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1. Introduction

020A In this chapter we start studying varieties and more generally schemes over a field.
A fundamental reference is [DG67].

2. Notation

020B Throughout this chapter we use the letter k to denote the ground field.

3. Varieties

020C In the Stacks project we will use the following as our definition of a variety.

Definition 3.1.020D Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X → Spec(k) is separated and of finite type.

This definition has the following drawback. Suppose that k′/k is an extension
of fields. Suppose that X is a variety over k. Then the base change Xk′ =
X×Spec(k)Spec(k′) is not necessarily a variety over k′. This phenomenon (in greater
generality) will be discussed in detail in the following sections. The product of two
varieties need not be a variety (this is really the same phenomenon). Here is an
example.

Example 3.2.020G Let k = Q. Let X = Spec(Q(i)) and Y = Spec(Q(i)). Then the
product X×Spec(k) Y of the varieties X and Y is not a variety, since it is reducible.
(It is isomorphic to the disjoint union of two copies of X.)

If the ground field is algebraically closed however, then the product of varieties is
a variety. This follows from the results in the algebra chapter, but there we treat
much more general situations. There is also a simple direct proof of it which we
present here.

Lemma 3.3.05P3 Let k be an algebraically closed field. Let X, Y be varieties over k.
Then X ×Spec(k) Y is a variety over k.

https://stacks.math.columbia.edu/tag/020D
https://stacks.math.columbia.edu/tag/020G
https://stacks.math.columbia.edu/tag/05P3
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Proof. The morphism X ×Spec(k) Y → Spec(k) is of finite type and separated
because it is the composition of the morphisms X ×Spec(k) Y → Y → Spec(k)
which are separated and of finite type, see Morphisms, Lemmas 15.4 and 15.3 and
Schemes, Lemma 21.12. To finish the proof it suffices to show that X ×Spec(k) Y is
integral. Let X =

⋃
i=1,...,n Ui, Y =

⋃
j=1,...,m Vj be finite affine open coverings. If

we can show that each Ui ×Spec(k) Vj is integral, then we are done by Properties,
Lemmas 3.2, 3.3, and 3.4. This reduces us to the affine case.
The affine case translates into the following algebra statement: Suppose that A, B
are integral domains and finitely generated k-algebras. Then A⊗k B is an integral
domain. To get a contradiction suppose that

(
∑

i=1,...,n
ai ⊗ bi)(

∑
j=1,...,m

cj ⊗ dj) = 0

in A ⊗k B with both factors nonzero in A ⊗k B. We may assume that b1, . . . , bn
are k-linearly independent in B, and that d1, . . . , dm are k-linearly independent
in B. Of course we may also assume that a1 and c1 are nonzero in A. Hence
D(a1c1) ⊂ Spec(A) is nonempty. By the Hilbert Nullstellensatz (Algebra, Theorem
34.1) we can find a maximal ideal m ⊂ A contained in D(a1c1) and A/m = k as k
is algebraically closed. Denote ai, cj the residue classes of ai, cj in A/m = k. The
equation above becomes

(
∑

i=1,...,n
aibi)(

∑
j=1,...,m

cjdj) = 0

which is a contradiction with m ∈ D(a1c1), the linear independence of b1, . . . , bn
and d1, . . . , dm, and the fact that B is a domain. □

4. Varieties and rational maps

0BXM Let k be a field. Let X and Y be varieties over k. We will use the phrase rational
map of varieties from X to Y to mean a Spec(k)-rational map from the scheme X
to the scheme Y as defined in Morphisms, Definition 49.1. As is customary, the
phrase “rational map of varieties” does not refer to the (common) base field of the
varieties, even though for general schemes we make the distinction between rational
maps and rational maps over a given base.
The title of this section refers to the following fundamental theorem.

Theorem 4.1.0BXN Let k be a field. The category of varieties and dominant rational
maps is equivalent to the category of finitely generated field extensions K/k.

Proof. Let X and Y be varieties with generic points x ∈ X and y ∈ Y . Recall
that dominant rational maps from X to Y are exactly those rational maps which
map x to y (Morphisms, Definition 49.10 and discussion following). Thus given a
dominant rational map X ⊃ U → Y we obtain a map of function fields

k(Y ) = κ(y) = OY,y −→ OX,x = κ(x) = k(X)
Conversely, such a k-algebra map (which is automatically local as the source and
target are fields) determines (uniquely) a dominant rational map by Morphisms,
Lemma 49.2. In this way we obtain a fully faithful functor. To finish the proof it
suffices to show that every finitely generated field extension K/k is in the essential
image. Since K/k is finitely generated, there exists a finite type k-algebra A ⊂ K
such that K is the fraction field of A. Then X = Spec(A) is a variety whose
function field is K. □

https://stacks.math.columbia.edu/tag/0BXN
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Let k be a field. Let X and Y be varieties over k. We will use the phrase X
and Y are birational varieties to mean X and Y are Spec(k)-birational as defined
in Morphisms, Definition 50.1. As is customary, the phrase “birational varieties”
does not refer to the (common) base field of the varieties, even though for general
irreducible schemes we make the distinction between being birational and being
birational over a given base.
Lemma 4.2.0BXP Let X and Y be varieties over a field k. The following are equivalent

(1) X and Y are birational varieties,
(2) the function fields k(X) and k(Y ) are isomorphic,
(3) there exist nonempty opens of X and Y which are isomorphic as varieties,
(4) there exists an open U ⊂ X and a birational morphism U → Y of varieties.

Proof. This is a special case of Morphisms, Lemma 50.6. □

5. Change of fields and local rings

0C4X Some preliminary results on what happens to local rings under an extension of
ground fields.
Lemma 5.1.0C4Y Let K/k be an extension of fields. Let X be scheme over k and set
Y = XK . If y ∈ Y with image x ∈ X, then

(1) OX,x → OY,y is a faithfully flat local ring homomorphism,
(2) with p0 = Ker(κ(x) ⊗k K → κ(y)) we have κ(y) = κ(p0),
(3) OY,y = (OX,x ⊗k K)p where p ⊂ OX,x ⊗k K is the inverse image of p0.
(4) we have OY,y/mxOY,y = (κ(x) ⊗k K)p0

Proof. We may assume X = Spec(A) is affine. Then Y = Spec(A⊗kK). Since K
is flat over k, we see that A → A⊗kK is flat. Hence Y → X is flat and we get the
first statement if we also use Algebra, Lemma 39.17. The second statement follows
from Schemes, Lemma 17.5. Now y corresponds to a prime ideal q ⊂ A⊗k K and
x to r = A ∩ q. Then p0 is the kernel of the induced map κ(r) ⊗k K → κ(q). The
map on local rings is

Ar −→ (A⊗k K)q
We can factor this map through Ar ⊗k K = (A⊗k K)r to get

Ar −→ Ar ⊗k K −→ (A⊗k K)q
and then the second arrow is a localization at some prime. This prime ideal is the
inverse image of p0 (details omitted) and this proves (3). To see (4) use (3) and
that localization and − ⊗k K are exact functors. □

Lemma 5.2.0C4Z Notation as in Lemma 5.1. Assume X is locally of finite type over
k. Then

dim(OY,y/mxOY,y) = trdegk(κ(x)) − trdegK(κ(y)) = dim(OY,y) − dim(OX,x)
Proof. This is a restatement of Algebra, Lemma 116.7. □

Lemma 5.3.0C50 Notation as in Lemma 5.1. Assume X is locally of finite type over k,
that dim(OX,x) = dim(OY,y) and that κ(x) ⊗k K is reduced (for example if κ(x)/k
is separable or K/k is separable). Then mxOY,y = my.
Proof. (The parenthetical statement follows from Algebra, Lemma 43.6.) Combin-
ing Lemmas 5.1 and 5.2 we see that OY,y/mxOY,y has dimension 0 and is reduced.
Hence it is a field. □

https://stacks.math.columbia.edu/tag/0BXP
https://stacks.math.columbia.edu/tag/0C4Y
https://stacks.math.columbia.edu/tag/0C4Z
https://stacks.math.columbia.edu/tag/0C50
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6. Geometrically reduced schemes

035U IfX is a reduced scheme over a field, then it can happen thatX becomes nonreduced
after extending the ground field. This does not happen for geometrically reduced
schemes.
Definition 6.1.035V Let k be a field. Let X be a scheme over k.

(1) Let x ∈ X be a point. We say X is geometrically reduced at x if for any field
extension k′/k and any point x′ ∈ Xk′ lying over x the local ring OXk′ ,x′

is reduced.
(2) We say X is geometrically reduced over k if X is geometrically reduced at

every point of X.
This may seem a little mysterious at first, but it is really the same thing as the
notion discussed in the algebra chapter. Here are some basic results explaining the
connection.
Lemma 6.2.035W Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically reduced at x, and
(2) the ring OX,x is geometrically reduced over k (see Algebra, Definition 43.1).

Proof. Assume (1). This in particular implies that OX,x is reduced. Let k′/k be a
finite purely inseparable field extension. Consider the ring OX,x⊗k k

′. By Algebra,
Lemma 46.7 its spectrum is the same as the spectrum of OX,x. Hence it is a local
ring also (Algebra, Lemma 18.2). Therefore there is a unique point x′ ∈ Xk′ lying
over x and OXk′ ,x′ ∼= OX,x ⊗k k

′. By assumption this is a reduced ring. Hence we
deduce (2) by Algebra, Lemma 44.3.
Assume (2). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k

′. Hence
it is reduced by assumption and (1) is proved. □

The notion isn’t interesting in characteristic zero.
Lemma 6.3.020I Let X be a scheme over a perfect field k (e.g. k has characteristic
zero). Let x ∈ X. If OX,x is reduced, then X is geometrically reduced at x. If X is
reduced, then X is geometrically reduced over k.
Proof. The first statement follows from Lemma 6.2 and Algebra, Lemma 43.6 and
the definition of a perfect field (Algebra, Definition 45.1). The second statement
follows from the first. □

Lemma 6.4.035X Let k be a field of characteristic p > 0. Let X be a scheme over k.
The following are equivalent

(1) X is geometrically reduced,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced,
(6) Xk̄ is reduced,
(7) for every affine open U ⊂ X the ring OX(U) is geometrically reduced (see

Algebra, Definition 43.1).

https://stacks.math.columbia.edu/tag/035V
https://stacks.math.columbia.edu/tag/035W
https://stacks.math.columbia.edu/tag/020I
https://stacks.math.columbia.edu/tag/035X
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Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is reduced. In other words Xk′ is reduced. Hence (2).
Assume (2). Let U ⊂ X be an affine open. Then for every field extension k′/k the
scheme Xk′ is reduced, hence Uk′ = Spec(O(U)⊗kk

′) is reduced, hence O(U)⊗kk
′ is

reduced (see Properties, Section 3). In other words O(U) is geometrically reduced,
so (7) holds.
Assume (7). For any field extension k′/k the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k

′ where U is affine open in X (see Schemes,
Section 17). Hence Xk′ is reduced. So (1) holds.
This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4),
(5), and (6) because we can apply Algebra, Lemma 44.3 to OX(U) for U ⊂ X affine
open. □

Lemma 6.5.035Y Let k be a field of characteristic p > 0. Let X be a scheme over k.
Let x ∈ X. The following are equivalent

(1) X is geometrically reduced at x,
(2) OXk′ ,x′ is reduced for every finite purely inseparable field extension k′ of k

and x′ ∈ Xk′ the unique point lying over x,
(3) OX

k1/p ,x′ is reduced for x′ ∈ Xk1/p the unique point lying over x, and
(4) OX

kperf ,x′ is reduced for x′ ∈ Xkperf the unique point lying over x.

Proof. Note that if k′/k is purely inseparable, then Xk′ → X induces a home-
omorphism on underlying topological spaces, see Algebra, Lemma 46.7. Whence
the uniqueness of x′ lying over x mentioned in the statement. Moreover, in this
case OXk′ ,x′ = OX,x ⊗k k

′. Hence the lemma follows from Lemma 6.2 above and
Algebra, Lemma 44.3. □

Lemma 6.6.0384 Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and
k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of
local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that
the local ring on the right is reduced. Thus by Algebra, Lemma 164.2 we conclude
that OXk′′ ,x′′ is reduced. Thus by Lemma 6.5 we conclude that X is geometrically
reduced at x. □

Lemma 6.7.035Z Let k be a field. Let X, Y be schemes over k.
(1) If X is geometrically reduced at x, and Y reduced, then X ×k Y is reduced

at every point lying over x.

https://stacks.math.columbia.edu/tag/035Y
https://stacks.math.columbia.edu/tag/0384
https://stacks.math.columbia.edu/tag/035Z
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(2) If X geometrically reduced over k and Y reduced. Then X ×k Y is reduced.

Proof. Combine, Lemmas 6.2 and 6.4 and Algebra, Lemma 43.5. □

Lemma 6.8.04KS Let k be a field. Let X be a scheme over k.
(1) If x′ ⇝ x is a specialization and X is geometrically reduced at x, then X

is geometrically reduced at x′.
(2) If x ∈ X such that (a) OX,x is reduced, and (b) for each specialization

x′ ⇝ x where x′ is a generic point of an irreducible component of X the
scheme X is geometrically reduced at x′, then X is geometrically reduced
at x.

(3) If X is reduced and geometrically reduced at all generic points of irreducible
components of X, then X is geometrically reduced.

Proof. Part (1) follows from Lemma 6.2 and the fact that if A is a geometri-
cally reduced k-algebra, then S−1A is a geometrically reduced k-algebra for any
multiplicative subset S of A, see Algebra, Lemma 43.3.
Let A = OX,x. The assumptions (a) and (b) of (2) imply that A is reduced, and
that Aq is geometrically reduced over k for every minimal prime q of A. Hence A
is geometrically reduced over k, see Algebra, Lemma 43.7. Thus X is geometrically
reduced at x, see Lemma 6.2.
Part (3) follows trivially from part (2). □

Lemma 6.9.0360 Let k be a field. Let X be a scheme over k. Let x ∈ X. Assume
X locally Noetherian and geometrically reduced at x. Then there exists an open
neighbourhood U ⊂ X of x which is geometrically reduced over k.

Proof. Assume X locally Noetherian and geometrically reduced at x. By Prop-
erties, Lemma 29.8 we can find an affine open neighbourhood U ⊂ X of x such
that R = OX(U) → OX,x is injective. By Lemma 6.2 the assumption means that
OX,x is geometrically reduced over k. By Algebra, Lemma 43.2 this implies that
R is geometrically reduced over k, which in turn implies that U is geometrically
reduced. □

Example 6.10.020F Let k = Fp(s, t), i.e., a purely transcendental extension of the
prime field. Consider the variety X = Spec(k[x, y]/(1 + sxp + typ)). Let k′/k be
any extension such that both s and t have a pth root in k′. Then the base change
Xk′ is not reduced. Namely, the ring k′[x, y]/(1 + sxp + typ) contains the element
1 + s1/px + t1/py whose pth power is zero but which is not zero (since the ideal
(1 + sxp + typ) certainly does not contain any nonzero element of degree < p).

Lemma 6.11.04KT Let k be a field. Let X → Spec(k) be locally of finite type. As-
sume X has finitely many irreducible components. Then there exists a finite purely
inseparable extension k′/k such that (Xk′)red is geometrically reduced over k′.

Proof. To prove this lemma we may replace X by its reduction Xred. Hence we
may assume that X is reduced and locally of finite type over k. Let x1, . . . , xn ∈ X
be the generic points of the irreducible components of X. Note that for every purely
inseparable algebraic extension k′/k the morphism (Xk′)red → X is a homeomor-
phism, see Algebra, Lemma 46.7. Hence the points x′

1, . . . , x
′
n lying over x1, . . . , xn

are the generic points of the irreducible components of (Xk′)red. As X is reduced
the local rings Ki = OX,xi

are fields, see Algebra, Lemma 25.1. As X is locally of

https://stacks.math.columbia.edu/tag/04KS
https://stacks.math.columbia.edu/tag/0360
https://stacks.math.columbia.edu/tag/020F
https://stacks.math.columbia.edu/tag/04KT
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finite type over k the field extensions Ki/k are finitely generated field extensions.
Finally, the local rings O(Xk′ )red,x′

i
are the fields (Ki⊗k k

′)red. By Algebra, Lemma
45.3 we can find a finite purely inseparable extension k′/k such that (Ki ⊗k k

′)red
are separable field extensions of k′. In particular each (Ki⊗k k

′)red is geometrically
reduced over k′ by Algebra, Lemma 44.1. At this point Lemma 6.8 part (3) implies
that (Xk′)red is geometrically reduced. □

7. Geometrically connected schemes

0361 If X is a connected scheme over a field, then it can happen that X becomes dis-
connected after extending the ground field. This does not happen for geometrically
connected schemes.

Definition 7.1.0362 Let X be a scheme over the field k. We say X is geometrically
connected over k if the scheme Xk′ is connected for every field extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected schemes are nonempty. Here is an example of a variety which is
not geometrically connected.

Example 7.2.020E Let k = Q. The scheme X = Spec(Q(i)) is a variety over Spec(Q).
But the base change XC is the spectrum of C⊗Q Q(i) ∼= C×C which is the disjoint
union of two copies of Spec(C). So in fact, this is an example of a non-geometrically
connected variety.

Lemma 7.3.054N Let X be a scheme over the field k. Let k′/k be a field extension.
Then X is geometrically connected over k if and only if Xk′ is geometrically con-
nected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. □

Lemma 7.4.0385 Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. The scheme theoretic fibres of p are connected, since they are base changes
of the geometrically connected scheme X by field extensions. Moreover the scheme
theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
18.5. By Morphisms, Lemma 23.4 the map p is open. Thus we may apply Topology,
Lemma 7.6 to conclude. □

Lemma 7.5.0386 Let k be a field. Let A be a k-algebra. Then X = Spec(A) is
geometrically connected over k if and only if A is geometrically connected over k
(see Algebra, Definition 48.3).

Proof. Immediate from the definitions. □

https://stacks.math.columbia.edu/tag/0362
https://stacks.math.columbia.edu/tag/020E
https://stacks.math.columbia.edu/tag/054N
https://stacks.math.columbia.edu/tag/0385
https://stacks.math.columbia.edu/tag/0386
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Lemma 7.6.0363 Let k′/k be an extension of fields. Let X be a scheme over k. Assume
k separably algebraically closed. Then the morphism Xk′ → X induces a bijection
of connected components. In particular, X is geometrically connected over k if and
only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
connected over k, see Algebra, Lemma 48.4. Hence Z = Spec(k′) is geometrically
connected over k by Lemma 7.5 above. Since Xk′ = Z ×k X the result is a special
case of Lemma 7.4. □

Lemma 7.7.0387 Let k be a field. Let X be a scheme over k. Let k be a separable
algebraic closure of k. Then X is geometrically connected if and only if the base
change Xk is connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma 7.6 we
see that X

k
′ is connected. Since X

k
′ → Xk′ is surjective we conclude that Xk′ is

connected as desired. □

Lemma 7.8.0388 Let k be a field. Let X be a scheme over k. Let A be a k-algebra.
Let V ⊂ XA be a quasi-compact open. Then there exists a finitely generated k-
subalgebra A′ ⊂ A and a quasi-compact open V ′ ⊂ XA′ such that V = V ′

A.

Proof. We remark that if X is also quasi-separated this follows from Limits,
Lemma 4.11. Let U1, . . . , Un be finitely many affine opens of X such that V ⊂⋃
Ui,A. Say Ui = Spec(Ri). Since V is quasi-compact we can find finitely many

fij ∈ Ri⊗kA, j = 1, . . . , ni such that V =
⋃
i

⋃
j=1,...,ni

D(fij) where D(fij) ⊂ Ui,A
is the corresponding standard open. (We do not claim that V ∩ Ui,A is the union
of the D(fij), j = 1, . . . , ni.) It is clear that we can find a finitely generated
k-subalgebra A′ ⊂ A such that fij is the image of some f ′

ij ∈ Ri ⊗k A
′. Set

V ′ =
⋃
D(f ′

ij) which is a quasi-compact open of XA′ . Denote π : XA → XA′ the
canonical morphism. We have π(V ) ⊂ V ′ as π(D(fij)) ⊂ D(f ′

ij). If x ∈ XA with
π(x) ∈ V ′, then π(x) ∈ D(f ′

ij) for some i, j and we see that x ∈ D(fij) as f ′
ij maps

to fij . Thus we see that V = π−1(V ′) as desired. □

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be a scheme over k. Since
Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces a
canonical action

(7.8.1)038A Gal(k/k)opp ×Xk −→ Xk.

Lemma 7.9.04KU Let k be a field. Let X be a scheme over k. Let k be a (possibly
infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂ Xk′

such that V = (V ′)k,

https://stacks.math.columbia.edu/tag/0363
https://stacks.math.columbia.edu/tag/0387
https://stacks.math.columbia.edu/tag/0388
https://stacks.math.columbia.edu/tag/04KU
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(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.

Proof. By Lemma 7.8 there exists a finite subextension k′/k ⊂ k and an open
V ′ ⊂ Xk′ which pulls back to V . This proves (1). Since Gal(k/k′) is open in
Gal(k/k) part (2) is clear as well. □

Lemma 7.10.038B Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let X be a scheme over k. Let T ⊂ Xk have the following properties

(1) T is a closed subset of Xk,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ X whose inverse image in Xk is T .

Proof. This lemma immediately reduces to the case where X = Spec(A) is affine.
In this case, let I ⊂ A ⊗k k be the radical ideal corresponding to T . Assumption
(2) implies that σ(I) = I for all σ ∈ Gal(k/k). Pick x ∈ I. There exists a finite
Galois extension k′/k contained in k such that x ∈ A ⊗k k

′. Set G = Gal(k′/k).
Set

P (T ) =
∏

σ∈G
(T − σ(x)) ∈ (A⊗k k

′)[T ]

It is clear that P (T ) is monic and is actually an element of (A ⊗k k
′)G[T ] = A[T ]

(by basic Galois theory). Moreover, if we write P (T ) = T d + a1T
d−1 + . . . + ad

the we see that ai ∈ I := A ∩ I. Combining P (x) = 0 and ai ∈ I we find
xd = −a1x

d−1−. . .−ad ∈ I(A⊗kk). Thus x is contained in the radical of I(A⊗kk).
Hence I is the radical of I(A⊗k k) and setting T = V (I) is a solution. □

Lemma 7.11.0389 Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the scheme Xk′ is connected.

Proof. It follows immediately from the definition that (1) implies (2). Assume
that X is not geometrically connected. Let k ⊂ k be a separable algebraic closure
of k. By Lemma 7.7 it follows that Xk is disconnected. Say Xk = U ⨿ V with U

and V open, closed, and nonempty.
Suppose that W ⊂ X is any quasi-compact open. Then Wk ∩ U and Wk ∩ V are
open and closed in Wk. In particular Wk ∩ U and Wk ∩ V are quasi-compact, and
by Lemma 7.9 both Wk ∩U and Wk ∩ V are defined over a finite subextension and
invariant under an open subgroup of Gal(k/k). We will use this without further
mention in the following.
Pick W0 ⊂ X quasi-compact open such that both W0,k ∩ U and W0,k ∩ V are
nonempty. Choose a finite subextension k/k′/k and a decomposition W0,k′ = U ′

0 ⨿
V ′

0 into open and closed subsets such that W0,k ∩U = (U ′
0)k and W0,k ∩V = (V ′

0)k.
Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k∩U) = W0,k∩U and similarly
for V .
Having chosen W0, k′ as above, for every quasi-compact open W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).
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Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed. Also, by construction Wk̄ = UW ⨿ VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then Wk ∩ UW ′ = UW
and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U ⨿ V is a disjoint union of

open and closed subsets. It is clear that V is nonempty as it is constructed by taking
unions (locally). On the other hand, U is nonempty since it contains W0 ∩ U by
construction. Finally, U, V ⊂ Xk̄ are closed andH-invariant by construction. Hence
by Lemma 7.10 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ .
Clearly Xk′ = U ′ ⨿ V ′ and we see that Xk′ is disconnected as desired. □

Lemma 7.12.038C Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let f : T → X be a morphism of schemes over k. Assume Tk connected and Xk
disconnected. Then X is disconnected.

Proof. Write Xk = U ⨿ V with U and V open and closed. Denote f : Tk → Xk
the base change of f . Since Tk is connected we see that Tk is contained in either
f

−1(U) or f−1(V ). Say Tk ⊂ f
−1(U).

Fix a quasi-compact open W ⊂ X. There exists a finite Galois subextension k/k′/k
such that U ∩Wk and V ∩Wk come from quasi-compact opens U ′, V ′ ⊂ Wk′ . Then
also Wk′ = U ′ ⨿ V ′. Consider

U ′′ =
⋂

σ∈Gal(k′/k)
σ(U ′), V ′′ =

⋃
σ∈Gal(k′/k)

σ(V ′).

These are Galois invariant, open and closed, and Wk′ = U ′′ ⨿ V ′′. By Lemma 7.10
we get open and closed subsets UW , VW ⊂ W such that U ′′ = (UW )k′ , V ′′ = (VW )k′

and W = UW ⨿ VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then W ∩ UW ′ = UW
and W ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain X = U ⨿ V . It is clear that V is

nonempty as it is constructed by taking unions (locally). On the other hand, U is
nonempty since it contains f(T ) by construction. □

Lemma 7.13.056R [DG67, IV Corollary
4.5.13.1(i)]

Let k be a field. Let T → X be a morphism of schemes over k.
Assume T is geometrically connected and X connected. Then X is geometrically
connected.

Proof. This is a reformulation of Lemma 7.12. □

Lemma 7.14.04KV Let k be a field. Let X be a scheme over k. Assume X is connected
and has a point x such that k is algebraically closed in κ(x). Then X is geometrically
connected. In particular, if X has a k-rational point and X is connected, then X
is geometrically connected.

Proof. Set T = Spec(κ(x)). Let k be a separable algebraic closure of k. The
assumption on κ(x)/k implies that Tk is irreducible, see Algebra, Lemma 47.8.
Hence by Lemma 7.13 we see that Xk is connected. By Lemma 7.7 we conclude
that X is geometrically connected. □
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Lemma 7.15.04PY Let K/k be an extension of fields. Let X be a scheme over k.
For every connected component T of X the inverse image TK ⊂ XK is a union of
connected components of XK .

Proof. This is a purely topological statement. Denote p : XK → X the projection
morphism. Let T ⊂ X be a connected component of X. Let t ∈ TK = p−1(T ). Let
C ⊂ XK be a connected component containing t. Then p(C) is a connected subset
of X which meets T , hence p(C) ⊂ T . Hence C ⊂ TK . □

The following lemma will be superseded by the stronger Lemma 7.17 below.

Lemma 7.16.07VM Let K/k be a finite extension of fields and let X be a scheme over k.
Denote by p : XK → X the projection morphism. For every connected component
T of XK the image p(T ) is a connected component of X.

Proof. The image p(T ) is contained in some connected component X ′ of X. Con-
sider X ′ as a closed subscheme of X in any way. Then T is also a connected
component of X ′

K = p−1(X ′) and we may therefore assume that X is connected.
The morphism p is open (Morphisms, Lemma 23.4), closed (Morphisms, Lemma
44.7) and the fibers of p are finite sets (Morphisms, Lemma 44.10). Thus we may
apply Topology, Lemma 7.7 to conclude. □

Lemma 7.17 (Gabber).04PZ Email from Ofer
Gabber dated June
4, 2016

Let K/k be an extension of fields. Let X be a scheme
over k. Denote p : XK → X the projection morphism. Let T ⊂ XK be a connected
component. Then p(T ) is a connected component of X.

Proof. When K/k is finite this is Lemma 7.16. In general the proof is more
difficult.
Let T ⊂ X be the connected component of X containing the image of T . We
may replace X by T (with the induced reduced subscheme structure). Thus we
may assume X is connected. Let A = H0(X,OX). Let L ⊂ A be the maximal
weakly étale k-subalgebra, see More on Algebra, Lemma 105.2. Since A does not
have any nontrivial idempotents we see that L is a field and a separable algebraic
extension of k by More on Algebra, Lemma 105.1. Observe that L is also the
maximal weakly étale L-subalgebra of A (because any weakly étale L-algebra is
weakly étale over k by More on Algebra, Lemma 104.9). By Schemes, Lemma 6.4
we obtain a factorization X → Spec(L) → Spec(k) of the structure morphism.
Let L′/L be a finite separable extension. By Cohomology of Schemes, Lemma 5.3
we have

A⊗L L
′ = H0(X ×Spec(L) Spec(L′),OX×Spec(L)Spec(L′))

The maximal weakly étale L′-subalgebra of A ⊗L L
′ is L ⊗L L

′ = L′ by More on
Algebra, Lemma 105.4. In particular A⊗LL

′ does not have nontrivial idempotents
(such an idempotent would generate a weakly étale subalgebra) and we conclude
that X ×Spec(L) Spec(L′) is connected. By Lemma 7.11 we conclude that X is
geometrically connected over L.
Let’s give T the reduced induced scheme structure and consider the composition

T
i−→ XK = X ×Spec(k) Spec(K) π−→ Spec(L⊗k K)

The image is contained in a connected component of Spec(L ⊗k K). Since K →
L ⊗k K is integral we see that the connected components of Spec(L ⊗k K) are

https://stacks.math.columbia.edu/tag/04PY
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points and all points are closed, see Algebra, Lemma 36.19. Thus we get a quotient
field L⊗k K → E such that T maps into Spec(E) ⊂ Spec(L⊗k K). Hence i(T ) ⊂
π−1(Spec(E)). But

π−1(Spec(E)) = (X ×Spec(k) Spec(K)) ×Spec(L⊗kK) Spec(E) = X ×Spec(L) Spec(E)

which is connected because X is geometrically connected over L. Then we get the
equality T = X ×Spec(L) Spec(E) (set theoretically) and we conclude that T → X
is surjective as desired. □

Let X be a scheme. We denote π0(X) the set of connected components of X.

Lemma 7.18.038D Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × π0(Xk) −→ π0(Xk)

with the following properties:
(1) An element T ∈ π0(Xk) is fixed by the action if and only if there exists a

connected component T ⊂ X, which is geometrically connected over k, such
that Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the diagram

Gal(k′
/k′) × π0(X

k
′) //

��

π0(X
k

′)

��
Gal(k/k) × π0(Xk) // π0(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 7.6).

Proof. The action (7.8.1) of Gal(k/k) on Xk induces an action on its connected
components. Connected components are always closed (Topology, Lemma 7.3).
Hence if T is as in (1), then by Lemma 7.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically connected over k, see Lemma 7.7.
To see that T is a connected component of X, suppose that T ⊂ T ′, T ̸= T ′ where
T ′ is a connected component of X. In this case T ′

k′ strictly contains T and hence is
disconnected. By Lemma 7.12 this means that T ′ is disconnected! Contradiction.

We omit the proof of the functoriality in (2). □

Lemma 7.19.038E Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. Assume

(1) X is quasi-compact, and
(2) the connected components of Xk are open.

Then
(a) π0(Xk) is finite, and
(b) the action of Gal(k/k) on π0(Xk) is continuous.

Moreover, assumptions (1) and (2) are satisfied when X is of finite type over k.

https://stacks.math.columbia.edu/tag/038D
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Proof. Since the connected components are open, cover Xk (Topology, Lemma 7.3)
and Xk is quasi-compact, we conclude that there are only finitely many of them.
Thus (a) holds. By Lemma 7.8 these connected components are each defined over
a finite subextension of k/k and we get (b). If X is of finite type over k, then Xk is
of finite type over k (Morphisms, Lemma 15.4). Hence Xk is a Noetherian scheme
(Morphisms, Lemma 15.6). Thus Xk has finitely many irreducible components
(Properties, Lemma 5.7) and a fortiori finitely many connected components (which
are therefore open). □

8. Geometrically irreducible schemes

0364 If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 8.1.0365 Let X be a scheme over the field k. We say X is geometrically
irreducible over k if the scheme Xk′ is irreducible1 for any field extension k′ of k.

Lemma 8.2.054P Let X be a scheme over the field k. Let k′/k be a field extension.
Then X is geometrically irreducible over k if and only if Xk′ is geometrically irre-
ducible over k′.

Proof. If X is geometrically irreducible over k, then it is clear that Xk′ is geo-
metrically irreducible over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between spec-
tra of fields) we see that the irreducibility of Xk′′′ implies the irreducibility of Xk′′ .
Thus if Xk′ is geometrically irreducible over k′ then X is geometrically irreducible
over k. □

Lemma 8.3.020J Let X be a scheme over a separably closed field k. If X is irreducible,
then XK is irreducible for any field extension K/k. I.e., X is geometrically irre-
ducible over k.

Proof. Use Properties, Lemma 3.3 and Algebra, Lemma 47.2. □

Lemma 8.4.038F Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically irreducible over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between irreducible components.

Proof. First, note that the scheme theoretic fibres of p are irreducible, since they
are base changes of the geometrically irreducible scheme X by field extensions.
Moreover the scheme theoretic fibres are homeomorphic to the set theoretic fibres,
see Schemes, Lemma 18.5. By Morphisms, Lemma 23.4 the map p is open. Thus
we may apply Topology, Lemma 8.15 to conclude. □

Lemma 8.5.038G Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically irreducible over k,

1An irreducible space is nonempty.
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(2) for every nonempty affine open U the k-algebra OX(U) is geometrically
irreducible over k (see Algebra, Definition 47.4),

(3) X is irreducible and there exists an affine open covering X =
⋃
Ui such

that each k-algebra OX(Ui) is geometrically irreducible, and
(4) there exists an open covering X =

⋃
i∈I Xi with I ̸= ∅ such that Xi is

geometrically irreducible for each i and such that Xi∩Xj ̸= ∅ for all i, j ∈ I.
Moreover, if X is geometrically irreducible so is every nonempty open subscheme
of X.

Proof. An affine scheme Spec(A) over k is geometrically irreducible if and only if
A is geometrically irreducible over k; this is immediate from the definitions. Recall
that if a scheme is irreducible so is every nonempty open subscheme of X, any two
nonempty open subsets have a nonempty intersection. Also, if every affine open is
irreducible then the scheme is irreducible, see Properties, Lemma 3.3. Hence the
final statement of the lemma is clear, as well as the implications (1) ⇒ (2), (2) ⇒
(3), and (3) ⇒ (4). If (4) holds, then for any field extension k′/k the scheme Xk′ has
a covering by irreducible opens which pairwise intersect. Hence Xk′ is irreducible.
Hence (4) implies (1). □

Lemma 8.6.054Q Let X be an irreducible scheme over the field k. Let ξ ∈ X be its
generic point. The following are equivalent

(1) X is geometrically irreducible over k, and
(2) κ(ξ) is geometrically irreducible over k.

Proof. Assume (1). Recall that OX,ξ is the filtered colimit of OX(U) where U
runs over the nonempty open affine subschemes of X. Combining Lemma 8.5 and
Algebra, Lemma 47.6 we see that OX,ξ is geometrically irreducible over k. Since
OX,ξ → κ(ξ) is a surjection with locally nilpotent kernel (see Algebra, Lemma 25.1)
it follows that κ(ξ) is geometrically irreducible, see Algebra, Lemma 46.7.

Assume (2). We may assume that X is reduced. Let U ⊂ X be a nonempty affine
open. Then U = Spec(A) where A is a domain with fraction field κ(ξ). Thus A is
a k-subalgebra of a geometrically irreducible k-algebra. Hence by Algebra, Lemma
47.6 we see that A is geometrically irreducible over k. By Lemma 8.5 we conclude
that X is geometrically irreducible over k. □

Lemma 8.7.038H Let k′/k be an extension of fields. Let X be a scheme over k. Set
X ′ = Xk′ . Assume k separably algebraically closed. Then the morphism X ′ → X
induces a bijection of irreducible components.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
irreducible over k, see Algebra, Lemma 47.5. Hence Z = Spec(k′) is geometrically
irreducible over k. by Lemma 8.5 above. Since X ′ = Z ×k X the result is a special
case of Lemma 8.4. □

Lemma 8.8.038I Let k be a field. Let X be a scheme over k. The following are
equivalent:

(1) X is geometrically irreducible over k,
(2) for every finite separable field extension k′/k the scheme Xk′ is irreducible,

and
(3) Xk is irreducible, where k ⊂ k is a separable algebraic closure of k.

https://stacks.math.columbia.edu/tag/054Q
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Proof. Assume Xk is irreducible, i.e., assume (3). Let k′/k be a field extension.
There exists a field extension k

′
/k such that k′ embeds into k′ as an extension of

k. By Lemma 8.7 we see that X
k

′ is irreducible. Since X
k

′ → Xk′ is surjective we
conclude that Xk′ is irreducible. Hence (1) holds.
Let k ⊂ k be a separable algebraic closure of k. Assume not (3), i.e., assume Xk is
reducible. Our goal is to show that also Xk′ is reducible for some finite subextension
k/k′/k. Let X =

⋃
i∈I Ui be an affine open covering with Ui not empty. If for some

i the scheme Ui is reducible, or if for some pair i ̸= j the intersection Ui ∩ Uj is
empty, then X is reducible (Properties, Lemma 3.3) and we are done. In particular
we may assume that Ui,k ∩ Uj,k for all i, j ∈ I is nonempty and we conclude that
Ui,k has to be reducible for some i. According to Algebra, Lemma 47.3 this means
that Ui,k′ is reducible for some finite separable field extension k′/k. Hence also Xk′

is reducible. Thus we see that (2) implies (3).
The implication (1) ⇒ (2) is immediate. This proves the lemma. □

Lemma 8.9.04KW Let K/k be an extension of fields. Let X be a scheme over k. For
every irreducible component T of X the inverse image TK ⊂ XK is a union of
irreducible components of XK .

Proof. Let T ⊂ X be an irreducible component of X. The morphism TK → T is
flat, so generalizations lift along TK → T . Hence every ξ ∈ TK which is a generic
point of an irreducible component of TK maps to the generic point η of T . If ξ′ ⇝ ξ
is a specialization in XK then ξ′ maps to η since there are no points specializing
to η in X. Hence ξ′ ∈ TK and we conclude that ξ = ξ′. In other words ξ is the
generic point of an irreducible component of XK . This means that the irreducible
components of TK are all irreducible components of XK . □

For a scheme X we denote IrredComp(X) the set of irreducible components of X.

Lemma 8.10.04KX Let K/k be an extension of fields. Let X be a scheme over k.
For every irreducible component T ⊂ XK the image of T in X is an irreducible
component in X. This defines a canonical map

IrredComp(XK) −→ IrredComp(X)
which is surjective.

Proof. Consider the diagram

XK

��

XK

��

oo

X Xk
oo

where K is the separable algebraic closure of K, and where k is the separable
algebraic closure of k. By Lemma 8.7 the morphism XK → Xk induces a bijec-
tion between irreducible components. Hence it suffices to show the lemma for the
morphisms Xk → X and XK → XK . In other words we may assume that K = k.
The morphism p : Xk → X is integral, flat and surjective. Flatness implies that
generalizations lift along p, see Morphisms, Lemma 25.9. Hence generic points of
irreducible components of Xk map to generic points of irreducible components of
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X. Integrality implies that p is universally closed, see Morphisms, Lemma 44.7.
Hence we conclude that the image p(T ) of an irreducible component is a closed
irreducible subset which contains a generic point of an irreducible component of
X, hence p(T ) is an irreducible component of X. This proves the first assertion.
If T ⊂ X is an irreducible component, then p−1(T ) = TK is a nonempty union of
irreducible components, see Lemma 8.9. Each of these necessarily maps onto T by
the first part. Hence the map is surjective. □

Lemma 8.11.0G69 Let k be a field. Let X be a scheme over k. If X is irreducible and
has a dense set of k-rational points, then X is geometrically irreducible.

