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1. Introduction

0FFH In this chapter we discuss Weil cohomology theories for smooth projective schemes
over a base field. Briefly, for us such a cohomology theory H∗ is one which has
Künneth, Poincaré duality, and cycle classes (with suitable compatibilities). We
warn the reader that there is no universal agreement in the literature as to what
constitutes a “Weil cohomology theory”.
Before reading this chapter the reader should take a look at Categories, Section 43
and Homology, Section 17 where we define (symmetric) monoidal categories and
we develop just enough basic language concerning these categories for the needs of
this chapter. Equipped with this language we construct in Section 3 the symmetric
monoidal graded category whose objects are smooth projective schemes and whose
morphisms are correspondences. In Section 4 we add images of projectors and
invert the Lefschetz motive in order to obtain the symmetric monoidal Karoubian
category Mk of Chow motives. This category comes equipped with a contravariant
functor

h : {smooth projective schemes over k} −→ Mk

As we will see below, a key property of a Weil cohomology theory is that it factors
over h.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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First, in the case of an algebraically closed base field, we define what we call a
“classical Weil cohomology theory”, see Section 7. This notion is the same as the
notion introduced in [Kle68, Section 1.2] and agrees with the notion introduced in
[Kle72, page 65]. However, our notion does not a priori agree with the notion intro-
duced in [Kle94, page 10] because there the author adds two Lefschetz type axioms
and it isn’t known whether any classical Weil cohomology theory as defined in this
chapter satisfies those axioms. At the end of Section 7 we show that a classical Weil
cohomology theory is of the form H∗ = G ◦ h where G is a symmetric monoidal
functor from Mk to the category of graded vector spaces over the coefficient field
of H∗.
In Section 8 we prove a couple of lemmas on cycle groups over non-closed fields
which will be used in discussing Weil cohomology theories on smooth projective
schemes over arbitrary fields.
Our motivation for our axioms of a Weil cohomology theory H∗ over a general base
field k are the following

(1) H∗ = G ◦ h for a symmetric monoidal functor G from Mk to the category
of graded vector spaces over the coefficient field F of H∗,

(2) G should send the Tate motive (inverse of the Lefschetz motive) to a 1-
dimensional vector space F (1) sitting in degree −2,

(3) when k is algebraically closed we should recover the notion discussion in
Section 7 up to choosing a basis element of F (1).

First, in Section 9 we analyze the first two conditions. After developing a few more
results in Section 10 in Section 11 we add the necessary axioms to obtain property
(3).
In the final Section 14 we detail an alternative approach to Weil cohomology the-
ories, using a first Chern class map instead of cycle classes. It is this approach
that will be most suited for proving that certain cohomology theories are Weil
cohomology theories in later chapters, see de Rham Cohomology, Section 22.

2. Conventions and notation

0FFI Let F be a field. In this chapter we view the category of F -graded vector spaces
as an F -linear symmetric monoidal category with associativity constraint as usual
and with commutativity constraint involving signs. See Homology, Example 17.4.
Let R be a ring. In this chapter a graded commutative R-algebra A is a commutative
differential graded R-algebra (Differential Graded Algebra, Definitions 3.1 and 3.3)
whose differential is zero. Thus A is an R-module endowed with a grading A =⊕

n∈Z A
n by R-submodules. The R-bilinear multiplication

An ×Am −→ An+m, α× β 7−→ α ∪ β

will be called the cup product in this chapter. The commutativity constraint is
α∪ β = (−1)nmβ ∪ α if α ∈ An and β ∈ Am. Finally, there is a multiplicative unit
1 ∈ A0, or equivalently, there is an additive and multiplicative map R → A0 which
is compatible the R-module structure on A.
Let k be a field. Let X be a scheme of finite type over k. The Chow groups CHk(X)
ofX of cycles of dimension k modulo rational equivalence have been defined in Chow
Homology, Definition 19.1. If X is normal or Cohen-Macaulay, then we can also
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consider the Chow groups CHp(X) of cycles of codimension p (Chow Homology,
Section 42) and then [X] ∈ CH0(X) denotes the “fundamental class” of X, see
Chow Homology, Remark 42.2. If X is smooth and α and β are cycles on X, then
α · β denotes the intersection product of α and β, see Chow Homology, Section 62.

3. Correspondences

0FFZ Let k be a field. For schemes X and Y over k we denote X × Y the product of X
and Y in the category of schemes over k. In this section we construct the graded
category over Q whose objects are smooth projective schemes over k and whose
morphisms are correspondences.
Let X and Y be smooth projective schemes over k. Let X =

∐
Xd be the decom-

position of X into the open and closed subschemes which are equidimensional with
dim(Xd) = d. We define the Q-vector space of correspondences of degree r from X
to Y by the formula:

Corrr(X,Y ) =
⊕

d
CHd+r(Xd × Y ) ⊗ Q ⊂ CH∗(X × Y ) ⊗ Q

Given c ∈ Corrr(X,Y ) and β ∈ CHk(Y ) ⊗ Q we can define the pullback of β by c
using the formula

c∗(β) = pr1,∗(c · pr∗
2β) in CHk−r(X) ⊗ Q

This makes sense because pr2 is flat of relative dimension d on Xd ×Y , hence pr∗
2β

is a cycle of dimension d+ k on Xd ×Y , hence c · pr∗
2α is a cycle of dimension k− r

on Xd × Y whose pushforward by the proper morphism pr1 is a cycle of the same
dimension. Similarly, switching to grading by codimension, given α ∈ CHi(X) ⊗ Q
we can define the pushforward of α by c using the formula

c∗(α) = pr2,∗(c · pr∗
1α) in CHi+r(Y ) ⊗ Q

This makes sense because pr∗
1α is a cycle of codimension i on X ×Y , hence c · pr∗

1α
is a cycle of codimension i + d + r on Xd × Y , which pushes forward to a cycle of
codimension i+ r on Y .
Given a three smooth projective schemes X,Y, Z over k we define a composition of
correspondences

Corrs(Y,Z) × Corrr(X,Y ) −→ Corrr+s(X,Z)
by the rule

(c′, c) 7−→ c′ ◦ c = pr13,∗(pr∗
12c · pr∗

23c
′)

where pr12 : X × Y ×Z → X × Y is the projection and similarly for pr13 and pr23.

Lemma 3.1.0FG0 We have the following for correspondences:
(1) composition of correspondences is Q-bilinear and associative,
(2) there is a canonical isomorphism

CH−r(X) ⊗ Q = Corrr(X,Spec(k))
such that pullback by correspondences corresponds to composition,

(3) there is a canonical isomorphism
CHr(X) ⊗ Q = Corrr(Spec(k), X)

such that pushforward by correspondences corresponds to composition,

https://stacks.math.columbia.edu/tag/0FG0
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(4) composition of correspondences is compatible with pushforward and pullback
of cycles.

Proof. Bilinearity follows immediately from the linearity of pushforward and pull-
back and the bilinearity of the intersection product. To prove associativity, say we
have X,Y, Z,W and c ∈ Corr(X,Y ), c′ ∈ Corr(Y,Z), and c′′ ∈ Corr(Z,W ). Then
we have

c′′ ◦ (c′ ◦ c) = pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c · pr123,∗
23 c′) · pr134,∗

34 c′′)

= pr134
14,∗(pr1234

134,∗pr1234,∗
123 (pr123,∗

12 c · pr123,∗
23 c′) · pr134,∗

34 c′′)

= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c · pr1234,∗

23 c′) · pr134,∗
34 c′′)

= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c · pr1234,∗

23 c′) · pr1234,∗
34 c′′)

= pr1234
14,∗ ((pr1234,∗

12 c · pr1234,∗
23 c′) · pr1234,∗

34 c′′)
Here we use the notation

p1234
134 : X × Y × Z ×W → X × Z ×W and p134

14 : X × Z ×W → X ×W

the projections and similarly for other indices. The first equality is the definition of
the composition. The second equality holds because pr134,∗

13 pr123
13,∗ = pr1234

134,∗pr1234,∗
123

by Chow Homology, Lemma 15.1. The third equality holds because intersection
product commutes with the gysin map for p1234

123 (which is given by flat pullback),
see Chow Homology, Lemma 62.3. The fourth equality follows from the projection
formula for p1234

134 , see Chow Homology, Lemma 62.4. The fourth equality is that
proper pushforward is compatible with composition, see Chow Homology, Lemma
12.2. Since intersection product is associative by Chow Homology, Lemma 62.1 this
concludes the proof of associativity of composition of correspondences.
We omit the proofs of (2) and (3) as these are essentially proved by carefully
bookkeeping where various cycles live and in what (co)dimension.
The statement on pushforward and pullback of cycles means that (c′ ◦ c)∗(α) =
c∗((c′)∗(α)) and (c′ ◦ c)∗(α) = (c′)∗(c∗(α)). This follows on combining (1), (2), and
(3). □

Example 3.2.0FG1 Let f : Y → X be a morphism of smooth projective schemes over
k. Denote Γf ⊂ X×Y the graph of f . More precisely, Γf is the image of the closed
immersion

(f, idY ) : Y −→ X × Y

Let X =
∐
Xd be the decomposition of X into its open and closed parts Xd which

are equidimensional of dimension d. Then Γf ∩ (Xd × Y ) has pure codimension
d. Hence [Γf ] ∈ CH∗(X × Y ) ⊗ Q is contained in Corr0(X × Y ), i.e., [Γf ] is a
correspondence of degree 0 from X to Y .

Lemma 3.3.0FG2 Smooth projective schemes over k with correspondences and composi-
tion of correspondences as defined above form a graded category over Q (Differential
Graded Algebra, Definition 25.1).

Proof. Everything is clear from the construction and Lemma 3.1 except for the
existence of identity morphisms. Given a smooth projective scheme X consider the
class [∆] of the diagonal ∆ ⊂ X × X in Corr0(X,X). We note that ∆ is equal to
the graph of the identity idX : X → X which is a fact we will use below.

https://stacks.math.columbia.edu/tag/0FG1
https://stacks.math.columbia.edu/tag/0FG2
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To prove that [∆] can serve as an identity we have to show that [∆] ◦ c = c and
c′ ◦ [∆] = c′ for any correspondences c ∈ Corrr(Y,X) and c′ ∈ Corrs(X,Y ). For
the second case we have to show that

c′ = pr13,∗(pr∗
12[∆] · pr∗

23c
′)

where pr12 : X ×X × Y → X ×X is the projection and simlarly for pr13 and pr23.
We may write c′ =

∑
ai[Zi] for some integral closed subschemes Zi ⊂ X × Y and

rational numers ai. Thus it clearly suffices to show that

[Z] = pr13,∗(pr∗
12[∆] · pr∗

23[Z])

in the chow group of X × Y for any integral closed subscheme Z of X × Y . After
replacing X and Y by the irreducible component containing the image of Z under
the two projections we may assume X and Y are integral as well. Then we have to
show

[Z] = pr13,∗([∆ × Y ] · [X × Z])
Denote Z ′ ⊂ X×X×Y the image of Z by the morphism (∆, 1) : X×Y → X×X×Y .
Then Z ′ is a closed subscheme of X×X×Y isomorphic to Z and Z ′ = ∆×Y ∩X×Z
scheme theoretically. By Chow Homology, Lemma 62.51 we conclude that

[Z ′] = [∆ × Y ] · [X × Z]

Since Z ′ maps isomorphically to Z by pr13 also we conclude. The verification that
[∆] ◦ c = c is similar and we omit it. □

Lemma 3.4.0FG3 There is a contravariant functor from the category of smooth pro-
jective schemes over k to the category of correspondences which is the identity on
objects and sends f : Y → X to the element [Γf ] ∈ Corr0(X,Y ).

Proof. In the proof of Lemma 3.3 we have seen that this construction sends iden-
tities to identities. To finish the proof we have to show if g : Z → Y is another
morphism of smooth projective schemes over k, then we have [Γg] ◦ [Γf ] = [Γf◦g] in
Corr0(X,Z). Arguing as in the proof of Lemma 3.3 we see that it suffices to show

[Γf◦g] = pr13,∗([Γf × Z] · [X × Γg])

in CH∗(X × Z) when X, Y , Z are integral. Denote Z ′ ⊂ X × Y × Z the image of
the closed immersion (f ◦ g, g, 1) : Z → X × Y × Z. Then Z ′ = Γf × Z ∩ X × Γg

scheme theoretically and we conclude using Chow Homology, Lemma 62.5 that

[Z ′] = [Γf × Z] · [X × Γg]

Since it is clear that pr13,∗([Z ′]) = [Γf◦g] the proof is complete. □

Remark 3.5.0FG4 Let X and Y be smooth projective schemes over k. Assume X is
equidimensional of dimension d and Y is equidimensional of dimension e. Then the
isomorphism X × Y → Y ×X switching the factors determines an isomorphism

Corrr(X,Y ) −→ Corrd−e+r(Y,X), c 7−→ ct

1The reader verifies that dim(Z′) = dim(∆ × Y ) + dim(X × Z) − dim(X × X × Y ) and that
Z′ has a unique generic point mapping to the generic point of Z (where the local ring is CM) and
to some point of X (where the local ring is CM). Thus all the hypothese of the lemma are indeed
verified.

https://stacks.math.columbia.edu/tag/0FG3
https://stacks.math.columbia.edu/tag/0FG4
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called the transpose. It acts on cycles as well as cycle classes. An example which
is sometimes useful, is the transpose [Γf ]t = [Γt

f ] of the graph of a morphism
f : Y → X.
Lemma 3.6.0FG5 Let f : Y → X be a morphism of smooth projective schemes over k.
Let [Γf ] ∈ Corr0(X,Y ) be as in Example 3.2. Then

(1) pushforward of cycles by the correspondence [Γf ] agrees with the gysin map
f ! : CH∗(X) → CH∗(Y ),

(2) pullback of cycles by the correspondence [Γf ] agrees with the pushforward
map f∗ : CH∗(Y ) → CH∗(X),

(3) if X and Y are equidimensional of dimensions d and e, then
(a) pushforward of cycles by the correspondence [Γt

f ] of Remark 3.5 corre-
sponds to pushforward of cycles by f , and

(b) pullback of cycles by the correspondence [Γt
f ] of Remark 3.5 corresponds

to the gysin map f !.
Proof. Proof of (1). Recall that [Γf ]∗(α) = pr2,∗([Γf ] · pr∗

1α). We have

[Γf ] · pr∗
1α = (f, 1)∗((f, 1)!pr∗

1α) = (f, 1)∗((f, 1)!pr!
1α) = (f, 1)∗(f !α)

The first equality by Chow Homology, Lemma 62.6. The second by Chow Homology,
Lemma 59.5. The third because pr1 ◦ (f, 1) = f and Chow Homology, Lemma 59.6.
Then we coclude because pr2,∗ ◦ (f, 1)∗ = 1∗ by Chow Homology, Lemma 12.2.
Proof of (2). Recall that [Γf ]∗(β) = pr1,∗([Γf ] · pr∗

2β). Arguing exactly as above we
have

[Γf ] · pr∗
2β = (f, 1)∗β

Thus the result follows as before.
Proof of (3). Proved in exactly the same manner as above. □

Example 3.7.0FG6 Let X = P1
k. Then we have

Corr0(X,X) = CH1(X ×X) ⊗ Q = CH1(X ×X) ⊗ Q
Choose a k-rational point x ∈ X and consider the cycles c0 = [x × X] and c2 =
[X × x]. A computation shows that 1 = [∆] = c0 + c2 in Corr0(X,X) and that we
have the following rules for composition c0 ◦ c0 = c0, c0 ◦ c2 = 0, c2 ◦ c0 = 0, and
c2 ◦ c2 = c2. In other words, c0 and c2 are orthogonal idempotents in the algebra
Corr0(X,X) and in fact we get

Corr0(X,X) = Q × Q
as a Q-algebra.
The category of correspondences is a symmetric monoidal category. Given smooth
projective schemes X and Y over k, we define X ⊗Y = X ×Y . Given four smooth
projective schemes X,X ′, Y, Y ′ over k we define a tensor product

⊗ : Corrr(X,Y ) × Corrr′
(X ′, Y ′) −→ Corrr+r′

(X ×X ′, Y × Y ′)
by the rule

(c, c′) 7−→ c⊗ c′ = pr∗
13c · pr∗

24c
′

where pr13 : X × X ′ × Y × Y ′ → X × Y and pr24 : X × X ′ × Y × Y ′ → X ′ × Y ′

are the projections. As associativity constraint
X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z

https://stacks.math.columbia.edu/tag/0FG5
https://stacks.math.columbia.edu/tag/0FG6
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we use the usual associativity constraint on products of schemes. The commuta-
tivity constraint will be given by the isomorphism X × Y → Y ×X switching the
factors.

Lemma 3.8.0FG7 The tensor product of correspondences defined above turns the cat-
egory of correspondences into a symmetric monoidal category with unit Spec(k).

Proof. Omitted. □

Lemma 3.9.0FG8 Let f : Y → X be a morphism of smooth projective schemes over
k. Assume X and Y equidimensional of dimensions d and e. Denote a = [Γf ] ∈
Corr0(X,Y ) and at = [Γt

f ] ∈ Corrd−e(Y,X). Set ηX = [ΓX→X×X ] ∈ Corr0(X ×
X,X), ηY = [ΓY →Y ×Y ] ∈ Corr0(Y × Y, Y ), [X] ∈ Corr−d(X,Spec(k)), and [Y ] ∈
Corr−e(Y,Spec(k)). The diagram

X ⊗ Y
a⊗id

//

id⊗at

��

Y ⊗ Y
ηY

// Y

[Y ]
��

X ⊗X
ηX // X

[X] // Spec(k)

is commutative in the category of correspondences.

