

Ti′ ×Ti Vj,i → Ti′ is surjective.
Denote Wi′ ⊂ Ti′ , resp. W ⊂ T the image. Of course W = T by assumption. Since
the morphisms are flat and of finite presentation we see that Wi is a quasi-compact
open of Ti, see Morphisms, Lemma 25.10. Moreover, W = T ×Ti

Wi (formation
of image commutes with base change). Hence by Limits, Lemma 4.11 we conclude
that Wi′ = Ti′ for some large enough i′ and we win.

For τ ∈ {Zariski, étale, smooth, syntomic} a standard τ -covering is a standard
fppf covering. Hence the fully faithfulness of the functor holds. The only issue is
to show that given a standard fppf covering Vi for some i such that Vi ×Ti T is a
standard τ -covering, then Vi ×Ti Ti′ is a standard τ -covering for all i′ ≫ i. This
follows immediately from Limits, Lemmas 8.12, 8.10, 8.9, and 8.16. □

Lemma 13.3.0GDW Let S, C, F satisfy conditions (1), (2), (a), and (b) of Lemma 13.1
and denote F ′ : (Sch/S)opp → Sets the unique extension constructed in the lemma.
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Assume

(c) for any standard τ -covering {Vi → V }i=1,...,n of affines in Sch/S such that
V → S factors through an affine open U ⊂ S and V → U is of finite
presentation, the sheaf condition hold for F and {Vi → V }i=1,...,n

9.
Then F ′ satisfies the sheaf condition for all τ -coverings.

Proof. Let X be a scheme over S and let {Xi → X}i∈I be a τ -covering. Let si ∈
F ′(Xi) be elements such that si and sj map to the same element of F ′(Xi ×X Xj)
for all i, j ∈ I. We have to show that there is a unique element s ∈ F ′(X) restricting
to si ∈ F ′(Xi) for all i ∈ I.

9This makes sense as V , Vi, and Vi ×V Vj are isomorphic to objects of C by (2).

https://stacks.math.columbia.edu/tag/049N
https://stacks.math.columbia.edu/tag/0GDW
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Special case: X is an affine such that the structure morphism maps into an affine
open U of S and the covering {Xi → X}i∈I is a standard τ -covering. In this case
we can write

X = lim Vk

as a cofiltered limit with Vk → U of finite presentation and Vk affine. See Algebra,
Lemma 127.2. By Lemma 13.2 there exists a k and a standard τ -covering {Vk,i →
Vk}i∈I whose base change to X is the given covering. For k′ ≥ k denote {Vk′,i →
Vk′}i∈I the base change to Vk′ of our covering. Then we see that

F ′(X) = colimk′≥k F (Vk)

= colimk′≥k Equalizer(
∏

F (Vk′,i)
//
//
∏

F (Vk′,i ×Vk′ Vk′,j)

= Equalizer( colimk′≥k

∏
F (Vk′,i)

//
// colimk′≥k

∏
F (Vk′,i ×Vk′ Vk′,j)

= Equalizer(
∏

F ′(Xi)
//
//
∏

F ′(Xi ×X Xj)

The first equality holds by construction of F ′. The second holds by assumption
(c). The third holds because filtered colimits are exact. The fourth again holds by
construction of F ′. In this way we find that the sheaf property holds for F ′ with
respect to {Xi → X}i∈I .
General case. Choose an affine open covering X =

⋃
Uk such that each Uk maps

into an affine open of S. For every k we may choose a standard τ -covering {Vk,j →
Uk}j=1,...,mk

which refines {Xi ×X Uk → Uk}i∈I . For each j ∈ {1, . . . , mk} choose
an index ik,j ∈ I and a morphism gk,j : Vk,j → Xik,j

over X. Let sk,j be the element
of F ′(Vk,j) we get by restricting sik,j

via gk,j . Observe that sk,j and sk′,j′ restrict to
the same element of F ′(Vk,j ×X Vk′,j′) for all k and k′ and all j ∈ {1, . . . , mk} and
j′ ∈ {1, . . . , mk′}; verification omitted. In particular, by the result of the previous
paragraph there is a unique element sk ∈ F ′(Uk) restricting to sk,j for all j. With
this notation we are ready to finish the proof.
Proof of uniqueness of s: this is true because F ′ satisfies the sheaf property for
Zariski coverings and s|Uk

must be equal to sk because both restrict to sk,j for all
j. This uniqueness then shows that sk and sk′ must restrict to the same section of
F ′ over (the non-affine scheme) Uk ∩Uk′ because these sections restrict to the same
section over the τ -covering {Vk,j ×X Vk′,j′ → Uk ∩Uk′}. Thus by the sheaf property
for Zariski coverings, there is a unique section s of F ′ over X whose restriction to
Uk is sk. We omit the verification (similar to the above) that s restricts to si over
Xi. □

Lemma 13.4.0EUX Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let S be a
scheme contained in a big site Schτ . Let F : (Sch/S)opp

τ → Sets be a τ -sheaf
satisfying property (b) of Lemma 13.1 with C = (Sch/S)τ . Then the extension
F ′ of F to the category of all schemes over S satisfies the sheaf condition for all
τ -coverings.

Proof. This follows from Lemma 13.3 applied with C = (Sch/S)τ . Conditions
(1), (2), (a), and (b) of Lemma 13.1 hold; we omit the details. Thus we get our
unique extension F ′ to the category of all schemes over S. Finally, observe that
any standard τ -covering is tautologically equivalent to a covering in (Sch/S)τ , see
Sets, Lemma 9.9 as well as Lemmas 3.6, 4.7, 5.7, 6.7, and 7.7. By Sites, Lemma
8.4 the sheaf property passes through tautological equivalence of coverings. Hence

https://stacks.math.columbia.edu/tag/0EUX
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the fact that F is a τ -sheaf implies that property (c) of Lemma 13.3 holds and we
conclude. □
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