Proof. Let k′/k be a finite extension of fields and let Z,Z ′ ⊂ Xk′ be irreducible
components. It suffices to show Z = Z ′, see Lemma 8.8. By Lemma 8.10 we have
p(Z) = p(Z ′) = X where p : Xk′ → X is the projection. If Z ̸= Z ′ then Z ∩ Z ′

is nowhere dense in Xk′ and hence p(Z ∩ Z ′) is not dense by Morphisms, Lemma
48.7; here we also use that p is a finite morphism as the base change of the finite
morphism Spec(k′) → Spec(k), see Morphisms, Lemma 44.6. Thus we can pick a
k-rational point x ∈ X with x ̸∈ p(Z ∩ Z ′). Since the residue field of x is k we
see that p−1({x}) = {x′} where x′ ∈ Xk′ is a point whose residue field is k′. Since
x ∈ p(Z) = p(Z ′) we conclude that x′ ∈ Z ∩ Z ′ which is the contradiction we were
looking for. □

Lemma 8.12.038J Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)
with the following properties:

(1) An element T ∈ IrredComp(Xk) is fixed by the action if and only if there
exists an irreducible component T ⊂ X, which is geometrically irreducible
over k, such that Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the diagram

Gal(k′
/k′) × IrredComp(X

k
′) //

��

IrredComp(X
k

′)

��
Gal(k/k) × IrredComp(Xk) // IrredComp(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 8.7).

Proof. The action (7.8.1) of Gal(k/k) on Xk induces an action on its irreducible
components. Irreducible components are always closed (Topology, Lemma 7.3).
Hence if T is as in (1), then by Lemma 7.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically irreducible over k, see Lemma 8.8.
To see that T is an irreducible component of X, suppose that T ⊂ T ′, T ̸= T ′

where T ′ is an irreducible component of X. Let η be the generic point of T . It
maps to the generic point η of T . Then the generic point ξ ∈ T ′ specializes to η.
As Xk → X is flat there exists a point ξ ∈ Xk which maps to ξ and specializes to
η. It follows that the closure of the singleton {ξ} is an irreducible closed subset of
Xξ which strictly contains T . This is the desired contradiction.
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We omit the proof of the functoriality in (2). □

Lemma 8.13.04KY Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. The fibres of the map

IrredComp(Xk) −→ IrredComp(X)

of Lemma 8.10 are exactly the orbits of Gal(k/k) under the action of Lemma 8.12.

Proof. Let T ⊂ X be an irreducible component of X. Let η ∈ T be its generic
point. By Lemmas 8.9 and 8.10 the generic points of irreducible components of
T which map into T map to η. By Algebra, Lemma 47.14 the Galois group acts
transitively on all of the points of Xk mapping to η. Hence the lemma follows. □

Lemma 8.14.04KZ Let k be a field. Assume X → Spec(k) locally of finite type. In
this case

(1) the action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

is continuous if we give IrredComp(Xk) the discrete topology,
(2) every irreducible component of Xk can be defined over a finite extension of

k, and
(3) given any irreducible component T ⊂ X the scheme Tk is a finite union of

irreducible components of Xk which are all in the same Gal(k/k)-orbit.

Proof. Let T be an irreducible component of Xk. We may choose an affine open
U ⊂ X such that T ∩ Uk is not empty. Write U = Spec(A), so A is a finite type
k-algebra, see Morphisms, Lemma 15.2. Hence Ak is a finite type k-algebra, and
in particular Noetherian. Let p = (f1, . . . , fn) be the prime ideal corresponding to
T ∩ Uk. Since Ak = A ⊗k k we see that there exists a finite subextension k/k′/k

such that each fi ∈ Ak′ . It is clear that Gal(k/k′) fixes T , which proves (1).

Part (2) follows by applying Lemma 8.12 (1) to the situation over k′ which implies
the irreducible component T is of the form T ′

k
for some irreducible T ′ ⊂ Xk′ .

To prove (3), let T ⊂ X be an irreducible component. Choose an irreducible
component T ⊂ Xk which maps to T , see Lemma 8.10. By the above the orbit of
T is finite, say it is T 1, . . . , Tn. Then T 1 ∪ . . . ∪ Tn is a Gal(k/k)-invariant closed
subset of Xk hence of the form Wk for some W ⊂ X closed by Lemma 7.10. Clearly
W = T and we win. □

Lemma 8.15.054R Let k be a field. Let X → Spec(k) be locally of finite type. Assume
X has finitely many irreducible components. Then there exists a finite separable
extension k′/k such that every irreducible component of Xk′ is geometrically irre-
ducible over k′.

Proof. Let k be a separable algebraic closure of k. The assumption that X has
finitely many irreducible components combined with Lemma 8.14 (3) shows that
Xk has finitely many irreducible components T 1, . . . , Tn. By Lemma 8.14 (2) there
exists a finite extension k/k′/k and irreducible components Ti ⊂ Xk′ such that
T i = Ti,k and we win. □
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Lemma 8.16.054S Let X be a scheme over the field k. Assume X has finitely many
irreducible components which are all geometrically irreducible. Then X has finitely
many connected components each of which is geometrically connected.

Proof. This is clear because a connected component is a union of irreducible com-
ponents. Details omitted. □

9. Geometrically integral schemes

0366 If X is an integral scheme over a field, then it can happen that X becomes either
nonreduced or reducible after extending the ground field. This does not happen for
geometrically integral schemes.

Definition 9.1.020H Let X be a scheme over the field k.
(1) Let x ∈ X. We say X is geometrically pointwise integral at x if for every

field extension k′/k and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x′

is integral.
(2) We say X is geometrically pointwise integral if X is geometrically pointwise

integral at every point.
(3) We say X is geometrically integral over k if the scheme Xk′ is integral for

every field extension k′ of k.

The distinction between notions (2) and (3) is necessary. For example if k = R and
X = Spec(C[x]), then X is geometrically pointwise integral over R but of course
not geometrically integral.

Lemma 9.2.038K Let k be a field. Let X be a scheme over k. Then X is geometrically
integral over k if and only if X is both geometrically reduced and geometrically
irreducible over k.

Proof. See Properties, Lemma 3.4. □

Lemma 9.3.0BUG Let k be a field. Let X be a proper scheme over k.
(1) A = H0(X,OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,nAi is a product of Artinian local k-algebras, one factor for

each connected component of X,
(3) if X is reduced, then A =

∏
i=1,...,n ki is a product of fields, each a finite

extension of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.

Proof. By Cohomology of Schemes, Lemma 19.2 we see that A = H0(X,OX) is a
finite dimensional k-algebra. This proves (1).

Then A is a product of local Artinian k-algebras by Algebra, Lemma 53.2 and
Proposition 60.7. If X = Y ⨿ Z with Y and Z open in X, then we obtain an
idempotent e ∈ A by taking the section of OX which is 1 on Y and 0 on Z.
Conversely, if e ∈ A is an idempotent, then we get a corresponding decomposition
of X. Finally, as X has a Noetherian underlying topological space its connected
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components are open. Hence the connected components of X correspond 1-to-1
with primitive idempotents of A. This proves (2).
If X is reduced, then A is reduced. Hence the local rings Ai = ki are reduced and
therefore fields (for example by Algebra, Lemma 25.1). This proves (3).

If X is geometrically reduced, then A⊗kk = H0(Xk,OX
k
) (equality by Cohomology

of Schemes, Lemma 5.2) is reduced. This implies that ki ⊗k k is a product of fields
and hence ki/k is separable for example by Algebra, Lemmas 44.1 and 44.3. This
proves (4).

If X is geometrically connected, then A⊗k k = H0(Xk,OX
k
) is a zero dimensional

local ring by part (2) and hence its spectrum has one point, in particular it is
irreducible. Thus A is geometrically irreducible. This proves (5). Of course (5)
implies (6).
IfX is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1 ⊗k k is a
product of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of
course (7) implies (8). □

Here is a baby version of Stein factorization; actual Stein factorization will be
discussed in More on Morphisms, Section 53.

Lemma 9.4.0FD1 Let X be a proper scheme over a field k. Set A = H0(X,OX). The
fibres of the canonical morphism X → Spec(A) are geometrically connected.

Proof. Set S = Spec(A). The canonical morphism X → S is the morphism
corresponding to Γ(S,OS) = A = Γ(X,OX) via Schemes, Lemma 6.4. The k-
algebra A is a finite product A =

∏
Ai of local Artinian k-algebras finite over k,

see Lemma 9.3. Denote si ∈ S the point corresponding to the maximal ideal of
Ai. Choose an algebraic closure k of k and set A = A⊗k k. Choose an embedding
κ(si) → k over k; this determines a k-algebra map

σi : A = A⊗k k → κ(si) ⊗k k → k

Consider the base change
X //

��

X

��
S // S

of X to S = Spec(A). By Cohomology of Schemes, Lemma 5.2 we have Γ(X,OX) =
A. If si ∈ Spec(A) denotes the k-rational point corresponding to σi, then we see
that si maps to si ∈ S and Xsi

is the base change of Xsi
by Spec(σi). Thus we see

that it suffices to prove the lemma in case k is algebraically closed.
Assume k is algebraically closed. In this case κ(si) is algebraically closed and
we have to show that Xsi

is connected. The product decomposition A =
∏
Ai

corresponds to a disjoint union decomposition Spec(A) =
∐

Spec(Ai), see Algebra,
Lemma 21.2. Denote Xi the inverse image of Spec(Ai). It follows from Lemma
9.3 part (2) that Ai = Γ(Xi,OXi). Observe that Xsi → Xi is a closed immersion
inducing an isomorphism on underlying topological spaces (because Spec(Ai) is a
singleton). Hence if Xsi

isn’t connected, then neither is Xi. So either Xi is empty
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and Ai = 0 or Xi can be written as U ⨿ V with U and V open and nonempty
which would imply that Ai has a nontrivial idempotent. Since Ai is local this is a
contradiction and the proof is complete. □

Lemma 9.5.0FD2 Let k be a field. Let X be a proper geometrically reduced scheme
over k. The following are equivalent

(1) H0(X,OX) = k, and
(2) X is geometrically connected.

Proof. By Lemma 9.4 we have (1) ⇒ (2). By Lemma 9.3 we have (2) ⇒ (1). □

10. Geometrically normal schemes

038L In Properties, Definition 7.1 we have defined the notion of a normal scheme. This
notion is defined even for non-Noetherian schemes. Hence, contrary to our dis-
cussion of “geometrically regular” schemes we consider all field extensions of the
ground field.

Definition 10.1.038M Let X be a scheme over the field k.
(1) Let x ∈ X. We sayX is geometrically normal at x if for every field extension

k′/k and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x′ is normal.
(2) We say X is geometrically normal over k if X is geometrically normal at

every x ∈ X.

Lemma 10.2.038N Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically normal at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over x the local ring OXk′ ,x′ is normal, and
(3) the ring OX,x is geometrically normal over k (see Algebra, Definition 165.2).

Proof. It is clear that (1) implies (2). Assume (2). Let k′/k be a finite purely
inseparable field extension (for example k = k′). Consider the ring OX,x ⊗k k

′. By
Algebra, Lemma 46.7 its spectrum is the same as the spectrum of OX,x. Hence it is
a local ring also (Algebra, Lemma 18.2). Therefore there is a unique point x′ ∈ Xk′

lying over x and OXk′ ,x′ ∼= OX,x⊗k k
′. By assumption this is a normal ring. Hence

we deduce (3) by Algebra, Lemma 165.1.
Assume (3). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k

′. Hence
it is normal by assumption and (1) is proved. □

Lemma 10.3.038O Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically normal,
(2) Xk′ is a normal scheme for every field extension k′/k,
(3) Xk′ is a normal scheme for every finitely generated field extension k′/k,
(4) Xk′ is a normal scheme for every finite purely inseparable field extension

k′/k,
(5) for every affine open U ⊂ X the ring OX(U) is geometrically normal (see

Algebra, Definition 165.2), and
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(6) Xkperf is a normal scheme.

Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is normal. By definition this means that Xk′ is normal.
Hence (2).
It is clear that (2) implies (3) implies (4).
Assume (4) and let U ⊂ X be an affine open subscheme. Then Uk′ is a normal
scheme for any finite purely inseparable extension k′/k (including k = k′). This
means that k′ ⊗k O(U) is a normal ring for all finite purely inseparable extensions
k′/k. Hence O(U) is a geometrically normal k-algebra by definition. Hence (4)
implies (5).
Assume (5). For any field extension k′/k the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k

′ where U is affine open in X (see Schemes,
Section 17). Hence Xk′ is normal. So (1) holds.
The equivalence of (5) and (6) follows from the definition of geometrically normal
algebras and the equivalence (just proved) of (3) and (4). □

Lemma 10.4.038P Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically normal at x,
(2) Xk′ is geometrically normal at x′.

In particular, X is geometrically normal over k if and only if Xk′ is geometrically
normal over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and
k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of
local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that
the local ring on the right is normal. Thus by Algebra, Lemma 164.3 we conclude
that OXk′′ ,x′′ is normal. By Lemma 10.2 we see that X is geometrically normal at
x. □

Lemma 10.5.06DG Let k be a field. Let X be a geometrically normal scheme over k
and let Y be a normal scheme over k. Then X ×k Y is a normal scheme.

Proof. This reduces to Algebra, Lemma 165.5 by Lemma 10.3. □

Lemma 10.6.0C3M Let k be a field. Let X be a normal scheme over k. Let K/k be a
separable field extension. Then XK is a normal scheme.

Proof. Follows from Lemma 10.5 and Algebra, Lemma 165.4. □

Lemma 10.7.0FD3 Let k be a field. Let X be a proper geometrically normal scheme
over k. The following are equivalent

(1) H0(X,OX) = k,
(2) X is geometrically connected,
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(3) X is geometrically irreducible, and
(4) X is geometrically integral.

Proof. By Lemma 9.5 we have the equivalence of (1) and (2). A locally Noether-
ian normal scheme (such as Xk) is a disjoint union of its irreducible components
(Properties, Lemma 7.6). Thus we see that (2) and (3) are equivalent. Since Xk is
assumed reduced, we see that (3) and (4) are equivalent too. □

11. Change of fields and locally Noetherian schemes

038Q Let X a locally Noetherian scheme over a field k. It is not always that case that
Xk′ is locally Noetherian too. For example if X = Spec(Q) and k = Q, then
XQ is the spectrum of Q ⊗Q Q which is not Noetherian. (Hint: It has too many
idempotents). But if we only base change using finitely generated field extensions
then the Noetherian property is preserved. (Or if X is locally of finite type over k,
since this property is preserved under base change.)

Lemma 11.1.038R Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Then X is locally Noetherian if and only if Xk′ is locally
Noetherian.

Proof. Using Properties, Lemma 5.2 we reduce to the case where X is affine, say
X = Spec(A). In this case we have to prove that A is Noetherian if and only if
Ak′ is Noetherian. Since A → Ak′ = k′ ⊗k A is faithfully flat, we see that if Ak′ is
Noetherian, then so is A, by Algebra, Lemma 164.1. Conversely, if A is Noetherian
then Ak′ is Noetherian by Algebra, Lemma 31.8. □

12. Geometrically regular schemes

038S A geometrically regular scheme over a field k is a locally Noetherian scheme over k
which remains regular upon suitable changes of base field. A finite type scheme over
k is geometrically regular if and only if it is smooth over k (see Lemma 12.6). The
notion of geometric regularity is most interesting in situations where smoothness
cannot be used such as formal fibres (insert future reference here).
In the following definition we restrict ourselves to locally Noetherian schemes, since
the property of being a regular local ring is only defined for Noetherian local rings.
By Lemma 11.1 above, if we restrict ourselves to finitely generated field extensions
then this property is preserved under change of base field. This comment will be
used without further reference in this section. In particular the following definition
makes sense.

Definition 12.1.038T Let k be a field. Let X be a locally Noetherian scheme over k.
(1) Let x ∈ X. We say X is geometrically regular at x over k if for every finitely

generated field extension k′/k and any x′ ∈ Xk′ lying over x the local ring
OXk′ ,x′ is regular.

(2) We say X is geometrically regular over k if X is geometrically regular at
all of its points.

A similar definition works to define geometrically Cohen-Macaulay, (Rk), and (Sk)
schemes over a field. We will add a section for these separately as needed.

Lemma 12.2.038U Let k be a field. Let X be a locally Noetherian scheme over k. Let
x ∈ X. The following are equivalent
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(1) X is geometrically regular at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over x the local ring OXk′ ,x′ is regular, and
(3) the ring OX,x is geometrically regular over k (see Algebra, Definition 166.2).

Proof. It is clear that (1) implies (2). Assume (2). This in particular implies that
OX,x is a regular local ring. Let k′/k be a finite purely inseparable field extension.
Consider the ring OX,x ⊗k k

′. By Algebra, Lemma 46.7 its spectrum is the same
as the spectrum of OX,x. Hence it is a local ring also (Algebra, Lemma 18.2).
Therefore there is a unique point x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k

′.
By assumption this is a regular ring. Hence we deduce (3) from the definition of a
geometrically regular ring.

Assume (3). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k

′. Hence
it is regular by assumption and (1) is proved. □

Lemma 12.3.038V Let k be a field. Let X be a locally Noetherian scheme over k. The
following are equivalent

(1) X is geometrically regular,
(2) Xk′ is a regular scheme for every finitely generated field extension k′/k,
(3) Xk′ is a regular scheme for every finite purely inseparable field extension

k′/k,
(4) for every affine open U ⊂ X the ring OX(U) is geometrically regular (see

Algebra, Definition 166.2), and
(5) there exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

geometrically regular over k.

Proof. Assume (1). Then for every finitely generated field extension k′/k and
every point x′ ∈ Xk′ the local ring of Xk′ at x′ is regular. By Properties, Lemma
9.2 this means that Xk′ is regular. Hence (2).

It is clear that (2) implies (3).

Assume (3) and let U ⊂ X be an affine open subscheme. Then Uk′ is a regular
scheme for any finite purely inseparable extension k′/k (including k = k′). This
means that k′ ⊗k O(U) is a regular ring for all finite purely inseparable extensions
k′/k. Hence O(U) is a geometrically regular k-algebra and we see that (4) holds.

It is clear that (4) implies (5). Let X =
⋃
Ui be an affine open covering as in (5).

For any field extension k′/k the base change Xk′ is gotten by gluing the spectra
of the rings OX(Ui) ⊗k k

′ (see Schemes, Section 17). Hence Xk′ is regular. So (1)
holds. □

Lemma 12.4.038W Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. The following are equivalent

(1) X is geometrically regular at x,
(2) Xk′ is geometrically regular at x′.

In particular, X is geometrically regular over k if and only if Xk′ is geometrically
regular over k′.
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Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common, finitely generated, field extension k′′′/k (i.e. with
both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′.
Consider the map of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully
flat. By (2) we see that the local ring on the right is regular. Thus by Algebra,
Lemma 110.9 we conclude that OXk′′ ,x′′ is regular. By Lemma 12.2 we see that X
is geometrically regular at x. □

The following lemma is a geometric variant of Algebra, Lemma 166.3.

Lemma 12.5.05AW Let k be a field. Let f : X → Y be a morphism of locally Noetherian
schemes over k. Let x ∈ X be a point and set y = f(x). If X is geometrically regular
at x and f is flat at x then Y is geometrically regular at y. In particular, if X is
geometrically regular over k and f is flat and surjective, then Y is geometrically
regular over k.

Proof. Let k′ be finite purely inseparable extension of k. Let f ′ : Xk′ → Yk′ be
the base change of f . Let x′ ∈ Xk′ be the unique point lying over x. If we show
that Yk′ is regular at y′ = f ′(x′), then Y is geometrically regular over k at y′, see
Lemma 12.3. By Morphisms, Lemma 25.7 the morphism Xk′ → Yk′ is flat at x′.
Hence the ring map

OYk′ ,y′ −→ OXk′ ,x′

is a flat local homomorphism of local Noetherian rings with right hand side regular
by assumption. Hence the left hand side is a regular local ring by Algebra, Lemma
110.9. □

Lemma 12.6.038X Let k be a field. Let X be a scheme locally of finite type over k.
Let x ∈ X. Then X is geometrically regular at x if and only if X → Spec(k) is
smooth at x (Morphisms, Definition 34.1).

Proof. The question is local around x, hence we may assume that X = Spec(A)
for some finite type k-algebra. Let x correspond to the prime p.

If A is smooth over k at p, then we may localize A and assume that A is smooth
over k. In this case k′ ⊗k A is smooth over k′ for all extension fields k′/k, and each
of these Noetherian rings is regular by Algebra, Lemma 140.3.

AssumeX is geometrically regular at x. Consider the residue fieldK := κ(x) = κ(p)
of x. It is a finitely generated extension of k. By Algebra, Lemma 45.3 there
exists a finite purely inseparable extension k′/k such that the compositum k′K is
a separable field extension of k′. Let p′ ⊂ A′ = k′ ⊗k A be a prime ideal lying over
p. It is the unique prime lying over p, see Algebra, Lemma 46.7. Hence the residue
field K ′ := κ(p′) is the compositum k′K. By assumption the local ring (A′)p′ is
regular. Hence by Algebra, Lemma 140.5 we see that k′ → A′ is smooth at p′. This
in turn implies that k → A is smooth at p by Algebra, Lemma 137.19. The lemma
is proved. □
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Example 12.7.038Y Let k = Fp(t). It is quite easy to give an example of a regular
variety V over k which is not geometrically reduced. For example we can take
Spec(k[x]/(xp− t)). In fact, there exists an example of a regular variety V which is
geometrically reduced, but not even geometrically normal. Namely, take for p > 2
the scheme V = Spec(k[x, y]/(y2 − xp + t)). This is a variety as the polynomial
y2 − xp + t ∈ k[x, y] is irreducible. The morphism V → Spec(k) is smooth at all
points except at the point v0 ∈ V corresponding to the maximal ideal (y, xp − t)
(because 2y is invertible). In particular we see that V is (geometrically) regular at
all points, except possibly v0. The local ring

OV,v0 =
(
k[x, y]/(y2 − xp + t)

)
(y,xp−t)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely
y. Hence it is a discrete valuation ring and regular. Let k′ = k[t1/p]. Denote
t′ = t1/p ∈ k′, V ′ = Vk′ , v′

0 ∈ V ′ the unique point lying over v0. Over k′ we can
write xp − t = (x− t′)p, but the polynomial y2 − (x− t′)p is still irreducible and V ′

is still a variety. But the element
y

x− t′
∈ (fraction field of OV ′,v′

0
)

is integral over OV ′,v′
0

(just compute its square) and not contained in it, so V ′ is
not normal at v′

0. This concludes the example.

13. Change of fields and the Cohen-Macaulay property

045O The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 13.1.045P Let X be a locally Noetherian scheme over the field k. Let k′/k
be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Cohen-Macaulay ⇔ OXk′ ,x′ is Cohen-Macaulay
If X is locally of finite type over k, the same holds for any field extension k′/k.

Proof. The first case of the lemma follows from Algebra, Lemma 167.2. The second
case of the lemma is equivalent to Algebra, Lemma 130.6. □

14. Change of fields and the Jacobson property

0477 A scheme locally of finite type over a field has plenty of closed points, namely it is
Jacobson. Moreover, the residue fields are finite extensions of the ground field.

Lemma 14.1.0478 Let X be a scheme which is locally of finite type over k. Then
(1) for any closed point x ∈ X the extension κ(x)/k is algebraic, and
(2) X is a Jacobson scheme (Properties, Definition 6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Jacob-
son schemes, see Properties, Lemma 6.3. The property on residue fields at closed
points is also local on X. Hence we may assume that X is affine. In this case the
result is a consequence of the Hilbert Nullstellensatz, see Algebra, Theorem 34.1. It
also follows from a combination of Morphisms, Lemmas 16.8, 16.9, and 16.10. □

It turns out that if X is not locally of finite type, then we can achieve the same
result after making a suitably large base field extension.
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Lemma 14.2.0479 Let X be a scheme over a field k. For any field extension K/k
whose cardinality is large enough we have

(1) for any closed point x ∈ XK the extension κ(x)/K is algebraic, and
(2) XK is a Jacobson scheme (Properties, Definition 6.1).

Proof. Choose an affine open covering X =
⋃
Ui. By Algebra, Lemma 35.12

and Properties, Lemma 6.2 there exist cardinals κi such that Ui,K has the desired
properties over K if #(K) ≥ κi. Set κ = max{κi}. Then if the cardinality of
K is larger than κ we see that each Ui,K satisfies the conclusions of the lemma.
Hence XK is Jacobson by Properties, Lemma 6.3. The statement on residue fields
at closed points of XK follows from the corresponding statements for residue fields
of closed points of the Ui,K . □

15. Change of fields and ample invertible sheaves

0BDB The following result is typical for the results in this section.

Lemma 15.1.0BDC Let k be a field. Let X be a scheme over k. If there exists an
ample invertible sheaf on XK for some field extension K/k, then X has an ample
invertible sheaf.

Proof. Let K/k be a field extension such that XK has an ample invertible sheaf L.
The morphism XK → X is surjective. Hence X is quasi-compact as the image of
a quasi-compact scheme (Properties, Definition 26.1). Since XK is quasi-separated
(by Properties, Lemma 26.7) we see that X is quasi-separated: If U, V ⊂ X are
affine open, then (U ∩ V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V
is surjective. Thus Schemes, Lemma 21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X ×Spec(k) Spec(Ai). Since XK = limXi we find an i and
an invertible sheaf Li on Xi whose pullback to XK is L (Limits, Lemma 10.3; here
and below we use that X is quasi-compact and quasi-separated as just shown).
By Limits, Lemma 4.15 we may assume Li is ample after possibly increasing i.
Fix such an i and let m ⊂ Ai be a maximal ideal. By the Hilbert Nullstellensatz
(Algebra, Theorem 34.1) the residue field k′ = Ai/m is a finite extension of k. Hence
Xk′ ⊂ Xi is a closed subscheme hence has an ample invertible sheaf (Properties,
Lemma 26.3). Since Xk′ → X is finite locally free we conclude that X has an ample
invertible sheaf by Divisors, Proposition 17.9. □

Lemma 15.2.0BDD Let k be a field. Let X be a scheme over k. If XK is quasi-affine
for some field extension K/k, then X is quasi-affine.

Proof. Let K/k be a field extension such that XK is quasi-affine. The morphism
XK → X is surjective. Hence X is quasi-compact as the image of a quasi-compact
scheme (Properties, Definition 18.1). Since XK is quasi-separated (as an open
subscheme of an affine scheme) we see that X is quasi-separated: If U, V ⊂ X are
affine open, then (U ∩ V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V
is surjective. Thus Schemes, Lemma 21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X×Spec(k) Spec(Ai). Since XK = limXi we find an i such that
Xi is quasi-affine (Limits, Lemma 4.12; here we use that X is quasi-compact and
quasi-separated as just shown). By the Hilbert Nullstellensatz (Algebra, Theorem

https://stacks.math.columbia.edu/tag/0479
https://stacks.math.columbia.edu/tag/0BDC
https://stacks.math.columbia.edu/tag/0BDD


VARIETIES 28

34.1) the residue field k′ = Ai/m is a finite extension of k. Hence Xk′ ⊂ Xi is a
closed subscheme hence is quasi-affine (Properties, Lemma 27.2). Since Xk′ → X
is finite locally free we conclude by Divisors, Lemma 17.10. □

Lemma 15.3.0BDE Let k be a field. Let X be a scheme over k. If XK is quasi-projective
over K for some field extension K/k, then X is quasi-projective over k.

Proof. By definition a morphism of schemes g : Y → T is quasi-projective if it
is locally of finite type, quasi-compact, and there exists a g-ample invertible sheaf
on Y . Let K/k be a field extension such that XK is quasi-projective over K. Let
Spec(A) ⊂ X be an affine open. Then UK is an affine open subscheme of XK , hence
AK is a K-algebra of finite type. Then A is a k-algebra of finite type by Algebra,
Lemma 126.1. Hence X → Spec(k) is locally of finite type. Since XK → Spec(K) is
quasi-compact, we see that XK is quasi-compact, hence X is quasi-compact, hence
X → Spec(k) is of finite type. By Morphisms, Lemma 39.4 we see that XK has
an ample invertible sheaf. Then X has an ample invertible sheaf by Lemma 15.1.
Hence X → Spec(k) is quasi-projective by Morphisms, Lemma 39.4. □

The following lemma is a special case of Descent, Lemma 23.14.

Lemma 15.4.0BDF Let k be a field. Let X be a scheme over k. If XK is proper over
K for some field extension K/k, then X is proper over k.

Proof. Let K/k be a field extension such that XK is proper over K. Recall that
this implies XK is separated and quasi-compact (Morphisms, Definition 41.1). The
morphism XK → X is surjective. Hence X is quasi-compact as the image of a
quasi-compact scheme (Properties, Definition 26.1). Since XK is separated we see
that X is quasi-separated: If U, V ⊂ X are affine open, then (U ∩ V )K = UK ∩ VK
is quasi-compact and (U ∩V )K → U ∩V is surjective. Thus Schemes, Lemma 21.6
applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X ×Spec(k) Spec(Ai). By Limits, Lemma 13.1 there exists an
i such that Xi → Spec(Ai) is proper. Here we use that X is quasi-compact and
quasi-separated as just shown. Choose a maximal ideal m ⊂ Ai. By the Hilbert
Nullstellensatz (Algebra, Theorem 34.1) the residue field k′ = Ai/m is a finite
extension of k. The base change Xk′ → Spec(k′) is proper (Morphisms, Lemma
41.5). Since k′/k is finite both Xk′ → X and the composition Xk′ → Spec(k) are
proper as well (Morphisms, Lemmas 44.11, 41.5, and 41.4). The first implies that
X is separated over k as Xk′ is separated (Morphisms, Lemma 41.11). The second
implies that X → Spec(k) is proper by Morphisms, Lemma 41.9. □

Lemma 15.5.0BDG Let k be a field. Let X be a scheme over k. If XK is projective
over K for some field extension K/k, then X is projective over k.

Proof. A scheme over k is projective over k if and only if it is quasi-projective
and proper over k. See Morphisms, Lemma 43.13. Thus the lemma follows from
Lemmas 15.3 and 15.4. □

16. Tangent spaces

0B28 In this section we define the tangent space of a morphism of schemes at a point of
the source using points with values in dual numbers.
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Definition 16.1.0B29 For any ring R the dual numbers over R is the R-algebra denoted
R[ϵ]. As an R-module it is free with basis 1, ϵ and the R-algebra structure comes
from setting ϵ2 = 0.

Let f : X → S be a morphism of schemes. Let x ∈ X be a point with image
s = f(x) in S. Consider the solid commutative diagram

(16.1.1)0B2A

Spec(κ(x)) //

''

**Spec(κ(x)[ϵ]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X.

Lemma 16.2.0B2B The set of dotted arrows making (16.1.1) commute has a canonical
κ(x)-vector space structure.

Proof. Set κ = κ(x). Observe that we have a pushout in the category of schemes
Spec(κ[ϵ]) ⨿Spec(κ) Spec(κ[ϵ]) = Spec(κ[ϵ1, ϵ2])

where κ[ϵ1, ϵ2] is the κ-algebra with basis 1, ϵ1, ϵ2 and ϵ21 = ϵ1ϵ2 = ϵ22 = 0. This
follows immediately from the corresponding result for rings and the description of
morphisms from spectra of local rings to schemes in Schemes, Lemma 13.1. Given
two arrows θ1, θ2 : Spec(κ[ϵ]) → X we can consider the morphism

θ1 + θ2 : Spec(κ[ϵ]) → Spec(κ[ϵ1, ϵ2]) θ1,θ2−−−→ X

where the first arrow is given by ϵi 7→ ϵ. On the other hand, given λ ∈ κ there
is a self map of Spec(κ[ϵ]) corresponding to the κ-algebra endomorphism of κ[ϵ]
which sends ϵ to λϵ. Precomposing θ : Spec(κ[ϵ]) → X by this selfmap gives λθ.
The reader can verify the axioms of a vector space by verifying the existence of
suitable commutative diagrams of schemes. We omit the details. (An alternative
proof would be to express everything in terms of local rings and then verify the
vector space axioms on the level of ring maps.) □

Definition 16.3.0B2C Let f : X → S be a morphism of schemes. Let x ∈ X. The
set of dotted arrows making (16.1.1) commute with its canonical κ(x)-vector space
structure is called the tangent space of X over S at x and we denote it TX/S,x. An
element of this space is called a tangent vector of X/S at x.

Since tangent vectors at x ∈ X live in the scheme theoretic fibre Xs of f : X → S
over s = f(x), we get a canonical identification
(16.3.1)0BEA TX/S,x = TXs/s,x

This pleasing definition involving the functor of points has the following algebraic
description, which suggests defining the cotangent space of X over S at x as the
κ(x)-vector space

T ∗
X/S,x = ΩX/S,x ⊗OX,x

κ(x)
simply because it is canonically κ(x)-dual to the tangent space of X over S at x.

Lemma 16.4.0B2D Let f : X → S be a morphism of schemes. Let x ∈ X. There is a
canonical isomorphism

TX/S,x = HomOX,x
(ΩX/S,x, κ(x))
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of vector spaces over κ(x).

Proof. Set κ = κ(x). Given θ ∈ TX/S,x we obtain a map

θ∗ΩX/S → ΩSpec(κ[ϵ])/ Spec(κ(s)) → ΩSpec(κ[ϵ])/ Spec(κ)

Taking sections we obtain an OX,x-linear map ξθ : ΩX/S,x → κdϵ, i.e., an element
of the right hand side of the formula of the lemma. To show that θ 7→ ξθ is an
isomorphism we can replace S by s and X by the scheme theoretic fibre Xs. Indeed,
both sides of the formula only depend on the scheme theoretic fibre; this is clear
for TX/S,x and for the RHS see Morphisms, Lemma 32.10. We may also replace X
by the spectrum of OX,x as this does not change TX/S,x (Schemes, Lemma 13.1)
nor ΩX/S,x (Modules, Lemma 28.7).

Let (A,m, κ) be a local ring over a field k. To finish the proof we have to show that
any A-linear map ξ : ΩA/k → κ comes from a unique k-algebra map φ : A → κ[ϵ]
agreeing with the canonical map c : A → κ modulo ϵ. Write φ(a) = c(a) + D(a)ϵ
the reader sees that a 7→ D(a) is a k-derivation. Using the universal property of
ΩA/k we see that each D corresponds to a unique ξ and vice versa. This finishes
the proof. □

Lemma 16.5.0B2E Let f : X → S be a morphism of schemes. Let x ∈ X be a
point and let s = f(x) ∈ S. Assume that κ(x) = κ(s). Then there are canonical
isomorphisms

mx/(m2
x + msOX,x) = ΩX/S,x ⊗OX,x

κ(x)
and

TX/S,x = Homκ(x)(mx/(m2
x + msOX,x), κ(x))

This works more generally if κ(x)/κ(s) is a separable algebraic extension.

Proof. The second isomorphism follows from the first by Lemma 16.4. For the
first, we can replace S by s and X by Xs, see Morphisms, Lemma 32.10. We may
also replace X by the spectrum of OX,x, see Modules, Lemma 28.7. Thus we have
to show the following algebra fact: let (A,m, κ) be a local ring over a field k such
that κ/k is separable algebraic. Then the canonical map

m/m2 −→ ΩA/k ⊗ κ

is an isomorphism. Observe that m/m2 = H1(NLκ/A). By Algebra, Lemma 134.4
it suffices to show that Ωκ/k = 0 and H1(NLκ/k) = 0. Since κ is the union of its
finite separable extensions in k it suffices to prove this when κ is a finite separable
extension of k (Algebra, Lemma 134.9). In this case the ring map k → κ is étale
and hence NLκ/k = 0 (more or less by definition, see Algebra, Section 143). □

Lemma 16.6.0B2F Let f : X → Y be a morphism of schemes over a base scheme S.
Let x ∈ X be a point. Set y = f(x). If κ(y) = κ(x), then f induces a natural linear
map

df : TX/S,x −→ TY/S,y

which is dual to the linear map ΩY/S,y ⊗ κ(y) → ΩX/S,x via the identifications of
Lemma 16.4.

Proof. Omitted. □
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Lemma 16.7.0BEB Let X, Y be schemes over a base S. Let x ∈ X and y ∈ Y with
the same image point s ∈ S such that κ(s) = κ(x) and κ(s) = κ(y). There is a
canonical isomorphism

TX×SY/S,(x,y) = TX/S,x ⊕ TY/S,y

The map from left to right is induced by the maps on tangent spaces coming from
the projections X ×S Y → X and X ×S Y → Y . The map from right to left is
induced by the maps 1 × y : Xs → Xs ×s Ys and x × 1 : Ys → Xs ×s Ys via the
identification (16.3.1) of tangent spaces with tangent spaces of fibres.

Proof. The direct sum decomposition follows from Morphisms, Lemma 32.11 via
Lemma 16.5. Compatibility with the maps comes from Lemma 16.6. □

Lemma 16.8.0B2G Let f : X → Y be a morphism of schemes locally of finite type over
a base scheme S. Let x ∈ X be a point. Set y = f(x) and assume that κ(y) = κ(x).
Then the following are equivalent

(1) df : TX/S,x −→ TY/S,y is injective, and
(2) f is unramified at x.

Proof. The morphism f is locally of finite type by Morphisms, Lemma 15.8. The
map df is injective, if and only if ΩY/S,y ⊗ κ(y) → ΩX/S,x ⊗ κ(x) is surjective
(Lemma 16.6). The exact sequence f∗ΩY/S → ΩX/S → ΩX/Y → 0 (Morphisms,
Lemma 32.9) then shows that this happens if and only if ΩX/Y,x⊗κ(x) = 0. Hence
the result follows from Morphisms, Lemma 35.14. □

17. Generically finite morphisms

0AB5 In this section we revisit the notion of a generically finite morphism of schemes as
studied in Morphisms, Section 51.

Lemma 17.1.0AB6 Let f : X → Y be locally of finite type. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field exten-
sion κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η)⇝
y the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of an irreducible component of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. Condition (4) implies X is locally Noetherian (Morphisms, Lemma 15.6).
The set of points at which morphism is quasi-finite is open (Morphisms, Lemma
56.2). A dense open of a locally Noetherian scheme contains all generic point of
irreducible components, hence (4) implies (3). Condition (3) implies condition (1)
by Morphisms, Lemma 20.5. Condition (1) implies condition (2). Thus it suffices
to prove the lemma in case (2) holds.

Assume (2) holds. Recall that Spec(OY,y) is the set of points of Y specializing to
y, see Schemes, Lemma 13.2. Combined with Morphisms, Lemma 20.13 this shows
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we may replace Y by Spec(OY,y). Thus we may assume Y = Spec(B) where B is
a Noetherian local ring of dimension ≤ 1 and y is the closed point.
Let X =

⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y is a discrete space, then Xy =
⋃
Xi,y is

discrete as well and we conclude that X → Y is quasi-finite at all points of Xy by
Morphisms, Lemma 20.6. Thus we may assume X is an integral scheme.
If X → Y maps the generic point η of X to y, then X is the spectrum of a finite
extension of κ(y) and the result is true. Assume that X maps η to a point corre-
sponding to a minimal prime q of B different from mB . We obtain a factorization
X → Spec(B/q) → Spec(B). Let x ∈ X be a point lying over y. By the dimension
formula (Morphisms, Lemma 52.1) we have

dim(OX,x) ≤ dim(B/q) + trdegκ(q)(R(X)) − trdegκ(y)κ(x)

We know that dim(B/q) = 1, that the generic point of X is not equal to x and
specializes to x and that R(X) is algebraic over κ(q). Thus we get

1 ≤ 1 − trdegκ(y)κ(x)
Hence every point x of Xy is closed in Xy by Morphisms, Lemma 20.2 and hence
X → Y is quasi-finite at every point x of Xy by Morphisms, Lemma 20.6 (which
also implies that Xy is a discrete topological space). □

Lemma 17.2.0AB7 Let f : X → Y be a proper morphism. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field exten-
sion κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η)⇝
y the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then there exists an open neighbourhood V ⊂ Y of y such that f−1(V ) → V is
finite.