Proof. Recall that Corrr(W, Spec(k)) = CH−r(W ) for any smooth projective
scheme W over k and given c ∈ Corrs(W ′,W ) the composition with c agrees with
pullback by c as a map CH−r(W ) → CH−r−s(W ′) (Lemma 3.1). Finally, we have
Lemma 3.6 which tells us how to convert this into usual pushforward and pullback
of cycles. We have

(a⊗ id)∗η∗
Y [Y ] = (a⊗ id)∗[∆Y ] = (f × id)∗∆Y = [Γf ]

and the other way around we get
(id ⊗ at)∗η∗

X [X] = (id ⊗ at)∗[∆X ] = (id × f)![∆X ] = [Γf ]
The last equality follows from Chow Homology, Lemma 59.8. In other words, going
either way around the diagram we obtain the element of Corrd(X × Y,Spec(k))
corresponding to the cycle Γf ⊂ X × Y . □

4. Chow motives

0FG9 We fix a base field k. In this section we construct an additive Karoubian Q-linear
category Mk endowed with a symmetric monoidal structure and a contravariant
functor

h : {smooth projective schemes over k} −→ Mk

which maps products to tensor products and disjoint unions to direct sums. Our
construction will be characterized by the fact that h factors through the symmetric
monoidal category whose objects are smooth projective varieties and whose mor-
phisms are correspondences of degree 0 such that the image of the projector c2 on
h(P1

k) from Example 3.7 is invertible in Mk, see Lemma 4.8. At the end of the
section we will show that every motive, i.e., every object of Mk to has a (left) dual,
see Lemma 4.10.
A motive or a Chow motive over k will be a triple (X, p,m) where

(1) X is a smooth projective scheme over k,
(2) p ∈ Corr0(X,X) satisfies p ◦ p = p,

https://stacks.math.columbia.edu/tag/0FG7
https://stacks.math.columbia.edu/tag/0FG8
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(3) m ∈ Z.
Given a second motive (Y, q, n) we define a morphism of motives or a morphism of
Chow motives to be an element of

Hom((X, p,m), (Y, q, n)) = q ◦ Corrn−m(X,Y ) ◦ p ⊂ Corrn−m(X,Y )
Composition of morphisms of motives is defined using the composition of corre-
spondences defined above.

Lemma 4.1.0FGA The category Mk whose objects are motives over k and morphisms
are morphisms of motives over k is a Q-linear category. There is a contravariant
functor

h : {smooth projective schemes over k} −→ Mk

defined by h(X) = (X, 1, 0) and h(f) = [Γf ].

Proof. Follows immediately from Lemma 3.4. □

Lemma 4.2.0FGB The category Mk is Karoubian.

Proof. Let M = (X, p,m) be a motive and let a ∈ Mor(M,M) be a projector.
Then a = a ◦ a both in Mor(M,M) as well as in Corr0(X,X). Set N = (X, a,m).
Since we have a = p◦a◦a in Corr0(X,X) we see that a : N → M is a morphism of
Mk. Next, suppose that b : (Y, q, n) → M is a morphism such that (1 − a) ◦ b = 0.
Then b = a ◦ b as well as b = b ◦ q. Hence b is a morphism b : (Y, q, n) → N . Thus
we see that the projector 1 − a has a kernel, namely N and we find that Mk is
Karoubian, see Homology, Definition 4.1. □

We define a functor
⊗ : Mk ×Mk −→ Mk

On objects we use the formula
(X, p,m) ⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n)

On morphisms, we use

Mor((X, p,m), (Y, q, n)) × Mor((X ′, p′,m′), (Y ′, q′, n′))

��
Mor((X ×X ′, p⊗ p′,m+m′), (Y × Y ′, q ⊗ q′, n+ n′))

given by the rule (a, a′) 7−→ a⊗ a′ where ⊗ on correspondences is as in Section 3.
This makes sense: by definition of morphisms of motives we can write a = q ◦ c ◦ p
and a′ = q′ ◦ c′ ◦ p′ with c ∈ Corrn−m(X,Y ) and c′ ∈ Corrn′−m′

(X ′, Y ′) and then
we obtain

a⊗ a′ = (q ◦ c ◦ p) ⊗ (q′ ◦ c′ ◦ p′) = (q ⊗ q′) ◦ (c⊗ c′) ◦ (p⊗ p′)
which is indeed a morphism of motives from (X×X ′, p⊗p′,m+m′) to (Y ×Y ′, q⊗
q′, n+ n′).

Lemma 4.3.0FGC The category Mk with tensor product defined as above is symmetric
monoidal with the obvious associativity and commutativity constraints and with unit
1 = (Spec(k), 1, 0).

Proof. Follows readily from Lemma 3.8. Details omitted. □

https://stacks.math.columbia.edu/tag/0FGA
https://stacks.math.columbia.edu/tag/0FGB
https://stacks.math.columbia.edu/tag/0FGC
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The motives 1(n) = (Spec(k), 1, n) are useful. Observe that

1 = 1(0) and 1(n+m) = 1(n) ⊗ 1(m)

Thus tensoring with 1(1) is an autoequivalence of the category of motives. Given a
motive M we sometimes write M(n) = M ⊗ 1(n). Observe that if M = (X, p,m),
then M(n) = (X, p,m+ n).

Lemma 4.4.0FGD With notation as in Example 3.7
(1) the motive (X, c0, 0) is isomorphic to the motive 1 = (Spec(k), 1, 0).
(2) the motive (X, c2, 0) is isomorphic to the motive 1(−1) = (Spec(k), 1,−1).

Proof. We will use Lemma 3.4 without further mention. The structure morphism
X → Spec(k) gives a correspondence a ∈ Corr0(Spec(k), X). On the other hand,
the rational point x is a morphism Spec(k) → X which gives a correspondence
b ∈ Corr0(X,Spec(k)). We have b ◦ a = 1 as a correspondence on Spec(k). The
composition a ◦ b corresponds to the graph of the composition X → x → X which
is c0 = [x × X]. Thus a = a ◦ b ◦ a = c0 ◦ a and b = a ◦ b ◦ a = b ◦ c0. Hence,
unwinding the definitions, we see that a and b are mutually inverse morphisms
a : (Spec(k), 1, 0) → (X, c0, 0) and b : (X, c0, 0) → (Spec(k), 1, 0).

We will proceed exactly as above to prove the second statement. Denote

a′ ∈ Corr1(Spec(k), X) = CH1(X)

the class of the point x. Denote

b′ ∈ Corr−1(X,Spec(k)) = CH1(X)

the class of [X]. We have b′ ◦ a′ = 1 as a correspondence on Spec(k) because
[x] · [X] = [x] on X = Spec(k) ×X × Spec(k). Computing the intersection product
pr∗

12b
′ · pr∗

23a
′ on X × Spec(k) × X gives the cycle X × Spec(k) × x. Hence the

composition a′ ◦ b′ is equal to c2 as a correspondence on X. Thus a′ = a′ ◦ b ◦ a′ =
c2 ◦ a′ and b′ = b′ ◦ a′ ◦ b′ = b′ ◦ c2. Recall that

Mor((Spec(k), 1,−1), (X, c2, 0)) = c2 ◦ Corr1(Spec(k), X) ⊂ Corr1(Spec(k), X)

and

Mor((X, c2, 0), (Spec(k), 1,−1)) = Corr−1(X,Spec(k)) ◦ c2 ⊂ Corr−1(X,Spec(k))

Hence, we see that a′ and b′ are mutually inverse morphisms a′ : (Spec(k), 1,−1) →
(X, c0, 0) and b′ : (X, c0, 0) → (Spec(k), 1,−1). □

Remark 4.5 (Lefschetz and Tate motive).0FGE Let X = P1
k and c2 be as in Example

3.7. In the literature the motive (X, c2, 0) is sometimes called the Lefschetz motive
and depending on the reference the notation L, L, Q(−1), or h2(P1

k) may be used
to denote it. By Lemma 4.4 the Lefschetz motive is isomorphic to 1(−1). Hence the
Lefschetz motive is invertible (Categories, Definition 43.4) with inverse 1(1). The
motive 1(1) is sometimes called the Tate motive and depending on the reference
the notation L−1, L−1, T, or Q(1) may be used to denote it.

Lemma 4.6.0FGF The category Mk is additive.

Proof. Let (Y, p,m) and (Z, q, n) be motives. If n = m, then a direct sum is given
by (Y ⨿ Z, p+ q,m), with obvious notation. Details omitted.

https://stacks.math.columbia.edu/tag/0FGD
https://stacks.math.columbia.edu/tag/0FGE
https://stacks.math.columbia.edu/tag/0FGF
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Suppose that n < m. Let X, c2 be as in Example 3.7. Then we consider
(Z, q, n) = (Z, q,m) ⊗ (Spec(k), 1,−1) ⊗ . . .⊗ (Spec(k), 1,−1)

∼= (Z, q,m) ⊗ (X, c2, 0) ⊗ . . .⊗ (X, c2, 0)
∼= (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)

where we have used Lemma 4.4. This reduces us to the case discussed in the first
paragraph. □

Lemma 4.7.0FGG In Mk we have h(P1
k) ∼= 1 ⊕ 1(−1).

Proof. This follows from Example 3.7 and Lemma 4.4. □

Lemma 4.8.0FGH Let X, c2 be as in Example 3.7. Let C be a Q-linear Karoubian
symmetric monoidal category. Any Q-linear functor

F :
{

smooth projective schemes over k
morphisms are correspondences of degree 0

}
−→ C

of symmetric monoidal categories such that the image of F (c2) on F (X) is an
invertible object, factors uniquely through a functor F : Mk → C of symmetric
monoidal categories.

Proof. Denote U in C the invertible object which is assumed to exist in the state-
ment of the lemma. We extend F to motives by setting

F (X, p,m) = (the image of the projector F (p) in F (X)) ⊗ U⊗−m

which makes sense because U is invertible and because C is Karoubian. An impor-
tant feature of this choice is that F (X, c2, 0) = U . Observe that

F ((X, p,m) ⊗ (Y, q, n)) = F (X × Y, p⊗ q,m+ n)
= (the image of F (p⊗ q) in F (X × Y )) ⊗ U⊗−m−n

= F (X, p,m) ⊗ F (Y, q, n)
Thus we see that our rule is compatible with tensor products on the level of objects
(details omitted).
Next, we extend F to morphisms of motives. Suppose that

a ∈ Hom((Y, p,m), (Z, q, n)) = q ◦ Corrn−m(Y,Z) ◦ p ⊂ Corrn−m(Y, Z)
is a morphism. If n = m, then a is a correspondence of degree 0 and we can use
F (a) : F (Y ) → F (Z) to get the desired map F (Y, p,m) → F (Z, q, n). If n < m we
get canonical identifications

s : F ((Z, q, n)) → F (Z, q,m) ⊗ Um−n

→ F (Z, q,m) ⊗ F (X, c2, 0) ⊗ . . .⊗ F (X, c2, 0)
→ F ((Z, q,m) ⊗ (X, c2, 0) ⊗ . . .⊗ (X, c2, 0))
→ F ((Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))

Namely, for the first isomorphism we use the definition of F on motives above. For
the second, we use the choice of U . For the third we use the compatibility of F
on tensor products of motives. The fourth is the definition of tensor products on
motives. On the other hand, since we similarly have an isomorphism

σ : (Z, q, n) → (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)

https://stacks.math.columbia.edu/tag/0FGG
https://stacks.math.columbia.edu/tag/0FGH
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(see proof of Lemma 4.6). Composing a with this isomorphism gives

σ ◦ a ∈ Hom((Y, p,m), (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))

Putting everything together we obtain

s−1 ◦ F (σ ◦ a) : F (Y, p,m) → F (Z, q, n)

If n > m we similarly define isomorphisms

t : F ((Y, p,m)) → F ((Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n))

and
τ : (Y, p,m)) → (Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n)

and we set F (a) = F (a ◦ τ−1) ◦ t. We omit the verification that this construction
defines a functor of symmetric monoidal categories. □

Lemma 4.9.0FGI Let X be a smooth projective scheme over k which is equidimensional
of dimension d. Then h(X)(d) is a left dual to h(X) in Mk.

Proof. We will use Lemma 3.1 without further mention. We compute

Hom(1, h(X) ⊗ h(X)(d)) = Corrd(Spec(k), X ×X) = CHd(X ×X)

Here we have η = [∆]. On the other hand, we have

Hom(h(X)(d) ⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)

and here we have the class ϵ = [∆] of the diagonal as well. The composition of
the correspondence [∆] ⊗ 1 with 1 ⊗ [∆] either way is the correspondence [∆] = 1
in Corr0(X,X) which proves the required diagrams of Categories, Definition 43.5
commute. Namely, observe that

[∆] ⊗ 1 ∈ Corrd(X,X ×X ×X) = CH2d(X ×X ×X ×X)

is given by the class of the cycle pr1234,−1
23 (∆) ∩pr1234,−1

14 (∆) with obvious notation.
Similarly, the class

1 ⊗ [∆] ∈ Corr−d(X ×X ×X,X) = CH2d(X ×X ×X ×X)

is given by the class of the cycle pr1234,−1
23 (∆) ∩ pr1234,−1

14 (∆). The composition
(1 ⊗ [∆]) ◦ ([∆] ⊗ 1) is by definition the pushforward pr12345

15,∗ of the intersection
product

[pr12345,−1
23 (∆)∩pr12345,−1

14 (∆)]·[pr12345,−1
34 (∆)∩pr12345,−1

15 (∆)] = [small diagonal in X5]

which is equal to ∆ as desired. We omit the proof of the formula for the composition
in the other order. □

Lemma 4.10.0FGJ Every object of Mk has a left dual.

Proof. LetM = (X, p,m) be an object ofMk. ThenM is a summand of (X, 0,m) =
h(X)(m). By Homology, Lemma 17.3 it suffices to show that h(X)(m) = h(X) ⊗
1(m) has a dual. By construction 1(−m) is a left dual of 1(m). Hence it suffices
to show that h(X) has a left dual, see Categories, Lemma 43.8. Let X =

∐
Xi be

the decomposition of X into irreducible components. Then h(X) =
⊕
h(Xi) and

it suffices to show that h(Xi) has a left dual, see Homology, Lemma 17.2. This
follows from Lemma 4.9. □

https://stacks.math.columbia.edu/tag/0FGI
https://stacks.math.columbia.edu/tag/0FGJ
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5. Chow groups of motives

0FGK We define the Chow groups of a motive as follows.

Definition 5.1.0FGL Let k be a base field. Let M = (X, p,m) be a Chow motive over
k. For i ∈ Z we define the ith Chow group of M by the formula

CHi(M) = p
(
CHi+m(X) ⊗ Q

)
We have CHi(h(X)) = CHi(X) ⊗ Q if X is a smooth projective scheme over k.

Observe that CHi(−) is a functor from Mk to Q-vector spaces. Indeed, if c :
M → N is a morphism of motives M = (X, p,m) and N = (Y, q, n), then c is
a correspondence of degree n − m from X to Y and hence pushforward along c
(Section 3) is a family of maps

c∗ : CHi+m(X) ⊗ Q −→ CHi+n(Y ) ⊗ Q

Since c = q ◦ c ◦ p by definition of morphisms of motives, we see that indeed we
obtain

c∗ : CHi(M) → CHi(N)
for all i ∈ Z. This is compatible with compositions of morphisms of motives by
Lemma 3.1. This functoriality of Chow groups can also be deduced from the fol-
lowing lemma.

Lemma 5.2.0FGM Let k be a base field. The functor CHi(−) on the category of motives
Mk is representable by 1(−i), i.e., we have

CHi(M) = HomMk
(1(−i),M)

functorially in M in Mk.

Proof. Immediate from the definitions and Lemma 3.1. □

The reader can imagine that we can use Lemma 5.2, the Yoneda lemma, and the
duality in Lemma 4.9 to obtain the following.

Lemma 5.3 (Manin).0FGN Let k be a base field. Let c : M → N be a morphism of
motives. If for every smooth projective scheme X over k the map c⊗1 : M⊗h(X) →
N ⊗ h(X) induces an isomorphism on Chow groups, then c is an isomorphism.

Proof. Any object L of Mk is a summand of h(X)(m) for some smooth projective
scheme X over k and some m ∈ Z. Observe that the Chow groups of M ⊗h(X)(m)
are the same as the Chow groups of of M ⊗ h(X) up to a shift in degrees. Hence
our assumption implies that c ⊗ 1 : M ⊗ L → N ⊗ L induces an isomorphism on
Chow groups for every object L of Mk. By Lemma 5.2 we see that

HomMk
(1,M ⊗ L) → HomMk

(1, N ⊗ L)

is an isomorphism for every L. Since every object of Mk has a left dual (Lemma
4.10) we conclude that

HomMk
(K,M) → HomMk

(K,N)

is an isomorphism for every object K of Mk, see Categories, Lemma 43.6. We
conclude by the Yoneda lemma (Categories, Lemma 3.5). □

https://stacks.math.columbia.edu/tag/0FGL
https://stacks.math.columbia.edu/tag/0FGM
https://stacks.math.columbia.edu/tag/0FGN
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6. Projective space bundle formula

0FGP Let k be a base field. Let X be a smooth projective scheme over k. Let E be
a locally free OX -module of rank r. Our convention is that the projective bundle
associated to E is the morphism

P = P(E) = Proj
X

(Sym∗(E)) p // X

over X with OP (1) normalized so that p∗(OP (1)) = E . Recall that

[Γp] ∈ Corr0(X,P ) ⊂ CH∗(X × P ) ⊗ Q
See Example 3.2. For i = 0, . . . , r − 1 consider the correspondences

ci = c1(pr∗
2OP (1))i ∩ [Γp] ∈ Corri(X,P )

We may and do think of ci as a morphism h(X)(−i) → h(P ).

Lemma 6.1 (Projective space bundle formula).0FGQ In the situation above, the map∑
i=0,...,r−1

ci :
⊕

i=0,...,r−1
h(X)(−i) −→ h(P )

is an isomorphism in the category of motives.

Proof. By Lemma 5.3 it suffices to show that our map defines an isomorphism
on Chow groups of motives after taking the product with any smooth projective
scheme Z. Observe that P × Z → X × Z is the projective bundle associated to
the pullback of E to X × Z. Hence the statement on Chow groups is true by the
projective space bundle formula given in Chow Homology, Lemma 36.2. Namely,
pushforward of cycles along [Γp] is given by pullback of cycles by p according to
Lemma 3.6 and Chow Homology, Lemma 59.5. Hence pushforward along ci sends
α to c1(OP (1))i ∩ p∗α. Some details omitted. □

In the situation above, for j = 0, . . . , r − 1 consider the correspondences
c′

j = c1(pr∗
1OP (1))r−1−j ∩ [Γt

p] ∈ Corr−j(P,X)
For i, j ∈ {0, . . . , r − 1} we have

c′
j ◦ ci = pr13,∗

(
c1(pr∗

2OP (1))i+r−1−j ∩ (pr∗
12[Γp] · pr∗

23[Γt
p])

)
The cycles pr−1

12 Γp and pr−1
23 Γt

p intersect transversally and with intersection equal
to the image of (p, 1, p) : P → X × P × X. Observe that the fibres of (p, p) =
pr13 ◦ (p, 1, p) : P → X × X have dimension r − 1. We immediately conclude
c′

j ◦ ci = 0 for i+ r− 1 − j < r− 1, in other words when i < j. On the other hand,
by the projective space bundle formula (Chow Homology, Lemma 36.2) the cycle
c1(OP (1))r−1 ∩ [P ] maps to [X] in X. Hence for i = j the pushforward above gives
the class of the diagonal and hence we see that

c′
i ◦ ci = 1 ∈ Corr0(X,X)

for all i ∈ {0, . . . , r − 1}. Thus we see that the matrix of the composition⊕
h(X)(−i)

⊕
ci

−−−→ h(P )
⊕

c′
j−−−→

⊕
h(X)(−j)

is invertible (upper triangular with 1s on the diagonal). We conclude from the
projective space bundle formula (Lemma 6.1) that also the composition the other
way around is invertible, but it seems a bit harder to prove this directly.

https://stacks.math.columbia.edu/tag/0FGQ
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Lemma 6.2.0FGR Let p : P → X be as in Lemma 6.1. The class [∆P ] of the diagonal
of P in CH∗(P × P ) can be written as

[∆P ] =
(∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(pr∗

1S∨) ∩ c1(pr∗
2OP (1))i

)
∩ (p× p)∗[∆X ]

where S is the kernel of the canonical surjection p∗E → OP (1).

Proof. Observe that (p × p)∗[∆X ] = [P ×X P ]. Since ∆P ⊂ P ×X P ⊂ P × P
and since capping with Chern classes commutes with proper pushforward (Chow
Homology, Lemma 38.4) it suffices to show that the class of ∆P ⊂ P ×X P in
CH∗(P ×X P ) is equal to(∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(q∗

1S∨) ∩ c1(q∗
2OP (1))i

)
∩ [P ×X P ]

where qi : P ×X P → P , i = 1, 2 are the projections. Set q = p ◦ q1 = p ◦ q2 :
P ×X P → X. Consider the maps

q∗
1S ⊗ q∗

2OP (−1) → q∗E ⊗ q∗E∨ → OP ×X P

where the final arrow is the pullback by q of the evaluation map E ⊗OX
E∨ → OX .

The source of the composition is a module locally free of rank r − 1 and a local
calculation shows that this map vanishes exactly along ∆P . By Chow Homology,
Lemma 44.1 the class [∆P ] is the top Chern class of the dual

q∗
1S∨ ⊗ q∗

2OP (1)
The desired result follows from Chow Homology, Lemma 39.1. □

7. Classical Weil cohomology theories

0FGS In this section we define what we will call a classical Weil cohomology theory. This
is exactly what is called a Weil cohomology theory in [Kle68, Section 1.2].
We fix an algebraically closed field k (the base field). In this section variety will
mean a variety over k, see Varieties, Section 3. We fix a field F of characteristic 0
(the coefficient field). A Weil cohomology theory is given by data (D1), (D2), and
(D3) subject to axioms (A), (B), and (C).
The data is given by:

(D1) A contravariant functor H∗ from the category of smooth projective varieties
to the category of graded commutative F -algebras.

(D2) For every smooth projective varietyX a group homomorphism γ : CHi(X) →
H2i(X).

(D3) For every smooth projective varietyX of dimension d a map
∫

X
: H2d(X) →

F .
We make some remarks to explain what this means and to introduce some termi-
nology associated with this.
Remarks on (D1). Given a smooth projective variety X we say that H∗(X) is the
cohomology of X. Given a morphism f : X → Y of smooth projective varieties we
denote f∗ : H∗(Y ) → H∗(X) the map H∗(f) and we call it the pullback map.
Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is the
cohomology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y and X smooth
projective varieties and Z integral, then [Z] could mean the class of the cycle [Z]

https://stacks.math.columbia.edu/tag/0FGR
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in CH∗(Y ) or in CH∗(X). In this case the notation γ([Z]) is ambiguous and the
intended meaning has to be deduced from context.
Remarks on (D3). The map

∫
X

is sometimes called the trace map and is sometimes
denoted TrX .
The first axiom is often called Poincaré duality

(A) Let X be a smooth projective variety of dimension d. Then
(a) dimF H

i(X) < ∞ for all i,
(b) Hi(X)×H2d−i(X) → H2d(X) → F is a perfect pairing for all i where

the final map is the trace map
∫

X
,

(c) Hi(X) = 0 unless i ∈ [0, 2d], and
(d)

∫
X

: H2d(X) → F is an isomorphism.
Let f : X → Y be a morphism of smooth projective varieties with dim(X) = d and
dim(Y ) = e. Using Poincaré duality we can define a pushforward

f∗ : H2d−i(X) −→ H2e−i(Y )
as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for
a ∈ H2d−i(X), the element f∗a ∈ H2e−i(Y ) is characterized by∫

X

f∗b ∪ a =
∫

Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 7.1.0FGT Assume given (D1) and (D3) satisfying (A). For f : X → Y a
morphism of smooth projective varieties we have f∗(f∗b∪a) = b∪f∗a. If g : Y → Z
is a second morphism of smooth projective varieties, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫

X

f∗c ∪ f∗b ∪ a =
∫

Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫

X

(g ◦ f)∗c ∪ a =
∫

X

f∗g∗c ∪ a =
∫

Y

g∗c ∪ f∗a =
∫

Z

c ∪ g∗f∗a

This ends the proof. □

The second axiom says that H∗ respects the monoidal structure given by products
via the Künneth formula

(B) Let X and Y be smooth projective varieties. The map
H∗(X) ⊗F H∗(Y ) → H∗(X × Y ), a⊗ b 7→ pr∗

1a ∪ pr∗
2b

is an isomorphism.
The third axiom concerns the cycle class maps

(C) The cycle class maps satisfy the following rules
(a) for a morphism f : X → Y of smooth projective varieties we have

γ(f !β) = f∗γ(β) for β ∈ CH∗(Y ),
(b) for a morphism f : X → Y of smooth projective varieties we have

γ(f∗α) = f∗γ(α) for α ∈ CH∗(X),
(c) for any smooth projective variety X we have γ(α · β) = γ(α) ∪ γ(β)

for α, β ∈ CH∗(X), and

https://stacks.math.columbia.edu/tag/0FGT
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(d)
∫

Spec(k) γ([Spec(k)]) = 1.

Remark 7.2.0FGU Let X be a smooth projective variety. We obtain maps

H∗(X) ⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)
where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal
morphism ∆ : X → X ×X. The composition is the cup product as pullback is an
algebra homomorphism and pri ◦ ∆ = id. On the other hand, given cycles α, β on
X the intersection product is defined by the formula

α · β = ∆!(α× β)
In other words, α · β is the pullback of the exterior product α × β on X × X by
the diagonal. Note also that α × β = pr∗

1α · pr∗
2β in CH∗(X × X) (we omit the

proof). Hence, given axiom (C)(a), axiom (C)(c) is equivalent to the statement
that γ is compatible with exterior product in the sense that γ(α × β) is equal to
pr∗

1γ(α) ∪ pr∗
2γ(β). This is how axiom (C)(c) is formulated in [Kle68].

Definition 7.3.0FGV Let k be an algebraically closed field. Let F be a field of charac-
teristic 0. A classical Weil cohomology theory over k with coefficients in F is given
by data (D1), (D2), and (D3) satisfying Poincaré duality, the Künneth formula,
and compatibility with cycle classes, more precisely, satisfying (A), (B), and (C).

We do a tiny bit of work.

Lemma 7.4.0FGW Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let
X be a smooth projective variety of dimension d. The diagram

CHd(X)
γ
// H2d(X)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X) → Z is the degree of zero cycles discussed in Chow
Homology, Section 41.

Proof. The result holds for Spec(k) by axiom (C)(d). Let x : Spec(k) → X be
a closed point of X. Then we have γ([x]) = x∗γ([Spec(k)]) in H2d(X) by axiom
(C)(b). Hence

∫
X
γ([x]) = 1 by the definition of x∗. □

Lemma 7.5.0FGX Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let
X and Y be smooth projective varieties. Then

∫
X×Y

=
∫

X
⊗

∫
Y

.

Proof. Say dim(X) = d and dim(Y ) = e. By axiom (B) we have H2d+2e(X×Y ) =
H2d(X) ⊗H2e(Y ) and by axiom (A)(d) this is 1-dimensional. By Lemma 7.4 this
1-dimensional vector space generated by the class γ([x× y]) of a closed point (x, y)
and

∫
X×Y

γ([x × y]) = 1. Since γ([x × y]) = γ([x]) ⊗ γ([y]) by axioms (C)(a) and
(C)(c) and since

∫
X
γ([x]) = 1 and

∫
Y
γ([y]) = 1 we conclude. □

Lemma 7.6.0FGY Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let
X and Y be smooth projective varieties. Then pr2,∗ : H∗(X × Y ) → H∗(Y ) sends
a⊗ b to (

∫
X
a)b.

Proof. This is equivalent to the result of Lemma 7.5. □

https://stacks.math.columbia.edu/tag/0FGU
https://stacks.math.columbia.edu/tag/0FGV
https://stacks.math.columbia.edu/tag/0FGW
https://stacks.math.columbia.edu/tag/0FGX
https://stacks.math.columbia.edu/tag/0FGY
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Lemma 7.7.0FGZ Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let
X be a smooth projective variety of dimension d. Choose a basis ei,j , j = 1, . . . , βi

of Hi(X) over F . Using Künneth write

γ([∆]) =
∑

i=0,...,2d

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X) ⊗F H2d−i(X)

with e′
2d−i,j ∈ H2d−i(X). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X)⊗F H

∗(X) → H∗(X), see Remark 7.2. On the other hand we have γ([∆]) =
∆∗γ([X]) = ∆∗1 by axiom (C)(b) and the fact that γ([X]) = 1. Namely, [X] ·
[X] = [X] hence by axiom (C)(c) the cohomology class γ([X]) is 0 or 1 in the
1-dimensional F -algebra H0(X); here we have also used axioms (A)(d) and (A)(b).
But γ([X]) cannot be zero as [X] · [x] = [x] for a closed point x of X and we have
the nonvanishing of γ([x]) by Lemma 7.4. Hence∫

X×X

γ([∆]) ∪ a⊗ b =
∫

X×X

∆∗1 ∪ a⊗ b =
∫

X

a ∪ b

by the definition of ∆∗. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫

X

a ∪ ei,j)(
∫

X

e′
2d−i,j ∪ b)

by Lemma 7.5; note that we made two switches of order so that the sign is 1. Thus
if we choose a such that

∫
X
a ∪ ei,j = 1 and all other pairings equal to zero, then

we conclude that
∫

X
e′

2d−i,j ∪ b =
∫

X
a ∪ b for all b, i.e., e′

2d−i,j = a. This proves
the lemma. □

Lemma 7.8.0FH0 Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let
X be a smooth projective variety. We have∑

i=0,...,2 dim(X)
(−1)i dimF H

i(X) = deg([∆] · [∆]) = deg(cd(TX) ∩ [X])

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the
degree of ∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class
of the normal sheaf of ∆ ⊂ X × X (Chow Homology, Lemma 54.5). Since the
conormal sheaf of ∆ is ΩX/k (Morphisms, Lemma 32.7) we see that the normal
sheaf is equal to the tangent sheaf TX = HomOX

(ΩX/k,OX) as desired.

Equality on the left. By Lemma 7.4 we have

deg([∆] · [∆]) =
∫

X×X

γ([∆]) ∪ γ([∆])

=
∫

X×X

∆∗1 ∪ γ([∆])

=
∫

X×X

∆∗(∆∗γ([∆]))

=
∫

X

∆∗γ([∆])

https://stacks.math.columbia.edu/tag/0FGZ
https://stacks.math.columbia.edu/tag/0FH0
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Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in Lemma 7.7. Recalling that ∆∗ is given by cup
product we obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. □

We will now tie classical Weil cohomology theories in with motives as follows.

Lemma 7.9.0FH1 Let k be an algebraically closed field. Let F be a field of characteristic
0. Consider a Q-linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2.
Then we obtain data (D1), (D2), (D3) satisfying all of (A), (B), (C) except for
possibly (A)(c) and (A)(d).

Proof. We obtain a contravariant functor from the category of smooth projective
varieties to the category of graded F -vector spaces by setting H∗(X) = G(h(X)).
By assumption we have a canonical isomorphism

H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )

compatible with pullbacks. Using pullback along the diagonal ∆ : X → X ×X we
obtain a canonical map

H∗(X) ⊗H∗(X) = H∗(X ×X) → H∗(X)

of graded vector spaces compatible with pullbacks. This defines a functorial graded
F -algebra structure on H∗(X). Since ∆ commutes with the commutativity con-
straint h(X)⊗h(X) → h(X)⊗h(X) (switching the factors) and since G is a functor
of symmetric monoidal categories (so compatible with commutativity constraints),
and by our convention in Homology, Example 17.4 we conclude that H∗(X) is a
graded commutative algebra! Hence we get our datum (D1).

Since 1(1) is invertible in the category of motives we see that G(1(1)) is invert-
ible in the category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By
assumption we only get something nonzero in degree −2 and we may choose an
isomorphism F [2] → G(1(1)) of graded F -vector spaces. Here and below F [n]
means the graded F -vector space which has F in degree −n and zero elsewhere.
Using compatibility with tensor products, we find for all n ∈ Z an isomorphism
F [2n] → G(1(n)) compatible with tensor products.

Let X be a smooth projective variety. By Lemma 3.1 we have

CHr(X) ⊗ Q = Corrr(Spec(k), X) = Hom(1(−r), h(X))

Applying the functor G we obtain

γ : CHr(X) ⊗ Q −→ Hom(G(1(−r)), H∗(X)) = H2r(X)

This is the datum (D2).

Let X be a smooth projective variety of dimension d. By Lemma 3.1 we have

Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X,Spec(k)) = CHd(X)

https://stacks.math.columbia.edu/tag/0FH1
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Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1.
Applying G we obtain

H∗(X) ⊗ F [−2d] = G(h(X)(d)) −→ G(1) = F

This map is zero except in degree 0 where we obtain
∫

X
: H2d(X) → F . This is

the datum (D3).

Let X be a smooth projective variety of dimension d. By Lemma 4.9 we know that
h(X)(d) is a left dual to h(X). Hence G(h(X)(d)) = H∗(X) ⊗ F [−2d] is a left
dual to H∗(X) in the category of graded F -vector spaces. By Homology, Lemma
17.5 we find that

∑
i dimF H

i(X) < ∞ and that ϵ : h(X)(d) ⊗ h(X) → 1 produces
nondegenerate pairings H2d−i(X) ⊗F Hi(X) → F . In the proof of Lemma 4.9 we
have seen that ϵ is given by [∆] via the identifications

Hom(h(X)(d) ⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)

Thus ϵ is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by∫

X
. This proves axiom (A) parts (a) and (b).

Axiom (B) follows from the assumption that G is compatible with tensor structures
and our construction of the cup product above.