Proof. By Lemma 17.1 the morphism f is quasi-finite at every point of the fibre
Xy. Hence Xy is a discrete topological space (Morphisms, Lemma 20.6). As f is
proper the fibre Xy is quasi-compact, i.e., finite. Thus we can apply Cohomology
of Schemes, Lemma 21.2 to conclude. □

Lemma 17.3.0BFP Let X be a Noetherian scheme. Let f : Y → X be a birational
proper morphism of schemes with Y reduced. Let U ⊂ X be the maximal open over
which f is an isomorphism. Then U contains

(1) every point of codimension 0 in X,
(2) every x ∈ X of codimension 1 on X such that OX,x is a discrete valuation

ring,
(3) every x ∈ X such that the fibre of Y → X over x is finite and such that

OX,x is normal, and
(4) every x ∈ X such that f is quasi-finite at some y ∈ Y lying over x and

OX,x is normal.
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Proof. Part (1) follows from Morphisms, Lemma 51.6. Part (2) follows from part
(3) and Lemma 17.2 (and the fact that finite morphisms have finite fibres).

Part (3) follows from part (4) and Morphisms, Lemma 20.7 but we will also give
a direct proof. Let x ∈ X be as in (3). By Cohomology of Schemes, Lemma 21.2
we may assume f is finite. We may assume X affine. This reduces us to the case
of a finite birational morphism of Noetherian affine schemes Y → X and x ∈ X
such that OX,x is a normal domain. Since OX,x is a domain and X is Noetherian,
we may replace X by an affine open of x which is integral. Then, since Y → X is
birational and Y is reduced we see that Y is integral. Writing X = Spec(A) and
Y = Spec(B) we see that A ⊂ B is a finite inclusion of domains having the same
field of fractions. If p ⊂ A is the prime corresponding to x, then Ap being normal
implies that Ap ⊂ Bp is an equality. Since B is a finite A-module, we see there
exists an a ∈ A, a ̸∈ p such that Aa → Ba is an isomorphism.

Let x ∈ X and y ∈ Y be as in (4). After replacing X by an affine open neigh-
bourhood we may assume X = Spec(A) and A ⊂ OX,x, see Properties, Lemma
29.8. Then A is a domain and hence X is integral. Since f is birational and Y
is reduced it follows that Y is integral too. Consider the ring map OX,x → OY,y.
This is a ring map which is essentially of finite type, the residue field extension
is finite, and dim(OY,y/mxOY,y) = 0 (to see this trace through the definitions of
quasi-finite maps in Morphisms, Definition 20.1 and Algebra, Definition 122.3). By
Algebra, Lemma 124.2 OY,y is the localization of a finite OX,x-algebra B. Of course
we may replace B by the image of B in OY,y and assume that B is a domain with
the same fraction field as OY,y. Then OX,x ⊂ B have the same fraction field as
f is birational. Since OX,x is normal, we conclude that OX,x = B (because finite
implies integral), in particular, we see that OX,x = OY,y. By Morphisms, Lemma
42.4 after shrinking X we may assume there is a section X → Y of f mapping x
to y and inducing the given isomorphism on local rings. Since X → Y is closed
(by Schemes, Lemma 21.11) necessarily maps the generic point of X to the generic
point of Y it follows that the image of X → Y is Y . Then Y = X and we’ve proved
what we wanted to show. □

18. Variants of Noether normalization

0CBG Noether normalization is the statement that if k is a field and A is a finite type k
algebra of dimension d, then there exists a finite injective k-algebra homomorphism
k[x1, . . . , xd] → A. See Algebra, Lemma 115.4. Geometrically this means there is
a finite surjective morphism Spec(A) → Ad

k over Spec(k).

Lemma 18.1.0CBH Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite
type and dimx(Xs) = d, then there exists an affine open U ⊂ X with x ∈ U and
f(U) ⊂ V and a factorization

U
π−→ Ad

V → V

of f |U : U → V such that π is quasi-finite.

Proof. This follows from Algebra, Lemma 125.2. □
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Lemma 18.2.0CBI Let f : X → S be a finite type morphism of affine schemes. Let
s ∈ S. If dim(Xs) = d, then there exists a factorization

X
π−→ Ad

S → S

of f such that the morphism πs : Xs → Ad
κ(s) of fibres over s is finite.

Proof. Write S = Spec(A) and X = Spec(B) and let A → B be the ring map
corresponding to f . Let p ⊂ A be the prime ideal corresponding to s. We can
choose a surjection A[x1, . . . , xr] → B. By Algebra, Lemma 115.4 there exist
elements y1, . . . , yd ∈ A in the Z-subalgebra of A generated by x1, . . . , xr such
that the A-algebra homomorphism A[t1, . . . , td] → B sending ti to yi induces a
finite κ(p)-algebra homomorphism κ(p)[t1, . . . , td] → B ⊗A κ(p). This proves the
lemma. □

Lemma 18.3.0CBJ Let f : X → S be a morphism of schemes. Let x ∈ X. Let
V = Spec(A) be an affine open neighbourhood of f(x) in S. If f is unramified at
x, then there exist exists an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such
that we have a commutative diagram

X

��

Uoo

&&

j // Spec(A[t]g′/(g))

��

// Spec(A[t]) = A1
V

uu
Y Voo

where j is an immersion, g ∈ A[t] is a monic polynomial, and g′ is the derivative
of g with respect to t. If f is étale at x, then we may choose the diagram such that
j is an open immersion.

Proof. The unramified case is a translation of Algebra, Proposition 152.1. In the
étale case this is a translation of Algebra, Proposition 144.4 or equivalently it follows
from Morphisms, Lemma 36.14 although the statements differ slightly. □

Lemma 18.4.0CBK Let f : X → S be a finite type morphism of affine schemes. Let
x ∈ X with image s ∈ S. Let
r = dimκ(x) ΩX/S,x ⊗OX,x

κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x
κ(x) = dimκ(x) TX/S,x

Then there exists a factorization
X

π−→ Ar
S → S

of f such that π is unramified at x.

Proof. By Morphisms, Lemma 32.12 the first dimension is finite. The first equality
follows as the restriction of ΩX/S to the fibre is the module of differentials from
Morphisms, Lemma 32.10. The last equality follows from Lemma 16.4. Thus we
see that the statement makes sense.
To prove the lemma write S = Spec(A) and X = Spec(B) and let A → B be
the ring map corresponding to f . Let q ⊂ B be the prime ideal corresponding to
x. Choose a surjection of A-algebras A[x1, . . . , xt] → B. Since ΩB/A is generated
by dx1, . . . ,dxt we see that their images in ΩX/S,x ⊗OX,x

κ(x) generate this as a
κ(x)-vector space. After renumbering we may assume that dx1, . . . ,dxr map to a
basis of ΩX/S,x ⊗OX,x

κ(x). We claim that P = A[x1, . . . , xr] → B is unramified at
q. To see this it suffices to show that ΩB/P,q = 0 (Algebra, Lemma 151.3). Note
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that ΩB/P is the quotient of ΩB/A by the submodule generated by dx1, . . . ,dxr.
Hence ΩB/P,q ⊗Bq

κ(q) = 0 by our choice of x1, . . . , xr. By Nakayama’s lemma,
more precisely Algebra, Lemma 20.1 part (2) which applies as ΩB/P is finite (see
reference above), we conclude that ΩB/P,q = 0. □

Lemma 18.5.0CBL Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite type
and
r = dimκ(x) ΩX/S,x ⊗OX,x

κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x
κ(x) = dimκ(x) TX/S,x

then there exist
(1) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ Ar+1

V → V

of f |U such that j is an immersion, or
(2) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ D → V

of f |U such that j is a closed immersion and D → V is smooth of relative
dimension r.

Proof. Pick any affine open U ⊂ X with x ∈ U and f(U) ⊂ V . Apply Lemma
18.4 to U → V to get U → Ar

V → V as in the statement of that lemma. By Lemma
18.3 we get a factorization

U
j−→ D

j′

−→ Ar+1
V

p−→ Ar
V → V

where j and j′ are immersions, p is the projection, and p◦j′ is standard étale. Thus
we see in particular that (1) and (2) hold. □

19. Dimension of fibres

0B2H We have already seen that dimension of fibres of finite type morphisms typically
jump up. In this section we discuss the phenomenon that in codimension 1 this
does not happen. More generally, we discuss how much the dimension of a fibre
can jump. Here is a list of related results:

(1) For a finite type morphism X → S the set of x ∈ X with dimx(Xf(x)) ≤ d
is open, see Algebra, Lemma 125.6 and Morphisms, Lemma 28.4.

(2) We have the dimension formula, see Algebra, Lemma 113.1 and Morphisms,
Lemma 52.1.

(3) Constant fibre dimension for an integral finite type scheme dominating a
valuation ring, see Algebra, Lemma 125.9.

(4) If X → S is of finite type and is quasi-finite at every generic point of X,
then X → S is quasi-finite in codimension 1, see Algebra, Lemma 113.2
and Lemma 17.1.

The last result mentioned above generalizes as follows.

Lemma 19.1.0B2I Let f : X → Y be locally of finite type. Let x ∈ X be a point
with image y ∈ Y such that OY,y is Noetherian of dimension ≤ 1. Let d ≥ 0 be an
integer such that for every generic point η of an irreducible component of X which
contains x, we have dimη(Xf(η)) = d. Then dimx(Xy) = d.
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Proof. Recall that Spec(OY,y) is the set of points of Y specializing to y, see
Schemes, Lemma 13.2. Thus we may replace Y by Spec(OY,y) and assume Y =
Spec(B) where B is a Noetherian local ring of dimension ≤ 1 and y is the closed
point. We may also replace X by an affine neighbourhood of x.
Let X =

⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y has dimension d, then Xy =
⋃
Xi,y has

dimension d as well. Thus we may assume X is an integral scheme.
If X → Y maps the generic point η of X to y, then X is a scheme over κ(y) and the
result is true by assumption. Assume that X maps η to a point ξ ∈ Y corresponding
to a minimal prime q of B different from mB . We obtain a factorization X →
Spec(B/q) → Spec(B). By the dimension formula (Morphisms, Lemma 52.1) we
have

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B/q) + trdegκ(q)(R(X))
We have dim(B/q) = 1. We have trdegκ(q)(R(X)) = d by our assumption that
dimη(Xξ) = d, see Morphisms, Lemma 28.1. Since OX,x → OXs,x has a kernel
(as η 7→ ξ ̸= y) and since OX,x is a Noetherian domain we see that dim(OX,x) >
dim(OXy,x). We conclude that

dimx(Xs) = dim(OXs,x) + trdegκ(y)κ(x) ≤ d

(Morphisms, Lemma 28.1). On the other hand, we have dimx(Xs) ≥ dimη(Xf(η)) =
d by Morphisms, Lemma 28.4. □

Lemma 19.2.0B2J Let f : X → Spec(R) be a morphism from an irreducible scheme
to the spectrum of a valuation ring. If f is locally of finite type and surjective,
then the special fibre is equidimensional of dimension equal to the dimension of the
generic fibre.

Proof. We may replace X by its reduction because this does not change the di-
mension of X or of the special fibre. Then X is integral and the lemma follows
from Algebra, Lemma 125.9. □

The following lemma generalizes Lemma 19.1.

Lemma 19.3.0B2K Let f : X → Y be locally of finite type. Let x ∈ X be a point with
image y ∈ Y such that OY,y is Noetherian. Let d ≥ 0 be an integer such that for
every generic point η of an irreducible component of X which contains x, we have
f(η) ̸= y and dimη(Xf(η)) = d. Then dimx(Xy) ≤ d+ dim(OY,y) − 1.

Proof. Exactly as in the proof of Lemma 19.1 we reduce to the case X = Spec(A)
with A a domain and Y = Spec(B) where B is a Noetherian local ring whose
maximal ideal corresponds to y. After replacing B by B/Ker(B → A) we may
assume that B is a domain and that B ⊂ A. Then we use the dimension formula
(Morphisms, Lemma 52.1) to get

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B) + trdegB(A)
We have trdegB(A) = d by our assumption that dimη(Xξ) = d, see Morphisms,
Lemma 28.1. Since OX,x → OXy,x has a kernel (as f(η) ̸= y) and since OX,x is a
Noetherian domain we see that dim(OX,x) > dim(OXy,x). We conclude that

dimx(Xy) = dim(OXy,x) + trdegκ(y)κ(x) < dim(B) + d

(equality by Morphisms, Lemma 28.1) which proves what we want. □
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20. Algebraic schemes

06LF The following definition is taken from [DG67, I Definition 6.4.1].

Definition 20.1.06LG Let k be a field. An algebraic k-scheme is a scheme X over k
such that the structure morphism X → Spec(k) is of finite type. A locally algebraic
k-scheme is a scheme X over k such that the structure morphism X → Spec(k) is
locally of finite type.

Note that every (locally) algebraic k-scheme is (locally) Noetherian, see Morphisms,
Lemma 15.6. The category of algebraic k-schemes has all products and fibre prod-
ucts (unlike the category of varieties over k). Similarly for the category of locally
algebraic k-schemes.

Lemma 20.2.06LH Let k be a field. Let X be a locally algebraic k-scheme of dimen-
sion 0. Then X is a disjoint union of spectra of local Artinian k-algebras A with
dimk(A) < ∞. If X is an algebraic k-scheme of dimension 0, then in addition X
is affine and the morphism X → Spec(k) is finite.

Proof. Let X be a locally algebraic k-scheme of dimension 0. Let U = Spec(A) ⊂
X be an affine open subscheme. Since dim(X) = 0 we see that dim(A) = 0. By
Noether normalization, see Algebra, Lemma 115.4 we see that there exists a finite
injection k → A, i.e., dimk(A) < ∞. Hence A is Artinian, see Algebra, Lemma
53.2. This implies that A = A1 × . . . × Ar is a product of finitely many Artinian
local rings, see Algebra, Lemma 53.6. Of course dimk(Ai) < ∞ for each i as the
sum of these dimensions equals dimk(A).
The arguments above show that X has an open covering whose members are finite
discrete topological spaces. Hence X is a discrete topological space. It follows that
X is isomorphic to the disjoint union of its connected components each of which is
a singleton. Since a singleton scheme is affine we conclude (by the results of the
paragraph above) that each of these singletons is the spectrum of a local Artinian
k-algebra A with dimk(A) < ∞.
Finally, if X is an algebraic k-scheme of dimension 0, then X is quasi-compact
hence is a finite disjoint union X = Spec(A1) ⨿ . . . ⨿ Spec(Ar) hence affine (see
Schemes, Lemma 6.8) and we have seen the finiteness of X → Spec(k) in the first
paragraph of the proof. □

The following lemma collects some statements on dimension theory for locally al-
gebraic schemes.

Lemma 20.3.0A21 Let k be a field. Let X be a locally algebraic k-scheme.
(1)0B17 The topological space of X is catenary (Topology, Definition 11.4).
(2)0B18 For x ∈ X closed, we have dimx(X) = dim(OX,x).
(3)0B19 For X irreducible we have dim(X) = dim(U) for any nonempty open U ⊂

X and dim(X) = dimx(X) for any x ∈ X.
(4)0B1A For X irreducible any chain of irreducible closed subsets can be extended to

a maximal chain and all maximal chains of irreducible closed subsets have
length equal to dim(X).

(5)0B1B For x ∈ X we have dimx(X) = max dim(Z) = min dim(OX,x′) where the
maximum is over irreducible components Z ⊂ X containing x and the min-
imum is over specializations x⇝ x′ with x′ closed in X.
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(6)0B1C If X is irreducible with generic point x, then dim(X) = trdegk(κ(x)).
(7)0B1D If x ⇝ x′ is an immediate specialization of points of X, then we have

trdegk(κ(x)) = trdegk(κ(x′)) + 1.
(8)0B1E The dimension of X is the supremum of the numbers trdegk(κ(x)) where x

runs over the generic points of the irreducible components of X.
(9)0B1F If x⇝ x′ is a nontrivial specialization of points of X, then

(a) dimx(X) ≤ dimx′(X),
(b) dim(OX,x) < dim(OX,x′),
(c) trdegk(κ(x)) > trdegk(κ(x′)), and
(d) any maximal chain of nontrivial specializations x = x0 ⇝ x1 ⇝ . . .⇝

xn = x has length n = trdegk(κ(x)) − trdegk(κ(x′)).
(10)0B1G For x ∈ X we have dimx(X) = trdegk(κ(x)) + dim(OX,x).
(11)0B1H If x⇝ x′ is an immediate specialization of points of X and X is irreducible

or equidimensional, then dim(OX,x′) = dim(OX,x) + 1.

Proof. Instead on relying on the more general results proved earlier we will reduce
the statements to the corresponding statements for finite type k-algebras and cite
results from the chapter on commutative algebra.

Proof of (1). This is local on X by Topology, Lemma 11.5. Thus we may assume
X = Spec(A) where A is a finite type k-algebra. We have to show that A is catenary
(Algebra, Lemma 105.2). We can reduce to k[x1, . . . , xn] using Algebra, Lemma
105.7 and then apply Algebra, Lemma 114.3. Alternatively, this holds because k
is Cohen-Macaulay (trivially) and Cohen-Macaulay rings are universally catenary
(Algebra, Lemma 105.9).

Proof of (2). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 114.6.

Proof of (3). It suffices to show that any two nonempty affine opens U,U ′ ⊂ X
have the same dimension (any finite chain of irreducible subsets meets an affine
open). Pick a closed point x of X with x ∈ U ∩ U ′. This is possible because
X is irreducible, hence U ∩ U ′ is nonempty, hence there is such a closed point
because X is Jacobson by Lemma 14.1. Then dim(U) = dim(OX,x) = dim(U ′) by
Algebra, Lemma 114.4 (strictly speaking you have to replace X by its reduction
before applying the lemma).

Proof of (4). Given a chain of irreducible closed subsets we can find an affine open
U ⊂ X which meets the smallest one. Thus the statement follows from Algebra,
Lemma 114.4 and dim(U) = dim(X) which we have seen in (3).

Proof of (5). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). The rule Z 7→ Z ∩ U is a bijection between irreducible components of
X passing through x and irreducible components of U passing through x. Also,
dim(Z∩U) = dim(Z) for such Z by (3). Hence the statement follows from Algebra,
Lemma 114.5.

Proof of (6). By (3) this reduces to the case where X = Spec(A) is affine. In this
case it follows from Algebra, Lemma 116.1 applied to Ared.

Proof of (7). Let Z = {x} ⊃ Z ′ = {x′}. Then it follows from (4) that Z ⊃ Z ′ is the
start of a maximal chain of irreducible closed subschemes in Z and consequently
dim(Z) = dim(Z ′) + 1. We conclude by (6).
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Proof of (8). A simple topological argument shows that dim(X) = sup dim(Z)
where the supremum is over the irreducible components of X (hint: use Topology,
Lemma 8.3). Thus this follows from (6).
Proof of (9). Part (a) follows from the fact that any open U ⊂ X containing x′

also contains x. Part (b) follows because OX,x is a localization of OX,x′ hence any
chain of primes in OX,x corresponds to a chain of primes in OX,x′ which can be
extended by adding mx′ at the end. Both (c) and (d) follow formally from (7).
Proof of (10). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 116.3.
Proof of (11). If X is equidimensional (Topology, Definition 10.5) then dim(X) is
equal to the dimension of every irreducible component of X, whence dimx(X) =
dim(X) = dimx′(X) by (5). Thus this follows from (7). □

Lemma 20.4.0B2L Let k be a field. Let f : X → Y be a morphism of locally algebraic
k-schemes.

(1) For y ∈ Y , the fibre Xy is a locally algebraic scheme over κ(y) hence all
the results of Lemma 20.3 apply.

(2) Assume X is irreducible. Set Z = f(X) and d = dim(X) − dim(Z). Then
(a) dimx(Xf(x)) ≥ d for all x ∈ X,
(b) the set of x ∈ X with dimx(Xf(x)) = d is dense open,
(c) if dim(OZ,f(x)) ≥ 1, then dimx(Xf(x)) ≤ d+ dim(OZ,f(x)) − 1,
(d) if dim(OZ,f(x)) = 1, then dimx(Xf(x)) = d,

(3) For x ∈ X with y = f(x) we have dimx(Xy) ≥ dimx(X) − dimy(Y ).

Proof. The morphism f is locally of finite type by Morphisms, Lemma 15.8. Hence
the base change Xy → Spec(κ(y)) is locally of finite type. This proves (1). In the
rest of the proof we will freely use the results of Lemma 20.3 for X, Y , and the
fibres of f .

Proof of (2). Let η ∈ X be the generic point and set ξ = f(η). Then Z = {ξ}.
Hence
d = dim(X) − dim(Z) = trdegkκ(η) − trdegkκ(ξ) = trdegκ(ξ)κ(η) = dimη(Xξ)

Thus parts (2)(a) and (2)(b) follow from Morphisms, Lemma 28.4. Parts (2)(c)
and (2)(d) follow from Lemmas 19.3 and 19.1.
Proof of (3). Let x ∈ X. Let X ′ ⊂ X be a irreducible component of X passing
through x of dimension dimx(X). Then (2) implies that dimx(Xy) ≥ dim(X ′) −
dim(Z ′) where Z ′ ⊂ Y is the closure of the image of X ′. This proves (3). □

Lemma 20.5.0B2M Let k be a field. Let X, Y be locally algebraic k-schemes.
(1) For z ∈ X×Y lying over (x, y) we have dimz(X×Y ) = dimx(X)+dimy(Y ).
(2) We have dim(X × Y ) = dim(X) + dim(Y ).

Proof. Proof of (1). Consider the factorization
X × Y −→ Y −→ Spec(k)

of the structure morphism. The first morphism p : X × Y → Y is flat as a
base change of the flat morphism X → Spec(k) by Morphisms, Lemma 25.8.
Moreover, we have dimz(p−1(y)) = dimx(X) by Morphisms, Lemma 28.3. Hence
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dimz(X × Y ) = dimx(X) + dimy(Y ) by Morphisms, Lemma 28.2. Part (2) is a
direct consequence of (1). □

21. Complete local rings

0C51 Some results on complete local rings of schemes over fields.

Lemma 21.1.0C52 Let k be a field. Let X be a locally Noetherian scheme over k. Let
x ∈ X be a point with residue field κ. There is an isomorphism
(21.1.1)0C53 κ[[x1, . . . , xn]]/I −→ O∧

X,x

inducing the identity on residue fields. In general we cannot choose (21.1.1) to be
a k-algebra isomorphism. However, if the extension κ/k is separable, then we can
choose (21.1.1) to be an isomorphism of k-algebras.

Proof. The existence of the isomorphism is an immediate consequence of the Cohen
structure theorem2 (Algebra, Theorem 160.8).
Let p be an odd prime number, let k = Fp(t), and A = k[x, y]/(y2 + xp − t). Then
the completion A∧ of A in the maximal ideal m = (y) is isomorphic to k(t1/p)[[z]]
as a ring but not as a k-algebra. The reason is that A∧ does not contain an element
whose pth power is t (as the reader can see by computing modulo y2). This also
shows that any isomorphism (21.1.1) cannot be a k-algebra isomorphism.
If κ/k is separable, then there is a k-algebra homomorphism κ → O∧

X,x inducing
the identity on residue fields by More on Algebra, Lemma 38.3. Let f1, . . . , fn ∈ mx
be generators. Consider the map

κ[[x1, . . . , xn]] −→ O∧
X,x, xi 7−→ fi

Since both sides are (x1, . . . , xn)-adically complete (the right hand side by Algebra,
Lemmas 96.3) this map is surjective by Algebra, Lemma 96.1 as it is surjective
modulo (x1, . . . , xn) by construction. □

Lemma 21.2.0C54 Let K/k be an extension of fields. Let X be a locally algebraic
k-scheme. Set Y = XK . Let y ∈ Y be a point with image x ∈ X. Assume that
dim(OX,x) = dim(OY,y) and that κ(x)/k is separable. Choose an isomorphism

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧
X,x

of k-algebras as in (21.1.1). Then we have an isomorphism
κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧

Y,y

of K-algebras as in (21.1.1). Here we use κ(x) → κ(y) to view gj as a power series
over κ(y).

Proof. The local ring map OX,x → OY,y induces a local ring map O∧
X,x → O∧

Y,y.
The induced map

κ(x) → κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) → O∧
X,x → O∧

Y,y

composed with the projection to κ(y) is the canonical homomorphism κ(x) → κ(y).
By Lemma 5.1 the residue field κ(y) is a localization of κ(x)⊗kK at the kernel p0 of

2Note that if κ has characteristic p, then the theorem just says we get a surjection
Λ[[x1, . . . , xn]] → O∧

X,x where Λ is a Cohen ring for κ. But of course in this case the map
factors through Λ/pΛ[[x1, . . . , xn]] and Λ/pΛ = κ.
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κ(x) ⊗kK → κ(y). On the other hand, by Lemma 5.3 the local ring (κ(x) ⊗kK)p0

is equal to κ(y). Hence the map
κ(x) ⊗k K → O∧

Y,y

factors canonically through κ(y). We obtain a commutative diagram

κ(y) // O∧
Y,y

κ(x) //

OO

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
X,x

OO

Let fi ∈ m∧
x ⊂ O∧

X,x be the image of xi. Observe that m∧
x = (f1, . . . , fn) as the

map is surjective. Consider the map
κ(y)[[x1, . . . , xn]] −→ O∧

Y,y, xi 7−→ fi

where here fi really means the image of fi in m∧
y . Since mxOY,y = my by Lemma

5.3 we see that the right hand side is complete with respect to (x1, . . . , xn) (use
Algebra, Lemma 96.3 to see that it is a complete local ring). Since both sides are
(x1, . . . , xn)-adically complete our map is surjective by Algebra, Lemma 96.1 as it
is surjective modulo (x1, . . . , xn). Of course the power series g1, . . . , gm are mapped
to zero under this map, as they already map to zero in O∧

X,x. Thus we have the
commutative diagram

κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
Y,y

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) //

OO

O∧
X,x

OO

We still need to show that the top horizontal arrow is an isomorphism. We already
know that it is surjective. We know that OX,x → OY,y is flat (Lemma 5.1), which
implies that O∧

X,x → O∧
Y,y is flat (More on Algebra, Lemma 43.8). Thus we may

apply Algebra, Lemma 99.1 with R = κ(x)[[x1, . . . , xn]]/(g1, . . . , gm), with S =
κ(y)[[x1, . . . , xn]]/(g1, . . . , gm), with M = O∧

Y,y, and with N = S to conclude that
the map is injective. □

22. Global generation

0B5W Some lemmas related to global generation of quasi-coherent modules.

Lemma 22.1.0B57 Let X → Spec(A) be a morphism of schemes. Let A ⊂ A′ be a
faithfully flat ring map. Let F be a quasi-coherent OX-module. Then F is globally
generated if and only if the base change FA′ is globally generated.

Proof. More precisely, set XA′ = X ×Spec(A) Spec(A′). Let FA′ = p∗F where
p : XA′ → X is the projection. By Cohomology of Schemes, Lemma 5.2 we have
H0(Xk′ ,FA′) = H0(X,F)⊗AA

′. Thus if si, i ∈ I are generators for H0(X,F) as an
A-module, then their images in H0(XA′ ,FA′) are generators for H0(XA′ ,FA′) as an
A′-module. Thus we have to show that the map α :

⊕
i∈I OX → F , (fi) 7→

∑
fisi

is surjective if and only if p∗α is surjective. This we may check over an affine open
U = Spec(B) of X. Then F|U corresponds to a B-module M and si|U to elements
xi ∈ M . Thus we have to show that

⊕
i∈I B → M is surjective if and only if the
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base change
⊕

i∈I B ⊗A A
′ → M ⊗A A

′ is surjective. This is true because A → A′

is faithfully flat. □

Lemma 22.2.0B58 Let k be an infinite field. Let X be a scheme of finite type over k.
Let L be a very ample invertible sheaf on X. Let n ≥ 0 and x, x1, . . . , xn ∈ X be
points with x a k-rational point, i.e., κ(x) = k, and x ̸= xi for i = 1, . . . , n. Then
there exists an s ∈ H0(X,L) which vanishes at x but not at xi.

Proof. If n = 0 the result is trivial, hence we assume n > 0. By definition of
a very ample invertible sheaf, the lemma immediately reduces to the case where
X = Pr

k for some r > 0 and L = OX(1). Write Pr
k = Proj(k[T0, . . . , Tr]). Set

V = H0(X,L) = kT0 ⊕ . . .⊕ kTr. Since x is a k-rational point, we see that the set
s ∈ V which vanish at x is a codimension 1 subspace W ⊂ V and that W generates
the homogeneous prime ideal corresponding to x. Since xi ̸= x the corresponding
homogeneous prime pi ⊂ k[T0, . . . , Tr] does not contain W . Since k is infinite, we
then see that W ̸=

⋃
W ∩ qi and the proof is complete. □

Lemma 22.3.0B3Z Let k be an infinite field. Let X be an algebraic k-scheme. Let L
be an invertible OX-module. Let V → Γ(X,L) be a linear map of k-vector spaces
whose image generates L. Then there exists a subspace W ⊂ V with dimk(W ) ≤
dim(X) + 1 which generates L.

Proof. Throughout the proof we will use that for every x ∈ X the linear map

ψx : V → Γ(X,L) → Lx → Lx ⊗OX,x
κ(x)

is nonzero. The proof is by induction on dim(X).

The base case is dim(X) = 0. In this case X has finitely many points X =
{x1, . . . , xn} (see for example Lemma 20.2). Since k is infinite there exists a vector
v ∈ V such that ψxi(v) ̸= 0 for all i. Then W = k · v does the job.

Assume dim(X) > 0. Let Xi ⊂ X be the irreducible components of dimension
equal to dim(X). Since X is Noetherian there are only finitely many of these. For
each i pick a point xi ∈ Xi. As above choose v ∈ V such that ψxi

(v) ̸= 0 for all i.
Let Z ⊂ X be the zero scheme of the image of v in Γ(X,L), see Divisors, Definition
14.8. By construction dim(Z) < dim(X). By induction we can find W ⊂ V with
dim(W ) ≤ dim(X) such that W generates L|Z . Then W + k · v generates L. □

23. Separating points and tangent vectors

0E8R This is just the following result.

Lemma 23.1.0E8S Let k be an algebraically closed field. Let X be a proper k-scheme.
Let L be an invertible OX-module. Let V ⊂ H0(X,L) be a k-subvector space. If

(1) for every pair of distinct closed points x, y ∈ X there is a section s ∈ V
which vanishes at x but not at y, and

(2) for every closed point x ∈ X and nonzero tangent vector θ ∈ TX/k,x there
exists a section s ∈ V which vanishes at x but whose pullback by θ is
nonzero,

then L is very ample and the canonical morphism φL,V : X → P(V ) is a closed
immersion.
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Proof. Condition (1) implies in particular that the elements of V generate L over
X. Hence we get a canonical morphism

φ = φL,V : X −→ P(V )

by Constructions, Example 21.2. The morphism φ is proper by Morphisms, Lemma
41.7. By (1) the map φ is injective on closed points (computation omitted). In
particular, the fibre over any closed point of P(V ) is a singleton (small detail
omitted). Thus we see that φ is finite, for example use Cohomology of Schemes,
Lemma 21.2. To finish the proof it suffices to show that the map

φ♯ : OP(V ) −→ φ∗OX

is surjective. This we may check on stalks at closed points. Let x ∈ X be a
closed point with image the closed point p = φ(x) ∈ P(V ). Since φ−1({p}) = {x}
by (1) and since φ is proper (hence closed), we see that φ−1(U) runs through a
fundamental system of open neighbourhoods of x as U runs through a fundamental
system of open neighbourhoods of p. We conclude that on stalks at p we obtain
the map

φ♯x : OP(V ),p −→ OX,x

In particular, OX,x is a finite OP(V ),p-module. Moreover, the residue fields of x
and p are equal to k (as k is algebraically closed – use the Hilbert Nullstellensatz).
Finally, condition (2) implies that the map

TX/k,x −→ TP(V )/k,p

is injective since any nonzero θ in the kernel of this map couldn’t possibly satisfy
the conclusion of (2). In terms of the map of local rings above this means that

mp/m
2
p −→ mx/m

2
x

is surjective, see Lemma 16.5. Now the proof is finished by applying Algebra,
Lemma 20.3. □

Lemma 23.2.0E8T Let k be an algebraically closed field. Let X be a proper k-scheme.
Let L be an invertible OX-module. Suppose that for every closed subscheme Z ⊂ X
of dimension 0 and degree 2 over k the map

H0(X,L) −→ H0(Z,L|Z)

is surjective. Then L is very ample on X over k.

Proof. This is a reformulation of Lemma 23.1. Namely, given distinct closed points
x, y ∈ X taking Z = x ∪ y (viewed as closed subscheme) we get condition (1)
of the lemma. And given a nonzero tangent vector θ ∈ TX/k,x the morphism
θ : Spec(k[ϵ]) → X is a closed immersion. Setting Z = Im(θ) we obtain condition
(2) of the lemma. □

24. Closures of products

047A Some results on the relation between closure and products.

Lemma 24.1.047B Let k be a field. Let X, Y be schemes over k, and let A ⊂ X,
B ⊂ Y be subsets. Set

AB = {z ∈ X ×k Y | prX(z) ∈ A, prY (z) ∈ B} ⊂ X ×k Y
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Then set theoretically we have

A×k B = AB

Proof. The inclusion AB ⊂ A ×k B is immediate. We may replace X and Y by
the reduced closed subschemes A and B. Let W ⊂ X ×k Y be a nonempty open
subset. By Morphisms, Lemma 23.4 the subset U = prX(W ) is nonempty open
in X. Hence A ∩ U is nonempty. Pick a ∈ A ∩ U . Denote Yκ(a) = {a} ×k Y
the fibre of prX : X ×k Y → X over a. By Morphisms, Lemma 23.4 again the
morphism Ya → Y is open as Spec(κ(a)) → Spec(k) is universally open. Hence the
nonempty open subset Wa = W ×X×kY Ya maps to a nonempty open subset of Y .
We conclude there exists a b ∈ B in the image. Hence AB ∩W ̸= ∅ as desired. □

Lemma 24.2.04Q0 Let k be a field. Let f : A → X, g : B → Y be morphisms of
schemes over k. Then set theoretically we have

f(A) ×k g(B) = (f × g)(A×k B)

Proof. This follows from Lemma 24.1 as the image of f × g is f(A)g(B) in the
notation of that lemma. □

Lemma 24.3.04Q1 Let k be a field. Let f : A → X, g : B → Y be quasi-compact
morphisms of schemes over k. Let Z ⊂ X be the scheme theoretic image of f , see
Morphisms, Definition 6.2. Similarly, let Z ′ ⊂ Y be the scheme theoretic image of
g. Then Z ×k Z

′ is the scheme theoretic image of f × g.

Proof. Recall that Z is the smallest closed subscheme of X through which f fac-
tors. Similarly for Z ′. Let W ⊂ X ×k Y be the scheme theoretic image of f × g.
As f × g factors through Z ×k Z

′ we see that W ⊂ Z ×k Z
′.

To prove the other inclusion let U ⊂ X and V ⊂ Y be affine opens. By Morphisms,
Lemma 6.3 the scheme Z ∩U is the scheme theoretic image of f |f−1(U) : f−1(U) →
U , and similarly for Z ′ ∩ V and W ∩ U ×k V . Hence we may assume X and Y
affine. As f and g are quasi-compact this implies that A =

⋃
Ui is a finite union of

affines and B =
⋃
Vj is a finite union of affines. Then we may replace A by

∐
Ui

and B by
∐
Vj , i.e., we may assume that A and B are affine as well. In this case Z

is cut out by Ker(Γ(X,OX) → Γ(A,OA)) and similarly for Z ′ and W . Hence the
result follows from the equality

Γ(A×k B,OA×kB) = Γ(A,OA) ⊗k Γ(B,OB)

which holds as A and B are affine. Details omitted. □

25. Schemes smooth over fields

04QM Here are two lemmas characterizing smooth schemes over fields.

Lemma 25.1.04QN Let k be a field. Let X be a scheme over k. Assume
(1) X is locally of finite type over k,
(2) ΩX/k is locally free, and
(3) k has characteristic zero.

Then the structure morphism X → Spec(k) is smooth.

Proof. This follows from Algebra, Lemma 140.7. □
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In positive characteristic there exist nonreduced schemes of finite type whose sheaf
of differentials is free, for example Spec(Fp[t]/(tp)) over Spec(Fp). If the ground
field k is nonperfect of characteristic p, there exist reduced schemes X/k with free
ΩX/k which are nonsmooth, for example Spec(k[t]/(tp−a) where a ∈ k is not a pth
power.
Lemma 25.2.04QP Let k be a field. Let X be a scheme over k. Assume

(1) X is locally of finite type over k,
(2) ΩX/k is locally free,
(3) X is reduced, and
(4) k is perfect.

Then the structure morphism X → Spec(k) is smooth.
Proof. Let x ∈ X be a point. As X is locally Noetherian (see Morphisms, Lemma
15.6) there are finitely many irreducible components X1, . . . , Xn passing through x
(see Properties, Lemma 5.5 and Topology, Lemma 9.2). Let ηi ∈ Xi be the generic
point. As X is reduced we have OX,ηi = κ(ηi), see Algebra, Lemma 25.1. Moreover,
κ(ηi) is a finitely generated field extension of the perfect field k hence separably
generated over k (see Algebra, Section 42). It follows that ΩX/k,ηi

= Ωκ(ηi)/k is
free of rank the transcendence degree of κ(ηi) over k. By Morphisms, Lemma 28.1
we conclude that dimηi(Xi) = rankηi(ΩX/k). Since x ∈ X1 ∩ . . . ∩Xn we see that

rankx(ΩX/k) = rankηi(ΩX/k) = dim(Xi).
Therefore dimx(X) = rankx(ΩX/k), see Algebra, Lemma 114.5. It follows that
X → Spec(k) is smooth at x for example by Algebra, Lemma 140.3. □

Lemma 25.3.056S Let X → Spec(k) be a smooth morphism where k is a field. Then
X is a regular scheme.
Proof. (See also Lemma 12.6.) By Algebra, Lemma 140.3 every local ring OX,x

is regular. And because X is locally of finite type over k it is locally Noetherian.
Hence X is regular by Properties, Lemma 9.2. □

Lemma 25.4.056T Let X → Spec(k) be a smooth morphism where k is a field. Then
X is geometrically regular, geometrically normal, and geometrically reduced over k.
Proof. (See also Lemma 12.6.) Let k′ be a finite purely inseparable extension of
k. It suffices to prove that Xk′ is regular, normal, reduced, see Lemmas 12.3, 10.3,
and 6.5. By Morphisms, Lemma 34.5 the morphism Xk′ → Spec(k′) is smooth too.
Hence it suffices to show that a scheme X smooth over a field is regular, normal,
and reduced. We see that X is regular by Lemma 25.3. Hence Properties, Lemma
9.4 guarantees that X is normal. □

Lemma 25.5.055T Let k be a field. Let d ≥ 0. Let W ⊂ Ad
k be nonempty open. Then

there exists a closed point w ∈ W such that k ⊂ κ(w) is finite separable.
Proof. After possible shrinking W we may assume that W = Ad

k \ V (f) for some
f ∈ k[x1, . . . , xd]. If the lemma is wrong then f(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈
(ksep)d. This is absurd as ksep is an infinite field. □

Lemma 25.6.056U Let k be a field. If X is smooth over Spec(k) then the set
{x ∈ X closed such that k ⊂ κ(x) is finite separable}

is dense in X.
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Proof. It suffices to show that given a nonempty smooth X over k there exists
at least one closed point whose residue field is finite separable over k. To see this,
choose a diagram

X Uoo π // Ad
k

with π étale, see Morphisms, Lemma 36.20. The morphism π : U → Ad
k is open, see

Morphisms, Lemma 36.13. By Lemma 25.5 we may choose a closed point w ∈ π(U)
whose residue field is finite separable over k. Pick any x ∈ U with π(x) = w. By
Morphisms, Lemma 36.7 the field extension κ(x)/κ(w) is finite separable. Hence
κ(x)/k is finite separable. The point x is a closed point of X by Morphisms, Lemma
20.2. □

Lemma 25.7.056V Let X be a scheme over a field k. If X is locally of finite type and
geometrically reduced over k then X contains a dense open which is smooth over k.