Axiom (C). Our construction of γ takes a cycle α on X, interprets it as a corre-
spondence a from Spec(k) to X of some degree, and then applies G. If f : Y → X
is a morphism of smooth projective varieties, then f !α is the pushforward (!) of α
by the correspondence [Γf ] from X to Y , see Lemma 3.6. Hence f !α viewed as a
correspondence from Spec(k) to Y is equal to a ◦ [Γf ], see Lemma 3.1. Since G is
a functor, we conclude γ is compatible with pullbacks, i.e., axiom (C)(a) holds.

Let f : Y → X be a morphism of smooth projective varieties and let β ∈ CHr(Y )
be a cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫

X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 3.9. Let b be β
viewed as a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a
correspondence from Spec(k) to X is equal to at ◦ b, see Lemmas 3.6 and 3.1. The
displayed equality above holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)

is equal to

h(X) = 1 ⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e) ⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)

This follows immediately from Lemma 3.9. Thus we have axiom (C)(b).

To prove axiom (C)(c) we use the discussion in Remark 7.2. Hence it suffices to
prove that γ is compatible with exterior products. Let X, Y be smooth projective
varieties and let α, β be cycles on them. Denote a, b the corresponding correspon-
dences from Spec(k) to X, Y . Then α×β corresponds to the correspondence a⊗ b
from Spec(k) to X⊗Y = X×Y . Hence the requirement follows from the fact that
G is compatible with the tensor structures on both sides.
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Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity mor-
phism on h(Spec(k)). This finishes the proof of the lemma. □

Lemma 7.10.0FH2 Let k be an algebraically closed field. Let F be a field of charac-
teristic 0. Let H∗ be a classical Weil cohomology theory. Then we can construct a
Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that H∗(X) = G(h(X)).

Proof. By Lemma 4.8 it suffices to construct a functor G on the category of smooth
projective schemes over k with morphisms given by correspondences of degree 0
such that the image of G(c2) on G(P1) is an invertible graded F -vector space.
Since every smooth projective scheme is canonically a disjoint union of smooth
projective varieties, it suffices to construct G on the category whose objects are
smooth projective varieties and whose morphisms are correspondences of degree 0.
(Some details omitted.)
Given a smooth projective variety X we set G(X) = H∗(X).
Given a correspondence c ∈ Corr0(X,Y ) between smooth projective varieties we
consider the map G(c) : G(X) = H∗(X) → G(Y ) = H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear that G(c) is additive in c and hence Q-linear. Compatibility of γ with
pullbacks, pushforwards, and intersection products given by axioms (C)(a), (C)(b),
and (C)(c) shows that we have G(c′ ◦ c) = G(c′) ◦G(c) if c′ ∈ Corr0(Y,Z). Namely,
for a ∈ H∗(X) we have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗(γ(c′) ∪ pr123

23,∗(pr123,∗
12 (γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)
with obvious notation. The first equality follows from the definitions. The second
equality holds because pr23,∗

2 ◦ pr12
2,∗ = pr123

23,∗ ◦ pr123,∗
12 as follows immediately from

the description of pushforward along projections given in Lemma 7.6. The third
equality holds by Lemma 7.1 and the fact that H∗ is a functor. The fourth equalith
holds by axiom (C)(a) and the fact that the gysin map agrees with flat pullback
for flat morphisms (Chow Homology, Lemma 59.5). The fifth equality uses axiom
(C)(c) as well as Lemma 7.1 to see that pr23

3,∗ ◦ pr123
23,∗ = pr13

3,∗ ◦ pr123
13,∗. The sixth

equality uses the projection formula from Lemma 7.1 as well as axiom (C)(b) to
see that pr123

13,∗γ(pr123,∗
23 c′ · pr123,∗

12 c) = γ(pr123
13,∗(pr123,∗

23 c′ · pr123,∗
12 c)). Finally, the last

equality is the definition.
To finish the proof that G is a functor, we have to show identities are preserved.
In other words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of corre-
spondences (see Lemma 3.3 and its proof), then we have to show that G([∆]) = id.

https://stacks.math.columbia.edu/tag/0FH2
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This follows from the determination of γ([∆]) in Lemma 7.7 and Lemma 7.6. This
finishes the construction of G as a functor on smooth projective varieties and cor-
respondences of degree 0.

It follows from axioms (A)(c) and (A)(d) that G(Spec(k)) = H∗(Spec(k)) is canon-
ically isomorphic to F as an F -algebra. The Künneth axiom (B) shows our functor
is compatible with tensor products. Thus our functor is a functor of symmetric
monoidal categories.

We still have to check that the image of G(c2) on G(P1) is an invertible graded
F -vector space (in particular we don’t know yet that G extends to Mk). By axiom
(A)(d) the map

∫
P1 : H2(P1) → F is an isomorphism. By axiom (A)(b) we see that

dimF H
0(P1) = 1. By Lemma 7.8 and axiom (A)(c) we obtain 2 − dimF H

1(P1) =
c1(TP1) = 2. Hence H1(P1) = 0. Thus

G(P1) = H0(P1) ⊕H2(P1)

Recall that 1 = c0 + c2 is a decomposition of the identity into a sum of or-
thogonal idempotents in Corr0(P1,P1), see Example 3.7. We have c0 = a ◦ b
where a ∈ Corr0(Spec(k),P1) and b ∈ Corr0(P1,Spec(k)) and where b ◦ a = 1 in
Corr0(Spec(k),Spec(k)), see proof of Lemma 4.4. Since F = G(Spec(k)), it follows
from functoriality that G(c0) is the projector onto the summand H0(P1) ⊂ G(P1).
Hence G(c2) must necessarily be the projection onto H2(P1) and the proof is com-
plete. □

Proposition 7.11.0FH3 Let k be an algebraically closed field. Let F be a field of
characteristic 0. A classical Weil cohomology theory is the same thing as a Q-
linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories together with an isomorphism F [2] → G(1(1)) of
graded F -vector spaces such that in addition

(1) G(h(X)) lives in nonnegative degrees, and
(2) dimF G

0(h(X)) = 1
for any smooth projective variety X.

Proof. Given G and F [2] → G(1(1)) by setting H∗(X) = G(h(X)) we obtain data
(D1), (D2), and (D3) satisfying all of (A), (B), and (C) except for possibly (A)(c)
and (A)(d), see Lemma 7.9 and its proof. Observe that assumptions (1) and (2)
imply axioms (A)(c) and (A)(d) in the presence of the known axioms (A)(a) and
(A)(b).

Conversely, given H∗ we get a functor G by the construction of Lemma 7.10. Let
X = P1, c0, c2 be as in Example 3.7. We have constructed an isomorphism 1(−1) →
(X, c2, 0) of motives in Lemma 4.4. In the proof of Lemma 7.10 we have seen that
G(1(−1)) = G(X, c2, 0) = H2(P1)[−2]. Hence the isomorphism

∫
P1 : H2(P1) → F

of axiom (A)(d) gives an isomorphism G(1(−1)) → F [−2] which determines an
isomorphism F [2] → G(1(1)). Finally, since G(h(X)) = H∗(X) assumptions (1)
and (2) follow from axiom (A). □

https://stacks.math.columbia.edu/tag/0FH3
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8. Cycles over non-closed fields

0FH4 Some lemmas which will help us in our study of motives over base fields which are
not algebraically closed.

Lemma 8.1.0FH5 Let k be a field. Let X be a smooth projective scheme over k. Then
CH0(X) is generated by classes of closed points whose residue fields are separable
over k.

Proof. The lemma is immediate if k has characteristic 0 or is perfect. Thus we
may assume k is an infinite field of characteristic p > 0.

We may assume X is irreducible of dimension d. Then k′ = H0(X,OX) is a finite
separable field extension of k and that X is geometrically integral over k′. See
Varieties, Lemmas 25.4, 9.3, and 9.4. We may and do replace k by k′ and assume
that X is geometrically integral.

Let x ∈ X be a closed point. To prove the lemma we are going to show that
[x] ∈ CH0(X) is rationally equivalent to an integer linear combination of classes of
closed points whose residue fields are separable over k. Choose an ample invertible
OX -module L. Set

V = {s ∈ H0(X,L) | s(x) = 0}
After replacing L by a power we may assume (a) L is very ample, (b) V generates
L over X \ x, (c) the morphism X \ x → P(V ) is an immersion, (d) the map
V → mxLx/m

2
xLx is surjective, see Morphisms, Lemma 39.5, Varieties, Lemma

47.1, and Properties, Proposition 26.13. Consider the set

V d ⊃ U = {(s1, . . . , sd) ∈ V d | s1, . . . , sd generate mxLx/m
2
xLx over κ(x)}

Since OX,x is a regular local ring of dimension d we have dimκ(x)(mx/m
2
x) = d and

hence we see that U is a nonempty (Zariski) open of V d. For (s1, . . . , sd) ∈ U set
Hi = Z(si). Since s1, . . . , sd generate mxLx we see that

H1 ∩ . . . ∩Hd = x⨿ Z

scheme theoretically for some closed subscheme Z ⊂ X. By Bertini (in the form of
Varieties, Lemma 47.3) for a general element s1 ∈ V the scheme H1 ∩ (X \ x) is
smooth over k of dimension d− 1. Having chosen s1, for a general element s2 ∈ V
the scheme H1 ∩H2 ∩ (X \ x) is smooth over k of dimension d− 2. And so on. We
conclude that for sufficiently general (s1, . . . , sd) ∈ U the scheme Z is étale over
Spec(k). In particular H1 ∩ . . . ∩Hd has dimension 0 and hence

[H1] · . . . · [Hd] = [x] + [Z]

in CH0(X) by repeated application of Chow Homology, Lemma 62.5 (details omit-
ted). This finishes the proof as it shows that [x] ∼rat −[Z] + [Z ′] where Z ′ =
H ′

1 ∩ . . .∩H ′
d is a general complete intersection of vanishing loci of sufficiently gen-

eral sections of L which will be étale over k by the same argument as before. □

Lemma 8.2.0FH6 Let K/k be an algebraic field extension. Let X be a finite type
scheme over k. Then CHi(XK) = colim CHi(Xk′) where the colimit is over the
subextensions K/k′/k with k′/k finite.

Proof. This is a special case of Chow Homology, Lemma 67.10. □

https://stacks.math.columbia.edu/tag/0FH5
https://stacks.math.columbia.edu/tag/0FH6
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Lemma 8.3.0FH7 Let k be a field. Let X be a geometrically irreducible smooth projec-
tive scheme over k. Let x, x′ ∈ X be k-rational points. Let n be an integer invertible
in k. Then there exists a finite separable extension k′/k such that the pullback of
[x] − [x′] to Xk′ is divisible by n in CH0(Xk′).

Proof. Let k′ be a separable algebraic closure of k. Suppose that we can show the
the pullback of [x] − [x′] to Xk′ is divisible by n in CH0(Xk′). Then we conclude
by Lemma 8.2. Thus we may and do assume k is separably algebraically closed.
Suppose dim(X) > 1. Let L be an ample invertible sheaf on X. Set

V = {s ∈ H0(X,L) | s(x) = 0 and s(x′) = 0}
After replacing L by a power we see that for a general v ∈ V the corresponding
divisor Hv ⊂ X is smooth away from x and x′, see Varieties, Lemmas 47.1 and
47.3. To find v we use that k is infinite (being separably algebraically closed). If we
choose s general, then the image of s in mxLx/m

2
xLx will be nonzero, which implies

that Hv is smooth at x (details omitted). Similarly for x′. Thus Hv is smooth. By
Varieties, Lemma 48.3 (applied to the base change of everything to the algebraic
closure of k) we see that Hv is geometrically connected. It suffices to prove the
result for [x] − [x′] seen as an element of CH0(Hv). In this way we reduce to the
case of a curve.
Assume X is a curve. Then we see that OX(x− x′) defines a k-rational point g of
J = Pic0

X/k, see Picard Schemes of Curves, Lemma 6.7. Recall that J is a proper
smooth variety over k which is also a group scheme over k (same reference). Hence
J is geometrically integral (see Varieties, Lemma 7.13 and 25.4). In other words,
J is an abelian variety, see Groupoids, Definition 9.1. Thus [n] : J → J is finite
étale by Groupoids, Proposition 9.11 (this is where we use n is invertible in k).
Since k is separably closed we conclude that g = [n](g′) for some g′ ∈ J(k). If L
is the degree 0 invertible module on X corresponding to g′, then we conclude that
OX(x− x′) ∼= L⊗n as desired. □

Lemma 8.4.0FH8 Let K/k be an algebraic extension of fields. Let X be a finite type
scheme over k. The kernel of the map CHi(X) → CHi(XK) constructed in Lemma
8.2 is torsion.

Proof. It clearly suffices to show that the kernel of flat pullback CHi(X) →
CHi(Xk′) by π : Xk′ → X is torsion for any finite extension k′/k. This is clear
because π∗π

∗α = [k′ : k]α by Chow Homology, Lemma 15.2. □

Lemma 8.5 (Voevodsky).0FH9 [Voe95]Let k be a field. Let X be a geometrically irreducible
smooth projective scheme over k. Let x, x′ ∈ X be k-rational points. For n large
enough the class of the zero cycle

([x] − [x′]) × . . .× ([x] − [x′]) ∈ CH0(Xn)
is torsion.

Proof. If we can show this after base change to the algebraic closure of k, then
the result follows over k because the kernel of pullback is torsion by Lemma 8.4.
Hence we may and do assume k is algebraically closed.
Using Bertini we can choose a smooth curve C ⊂ X passing through x and x′. See
proof of Lemma 8.3. Hence we may assume X is a curve.

https://stacks.math.columbia.edu/tag/0FH7
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Assume X is a curve and k is algebraically closed. Write Sn(X) = Hilbn
X/k with

notation as in Picard Schemes of Curves, Sections 2 and 3. There is a canonical
morphism

π : Xn −→ Sn(X)
which sends the k-rational point (x1, . . . , xn) to the k-rational point corresponding
to the divisor [x1]+. . .+[xn] on X. There is a faithful action of the symmetric group
Sn on Xn. The morphism π is Sn-invariant and the fibres of π are Sn-orbits (set
theoretically). Finally, π is finite flat of degree n!, see Picard Schemes of Curves,
Lemma 3.4.
Let αn be the zero cycle on Xn given by the formula in the statement of the lemma.
Let L = OX(x− x′). Then c1(L) ∩ [X] = [x] − [x′]. Thus

αn = c1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
where Li = pr∗

i L and pri : Xn → X is the ith projection. By either Divisors,
Lemma 17.6 or Divisors, Lemma 17.7 there is a norm for π. Set N = Normπ(L1),
see Divisors, Lemma 17.2. We have

π∗N = (L1 ⊗ . . .⊗ Ln)⊗(n−1)!

in Pic(Xn) by a calculation. Deails omitted; hint: this follows from the fact that
Normπ : π∗OXn → OSn(X) composed with the natural map π∗OSn(X) → OXn is
equal to the product over all σ ∈ Sn of the action of σ on π∗OXn . Consider

βn = c1(N )n ∩ [Sn(X)]
in CH0(Sn(X)). Observe that c1(Li) ∩ c1(Li) = 0 because Li is pulled back from
a curve, see Chow Homology, Lemma 34.6. Thus we see that

π∗βn = ((n− 1)!)n(
∑

i=1,...,n
c1(Li))n ∩ [Xn]

= ((n− 1)!)nnnc1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
= (n!)nαn

Thus it suffices to show that βn is torsion.
There is a canonical morphism

f : Sn(X) −→ Picn
X/k

See Picard Schemes of Curves, Lemma 6.7. For n ≥ 2g − 1 this morphism is a
projective space bundle (details omitted; compare with the proof of Picard Schemes
of Curves, Lemma 6.7). The invertible sheaf N is trivial on the fibres of f , see below.
Thus by the projective space bundle formula (Chow Homology, Lemma 36.2) we
see that N = f∗M for some invertible module M on Picn

X/k. Of course, then we
see that

c1(N )n = f∗(c1(M)n)
is zero because n > g = dim(Picn

X/k) and we can use Chow Homology, Lemma 34.6
as before.
We still have to show that N is trivial on a fibre F of f . Since the fibres of f
are projective spaces and since Pic(Pm

k ) = Z (Divisors, Lemma 28.5), this can be
shown by computing the degree of N on a line contained in the fibre. Instead
we will prove it by proving that N is algebraically equivalent to zero. First we
claim there is a connected finite type scheme T over k, an invertible module L′
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on T × X and k-rational points p, q ∈ T such that Mp
∼= OX and Mq = L.

Namely, since L = OX(x − x′) we can take T = X, p = x′, q = x, and L′ =
OX×X(∆) ⊗ pr∗

2OX(−x′). Then we let L′
i on T × Xn for i = 1, . . . , n be the

pullback of L′ by idT ×pri : T ×Xn → T ×X. Finally, we let N ′ = NormidT ×π(L′
1)

on T × Sn(X). By construction we have N ′
p = OSn(X) and N ′

q = N . We conclude
that

N ′|T ×F

is an invertible module on T×F ∼= T×Pm
k whose fibre over p is the trivial invertible

module and whose fibre over q is N |F . Since the euler characteristic of the trivial
bundle is 1 and since this euler characteristic is locally constant in families (Derived
Categories of Schemes, Lemma 32.2) we conclude χ(F,N ⊗s|F ) = 1 for all s ∈ Z.
This can happen only if N |F ∼= OF (see Cohomology of Schemes, Lemma 8.1) and
the proof is complete. Some details omitted. □

9. Weil cohomology theories, I

0FHA This section is the analogue of Section 7 over arbitrary fields. In other words, we
work out what data and axioms correspond to functors G of symmetric monoidal
categories from the category of motives to the category of graded vector spaces such
that G(1(1)) sits in degree −2. In Section 11 we will define a Weil cohomology
theory by adding a single suplementary condition.
We fix a field k (the base field). We fix a field F of characteristic 0 (the coefficient
field). The data is given by:

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functor H∗ from the category of smooth projective schemes

over k to the category of graded commutative F -algebras.
(D2) For every smooth projective scheme X over k a group homomorphism γ :

CHi(X) → H2i(X)(i).
(D3) For every nonempty smooth projective scheme X over k which is equidi-

mensional of dimension d a map
∫

X
: H2d(X)(d) → F .

We make some remarks to explain what this means and to introduce some termi-
nology associated with this.
Remarks on (D0). The vector space F (1) gives rise to Tate twists on the category
of F -vector spaces. Namely, for n ∈ Z we set F (n) = F (1)⊗n if n ≥ 0, we set
F (−1) = HomF (F (1), F ), and we set F (n) = F (−1)⊗−n if n < 0. Please compare
with More on Algebra, Section 117. For an F -vector space V we define the nth
Tate twist

V (n) = V ⊗F F (n)
We will use obvious notation, e.g., given F -vector spaces U , V and W and a linear
map U⊗F V → W we obtain a linear map U(n)⊗F V (m) → W (n+m) for n,m ∈ Z.
Remarks on (D1). Given a smooth projective scheme X over k we say that H∗(X)
is the cohomology of X. Given a morphism f : X → Y of smooth projective schemes
over k we denote f∗ : H∗(Y ) → H∗(X) the map H∗(f) and we call it the pullback
map.
Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is
the cohomology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y and X
smooth projective over k and Z integral, then [Z] could mean the class of the cycle
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[Z] in CH∗(Y ) or in CH∗(X). In this case the notation γ([Z]) is ambiguous and
the intended meaning has to be deduced from context.
Remarks on (D3). The map

∫
X

is sometimes called the trace map and is sometimes
denoted TrX .
The first axiom is often called Poincaré duality

(A) Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. Then
(a) dimF H

i(X) < ∞ for all i,
(b) Hi(X) ×H2d−i(X)(d) → H2d(X)(d) → F is a perfect pairing for all i

where the final map is the trace map
∫

X
.

Let f : X → Y be a morphism of nonempty smooth projective schemes with X
equidimensional of dimension d and Y is equidimensional of dimension e. Using
Poincaré duality we can define a pushforward

f∗ : H2d−i(X)(d) −→ H2e−i(Y )(e)
as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for
a ∈ H2d−i(X)(d), the element f∗a ∈ H2e−i(Y )(e) is characterized by∫

X

f∗b ∪ a =
∫

Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 9.1.0FHB Assume given (D0), (D1), and (D3) satisfying (A). For f : X → Y a
morphism of nonempty equidimensional smooth projective schemes over k we have
f∗(f∗b∪a) = b∪ f∗a. If g : Y → Z is a second morphism with Z nonempty smooth
projective and equidimensional, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫

X

f∗c ∪ f∗b ∪ a =
∫

Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫

X

(g ◦ f)∗c ∪ a =
∫

X

f∗g∗c ∪ a =
∫

Y

g∗c ∪ f∗a =
∫

Z

c ∪ g∗f∗a

This ends the proof. □

The second axiom says that H∗ respects the monoidal structure given by products
via the Künneth formula

(B) Let X and Y be smooth projective schemes over k.
(a) H∗(X) ⊗F H∗(Y ) → H∗(X × Y ), α⊗ β 7→ pr∗

1α ∪ pr∗
2β is an isomor-

phism,
(b) if X and Y are nonempty and equidimensional, then

∫
X×Y

=
∫

X
⊗

∫
Y

via (a).
Using axiom (B)(b) we can compute pushforwards along projections.

Lemma 9.2.0FHC Assume given (D0), (D1), and (D3) satisfying (A) and (B). Let
X and Y be nonempty smooth projective schemes over k equidimensional of di-
mensions d and e. Then pr2,∗ : H∗(X × Y )(d + e) → H∗(Y )(e) sends a ⊗ b to
(
∫

X
a)b.

https://stacks.math.columbia.edu/tag/0FHB
https://stacks.math.columbia.edu/tag/0FHC
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Proof. This follows from axioms (B)(a) and (B)(b). □

The third axiom concerns the cycle class maps
(C) The cycle class maps satisfy the following rules

(a) for a morphism f : X → Y of smooth projective schemes over k we
have γ(f !β) = f∗γ(β) for β ∈ CH∗(Y ),

(b) for a morphism f : X → Y of nonempty equidimensional smooth
projective schemes over k we have γ(f∗α) = f∗γ(α) for α ∈ CH∗(X),

(c) for any smooth projective scheme X over k we have γ(α · β) = γ(α) ∪
γ(β) for α, β ∈ CH∗(X), and

(d)
∫

Spec(k) γ([Spec(k)]) = 1.
Let us elucidate axiom (C)(b). Namely, say f : X → Y is as in (C)(b) with
dim(X) = d and dim(Y ) = e. Then we see that pushforward on Chow groups gives

f∗ : CHd−i(X) = CHi(X) → CHi(Y ) = CHe−i(Y )
Say α ∈ CHd−i(X). On the one hand, we have f∗α ∈ CHe−i(Y ) and hence γ(f∗α) ∈
H2e−2i(Y )(e− i). On the other hand, we have γ(α) ∈ H2d−2i(X)(d− i) and hence
f∗γ(α) ∈ H2e−2i(Y )(e − i) as well. Thus the condition γ(f∗α) = f∗γ(α) makes
sense.
Remark 9.3.0FHD Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C)(a). Let X be a smooth projective scheme over k. We obtain maps

H∗(X) ⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)
where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal
morphism ∆ : X → X ×X. The composition is the cup product as pullback is an
algebra homomorphism and pri ◦ ∆ = id. On the other hand, given cycles α, β on
X the intersection product is defined by the formula

α · β = ∆!(α× β)
In other words, α · β is the pullback of the exterior product α × β on X × X by
the diagonal. Note also that α × β = pr∗

1α · pr∗
2β in CH∗(X × X) (we omit the

proof). Hence, given axiom (C)(a), axiom (C)(c) is equivalent to the statement
that γ is compatible with exterior product in the sense that γ(α × β) is equal to
pr∗

1γ(α) ∪ pr∗
2γ(β).

Lemma 9.4.0FHE Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Then Hi(Spec(k)) = 0 for i ̸= 0 and there is a unique F -algebra isomorphism
F = H0(Spec(k)). We have γ([Spec(k)]) = 1 and

∫
Spec(k) 1 = 1.

Proof. By axiom (C)(d) we see that H0(Spec(k)) is nonzero and even γ([Spec(k)])
is nonzero. Since Spec(k) × Spec(k) = Spec(k) we get

H∗(Spec(k)) ⊗F H∗(Spec(k)) = H∗(Spec(k))
by axiom (B)(a) which implies (look at dimensions) that only H0 is nonzero and
moreover has dimension 1. Thus F = H0(Spec(k)) via the unique F -algebra iso-
morphism given by mapping 1 ∈ F to 1 ∈ H0(Spec(k)). Since [Spec(k)]·[Spec(k)] =
[Spec(k)] in the Chow ring of Spec(k) we conclude that γ([Spec(k))∪γ([Spec(k)]) =
γ([Spec(k)]) by axiom (C)(c). Since we already know that γ([Spec(k)]) is nonzero
we conclude that it has to be equal to 1. Finally, we have

∫
Spec(k) 1 = 1 since∫

Spec(k) γ([Spec(k)]) = 1 by axiom (C)(d). □

https://stacks.math.columbia.edu/tag/0FHD
https://stacks.math.columbia.edu/tag/0FHE
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Lemma 9.5.0FHF Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a smooth projective scheme over k. If X = ∅, then H∗(X) = 0. If
X is nonempty, then γ([X]) = 1 and 1 ̸= 0 in H0(X).

Proof. First assume X is nonempty. Observe that [X] is the pullback of [Spec(k)]
by the structure morphism p : X → Spec(k). Hence we get γ([X]) = 1 by axiom
(C)(a) and Lemma 9.4. Let X ′ ⊂ X be an irreducible component. By functoriality
it suffices to show 1 ̸= 0 in H0(X ′). Thus we may and do assume X is irreducible,
and in particular nonempty and equidimensional, say of dimension d. To see that
1 ̸= 0 it suffices to show that H∗(X) is nonzero.
Let x ∈ X be a closed point whose residue field k′ is separable over k, see Varieties,
Lemma 25.6. Let i : Spec(k′) → X be the inclusion morphism. Denote p : X →
Spec(k) is the structure morphism. Observe that p∗i∗[Spec(k′)] = [k′ : k][Spec(k)]
in CH0(Spec(k)). Using axiom (C)(b) twice and Lemma 9.4 we conclude that

p∗i∗γ([Spec(k′)]) = γ([k′ : k][Spec(k)]) = [k′ : k] ∈ F = H0(Spec(k))
is nonzero. Thus i∗γ([Spec(k)]) ∈ H2d(X)(d) is nonzero (because it maps to some-
thing nonzero via p∗). This concludes the proof in case X is nonempty.
Finally, we consider the case of the empty scheme. Axiom (B)(a) gives H∗(∅) ⊗
H∗(∅) = H∗(∅) and we get that H∗(∅) is either zero or 1-dimensional in degree
0. Then axiom (B)(a) again shows that H∗(∅) ⊗ H∗(X) = H∗(∅) for all smooth
projective schemes X over k. Using axiom (A)(b) and the nonvanishing of H0(X)
we’ve seen above we find that H∗(X) is nonzero in at least two degrees if dim(X) >
0. This then forces H∗(∅) to be zero. □

Lemma 9.6.0FHG Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let i : X → Y be a closed immersion of nonempty smooth projective
equidimensional schemes over k. Then γ([X]) = i∗1 in H2c(Y )(c) where c =
dim(Y ) − dim(X).

Proof. This is true because 1 = γ([X]) in H0(X) by Lemma 9.5 and then we can
apply axiom (C)(b). □

Lemma 9.7.0FHH Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme over k equidimensional of
dimension d. Choose a basis ei,j , j = 1, . . . , βi of Hi(X) over F . Using Künneth
write

γ([∆]) =
∑

i

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X) ⊗F H2d−i(X)(d)

with e′
2d−i,j ∈ H2d−i(X)(d). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X) ⊗F H∗(X) → H∗(X), see Remark 9.3. On the other hand, recall that
γ([∆]) = ∆∗1 (Lemma 9.6) and hence∫

X×X

γ([∆]) ∪ a⊗ b =
∫

X×X

∆∗1 ∪ a⊗ b =
∫

X

a ∪ b

by Lemma 9.1. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫

X

a ∪ ei,j)(
∫

X

e′
2d−i,j ∪ b)

https://stacks.math.columbia.edu/tag/0FHF
https://stacks.math.columbia.edu/tag/0FHG
https://stacks.math.columbia.edu/tag/0FHH
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by axiom (B)(b); note that we made two switches of order so that the sign for each
term is 1. Thus if we choose a such that

∫
X
a∪ ei,j = 1 and all other pairings equal

to zero, then we conclude that
∫

X
e′

2d−i,j ∪ b =
∫

X
a ∪ b for all b, i.e., e′

2d−i,j = a.
This proves the lemma. □

Lemma 9.8.0FHI Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Then H∗(P1

k) is 1-dimensional in dimensions 0 and 2 and zero in other
degrees.
Proof. Let x ∈ P1

k be a k-rational point. Observe that ∆ = pr∗
1x+pr∗

2x as divisors
on P1

k × P1
k. Using axiom (C)(a) and additivity of γ we see that
γ([∆]) = pr∗

1γ([x]) + pr∗
2γ([x]) = γ([x]) ⊗ 1 + 1 ⊗ γ([x])

in H∗(P1
k × P1

k) = H∗(P1
k) ⊗F H∗(P1

k). However, by Lemma 9.7 we know that
γ([∆]) cannot be written as a sum of fewer than

∑
βi pure tensors where βi =

dimF H
i(P1

k). Thus we see that
∑
βi ≤ 2. By Lemma 9.5 we have H0(P1

k) ̸= 0.
By Poincaré duality, more precisely axiom (A)(b), we have β0 = β2. Therefore the
lemma holds. □

Lemma 9.9.0FHJ Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). If X and Y are smooth projective schemes over k, then H∗(X ⨿ Y ) →
H∗(X)×H∗(Y ), a 7→ (i∗a, j∗a) is an isomorphism where i, j are the coprojections.
Proof. If X or Y is empty, then this is true because H∗(∅) = 0 by Lemma 9.5.
Thus we may assume both X and Y are nonempty.
We first show that the map is injective. First, observe that we can find morphisms
X ′ → X and Y ′ → Y of smooth projective schemes so that X ′ and Y ′ are equidi-
mensional of the same dimension and such that X ′ → X and Y ′ → Y each have a
section. Namely, decompose X =

∐
Xd and Y =

∐
Ye into open and closed sub-

schemes equidimensional of dimension d and e. Then take X ′ =
∐
Xd × Pn−d and

Y ′ =
∐
Ye ×Pn−e for some n sufficiently large. Thus pullback by X ′ ⨿Y ′ → X⨿Y

is injective (because there is a section) and it suffices to show the injectivity for
X ′, Y ′ as we do in the next parapgrah.
Let us show the map is injective when X and Y are equidimensional of the same
dimension d. Observe that [X ⨿ Y ] = [X] + [Y ] in CH0(X ⨿ Y ) and that [X] and
[Y ] are orthogonal idempotents in CH0(X ⨿ Y ). Thus

1 = γ([X ⨿ Y ] = γ([X]) + γ([Y ]) = i∗1 + j∗1
is a decomposition into orthogonal idempotents. Here we have used Lemmas 9.5
and 9.6 and axiom (C)(c). Then we see that

a = a ∪ 1 = a ∪ i∗1 + a ∪ j∗1 = i∗(i∗a) + j∗(j∗a)
by the projection formula (Lemma 9.1) and hence the map is injective.
We show the map is surjective. Write e = γ([X]) and f = γ([Y ]) viewed as elements
in H0(X ⨿ Y ). We have i∗e = 1, i∗f = 0, j∗e = 0, and j∗f = 1 by axiom (C)(a).
Hence if i∗ : H∗(X ⨿ Y ) → H∗(X) and j∗ : H∗(X ⨿ Y ) → H∗(Y ) are surjective,
then so is (i∗, j∗). Namely, for a, a′ ∈ H∗(X ⨿ Y ) we have

(i∗a, j∗a′) = (i∗(a ∪ e+ a′ ∪ f), j∗(a ∪ e+ a′ ∪ f))
By symmetry it suffices to show i∗ : H∗(X ⨿ Y ) → H∗(X) is surjective. If there is
a morphism Y → X, then there is a morphism g : X ⨿ Y → X with g ◦ i = idX

https://stacks.math.columbia.edu/tag/0FHI
https://stacks.math.columbia.edu/tag/0FHJ
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and we conclude. To finish the proof, observe that in order to prove i∗ is surjective,
it suffices to do so after tensoring by a nonzero graded F -vector space. Hence by
axiom (B)(b) and nonvanishing of cohomology (Lemma 9.5) it suffices to prove i∗
is surjective after replacing X and Y by X × Spec(k′) and Y × Spec(k′) for some
finite separable extension k′/k. If we choose k′ such that there exists a closed point
x ∈ X with κ(x) = k′ (and this is possible by Varieties, Lemma 25.6) then there is a
morphism Y ×Spec(k′) → X×Spec(k′) and we find that the proof is complete. □

Lemma 9.10.0FHK Let k be a field. Let F be a field of characteristic 0. Assume given
a Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2.
Then we obtain data (D0), (D1), (D2), and (D3) satisfying all of (A), (B), and
(C) above.

Proof. This proof is the same as the proof of Lemma 7.9; we urge the reader to
read the proof of that lemma instead.

We obtain a contravariant functor from the category of smooth projective schemes
over k to the category of graded F -vector spaces by setting H∗(X) = G(h(X)). By
assumption we have a canonical isomorphism

H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )

compatible with pullbacks. Using pullback along the diagonal ∆ : X → X ×X we
obtain a canonical map

H∗(X) ⊗H∗(X) = H∗(X ×X) → H∗(X)

of graded vector spaces compatible with pullbacks. This defines a functorial graded
F -algebra structure on H∗(X). Since ∆ commutes with the commutativity con-
straint h(X)⊗h(X) → h(X)⊗h(X) (switching the factors) and since G is a functor
of symmetric monoidal categories (so compatible with commutativity constraints),
and by our convention in Homology, Example 17.4 we conclude that H∗(X) is a
graded commutative algebra! Hence we get our datum (D1).