Proof. The problem is local on X, hence we may assume X is quasi-compact. Let
X = X1 ∪ . . .∪Xn be the irreducible components of X. Then Z =

⋃
i ̸=j Xi ∩Xj is

nowhere dense in X. Hence we may replace X by X \Z. As X \Z is a disjoint union
of irreducible schemes, this reduces us to the case where X is irreducible. As X is
irreducible and reduced, it is integral, see Properties, Lemma 3.4. Let η ∈ X be its
generic point. Then the function field K = k(X) = κ(η) is geometrically reduced
over k, hence separable over k, see Algebra, Lemma 44.1. Let U = Spec(A) ⊂ X
be any nonempty affine open so that K = A(0) is the fraction field of A. Apply
Algebra, Lemma 140.5 to conclude that A is smooth at (0) over k. By definition
this means that some principal localization of A is smooth over k and we win. □

Lemma 25.8.0B8X Let k be a perfect field. Let X be a locally algebraic reduced k-
scheme, for example a variety over k. Then we have

{x ∈ X | X → Spec(k) is smooth at x} = {x ∈ X | OX,x is regular}

and this is a dense open subscheme of X.

Proof. The equality of the two sets follows immediately from Algebra, Lemma
140.5 and the definitions (see Algebra, Definition 45.1 for the definition of a perfect
field). The set is open because the set of points where a morphism of schemes is
smooth is open, see Morphisms, Definition 34.1. Finally, we give two arguments to
see that it is dense: (1) The generic points of X are in the set as the local rings at
generic points are fields (Algebra, Lemma 25.1) hence regular. (2) We use that X
is geometrically reduced by Lemma 6.3 and hence Lemma 25.7 applies. □

Lemma 25.9.05AX Let k be a field. Let f : X → Y be a morphism of schemes locally
of finite type over k. Let x ∈ X be a point and set y = f(x). If X → Spec(k) is
smooth at x and f is flat at x then Y → Spec(k) is smooth at y. In particular, if
X is smooth over k and f is flat and surjective, then Y is smooth over k.

Proof. It suffices to show that Y is geometrically regular at y, see Lemma 12.6.
This follows from Lemma 12.5 (and Lemma 12.6 applied to (X,x)). □

Lemma 25.10.0CDW Let k be a field. Let X be a variety over k which has a k-rational
point x such that X is smooth at x. Then X is geometrically integral over k.
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Proof. Let U ⊂ X be the smooth locus of X. By assumption U is nonempty and
hence dense and scheme theoretically dense. Then Uk ⊂ Xk is dense and scheme
theoretically dense as well (some details omitted). Thus it suffices to show that
U is geometrically integral. Because U has a k-rational point it is geometrically
connected by Lemma 7.14. On the other hand, Uk is reduced and normal (Lemma
25.4. Since a connected normal Noetherian scheme is integral (Properties, Lemma
7.6) the proof is complete. □

Lemma 25.11.0H3W Let X be a scheme of finite type over a field k. There exists a
finite purely inseparable extension k′/k, an integer t ≥ 0, and closed subschemes

Xk′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Z0 = (Xk′)red and Zi \ Zi+1 is smooth over k′ for all i.

Proof. We may use induction on dim(X). By Lemma 6.11 we can find a finite
purely inseparable extension k′/k such that (Xk′)red is geometrically reduced over
k′. By Lemma 25.7 there is a nowhere dense closed subscheme X ′ ⊂ (Xk′)red
such that (Xk′)red \X ′ is smooth over k′. Then dim(X ′) < dim(X). By induction
hypothesis there exists a finite purely inseparable extension k′′/k′, an integer t′ ≥ 0,
and closed subschemes

X ′
k′′ ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt′ = ∅

such that Y0 = (X ′
k′′)red and Yi \ Yi+1 is smooth over k′′ for all i. Then we let

t = t′ + 1 and we consider
Xk′′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅

given by Z0 = (Xk′′)red and Zi = Yi−1 for i > 0; this makes sense as X ′
k′′ is a

closed subscheme of Xk′′ . We omit the verification that all the stated properties
hold. □

26. Types of varieties

04L0 Short section discussion some elementary global properties of varieties.

Definition 26.1.04L1 Let k be a field. Let X be a variety over k.
(1) We say X is an affine variety if X is an affine scheme. This is equivalent

to requiring X to be isomorphic to a closed subscheme of An
k for some n.

(2) We say X is a projective variety if the structure morphism X → Spec(k)
is projective. By Morphisms, Lemma 43.4 this is true if and only if X is
isomorphic to a closed subscheme of Pn

k for some n.
(3) We say X is a quasi-projective variety if the structure morphism X →

Spec(k) is quasi-projective. By Morphisms, Lemma 40.6 this is true if and
only if X is isomorphic to a locally closed subscheme of Pn

k for some n.
(4) A proper variety is a variety such that the morphismX → Spec(k) is proper.
(5) A smooth variety is a variety such that the morphism X → Spec(k) is

smooth.

Note that a projective variety is a proper variety, see Morphisms, Lemma 43.5. Also,
an affine variety is quasi-projective as An

k is isomorphic to an open subscheme of
Pn
k , see Constructions, Lemma 13.3.

Lemma 26.2.04L2 Let X be a proper variety over k. Then
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(1) K = H0(X,OX) is a field which is a finite extension of the field k,
(2) if X is geometrically reduced, then K/k is separable,
(3) if X is geometrically irreducible, then K/k is purely inseparable,
(4) if X is geometrically integral, then K = k.

Proof. This is a special case of Lemma 9.3. □

27. Normalization

0BXQ Some issues associated to normalization.

Lemma 27.1.0BXR Let k be a field. Let X be a locally algebraic scheme over k. Let
ν : Xν → X be the normalization morphism, see Morphisms, Definition 54.1. Then

(1) ν is finite, dominant, and Xν is a disjoint union of normal irreducible
locally algebraic schemes over k,

(2) ν factors as Xν → Xred → X and the first morphism is the normalization
morphism of Xred,

(3) if X is a reduced algebraic scheme, then ν is birational,
(4) if X is a variety, then Xν is a variety and ν is a finite birational morphism

of varieties.

Proof. Since X is locally of finite type over a field, we see that X is locally Noe-
therian (Morphisms, Lemma 15.6) hence every quasi-compact open has finitely
many irreducible components (Properties, Lemma 5.7). Thus Morphisms, Defi-
nition 54.1 applies. The normalization Xν is always a disjoint union of normal
integral schemes and the normalization morphism ν is always dominant, see Mor-
phisms, Lemma 54.5. Since X is universally Nagata (Morphisms, Lemma 18.2) we
see that ν is finite (Morphisms, Lemma 54.10). Hence Xν is locally algebraic too.
At this point we have proved (1).
Part (2) is Morphisms, Lemma 54.2.
Part (3) is Morphisms, Lemma 54.7.
Part (4) follows from (1), (2), (3), and the fact that Xν is separated as a scheme
finite over a separated scheme. □

Lemma 27.2.0GK4 Let k be a field. Let X be a proper scheme over k. Let ν : Xν → X
be the normalization morphism, see Morphisms, Definition 54.1. Then Xν is proper
over k. If X is projective over k, then Xν is projective over k.

Proof. By Lemma 27.1 the morphism ν is finite. Hence Xν is proper over k by
Morphisms, Lemmas 44.11 and 41.4. The morphism ν is projective by Morphisms,
Lemma 44.16 and hence if X is projective over k, then Xν is projective over k by
Morphisms, Lemma 43.14. □

Lemma 27.3.0BXS Let k be a field. Let f : Y → X be a quasi-compact morphism of
locally algebraic schemes over k. Let X ′ be the normalization of X in Y . If Y is
reduced, then X ′ → X is finite.

Proof. Since Y is quasi-separated (by Properties, Lemma 5.4 and Morphisms,
Lemma 15.6) the morphism f is quasi-separated (Schemes, Lemma 21.13). Hence
Morphisms, Definition 53.3 applies. The result follows from Morphisms, Lemma
53.14. This uses that locally algebraic schemes are locally Noetherian (hence have
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locally finitely many irreducible components) and that locally algebraic schemes
are Nagata (Morphisms, Lemma 18.2). Some small details omitted. □

Lemma 27.4.0BXT Let k be a field. Let X be an algebraic k-scheme. Then there exists
a finite purely inseparable extension k′/k such that the normalization Y of Xk′ is
geometrically normal over k′.

Proof. Let K = kperf be the perfect closure. Let YK be the normalization of XK ,
see Lemma 27.1. By Limits, Lemma 10.1 there exists a finite sub extension K/k′/k
and a morphism ν : Y → Xk′ of finite presentation whose base change to K is the
normalization morphism νK : YK → XK . Observe that Y is geometrically normal
over k′ (Lemma 10.3). After increasing k′ we may assume Y → Xk′ is finite (Limits,
Lemma 8.3). Since νK : YK → XK is the normalization morphism, it induces a
birational morphism YK → (XK)red. Hence there is a dense open VK ⊂ XK such
that ν−1

K (VK) → VK is a closed immersion (inducing an isomorphism of ν−1
K (VK)

with VK,red, see for example Morphisms, Lemma 51.6). After increasing k′ we find
VK is the base change of a dense open V ⊂ Y and the morphism ν−1(V ) → V is a
closed immersion (Limits, Lemmas 4.11 and 8.5). It follows readily from this that
ν is the normalization morphism and the proof is complete. □

Lemma 27.5.0C3N Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be
an extension of fields. Let ν : Xν → X be the normalization of X and let Y ν → XK

be the normalization of the base change. Then the canonical morphism
Y ν −→ Xν ×Spec(k) Spec(K)

is an isomorphism if K/k is separable and a universal homeomorphism in general.

Proof. Set Y = XK . Let X(0), resp. Y (0) be the set of generic points of irre-
ducible components of X, resp. Y . Then the projection morphism π : Y → X
satisfies π(Y (0)) = X(0). This is true because π is surjective, open, and generizing,
see Morphisms, Lemmas 23.4 and 23.5. If we view X(0), resp. Y (0) as (reduced)
schemes, then Xν , resp. Y ν is the normalization of X, resp. Y in X(0), resp. Y (0).
Thus Morphisms, Lemma 53.5 gives a canonical morphism Y ν → Xν over Y → X
which in turn gives the canonical morphism of the lemma by the universal property
of the fibre product.
To prove this morphism has the properties stated in the lemma we may assume
X = Spec(A) is affine. Let Q(Ared) be the total ring of fractions of Ared. Then Xν

is the spectrum of the integral closure A′ of A in Q(Ared), see Morphisms, Lemmas
54.2 and 54.3. Similarly, Y ν is the spectrum of the integral closure B′ of A⊗kK in
Q((A⊗kK)red). There is a canonical map Q(Ared) → Q((A⊗kK)red), a canonical
map A′ → B′, and the morphism of the lemma corresponds to the induced map

A′ ⊗k K −→ B′

of K-algebras. The kernel consists of nilpotent elements as the kernel of Q(Ared)⊗k

K → Q((A⊗k K)red) is the set of nilpotent elements.
If K/k is separable, then A′ ⊗k K is normal by Lemma 10.6. In particular it is
reduced, whence Q((A ⊗k K)red) = Q(A′ ⊗k K) and B′ = A′ ⊗k K by Algebra,
Lemma 37.16.
Assume K/k is not separable. Then the characteristic of k is p > 0. We will
show that for every b ∈ B′ there is a power q of p such that bq is in the image of
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A′ ⊗k K. This will prove that the displayed map is a universal homeomorphism
by Algebra, Lemma 46.7. For a given b there is a subfield F ⊂ K with F/k
finitely generated such that b is contained in Q((A ⊗k F )red) and is integral over
A ⊗k F . Choose a monic polynomial P = T d + α1T

d−1 + . . . + αd with P (b) = 0
and αi ∈ A ⊗k F . Choose a transcendence basis t1, . . . , tr for F over k. Let
F/F ′/k(t1, . . . , tr) be the maximal separable subextension (Fields, Lemma 14.6).
Since F/F ′ is finite purely inseparable, there is a q such that λq ∈ F ′ for all λ ∈ F .
Then bq is in Q((A⊗k F

′)red) and satisfies the polynomial T d +αq1T
d−1 + . . .+ αqd

with αqi ∈ A⊗k F
′. By the separable case we see that bq ∈ A′ ⊗k F

′ and the proof
is complete. □

Lemma 27.6.0C3P Let k be a field. Let X be a locally algebraic k-scheme. Let ν :
Xν → X be the normalization of X. Let x ∈ X be a point such that (a) OX,x is
reduced, (b) dim(OX,x) = 1, and (c) for every x′ ∈ Xν with ν(x′) = x the extension
κ(x′)/k is separable. Then X is geometrically reduced at x and Xν is geometrically
regular at x′ with ν(x′) = x.
Proof. We will use the results of Lemma 27.1 without further mention. Let x′ ∈
Xν be a point over x. By dimension theory (Section 20) we have dim(OXν ,x′) = 1.
Since Xν is normal, we see that OXν ,x′ is a discrete valuation ring (Properties,
Lemma 12.5). Thus OXν ,x′ is a regular local k-algebra whose residue field is sep-
arable over k. Hence k → OXν ,x′ is formally smooth in the mx′ -adic topology, see
More on Algebra, Lemma 38.5. Then OXν ,x′ is geometrically regular over k by
More on Algebra, Theorem 40.1. Thus Xν is geometrically regular at x′ by Lemma
12.2.
Since OX,x is reduced, the family of maps OX,x → OXν ,x′ is injective. Since
OXν ,x′ is a geometrically reduced k-algebra, it follows immediately that OX,x is a
geometrically reduced k-algebra. Hence X is geometrically reduced at x by Lemma
6.2. □

28. Groups of invertible functions

04L3 It is often (but not always) the case that O∗(X)/k∗ is a finitely generated abelian
group if X is a variety over k. We show this by a series of lemmas. Everything
rests on the following special case.
Lemma 28.1.04L4 Let k be an algebraically closed field. Let X be a proper variety
over k. Let X ⊂ X be an open subscheme. Assume X is normal. Then O∗(X)/k∗

is a finitely generated abelian group.
Proof. Since the statement only concerns X, we may replace X by a different
proper variety over k. Let ν : Xν → X be the normalization morphism. By
Lemma 27.1 we have that ν is finite and X

ν is a variety. Since X is normal, we
see that ν−1(X) → X is an isomorphism (tiny detail omitted). Finally, we see that
X
ν is proper over k as a finite morphism is proper (Morphisms, Lemma 44.11) and

compositions of proper morphisms are proper (Morphisms, Lemma 41.4). Thus we
may and do assume X is normal.
We will use without further mention that for any affine open U of X the ring O(U)
is a finitely generated k-algebra, which is Noetherian, a domain and normal, see
Algebra, Lemma 31.1, Properties, Definition 3.1, Properties, Lemmas 5.2 and 7.2,
Morphisms, Lemma 15.2.

https://stacks.math.columbia.edu/tag/0C3P
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Let ξ1, . . . , ξr be the generic points of the complement of X in X. There are
finitely many since X has a Noetherian underlying topological space (see Mor-
phisms, Lemma 15.6, Properties, Lemma 5.5, and Topology, Lemma 9.2). For each
i the local ring Oi = OX,ξi

is a normal Noetherian local domain (as a localization
of a Noetherian normal domain). Let J ⊂ {1, . . . , r} be the set of indices i such
that dim(Oi) = 1. For j ∈ J the local ring Oj is a discrete valuation ring, see
Algebra, Lemma 119.7. Hence we obtain a valuation

vj : k(X)∗ −→ Z
with the property that vj(f) ≥ 0 ⇔ f ∈ Oj .
Think of O(X) as a sub k-algebra of k(X) = k(X). We claim that the kernel of
the map

O(X)∗ −→
∏

j∈J
Z, f 7−→

∏
vj(f)

is k∗. It is clear that this claim proves the lemma. Namely, suppose that f ∈
O(X) is an element of the kernel. Let U = Spec(B) ⊂ X be any affine open.
Then B is a Noetherian normal domain. For every height one prime q ⊂ B with
corresponding point ξ ∈ X we see that either ξ = ξj for some j ∈ J or that ξ ∈ X.
The reason is that codim({ξ}, X) = 1 by Properties, Lemma 10.3 and hence if
ξ ∈ X \ X it must be a generic point of X \ X, hence equal to some ξj , j ∈ J .
We conclude that f ∈ OX,ξ = Bq in either case as f is in the kernel of the map.
Thus f ∈

⋂
ht(q)=1 Bq = B, see Algebra, Lemma 157.6. In other words, we see

that f ∈ Γ(X,OX). But since k is algebraically closed we conclude that f ∈ k by
Lemma 26.2. □

Next, we generalize the case above by some elementary arguments, still keeping the
field algebraically closed.
Lemma 28.2.04L5 Let k be an algebraically closed field. Let X be an integral scheme
locally of finite type over k. Then O∗(X)/k∗ is a finitely generated abelian group.
Proof. As X is integral the restriction mapping O(X) → O(U) is injective for any
nonempty open subscheme U ⊂ X. Hence we may assume that X is affine. Choose
a closed immersion X → An

k and denote X the closure of X in Pn
k via the usual

immersion An
k → Pn

k . Thus we may assume that X is an affine open of a projective
variety X.
Let ν : Xν → X be the normalization morphism, see Morphisms, Definition 54.1.
We know that ν is finite, dominant, and that Xν is a normal irreducible scheme,
see Morphisms, Lemmas 54.5, 54.9, and 18.2. It follows that Xν is a proper variety,
because X → Spec(k) is proper as a composition of a finite and a proper morphism
(see results in Morphisms, Sections 41 and 44). It also follows that ν is a surjective
morphism, because the image of ν is closed and contains the generic point of X.
Hence setting Xν = ν−1(X) we see that it suffices to prove the result for Xν . In
other words, we may assume that X is a nonempty open of a normal proper variety
X. This case is handled by Lemma 28.1. □

The preceding lemma implies the following slight generalization.
Lemma 28.3.04L6 Let k be an algebraically closed field. Let X be a connected re-
duced scheme which is locally of finite type over k with finitely many irreducible
components. Then O∗(X)/k∗ is a finitely generated abelian group.

https://stacks.math.columbia.edu/tag/04L5
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Proof. Let X =
⋃
Xi be the irreducible components. By Lemma 28.2 we see that

O(Xi)∗/k∗ is a finitely generated abelian group. Let f ∈ O(X)∗ be in the kernel
of the map

O(X)∗ −→
∏

O(Xi)∗/k∗.

Then for each i there exists an element λi ∈ k such that f |Xi
= λi. By restricting

to Xi ∩ Xj we conclude that λi = λj if Xi ∩ Xj ̸= ∅. Since X is connected we
conclude that all λi agree and hence that f ∈ k∗. This proves that

O(X)∗/k∗ ⊂
∏

O(Xi)∗/k∗

and the lemma follows as on the right we have a product of finitely many finitely
generated abelian groups. □

Lemma 28.4.04MI Let k be a field. Let X be a scheme over k which is connected and
reduced. Then the integral closure of k in Γ(X,OX) is a field.

Proof. Let k′ ⊂ Γ(X,OX) be the integral closure of k. Then X → Spec(k)
factors through Spec(k′), see Schemes, Lemma 6.4. As X is reduced we see that
k′ has no nonzero nilpotent elements. As k → k′ is integral we see that every
prime ideal of k′ is both a maximal ideal and a minimal prime, and Spec(k′) is
totally disconnected, see Algebra, Lemmas 36.20 and 26.5. As X is connected the
morphism X → Spec(k′) is constant, say with image the point corresponding to
p ⊂ k′. Then any f ∈ k′, f ̸∈ p maps to an invertible element of OX . By definition
of k′ this then forces f to be a unit of k′. Hence we see that k′ is local with maximal
ideal p, see Algebra, Lemma 18.2. Since we’ve already seen that k′ is reduced this
implies that k′ is a field, see Algebra, Lemma 25.1. □

Proposition 28.5.04L7 Let k be a field. Let X be a scheme over k. Assume that X
is locally of finite type over k, connected, reduced, and has finitely many irreducible
components. Then O(X)∗/k∗ is a finitely generated abelian group if in addition to
the conditions above at least one of the following conditions is satisfied:

(1) the integral closure of k in Γ(X,OX) is k,
(2) X has a k-rational point, or
(3) X is geometrically integral.

Proof. Let k be an algebraic closure of k. Let Y be a connected component of
(Xk)red. Note that the canonical morphism p : Y → X is open (by Morphisms,
Lemma 23.4) and closed (by Morphisms, Lemma 44.7). Hence p(Y ) = X as X was
assumed connected. In particular, as X is reduced this implies O(X) ⊂ O(Y ). By
Lemma 8.14 we see that Y has finitely many irreducible components. Thus Lemma
28.3 applies to Y . This implies that if O(X)∗/k∗ is not a finitely generated abelian
group, then there exist elements f ∈ O(X), f ̸∈ k which map to an element of k
via the map O(X) → O(Y ). In this case f is algebraic over k, hence integral over
k. Thus, if condition (1) holds, then this cannot happen. To finish the proof we
show that conditions (2) and (3) imply (1).

Let k ⊂ k′ ⊂ Γ(X,OX) be the integral closure of k in Γ(X,OX). By Lemma
28.4 we see that k′ is a field. If e : Spec(k) → X is a k-rational point, then
e♯ : Γ(X,OX) → k is a section to the inclusion map k → Γ(X,OX). In particular
the restriction of e♯ to k′ is a field map k′ → k over k, which clearly shows that (2)
implies (1).

https://stacks.math.columbia.edu/tag/04MI
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If the integral closure k′ of k in Γ(X,OX) is not trivial, then we see that X is either
not geometrically connected (if k′/k is not purely inseparable) or that X is not
geometrically reduced (if k′/k is nontrivial purely inseparable). Details omitted.
Hence (3) implies (1). □

Lemma 28.6.04L8 Let k be a field. Let X be a variety over k. The group O(X)∗/k∗

is a finitely generated abelian group provided at least one of the following conditions
holds:

(1) k is integrally closed in Γ(X,OX),
(2) k is algebraically closed in k(X),
(3) X is geometrically integral over k, or
(4) k is the “intersection” of the field extensions κ(x)/k where x runs over the

closed points of x.

Proof. We see that (1) is enough by Proposition 28.5. We omit the verification
that each of (2), (3), (4) implies (1). □

29. Künneth formula, I

0BEC In this section we prove the Künneth formula when the base is a field and we are
considering cohomology of quasi-coherent modules. For a more general version,
please see Derived Categories of Schemes, Section 23.

Lemma 29.1.0BED Let k be a field. Let X and Y be schemes over k and let F , resp.
G be a quasi-coherent OX-module, resp. OY -module. Then we have a canonical
isomorphism

Hn(X ×Spec(k) Y, pr∗
1F ⊗OX×Spec(k)Y

pr∗
2G) =

⊕
p+q=n

Hp(X,F) ⊗k H
q(Y,G)

provided X and Y are quasi-compact and have affine diagonal3 (for example if X
and Y are separated).

Proof. In this proof unadorned products and tensor products are over k. As maps

Hp(X,F) ⊗Hq(Y,G) −→ Hn(X × Y,pr∗
1F ⊗OX×Y

pr∗
2G)

we use functoriality of cohomology to get maps Hp(X,F) → Hp(X ×Y, pr∗
1F) and

Hp(Y,G) → Hp(X × Y,pr∗
2G) and then we use the cup product

∪ : Hp(X × Y, pr∗
1F) ⊗Hq(X × Y,pr∗

2G) −→ Hn(X × Y, pr∗
1F ⊗OX×Y

pr∗
2G)

The result is true when X and Y are affine by the vanishing of higher cohomology
groups on affines (Cohomology of Schemes, Lemma 2.2) and the definitions (of pull-
backs of quasi-coherent modules and tensor products of quasi-coherent modules).

Choose finite affine open coverings U : X =
⋃
i∈I Ui and V : Y =

⋃
j∈J Vj . This

determines an affine open covering W : X × Y =
⋃

(i,j)∈I×J Ui × Vj . Note that
W is a refinement of pr−1

1 U and of pr−1
2 V. Thus by Cohomology, Lemma 15.1 we

obtain maps

Č•(U ,F) → Č•(W,pr∗
1F) and Č•(V,G) → Č•(W,pr∗

2G)

3The case where X and Y are quasi-separated will be discussed in Lemma 29.2 below.
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compatible with pullback maps on cohomology. In Cohomology, Equation (25.3.2)
we have constructed a map of complexes

Tot(Č•(W,pr∗
1F) ⊗ Č•(W,pr∗

2G)) −→ Č•(W,pr∗
1F ⊗OX×Y

pr∗
2G)

defining the cup product on cohomology. Combining the above we obtain a map of
complexes

(29.1.1)0BEE Tot(Č•(U ,F) ⊗ Č•(V,G)) −→ Č•(W,pr∗
1F ⊗OX×Y

pr∗
2G)

We warn the reader that this map is not an isomorphism of complexes. Recall
that we may compute the cohomologies of our quasi-coherent sheaves using our
coverings (Cohomology of Schemes, Lemmas 2.5 and 2.6). Thus on cohomology
(29.1.1) reproduces the map of the lemma.

Consider a short exact sequence 0 → F → F ′ → F ′′ → 0 of quasi-coherent modules.
Since the construction of (29.1.1) is functorial in F and since the formation of the
relevant Čech complexes is exact in the variable F (because we are taking sections
over affine opens) we find a map between short exact sequence of complexes

Tot(Č•(U ,F) ⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′) ⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′′) ⊗ Č•(V,G))

��
Č•(W,pr∗

1F ⊗OX×Y
pr∗

2G) // Č•(W,pr∗
1F ′ ⊗OX×Y

pr∗
2G) // Č•(W,pr∗

1F ′′ ⊗OX×Y
pr∗

2G)

(we have dropped the outer zeros). Looking at long exact cohomology sequences
we find that if the result of the lemma holds for 2-out-of-3 of F ,F ′,F ′′, then it
holds for the third.

Observe that X has finite cohomological dimension for quasi-coherent modules,
see Cohomology of Schemes, Lemma 4.2. Using induction on d(F) = max{d |
Hd(X,F) ̸= 0} we will reduce to the case d(F) = 0. Assume d(F) > 0. By
Cohomology of Schemes, Lemma 4.3 we have seen that there exists an embedding
F → F ′ such that Hp(X,F ′) = 0 for all p ≥ 1. Setting F ′′ = Coker(F → F ′) we see
that d(F ′′) < d(F). Then we can apply the result from the previous paragraph to
see that it suffices to prove the lemma for F ′ and F ′′ thereby proving the induction
step.

Arguing in the same fashion for G we find that we may assume that both F and G
have nonzero cohomology only in degree 0. Let V ⊂ Y be an affine open. Consider
the affine open covering UV : X × V =

⋃
i∈I Ui × V . It is immediate that

Č•(U ,F) ⊗ G(V ) = Č•(UV ,pr∗
1F ⊗OX×Y

pr∗
2G)

(equality of complexes). We conclude that

Rpr2,∗(pr∗
1F ⊗OX×Y

pr∗
2G) ∼= Γ(X,F) ⊗k G ∼=

⊕
α∈A

G

on Y . Here A is a basis for the k-vector space Γ(X,F). Cohomology on Y commutes
with direct sums (Cohomology, Lemma 19.1). Using the Leray spectral sequence for
pr2 (via Cohomology, Lemma 13.6) we conclude that Hn(X×Y,pr∗

1F ⊗OX×Y
pr∗

2G)
is zero for n > 0 and isomorphic to H0(X,F) ⊗ H0(Y,G) for n = 0. This finishes
the proof (except that we should check that the isomorphism is indeed given by
cup product in degree 0; we omit the verification). □
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Lemma 29.2.0BEF Let k be a field. Let X and Y be schemes over k and let F , resp.
G be a quasi-coherent OX-module, resp. OY -module. Then we have a canonical
isomorphism

Hn(X ×Spec(k) Y, pr∗
1F ⊗OX×Spec(k)Y

pr∗
2G) =

⊕
p+q=n

Hp(X,F) ⊗k H
q(Y,G)

provided X and Y are quasi-compact and quasi-separated.

Proof. If X and Y are separated or more generally have affine diagonal, then
please see Lemma 29.1 for “better” proof (the feature it has over this proof is that
it identifies the maps as pullbacks followed by cup products). Let X ′, resp. Y ′ be
the infinitesimal thickening of X, resp. Y whose structure sheaf is OX′ = OX ⊕ F ,
resp. OY ′ = OY ⊕ G where F , resp. G is an ideal of square zero. Then

OX′×Y ′ = OX×Y ⊕ pr∗
1F ⊕ pr∗

2G ⊕ pr∗
1F ⊗OX×Y

pr∗
2G

as sheaves on X × Y . In this way we see that it suffices to prove that

Hn(X × Y,OX×Y ) =
⊕

p+q=n
Hp(X,OX) ⊗k H

q(Y,OY )

for any pair of quasi-compact and quasi-separated schemes over k. Some details
omitted.

To prove this statement we use cohomology and base change in the form of Co-
homology of Schemes, Lemma 7.3. This lemma tells us there exists a bounded
below complex of k-vector spaces, i.e., a complex K• of quasi-coherent modules
on Spec(k), which universally computes the cohomology of Y over Spec(k). In
particular, we see that

Rpr1,∗(OX×Y ) ∼= (X → Spec(k))∗K•

in D(OX). Up to homotopy the complex K• is isomorphic to
⊕

q≥0 H
q(Y,OY )[−q]

because this is true for every complex of vector spaces over a field. We conclude
that

Rpr1,∗(OX×Y ) ∼=
⊕

q≥0
Hq(Y,OY )[−q] ⊗k OX

in D(OX). Then we have

RΓ(X × Y,OX×Y ) = RΓ(X,Rpr1,∗(OX×Y ))

= RΓ(X,
⊕

q≥0
Hq(Y,OY )[−q] ⊗k OX)

=
⊕

q≥0
RΓ(X,Hq(Y,OY ) ⊗ OX)[−q]

=
⊕

q≥0
RΓ(X,OX) ⊗k H

q(Y,OY )[−q]

=
⊕

p,q≥0
Hp(X,OX)[−p] ⊗k H

q(Y,OY )[−q]

as desired. The first equality by Leray for pr1 (Cohomology, Lemma 13.1). The
second by our decomposition of the total direct image given above. The third be-
cause cohomology always commutes with finite direct sums (and cohomology of Y
vanishes in sufficiently large degree by Cohomology of Schemes, Lemma 4.4). The
fourth because cohomology on X commutes with infinite direct sums by Cohomol-
ogy, Lemma 19.1. The final equality by our remark on the derived category of a
field above. □

https://stacks.math.columbia.edu/tag/0BEF
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30. Picard groups of varieties

0BEG In this section we collect some elementary results on Picard groups of algebraic
varieties.

Lemma 30.1.0CDX Let A → B be a faithfully flat ring map. Let X be a quasi-
compact and quasi-separated scheme over A. Let L be an invertible OX-module
whose pullback to XB is trivial. Then H0(X,L) and H0(X,L⊗−1) are invertible
H0(X,OX)-modules and the multiplication map induces an isomorphism

H0(X,L) ⊗H0(X,OX ) H
0(X,L⊗−1) −→ H0(X,OX)

Proof. Denote LB the pullback of L to XB . Choose an isomorphism LB → OXB
.

Set R = H0(X,OX), M = H0(X,L) and think of M as an R-module. For every
quasi-coherent OX -module F with pullback FB on XB there is a canonical isomor-
phism H0(XB ,FB) = H0(X,F) ⊗A B, see Cohomology of Schemes, Lemma 5.2.
Thus we have

M ⊗R (R⊗A B) = M ⊗A B = H0(XB ,LB) ∼= H0(XB ,OXB
) = R⊗A B

Since R → R ⊗A B is faithfully flat (as the base change of the faithfully flat map
A → B), we conclude that M is an invertible R-module by Algebra, Proposition
83.3. Similarly N = H0(X,L⊗−1) is an invertible R-module. To see that the
statement on tensor products is true, use that it is true after pulling back to XB

and faithful flatness of R → R⊗A B. Some details omitted. □

Lemma 30.2.0CDY Let A → B be a faithfully flat ring map. Let X be a scheme over
A such that

(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is a semi-local ring.

Then the pullback map Pic(X) → Pic(XB) is injective.

Proof. Let L be an invertible OX -module whose pullback L′ to XB is trivial. Set
M = H0(X,L) and N = H0(X,L⊗−1). By Lemma 30.1 the R-modules M and N
are invertible. Since R is semi-local M ∼= R and N ∼= R, see Algebra, Lemma 78.7.
Choose generators s ∈ M and t ∈ N . Then st ∈ R = H0(X,OX) is a unit by the
last part of Lemma 30.1. We conclude that s and t define trivializations of L and
L⊗−1 over X. □

Lemma 30.3.0CC5 Let k′/k be a field extension. Let X be a scheme over k such that
(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is semi-local, e.g., if dimk R < ∞.

Then the pullback map Pic(X) → Pic(Xk′) is injective.

Proof. Special case of Lemma 30.2. If dimk R < ∞, then R is Artinian and hence
semi-local (Algebra, Lemmas 53.2 and 53.3). □

Example 30.4.0CDP Lemma 30.3 is not true without some condition on the scheme
X over the field k. Here is an example. Let k be a field. Let t ∈ P1

k be a closed
point. Set X = P1 \ {t}. Then we have a surjection

Z = Pic(P1
k) −→ Pic(X)

The first equality by Divisors, Lemma 28.5 and surjective by Divisors, Lemma 28.3
(as P1

k is smooth of dimension 1 over k and hence all its local rings are discrete
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valuation rings). If L is in the kernel of the displayed map, then L ∼= OP1
k
(nt)

for some n ∈ Z. We leave it to the reader to show that OP1
k
(t) ∼= OP1

k
(d) where

d = [κ(t) : k]. Hence
Pic(X) = Z/dZ

Thus if t is not a k-rational point, then d > 1 and this Picard group is nonzero.
On the other hand, if we extend the ground field k to any field extension k′ such
that there exists a k-embedding κ(t) → k′, then P1

k′ \ Xk′ has a k′-rational point
t′. Hence OP1

k′
(1) = OP1

k′
(t′) will be in the kernel of the map Z → Pic(Xk′) and it

will follow in the same manner as above that Pic(Xk′) = 0.

The following lemma tells us that “rationally equivalence invertible modules” are
isomorphic on normal varieties.

Lemma 30.5.0BEH Let k be a field. Let X be a normal variety over k. Let U ⊂ An
k be

an open subscheme with k-rational points p, q ∈ U(k). For every invertible module
L on X ×Spec(k) U the restrictions L|X×p and L|X×q are isomorphic.

Proof. The fibres of X ×Spec(k) U → X are open subschemes of affine n-space
over fields. Hence these fibres have trivial Picard groups by Divisors, Lemma 28.4.
Applying Divisors, Lemma 28.1 we see that L is the pullback of an invertible module
N on X. □

31. Uniqueness of base field

04MJ The phrase “let X be a scheme over k” means that X is a scheme which comes
equipped with a morphism X → Spec(k). Now we can ask whether the field k is
uniquely determined by the scheme X. Of course this is not the case, since for
example A1

C which we ordinarily consider as a scheme over the field C of complex
numbers, could also be considered as a scheme over Q. But what if we ask that
the morphism X → Spec(k) does not factor as X → Spec(k′) → Spec(k) for any
nontrivial field extension k′/k? In other words we ask that k is somehow maximal
such that X lives over k.

An example to show that this still does not guarantee uniqueness of k is the scheme

X = Spec
(

Q(x)[y]
[

1
P (y) , P ∈ Q[y], P ̸= 0

])
At first sight this seems to be a scheme over Q(x), but on a second look it is clear
that it is also a scheme over Q(y). Moreover, the fields Q(x) and Q(y) are subfields
of R = Γ(X,OX) which are maximal among the subfields of R (details omitted).
In particular, both Q(x) and Q(y) are maximal in the sense above. Note that
both morphisms X → Spec(Q(x)) and X → Spec(Q(y)) are “essentially of finite
type” (i.e., the corresponding ring map is essentially of finite type). Hence X is a
Noetherian scheme of finite dimension, i.e., it is not completely pathological.

Another issue that can prevent uniqueness is that the scheme X may be nonreduced.
In that case there can be many different morphisms from X to the spectrum of a
given field. As an explicit example consider the dual numbers D = C[y]/(y2) =
C ⊕ ϵC. Given any derivation θ : C → C over Q we get a ring map

C −→ D, c 7−→ c+ ϵθ(c).

https://stacks.math.columbia.edu/tag/0BEH
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The subfield of C on which all of these maps are the same is the algebraic closure
of Q. This means that taking the intersection of all the fields that X can live over
may end up being a very small field if X is nonreduced.

One observation in this regard is the following: given a field k and two subfields
k1, k2 of k such that k is finite over k1 and over k2, then in general it is not the
case that k is finite over k1 ∩ k2. An example is the field k = Q(t) and its subfields
k1 = Q(t2) and Q((t + 1)2). Namely we have k1 ∩ k2 = Q in this case. So in the
following we have to be careful when taking intersections of fields.

Having said all of this we now show that if X is locally of finite type over a field,
then some uniqueness holds. Here is the precise result.

Proposition 31.1.04MK Let X be a scheme. Let a : X → Spec(k1) and b : X →
Spec(k2) be morphisms from X to spectra of fields. Assume a, b are locally of finite
type, and X is reduced, and connected. Then we have k′

1 = k′
2, where k′

i ⊂ Γ(X,OX)
is the integral closure of ki in Γ(X,OX).

Proof. First, assume the lemma holds in case X is quasi-compact (we will do the
quasi-compact case below). As X is locally of finite type over a field, it is locally
Noetherian, see Morphisms, Lemma 15.6. In particular this means that it is lo-
cally connected, connected components of open subsets are open, and intersections
of quasi-compact opens are quasi-compact, see Properties, Lemma 5.5, Topology,
Lemma 7.11, Topology, Section 9, and Topology, Lemma 16.1. Pick an open cov-
ering X =

⋃
i∈I Ui such that each Ui is quasi-compact and connected. For each i

let Ki ⊂ OX(Ui) be the integral closure of k1 and of k2. For each pair i, j ∈ I we
decompose

Ui ∩ Uj =
∐

Ui,j,l

into its finitely many connected components. WriteKi,j,l ⊂ O(Ui,j,l) for the integral
closure of k1 and of k2. By Lemma 28.4 the rings Ki and Ki,j,l are fields. Now we
claim that k′

1 and k′
2 both equal the kernel of the map∏
Ki −→

∏
Ki,j,l, (xi)i 7−→ xi|Ui,j,l

− xj |Ui,j,l

which proves what we want. Namely, it is clear that k′
1 is contained in this kernel.