Since 1(1) is invertible in the category of motives we see that G(1(1)) is invert-
ible in the category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By
assumption we only get something nonzero in degree −2. Our datum (D0) is the
vector space F (1) = G−2(1(1)). Since G is a symmetric monoidal functor we see
that F (n) = G−2n(1(n)) for all n ∈ Z. It follows that

H2r(X)(r) = G2r(h(X)) ⊗G−2r(1(r)) = G0(h(X)(r))

a formula we will frequently use below.

Let X be a smooth projective scheme over k. By Lemma 3.1 we have

CHr(X) ⊗ Q = Corrr(Spec(k), X) = Hom(1(−r), h(X)) = Hom(1, h(X)(r))

Applying the functor G this maps into Hom(G(1), G(h(X)(r))). By taking the
image of 1 in G0(1) = F into G0(h(X)(r)) = H2r(X)(r) we obtain

γ : CHr(X) ⊗ Q −→ H2r(X)(r)

This is the datum (D2).

https://stacks.math.columbia.edu/tag/0FHK
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Let X be a nonempty smooth projective scheme over k which is equidimensional of
dimension d. By Lemma 3.1 we have
Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X,Spec(k)) = CHd(X)
Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1.
Applying G and taking degree 0 parts we obtain

H2d(X)(d) = G0(h(X)(d)) −→ G0(1) = F

This map
∫

X
: H2d(X)(d) → F is the datum (D3).

Let X be a smooth projective scheme over k which is nonempty and equidimensional
of dimension d. By Lemma 4.9 we know that h(X)(d) is a left dual to h(X). Hence
G(h(X)(d)) = H∗(X)⊗F F (d)[2d] is a left dual to H∗(X) in the category of graded
F -vector spaces. Here [n] is the shift functor on graded vector spaces. By Homology,
Lemma 17.5 we find that

∑
i dimF H

i(X) < ∞ and that ϵ : h(X)(d) ⊗ h(X) → 1
produces nondegenerate pairings H2d−i(X)(d) ⊗F Hi(X) → F . In the proof of
Lemma 4.9 we have seen that ϵ is given by [∆] via the identifications

Hom(h(X)(d) ⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)
Thus ϵ is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by∫

X
. This proves axiom (A).

Axiom (B) follows from the assumption that G is compatible with tensor structures
and our construction of the cup product above.
Axiom (C). Our construction of γ takes a cycle α on X, interprets it a correspon-
dence a from Spec(k) to X of some degree, and then applies G. If f : Y → X is
a morphism of nonempty equidimensional smooth projective schemes over k, then
f !α is the pushforward (!) of α by the correspondence [Γf ] from X to Y , see Lemma
3.6. Hence f !α viewed as a correspondence from Spec(k) to Y is equal to a ◦ [Γf ],
see Lemma 3.1. Since G is a functor, we conclude γ is compatible with pullbacks,
i.e., axiom (C)(a) holds.
Let f : Y → X be a morphism of nonempty equidimensional smooth projective
schemes over k and let β ∈ CHr(Y ) be a cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫

X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 3.9. Let b be β
viewed as a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a
correspondence from Spec(k) to X is equal to at ◦ b, see Lemmas 3.6 and 3.1. The
displayed equality above holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)
is equal to

h(X) = 1 ⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e) ⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)
This follows immediately from Lemma 3.9. Thus we have axiom (C)(b).
To prove axiom (C)(c) we use the discussion in Remark 7.2. Hence it suffices
to prove that γ is compatible with exterior products. Let X, Y be nonempty
smooth projective schemes over k and let α, β be cycles on them. Denote a, b the
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corresponding correspondences from Spec(k) to X, Y . Then α× β corresponds to
the correspondence a⊗ b from Spec(k) to X ⊗ Y = X × Y . Hence the requirement
follows from the fact that G is compatible with the tensor structures on both sides.

Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity mor-
phism on h(Spec(k)). This finishes the proof of the lemma. □

Lemma 9.11.0FHL Let k be a field. Let F be a field of characteristic 0. Given (D0),
(D1), (D2), and (D3) satisfying (A), (B), and (C) we can construct a Q-linear
functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that H∗(X) = G(h(X)).

Proof. The proof of this lemma is the same as the proof of Lemma 7.10; we urge
the reader to read the proof of that lemma instead.

By Lemma 4.8 it suffices to construct a functor G on the category of smooth
projective schemes over k with morphisms given by correspondences of degree 0
such that the image of G(c2) on G(P1

k) is an invertible graded F -vector space.

Let X be a smooth projective scheme over k. There is a canonical decomposition

X =
∐

0≤d≤dim(X)
Xd

into open and closed subschemes such that Xd is equidimensional of dimension d.
By Lemma 9.9 we have correspondingly

H∗(X) −→
∏

0≤d≤dim(X)
H∗(Xd)

If Y is a second smooth projective scheme over k and we similarly decompose
Y =

∐
Ye, then

Corr0(X,Y ) =
⊕

Corr0(Xd, Ye)

As well we have X⊗Y =
∐
Xd ⊗Ye in the category of correspondences. From these

observations it follows that it suffices to construct G on the category whose objects
are equidimensional smooth projective schemes over k and whose morphisms are
correspondences of degree 0. (Some details omitted.)

Given an equdimensional smooth projective scheme X over k we set G(X) =
H∗(X). Observe that G(X) = 0 if X = ∅ (Lemma 9.5). Thus maps from and
to G(∅) are zero and we may and do assume our schemes are nonempty in the
discussions below.

Given a correspondence c ∈ Corr0(X,Y ) between nonempty equidmensional smooth
projective schemes over k we consider the map G(c) : G(X) = H∗(X) → G(Y ) =
H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear that G(c) is additive in c and hence Q-linear. Compatibility of γ with
pullbacks, pushforwards, and intersection products given by axioms (C)(a), (C)(b),

https://stacks.math.columbia.edu/tag/0FHL


WEIL COHOMOLOGY THEORIES 33

and (C)(c) shows that we have G(c′ ◦ c) = G(c′) ◦G(c) if c′ ∈ Corr0(Y,Z). Namely,
for a ∈ H∗(X) we have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗(γ(c′) ∪ pr123

23,∗(pr123,∗
12 (γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)

with obvious notation. The first equality follows from the definitions. The second
equality holds because pr23,∗

2 ◦ pr12
2,∗ = pr123

23,∗ ◦ pr123,∗
12 as follows immediately from

the description of pushforward along projections given in Lemma 9.2. The third
equality holds by Lemma 9.1 and the fact that H∗ is a functor. The fourth equalith
holds by axiom (C)(a) and the fact that the gysin map agrees with flat pullback
for flat morphisms (Chow Homology, Lemma 59.5). The fifth equality uses axiom
(C)(c) as well as Lemma 9.1 to see that pr23

3,∗ ◦ pr123
23,∗ = pr13

3,∗ ◦ pr123
13,∗. The sixth

equality uses the projection formula from Lemma 9.1 as well as axiom (C)(b) to
see that pr123

13,∗γ(pr123,∗
23 c′ · pr123,∗

12 c) = γ(pr123
13,∗(pr123,∗

23 c′ · pr123,∗
12 c)). Finally, the last

equality is the definition.

To finish the proof that G is a functor, we have to show identities are preserved. In
other words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of correspon-
dences (Lemma 3.3), then we have to show that G([∆]) = id. This follows from the
determination of γ([∆]) in Lemma 9.7 and Lemma 9.2. This finishes the construc-
tion of G as a functor on smooth projective schemes over k and correspondences of
degree 0.

By Lemma 9.4 we have that G(Spec(k)) = H∗(Spec(k)) is canonically isomorphic to
F as an F -algebra. The Künneth axiom (B)(a) shows our functor is compatible with
tensor products. Thus our functor is a functor of symmetric monoidal categories.

We still have to check that the image of G(c2) on G(P1
k) = H∗(P1

k) is an invertible
graded F -vector space (in particular we don’t know yet that G extends to Mk). By
Lemma 9.8 we only have nonzero cohomology in degrees 0 and 2 both of dimension
1. We have 1 = c0 + c2 is a decomposition of the identity into a sum of orthog-
onal idempotents in Corr0(P1

k,P1
k), see Example 3.7. Further we have c0 = a ◦ b

where a ∈ Corr0(Spec(k),P1
k) and b ∈ Corr0(P1

k,Spec(k)) and where b ◦ a = 1 in
Corr0(Spec(k),Spec(k)), see proof of Lemma 4.4. Thus G(c0) is the projector onto
the degree 0 part. It follows that G(c2) must be the projector onto the degree 2
part and the proof is complete. □

Proposition 9.12.0FHM Let k be a field. Let F be a field of characteristic 0. There is
a 1-to-1 correspondence between the following

(1) data (D0), (D1), (D2), and (D3) satisfying (A), (B), and(C), and
(2) Q-linear symmetric monoidal functors

G : Mk −→ graded F -vector spaces
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such that G(1(1)) is nonzero only in degree −2.

Proof. Given G as in (2) by setting H∗(X) = G(h(X)) we obtain data (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C), see Lemma 9.10 and its proof.
Conversely, given data (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C) we
get a functor G as in (2) by the construction of the proof of Lemma 9.11.
We omit the detailed proof that these constructions are inverse to each other. □

10. Further properties

0FHN In this section we prove a few more results one obtains if given data (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C) as in Section 9.

Lemma 10.1.0FHP Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let X,Y be nonempty smooth projective schemes both equidimensional of
dimension d over k. Then

∫
X⨿Y

=
∫

X
+

∫
Y

.

Proof. Denote i : X → X ⨿ Y and j : Y → X ⨿ Y be the coprojections. By
Lemma 9.9 the map (i∗, j∗) : H∗(X ⨿ Y ) → H∗(X) × H∗(Y ) is an isomorphism.
The statement of the lemma means that under the isomorphism (i∗, j∗) : H2d(X ⨿
Y )(d) → H2d(X)(d) ⊕H2d(Y )(d) the map

∫
X

+
∫

Y
is tranformed into

∫
X⨿Y

. This
is true because∫

X⨿Y

a =
∫

X⨿Y

i∗(i∗a) + j∗(j∗a) =
∫

X

i∗a+
∫

Y

j∗a

where the equality a = i∗(i∗a) + j∗(j∗a) was shown in the proof of Lemma 9.9. □

Lemma 10.2.0FHQ Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a smooth projective scheme of dimension zero over k. Then

(1) Hi(X) = 0 for i ̸= 0,
(2) H0(X) is a finite separable algebra over F ,
(3) dimF H

0(X) = deg(X → Spec(F )),
(4)

∫
X

: H0(X) → F is the trace map,
(5) γ([X]) = 1, and
(6)

∫
X
γ([X]) = deg(X → Spec(k)).

Proof. We can write X = Spec(k′) where k′ is a finite separable algebra over k.
Observe that deg(X → Spec(k)) = [k′ : k]. Choose a finite Galois extension k′′/k
containing each of the factors of k′. (Recall that a finite separable k-algebra is a
product of finite separable field extension of k.) Set Σ = Homk(k′, k′′). Then we
get

k′ ⊗k k
′′ =

∏
σ∈Σ

k′′

Setting Y = Spec(k′′) axioms (B)(a) and Lemma 9.9 give

H∗(X) ⊗F H∗(Y ) =
∏

σ∈Σ
H∗(Y )

as graded commutative F -algebras. By Lemma 9.5 the F -algebra H∗(Y ) is nonzero.
Comparing dimensions on either side of the displayed equation we conclude that
H∗(X) sits only in degree 0 and dimF H

0(X) = [k′ : k]. Applying this to Y we get
H∗(Y ) = H0(Y ). Since

H0(X) ⊗F H0(Y ) = H0(Y ) × . . .×H0(Y )
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as F -algebras, it follows that H0(X) is a separable F -algebra because we may check
this after the faithfully flat base change F → H0(Y ).
The displayed isomorphism above is given by the map

H0(X) ⊗F H0(Y ) −→
∏

σ∈Σ
H0(Y ), a⊗ b 7−→

∏
σ

Spec(σ)∗a ∪ b

Via this isomorphism we have
∫

X×Y
=

∑
σ

∫
Y

by Lemma 10.1. Thus∫
X

a = pr1,∗(a⊗ 1) =
∑

Spec(σ)∗a

in H0(Y ); the first equality by Lemma 9.2 and the second by the observation we
just made. Choose an algebraic closure F and a F -algebra map τ : H0(Y ) → F .
The isomorphism above base changes to the isomorphism

H0(X) ⊗F F −→
∏

σ∈Σ
F , a⊗ b 7−→

∏
σ
τ(Spec(σ)∗a)b

It follows that a 7→ τ(Spec(σ)∗a) is a full set of embeddings of H0(X) into F .
Applying τ to the formula for

∫
X
a obtained above we conclude that

∫
X

is the trace
map. By Lemma 9.5 we have γ([X]) = 1. Finally, we have

∫
X
γ([X]) = deg(X →

Spec(k)) because γ([X]) = 1 and the trace of 1 is equal to [k′ : k] □

Lemma 10.3.0FHR Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme equidimensional of dimension
d over k. The diagram

CHd(X)
γ
// H2d(X)(d)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X) → Z is the degree of zero cycles discussed in Chow
Homology, Section 41.

Proof. Let x be a closed point of X whose residue field is separable over k. View
x as a scheme and denote i : x → X the inclusion morphism. To avoid confusion
denote γ′ : CH0(x) → H0(x) the cycle class map for x. Then we have∫

X

γ([x]) =
∫

X

γ(i∗[x]) =
∫

X

i∗γ
′([x]) =

∫
x

γ′([x]) = deg(x → Spec(k))

The second equality is axiom (C)(b) and the third equality is the definition of i∗
on cohomology. The final equality is Lemma 10.2. This proves the lemma because
CH0(X) is generated by the classes of points x as above by Lemma 8.1. □

Lemma 10.4.0FHS Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme over k which is equidimensional
of dimension d. We have∑

i
(−1)i dimF H

i(X) = deg(∆ · ∆) = deg(cd(TX/k))

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the
degree of ∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class
of the normal sheaf of ∆ ⊂ X × X (Chow Homology, Lemma 54.5). Since the
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conormal sheaf of ∆ is ΩX/k (Morphisms, Lemma 32.7) we see that the normal
sheaf is equal to the tangent sheaf TX/k = HomOX

(ΩX/k,OX) as desired.

Equality on the left. By Lemma 10.3 we have

deg([∆] · [∆]) =
∫

X×X

γ([∆]) ∪ γ([∆])

=
∫

X×X

∆∗1 ∪ γ([∆])

=
∫

X×X

∆∗(∆∗γ([∆]))

=
∫

X

∆∗γ([∆])

We have used Lemmas 9.6 and 9.1. Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in Lemma
9.7. Recalling that ∆∗ is given by cup product (Remark 9.3) we obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. □

Lemma 10.5.0FHT Let F be a field of characteristic 0. Let F ′ and Fi, i = 1, . . . , r
be finite separable F -algebras. Let A be a finite F -algebra. Let σ, σ′ : A → F ′ and
σi : A → Fi be F -algebra maps. Assume σ and σ′ surjective. If there is a relation

TrF ′/F ◦ σ − TrF ′/F ◦ σ′ = n(
∑

miTrFi/F ◦ σi)

where n > 1 and mi are integers, then σ = σ′.

Proof. We may write A =
∏
Aj as a finite product of local Artinian F -algebras

(Aj ,mj , κj), see Algebra, Lemma 53.2 and Proposition 60.7. Denote A′ =
∏
κj

where the product is over those j such that κj/k is separable. Then each of the
maps σ, σ′, σi factors over the map A → A′. After replacing A by A′ we may assume
A is a finite separable F -algebra.

Choose an algebraic closure F . Set A = A⊗F F , F ′ = F ′ ⊗F F , and F i = Fi ⊗F F .
We can base change σ, σ′, σi to get F algebra maps A → F

′ and A → F i. Moreover
Tr

F
′
/F

is the base change of TrF ′/F and similarly for TrFi/F . Thus we may replace
F by F and we reduce to the case discussed in the next paragraph.

Assume F is algebraically closed and A a finite separable F -algebra. Then each
of A, F ′, Fi is a product of copies of F . Let us say an element e of a product
F × . . .×F of copies of F is a minimal idempotent if it generates one of the factors,
i.e., if e = (0, . . . , 0, 1, 0, . . . , 0). Let e ∈ A be a minimal idempotent. Since σ and
σ′ are surjective, we see that σ(e) and σ′(e) are minimal idempotents or zero. If
σ ̸= σ′, then we can choose a minimal idempotent e ∈ A such that σ(e) = 0 and
σ′(e) ̸= 0 or vice versa. Then TrF ′/F (σ(e)) = 0 and TrF ′/F (σ′(e)) = 1 or vice
versa. On the other hand, σi(e) is an idempotent and hence TrFi/F (σi(e)) = ri is
an integer. We conclude that

−1 =
∑

nmiri = n(
∑

miri) or 1 =
∑

nmiri = n(
∑

miri)

which is impossible. □
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Lemma 10.6.0FHU Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let k′/k be a finite separable extension. Let X be a smooth projective scheme
over k′. Let x, x′ ∈ X be k′-rational points. If γ(x) ̸= γ(x′), then [x] − [x′] is not
divisible by any integer n > 1 in CH0(X).

Proof. If x and x′ lie on distinct irreducible components of X, then the result is
obvious. Thus we may X irreducible of dimension d. Say [x] − [x′] is divisible by
n > 1 in CH0(X). We may write [x] − [x′] = n(

∑
mi[xi]) in CH0(X) for some

xi ∈ X closed points whose residue fields are separable over k by Lemma 8.1. Then

γ([x]) − γ([x′]) = n(
∑

miγ([xi]))

in H2d(X)(d). Denote i∗, (i′)∗, i∗i the pullback maps H0(X) → H0(x), H0(X) →
H0(x′), H0(X) → H0(xi). Recall that H0(x) is a finite separable F -algebra and
that

∫
x

: H0(x) → F is the trace map (Lemma 10.2) which we will denote Trx.
Similarly for x′ and xi. Then by Poincaré duality in the form of axiom (A)(b) the
equation above is dual to

Trx ◦ i∗ − Trx′ ◦ (i′)∗ = n(
∑

miTrxi ◦ i∗i )

which takes place in HomF (H0(X), F ). Finally, observe that i∗ and (i′)∗ are surjec-
tive as x and x′ are k′-rational points and hence the compositions H0(Spec(k′)) →
H0(X) → H0(x) and H0(Spec(k′)) → H0(X) → H0(x′) are isomorphisms. By
Lemma 10.5 we conclude that i∗ = (i′)∗ which contradicts the assumption that
γ([x]) ̸= γ([x′]). □

Lemma 10.7.0FHV Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let k′/k be a finite separable extension. Let X be a geometrically irreducible
smooth projective scheme over k′ of dimension d. Then γ : CH0(X) → H2d(X)(d)
factors through deg : CH0(X) → Z.

Proof. By Lemma 8.1 it suffices to show: given closed points x, x′ ∈ X whose
residue fields are separable over k we have deg(x′)γ([x]) = deg(x)γ([x′]).

We first reduce to the case of k′-rational points. Let k′′/k′ be a Galois extension
such that κ(x) and κ(x′) embed into k′′ over k. Set Y = X ×Spec(k′) Spec(k′′) and
denote p : Y → X the projection. By our choice of k′′/k′ there exists a k′′-rational
point y, resp. y′ on Y mapping to x, resp. x′. Then p∗[y] = [k′′ : κ(x)][x] and
p∗[y′] = [k′′ : κ(x′)][x′] in CH0(X). By compatibility with pushforwards given in
axiom (C)(b) it suffices to prove γ([y]) = γ([y′]) in CH2d(Y )(d). This reduces us to
the discussion in the next paragraph.

Assume x and x′ are k′-rational points. By Lemma 8.3 there exists a finite separable
extension k′′/k′ of fields such that the pullback [y] − [y′] of the difference [x] − [x′]
becomes divisible by an integer n > 1 on Y = X ×Spec(k′) Spec(k′′). (Note that
y, y′ ∈ Y are k′′-rational points.) By Lemma 10.6 we have γ([y]) = γ([y′]) in
H2d(Y )(d). By compatibility with pushforward in axiom (C)(b) we conclude the
same for x and x′. □

Lemma 10.8.0FHW Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let f : X → Y be a dominant morphism of irreducible smooth projective
schemes over k. Then H∗(Y ) → H∗(X) is injective.

https://stacks.math.columbia.edu/tag/0FHU
https://stacks.math.columbia.edu/tag/0FHV
https://stacks.math.columbia.edu/tag/0FHW


WEIL COHOMOLOGY THEORIES 38

Proof. There exists an integral closed subscheme Z ⊂ X of the same dimension
as Y mapping onto Y . Thus f∗[Z] = m[Y ] for some m > 0. Then f∗γ([Z]) =
mγ([Y ]) = m in H∗(Y ) because of Lemma 9.5. Hence by the projection formula
(Lemma 9.1) we have f∗(f∗a ∪ γ([Z])) = ma and we conclude. □

Lemma 10.9.0FHX Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let k′′/k′/k be finite separable algebras and let X be a smooth projective
scheme over k′. Then

H∗(X) ⊗H0(Spec(k′)) H
0(Spec(k′′)) = H∗(X ×Spec(k′) Spec(k′′))

Proof. We will use the results of Lemma 10.2 without further mention. Write
k′ ⊗k k

′′ = k′′ × l

for some finite separable k′-algebra l. Write F ′ = H0(Spec(k′)), F ′′ = H0(Spec(k′′)),
and G = H0(Spec(l)). Since Spec(k′) × Spec(k′′) = Spec(k′′) ⨿ Spec(l) we deduce
from axiom (B)(a) and Lemma 9.9 that we have

F ′ ⊗F F ′′ = F ′′ ×G

The map from left to right identifies F ′′ with F ′ ⊗F ′ F ′′. By the same token we
have

H∗(X) ⊗F F ′′ = H∗(X ×Spec(k′) Spec(k′′)) ×H∗(X ×Spec(k′) Spec(l))
as modules over F ′ ⊗F F ′′ = F ′′ ×G. This proves the lemma. □

11. Weil cohomology theories, II

0FHY For us a Weil cohomology theory will be the analogue of a classical Weil cohomology
theory (Section 7) when the ground field k is not algebraically closed. In Section 9
we listed axioms which guarantee our cohomology theory comes from a symmetric
monoidal functor on the category of motives over k. Missing from our axioms
so far are the condition Hi(X) = 0 for i < 0 and a condition on H2d(X)(d) for
X equidimensional of dimension d corresponding to the classical axioms (A)(c)
and (A)(d). Let us first convince the reader that it is necessary to impose such
conditions.

Example 11.1.0FHZ Let k = C and F = C both be equal to the field of complex
numbers. For X smooth projective over k denote Hp,q(X) = Hq(X,Ωp

X/k). Let
(H ′)∗ be the functor which sends X to (H ′)∗(X) =

⊕
Hp,q(X) with the usual cup

product. This is a classical Weil cohomology theory (insert future reference here).
By Proposition 7.11 we obtain a Q-linear symmetric monoidal functor G′ from Mk

to the category of graded F -vector spaces. Of course, in this case for every M in
Mk the value G′(M) is naturally bigraded, i.e., we have

(G′)(M) =
⊕

(G′)p,q(M), (G′)n =
⊕

n=p+q
(G′)p,q(M)

with (G′)p,q sitting in total degree p+q as indicated. Now we are going to construct
a Q-linear symmetric monoidal functor G to the category of graded F -vector spaces
by setting

Gn(M) =
⊕

n=3p−q
(G′)p,q(M)

We omit the verification that this defines a symmetric monoidal functor (a tech-
nical point is that because we chose odd numbers 3 and −1 above the functor G
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is compatible with the commutativity constraints). Observe that G(1(1)) is still
sitting in degree −2! Hence by Lemma 7.9 we obtain a functor H∗, cycle classes γ,
and trace maps satisfying all classical axioms (A), (B), (C), except for possibly the
classical axioms (A)(a) and (A)(d). However, if E is an elliptic curve over k, then
we find dimH−1(E) = 1, i.e., axiom (A)(a) is indeed violated.

Lemma 11.2.0FI0 Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let X be a smooth projective scheme over k. Set k′ = Γ(X,OX). The
following are equivalent

(1) there exist finitely many closed points x1, . . . , xr ∈ X whose residue fields
are separable over k such that H0(X) → H0(x1)⊕ . . .⊕H0(xr) is injective,

(2) the map H0(Spec(k′)) → H0(X) is an isomorphism.
If this is true, then H0(X) is a finite separable algebra over F . If X is equidimen-
sional of dimension d, then (1) and (2) are also equivalent to

(3) the classes of closed points generate H2d(X)(d) as a module over H0(X).

Proof. We observe that the statement makes sense because k′ is a finite separable
algebra over k (Varieties, Lemma 9.3) and hence Spec(k′) is smooth and projective
over k. The compatibility of H∗ with direct sums (Lemmas 9.9 and 10.1) shows
that it suffices to prove the lemma when X is connected. Hence we may assume
X is irreducible and we have to show the equivalence of (1), (2), and (3). Set
d = dim(X). This implies that k′ is a field finite separable over k and that X is
geometrically irreducible over k′, see Varieties, Lemmas 9.3 and 9.4.

By Lemma 8.1 we see that the closed points in (3) may be assumed to have separable
residue fields over k. By axioms (A)(a) and (A)(b) we see that conditions (1) and
(3) are equivalent.

If (2) holds, then pick any closed point x ∈ X whose residue field is finite separable
over k′. Then H0(Spec(k′)) = H0(X) → H0(x) is injective for example by Lemma
10.8.

Assume the equivalent conditions (1) and (3) hold. Choose x1, . . . , xr ∈ X as in
(1). Choose a finite separable extension k′′/k′. By Lemma 10.9 we have

H0(X) ⊗H0(Spec(k′)) H
0(Spec(k′′)) = H0(X ×Spec(k′) Spec(k′′))

Thus in order to show that H0(Spec(k′)) → H0(X) is an isomorphism we may
replace k′ by k′′. Thus we may assume x1, . . . , xr are k′-rational points (this replaces
each xi with multiple points, so r is increased in this step). By Lemma 10.7 γ(x1) =
γ(x2) = . . . = γ(xr). By axiom (A)(b) all the maps H0(X) → H0(xi) are the same.
This means (2) holds.

Finally, Lemma 10.2 implies H0(X) is a separable F -algebra if (1) holds. □

Lemma 11.3.0FI1 Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). If there exists a smooth projective scheme Y over k such that Hi(Y ) is nonzero
for some i < 0, then there exists an equidimensional smooth projective scheme X
over k such that the equivalent conditions of Lemma 11.2 fail for X.

Proof. By Lemma 9.9 we may assume Y is irreducible and a fortiori equidimen-
sional. If i is odd, then after replacing Y by Y × Y we find an example where Y
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is equidimensional and i = −2l for some l > 0. Set X = Y × (P1
k)l. Using axiom

(B)(a) we obtain

H0(X) ⊃ H0(Y ) ⊕Hi(Y ) ⊗F H2(P1
k)⊗F l

with both summands nonzero. Thus it is clear that H0(X) cannot be isomorphic to
H0 of the spectrum of Γ(X,OX) = Γ(Y,OY ) as this falls into the first summand. □

Thus it makes sense to finally make the following definition.

Definition 11.4.0FI2 Let k be a field. Let F be a field of characteristic 0. A Weil
cohomology theory over k with coefficients in F is given by data (D0), (D1), (D2),
and (D3) satisfying Poincaré duality, the Künneth formula, and compatibility with
cycle classes, more precisely, satisfying axioms (A), (B), and (C) of Section 9 and
in addition such that the equivalent conditions (1) and (2) of Lemma 11.2 hold for
every smooth projective X over k.

By Lemma 11.3 this means also that there are no nonzero negative cohomology
groups. In particular, if k is algebraically closed, then a Weil cohomology theory
as above together with an isomorphism F → F (1) is the same thing as a classical
Weil cohomology theory.

Remark 11.5.0FI3 Let H∗ be a Weil cohomology theory (Definition 11.4). Let X be
a geometrically irreducible smooth projective scheme of dimension d over k′ with
k′/k a finite separable extension of fields. Suppose that

H0(Spec(k′)) = F1 × . . .× Fr

for some fields Fi. Then we accordingly can write

H∗(X) =
∏

i=1,...,r
H∗(X) ⊗H0(Spec(k′)) Fi

Now, our final assumption in Definition 11.4 tells us that H0(X) is free of rank 1
over

∏
Fi. In other words, each of the factors H0(X)⊗H0(Spec(k′))Fi has dimension

1 over Fi. Poincaré duality then tells us that the same is true for cohomology in
degree 2d. What isn’t clear however is that the same holds in other degrees. Namely,
we don’t know that given 0 < n < dim(X) the integers

dimFi
Hn(X) ⊗H0(Spec(k′)) Fi

are independent of i! This question is closely related to the following open question:
given an algebraically closed base field k, a field of characteristic zero F , a classical
Weil cohomology theory H∗ over k with coefficient field F , and a smooth projective
variety X over k is it true that the betti numbers of X

βi = dimF H
i(X)

are independent of F and the Weil cohomology theory H∗?

Proposition 11.6.0GIJ Let k be a field. Let F be a field of characteristic 0. A Weil
cohomology theory is the same thing as a Q-linear symmetric monoidal functor

G : Mk −→ graded F -vector spaces

such that
(1) G(1(1)) is nonzero only in degree −2, and
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(2) for every smooth projective scheme X over k with k′ = Γ(X,OX) the ho-
momorphism G(h(Spec(k′))) → G(h(X)) of graded F -vector spaces is an
isomorphism in degree 0.

Proof. Immediate consequence of Proposition 9.12 and Definition 11.4. Of course
we could replace (2) by the condition that G(h(X)) →

⊕
G(h(xi)) is injective in

degree 0 for some choice of closed points x1, . . . , xr ∈ X whose residue fields are
separable over k. □

12. Chern classes

0FI4 In this section we discuss how given a first Chern class and a projective space
bundle formula we can get all Chern classes. A reference for this section is [Gro58]
although our axioms are slightly different.

Let C be a category of schemes with the following properties
(1) Every X ∈ Ob(C) is quasi-compact and quasi-separated.
(2) If X ∈ Ob(C) and U ⊂ X is open and closed, then U → X is a morphism

of C. If X ′ → X is a morphism of C factoring through U , then X ′ → U is
a morphism of C.

(3) If X ∈ Ob(C) and if E is a finite locally free OX -module, then
(a) p : P(E) → X is a morphism of C,
(b) for a morphism f : X ′ → X in C the induced morphism P(f∗E) →

P(E) is a morphism of C,
(c) if E → F is a surjection onto another finite locally free OX -module

then the closed immersion P(F) → P(E) is a morphism of C.
Next, assume given a contravariant functor A from the category C to the category
of graded algebras. Here a graded algebra A is a unital, associative, not necessarily
commutative Z-algebra A endowed with a grading A =

⊕
i≥0 A

i. Given a morphism
f : X ′ → X of C we denote f∗ : A(X) → A(X ′) the induced algebra map. We
will denote the product of a, b ∈ A(X) by a∪ b. Finally, we assume given for every
object X of C an additive map

cA
1 : Pic(X) −→ A1(X)

We assume the following axioms are satisfied
(1) Given X ∈ Ob(C) and L ∈ Pic(X) the element cA

1 (L) is in the center of the
algebra A(X).

(2) If X ∈ Ob(C) and X = U ⨿V with U and V open and closed, then A(X) =
A(U) ×A(V ) via the induced maps A(X) → A(U) and A(X) → A(V ).

(3) If f : X ′ → X is a morphism of C and L is an invertible OX -module, then
f∗cA

1 (L) = cA
1 (f∗L).

(4) Given X ∈ Ob(C) and locally free OX -module E of constant rank r consider
the morphism p : P = P(E) → X of C. Then the map⊕
i=0,...,r−1

A(X) −→ A(P ), (a0, . . . , ar−1) 7−→
∑

cA
1 (OP (1))i ∪ p∗(ai)

is bijective.
(5) Let X ∈ Ob(C) and let E → F be a surjection of finite locally free OX -

modules of ranks r + 1 and r. Denote i : P ′ = P(F) → P(E) = P the
corresponding incusion morphism. This is a morphism of C which exhibits
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P ′ as an effective Cartier divisor on P . Then for a ∈ A(P ) with i∗a = 0 we
have a ∪ cA

1 (OP (P ′)) = 0.
To formulate our result recall that Vect(X) denotes the (exact) category of finite
locally free OX -modules. In Derived Categories of Schemes, Section 38 we have
defined the zeroth K-group K0(Vect(X)) of this category. Moreover, we have seen
that K0(Vect(X)) is a ring, see Derived Categories of Schemes, Remark 38.6.

Proposition 12.1.0FI5 In the situation above there is a unique rule which assigns to
every X ∈ Ob(C) a “total Chern class”

cA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) For X ∈ Ob(C) we have cA(α+ β) = cA(α)cA(β) and cA(0) = 1.
(2) If f : X ′ → X is a morphism of C, then f∗ ◦ cA = cA ◦ f∗.
(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have cA([L]) = 1 + cA

1 (L).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define an element cA(E) ∈ A(X).

As a first step, let X =
⋃
Xr be the decomposition into open and closed subschemes

such that E|Xr
has constant rank r. Since X is quasi-compact, this decomposition

is finite. Hence A(X) =
∏
A(Xr). Thus it suffices to define cA(E) when E has

constant rank r. In this case let p : P → X be the projective bundle of E . We
can uniquely define elements cA

i (E) ∈ Ai(X) for i ≥ 0 such that cA
0 (E) = 1 and the

equation

(12.1.1)0FI6
∑r

i=0
(−1)ic1(OP (1))i ∪ p∗cA

r−i(E) = 0

is true. As usual we set cA(E) = cA
0 (E) + cA

1 (E) + . . .+ cA
r (E) in A(X).

If E is invertible, then cA(E) = 1 + cA
1 (L). This follows immediately from the

construction above.

The elements cA
i (E) are in the center of A(X). Namely, to prove this we may assume

E has constant rank r. Let p : P → X be the corresponding projective bundle. if
a ∈ A(X) then p∗a∪ (−1)rc1(OP (1))r = (−1)rc1(OP (1))r ∪p∗a and hence we must
have the same for all the other terms in the expression defining cA

i (E) as well and
we conclude.