On the other hand, suppose that (xi)i is in the kernel. By the sheaf condition (xi)i
corresponds to f ∈ O(X). Pick some i0 ∈ I and let P (T ) ∈ k1[T ] be a monic
polynomial with P (xi0) = 0. Then we claim that P (f) = 0 which proves that
f ∈ k1. To prove this we have to show that P (xi) = 0 for all i. Pick i ∈ I. As X
is connected there exists a sequence i0, i1, . . . , in = i ∈ I such that Uit ∩ Uit+1 ̸= ∅.
Now this means that for each t there exists an lt such that xit and xit+1 map to
the same element of the field Ki,j,l. Hence if P (xit) = 0, then P (xit+1) = 0. By
induction, starting with P (xi0) = 0 we deduce that P (xi) = 0 as desired.

To finish the proof of the lemma we prove the lemma under the additional hypothesis
that X is quasi-compact. By Lemma 28.4 after replacing ki by k′

i we may assume
that ki is integrally closed in Γ(X,OX). This implies that O(X)∗/k∗

i is a finitely
generated abelian group, see Proposition 28.5. Let k12 = k1 ∩ k2 as a subring of
O(X). Note that k12 is a field. Since

k∗
1/k

∗
12 −→ O(X)∗/k∗

2
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we see that k∗
1/k

∗
12 is a finitely generated abelian group as well. Hence there exist

α1, . . . , αn ∈ k∗
1 such that every element λ ∈ k1 has the form

λ = cαe1
1 . . . αen

n

for some ei ∈ Z and c ∈ k12. In particular, the ring map

k12[x1, . . . , xn,
1

x1 . . . xn
] −→ k1, xi 7−→ αi

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 34.1 we conclude
that k1 is a finite extension of k12. In the same way we conclude that k2 is a finite
extension of k12. In particular both k1 and k2 are contained in the integral closure
k′

12 of k12 in Γ(X,OX). But since k′
12 is a field by Lemma 28.4 and since we chose ki

to be integrally closed in Γ(X,OX) we conclude that k1 = k12 = k2 as desired. □

32. Automorphisms

0GWY A section on automorphisms of schemes over fields. For some information on (in-
finitesimal) automorphisms of curves, see Algebraic Curves, Section 25 and Moduli
of Curves, Section 7.

Lemma 32.1.0G05 Let X be a reduced scheme of finite type over a field k. Let f : X →
X be an automorphism over k which induces the identity map on the underlying
topological space of X. Then

(1) f∗F ∼= F for every coherent OX-module, and
(2) if dim(Z) > 0 for every irreducible component Z ⊂ X, then f is the identity.

Proof. Part (1) follows from part (2) and the fact that the connected components
of X of dimension 0 are spectra of fields.
Let Z ⊂ X be an irreducible component viewed as an integral closed subscheme.
Clearly f(Z) ⊂ Z and f |Z : Z → Z is an automorphism over k which induces
the identity map on the underlying topological space of Z. Since X is reduced, it
suffices to show that the arrows f |Z : Z → Z are the identity. This reduces us to
the case discussed in the next paragraph.
Assume X is irreducible of dimension > 0. Choose a nonempty affine open U ⊂ X.
Since f(U) ⊂ U and since U ⊂ X is scheme theoretically dense it suffices to prove
that f |U : U → U is the identity.
Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is an infinite
field. Let g ∈ A be nonconstant. The set

S =
⋃

λ∈k
V (g − λ)

is dense in X because it is the inverse image of the dense subset A1
k(k) by the

nonconstant morphism g : X → A1
k. If x ∈ S, then the image g(x) of g in κ(x) is

in the image of k → κ(x). Hence f ♯ : κ(x) → κ(x) fixes g(x). Thus the image of
f ♯(g) in κ(x) is equal to g(x). We conclude that

S ⊂ V (g − f ♯(g))
and since X is reduced and S is dense we conclude g = f ♯(g). This proves f ♯ = idA
as A is generated as a k-algebra by elements g as above (details omitted; hint:
the set of constant functions is a finite dimensional k-subvector space of A). We
conclude that f = idX .

https://stacks.math.columbia.edu/tag/0G05


VARIETIES 60

Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is a finite
field. If for every 1-dimensional integral closed subscheme C ⊂ X the restriction
f |C : C → C is the identity, then f is the identity. This reduces us to the case
where X is a curve. A curve over a finite field has a finite automorphism group
(details omitted). Hence f has finite order, say n. Then we pick g : X → A1

k

nonconstant as above and we consider

S = {x ∈ X closed such that [κ(g(x)) : k] is prime to n}

Arguing as before we find that S is dense in X. Since for x ∈ X closed the map
f ♯ : κ(x) → κ(x) is an automorphism of order dividing n we see that for x ∈ S this
automorphism acts trivially on the subfield generated by the image of g in κ(x).
Thus we conclude that S ⊂ V (g − f ♯(g)) and we win as before. □

33. Euler characteristics

0BEI In this section we prove some elementary properties of Euler characteristics of
coherent sheaves on schemes proper over fields.

Definition 33.1.0BEJ Let k be a field. Let X be a proper scheme over k. Let F be a
coherent OX -module. In this situation the Euler characteristic of F is the integer

χ(X,F) =
∑

i
(−1)i dimkH

i(X,F).

For justification of the formula see below.

In the situation of the definition only a finite number of the vector spaces Hi(X,F)
are nonzero (Cohomology of Schemes, Lemma 4.5) and each of these spaces is finite
dimensional (Cohomology of Schemes, Lemma 19.2). Thus χ(X,F) ∈ Z is well
defined. Observe that this definition depends on the field k and not just on the
pair (X,F).

Lemma 33.2.08AA Let k be a field. Let X be a proper scheme over k. Let 0 → F1 →
F2 → F3 → 0 be a short exact sequence of coherent modules on X. Then

χ(X,F2) = χ(X,F1) + χ(X,F3)

Proof. Consider the long exact sequence of cohomology

0 → H0(X,F1) → H0(X,F2) → H0(X,F3) → H1(X,F1) → . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dimH0(X,F1) − dimH0(X,F2) + dimH0(X,F3) − dimH1(X,F1) + . . .

This immediately implies the lemma. □

Lemma 33.3.0AYT Let k be a field. Let X be a proper scheme over k. Let F be a
coherent sheaf with dim(Supp(F)) ≤ 0. Then

(1) F is generated by global sections,
(2) H0(X,F) =

⊕
x∈Supp(F) Fx,

(3) Hi(X,F) = 0 for i > 0,
(4) χ(X,F) = dimkH

0(X,F), and
(5) χ(X,F ⊗ E) = nχ(X,F) for every locally free module E of rank n.
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Proof. By Cohomology of Schemes, Lemma 9.7 we see that F = i∗G where i :
Z → X is the inclusion of the scheme theoretic support of F and where G is a
coherent OZ-module. By definition of the scheme theoretic support the underlying
topological space of Z is Supp(F). Since the dimension of Z is 0, we see Z is
affine (Properties, Lemma 10.5). Hence G is globally generated and the higher
cohomology groups of G are zero (Cohomology of Schemes, Lemma 2.2). In fact,
by Lemma 20.2 the scheme Z is a finite disjoint union of spectra of local Artinian
rings. Thus correspondingly H0(Z,G) =

⊕
z∈Z Gz. The cohomologies of F and G

agree by Cohomology of Schemes, Lemma 2.4. Thus Hi(X,F) = 0 for i > 0 and
H0(X,F) = H0(Z,G). In particular we have (3) is true. For z ∈ Z corresponding
to x ∈ Supp(F) we have Gz = (i∗G)x = Fx. We conclude that (2) holds. Of course
(2) implies (1). We have (4) by definition of the Euler characteristic χ(X,F) and
(3). By the projection formula (Cohomology, Lemma 54.2) we have

i∗(G ⊗ i∗E) = F ⊗ E .

Since Z has dimension 0 the locally free sheaf i∗E is isomorphic to O⊕n
Z and arguing

as above we see that (5) holds. □

Lemma 33.4.08AB Let k′/k be an extension of fields. Let X be a proper scheme over
k. Let F be a coherent sheaf on X. Let F ′ be the pullback of F to Xk′ . Then
χ(X,F) = χ(X ′,F ′).

Proof. This is true because

Hi(Xk′ ,F ′) = Hi(X,F) ⊗k k
′

by flat base change, see Cohomology of Schemes, Lemma 5.2. □

Lemma 33.5.0BEK Let k be a field. Let f : Y → X be a morphism of proper schemes
over k. Let G be a coherent OY -module. Then

χ(Y,G) =
∑

(−1)iχ(X,Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Schemes, Proposition 19.1 and
Lemma 4.5. By Cohomology, Lemma 13.4 there is a spectral sequence with

Ep,q2 = Hp(X,Rqf∗G)

converging to Hp+q(Y,G). By finiteness of cohomology on X we see that only a
finite number of Ep,q2 are nonzero and each Ep,q2 is a finite dimensional vector space.
It follows that the same is true for Ep,qr for r ≥ 2 and that∑

(−1)p+q dimk E
p,q
r

is independent of r. Since for r large enough we have Ep,qr = Ep,q∞ and since
convergence means there is a filtration on Hn(Y,G) whose graded pieces are Ep,q∞
with p + q = n (this is the meaning of convergence of the spectral sequence), we
conclude. Compare also with the more general Homology, Lemma 24.12. □
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34. Projective space

0B2N Some results on projective space over a field.

Lemma 34.1.0B2P Let k be a field and n ≥ 0. Then Pn
k is a smooth projective variety

of dimension n over k.

Proof. Omitted. □

Lemma 34.2.0B2Q Let k be a field and n ≥ 0. Let X,Y ⊂ An
k be closed subsets.

Assume that X and Y are equidimensional, dim(X) = r and dim(Y ) = s. Then
every irreducible component of X ∩ Y has dimension ≥ r + s− n.

Proof. Consider the closed subscheme X × Y ⊂ A2n
k where we use coordinates

x1, . . . , xn, y1, . . . , yn. ThenX∩Y = X×Y ∩V (x1−y1, . . . , xn−yn). Let t ∈ X∩Y ⊂
X×Y be a closed point. By Lemma 20.5 we have dimt(X×Y ) = dim(X)+dim(Y ).
Thus dim(OX×Y,t) = r+s by Lemma 20.3. By Algebra, Lemma 60.13 we conclude
that

dim(OX∩Y,t) = dim(OX×Y,t/(x1 − y1, . . . , xn − yn)) ≥ r + s− n

This implies the result by Lemma 20.3. □

Lemma 34.3.0B2R Let k be a field and n ≥ 0. Let X,Y ⊂ Pn
k be nonempty closed

subsets. If dim(X) = r and dim(Y ) = s and r + s ≥ n, then X ∩ Y is nonempty
and dim(X ∩ Y ) ≥ r + s− n.

Proof. Write An = Spec(k[x0, . . . , xn]) and Pn = Proj(k[T0, . . . , Tn]). Consider
the morphism π : An+1 \ {0} → Pn which sends (x0, . . . , xn) to the point [x0 : . . . :
xn]. More precisely, it is the morphism associated to the pair (OAn+1\{0}, (x0, . . . , xn)),
see Constructions, Lemma 13.1. Over the standard affine open D+(Ti) we get the
morphism associated to the ring map

k

[
T0

Ti
, . . . ,

Tn
Ti

]
−→ k

[
T0, . . . , Tn,

1
Ti

]
∼= k

[
T0

Ti
, . . . ,

Tn
Ti

] [
Ti,

1
Ti

]
which is surjective and smooth of relative dimension 1 with irreducible fibres (details
omitted). Hence π−1(X) and π−1(Y ) are nonempty closed subsets of dimension
r+ 1 and s+ 1. Choose an irreducible component V ⊂ π−1(X) of dimension r+ 1
and an irreducible component W ⊂ π−1(Y ) of dimension s+ 1. Observe that this
implies V and W contain every fibre of π they meet (since π has irreducible fibres
of dimension 1 and since Lemma 20.4 says the fibres of V → π(V ) and W → π(W )
have dimension ≥ 1). Let V and W be the closure of V and W in An+1. Since
0 ∈ An+1 is in the closure of every fibre of π we see that 0 ∈ V ∩ W . By Lemma
34.2 we have dim(V ∩ W ) ≥ r + s − n + 1. Arguing as above using Lemma 20.4
again, we conclude that π(V ∩ W ) ⊂ X ∩ Y has dimension at least r + s − n as
desired. □

Lemma 34.4.0BXU Let k be a field. Let Z ⊂ Pn
k be a closed subscheme which has no

embedded points such that every irreducible component of Z has dimension n − 1.
Then the ideal I(Z) ⊂ k[T0, . . . , Tn] corresponding to Z is principal.

Proof. This is a special case of Divisors, Lemma 31.3. □
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35. Coherent sheaves on projective space

089X In this section we prove some results on the cohomology of coherent sheaves on
Pn over a field which can be found in [Mum66]. These will be useful later when
discussing Quot and Hilbert schemes.

35.1. Preliminaries.089Y Let k be a field, n ≥ 1, d ≥ 1, and let s ∈ Γ(Pn
k ,O(d)) be a

nonzero section. In this section we will write O(d) for the dth twist of the structure
sheaf on projective space (Constructions, Definitions 10.1 and 13.2). Since Pn

k is a
variety this section is regular, hence s is a regular section of O(d) and defines an
effective Cartier divisor H = Z(s) ⊂ Pn

k , see Divisors, Section 13. Such a divisor
H is called a hypersurface and if d = 1 it is called a hyperplane.

Lemma 35.2.089Z Let k be a field. Let n ≥ 1. Let i : H → Pn
k be a hyperplane. Then

there exists an isomorphism
φ : Pn−1

k −→ H

such that i∗O(1) pulls back to O(1).

Proof. We have Pn
k = Proj(k[T0, . . . , Tn]). The section s corresponds to a homoge-

neous form in T0, . . . , Tn of degree 1, see Cohomology of Schemes, Section 8. Say s =∑
aiTi. Constructions, Lemma 13.7 gives that H = Proj(k[T0, . . . , Tn]/I) for the

graded ideal I defined by setting Id equal to the kernel of the map Γ(Pn
k ,O(d)) →

Γ(H, i∗O(d)). By our construction of Z(s) in Divisors, Definition 14.8 we see
that on D+(Tj) the ideal of H is generated by

∑
aiTi/Tj in the polynomial ring

k[T0/Tj , . . . , Tn/Tj ]. Thus it is clear that I is the ideal generated by
∑
aiTi. Note

that
k[T0, . . . , Tn]/I = k[T0, . . . , Tn]/(

∑
aiTi) ∼= k[S0, . . . , Sn−1]

as graded rings. For example, if an ̸= 0, then mapping Si equal to the class of
Ti works. We obtain the desired isomorphism by functoriality of Proj. Equality of
twists of structure sheaves follows for example from Constructions, Lemma 11.5. □

Lemma 35.3.08A0 Let k be an infinite field. Let n ≥ 1. Let F be a coherent module on
Pn
k . Then there exist a nonzero section s ∈ Γ(Pn

k ,O(1)) and a short exact sequence
0 → F(−1) → F → i∗G → 0

where i : H → Pn
k is the hyperplane H associated to s and G = i∗F .

Proof. The map F(−1) → F comes from Constructions, Equation (10.1.2) with
n = 1, m = −1 and the section s of O(1). Let’s work out what this map looks
like if we restrict it to D+(T0). Write D+(T0) = Spec(k[x1, . . . , xn]) with xi =
Ti/T0. Identify O(1)|D+(T0) with O using the section T0. Hence if s =

∑
aiTi then

s|D+(T0) = a0 +
∑
aixi with the identification chosen above. Furthermore, suppose

F|D+(T0) corresponds to the finite k[x1, . . . , xn]-module M . Via the identification
F(−1) = F ⊗ O(−1) and our chosen trivialization of O(1) we see that F(−1)
corresponds to M as well. Thus restricting F(−1) → F to D+(T0) gives the map

M
a0+

∑
aixi

−−−−−−−→ M

To see that the arrow is injective, it suffices to pick a0 +
∑
aixi outside any of

the associated primes of M , see Algebra, Lemma 63.9. By Algebra, Lemma 63.5
the set Ass(M) of associated primes of M is finite. Note that for p ∈ Ass(M) the
intersection p ∩ {a0 +

∑
aixi} is a proper k-subvector space. We conclude that
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there is a finite family of proper sub vector spaces V1, . . . , Vm ⊂ Γ(Pn
k ,O(1)) such

that if we take s outside of
⋃
Vi, then multiplication by s is injective over D+(T0).

Similarly for the restriction to D+(Tj) for j = 1, . . . , n. Since k is infinite, a finite
union of proper sub vector spaces is never equal to the whole space, hence we may
choose s such that the map is injective. The cokernel of F(−1) → F is annihilated
by Im(s : O(−1) → O) which is the ideal sheaf of H by Divisors, Definition 14.8.
Hence we obtain G on H using Cohomology of Schemes, Lemma 9.8. □

Remark 35.4.08A1 Let k be an infinite field. Let n ≥ 1. Given a finite number of
coherent modules Fi on Pn

k we can choose a single s ∈ Γ(Pn
k ,O(1)) such that the

statement of Lemma 35.3 works for each of them. To prove this, just apply the
lemma to

⊕
Fi.

Remark 35.5.0EGK In the situation of Lemmas 35.2 and 35.3 we have H ∼= Pn−1
k with

Serre twists OH(d) = i∗OPn
k
(d). For every d ∈ Z we have a short exact sequence

0 → F(d− 1) → F(d) → i∗(G(d)) → 0
Namely, tensoring by OPn

k
(d) is an exact functor and by the projection formula

(Cohomology, Lemma 54.2) we have i∗(G(d)) = i∗G ⊗ OPn
k
(d). We obtain corre-

sponding long exact sequences
Hi(Pn

k ,F(d− 1)) → Hi(Pn
k ,F(d)) → Hi(H,G(d)) → Hi+1(Pn

k ,F(d− 1))
This follows from the above and the fact that we haveHi(Pn

k , i∗G(d)) = Hi(H,G(d))
by Cohomology of Schemes, Lemma 2.4 (closed immersions are affine).

35.6. Regularity.08A2 Here is the definition.

Definition 35.7.08A3 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

We say F is m-regular if
Hi(Pn

k ,F(m− i)) = 0
for i = 1, . . . , n.

Note that F = O(d) is m-regular if and only if d ≥ −m. This follows from the
computation of cohomology groups in Cohomology of Schemes, Equation (8.1.1).
Namely, we see that Hn(Pn

k ,O(d)) = 0 if and only if d ≥ −n.

Lemma 35.8.08A4 Let k′/k be an extension of fields. Let n ≥ 0. Let F be a coherent
sheaf on Pn

k . Let F ′ be the pullback of F to Pn
k′ . Then F is m-regular if and only

if F ′ is m-regular.

Proof. This is true because
Hi(Pn

k′ ,F ′) = Hi(Pn
k ,F) ⊗k k

′

by flat base change, see Cohomology of Schemes, Lemma 5.2. □

Lemma 35.9.08A5 In the situation of Lemma 35.3, if F is m-regular, then G is m-
regular on H ∼= Pn−1

k .

Proof. Recall that Hi(Pn
k , i∗G) = Hi(H,G) by Cohomology of Schemes, Lemma

2.4. Hence we see that for i ≥ 1 we get
Hi(Pn

k ,F(m− i)) → Hi(H,G(m− i)) → Hi+1(Pn
k ,F(m− 1 − i))

by Remark 35.5. The lemma follows. □
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Lemma 35.10.08A6 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F is (m+ 1)-regular.

Proof. We prove this by induction on n. If n = 0 every sheaf is m-regular for all
m and there is nothing to prove. By Lemma 35.8 we may replace k by an infinite
overfield and assume k is infinite. Thus we may apply Lemma 35.3. By Lemma 35.9
we know that G is m-regular. By induction on n we see that G is (m+ 1)-regular.
Considering the long exact cohomology sequence associated to the sequence

0 → F(m− i) → F(m+ 1 − i) → i∗G(m+ 1 − i) → 0

as in Remark 35.5 the reader easily deduces for i ≥ 1 the vanishing of Hi(Pn
k ,F(m+

1−i)) from the (known) vanishing of Hi(Pn
k ,F(m−i)) and Hi(Pn

k ,G(m+1−i)). □

Lemma 35.11.08A7 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then the multiplication map

H0(Pn
k ,F(m)) ⊗k H

0(Pn
k ,O(1)) −→ H0(Pn

k ,F(m+ 1))

is surjective.

Proof. Let k′/k be an extension of fields. Let F ′ be as in Lemma 35.8. By
Cohomology of Schemes, Lemma 5.2 the base change of the linear map of the
lemma to k′ is the same linear map for the sheaf F ′. Since k → k′ is faithfully flat
it suffices to prove the lemma over k′, i.e., we may assume k is infinite.

Assume k is infinite. We prove the lemma by induction on n. The case n = 0 is
trivial as O(1) ∼= O is generated by T0. For n > 0 apply Lemma 35.3 and tensor
the sequence by O(m+ 1) to get

0 → F(m) s−→ F(m+ 1) → i∗G(m+ 1) → 0

see Remark 35.5. Let t ∈ H0(Pn
k ,F(m + 1)). By induction the image t ∈

H0(H,G(m+1)) is the image of
∑
gi⊗si with si ∈ Γ(H,O(1)) and gi ∈ H0(H,G(m)).

Since F is m-regular we have H1(Pn
k ,F(m− 1)) = 0, hence long exact cohomology

sequence associated to the short exact sequence

0 → F(m− 1) s−→ F(m) → i∗G(m) → 0

shows we can lift gi to fi ∈ H0(Pn
k ,F(m)). We can also lift si to si ∈ H0(Pn

k ,O(1))
(see proof of Lemma 35.2 for example). After substracting the image of

∑
fi ⊗ si

from t we see that we may assume t = 0. But this exactly means that t is the image
of f ⊗ s for some f ∈ H0(Pn

k ,F(m)) as desired. □

Lemma 35.12.08A8 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F(m) is globally generated.

Proof. For all d ≫ 0 the sheaf F(d) is globally generated. This follows for example
from the first part of Cohomology of Schemes, Lemma 14.1. Pick d ≥ m such that
F(d) is globally generated. Choose a basis f1, . . . , fr ∈ H0(Pn

k ,F). By Lemma
35.11 every element f ∈ H0(Pn

k ,F(d)) can be written as f =
∑
Pifi for some

Pi ∈ k[T0, . . . , Tn] homogeneous of degree d − m. Since the sections f generate
F(d) it follows that the sections fi generate F(m). □
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35.13. Hilbert polynomials.08A9 The following lemma will be made obsolete by the
more general Lemma 45.1.

Lemma 35.14.08AC Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function
d 7−→ χ(Pn

k ,F(d))
is a polynomial.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and

F(d) = F . Hence in this case the function is constant, i.e., a polynomial of degree
0. Assume n > 0. By Lemma 33.4 we may assume k is infinite. Apply Lemma 35.3.
Applying Lemma 33.2 to the twisted sequences 0 → F(d−1) → F(d) → i∗G(d) → 0
we obtain

χ(Pn
k ,F(d)) − χ(Pn

k ,F(d− 1)) = χ(H,G(d))
See Remark 35.5. Since H ∼= Pn−1

k by induction the right hand side is a polynomial.
The lemma is finished by noting that any function f : Z → Z with the property
that the map d 7→ f(d) − f(d− 1) is a polynomial, is itself a polynomial. We omit
the proof of this fact (hint: compare with Algebra, Lemma 58.5). □

Definition 35.15.08AD Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function d 7→ χ(Pn
k ,F(d)) is called the Hilbert polynomial of F .

The Hilbert polynomial has coefficients in Q and not in general in Z. For example
the Hilbert polynomial of OPn

k
is

d 7−→
(
d+ n

n

)
= dn

n! + . . .

This follows from the following lemma and the fact that

H0(Pn
k ,OPn

k
(d)) = k[T0, . . . , Tn]d

(degree d part) whose dimension over k is
(
d+n
n

)
.

Lemma 35.16.08AE Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k with

Hilbert polynomial P ∈ Q[t]. Then

P (d) = dimkH
0(Pn

k ,F(d))

for all d ≫ 0.

Proof. This follows from the vanishing of cohomology of high enough twists of F .
See Cohomology of Schemes, Lemma 14.1. □

35.17. Boundedness of quotients.08AF In this subsection we bound the regularity
of quotients of a given coherent sheaf on Pn in terms of the Hilbert polynomial.

Lemma 35.18.08AG Let k be a field. Let n ≥ 0. Let r ≥ 1. Let P ∈ Q[t]. There exists
an integer m depending on n, r, and P with the following property: if

0 → K → O⊕r → F → 0

is a short exact sequence of coherent sheaves on Pn
k and F has Hilbert polynomial

P , then K is m-regular.

https://stacks.math.columbia.edu/tag/08AC
https://stacks.math.columbia.edu/tag/08AD
https://stacks.math.columbia.edu/tag/08AE
https://stacks.math.columbia.edu/tag/08AG
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Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and any

coherent module is 0-regular and any surjective map is surjective on global sections.
Assume n > 0. Consider an exact sequence as in the lemma. Let P ′ ∈ Q[t] be the
polynomial P ′(t) = P (t) −P (t− 1). Let m′ be the integer which works for n− 1, r,
and P ′. By Lemmas 35.8 and 33.4 we may replace k by a field extension, hence we
may assume k is infinite. Apply Lemma 35.3 to the coherent sheaf F . The Hilbert
polynomial of F ′ = i∗F is P ′ (see proof of Lemma 35.14). Since i∗ is right exact we
see that F ′ is a quotient of O⊕r

H = i∗O⊕r. Thus the induction hypothesis applies
to F ′ on H ∼= Pn−1

k (Lemma 35.2). Note that the map K(−1) → K is injective as
K ⊂ O⊕r and has cokernel i∗H where H = i∗K. By the snake lemma (Homology,
Lemma 5.17) we obtain a commutative diagram with exact columns and rows

0

��

0

��

0

��
0 // K(−1) //

��

O⊕r(−1) //

��

F(−1)

��

// 0

0 // K //

��

O⊕r //

��

F

��

// 0

0 // i∗H //

��

i∗O⊕r
H

//

��

i∗F ′ //

��

0

0 0 0
Thus the induction hypothesis applies to the exact sequence 0 → H → O⊕r

H →
F ′ → 0 on H ∼= Pn−1

k (Lemma 35.2) and H is m′-regular. Recall that this implies
that H is d-regular for all d ≥ m′ (Lemma 35.10).
Let i ≥ 2 and d ≥ m′. It follows from the long exact cohomology sequence associ-
ated to the left column of the diagram above and the vanishing of Hi−1(H,H(d))
that the map

Hi(Pn
k ,K(d− 1)) −→ Hi(Pn

k ,K(d))
is injective. As these groups are zero for d ≫ 0 (Cohomology of Schemes, Lemma
14.1) we conclude Hi(Pn

k ,K(d)) are zero for all d ≥ m′ and i ≥ 2.
We still have to control H1. First we observe that all the maps

H1(Pn
k ,K(m′ − 1)) → H1(Pn

k ,K(m′)) → H1(Pn
k ,K(m′ + 1)) → . . .

are surjective by the vanishing of H1(H,H(d)) for d ≥ m′. Suppose d > m′ is such
that

H1(Pn
k ,K(d− 1)) −→ H1(Pn

k ,K(d))
is injective. Then H0(Pn

k ,K(d)) → H0(H,H(d)) is surjective. Consider the com-
mutative diagram

H0(Pn
k ,K(d)) ⊗k H

0(Pn
k ,O(1)) //

��

H0(Pn
k ,K(d+ 1))

��
H0(H,H(d)) ⊗k H

0(H,OH(1)) // H0(H,H(d+ 1))
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By Lemma 35.11 we see that the bottom horizontal arrow is surjective. Hence the
right vertical arrow is surjective. We conclude that

H1(Pn
k ,K(d)) −→ H1(Pn

k ,K(d+ 1))

is injective. By induction we see that

H1(Pn
k ,K(d− 1)) → H1(Pn

k ,K(d)) → H1(Pn
k ,K(d+ 1)) → . . .

are all injective and we conclude that H1(Pn
k ,K(d−1)) = 0 because of the eventual

vanishing of these groups. Thus the dimensions of the groups H1(Pn
k ,K(d)) for

d ≥ m′ are strictly decreasing until they become zero. It follows that the regularity
of K is bounded by m′ +dimkH

1(Pn
k ,K(m′)). On the other hand, by the vanishing

of the higher cohomology groups we have

dimkH
1(Pn

k ,K(m′)) = −χ(Pn
k ,K(m′)) + dimkH

0(Pn
k ,K(m′))

Note that the H0 has dimension bounded by the dimension of H0(Pn
k ,O⊕r(m′))

which is at most r
(
n+m′

n

)
if m′ > 0 and zero if not. Finally, the term χ(Pn

k ,K(m′))
is equal to r

(
n+m′

n

)
− P (m′). This gives a bound of the desired type finishing the

proof of the lemma. □

36. Frobenii

0CC6 Let p be a prime number. If X is a scheme, then we say “X has characteristic p”,
or “X is of characteristic p”, or “X is in characteristic p” if p is zero in OX .

Definition 36.1.03SM Let p be a prime number. Let X be a scheme in characteristic
p. The absolute frobenius of X is the morphism FX : X → X given by the identity
on the underlying topological space and with F ♯X : OX → OX given by g 7→ gp.

This makes sense because for any ring A of characteristic p the map FA : A → A,
a 7→ ap is a ring endomorphism which induces the identity on Spec(A). Moreover,
if A is local, then FA is a local homomorphism. In this way we see that the absolute
frobenius of X is an endomorphism of X in the category of schemes. It turns out
that the absolute frobenius defines a self map of the identity functor on the category
of schemes in characteristic p.

Lemma 36.2.0CC7 Let p > 0 be a prime number. Let f : X → Y be a morphism of
schemes in characteristic p. Then the diagram

X

f

��

FX

// X

f

��
Y

FY // Y

commutes.

Proof. This follows from the following trivial algebraic fact: if φ : A → B is a
homomorphism of rings of characteristic p, then φ(ap) = φ(a)p. □

Lemma 36.3.0CC8 Let p > 0 be a prime number. Let X be a scheme in characteristic
p. Then the absolute frobenius FX : X → X is a universal homeomorphism, is
integral, and induces purely inseparable residue field extensions.

https://stacks.math.columbia.edu/tag/03SM
https://stacks.math.columbia.edu/tag/0CC7
https://stacks.math.columbia.edu/tag/0CC8
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Proof. This follows from the corresponding results for the frobenius endomorphism
FA : A → A of a ring A of characteristic p > 0. See the discussion in Algebra,
Section 46, for example Lemma 46.7. □

If we are working with schemes over a fixed base, then there is a relative version of
the frobenius morphism.

Definition 36.4.0CC9 Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. We define

X(p) = X(p/S) = X ×S,FS
S

viewed as a scheme over S. Applying Lemma 36.2 we see there is a unique morphism
FX/S : X −→ X(p) over S fitting into the commutative diagram

X
FX/S

//

''

FX

++X(p) //

��

X

��
S

FS // S

where the right square is cartesian. The morphism FX/S is called the relative
Frobenius morphism of X/S.

Observe that X 7→ X(p) is a functor; it is the base change functor for the absolute
frobenius morphism FS : S → S. We have the same lemmas as before regarding
the relative Frobenius morphism.

Lemma 36.5.0CCA Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let f : X → Y be a morphism of schemes over S . Then the diagram

X

f

��

FX/S

// X(p)

f(p)

��
Y

FY/S // Y (p)

commutes.

Proof. This follows from Lemma 36.2 and the definitions. □

Lemma 36.6.0CCB Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. Then the relative frobenius FX/S : X → X(p) is a
universal homeomorphism, is integral, and induces purely inseparable residue field
extensions.

Proof. By Lemma 36.3 the morphisms FX : X → X and the base change h :
X(p) → X of FS are universal homeomorphisms. Since h ◦ FX/S = FX we con-
clude that FX/S is a universal homeomorphism (Morphisms, Lemma 45.8). By
Morphisms, Lemmas 45.5 and 10.2 we conclude that FX/S has the other properties
as well. □

Lemma 36.7.0CCC Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. Then ΩX/S = ΩX/X(p) .

https://stacks.math.columbia.edu/tag/0CC9
https://stacks.math.columbia.edu/tag/0CCA
https://stacks.math.columbia.edu/tag/0CCB
https://stacks.math.columbia.edu/tag/0CCC
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Proof. This translates into the following algebra fact. Let A → B be a homomor-
phism of rings of characteristic p. Set B′ = B ⊗A,FA

A and consider the ring map
FB/A : B′ → B, b ⊗ a 7→ bpa. Then our assertion is that ΩB/A = ΩB/B′ . This is
true because d(bpa) = 0 if d : B → ΩB/A is the universal derivation and hence d is
a B′-derivation. □

Lemma 36.8.0CCD Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. If X → S is locally of finite type, then FX/S is finite.

Proof. This translates into the following algebra fact. Let A → B be a finite type
homomorphism of rings of characteristic p. Set B′ = B ⊗A,FA

A and consider the
ring map FB/A : B′ → B, b ⊗ a 7→ bpa. Then our assertion is that FB/A is finite.
Namely, if x1, . . . , xn ∈ B are generators over A, then xi is integral over B′ because
xpi = FB/A(xi ⊗ 1). Hence FB/A : B′ → B is finite by Algebra, Lemma 36.5. □

Lemma 36.9.0CCE Let k be a field of characteristic p > 0. Let X be a scheme over k.
Then X is geometrically reduced if and only if X(p) is reduced.

Proof. Consider the absolute frobenius Fk : k → k. Then Fk(k) = kp in other
words, Fk : k → k is isomorphic to the embedding of k into k1/p. Thus the lemma
follows from Lemma 6.4. □

Lemma 36.10.0CCF Let k be a field of characteristic p > 0. Let X be a variety over
k. The following are equivalent

(1) X(p) is reduced,
(2) X is geometrically reduced,
(3) there is a nonempty open U ⊂ X smooth over k.

In this case X(p) is a variety over k and FX/k : X → X(p) is a finite dominant
morphism of degree pdim(X).

Proof. We have seen the equivalence of (1) and (2) in Lemma 36.9. We have seen
that (2) implies (3) in Lemma 25.7. If (3) holds, then U is geometrically reduced
(see for example Lemma 12.6) and hence X is geometrically reduced by Lemma
6.8. In this way we see that (1), (2), and (3) are equivalent.
Assume (1), (2), and (3) hold. Since FX/k is a homeomorphism (Lemma 36.6) we
see that X(p) is a variety. Then FX/k is finite by Lemma 36.8. It is dominant as
it is surjective. To compute the degree (Morphisms, Definition 51.8) it suffices to
compute the degree of FU/k : U → U (p) (as FU/k = FX/k|U by Lemma 36.5). After
shrinking U a bit we may assume there exists an étale morphism h : U → An

k , see
Morphisms, Lemma 36.20. Of course n = dim(U) because An

k → Spec(k) is smooth
of relative dimension n, the étale morphism h is smooth of relative dimension 0,
and U → Spec(k) is smooth of relative dimension dim(U) and relative dimensions
add up correctly (Morphisms, Lemma 29.3). Observe that h is a generically finite
dominant morphism of varieties, and hence deg(h) is defined. By Lemma 36.5 we
have a commutative diagram

X
FX/k

//

h

��

X(p)

h(p)

��
An
k

FAn
k

/k

// (An
k )(p)

https://stacks.math.columbia.edu/tag/0CCD
https://stacks.math.columbia.edu/tag/0CCE
https://stacks.math.columbia.edu/tag/0CCF
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Since h(p) is a base change of h it is étale as well and it follows that h(p) is a
generically finite dominant morphism of varieties as well. The degree of h(p) is the
degree of the extension k(X(p))/k((An

k )(p)) which is the same as the degree of the
extension k(X)/k(An

k ) because h(p) is the base change of h (small detail omitted).
By multiplicativity of degrees (Morphisms, Lemma 51.9) it suffices to show that
the degree of FAn

k
/k is pn. To see this observe that (An

k )(p) = An
k and that FAn

k
/k

is given by the map sending the coordinates to their pth powers. □

Remark 36.11.0CCG Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. For n ≥ 1

X(pn) = X(pn/S) = X ×S,Fn
S
S

viewed as a scheme over S. Observe that X 7→ X(pn) is a functor. Applying Lemma
36.2 we see FX/S,n = (FnX , idS) : X −→ X(pn) is a morphism over S fitting into the
commutative diagram

X
FX/S,n

//

''

Fn
X

++X(pn) //

��

X

��
S

Fn
S // S

where the right square is cartesian. The morphism FX/S,n is sometimes called the
n-fold relative Frobenius morphism of X/S. This makes sense because we have the
formula

FX/S,n = FX(pn−1)/S ◦ . . . ◦ FX(p)/S ◦ FX/S
which shows that FX/S,n is the composition of n relative Frobenii. Since we have

FX(pm)/S = F
(p)
X(pm−1)/S

= . . . = F
(pm)
X/S

(details omitted) we get also that

FX/S,n = F
(pn−1)
X/S ◦ . . . ◦ F (p)

X/S ◦ FX/S

37. Glueing dimension one rings

09MX This section contains some algebraic preliminaries to proving that a finite set of
codimension 1 points of a separated scheme is contained in an affine open.

Situation 37.1.09MY Here we are given a commutative diagram of rings

A // K

R

OO

// B

OO

where K is a field and A, B are subrings of K with fraction field K. Finally,
R = A×K B = A ∩B.

Lemma 37.2.09MZ In Situation 37.1 assume that B is a valuation ring. Then for
every unit u of A either u ∈ R or u−1 ∈ R.

Proof. Namely, if the image c of u in K is in B, then u ∈ R. Otherwise, c−1 ∈ B
(Algebra, Lemma 50.4) and u−1 ∈ R. □

https://stacks.math.columbia.edu/tag/0CCG
https://stacks.math.columbia.edu/tag/09MY
https://stacks.math.columbia.edu/tag/09MZ
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The following lemma explains the meaning of the condition “A⊗B → K is surjec-
tive” which comes up quite a bit in the following.

Lemma 37.3.09N0 In Situation 37.1 assume A is a Noetherian ring of dimension 1.
The following are equivalent

(1) A⊗B → K is not surjective,
(2) there exists a discrete valuation ring O ⊂ K containing both A and B.

Proof. It is clear that (2) implies (1). On the other hand, if A ⊗ B → K is not
surjective, then the image C ⊂ K is not a field hence C has a nonzero maximal
ideal m. Choose a valuation ring O ⊂ K dominating Cm. By Algebra, Lemma
119.12 applied to A ⊂ O the ring O is Noetherian. Hence O is a discrete valuation
ring by Algebra, Lemma 50.18. □

Lemma 37.4.09N1 In Situation 37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a discrete valuation ring,

Then we have the following two possibilities
(a) If A∗ is not contained in R, then Spec(A) → Spec(R) and Spec(B) →

Spec(R) are open immersions covering Spec(R) and K = A⊗R B.
(b) If A∗ is contained in R, then B dominates one of the local rings of A at a

maximal ideal and A⊗B → K is not surjective.

Proof. Assumption (a) implies there is a unit u of A whose image in K lies in the
maximal ideal of B. Then u is a nonzerodivisor of R and for every a ∈ A there
exists an n such that una ∈ R. It follows that A = Ru.
Let mA be the Jacobson radical of A. Let x ∈ mA be a nonzero element. Since
dim(A) = 1 we see that K = Ax. After replacing x by xnum for some n ≥ 1 and
m ∈ Z we may assume x maps to a unit of B. We see that for every b ∈ B we have
that xnb in the image of R for some n. Thus B = Rx.
Let z ∈ R. If z ̸∈ mA and z does not map to an element of mB , then z is invertible.
Thus x+ u is invertible in R. Hence Spec(R) = D(x) ∪D(u). We have seen above
that D(u) = Spec(A) and D(x) = Spec(B).
Case (b). If x ∈ mA, then 1 + x is a unit and hence 1 + x ∈ R, i.e, x ∈ R. Thus
we see that mA ⊂ R ⊂ A. In fact, in this case A is integral over R. Namely, write
A/mA = κ1 × . . . × κn as a product of fields. Say x = (c1, . . . , cr, 0, . . . , 0) is an
element with ci ̸= 0. Then

x2 − x(c1, . . . , cr, 1, . . . , 1) = 0
Since R contains all units we see that A/mA is integral over the image of R in
it, and hence A is integral over R. It follows that R ⊂ A ⊂ B as B is integrally
closed. Moreover, if x ∈ mA is nonzero, then K = Ax =

⋃
x−nA =

⋃
x−nR. Hence

x−1 ̸∈ B, i.e., x ∈ mB . We conclude mA ⊂ mB . Thus A∩mB is a maximal ideal of
A thereby finishing the proof. □

Lemma 37.5.09N2 Let B be a semi-local Noetherian domain of dimension 1. Let B′

be the integral closure of B in its fraction field. Then B′ is a semi-local Dedekind
domain. Let x be a nonzero element of the Jacobson radical of B′. Then for every
y ∈ B′ there exists an n such that xny ∈ B.

https://stacks.math.columbia.edu/tag/09N0
https://stacks.math.columbia.edu/tag/09N1
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Proof. Let mB be the Jacobson radical of B. The structure of B′ results from
Algebra, Lemma 120.18. Given x, y ∈ B′ as in the statement of the lemma consider
the subring B ⊂ A ⊂ B′ generated by x and y. Then A is finite over B (Algebra,
Lemma 36.5). Since the fraction fields of B and A are the same we see that the
finite module A/B is supported on the set of closed points of B. Thus mnBA ⊂ B for
a suitable n. Moreover, Spec(B′) → Spec(A) is surjective (Algebra, Lemma 36.17),
hence A is semi-local as well. It also follows that x is in the Jacobson radical mA of
A. Note that mA =

√
mBA. Thus xmy ∈ mBA for some m. Then xnmy ∈ B. □

Lemma 37.6.09N3 In Situation 37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a Noetherian semi-local domain of dimension 1,
(3) A⊗B → K is surjective.

Then Spec(A) → Spec(R) and Spec(B) → Spec(R) are open immersions covering
Spec(R) and K = A⊗R B.

Proof. Special case: B is integrally closed in K. This means that B is a Dedekind
domain (Algebra, Lemma 120.17) whence all of its localizations at maximal ideals
are discrete valuation rings. Let m1, . . . ,mr be the maximal ideals of B. We set

R1 = A×K Bm1

Observing that A ⊗R1 Bm1 → K is surjective we conclude from Lemma 37.4 that
A and Bm1 define open subschemes covering Spec(R1) and that K = A ⊗R1 Bm1 .
In particular R1 is a semi-local Noetherian ring of dimension 1. By induction we
define

Ri+1 = Ri ×K Bmi+1

for i = 1, . . . , r−1. Observe that R = Rn because B = Bm1 ∩. . .∩Bmr
(see Algebra,

Lemma 157.6). It follows from the inductive procedure that R → A defines an open
immersion Spec(A) → Spec(R). On the other hand, the maximal ideals ni of R not
in this open correspond to the maximal ideals mi of B and in fact the ring map
R → B defines an isomorphisms Rni → Bmi (details omitted; hint: in each step we
added exactly one maximal ideal to Spec(Ri)). It follows that Spec(B) → Spec(R)
is an open immersion as desired.
General case. Let B′ ⊂ K be the integral closure of B. See Lemma 37.5. Then
the special case applies to R′ = A ×K B′. Pick x ∈ R′ which is not contained in
the maximal ideals of A and is contained in the maximal ideals of B′ (see Algebra,
Lemma 15.4). By Lemma 37.5 there exists an integer n such that xn ∈ R = A×KB.
Replace x by xn so x ∈ R. For every y ∈ R′ there exists an integer n such that
xny ∈ R. On the other hand, it is clear that R′

x = A. Thus Rx = A. Exchanging
the roles of A and B we also find an y ∈ R such that B = Ry. Note that inverting
both x and y leaves no primes except (0). Thus K = Rxy = Rx ⊗R Ry. This
finishes the proof. □

Lemma 37.7.09N4 Let K be a field. Let A1, . . . , Ar ⊂ K be Noetherian semi-local
rings of dimension 1 with fraction field K. If Ai ⊗ Aj → K is surjective for all
i ̸= j, then there exists a Noetherian semi-local domain A ⊂ K of dimension 1
contained in A1, . . . , Ar such that

(1) A → Ai induces an open immersion ji : Spec(Ai) → Spec(A),
(2) Spec(A) is the union of the opens ji(Spec(Ai)),

https://stacks.math.columbia.edu/tag/09N3
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(3) each closed point of Spec(A) lies in exactly one of these opens.

Proof. Namely, we can take A = A1 ∩ . . .∩Ar. First we note that (3), once (1) and
(2) have been proven, follows from the assumption that Ai ⊗Aj → K is surjective
since if m ∈ ji(Spec(Ai)) ∩ jj(Spec(Aj)), then Ai ⊗ Aj → K ends up in Am. To
prove (1) and (2) we argue by induction on r. If r > 1 by induction we have the
results (1) and (2) for B = A2 ∩ . . . ∩ Ar. Then we apply Lemma 37.6 to see they
hold for A = A1 ∩B. □

Lemma 37.8.09N5 Let A be a domain with fraction field K. Let B1, . . . , Br ⊂ K
be Noetherian 1-dimensional semi-local domains whose fraction fields are K. If
A ⊗ Bi → K are surjective for i = 1, . . . , r, then there exists an x ∈ A such that
x−1 is in the Jacobson radical of Bi for i = 1, . . . , r.

Proof. Let B′
i be the integral closure of Bi in K. Suppose we find a nonzero x ∈ A

such that x−1 is in the Jacobson radical of B′
i for i = 1, . . . , r. Then by Lemma

37.5, after replacing x by a power we get x−1 ∈ Bi. Since Spec(B′
i) → Spec(Bi) is

surjective we see that x−1 is then also in the Jacobson radical of Bi. Thus we may
assume that each Bi is a semi-local Dedekind domain.
If Bi is not local, then remove Bi from the list and add back the finite collection
of local rings (Bi)m. Thus we may assume that Bi is a discrete valuation ring for
i = 1, . . . , r.
Let vi : K → Z, i = 1, . . . , r be the corresponding discrete valuations (see Algebra,
Lemma 120.17). We are looking for a nonzero x ∈ A with vi(x) < 0 for i = 1, . . . , r.
We will prove this by induction on r.
If r = 1 and the result is wrong, then A ⊂ B and the map A ⊗ B → K is not
surjective, contradiction.
If r > 1, then by induction we can find a nonzero x ∈ A such that vi(x) < 0 for
i = 1, . . . , r − 1. If vr(x) < 0 then we are done, so we may assume vr(x) ≥ 0. By
the base case we can find y ∈ A nonzero such that vr(y) < 0. After replacing x by
a power we may assume that vi(x) < vi(y) for i = 1, . . . , r − 1. Then x + y is the
element we are looking for. □

Lemma 37.9.0AB2 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let a1, a2 ∈ mA map to the
same element of L. Then an1 = an2 for some n > 0.

Proof. Write a1 = a2 + x. Then x maps to zero in L. Hence x is a nilpotent
element of A because

⋂
p is the radical of (0) and the annihilator I of x contains a

power of the maximal ideal because p ̸∈ V (I) for all minimal primes. Say xk = 0
and mn ⊂ I. Then

ak+n
1 = ak+n

2 +
(
n+ k

1

)
an+k−1

2 x+
(
n+ k

2

)
an+k−2

2 x2+. . .+
(
n+ k

k − 1

)
an+1

2 xk−1 = an+k
2

because a2 ∈ mA. □

Lemma 37.10.0AB3 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

and I =
⋂
p where the product and intersection are over the minimal primes of A.

Let f ∈ L be an element of the form f = i + a where a ∈ mA and i ∈ IL. Then
some power of f is in the image of A → L.

https://stacks.math.columbia.edu/tag/09N5
https://stacks.math.columbia.edu/tag/0AB2
https://stacks.math.columbia.edu/tag/0AB3


VARIETIES 75

Proof. Since A is Noetherian we have It = 0 for some t > 0. Suppose that we
know that f = a + i with i ∈ IkL. Then fn = an + nan−1i mod Ik+1L. Hence it
suffices to show that nan−1i is in the image of Ik → IkL for some n ≫ 0. To see
this, pick a g ∈ A such that mA =

√
(g) (Algebra, Lemma 60.8). Then L = Ag for

example by Algebra, Proposition 60.7. On the other hand, there is an n such that
an ∈ (g). Hence we can clear denominators for elements of L by multiplying by a
high power of a. □

Lemma 37.11.0AB4 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let K → L be an integral ring
map. Then there exist a ∈ mA and x ∈ K which map to the same element of L
such that mA =

√
(a).

Proof. By Lemma 37.10 we may replace A by A/(
⋂

p) and assume that A is
a reduced ring (some details omitted). We may also replace K by the image of
K → L. Then K is a reduced ring. The map Spec(L) → Spec(K) is surjective and
closed (details omitted). Hence Spec(K) is a finite discrete space. It follows that
K is a finite product of fields.
Let pj , j = 1, . . . ,m be the minimal primes of A. Set Lj be the fraction field of
Aj so that L =

∏
j=1,...,m Lj . Let Aj be the normalization of A/pj . Then Aj is a

semi-local Dedekind domain with at least one maximal ideal, see Algebra, Lemma
120.18. Let n be the sum of the numbers of maximal ideals in A1, . . . , Am. For
such a maximal ideal m ⊂ Aj we consider the function

vm : L → Lj → Z ∪ {∞}

where the second arrow is the discrete valuation corresponding to the discrete val-
uation ring (Aj)m extended by mapping 0 to ∞. In this way we obtain n functions
v1, . . . , vn : L → Z ∪ {∞}. We will find an element x ∈ K such that vi(x) < 0 for
all i = 1, . . . , n.
First we claim that for each i there exists an element x ∈ K with vi(x) < 0. Namely,
suppose that vi corresponds to m ⊂ Aj . If vi(x) ≥ 0 for all x ∈ K, then K maps
into (Aj)m inside the fraction field Lj of Aj . The image of K in Lj is a field over
Lj is algebraic by Algebra, Lemma 36.18. Combined we get a contradiction with
Algebra, Lemma 50.8.
Suppose we have found an element x ∈ K such that v1(x) < 0, . . . , vr(x) < 0 for
some r < n. If vr+1(x) < 0, then x works for r+ 1. If not, then choose some y ∈ K
with vr+1(y) < 0 as is possible by the result of the previous paragraph. After
replacing x by xn for some n > 0, we may assume vi(x) < vi(y) for i = 1, . . . , r.
Then vj(x+y) = vj(x) < 0 for j = 1, . . . , r by properties of valuations and similarly
vr+1(x + y) = vr+1(y) < 0. Arguing by induction, we find x ∈ K with vi(x) < 0
for i = 1, . . . , n.
In particular, the element x ∈ K has nonzero projection in each factor of K (recall
that K is a finite product of fields and if some component of x was zero, then one
of the values vi(x) would be ∞). Hence x is invertible and x−1 ∈ K is an element
with ∞ > vi(x−1) > 0 for all i. It follows from Lemma 37.5 that for some e < 0
the element xe ∈ K maps to an element of mA/pj ⊂ A/pj for all j = 1, . . . ,m.
Observe that the cokernel of the map mA →

∏
mA/pj is annihilated by a power

of mA. Hence after replacing e by a more negative e, we find an element a ∈ mA
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whose image in mA/pj is equal to the image of xe. The pair (a, xe) satisfies the
conclusions of the lemma. □

Lemma 37.12.09N6 Let A be a ring. Let p1, . . . , pr be a finite set of a primes of A.
Let S = A \

⋃
pi. Then S is a multiplicative system and S−1A is a semi-local ring

whose maximal ideals correspond to the maximal elements of the set {pi}.

Proof. If a, b ∈ A and a, b ∈ S, then a, b ̸∈ pi hence ab ̸∈ pi, hence ab ∈ S. Also
1 ∈ S. Thus S is a multiplicative subset of A. By the description of Spec(S−1A) in
Algebra, Lemma 17.5 and by Algebra, Lemma 15.2 we see that the primes of S−1A
correspond to the primes of A contained in one of the pi. Hence the maximal ideals
of S−1A correspond one-to-one with the maximal (w.r.t. inclusion) elements of the
set {p1, . . . , pr}. □

38. One dimensional Noetherian schemes

09N7 The main result of this section is that a Noetherian separated scheme of dimension
1 has an ample invertible sheaf. See Proposition 38.12.

Lemma 38.1.09N8 Let X be a scheme all of whose local rings are Noetherian of
dimension ≤ 1. Let U ⊂ X be a retrocompact open. Denote j : U → X the
inclusion morphism. Then Rpj∗F = 0, p > 0 for every quasi-coherent OU -module
F .

Proof. We may check the vanishing of Rpj∗F at stalks. Formation of Rqj∗ com-
mutes with flat base change, see Cohomology of Schemes, Lemma 5.2. Thus we
may assume that X is the spectrum of a Noetherian local ring of dimension ≤ 1.
In this case X has a closed point x and finitely many other points x1, . . . , xn which
specialize to x but not each other (see Algebra, Lemma 31.6). If x ∈ U , then
U = X and the result is clear. If not, then U = {x1, . . . , xr} for some r after
possibly renumbering the points. Then U is affine (Schemes, Lemma 11.8). Thus
the result follows from Cohomology of Schemes, Lemma 2.3. □

Lemma 38.2.09N9 Let X be an affine scheme all of whose local rings are Noetherian
of dimension ≤ 1. Then any quasi-compact open U ⊂ X is affine.

Proof. Denote j : U → X the inclusion morphism. Let F be a quasi-coherent
OU -module. By Lemma 38.1 the higher direct images Rpj∗F are zero. The OX -
module j∗F is quasi-coherent (Schemes, Lemma 24.1). Hence it has vanishing
higher cohomology groups by Cohomology of Schemes, Lemma 2.2. By the Leray
spectral sequence Cohomology, Lemma 13.6 we have Hp(U,F) = 0 for all p > 0.
Thus U is affine, for example by Cohomology of Schemes, Lemma 3.1. □

Lemma 38.3.09NA Let X be a scheme. Let U ⊂ X be an open. Assume
(1) U is a retrocompact open of X,
(2) X \ U is discrete, and
(3) for x ∈ X \ U the local ring OX,x is Noetherian of dimension ≤ 1.

Then (1) there exists an invertible OX-module L and a section s such that U = Xs

and (2) the map Pic(X) → Pic(U) is surjective.

Proof. Let X \ U = {xi; i ∈ I}. Choose affine opens Ui ⊂ X with xi ∈ Ui and
xj ̸∈ Ui for j ̸= i. This is possible by condition (2). Say Ui = Spec(Ai). Let
mi ⊂ Ai be the maximal ideal corresponding to xi. By our assumption on the
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local rings there are only a finite number of prime ideals q ⊂ mi, q ̸= mi (see
Algebra, Lemma 31.6). Thus by prime avoidance (Algebra, Lemma 15.2) we can
find fi ∈ mi not contained in any of those primes. Then V (fi) = {mi}⨿Zi for some
closed subset Zi ⊂ Ui because Zi is a retrocompact open subset of V (fi) closed
under specialization, see Algebra, Lemma 41.7. After shrinking Ui we may assume
V (fi) = {xi}. Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗
X given by fi on

U ∩Ui and by fi/fj on Ui ∩Uj . This defines a line bundle L such that the section
s defined by 1 on U and fi on Ui is as in the statement of the lemma.
Let N be an invertible OU -module. Let Ni be the invertible (Ai)fi

module such that
N |U∩Ui

is equal to Ñi. Observe that (Ami
)fi

is an Artinian ring (as a dimension
zero Noetherian ring, see Algebra, Lemma 60.5). Thus it is a product of local rings
(Algebra, Lemma 53.6) and hence has trivial Picard group. Thus, after shrinking
Ui (i.e., after replacing Ai by (Ai)g for some g ∈ Ai, g ̸∈ mi) we can assume that
Ni = (Ai)fi , i.e., that N |U∩Ui is trivial. In this case it is clear how to extend N to
an invertible sheaf over X (by extending it by a trivial invertible module over each
Ui). □

Lemma 38.4.09NB Let X be an integral separated scheme. Let U ⊂ X be a nonempty
affine open such that X \U is a finite set of points x1, . . . , xr with OX,xi

Noetherian
of dimension 1. Then there exists a globally generated invertible OX-module L and
a section s such that U = Xs.

Proof. Say U = Spec(A) and let K be the function field of X. Write Bi = OX,xi

and mi = mxi . Since xi ̸∈ U we see that the open U ×X Spec(Bi) of Spec(Bi) has
only one point, i.e., U ×X Spec(Bi) = Spec(K). Since X is separated, we find that
Spec(K) is a closed subscheme of U × Spec(Bi), i.e., the map A ⊗ Bi → K is a
surjection. By Lemma 37.8 we can find a nonzero f ∈ A such that f−1 ∈ mi for
i = 1, . . . , r. Pick opens xi ∈ Ui ⊂ X such that f−1 ∈ O(Ui). Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗
X given by f on

U ∩ Ui and by 1 on Ui ∩ Uj . This defines a line bundle L with two sections:
(1) a section s defined by 1 on U and f−1 on Ui is as in the statement of the

lemma, and
(2) a section t defined by f on U and 1 on Ui.

Note that Xt ⊃ U1 ∪ . . . ∪ Ur. Hence s, t generate L and the lemma is proved. □

Lemma 38.5.09NC Let X be a quasi-compact scheme. If for every x ∈ X there exists a
pair (L, s) consisting of a globally generated invertible sheaf L and a global section
s such that x ∈ Xs and Xs is affine, then X has an ample invertible sheaf.

Proof. Since X is quasi-compact we can find a finite collection (Li, si), i = 1, . . . , n
of pairs such that Li is globally generated, Xsi

is affine and X =
⋃
Xsi

. Again
because X is quasi-compact we can find, for each i, a finite collection of sections ti,j
of Li, j = 1, . . . ,mi such that X =

⋃
Xti,j . Set ti,0 = si. Consider the invertible

sheaf
L = L1 ⊗OX

. . .⊗OX
Ln
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and the global sections
τJ = t1,j1 ⊗ . . .⊗ tn,jn

By Properties, Lemma 26.4 the open XτJ
is affine as soon as ji = 0 for some i. It is

a simple matter to see that these opens cover X. Hence L is ample by definition. □

Lemma 38.6.09ND Let X be a Noetherian integral separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Choose an affine open covering X = U1 ∪ . . . ∪Un. Since X is Noetherian,
each of the sets X \ Ui is finite. Thus by Lemma 38.4 we can find a pair (Li, si)
consisting of a globally generated invertible sheaf Li and a global section si such
that Ui = Xsi

. We conclude that X has an ample invertible sheaf by Lemma
38.5. □

Lemma 38.7.0C0T Let f : X → Y be a finite morphism of schemes. Assume there
exists an open V ⊂ Y such that f−1(V ) → V is an isomorphism and Y \ V is a
discrete space. Then every invertible OX-module is the pullback of an invertible
OY -module.

Proof. We will use that Pic(X) = H1(X,O∗
X), see Cohomology, Lemma 6.1. Con-

sider the Leray spectral sequence for the abelian sheaf O∗
X and f , see Cohomology,

Lemma 13.4. Consider the induced map

H1(X,O∗
X) −→ H0(Y,R1f∗O∗

X)

Divisors, Lemma 17.1 says exactly that this map is zero. Hence Leray gives
H1(X,O∗

X) = H1(Y, f∗O∗
X). Next we consider the map

f ♯ : O∗
Y −→ f∗O∗

X

By assumption the kernel and cokernel of this map are supported on the closed
subset T = Y \ V of Y . Since T is a discrete topological space by assumption
the higher cohomology groups of any abelian sheaf on Y supported on T is zero
(follows from Cohomology, Lemma 20.1, Modules, Lemma 6.1, and the fact that
Hi(T,F) = 0 for any i > 0 and any abelian sheaf F on T ). Breaking the displayed
map into short exact sequences

0 → Ker(f ♯) → O∗
Y → Im(f ♯) → 0, 0 → Im(f ♯) → f∗O∗

X → Coker(f ♯) → 0

we first conclude that H1(Y,O∗
Y ) → H1(Y, Im(f ♯)) is surjective and then that

H1(Y, Im(f ♯)) → H1(Y, f∗O∗
X) is surjective. Combining all the above we find that

H1(Y,O∗
Y ) → H1(X,O∗

X) is surjective as desired. □

Lemma 38.8.09NE Let X be a scheme. Let Z1, . . . , Zn ⊂ X be closed subschemes. Let
Li be an invertible sheaf on Zi. Assume that

(1) X is reduced,
(2) X =

⋃
Zi set theoretically, and

(3) Zi ∩ Zj is a discrete topological space for i ̸= j.
Then there exists an invertible sheaf L on X whose restriction to Zi is Li. Moreover,
if we are given sections si ∈ Γ(Zi,Li) which are nonvanishing at the points of
Zi ∩ Zj, then we can choose L such that there exists a s ∈ Γ(X,L) with s|Zi

= si
for all i.
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Proof. The existence of L can be deduced from Lemma 38.7 but we will also give
a direct proof and we will use the direct proof to see the statement about sections
is true. Set T =

⋃
i ̸=j Zi ∩ Zj . As X is reduced we have

X \ T =
⋃

(Zi \ T )

as schemes. Assumption (3) implies T is a discrete subset of X. Thus for each
t ∈ T we can find an open Ut ⊂ X with t ∈ Ut but t′ ̸∈ Ut for t′ ∈ T , t′ ̸= t.
By shrinking Ut if necessary, we may assume that there exist isomorphisms φt,i :
Li|Ut∩Zi

→ OUt∩Zi
. Furthermore, for each i choose an open covering

Zi \ T =
⋃

j
Uij

such that there exist isomorphisms φi,j : Li|Uij
∼= OUij

. Observe that

U : X =
⋃
Ut ∪

⋃
Uij

is an open covering of X. We claim that we can use the isomorphisms φt,i and φi,j
to define a 2-cocycle with values in O∗

X for this covering that defines L as in the
statement of the lemma.

Namely, if i ̸= i′, then Ui,j ∩ Ui′,j′ = ∅ and there is nothing to do. For Ui,j ∩ Ui,j′

we have OX(Ui,j ∩Ui,j′) = OZi
(Ui,j ∩Ui,j′) by the first remark of the proof. Thus

the transition function for Li (more precisely φi,j ◦ φ−1
i,j′) defines the value of our

cocycle on this intersection. For Ut ∩ Ui,j we can do the same thing. Finally, for
t ̸= t′ we have

Ut ∩ Ut′ =
∐

(Ut ∩ Ut′) ∩ Zi

and moreover the intersection Ut ∩ Ut′ ∩ Zi is contained in Zi \ T . Hence by the
same reasoning as before we see that

OX(Ut ∩ Ut′) =
∏

OZi
(Ut ∩ Ut′ ∩ Zi)

and we can use the transition functions for Li (more precisely φt,i ◦ φ−1
t′,i) to define

the value of our cocycle on Ut ∩ Ut′ . This finishes the proof of existence of L.

Given sections si as in the last assertion of the lemma, in the argument above,
we choose Ut such that si|Ut∩Zi

is nonvanishing and we choose φt,i such that
φt,i(si|Ut∩Zi

) = 1. Then using 1 over Ut and φi,j(si|Ui,j
) over Ui,j will define a

section of L which restricts to si over Zi. □

Remark 38.9.09NW Let A be a reduced ring. Let I, J be ideals of A such that V (I) ∪
V (J) = Spec(A). Set B = A/J . Then I → IB is an isomorphism of A-modules.
Namely, we have IB = I + J/J = I/(I ∩ J) and I ∩ J is zero because A is reduced
and Spec(A) = V (I) ∪ V (J) = V (I ∩ J). Thus for any projective A-module P we
also have IP = I(P/JP ).

Lemma 38.10.09NX Let X be a Noetherian reduced separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Zi, i = 1, . . . , n be the irreducible components of X. We view these
as reduced closed subschemes of X. By Lemma 38.6 there exist ample invertible
sheaves Li on Zi. Set T =

⋃
i ̸=j Zi ∩ Zj . As X is Noetherian of dimension 1, the

set T is finite and consists of closed points of X. For each i we may, possibly after
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replacing Li by a power, choose si ∈ Γ(Zi,Li) such that (Zi)si
is affine and contains

T ∩ Zi, see Properties, Lemma 29.6.

By Lemma 38.8 we can find an invertible sheaf L on X and s ∈ Γ(X,L) such that
(L, s)|Zi = (Li, si). Observe that Xs contains T and is set theoretically equal to the
affine closed subschemes (Zi)si

. Thus it is affine by Limits, Lemma 11.3. To finish
the proof, it suffices to find for every x ∈ X, x ̸∈ T an integer m > 0 and a section
t ∈ Γ(X,L⊗m) such that Xt is affine and x ∈ Xt. Since x ̸∈ T we see that x ∈ Zi
for some unique i, say i = 1. Let Z ⊂ X be the reduced closed subscheme whose
underlying topological space is Z2 ∪ . . . ∪ Zn. Let I ⊂ OX be the ideal sheaf of
Z. Denote that I1 ⊂ OZ1 the inverse image of this ideal sheaf under the inclusion
morphism Z1 → X. Observe that

Γ(X, IL⊗m) = Γ(Z1, I1L⊗m
1 )

see Remark 38.9. Thus it suffices to find m > 0 and t ∈ Γ(Z1, I1L⊗m
1 ) with

x ∈ (Z1)t affine. Since L1 is ample and since x is not in Z1 ∩T = V (I1) we can find
a section t1 ∈ Γ(Z1, I1L⊗m1

1 ) with x ∈ (Z1)t1 , see Properties, Proposition 26.13.
Since L1 is ample we can find a section t2 ∈ Γ(Z1,L⊗m2

1 ) with x ∈ (Z1)t2 and
(Z1)t2 affine, see Properties, Definition 26.1. Set m = m1 +m2 and t = t1t2. Then
t ∈ Γ(Z1, I1L⊗m

1 ) with x ∈ (Z1)t by construction and (Z1)t is affine by Properties,
Lemma 26.4. □

Lemma 38.11.09NY Let i : Z → X be a closed immersion of schemes. If the underlying
topological space of X is Noetherian and dim(X) ≤ 1, then Pic(X) → Pic(Z) is
surjective.

Proof. Consider the short exact sequence

0 → (1 + I) ∩ O∗
X → O∗

X → i∗O∗
Z → 0

of sheaves of abelian groups on X where I is the quasi-coherent sheaf of ideals cor-
responding to Z. Since dim(X) ≤ 1 we see that H2(X,F) = 0 for any abelian sheaf
F , see Cohomology, Proposition 20.7. Hence the map H1(X,O∗

X) → H1(X, i∗O∗
Z)

is surjective. By Cohomology, Lemma 20.1 we have H1(X, i∗O∗
Z) = H1(Z,O∗

Z).
This proves the lemma by Cohomology, Lemma 6.1. □

Proposition 38.12.09NZ Let X be a Noetherian separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Z ⊂ X be the reduction of X. By Lemma 38.10 the scheme Z has
an ample invertible sheaf. Thus by Lemma 38.11 there exists an invertible OX -
module L on X whose restriction to Z is ample. Then L is ample by an application
of Cohomology of Schemes, Lemma 17.5. □

Remark 38.13.09P0 In fact, ifX is a scheme whose reduction is a Noetherian separated
scheme of dimension 1, then X has an ample invertible sheaf. The argument to
prove this is the same as the proof of Proposition 38.12 except one uses Limits,
Lemma 11.4 instead of Cohomology of Schemes, Lemma 17.5.

The following lemma actually holds for quasi-finite separated morphisms as the
reader can see by using Zariski’s main theorem (More on Morphisms, Lemma 43.3)
and Lemma 38.3.
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Lemma 38.14.0C0U Let f : X → Y be a morphism of schemes. Assume Y is Noe-
therian of dimension ≤ 1, f is finite, and there exists a dense open V ⊂ Y such
that f−1(V ) → V is a closed immersion. Then every invertible OX-module is the
pullback of an invertible OY -module.

Proof. We factor f as X → Z → Y where Z is the scheme theoretic image of f .
Then X → Z is an isomorphism over V ∩Z and Lemma 38.7 applies. On the other
hand, Lemma 38.11 applies to Z → Y . Some details omitted. □

39. The delta invariant

0C3Q In this section we define the δ-invariant of a singular point on a reduced 1-dimensional
Nagata scheme.

Lemma 39.1.0C3R Let (A,m) be a Noetherian 1-dimensional local ring. Let f ∈ m.
The following are equivalent

(1) m =
√

(f),
(2) f is not contained in any minimal prime of A, and
(3) Af =

∏
p minimal Ap as A-algebras.

Such an f ∈ m exists. If depth(A) = 1 (for example A is reduced), then (1) – (3)
are also equivalent to

(4) f is a nonzerodivisor,
(5) Af is the total ring of fractions of A.

If A is reduced, then (1) – (5) are also equivalent to
(6) Af is the product of the residue fields at the minimal primes of A.

Proof. The spectrum of A has finitely many primes p1, . . . , pn besides m and these
are all minimal, see Algebra, Lemma 31.6. Then the equivalence of (1) and (2)
follows from Algebra, Lemma 17.2. Clearly, (3) implies (2). Conversely, if (2) is
true, then the spectrum of Af is the subset {p1, . . . , pn} of Spec(A) with induced
topology, see Algebra, Lemma 17.5. This is a finite discrete topological space.
Hence Af =

∏
p minimal Ap by Algebra, Proposition 60.7. The existence of an f is

asserted in Algebra, Lemma 60.8.
Assume A has depth 1. (This is the maximum by Algebra, Lemma 72.3 and holds
if A is reduced by Algebra, Lemma 157.3.) Then m is not an associated prime of
A. Every minimal prime of A is an associated prime (Algebra, Proposition 63.6).
Hence the set of nonzerodivisors of A is exactly the set of elements not contained
in any of the minimal primes by Algebra, Lemma 63.9. Thus (4) is equivalent to
(2). Part (5) is equivalent to (3) by Algebra, Lemma 25.4.
Then Ap is a field for p ⊂ A minimal, see Algebra, Lemma 25.1. Hence (3) is
equivalent ot (6). □

Lemma 39.2.0C3S Let (A,m) be a reduced Nagata 1-dimensional local ring. Let A′ be
the integral closure of A in the total ring of fractions of A. Then A′ is a normal
Nagata ring, A → A′ is finite, and A′/A has finite length as an A-module.

Proof. The total ring of fractions is essentially of finite type over A hence A → A′

is finite because A is Nagata, see Algebra, Lemma 162.2. The ring A′ is normal for
example by Algebra, Lemma 37.16 and 31.6. The ring A′ is Nagata for example by
Algebra, Lemma 162.5. Choose f ∈ m as in Lemma 39.1. As A′ ⊂ Af it is clear
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that Af = A′
f . Hence the support of the finite A-module A′/A is contained in {m}.

It follows that it has finite length by Algebra, Lemma 62.3. □

Definition 39.3.0C3T Let A be a reduced Nagata local ring of dimension 1. The
δ-invariant of A is lengthA(A′/A) where A′ is as in Lemma 39.2.

We prove some lemmas about the behaviour of this invariant.

Lemma 39.4.0C3U Let A be a reduced Nagata local ring of dimension 1. The δ-
invariant of A is 0 if and only if A is a discrete valuation ring.

Proof. If A is a discrete valuation ring, then A is normal and the ring A′ is equal
to A. Conversely, if the δ-invariant of A is 0, then A is integrally closed in its total
ring of fractions which implies that A is normal (Algebra, Lemma 37.16) and this
forces A to be a discrete valuation ring by Algebra, Lemma 119.7. □

Lemma 39.5.0C3V Let A be a reduced Nagata local ring of dimension 1. Let A → A′ be
as in Lemma 39.2. Let Ah, Ash, resp. A∧ be the henselization, strict henselization,
resp. completion of A. Then Ah, Ash, resp. A∧ is a reduced Nagata local ring of
dimension 1 and A′ ⊗A A

h, A′ ⊗A A
sh, resp. A′ ⊗A A

∧ is the integral closure of
Ah, Ash, resp. A∧ in its total ring of fractions.

Proof. Observe that A∧ is reduced, see More on Algebra, Lemma 43.6. The rings
Ah and Ash are reduced by More on Algebra, Lemma 45.4. The dimensions of A,
Ah, Ash, and A∧ are the same by More on Algebra, Lemmas 43.1 and 45.7.

Recall that a Noetherian local ring is Nagata if and only if the formal fibres of
A are geometrically reduced, see More on Algebra, Lemma 52.4. This property
is inherited by Ah and Ash, see the material in More on Algebra, Section 51 and
especially Lemma 51.8. The completion is Nagata by Algebra, Lemma 162.8.

Now we come to the statement on integral closures. Before continuing let us pick
f ∈ m as in Lemma 39.1. Then the image of f in Ah, Ash, and A∧ clearly is an
element satisfying properties (1) – (6) in that ring.

Since A → A′ is finite we see that A′ ⊗A Ah and A′ ⊗A Ash is the product of
henselian local rings finite over Ah and Ash, see Algebra, Lemma 153.4. Each of
these local rings is the henselization of A′ at a maximal ideal m′ ⊂ A′ lying over m,
see Algebra, Lemma 156.1 or 156.3. Hence these local rings are normal domains by
More on Algebra, Lemma 45.6. It follows that A′ ⊗AA

h and A′ ⊗AA
sh are normal

rings. Since Ah → A′ ⊗A A
h and Ash → A′ ⊗A A

sh are finite (hence integral) and
since A′ ⊗A A

h ⊂ (Ah)f = Q(Ah) and A′ ⊗A A
sh ⊂ (Ash)f = Q(Ash) we conclude

that A′ ⊗A A
h and A′ ⊗A A

sh are the desired integral closures.

For the completion we argue in entirely the same manner. First, by Algebra, Lemma
97.8 we have

A′ ⊗A A
∧ = (A′)∧ =

∏
(A′

m′)∧

The local rings A′
m′ are normal and have dimension 1 (by Algebra, Lemma 113.2

for example or the discussion in Algebra, Section 112). Thus A′
m′ is a discrete

valuation ring, see Algebra, Lemma 119.7. Hence (A′
m′)∧ is a discrete valuation

ring by More on Algebra, Lemma 43.5. It follows that A′ ⊗A A
∧ is a normal ring

and we can conclude in exactly the same manner as before. □
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Lemma 39.6.0C3W Let A be a reduced Nagata local ring of dimension 1. The δ-
invariant of A is the same as the δ-invariant of the henselization, strict henseliza-
tion, or the completion of A.

Proof. Let us do this in case of the completion B = A∧; the other cases are
proved in exactly the same manner. Let A′, resp. B′ be the integral closure of A,
resp. B in its total ring of fractions. Then B′ = A′ ⊗A B by Lemma 39.5. Hence
B′/B = A′/A⊗AB. The equality now follows from Algebra, Lemma 52.13 and the
fact that B ⊗A κA = κB . □

Definition 39.7.0C1T Let k be a field. Let X be a locally algebraic k-scheme. Let
x ∈ X be a point such that OX,x is reduced and dim(OX,x) = 1. The δ-invariant
of X at x is the δ-invariant of OX,x as defined in Definition 39.3.

This makes sense because the local ring of a locally algebraic scheme is Nagata by
Algebra, Proposition 162.16. Of course, more generally we can make this definition
whenever x ∈ X is a point of a scheme such that the local ring OX,x is reduced,
Nagata of dimension 1. It follows from Lemma 39.6 that the δ-invariant of X at x
is

δ-invariant of X at x = δ-invariant of Oh
X,x = δ-invariant of O∧

X,x

We conclude that the δ-invariant is an invariant of the complete local ring of the
point.

Lemma 39.8.0C3X Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be a field extension and set Y = XK . Let y ∈ Y with image x ∈ X. Assume X is
geometrically reduced at x and dim(OX,x) = dim(OY,y) = 1. Then

δ-invariant of X at x ≤ δ-invariant of Y at y

Proof. Set A = OX,x and B = OY,y. By Lemma 6.2 we see that A is geometrically
reduced. Hence B is a localization of A ⊗k K. Let A → A′ be as in Lemma 39.2.
Then

B′ = B ⊗(A⊗kK) (A′ ⊗k K)
is finite over B and B → B′ induces an isomorphism on total rings of fractions.
Namely, pick f ∈ mA satisfying (1) – (6) of Lemma 39.1; since dim(B) = 1 we see
that f ∈ mB playes the same role for B and we see that Bf = B′

f because Af = A′
f .

Let B′′ be the integral closure of B in its total ring of fractions as in Lemma 39.2.
Then B′ ⊂ B′′. Thus the δ-invariant of Y at y is lengthB(B′′/B) and

lengthB(B′′/B) ≥ lengthB(B′/B)
= lengthB((A′/A) ⊗A B)
= lengthB(B/mAB)lengthA(A′/A)

by Algebra, Lemma 52.13 since A → B is flat (as a localization of A → A ⊗k K).
Since lengthA(A′/A) is the δ-invariant of X at x and since lengthB(B/mAB) ≥ 1
the lemma is proved. □

Lemma 39.9.0C3Y Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be a field extension and set Y = XK . Let y ∈ Y with image x ∈ X. Assume
assumptions (a), (b), (c) of Lemma 27.6 hold for x ∈ X and that dim(OY,y) = 1.
Then the δ-invariant of X at x is δ-invariant of Y at y.
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Proof. Set A = OX,x and B = OY,y. By Lemma 27.6 we see that A is geometrically
reduced. Hence B is a localization of A ⊗k K. Let A → A′ be as in Lemma 39.2.
By Lemma 27.6 we see that A′ ⊗k K is normal. Hence

B′ = B ⊗(A⊗kK) (A′ ⊗k K)
is normal, finite over B, and B → B′ induces an isomorphism on total rings of
fractions. Namely, pick f ∈ mA satisfying (1) – (6) of Lemma 39.1; since dim(B) = 1
we see that f ∈ mB playes the same role for B and we see that Bf = B′

f because
Af = A′

f . It follows that B → B′ is as in Lemma 39.2 for B. Thus we have to show
that lengthA(A′/A) = lengthB(B′/B) = lengthB((A′/A) ⊗A B). Since A → B is
flat (as a localization of A → A ⊗k K) and since mB = mAB (because B/mAB is
zero dimensional by the remarks above and a localization of K ⊗k κ(x) which is
reduced as κ(x) is separable over k) we conclude by Algebra, Lemma 52.13. □

40. The number of branches

0C3Z We have defined the number of branches of a scheme at a point in Properties,
Section 15.

Lemma 40.1.0C1S Let X be a scheme. Assume every quasi-compact open of X has
finitely many irreducible components. Let ν : Xν → X be the normalization of X.
Let x ∈ X.

(1) The number of branches of X at x is the number of inverse images of x in
Xν .

(2) The number of geometric branches of X at x is
∑
ν(xν )=x[κ(xν) : κ(x)]s.

Proof. First note that the assumption on X exactly means that the normalization
is defined, see Morphisms, Definition 54.1. Then the stalk A′ = (ν∗OXν )x is the
integral closure of A = OX,x in the total ring of fractions of Ared, see Morphisms,
Lemma 54.4. Since ν is an integral morphism, we see that the points of Xν lying
over x correspond to the primes of A′ lying over the maximal ideal m of A. As A →
A′ is integral, this is the same thing as the maximal ideals of A′ (Algebra, Lemmas
36.20 and 36.22). Thus the lemma now follows from its algebraic counterpart: More
on Algebra, Lemma 106.7. □

Lemma 40.2.0C40 Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be
an extension of fields. Let y ∈ XK be a point with image x in X. Then the number
of geometric branches of X at x is the number of geometric branches of XK at y.

Proof. Write Y = XK and let Xν , resp. Y ν be the normalization of X, resp. Y .
Consider the commutative diagram

Y ν //

��

Xν
K

//

νK

��

Xν

ν

��
Y Y // X

By Lemma 27.5 we see that the left top horizontal arrow is a universal homeo-
morphism. Hence it induces purely inseparable residue field extensions, see Mor-
phisms, Lemmas 45.5 and 10.2. Thus the number of geometric branches of Y at
y is

∑
νK (y′)=y[κ(y′) : κ(y)]s by Lemma 40.1. Similarly

∑
ν(x′)=x[κ(x′) : κ(x)]s is

the number of geometric branches of X at x. Using Schemes, Lemma 17.5 our
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statement follows from the following algebra fact: given a field extension l/κ and
an algebraic field extension m/κ, then∑

m⊗κl→m′
[m′ : l′]s = [m : κ]s

where the sum is over the quotient fields of m ⊗κ l. One can prove this in an
elementary way, or one can use Lemma 7.6 applied to
Spec(m⊗κl)×Spec(l)Spec(l) = Spec(m)⊗Spec(κ)Spec(l) −→ Spec(m)×Spec(κ)Spec(κ)
because one can interpret [m : κ]s as the number of connected components of
the right hand side and the sum

∑
m⊗κl→m′ [m′ : l′]s as the number of connected

components of the left hand side. □

Lemma 40.3.0C55 Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be an extension of fields. Let y ∈ XK be a point with image x in X. Then X is
geometrically unibranch at x if and only if XK is geometrically unibranch at y.

Proof. Immediate from Lemma 40.2 and More on Algebra, Lemma 106.7. □

Definition 40.4.0C41 Let A and Ai, 1 ≤ i ≤ n be local rings. We say A is a wedge of
A1, . . . , An if there exist isomorphisms

κA1 → κA2 → . . . → κAn

and A is isomorphic to the ring consisting of n-tuples (a1, . . . , an) ∈ A1 × . . .×An
which map to the same element of κAn

.

If we are given a base ring Λ and A and Ai are Λ-algebras, then we require κAi
→

κAi+1 to be a Λ-algebra isomorphisms and A to be isomorphic as a Λ-algebra to
the Λ-algebra consisting of n-tuples (a1, . . . , an) ∈ A1 × . . .×An which map to the
same element of κAn

. In particular, if Λ = k is a field and the maps k → κAi
are

isomorphisms, then there is a unique choice for the isomorphisms κAi
→ κAi+1 and

we often speak of the wedge of A1, . . . , An.

Lemma 40.5.0C42 Let (A,m) be a strictly henselian 1-dimensional reduced Nagata
local ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1
If equality holds, then A is a wedge of n ≥ 1 strictly henselian discrete valuation
rings.

Proof. The number of geometric branches is equal to the number of branches of A
(immediate from More on Algebra, Definition 106.6). Let A → A′ be as in Lemma
39.2. Observe that the number of branches of A is the number of maximal ideals
of A′, see More on Algebra, Lemma 106.7. There is a surjection

A′/A −→
(∏

m′
κ(m′)

)
/κ(m)

Since dimκ(m)
∏
κ(m′) is ≥ the number of branches, the inequality is obvious.

If equality holds, then κ(m′) = κ(m) for all m′ ⊂ A′ and the displayed arrow above
is an isomorphism. Since A is henselian and A → A′ is finite, we see that A′

is a product of local henselian rings, see Algebra, Lemma 153.4. The factors are
the local rings A′

m′ and as A′ is normal, these factors are discrete valuation rings
(Algebra, Lemma 119.7). Since the displayed arrow is an isomorphism we see that
A is indeed the wedge of these local rings. □
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Lemma 40.6.0C43 Let (A,m) be a 1-dimensional reduced Nagata local ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1

Proof. We may replace A by the strict henselization of A without changing the
δ-invariant (Lemma 39.6) and without changing the number of geometric branches
of A (this is immediate from the definition, see More on Algebra, Definition 106.6).
Thus we may assume A is strictly henselian and we may apply Lemma 40.5. □

41. Normalization of one dimensional schemes

0C44 The normalization morphism of a Noetherian scheme of dimension 1 has unexpect-
edly good properties by the Krull-Akizuki result.

Lemma 41.1.0C45 Let X be a locally Noetherian scheme of dimension 1. Let ν :
Xν → X be the normalization. Then

(1) ν is integral, surjective, and induces a bijection on irreducible components,
(2) there is a factorization Xν → Xred → X and the morphism Xν → Xred is

the normalization of Xred,
(3) Xν → Xred is birational,
(4) for every closed point x ∈ X the stalk (ν∗OXν )x is the integral closure of

OX,x in the total ring of fractions of (OX,x)red = OXred,x,
(5) the fibres of ν are finite and the residue field extensions are finite,
(6) Xν is a disjoint union of integral normal Noetherian schemes and each

affine open is the spectrum of a finite product of Dedekind domains.

Proof. Many of the results are in fact general properties of the normalization
morphism, see Morphisms, Lemmas 54.2, 54.4, 54.5, and 54.7. What is not clear is
that the fibres are finite, that the induced residue field extensions are finite, and that
Xν locally looks like the spectrum of a Dedekind domain (and hence is Noetherian).
To see this we may assume that X = Spec(A) is affine, Noetherian, dimension 1,
and that A is reduced. Then we may use the description in Morphisms, Lemma
54.3 to reduce to the case where A is a Noetherian domain of dimension 1. In this
case the desired properties follow from Krull-Akizuki in the form stated in Algebra,
Lemma 120.18. □

Of course there is a variant of the following lemma in case X is not reduced.

Lemma 41.2.0C1R Let X be a reduced Nagata scheme of dimension 1. Let ν : Xν → X
be the normalization. Let x ∈ X denote a closed point. Then

(1) ν : Xν → X is finite, surjective, and birational,
(2) OX ⊂ ν∗OXν and ν∗OXν/OX is a direct sum of skyscraper sheaves Qx in

the singular points x of X,
(3) A′ = (ν∗OXν )x is the integral closure of A = OX,x in its total ring of

fractions,
(4) Qx = A′/A has finite length equal to the δ-invariant of X at x,
(5) A′ is a semi-local ring which is a finite product of Dedekind domains,
(6) A∧ is a reduced Noetherian complete local ring of dimension 1,
(7) (A′)∧ is the integral closure of A∧ in its total ring of fractions,
(8) (A′)∧ is a finite product of complete discrete valuation rings, and
(9) A′/A ∼= (A′)∧/A∧.
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Proof. We may and will use all the results of Lemma 41.1. Finiteness of ν follows
from Morphisms, Lemma 54.10. Since X is reduced, Nagata, of dimension 1, we
see that the regular locus is a dense open U ⊂ X by More on Algebra, Proposition
48.7. Since a regular scheme is normal, this shows that ν is an isomorphism over
U . Since dim(X) ≤ 1 this implies that ν is not an isomorphism over a discrete set
of closed points x ∈ X. In particular we see that we have a short exact sequence

0 → OX → ν∗OXν →
⊕

x∈X\U
Qx → 0

As we have the description of the stalks of ν∗OXν by Lemma 41.1, we conclude that
Qx = A′/A indeed has length equal to the δ-invariant of X at x. Note that Qx ̸= 0
exactly when x is a singular point for example by Lemma 39.4. The description of
A′ as a product of semi-local Dedekind domains follows from Lemma 41.1 as well.
The relationship between A, A′, and (A′)∧ we have see in Lemma 39.5 (and its
proof). □

42. Finding affine opens

09NF We continue the discussion started in Properties, Section 29. It turns out that we
can find affines containing a finite given set of codimension 1 points on a separated
scheme. See Proposition 42.7.
We will improve on the following lemma in Descent, Lemma 25.4.

Lemma 42.1.09NG Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is separated,
(2) there is an open covering X =

⋃
Ui such that f |Ui

: Ui → Y is an open
immersion, and

(3) if ξ, ξ′ ∈ X0, ξ ̸= ξ′, then f(ξ) ̸= f(ξ′),
then f is an open immersion.

Proof. Suppose that y = f(x) = f(x′). Pick a specialization y0 ⇝ y where y0 is a
generic point of an irreducible component of Y . Since f is locally on the source an
isomorphism we can pick specializations x0 ⇝ x and x′

0 ⇝ x′ mapping to y0 ⇝ y.
Note that x0, x

′
0 ∈ X0. Hence x0 = x′

0 by assumption (3). As f is separated we
conclude that x = x′. Thus f is an open immersion. □

Lemma 42.2.09NH Let X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. If

(1) OX,x = OS,s,
(2) X is reduced,
(3) X → S is of finite type, and
(4) S has finitely many irreducible components,

then there exists an open neighbourhood U of x such that f |U is an open immersion.

Proof. We may remove the (finitely many) irreducible components of S which
do not contain s. We may replace S by an affine open neighbourhood of s. We
may replace X by an affine open neighbourhood of x. Say S = Spec(A) and
X = Spec(B). Let q ⊂ B, resp. p ⊂ A be the prime ideal corresponding to x,
resp. s. As A is a reduced and all of the minimal primes of A are contained in
p we see that A ⊂ Ap. As X → S is of finite type, B is of finite type over A.
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Let b1, . . . , bn ∈ B be elements which generate B over A Since Ap = Bq we can
find f ∈ A, f ̸∈ p and ai ∈ A such that bi and ai/f have the same image in Bq.
Thus we can find g ∈ B, g ̸∈ q such that g(fbi − ai) = 0 in B. It follows that the
image of Af → Bfg contains the images of b1, . . . , bn, in particular also the image
of g. Choose n ≥ 0 and f ′ ∈ A such that f ′/fn maps to the image of g in Bfg.
Since Ap = Bq we see that f ′ ̸∈ p. We conclude that Aff ′ → Bfg is surjective.
Finally, as Aff ′ ⊂ Ap = Bq (see above) the map Aff ′ → Bfg is injective, hence an
isomorphism. □

Lemma 42.3.09NI Let f : T → X be a morphism of schemes. Let X0, resp. T 0 denote
the sets of generic points of irreducible components. Let t1, . . . , tm ∈ T be a finite
set of points with images xj = f(tj). If

(1) T is affine,
(2) X is quasi-separated,
(3) X0 is finite
(4) f(T 0) ⊂ X0 and f : T 0 → X0 is injective, and
(5) OX,xj = OT,tj ,

then there exists an affine open of X containing x1, . . . , xr.

Proof. Using Limits, Proposition 11.2 there is an immediate reduction to the case
where X and T are reduced. Details omitted.

Assume X and T are reduced. We may write T = limi∈I Ti as a directed limit of
schemes of finite presentation over X with affine transition morphisms, see Limits,
Lemma 7.2. Pick i ∈ I such that Ti is affine, see Limits, Lemma 4.13. Say Ti =
Spec(Ri) and T = Spec(R). Let R′ ⊂ R be the image of Ri → R. Then T ′ =
Spec(R′) is affine, reduced, of finite type over X, and T → T ′ dominant. For
j = 1, . . . , r let t′j ∈ T ′ be the image of tj . Consider the local ring maps

OX,xj
→ OT ′,t′

j
→ OT,tj

Denote (T ′)0 the set of generic points of irreducible components of T ′. Let ξ ⇝
t′j be a specialization with ξ ∈ (T ′)0. As T → T ′ is dominant we can choose
η ∈ T 0 mapping to ξ (warning: a priori we do not know that η specializes to
tj). Assumption (3) applied to η tells us that the image θ of ξ in X corresponds
to a minimal prime of OX,xj . Lifting ξ via the isomorphism of (5) we obtain a
specialization η′ ⇝ tj with η′ ∈ T 0 mapping to θ ⇝ xj . The injectivity of (4)
shows that η = η′. Thus every minimal prime of OT ′,t′

j
lies below a minimal prime

of OT,tj . We conclude that OT ′,t′
j

→ OT,tj is injective, hence both maps above are
isomorphisms.

By Lemma 42.2 there exists an open U ⊂ T ′ containing all the points t′j such that
U → X is a local isomorphism as in Lemma 42.1. By that lemma we see that
U → X is an open immersion. Finally, by Properties, Lemma 29.5 we can find an
open W ⊂ U ⊂ T ′ containing all the t′j . The image of W in X is the desired affine
open. □

Lemma 42.4.09NJ Let X be an integral separated scheme. Let x1, . . . , xr ∈ X be a
finite set of points such that OX,xi

is Noetherian of dimension ≤ 1. Then there
exists an affine open subscheme of X containing all of x1, . . . , xr.

https://stacks.math.columbia.edu/tag/09NI
https://stacks.math.columbia.edu/tag/09NJ


VARIETIES 89

Proof. Let K be the field of rational functions of X. Set Ai = OX,xi
. Then

Ai ⊂ K and K is the fraction field of Ai. Since X is separated, and xi ̸= xj there
cannot be a valuation ring O ⊂ K dominating both Ai and Aj . Namely, considering
the diagram

Spec(O) //

��

Spec(A1)

��
Spec(A2) // X

and applying the valuative criterion of separatedness (Schemes, Lemma 22.1) we
would get xi = xj . Thus we see by Lemma 37.3 that Ai ⊗Aj → K is surjective for
all i ̸= j. By Lemma 37.7 we see that A = A1 ∩ . . .∩Ar is a Noetherian semi-local
ring with exactly r maximal ideals m1, . . . ,mr such that Ai = Ami

. Moreover,

Spec(A) = Spec(A1) ∪ . . . ∪ Spec(Ar)

is an open covering and the intersection of any two pieces of this covering is Spec(K).
Thus the given morphisms Spec(Ai) → X glue to a morphism of schemes

Spec(A) −→ X

mapping mi to xi and inducing isomorphisms of local rings. Thus the result follows
from Lemma 42.3. □

Lemma 42.5.09NK Let A be a ring, I ⊂ A an ideal, p1, . . . , pr primes of A, and
f ∈ A/I an element. If I ̸⊂ pi for all i, then there exists an f ∈ A, f ̸∈ pi which
maps to f in A/I.

Proof. We may assume there are no inclusion relations among the pi (by removing
the smaller primes). First pick any f ∈ A lifting f . Let S be the set s ∈ {1, . . . , r}
such that f ∈ ps. If S is empty we are done. If not, consider the ideal J = I

∏
i ̸∈S pi.

Note that J is not contained in ps for s ∈ S because there are no inclusions among
the pi and because I is not contained in any pi. Hence we can choose g ∈ J , g ̸∈ ps
for s ∈ S by Algebra, Lemma 15.2. Then f + g is a solution to the problem posed
by the lemma. □

Lemma 42.6.09NM Let X be a scheme. Let T ⊂ X be finite set of points. Assume
(1) X has finitely many irreducible components Z1, . . . , Zt, and
(2) Zi ∩ T is contained in an affine open of the reduced induced subscheme

corresponding to Zi.
Then there exists an affine open subscheme of X containing T .

Proof. Using Limits, Proposition 11.2 there is an immediate reduction to the case
where X is reduced. Details omitted. In the rest of the proof we endow every closed
subset of X with the induced reduced closed subscheme structure.

We argue by induction that we can find an affine open U ⊂ Z1 ∪ . . .∪Zr containing
T ∩ (Z1 ∪ . . . ∪ Zr). For r = 1 this holds by assumption. Say r > 1 and let
U ⊂ Z1 ∪ . . .∪Zr−1 be an affine open containing T ∩ (Z1 ∪ . . .∪Zr−1). Let V ⊂ Xr

be an affine open containing T ∩ Zr (exists by assumption). Then U ∩ V contains
T ∩ (Z1 ∪ . . . ∪ Zr−1) ∩ Zr. Hence

∆ = (U ∩ Zr) \ (U ∩ V )
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does not contain any element of T . Note that ∆ is a closed subset of U . By prime
avoidance (Algebra, Lemma 15.2), we can find a standard open U ′ of U containing
T ∩ U and avoiding ∆, i.e., U ′ ∩ Zr ⊂ U ∩ V . After replacing U by U ′ we may
assume that U ∩ V is closed in U .
Using that by the same arguments as above also the set ∆′ = (U ∩ (Z1 ∪ . . . ∪
Zr−1)) \ (U ∩ V ) does not contain any element of T we find a h ∈ O(V ) such that
D(h) ⊂ V contains T ∩ V and such that U ∩ D(h) ⊂ U ∩ V . Using that U ∩ V is
closed in U we can use Lemma 42.5 to find an element g ∈ O(U) whose restriction
to U ∩ V equals the restriction of h to U ∩ V and such that T ∩ U ⊂ D(g). Then
we can replace U by D(g) and V by D(h) to reach the situation where U ∩ V is
closed in both U and V . In this case the scheme U ∪ V is affine by Limits, Lemma
11.3. This proves the induction step and thereby the lemma. □

Here is a conclusion we can draw from the material above.
Proposition 42.7.09NN Let X be a separated scheme such that every quasi-compact
open has a finite number of irreducible components. Let x1, . . . , xr ∈ X be points
such that OX,xi is Noetherian of dimension ≤ 1. Then there exists an affine open
subscheme of X containing all of x1, . . . , xr.
Proof. We can replace X by a quasi-compact open containing x1, . . . , xr hence we
may assume that X has finitely many irreducible components. By Lemma 42.6 we
reduce to the case where X is integral. This case is Lemma 42.4. □

43. Curves

0A22 In the Stacks project we will use the following as our definition of a curve.
Definition 43.1.0A23 Let k be a field. A curve is a variety of dimension 1 over k.

Two standard examples of curves over k are the affine line A1
k and the projective

line P1
k. The scheme X = Spec(k[x, y]/(f)) is a curve if and only if f ∈ k[x, y] is

irreducible.
Our definition of a curve has the same problems as our definition of a variety, see
the discussion following Definition 3.1. Moreover, it means that every curve comes
with a specified field of definition. For example X = Spec(C[x]) is a curve over C
but we can also view it as a curve over R. The scheme Spec(Z) isn’t a curve, even
though the schemes Spec(Z) and A1

Fp
behave similarly in many respects.

Lemma 43.2.0A24 Let X be a separated, irreducible scheme of dimension > 0 over a
field k. Let x ∈ X be a closed point. The open subscheme X \ {x} is not proper
over k.
Proof. Since X is irreducible, U = X \ {x} is not closed in X. In particular, the
immersion U → X is not proper. By Morphisms, Lemma 41.7 (here we use X is
separated), U → Spec(k) is not proper either. □

Lemma 43.3.0A25 Let X be a separated finite type scheme over a field k. If dim(X) ≤
1 then X is H-quasi-projective over k.
Proof. By Proposition 38.12 the scheme X has an ample invertible sheaf L. By
Morphisms, Lemma 39.3 we see that X is isomorphic to a locally closed subscheme
of Pn

k over Spec(k). This is the definition of being H-quasi-projective over k, see
Morphisms, Definition 40.1. □
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Lemma 43.4.0A26 Let X be a proper scheme over a field k. If dim(X) ≤ 1 then X is
H-projective over k.

Proof. By Lemma 43.3 we see that X is a locally closed subscheme of Pn
k for some

field k. Since X is proper over k it follows that X is a closed subscheme of Pn
k

(Morphisms, Lemma 41.7). □

Lemma 43.5.0BXV Let X be a separated scheme of finite type over k. If dim(X) ≤ 1,
then there exists an open immersion j : X → X with the following properties

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X.

Proof. By Lemma 43.3 we may assume X is a locally closed subscheme of Pd
k for

some d. Let X ⊂ Pd
k be the scheme theoretic image of X → Pd

k, see Morphisms,
Definition 6.2. The description in Morphisms, Lemma 7.7 gives properties (1) and
(2). Then dim(X) = 1 ⇒ dim(X) = 1 for example by looking at generic points,
see Lemma 20.3. As X is Noetherian, it then follows that X \X = {x1, . . . , xn} is
a finite set of closed points. □

Lemma 43.6.0BXW Let X be a separated scheme of finite type over k. If X is reduced
and dim(X) ≤ 1, then there exists an open immersion j : X → X such that

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X,
(4) the local rings OX,xi

are discrete valuation rings for i = 1, . . . , n.

Proof. Let j : X → X be as in Lemma 43.5. Consider the normalization X ′

of X in X. By Lemma 27.3 the morphism X ′ → X is finite. By Morphisms,
Lemma 44.16 X ′ → X is projective. By Morphisms, Lemma 43.16 we see that
X ′ → X is H-projective. By Morphisms, Lemma 43.7 we see that X ′ → Spec(k) is
H-projective. Let {x′

1, . . . , x
′
m} ⊂ X ′ be the inverse image of {x1, . . . , xn} = X \X.

Then dim(OX′,x′
i
) = 1 for all 1 ≤ i ≤ m. Hence the local rings OX′,x′ are discrete

valuation rings by Morphisms, Lemma 53.16. Then X → X ′ and {x′
1, . . . , x

′
m} is

as desired. □

Lemma 43.7.0GK5 Let X be a separated scheme of finite type over k with dim(X) ≤ 1.
Then there exists a commutative diagram

Y 1 ⨿ . . .⨿ Y n

**

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo Xk′ //

��

X

f

��
Spec(k′

1) ⨿ . . .⨿ Spec(k′
n) // Spec(k′) // Spec(k)

of schemes with the following properties:
(1) k′/k is a finite purely inseparable extension of fields,
(2) ν is the normalization of Xk′ ,
(3) j is an open immersion with dense image,
(4) k′

i/k
′ is a finite separable extension for i = 1, . . . , n,

(5) Y i is smooth, projective, geometrically irreducible dimension ≤ 1 over k′
i.
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Proof. As we may replace X by its reduction, we may and do assume X is reduced.
Choose X → X as in Lemma 43.6. If we can show the lemma for X, then the lemma
follows for X (details omitted). Thus we may and do assume X is projective.
Choose k′/k finite purely inseparable such that the normalization of Xk′ is geomet-
rically normal over k′, see Lemma 27.4. Denote Y = (Xk′)ν the normalization; for
properties of the normalization, see Section 27. Then Y is geometrically regular as
normal and regular are the same in dimension ≤ 1, see Properties, Lemma 12.6.
Hence Y is smooth over k′ by Lemma 12.6. Let Y = Y1 ⨿ . . . ⨿ Yn be the decom-
position of Y into irreducible components. Set k′

i = Γ(Yi,OYi). These are finite
separable extensions of k′ by Lemma 9.3. The proof is finished by Lemma 9.4. □

Lemma 43.8.0B8Y Let k be a field. Let X be a curve over k. Let x ∈ X be a closed
point. We think of x as a (reduced) closed subscheme of X with sheaf of ideals I.
The following are equivalent

(1) OX,x is regular,
(2) OX,x is normal,
(3) OX,x is a discrete valuation ring,
(4) I is an invertible OX-module,
(5) x is an effective Cartier divisor on X.

If k is perfect or if κ(x) is separable over k, these are also equivalent to
(6) X → Spec(k) is smooth at x.

Proof. Since X is a curve, the local ring OX,x is a Noetherian local domain of
dimension 1 (Lemma 20.3). Parts (4) and (5) are equivalent by definition and are
equivalent to Ix = mx ⊂ OX,x having one generator (Divisors, Lemma 15.2). The
equivalence of (1), (2), (3), (4), and (5) therefore follows from Algebra, Lemma
119.7. The final statement follows from Lemma 25.8 in case k is perfect. If κ(x)/k
is separable, then the equivalence follows from Algebra, Lemma 140.5. □

Remark 43.9.0H1F Let k be a field. Let X be a regular curve over k. By Lemmas 43.8
and 43.6 there exists a nonsingular projective curve X which is a compactification
of X, i.e., there exists an open immersion j : X → X such that the complement
consists of a finite number of closed points. If k is perfect, then X and X are
smooth over k and X is a smooth projective compactification of X.

Observe that if an affine scheme X over k is proper over k then X is finite over
k (Morphisms, Lemma 44.11) and hence has dimension 0 (Algebra, Lemma 53.2
and Proposition 60.7). Hence a scheme of dimension > 0 over k cannot be both
affine and proper over k. Thus the possibilities in the following lemma are mutually
exclusive.

Lemma 43.10.0A27 Let X be a curve over k. Then either X is an affine scheme or
X is H-projective over k.

Proof. Choose X → X with X \X = {x1, . . . , xr} as in Lemma 43.6. Then X is
a curve as well. If r = 0, then X = X is H-projective over k. Thus we may assume
r ≥ 1 and our goal is to show that X is affine. By Lemma 38.2 it suffices to show
that X \ {x1} is affine. This reduces us to the claim stated in the next paragraph.
Let X be an H-projective curve over k. Let x ∈ X be a closed point such that OX,x

is a discrete valuation ring. Claim: U = X \ {x} is affine. By Lemma 43.8 the
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point x defines an effective Cartier divisor of X. For n ≥ 1 denote nx = x+ . . .+x
the n-fold sum, see Divisors, Definition 13.6. Denote Onx the structure sheaf of
nx viewed as a coherent module on X. Since every invertible module on the local
scheme nx is trivial the first short exact sequence of Divisors, Remark 14.11 reads

0 → OX
1−→ OX(nx) → Onx → 0

in our case. Note that dimkH
0(X,Onx) ≥ n. Namely, by Lemma 33.3 we have

H0(X,Onx) = OX,x/(πn) where π in OX,x is a uniformizer and the powers πi
map to k-linearly independent elements in OX,x/(πn) for i = 0, 1, . . . , n − 1. We
have dimkH

1(X,OX) < ∞ by Cohomology of Schemes, Lemma 19.2. If n >
dimkH

1(X,OX) we conclude from the long exact cohomology sequence that there
exists an s ∈ Γ(X,OX(nx)) which is not a section of OX . If we take n minimal with
this property, then s will map to a generator of the stalk (OX(nx))x since otherwise
it would define a section of OX((n− 1)x) ⊂ OX(nx). For this n we conclude that
s0 = 1 and s1 = s generate the invertible module L = OX(nx).
Consider the corresponding morphism f = φL,(s0,s1) : X → P1

k of Constructions,
Section 13. Observe that the inverse image of D+(T0) is U = X \ {x} as the
section s0 of L only vanishes at x. In particular, f is non-constant, i.e., Im(f) has
more than one point. Hence f must map the generic point η of X to the generic
point of P1

k. Hence if y ∈ P1
k is a closed point, then f−1({y}) is a closed set of X

not containing η, hence finite. Finally, f is proper4. By Cohomology of Schemes,
Lemma 21.25 we conclude that f is finite. Hence U = f−1(D+(T0)) is affine. □

The following lemma combined with Lemma 43.2 tells us that given a separated
scheme X of dimension 1 and of finite type over k, then X \ Z is affine, whenever
the closed subset Z meets every irreducible component of X.

Lemma 43.11.0A28 Let X be a separated scheme of finite type over k. If dim(X) ≤ 1
and no irreducible component of X is proper of dimension 1, then X is affine.

Proof. Let X =
⋃
Xi be the decomposition of X into irreducible components. We

think of Xi as an integral scheme (using the reduced induced scheme structure, see
Schemes, Definition 12.5). In particular Xi is a singleton (hence affine) or a curve
hence affine by Lemma 43.10. Then

∐
Xi → X is finite surjective and

∐
Xi is

affine. Thus we see that X is affine by Cohomology of Schemes, Lemma 13.3. □

44. Degrees on curves

0AYQ We start defining the degree of an invertible sheaf and more generally a locally free
sheaf on a proper scheme of dimension 1 over a field. In Section 33 we defined the
Euler characteristic of a coherent sheaf F on a proper scheme X over a field k by
the formula

χ(X,F) =
∑

(−1)i dimkH
i(X,F).

4Namely, a H-projective variety is a proper variety by Morphisms, Lemma 43.13. A morphism
of varieties whose source is a proper variety is a proper morphism by Morphisms, Lemma 41.7.

5One can avoid using this lemma which relies on the theorem of formal functions. Namely, X
is projective hence it suffices to show a proper morphism f : X → Y with finite fibres between
quasi-projective schemes over k is finite. To do this, one chooses an affine open of X containing
the fibre of f over a point y using that any finite set of points of a quasi-projective scheme over k
is contained in an affine. Shrinking Y to a small affine neighbourhood of y one reduces to the case
of a proper morphism between affines. Such a morphism is finite by Morphisms, Lemma 44.7.
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Definition 44.1.0AYR Let k be a field, let X be a proper scheme of dimension ≤ 1
over k, and let L be an invertible OX -module. The degree of L is defined by

deg(L) = χ(X,L) − χ(X,OX)

More generally, if E is a locally free sheaf of rank n we define the degree of E by

deg(E) = χ(X, E) − nχ(X,OX)

Observe that this depends on the triple E/X/k. If X is disconnected and E is
finite locally free (but not of constant rank), then one can modify the definition by
summing the degrees of the restriction of E to the connected components of X. If E
is just a coherent sheaf, there are several different ways of extending the definition6.
In a series of lemmas we show that this definition has all the properties one expects
of the degree.

Lemma 44.2.0B59 Let k′/k be an extension of fields. Let X be a proper scheme of
dimension ≤ 1 over k. Let E be a locally free OX-module of constant rank n. Then
the degree of E/X/k is equal to the degree of Ek′/Xk′/k′.

Proof. More precisely, set Xk′ = X ×Spec(k) Spec(k′). Let Ek′ = p∗E where p :
Xk′ → X is the projection. By Cohomology of Schemes, Lemma 5.2 we have
Hi(Xk′ , Ek′) = Hi(X, E) ⊗k k

′ and Hi(Xk′ ,OXk′ ) = Hi(X,OX) ⊗k k
′. Hence we

see that the Euler characteristics are unchanged, hence the degree is unchanged. □

Lemma 44.3.0AYS Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let 0 → E1 → E2 → E3 → 0 be a short exact sequence of locally free OX-modules
each of finite constant rank. Then

deg(E2) = deg(E1) + deg(E3)

Proof. Follows immediately from additivity of Euler characteristics (Lemma 33.2)
and additivity of ranks. □

Lemma 44.4.0AYU Let k be a field. Let f : X ′ → X be a birational morphism of proper
schemes of dimension ≤ 1 over k. Then

deg(f∗E) = deg(E)

for every finite locally free sheaf of constant rank. More generally it suffices if f in-
duces a bijection between irreducible components of dimension 1 and isomorphisms
of local rings at the corresponding generic points.

Proof. The morphism f is proper (Morphisms, Lemma 41.7) and has fibres of
dimension ≤ 0. Hence f is finite (Cohomology of Schemes, Lemma 21.2). Thus

Rf∗f
∗E = f∗f

∗E = E ⊗OX
f∗OX′

Since f induces an isomorphism on local rings at generic points of all irreducible
components of dimension 1 we see that the kernel and cokernel

0 → K → OX → f∗OX′ → Q → 0

6If X is a proper curve and F is a coherent sheaf on X, then one often defines the degree as
χ(X, F) − rχ(X, OX) where r = dimκ(ξ) Fξ is the rank of F at the generic point ξ of X.
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have supports of dimension ≤ 0. Note that tensoring this with E is still an exact
sequence as E is locally free. We obtain

χ(X, E) − χ(X ′, f∗E) = χ(X, E) − χ(X, f∗f
∗E)

= χ(X, E) − χ(X, E ⊗ f∗OX′)
= χ(X,K ⊗ E) − χ(X,Q ⊗ E)
= nχ(X,K) − nχ(X,Q)
= nχ(X,OX) − nχ(X, f∗OX′)
= nχ(X,OX) − nχ(X ′,OX′)

which proves what we want. The first equality as f is finite, see Cohomology of
Schemes, Lemma 2.4. The second equality by projection formula, see Cohomology,
Lemma 54.2. The third by additivity of Euler characteristics, see Lemma 33.2. The
fourth by Lemma 33.3. □

Lemma 44.5.0AYV Let k be a field. Let X be a proper curve over k with generic point
ξ. Let E be a locally free OX-module of rank n and let F be a coherent OX-module.
Then

χ(X, E ⊗ F) = r deg(E) + nχ(X,F)
where r = dimκ(ξ) Fξ is the rank of F .

Proof. Let P be the property of coherent sheaves F on X expressing that the for-
mula of the lemma holds. We claim that the assumptions (1) and (2) of Cohomology
of Schemes, Lemma 12.6 hold for P. Namely, (1) holds because the Euler charac-
teristic and the rank r are additive in short exact sequences of coherent sheaves.
And (2) holds too: If Z = X then we may take G = OX and P(OX) is true by the
definition of degree. If i : Z → X is the inclusion of a closed point we may take
G = i∗OZ and P holds by Lemma 33.3 and the fact that r = 0 in this case. □

Let k be a field. Let X be a finite type scheme over k of dimension ≤ 1. Let
Ci ⊂ X, i = 1, . . . , t be the irreducible components of dimension 1. We view Ci
as a scheme by using the induced reduced scheme structure. Let ξi ∈ Ci be the
generic point. The multiplicity of Ci in X is defined as the length

mi = lengthOX,ξi
OX,ξi

This makes sense because OX,ξi
is a zero dimensional Noetherian local ring and

hence has finite length over itself (Algebra, Proposition 60.7). See Chow Homology,
Section 9 for additional information. It turns out the degree of a locally free sheaf
only depends on the restriction of the irreducible components.

Lemma 44.6.0AYW Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let E be a locally free OX-module of rank n. Then

deg(E) =
∑

mi deg(E|Ci)

where Ci ⊂ X, i = 1, . . . , t are the irreducible components of dimension 1 with
reduced induced scheme structure and mi is the multiplicity of Ci in X.

Proof. Observe that the statement makes sense because Ci → Spec(k) is proper
of dimension 1 (Morphisms, Lemmas 41.6 and 41.4). Consider the open subscheme
Ui = X \ (

⋃
j ̸=i Cj) and let Xi ⊂ X be the scheme theoretic closure of Ui. Note

that Xi∩Ui = Ui (scheme theoretically) and that Xi∩Uj = ∅ (set theoretically) for
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i ̸= j; this follows from the description of scheme theoretic closure in Morphisms,
Lemma 7.7. Thus we may apply Lemma 44.4 to the morphism X ′ =

⋃
Xi → X.

Since it is clear that Ci ⊂ Xi (scheme theoretically) and that the multiplicity of
Ci in Xi is equal to the multiplicity of Ci in X, we see that we reduce to the case
discussed in the following paragraph.
Assume X is irreducible with generic point ξ. Let C = Xred have multiplicity m.
We have to show that deg(E) = m deg(E|C). Let I ⊂ OX be the ideal defining the
closed subscheme C. Let e ≥ 0 be minimal such that Ie+1 = 0 (Cohomology of
Schemes, Lemma 10.2). We argue by induction on e. If e = 0, then X = C and
the result is immediate. Otherwise we set F = Ie viewed as a coherent OC-module
(Cohomology of Schemes, Lemma 9.8). Let X ′ ⊂ X be the closed subscheme cut
out by the coherent ideal Ie and let m′ be the multiplicity of C in X ′. Taking
stalks at ξ of the short exact sequence

0 → F → OX → OX′ → 0
we find (use Algebra, Lemmas 52.3, 52.6, and 52.5) that

m = lengthOX,ξ
OX,ξ = dimκ(ξ) Fξ + lengthOX′,ξ

OX′,ξ = r +m′

where r is the rank of F as a coherent sheaf on C. Tensoring with E we obtain a
short exact sequence

0 → E|C ⊗ F → E → E ⊗ OX′ → 0
By induction we have χ(E ⊗OX′) = m′ deg(E|C). By Lemma 44.5 we have χ(E|C ⊗
F) = r deg(E|C) + nχ(F). Putting everything together we obtain the result. □

Lemma 44.7.0AYX Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k, and let E, V be locally free OX-modules of constant finite rank. Then

deg(E ⊗ V) = rank(E) deg(V) + rank(V) deg(E)
Proof. By Lemma 44.6 and elementary arithmetic, we reduce to the case of a
proper curve. This case follows from Lemma 44.5. □

Lemma 44.8.0DJ5 Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k, and let E be a locally free OX-module of rank n. Then

deg(E) = deg(∧n(E)) = deg(det(E))
Proof. By Lemma 44.6 and elementary arithmetic, we reduce to the case of a
proper curve. Then there exists a modification f : X ′ → X such that f∗E has a
filtration whose successive quotients are invertible modules, see Divisors, Lemma
36.1. By Lemma 44.4 we may work on X ′. Thus we may assume we have a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En = E
by locally free OX -modules with Li = Ei/Ei−1 is invertible. By Modules, Lemma
26.1 and induction we find det(E) = L1 ⊗ . . .⊗ Ln. Thus the equality follows from
Lemma 44.7 and additivity (Lemma 44.3). □

Lemma 44.9.0AYY Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k. Let D be an effective Cartier divisor on X. Then D is finite over Spec(k) of
degree deg(D) = dimk Γ(D,OD). For a locally free sheaf E of rank n we have

deg(E(D)) = ndeg(D) + deg(E)
where E(D) = E ⊗OX

OX(D).
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Proof. SinceD is nowhere dense inX (Divisors, Lemma 13.4) we see that dim(D) ≤
0. Hence D is finite over k by Lemma 20.2. Since k is a field, the morphism
D → Spec(k) is finite locally free and hence has a degree (Morphisms, Definition
48.1), which is clearly equal to dimk Γ(D,OD) as stated in the lemma. By Divisors,
Definition 14.1 there is a short exact sequence

0 → OX → OX(D) → i∗i
∗OX(D) → 0

where i : D → X is the closed immersion. Tensoring with E we obtain a short exact
sequence

0 → E → E(D) → i∗i
∗E(D) → 0

The equation of the lemma follows from additivity of the Euler characteristic
(Lemma 33.2) and Lemma 33.3. □

Lemma 44.10.0C6P Let k be a field. Let X be a proper scheme over k which is reduced
and connected. Let κ = H0(X,OX). Then κ/k is a finite extension of fields and
w = [κ : k] divides

(1) deg(E) for all locally free OX-modules E,
(2) [κ(x) : k] for all closed points x ∈ X, and
(3) deg(D) for all closed subschemes D ⊂ X of dimension zero.

Proof. See Lemma 9.3 for the assertions about κ. For every quasi-coherent OX -
module, the k-vector spaces Hi(X,F) are κ-vector spaces. The divisibilities easily
follow from this statement and the definitions. □

Lemma 44.11.0AYZ Let k be a field. Let f : X → Y be a nonconstant morphism of
proper curves over k. Let E be a locally free OY -module. Then

deg(f∗E) = deg(X/Y ) deg(E)

Proof. The degree of X over Y is defined in Morphisms, Definition 51.8. Thus
f∗OX is a coherent OY -module of rank deg(X/Y ), i.e., deg(X/Y ) = dimκ(ξ)(f∗OX)ξ
where ξ is the generic point of Y . Thus we obtain

χ(X, f∗E) = χ(Y, f∗f
∗E)

= χ(Y, E ⊗ f∗OX)
= deg(X/Y ) deg(E) + nχ(Y, f∗OX)
= deg(X/Y ) deg(E) + nχ(X,OX)

as desired. The first equality as f is finite, see Cohomology of Schemes, Lemma
2.4. The second equality by projection formula, see Cohomology, Lemma 54.2. The
third equality by Lemma 44.5. □

The following is a trivial but important consequence of the results on degrees above.

Lemma 44.12.0B40 Let k be a field. Let X be a proper curve over k. Let L be an
invertible OX-module.

(1) If L has a nonzero section, then deg(L) ≥ 0.
(2) If L has a nonzero section s which vanishes at a point, then deg(L) > 0.
(3) If L and L−1 have nonzero sections, then L ∼= OX .
(4) If deg(L) ≤ 0 and L has a nonzero section, then L ∼= OX .
(5) If N → L is a nonzero map of invertible OX-modules, then deg(L) ≥

deg(N ) and if equality holds then it is an isomorphism.
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Proof. Let s be a nonzero section of L. Since X is a curve, we see that s is a regular
section. Hence there is an effective Cartier divisor D ⊂ X and an isomorphism
L → OX(D) mapping s the canonical section 1 of OX(D), see Divisors, Lemma
14.10. Then deg(L) = deg(D) by Lemma 44.9. As deg(D) ≥ 0 and = 0 if and only
if D = ∅, this proves (1) and (2). In case (3) we see that deg(L) = 0 and D = ∅.
Similarly for (4). To see (5) apply (1) and (4) to the invertible sheaf

L ⊗OX
N ⊗−1 = HomOX

(N ,L)

which has degree deg(L) − deg(N ) by Lemma 44.7. □

Lemma 44.13.0E22 Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and equidimensional of dimension 1. Let L be an invertible OX-module.
If deg(L|C) ≤ 0 for all irreducible components C of X, then either H0(X,L) = 0
or L ∼= OX .

Proof. Let s ∈ H0(X,L) be nonzero. Since X is reduced there exists an irreducible
component C of X with s|C ̸= 0. But if s|C is nonzero, then s is nonwhere
vanishing on C by Lemma 44.12. This in turn implies s is nowhere vanishing on
every irreducible component of X meeting C. Since X is connected, we conclude
that s vanishes nowhere and the lemma follows. □

Lemma 44.14.0B5X Let k be a field. Let X be a proper curve over k. Let L be an
invertible OX-module. Then L is ample if and only if deg(L) > 0.

Proof. If L is ample, then there exists an n > 0 and a section s ∈ H0(X,L⊗n)
with Xs affine. Since X isn’t affine (otherwise by Morphisms, Lemma 44.11 X
would be finite), we see that s vanishes at some point. Hence deg(L⊗n) > 0 by
Lemma 44.12. By Lemma 44.7 we conclude that deg(L) = 1/n deg(L⊗n) > 0.

Assume deg(L) > 0. Then

dimkH
0(X,L⊗n) ≥ χ(X,Ln) = ndeg(L) + χ(X,OX)

grows linearly with n. Hence for any finite collection of closed points x1, . . . , xt
of X, we can find an n such that dimkH

0(X,L⊗n) >
∑

dimk κ(xi). (Recall that
by Hilbert Nullstellensatz, the extension fields κ(xi)/k are finite, see for example
Morphisms, Lemma 20.3). Hence we can find a nonzero s ∈ H0(X,L⊗n) vanishing
in x1, . . . , xt. In particular, if we choose x1, . . . , xt such that X \ {x1, . . . , xt} is
affine, then Xs is affine too (for example by Properties, Lemma 26.4 although if we
choose our finite set such that L|X\{x1,...,xt} is trivial, then it is immediate). The
conclusion is that we can find an n > 0 and a nonzero section s ∈ H0(X,L⊗n) such
that Xs is affine.

We will show that for every quasi-coherent sheaf of ideals I there exists an m > 0
such that H1(X, I ⊗ L⊗m) is zero. This will finish the proof by Cohomology of
Schemes, Lemma 17.1. To see this we consider the maps

I s−→ I ⊗ L⊗n s−→ I ⊗ L⊗2n s−→ . . .

Since I is torsion free, these maps are injective and isomorphisms over Xs, hence
the cokernels have vanishing H1 (by Cohomology of Schemes, Lemma 9.10 for
example). We conclude that the maps of vector spaces

H1(X, I) → H1(X, I ⊗ L⊗n) → H1(X, I ⊗ L⊗2n) → . . .
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are surjective. On the other hand, the dimension of H1(X, I) is finite, and every
element maps to zero eventually by Cohomology of Schemes, Lemma 17.4. Thus
for some e > 0 we see that H1(X, I ⊗ L⊗en) is zero. This finishes the proof. □

Lemma 44.15.0B5Y Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let L be an invertible OX-module. Let Ci ⊂ X, i = 1, . . . , t be the irreducible
components of dimension 1. The following are equivalent:

(1) L is ample, and
(2) deg(L|Ci

) > 0 for i = 1, . . . , t.

Proof. Let x1, . . . , xr ∈ X be the isolated closed points. Think of xi = Spec(κ(xi))
as a scheme. Consider the morphism of schemes

f : C1 ⨿ . . .⨿ Ct ⨿ x1 ⨿ . . .⨿ xr −→ X

This is a finite surjective morphism of schemes proper over k (details omitted).
Thus L is ample if and only if f∗L is ample (Cohomology of Schemes, Lemma
17.2). Thus we conclude by Lemma 44.14. □

Lemma 44.16.0B8Z Let k be an algebraically closed field. Let X be a proper curve
over k. Then there exist

(1) an invertible OX-module L with dimkH
0(X,L) = 1 and H1(X,L) = 0,

and
(2) an invertible OX-module N with dimkH

0(X,N ) = 0 and H1(X,N ) = 0.

Proof. Choose a closed immersion i : X → Pn
k (Lemma 43.4). Setting L =

i∗OPn(d) for d ≫ 0 we see that there exists an invertible sheaf L with H0(X,L) ̸= 0
and H1(X,L) = 0 (see Cohomology of Schemes, Lemma 17.1 for vanishing and the
references therein for nonvanishing). We will finish the proof of (1) by descending
induction on t = dimkH

0(X,L). The base case t = 1 is trivial. Assume t > 1.

Let U ⊂ X be the nonempty open subset of nonsingular points studied in Lemma
25.8. Let s ∈ H0(X,L) be nonzero. There exists a closed point x ∈ U such that
s does not vanish in x. Let I be the ideal sheaf of i : x → X as in Lemma 43.8.
Look at the short exact sequence

0 → I ⊗OX
L → L → i∗i

∗L → 0

Observe that H0(X, i∗i∗L) = H0(x, i∗L) has dimension 1 as x is a k-rational point
(k is algebraically closed). Since s does not vanish at x we conclude that

H0(X,L) −→ H0(X, i∗i∗L)

is surjective. Hence dimkH
0(X, I ⊗OX

L) = t− 1. Finally, the long exact sequence
of cohomology also shows that H1(X, I ⊗OX

L) = 0 thereby finishing the proof of
the induction step.

To get an invertible sheaf as in (2) take an invertible sheaf L as in (1) and do the
argument in the previous paragraph one more time. □

Lemma 44.17.0B90 Let k be an algebraically closed field. Let X be a proper curve
over k. Set g = dimkH

1(X,OX). For every invertible OX-module L with deg(L) ≥
2g − 1 we have H1(X,L) = 0.
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Proof. Let N be the invertible module we found in Lemma 44.16 part (2). The
degree of N is χ(X,N ) − χ(X,OX) = 0 − (1 − g) = g − 1. Hence the degree of
L ⊗ N ⊗−1 is deg(L) − (g − 1) ≥ g. Hence χ(X,L ⊗ N ⊗−1) ≥ g + 1 − g = 1. Thus
there is a nonzero global section s whose zero scheme is an effective Cartier divisor
D of degree deg(L) − (g − 1). This gives a short exact sequence

0 → N s−→ L → i∗(L|D) → 0
where i : D → X is the inclusion morphism. We conclude that H0(X,L) maps
isomorphically to H0(D,L|D) which has dimension deg(L) − (g − 1). The result
follows from the definition of degree. □

45. Numerical intersections

0BEL In this section we play around with the Euler characteristic of coherent sheaves on
proper schemes to obtain numerical intersection numbers for invertible modules.
Our main tool will be the following lemma.

Lemma 45.1.0BEM Let k be a field. Let X be a proper scheme over k. Let F be a
coherent OX-module. Let L1, . . . ,Lr be invertible OX-modules. The map

(n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the
support of F .

Proof. We prove this by induction on dim(Supp(F)). If this number is zero,
then the function is constant with value dimk Γ(X,F) by Lemma 33.3. Assume
dim(Supp(F)) > 0.
If F has embedded associated points, then we can consider the short exact sequence
0 → K → F → F ′ → 0 constructed in Divisors, Lemma 4.6. Since the dimension of
the support of K is strictly less, the result holds for K by induction hypothesis and
with strictly smaller total degree. By additivity of the Euler characteristic (Lemma
33.2) it suffices to prove the result for F ′. Thus we may assume F does not have
embedded associated points.
If i : Z → X is a closed immersion and F = i∗G, then we see that the result forX, F ,
L1, . . . ,Lr is equivalent to the result for Z, G, i∗L1, . . . , i

∗Lr (since the cohomologies
agree, see Cohomology of Schemes, Lemma 2.4). Applying Divisors, Lemma 4.7 we
may assume that X has no embedded components and X = Supp(F).
Pick a regular meromorphic section s of L1, see Divisors, Lemma 25.4. Let I ⊂ OX

be the ideal of denominators of s and consider the maps
IF → F , IF → F ⊗ L1

of Divisors, Lemma 24.5. These are injective and have cokernels Q, Q′ supported on
nowhere dense closed subschemes of X = Supp(F). Tensoring with the invertible
module L⊗n1

1 ⊗ . . .⊗ L⊗nr
r is exact, hence using additivity again we see that

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) − χ(X,F ⊗ L⊗n1+1
1 ⊗ . . .⊗ L⊗nr

r )
= χ(Q ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r ) − χ(Q′ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )

Thus we see that the function P (n1, . . . , nr) of the lemma has the property that
P (n1 + 1, n2, . . . , nr) − P (n1, . . . , nr)
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is a numerical polynomial of total degree < the dimension of the support of F . Of
course by symmetry the same thing is true for

P (n1, . . . , ni−1, ni + 1, ni+1, . . . , nr) − P (n1, . . . , nr)
for any i ∈ {1, . . . , r}. A simple arithmetic argument shows that P is a numerical
polynomial of total degree at most dim(Supp(F)). □

The following lemma roughly shows that the leading coefficient only depends on
the length of the coherent module in the generic points of its support.

Lemma 45.2.0BEN Let k be a field. Let X be a proper scheme over k. Let F be a coher-
ent OX-module. Let L1, . . . ,Lr be invertible OX-modules. Let d = dim(Supp(F)).
Let Zi ⊂ X be the irreducible components of Supp(F) of dimension d. Let ξi ∈ Zi
be the generic point and set mi = lengthOX,ξi

(Fξi). Then

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) −
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < d.

Proof. Consider pairs (ξ, Z) where Z ⊂ X is an integral closed subscheme of
dimension d and ξ is its generic point. Then the finite OX,ξ-module Fξ has support
contained in {ξ} hence the length mZ = lengthOX,ξ

(Fξ) is finite (Algebra, Lemma
62.3) and zero unless Z = Zi for some i. Thus the expression of the lemma can be
written as

E(F) = χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) −
∑

mZ χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |Z)

where the sum is over integral closed subschemes Z ⊂ X of dimension d. The
assignment F 7→ E(F) is additive in short exact sequences 0 → F → F ′ → F ′′ → 0
of coherent OX -modules whose support has dimension ≤ d. This follows from
additivity of Euler characteristics (Lemma 33.2) and additivity of lengths (Algebra,
Lemma 52.3). Let us apply Cohomology of Schemes, Lemma 12.3 to find a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exists an integral
closed subscheme Vj ⊂ X and a nonzero sheaf of ideals Ij ⊂ OVj such that

Fj/Fj−1 ∼= (Vj → X)∗Ij
It follows that Vj ⊂ Supp(F) and hence dim(Vj) ≤ d. By the additivity we re-
marked upon above it suffices to prove the result for each of the subquotients
Fj/Fj−1. Thus it suffices to prove the result when F = (V → X)∗I where V ⊂ X
is an integral closed subscheme of dimension ≤ d and I ⊂ OV is a nonzero coherent
sheaf of ideals. If dim(V ) < d and more generally for F whose support has dimen-
sion < d, then the first term in E(F) has total degree < d by Lemma 45.1 and the
second term is zero. If dim(V ) = d, then we can use the short exact sequence

0 → (V → X)∗I → (V → X)∗OV → (V → X)∗(OV /I) → 0
The result holds for the middle sheaf because the only Z occurring in the sum is
Z = V with mZ = 1 and because

Hi(X, ((V → X)∗OV ) ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = Hi(V,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |V )
by the projection formula (Cohomology, Section 54) and Cohomology of Schemes,
Lemma 2.4; so in this case we actually have E(F) = 0. The result holds for the
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sheaf on the right because its support has dimension < d. Thus the result holds for
the sheaf on the left and the lemma is proved. □

Definition 45.3.0BEP Let k be a field. Let X be a proper scheme over k. Let i : Z → X
be a closed subscheme of dimension d. Let L1, . . . ,Ld be invertible OX -modules.
We define the intersection number (L1 · · · Ld · Z) as the coefficient of n1 . . . nd in
the numerical polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d ) = χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nd

d |Z)
In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Co-
homology, Section 54) and Cohomology of Schemes, Lemma 2.4. We prove a few
lemmas for these intersection numbers.

Lemma 45.4.0BEQ In the situation of Definition 45.3 the intersection number (L1 · · · Ld·
Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .

(
nd

kd

)
with k1 + . . .+ kd ≤ e.

Apply this with e = d. Left as an exercise. □

Lemma 45.5.0BER In the situation of Definition 45.3 the intersection number (L1 · · · Ld·
Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)

Proof. This is true because by Lemma 45.1 the function

(n1, . . . , ni−1, n
′
i, n

′′
i , ni+1, . . . , nd) 7→ χ(Z,L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd

d |Z)
is a numerical polynomial of total degree at most d in d+ 1 variables. □

Lemma 45.6.0BES In the situation of Definition 45.3 let Zi ⊂ Z be the irreducible
components of dimension d. Let mi = lengthOX,ξi

(OZ,ξi
) where ξi ∈ Zi is the

generic point. Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 45.2 and the definitions. □

Lemma 45.7.0BET Let k be a field. Let f : Y → X be a morphism of proper schemes
over k. Let Z ⊂ Y be an integral closed subscheme of dimension d and let L1, . . . ,Ld
be invertible OX-modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))
where deg(Z → f(Z)) is as in Morphisms, Definition 51.8 or 0 if dim(f(Z)) < d.

Proof. The left hand side is computed using the coefficient of n1 . . . nd in the
function
χ(Y,OZ ⊗ f∗L⊗n1

1 ⊗ . . .⊗ f∗L⊗nd

d ) =
∑

(−1)iχ(X,Rif∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d )

The equality follows from Lemma 33.5 and the projection formula (Cohomology,
Lemma 54.2). If f(Z) has dimension < d, then the right hand side is a polynomial
of total degree < d by Lemma 45.1 and the result is true. Assume dim(f(Z)) = d.
Let ξ ∈ f(Z) be the generic point. By dimension theory (see Lemmas 20.3 and 20.4)
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the generic point of Z is the unique point of Z mapping to ξ. Then f : Z → f(Z)
is finite over a nonempty open of f(Z), see Morphisms, Lemma 51.1. Thus deg(f :
Z → f(Z)) is defined and in fact it is equal to the length of the stalk of f∗OZ at ξ
over OX,ξ. Moreover, the stalk of Rif∗OX at ξ is zero for i > 0 because we just saw
that f |Z is finite in a neighbourhood of ξ (so that Cohomology of Schemes, Lemma
9.9 gives the vanishing). Thus the terms χ(X,Rif∗OZ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nd

d ) with
i > 0 have total degree < d and
χ(X, f∗OZ⊗L⊗n1

1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z),L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))
modulo a polynomial of total degree < d by Lemma 45.2. The desired result
follows. □

Lemma 45.8.0BEU Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. Let L1, . . . ,Ld be invertible OX-modules. Assume there
exists an effective Cartier divisor D ⊂ Z such that L1|Z ∼= OZ(D). Then

(L1 · · · Ld · Z) = (L2 · · · Ld ·D)

Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z
and L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short
exact sequence

0 → L⊗−1
1 → OX → OD → 0

Set P (n1, . . . , nd) = χ(X,L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d ) and Q(n1, . . . , nd) = χ(D,L⊗n1
1 ⊗

. . .⊗ L⊗nd

d |D). We conclude from additivity that
P (n1, . . . , nd) − P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)

Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd
in P is equal to the coefficient of n2 . . . nd in Q. □

Lemma 45.9.0BEV Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. If L1, . . . ,Ld are ample, then (L1 · · · Ld ·Z) is positive.

Proof. We will prove this by induction on d. The case d = 0 follows from Lemma
33.3. Assume d > 0. By Lemma 45.6 we may assume that Z is an integral closed
subscheme. In fact, we may replace X by Z and Li by Li|Z to reduce to the case
Z = X is a proper variety of dimension d. By Lemma 45.5 we may replace L1
by a positive tensor power. Thus we may assume there exists a nonzero section
s ∈ Γ(X,L1) such that Xs is affine (here we use the definition of ample invertible
sheaf, see Properties, Definition 26.1). Observe that X is not affine because proper
and affine implies finite (Morphisms, Lemma 44.11) which contradicts d > 0. It
follows that s has a nonempty vanishing scheme Z(s) ⊂ X. Since X is a variety,
s is a regular section of L1, so Z(s) is an effective Cartier divisor, thus Z(s) has
codimension 1 in X, and hence Z(s) has dimension d−1 (here we use material from
Divisors, Sections 13, 14, and 15 and from dimension theory as in Lemma 20.3).
By Lemma 45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld · Z(s))
By induction the right hand side is positive and the proof is complete. □

Definition 45.10.0BEW Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. For any closed subscheme the degree of Z with respect
to L, denoted degL(Z), is the intersection number (Ld · Z) where d = dim(Z).
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By Lemma 45.9 the degree of a subscheme is always a positive integer. We note
that degL(Z) = d if and only if

χ(Z,L⊗n|Z) = d

dim(Z)!n
dim(Z) + l.o.t

as can be seen using that

(n1 + . . .+ ndim(Z))dim(Z) = dim(Z)! n1 . . . ndim(Z) + other terms

Lemma 45.11.0BEX Let k be a field. Let f : Y → X be a finite dominant morphism
of proper varieties over k. Let L be an ample invertible OX-module. Then

degf∗L(Y ) = deg(f) degL(X)

where deg(f) is as in Morphisms, Definition 51.8.

Proof. The statement makes sense because f∗L is ample by Morphisms, Lemma
37.7. Having said this the result is a special case of Lemma 45.7. □

Finally we relate the intersection number with a curve to the notion of degrees of
invertible modules on curves introduced in Section 44.

Lemma 45.12.0BEY Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X be
a closed subscheme of dimension ≤ 1. Let L be an invertible OX-module. Then

(L · Z) = deg(L|Z)

where deg(L|Z) is as in Definition 44.1. If L is ample, then degL(Z) = deg(L|Z).

Proof. This follows from the fact that the function n 7→ χ(Z,L|⊗nZ ) has degree 1
and hence the leading coefficient is the difference of consecutive values. □

Proposition 45.13 (Asymptotic Riemann-Roch).0BJ8 Let k be a field. Let X be a
proper scheme over k of dimension d. Let L be an ample invertible OX-module.
Then

dimk Γ(X,L⊗n) ∼ cnd + l.o.t.

where c = degL(X)/d! is a positive constant.

Proof. This follows from the definitions, Lemma 45.9, and the vanishing of higher
cohomology in Cohomology of Schemes, Lemma 17.1. □

46. Embedding dimension

0C2G There are several ways to define the embedding dimension, but for closed points
on algebraic schemes over algebraically closed fields all definitions are equivalent to
the following.

Definition 46.1.0C1Q Let k be an algebraically closed field. LetX be a locally algebraic
k-scheme and let x ∈ X be a closed point. The embedding dimension of X at x is
dimk mx/m

2
x.

Facts about embedding dimension. Let k,X, x be as in Definition 46.1.
(1) The embedding dimension of X at x is the dimension of the tangent space

TX/k,x (Definition 16.3) as a k-vector space.
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(2) The embedding dimension of X at x is the smallest integer d ≥ 0 such that
there exists a surjection

k[[x1, . . . , xd]] −→ O∧
X,x

of k-algebras.
(3) The embedding dimension of X at x is the smallest integer d ≥ 0 such that

there exists an open neighbourhood U ⊂ X of x and a closed immersion
U → Y where Y is a smooth variety of dimension d over k.

(4) The embedding dimension of X at x is the smallest integer d ≥ 0 such
that there exists an open neighbourhood U ⊂ X of x and an unramified
morphism U → Ad

k.
(5) If we are given a closed embedding X → Y with Y smooth over k, then

the embedding dimension of X at x is the smallest integer d ≥ 0 such that
there exists a closed subscheme Z ⊂ Y with X ⊂ Z, with Z → Spec(k)
smooth at x, and with dimx(Z) = d.

If we ever need these, we will formulate a precise result and provide a proof.

Non-algebraically closed ground fields or non-closed points. Let k be a field and
let X be a locally algebraic k-scheme. If x ∈ X is a point, then we have several
options for the embedding dimension of X at x. Namely, we could use

(1) dimκ(x)(mx/m2
x),

(2) dimκ(x)(TX/k,x) = dimκ(x)(ΩX/k,x ⊗OX,x
κ(x)) (Lemma 16.4),

(3) the smallest integer d ≥ 0 such that there exists an open neighbourhood
U ⊂ X of x and a closed immersion U → Y where Y is a smooth variety
of dimension d over k.

In characteristic zero (1) = (2) if x is a closed point; more generally this holds if κ(x)
is separable algebraic over k, see Lemma 16.5. It seems that the geometric definition
(3) corresponds most closely to the geometric intuition the phrase “embedding
dimension” invokes. Since one can show that (3) and (2) define the same number
(this follows from Lemma 18.5) this is what we will use. In our terminology we
will make clear that we are taking the embedding dimension relative to the ground
field.

Definition 46.2.0C2H Let k be a field. Let X be a locally algebraic k-scheme. Let
x ∈ X be a point. The embedding dimension of X/k at x is dimκ(x)(TX/k,x).

If (A,m, κ) is a Noetherian local ring the embedding dimension of A is sometimes
defined as the dimension of m/m2 over κ. Above we have seen that if A is given as
an algebra over a field k, it may be preferable to use dimκ(ΩA/k ⊗A κ). Let us call
this quantity the embedding dimension of A/k. With this terminology in place we
have

embed dim of X/k at x = embed dim of OX,x/k = embed dim of O∧
X,x/k

if k,X, x are as in Definition 46.2.

47. Bertini theorems

0FD4 In this section we prove results of the form: given a smooth projective variety X
over a field k there exists an ample divisor H ⊂ X which is smooth.
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Lemma 47.1.0FD5 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX-module. Let Z ⊂ X be a closed subscheme. Then there exists
an integer n0 such that for all n ≥ n0 the kernel Vn of Γ(X,L⊗n) → Γ(Z,L⊗n|Z)
generates L⊗n|X\Z and the canonical morphism

X \ Z −→ P(Vn)

is an immersion of schemes over k.

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of Z. Observe that via the
inclusion I ⊗OX

L⊗n ⊂ L⊗n we have Vn = Γ(X, I ⊗OX
L⊗n). Choose n1 such that

for n ≥ n1 the sheaf I ⊗ L⊗n is globally generated, see Properties, Proposition
26.13. It follows that Vn gererates L⊗n|X\Z for n ≥ n1.

For n ≥ n1 denote ψn : Vn → Γ(X \ Z,L⊗n|X\Z) the restriction map. We get a
canonical morphism

φ = φL⊗n|X\Z ,ψn
: X \ Z −→ P(Vn)

by Constructions, Example 21.2. Choose n2 such that for all n ≥ n2 the invertible
sheaf L⊗n is very ample on X. We claim that n0 = n1 + n2 works.

Proof of the claim. Say n ≥ n0 and write n = n1 +n′. For x ∈ X \Z we can choose
s1 ∈ V1 not vanishing at x. Set V ′ = Γ(X,L⊗n′). By our choice of n and n′ we
see that the corresponding morphism φ′ : X → P(V ′) is a closed immersion. Thus
if we choose s′ ∈ Γ(X,L⊗n′) not vanishing at x, then Xs′ = (φ′)−1(D+(s′)) (see
Constructions, Lemma 14.1) is affine andXs′ → D+(s′) is a closed immersion. Then
s = s1 ⊗ s′ ∈ Vn does not vanish at x. If D+(s) ⊂ P(Vn) denotes the corresponding
open affine space of our projective space, then φ−1(D+(s)) = Xs ⊂ X \ Z (see
reference above). The open Xs = Xs′ ∩Xs1 is affine, see Properties, Lemma 26.4.
Consider the ring map

Sym(V )(s) −→ OX(Xs)
defining the morphism Xs → D+(s). Because Xs′ → D+(s′) is a closed immersion,
the images of the elements

s1 ⊗ t′

s1 ⊗ s′

where t′ ∈ V ′ generate the image of OX(Xs′) → OX(Xs). Since Xs → Xs′ is an
open immersion, this implies that Xs → D+(s) is an immersion of affine schemes
(see below). Thus φn is an immersion by Morphisms, Lemma 3.5.

Let a : A′ → A and c : B → A be ring maps such that Spec(a) is an immersion and
Im(a) ⊂ Im(c). Set B′ = A′ ×A B with projections b : B′ → B and c′ : B′ → A′.
By assumption c′ is surjective and hence Spec(c′) is a closed immersion. Whence
Spec(c′)◦Spec(a) is an immersion (Schemes, Lemma 24.3). Then Spec(c) has to be
an immersion because it factors the immersion Spec(c′)◦Spec(a) = Spec(b)◦Spec(c),
see Morphisms, Lemma 3.1. □

Situation 47.2.0G47 Let k be a field, let X be a scheme over k, let L be an invertible
OX -module, let V be a finite dimensional k-vector space, and let ψ : V → Γ(X,L)
be a k-linear map. Say dim(V ) = r and we have a basis v1, . . . , vr of V . Then we
obtain a “universal divisor”

Huniv = Z(suniv) ⊂ Ar ×k X

https://stacks.math.columbia.edu/tag/0FD5
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as the zero scheme (Divisors, Definition 14.8) of the section

suniv =
∑

i=1,...,r
xiψ(vi) ∈ Γ(Ar ×k X,pr∗

2L)

For a field extension k′/k the k′-points v ∈ Ar
k(k′) correspond to vectors (a1, . . . , ar)

of elements of k′. Thus we may on the one hand think of v as the element v =∑
i=1,...,r aivi ∈ V ⊗k k

′ and on the other hand we may assign to v the section

ψ(v) =
∑

i=1,...,r
aiψ(vi) ∈ Γ(Xk′ ,L|Xk′ )

With this notation it is clear that the fibre of Huniv over v ∈ V ⊗ k′ is the zero
scheme of ψ(v). In a formula:

Hv = Huniv,v = Z(ψ(v))
We will denote this common value by Hv as indicated. Finally, in this situation let
P be a property of vectors v ∈ V ⊗k k

′ for k′/k an arbitrary field extension7. We
say P holds for general v ∈ V ⊗k k

′ if there exists a nonempty Zariski open U ⊂ Ar
k

such that if v corresponds to a k′-point of U for any k′/k then P (v) holds.

Lemma 47.3.0FD6 In Situation 47.2 assume
(1) X is smooth over k,
(2) the image of ψ : V → Γ(X,L) generates L,
(3) the corresponding morphism φL,ψ : X → P(V ) is an immersion.

Then for general v ∈ V ⊗k k
′ the scheme Hv is smooth over k′.

Proof. (We observe that X is separated and finite type as a locally closed sub-
scheme of a projective space.) Let us use the notation introduced above the state-
ment of the lemma. We consider the projections

Ar
k ×k X

��

Huniv
oo

p

yy

//

q
%%

Ar
k ×k X

��
X Ar

k

Let Σ ⊂ Huniv be the singular locus of the morphsm q : Huniv → Ar
k, i.e., the set

of points where q is not smooth. Then Σ is closed because the smooth locus of a
morphism is open by definition. Since the fibre of a smooth morphism is smooth,
it suffices to prove q(Σ) is contained in a proper closed subset of Ar

k. Since Σ (with
reduced induced scheme structure) is a finite type scheme over k it suffices to prove
dim(Σ) < r This follows from Lemma 20.4. Since dimensions aren’t changed by
replacing k by a bigger field (Morphisms, Lemma 28.3), we may and do assume k
is algebraically closed. By dimension theory (Lemma 20.4), it suffices to prove that
for x ∈ X \Z closed we have p−1({x}) ∩ Σ has dimension < r− dim(X ′) where X ′

is the unique irreducible component of X containing x. As X is smooth over k and
x is a closed point we have dim(X ′) = dimmx/m

2
x (Morphisms, Lemma 34.12 and

Algebra, Lemma 140.1). Thus we win if
dim p−1(x) ∩ Σ < r − dimmx/m

2
x

for all x ∈ X closed.

7For example we could consider the condition that Hv is smooth over k′, or geometrically
irreducible over k′.
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Since V globally generated L, for every irreducible component X ′ of X there is
a nonempty Zariski open of Ar such that the fibres of q over this open do not
contain X ′. (For example, if x′ ∈ X ′ is a closed point, then we can take the
open corresponding to those vectors v ∈ V such that ψ(v) does not vanish at
x′. This open will be the complement of a hyperplane in Ar

k.) Let U ⊂ Ar be
the (nonempty) intersection of these opens. Then the fibres of q−1(U) → U are
effective Cartier divisors on the fibres of U ×k X → U (because a nonvanishing
section of an invertible module on an integral scheme is a regular section). Hence
the morphism q−1(U) → U is flat by Divisors, Lemma 18.9. Thus for x ∈ X closed
and v ∈ V = Ar

k(k), if (x, v) ∈ Huniv, i.e., if x ∈ Hv then q is smooth at (x, v) if
and only if the fibre Hv is smooth at x, see Morphisms, Lemma 34.14.
Consider the image ψ(v)x in the stalk Lx of the section corresponding to v ∈ V .
We have

x ∈ Hv ⇔ ψ(v)x ∈ mxLx
If this is true, then we have

Hv singular at x ⇔ ψ(v)x ∈ m2
xLx

Namely, ψ(v)x is not contained in m2
xLx ⇔ the local equation for Hv ⊂ X at

x is not contained in m2
x ⇔ OHv,x is regular (Algebra, Lemma 106.3) ⇔ Hv is

smooth at x over k (Algebra, Lemma 140.5). We conclude that the closed points of
p−1(x) ∩ Σ correspond to those v ∈ V such that ψ(v)x ∈ m2

xLx. However, as φL,ψ
is an immersion the map

V −→ Lx/m2
xLx

is surjective (small detail omitted). By the above, the closed points of the locus
p−1(x) ∩ Σ viewed as a subspace of V is the kernel of this map and hence has
dimension r − dimmx/m

2
x − 1 as desired. □

48. Enriques-Severi-Zariski

0FVD In this section we prove some results of the form: twisting by a “very negative”
invertible module kills low degree cohomology. We also deduce the connectedness
of a hypersurface section of a normal proper scheme of dimension ≥ 2.

Lemma 48.1.0FD7 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX-module. Let F be a coherent OX-module. If Ass(F) does not
contain any closed points, then Γ(X,F ⊗OX

L⊗n) = 0 for n ≪ 0.

Proof. For a coherent OX -module F let P(F) be the property: there exists an
n0 ∈ Z such that for n ≤ n0 every section s of F ⊗OX

L⊗n has support consisting
only of closed points. Since Ass(F) = Ass(F ⊗OX

L⊗n) we see that it suffices
to prove P holds for all coherent modules on X. To do this we will prove that
conditions (1), (2), and (3) of Cohomology of Schemes, Lemma 12.8 are satisfied.
To see condition (1) suppose that

0 → F1 → F → F2 → 0
is a short exact sequence of coherent OX -modules such that we have P for Fi,
i = 1, 2. Let n1, n2 be the cutoffs we find. Let F ′

2 ⊂ F2 be the maximal coherent
submodule whose support is a finite set of closed points. Let I ⊂ OX be the
annihilator of F ′

2. Since L is ample, we can find an e > 0 such that I ⊗OX
L⊗e

is globally generated. Set n0 = min(n2, n1 − e). Let n ≤ n0 and let t be a global
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section of F ⊗L⊗n. The image of t in F2 ⊗L⊗n falls into F ′
2 ⊗L⊗n because n ≤ n2.

Hence for any s ∈ Γ(X, I ⊗OX
L⊗e) the product t ⊗ s lies in F1 ⊗ L⊗n+e. Thus

t ⊗ s has support contained in the finite set of closed points in Ass(F1) because
n+ e ≤ n1. Since by our choice of e we may choose s invertible in any point not in
the support of F ′

2 we conclude that the support of t is contained in the union of the
finite set of closed points in Ass(F1) and the finite set of closed points in Ass(F2).
This finishes the proof of condition (1).

Condition (2) is immediate.

For condition (3) we choose G = OZ . In this case, if Z is a closed point of X, then
there is nothing the show. If dim(Z) > 0, then we will show that Γ(Z,L⊗n|Z) = 0
for n < 0. Namely, let s be a nonzero section of a negative power of L|Z . Choose
a nonzero section t of a positive power of L|Z (this is possible as L is ample, see
Properties, Proposition 26.13). Then sdeg(t) ⊗ tdeg(s) is a nonzero global section of
OZ (because Z is integral) and hence a unit (Lemma 9.3). This implies that t is a
trivializing section of a positive power of L. Thus the function n 7→ dimk Γ(X,L⊗n)
is bounded on an infinite set of positive integers which contradicts asymptotic
Riemann-Roch (Proposition 45.13) since dim(Z) > 0. □

Lemma 48.2 (Enriques-Severi-Zariski).0FD8 Let k be a field. Let X be a proper scheme
over k. Let L be an ample invertible OX-module. Let F be a coherent OX-module.
Assume that for x ∈ X closed we have depth(Fx) ≥ 2. Then H1(X,F ⊗OX

L⊗m) =
0 for m ≪ 0.

Proof. Choose a closed immersion i : X → Pn
k such that i∗O(1) ∼= L⊗e for some

e > 0 (see Morphisms, Lemma 39.4). Then it suffices to prove the lemma for

G = i∗(F ⊕ F ⊗ L ⊕ . . .⊕ F ⊗ L⊗e−1) and O(1)

on Pn
k . Namely, we have

H1(Pn
k ,G(m)) =

⊕
j=0,...,e−1

H1(X,F ⊗ L⊗j+me)

by Cohomology of Schemes, Lemma 2.4. Also, if y ∈ Pn
k is a closed point then

depth(Gy) = ∞ if y ̸∈ i(X) and depth(Gy) = depth(Fx) if y = i(x) because in
this case Gy ∼= F⊕e

x as a module over OPn
k
,x and we can use for example Algebra,

Lemma 72.11 to get the equality.

Assume X = Pn
k and L = O(1) and k is infinite. Choose s ∈ H0(P1

k,O(1)) which
determines an exact sequence

0 → F(−1) s−→ F → G → 0

as in Lemma 35.3. Since the map F(−1) → F is affine locally given by multiplying
by a nonzerodivisor on F we see that for x ∈ Pn

k closed we have depth(Gx) ≥ 1, see
Algebra, Lemma 72.7. Hence by Lemma 48.1 we have H0(G(m)) = 0 for m ≪ 0.
Looking at the long exact sequence of cohomology after twisting (see Remark 35.5)
we find that the sequence of numbers

dimH1(Pn
k ,F(m))

stabilizes for m ≤ m0 for some integer m0. Let N be the common dimension of
these spaces for m ≤ m0. We have to show N = 0.
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For d > 0 and m ≤ m0 consider the bilinear map
H0(Pn

k ,O(d)) ×H1(Pn
k ,F(m− d)) −→ H1(Pn

k ,F(m))
By linear algebra, there is a codimension ≤ N2 subspace Vm ⊂ H0(Pn

k ,O(d)) such
that multiplication by s′ ∈ Vm annihilates H1(Pn

k ,F(m − d)). Observe that for
m′ < m ≤ m0 the diagram

H0(Pn
k ,O(d)) ×H1(Pn

k ,F(m′ − d)) //

1×sm′−m

��

H1(Pn
k ,F(m′))

sm′−m

��
H0(Pn

k ,O(d)) ×H1(Pn
k ,F(m− d)) // H1(Pn

k ,F(m))

commutes with isomorphisms going vertically. Thus Vm = V is independent of
m ≤ m0. For x ∈ Ass(F) set Z = {x}. For d large enough the linear map

H0(Pn
k ,O(d)) → H0(Z,O(d)|Z)

has rank > N2 because dim(Z) ≥ 1 (for example this follows from asymptotic
Riemann-Roch and ampleness O(1); details omitted). Hence we can find s′ ∈ V
such that s′ does not vanish in any associated point of F (use that the set of
associated points is finite). Then we obtain

0 → F(−d) s′

−→ F → G′ → 0
and as before we conclude as before that multiplication by s′ on H1(Pn

k ,F(m−d))
is injective for m ≪ 0. This contradicts the choice of s′ unless N = 0 as desired.
We still have to treat the case where k is finite. In this case let K/k be any
infinite algebraic field extension. Denote FK and LK the pullbacks of F and L to
XK = Spec(K) ×Spec(k) X. We have

H1(XK ,FK ⊗ L⊗m
K ) = H1(X,F ⊗ L⊗m) ⊗k K

by Cohomology of Schemes, Lemma 5.2. On the other hand, a closed point xK of
XK maps to a closed point x of X because K/k is an algebraic extension. The ring
map OX,x → OXK ,xK

is flat (Lemma 5.1). Hence we have
depth(FxK

) = depth(Fx ⊗OX,x
OXK ,xK

) ≥ depth(Fx)
by Algebra, Lemma 163.1 (in fact equality holds here but we don’t need it). There-
fore the result over k follows from the result over the infinite field K and the proof
is complete. □

Lemma 48.3.0FD9 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX-module. Let s ∈ Γ(X,L). Assume

(1) s is a regular section (Divisors, Definition 14.6),
(2) for every closed point x ∈ X we have depth(OX,x) ≥ 2, and
(3) X is connected.

Then the zero scheme Z(s) of s is connected.

Proof. Since s is a regular section, so is sn ∈ Γ(X,L⊗n) for all n > 1. Moreover,
the inclusion morphism Z(s) → Z(sn) is a bijection on underlying topological
spaces. Hence if Z(s) is disconnected, so is Z(sn). Now consider the canonical
short exact sequence

0 → L⊗−n sn

−→ OX → OZ(sn) → 0

https://stacks.math.columbia.edu/tag/0FD9
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Consider the k-algebra Rn = Γ(X,OZ(sn)). If Z(s) is disconnected, i.e., Z(sn) is
disconnected, then either Rn is zero in case Z(sn) = ∅ or Rn contains a nontrivial
idempotent in case Z(sn) = U ⨿ V with U, V ⊂ Z(sn) open and nonempty (the
reader may wish to consult Lemma 9.3). Thus the map Γ(X,OX) → Rn cannot be
an isomorphism. It follows that either H0(X,L⊗−n) or H1(X,L⊗−n) is nonzero
for infinitely many positive n. This contradicts Lemma 48.1 or 48.2 and the proof
is complete. □
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