If f : X ′ → X is a morphism of C, then f∗cA
i (E) = cA

i (f∗E). Namely, to prove
this we may assume E has constant rank r. Let p : P → X and p′ : P ′ → X ′

be the projective bundles corresponding to E and f∗E . The induced morphism
g : P ′ → P is a morphism of C. The pullback by g of the equality defining cA

i (E) is
the corresponding equation for f∗E and we conclude.

Let X ∈ Ob(C). Consider a short exact sequence

0 → L → E → F → 0

of finite locally free OX -modules with L invertible. Then

cA(E) = cA(L)cA(F)

https://stacks.math.columbia.edu/tag/0FI5
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Namely, by the construction of cA
i we may assume E has constant rank r + 1 and

F has constant rank r. The inclusion
i : P ′ = P(F) −→ P(E) = P

is a morphism of C and it is the zero scheme of a regular section of the invertible
module L⊗−1 ⊗ OP (1). The element∑r

i=0
(−1)icA

1 (OP (1))i ∪ p∗cA
i (F)

pulls back to zero on P ′ by definition. Hence we see that(
cA

1 (OP (1)) − cA
1 (L)

)
∪

(∑r

i=0
(−1)icA

1 (OP (1))i ∪ p∗cA
i (F)

)
= 0

in A∗(P ) by assumption (5) on our cohomology A. By definition of cA
1 (E) this gives

the desired equality.
Let X ∈ Ob(C). Consider a short exact sequence

0 → E → F → G → 0
of finite locally free OX -modules. Then

cA(F) = cA(E)cA(G)
Namely, by the construction of cA

i we may assume E , F , and G have constant ranks
r, s, and t. We prove it by induction on r. The case r = 1 was done above. If r > 1,
then it suffices to check this after pulling back by the morphism P(E∨) → X. Thus
we may assume we have an invertible submodule L ⊂ E such that both E ′ = E/L
and F ′ = E/L are finite locally free (of ranks s− 1 and t− 1). Then we have

cA(E) = cA(L)cA(E ′) and cA(F) = cA(L)cA(F ′)
Since we have the short exact sequence

0 → E ′ → F ′ → G → 0
we see by induction hypothesis that

cA(F ′) = cA(E ′)cA(G)
Thus the result follows from a formal calculation.
At this point for X ∈ Ob(C) we can define cA : K0(Vect(X)) → A(X). Namely,
we send a generator [E ] to cA(E) and we extend multiplicatively. Thus for example
cA(−[E ]) = cA(E)−1 is the formal inverse of aA([E ]). The multiplicativity in short
exact sequences shown above guarantees that this works.
Uniqueness. Suppose X ∈ Ob(C) and E is a finite locally free OX -module. We
want to show that conditions (1), (2), and (3) of the lemma uniquely determine
cA([E ]). To prove this we may assume E has constant rank r; this already uses (2).
Then we may use induction on r. If r = 1, then uniqueness follows from (3). If
r > 1 we pullback using (2) to the projective bundle p : P → X and we see that
we may assume we have a short exact sequence 0 → E ′ → E → E ′′ → 0 with E ′

and E ′′ having lower rank. By induction hypothesis cA(E ′) and cA(E ′′) are uniquely
determined. Thus uniqueness for E by the axiom (1). □

Lemma 12.2.0FI7 In the situation above. Let X ∈ Ob(C). Let Ei be a finite collection
of locally free OX-modules of rank ri. There exists a morphism p : P → X in C
such that

https://stacks.math.columbia.edu/tag/0FI7
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(1) p∗ : A(X) → A(P ) is injective,
(2) each p∗Ei has a filtration whose successive quotients Li,1, . . . ,Li,ri are in-

vertible OP -modules.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by

taking π = idX . If not, then we can pick an i such that ri > 1 and consider the
projective bundle p : P → X associated to Ei. We have a short exact sequence

0 → F → p∗Ei → OP (1) → 0

of finite locally free OP -modules of ranks ri−1, ri, and 1. Observe that p∗ : A(X) →
A(P ) is injective by assumption. By the induction hypothesis applied to the finite
locally free OP -modules F and p∗Ei′ for i′ ̸= i, we find a morphism p′ : P ′ → P
with properties stated as in the lemma. Then the composition p ◦ p′ : P ′ → X does
the job. □

Lemma 12.3.0FI8 Let X ∈ Ob(C). Let E be a finite locally free OX-module. Let L be
an invertible OX-module. Then

cA
i (E ⊗ L) =

∑i

j=0

(
r − i+ j

j

)
cA

i−j(E) ∪ cA
1 (L)j

Proof. By the construction of cA
i we may assume E has constant rank r. Let

p : P → X and p′ : P ′ → X be the projective bundle associated to E and E ⊗ L.
Then there is an isomorphism g : P → P ′ such that g∗OP ′(1) = OP (1) ⊗ p∗L. See
Constructions, Lemma 20.1. Thus

g∗cA
1 (OP ′(1)) = cA

1 (OP (1)) + p∗cA
1 (L)

The desired equality follows formally from this and the definition of Chern classes
using equation (12.1.1). □

Proposition 12.4.0FI9 In the situation above assume A(X) is a Q-algebra for all
X ∈ Ob(C). Then there is a unique rule which assigns to every X ∈ Ob(C) a
“chern character”

chA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) chA is a ring map for all X ∈ Ob(C).
(2) If f : X ′ → X is a morphism of C, then f∗ ◦ chA = chA ◦ f∗.
(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have chA([L]) = exp(cA

1 (L)).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define the rank rA(E) ∈ A0(X). Namely, letX =

⋃
Xr be the decomposition

into open and closed subschemes such that E|Xr
has constant rank r. Since X is

quasi-compact, this decomposition is finite, say X = X0 ⨿ X1 ⨿ . . . ⨿ Xn. Then
A(X) = A(X0) ×A(X1) × . . .×A(Xn). Thus we can define rA(E) = (0, 1, . . . , n) ∈
A0(X).

Let Pp(c1, . . . , cp) be the polynomials constructed in Chow Homology, Example
43.6. Then we can define

chA(E) = rA(E) +
∑

i≥1
(1/i!)Pi(cA

1 (E), . . . , cA
i (E)) ∈

∏
i≥0

Ai(X)
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where ciA are the Chern classes of Proposition 12.1. It follows immediately that
we have property (2) and (3) of the lemma.

We still have to show the following three statements
(1) If 0 → E1 → E → E2 → 0 is a short exact sequence of finite locally free

OX -modules on X ∈ Ob(C), then chA(E) = chA(E1) + chA(E2).
(2) If E1 and E2 → 0 are finite locally free OX -modules on X ∈ Ob(C), then

chA(E1 ⊗ E2) = chA(E1)chA(E2).
Namely, the first will prove that chA factors through K0(Vect(X)) and the first and
the second will combined show that chA is a ring map.

To prove these statements we can reduce to the case where E1 and E2 have constant
ranks r1 and r2. In this case the equalities in A0(X) are immediate. To prove the
equalities in higher degrees, by Lemma 12.2 we may assume that E1 and E2 have
filtrations whose graded pieces are invertible modules L1,j , j = 1, . . . , r1 and L2,j ,
j = 1, . . . , r2. Using the multiplicativity of Chern classes we get

cA
i (E1) = si(cA

1 (L1,1), . . . , cA
1 (L1,r1))

where si is the ith elementary symmetric function as in Chow Homology, Example
43.6. Similarly for cA

i (E2). In case (1) we get

cA
i (E) = si(cA

1 (L1,1), . . . , cA
1 (L1,r1), cA

1 (L2,1), . . . , cA
1 (L2,r2))

and for case (2) we get

cA
i (E1 ⊗ E2) = si(cA

1 (L1,1) + cA
1 (L2,1), . . . , cA

1 (L1,r1) + cA
1 (L2,r2))

By the definition of the polynomials Pi we see that this means

Pi(cA
1 (E1), . . . , cA

i (E1)) =
∑

j=1,...,r1
cA

1 (L1,j)i

and similarly for E2. In case (1) we have also

Pi(cA
1 (E), . . . , cA

i (E)) =
∑

j=1,...,r1
cA

1 (L1,j)i +
∑

j=1,...,r2
cA

1 (L2,j)i

In case (2) we get accordingly

Pi(cA
1 (E1 ⊗ E2), . . . , cA

i (E1 ⊗ E2)) =
∑

j=1,...,r1

∑
j′=1,...,r2

(cA
1 (L1,j) + cA

1 (L2,j′))i

Thus the desired equalities are now consequences of elementary identities between
symmetric polynomials.

We omit the proof of uniqueness. □

Lemma 12.5.0FIA In the situation above let X ∈ Ob(C). If ψ2 is as in Chow Ho-
mology, Lemma 56.1 and cA and chA are as in Propositions 12.1 and 12.4 then we
have cA

i (ψ2(α)) = 2icA
i (α) and chA

i (ψ2(α)) = 2ichA
i (α) for all α ∈ K0(Vect(X)).

Proof. Observe that the map
∏

i≥0 A
i(X) →

∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the
formulas for additive generators of K0(Vect(X)). Thus we may assume α = [E ]
for some finite locally free OX -module E . By construction of the Chern classes of
E we immediately reduce to the case where E has constant rank r. In this case,
we can choose a projective smooth morphism p : P → X such that restriction
A∗(X) → A∗(P ) is injective and such that p∗E has a finite filtration whose graded
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parts are invertible OP -modules Lj , see Lemma 12.2. Then [p∗E ] =
∑

[Lj ] and
hence ψ2([p∗E ]) =

∑
[L⊗2

j ] by definition of ψ2. Setting xj = cA
1 (Lj) we have

cA(α) =
∏

(1 + xj) and cA(ψ2(α)) =
∏

(1 + 2xj)

in
∏
Ai(P ) and we have

chA(α) =
∑

exp(xj) and chA(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. □

13. Exterior powers and K-groups

0FIB We do the minimal amount of work to define the lambda operators. Let X be a
scheme. Recall that Vect(X) denotes the category of finite locally free OX -modules.
Moreover, recall that we have constructed a zerothK-groupK0(Vect(X)) associated
to this category in Derived Categories of Schemes, Section 38. Finally, K0(Vect(X))
is a ring, see Derived Categories of Schemes, Remark 38.6.

Lemma 13.1.0FIC Let X be a scheme. There are maps

λr : K0(Vect(X)) −→ K0(Vect(X))

which sends [E ] to [∧r(E)] when E is a finite locally free OX-module and which are
compatible with pullbacks.

Proof. Consider the ring R = K0(Vect(X))[[t]] where t is a variable. For a finite
locally free OX -module E we set

c(E) =
∑∞

i=0
[∧i(E)]ti

in R. We claim that given a short exact sequence

0 → E ′ → E → E ′′ → 0

of finite locally free OX -modules we have c(E) = c(E ′)c(E ′′). The claim implies that
c extends to a map

c : K0(Vect(X)) −→ R

which converts addition in K0(Vect(X)) to multiplication in R. Writing c(α) =∑
λi(α)ti we obtain the desired operators λi.

To see the claim, we consider the short exact sequence as a filtration on E with 2
steps. We obtain an induced filtration on ∧r(E) with r + 1 steps and subquotients

∧r(E ′),∧r−1(E ′) ⊗ E ′′,∧r−2(E ′) ⊗ ∧2(E ′′), . . . ∧r (E ′′)

Thus we see that [∧r(E)] is equal to∑r

i=0
[∧r−i(E ′)][∧i(E ′′)]

and the result follows easily from this and elementary algebra. □
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14. Weil cohomology theories, III

0FID Let k be a field. Let F be a field of characteristic zero. Suppose we are given the
following data

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functor H∗(−) from the category of smooth projective

schemes over k to the category of graded commutative F -algebras.
(D2’) For every smooth projective schemeX over k a homomorphism cH

1 : Pic(X) →
H2(X)(1) of abelian groups.

We will use the terminology, notation, and conventions regarding (D0) and (D1) as
discussed in Section 9. Given a smooth projective scheme X over k and an invertible
OX -module L the cohomology class cH

1 (L) ∈ H2(X)(1) of (D2’) is sometimes called
the first Chern class of L in cohomology.

Here is the list of axioms.
(A1) H∗ is compatible with finite coproducts
(A2) cH

1 is compatible with pullbacks
(A3) Let X be a smooth projective scheme over k. Let E be a locally free OX -

module of rank r ≥ 1. Consider the morphism p : P = P(E) → X. Then
the map⊕

i=0,...,r−1
H∗(X)(−i) −→ H∗(P ), (a0, . . . , ar−1) 7−→

∑
cH

1 (OP (1))i ∪ p∗(ai)

is an isomorphism of F -vector spaces.
(A4) Let i : Y → X be the inclusion of an effective Cartier divisor over k with

both X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a = 0
we have a ∪ cH

1 (OX(Y )) = 0.
(A5) H∗ is compatible with finite products
(A6) Let X be a nonempty smooth, projective scheme over k equidimensional of

dimension d. Then there exists an F -linear map λ : H2d(X)(d) → F such
that (id ⊗ λ)γ([∆]) = 1 in H∗(X).

(A7) If b : X ′ → X is the blowing up of a smooth center in a smooth projective
scheme X over k2, then b∗ : H∗(X) → H∗(X ′) is injective.

(A8) If X is a smooth projective scheme over k and k′ = Γ(X,OX), then the
map H0(Spec(k′)) → H0(X) is an isomorphism.

(A9) Let X be a nonempty smooth projective scheme over k equidimensional of
dimension d. Let i : Y → X be a nonempty effective Cartier divisor smooth
over k. For a ∈ H2d−2(X)(d− 1) we have λY (i∗(a)) = λX(a ∪ cH

1 (OX(Y ))
where λY and λX are as in axiom (A6) for X and Y .

Let us explain more precisely what we mean by each of these axioms. Axioms (A3),
(A4), and (A7) are clear as stated.

Ad (A1). This means that H∗(∅) = 0 and that (i∗, j∗) : H∗(X ⨿ Y ) → H∗(X) ×
H∗(Y ) is an isomorphism where i and j are the coprojections.

Ad (A2). This means that given a morphism f : X → Y of smooth projective
schemes over k and an invertible OY -module N we have f∗cH

1 (L) = cH
1 (f∗L).

2Then X′ is smooth and projective over k as well, see More on Morphisms, Lemma 17.3.
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Ad (A5). This means that H∗(Spec(k)) = F and that for X and Y smooth projec-
tive over k the map H∗(X) ⊗F H∗(Y ) → H∗(X × Y ), a⊗ b 7→ p∗(a) ∪ q∗(b) is an
isomorphism where p and q are the projections.
Ad (A6). Let X be a nonempty smooth projective scheme over k which is equidi-
mensional of dimension d. By Lemma 14.2 if we have axioms (A1) – (A4) we can
consider the class of the diagonal

γ([∆]) ∈ H2d(X ×X)(d) =
⊕

i
Hi(X) ⊗F H2d−i(X)(d)

where the tensor decomposition comes from axiom (A5). Given an F -linear map
λ : H2d(X)(d) → F we may also view λ as an F -linear map λ : H∗(X)(d) → F by
precomposing with the projection onto H2d(X)(d). Having said this axiom (A6)
makes sense.
Ad (A8). Let X be a smooth projective scheme over k. Then k′ = Γ(X,OX) is
a finite separable k-algebra (Varieties, Lemma 9.3) and hence Spec(k′) is smooth
and projective over k. Thus we may apply H∗ to Spec(k′) and axiom (A8) makes
sense.
Ad (A9). We will see in Remark 14.6 that if we have axioms (A1) – (A7) then the
map λ of axiom (A6) is unique.

Lemma 14.1.0FIE Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2),
(A3), and (A4). There is a unique rule which assigns to every smooth projective X
over k a ring homomorphism

chH : K0(Vect(X)) −→
∏

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(L) = exp(cH
1 (L)) for any invertible OX-

module L.

Proof. Immediate from Proposition 12.4 applied to the category of smooth pro-
jective schemes over k, the functor A : X 7→

⊕
i≥0 H

2i(X)(i), and the map cH
1 . □

Lemma 14.2.0FIF Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2),
(A3), and (A4). There is a unique rule which assigns to every smooth projective X
over k a graded ring homomorphism

γ : CH∗(X) −→
⊕

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(α) = γ(ch(α)) for α in K0(Vect(X)).

Proof. Recall that we have an isomorphism
K0(Vect(X)) ⊗ Q −→ CH∗(X) ⊗ Q, α 7−→ ch(α) ∩ [X]

see Chow Homology, Lemma 58.1. It is an isomorphism of rings by Chow Homology,
Remark 56.5. We define γ by the formula γ(α) = chH(α′) where chH is as in Lemma
14.1 and α′ ∈ K0(Vect(X)) is such that ch(α′) ∩ [X] = α in CH∗(X) ⊗ Q.
The construction α 7→ γ(α) is compatible with pullbacks because both chH and
taking Chern classes is compatible with pullbacks, see Lemma 14.1 and Chow Ho-
mology, Remark 59.9.
We still have to see that γ is graded. Let ψ2 : K0(Vect(X)) → K0(Vect(X)) be
the second Adams operator, see Chow Homology, Lemma 56.1. If α ∈ CHi(X) and
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α′ ∈ K0(Vect(X)) ⊗ Q is the unique element with ch(α′) ∩ [X] = α, then we have
seen in Chow Homology, Section 58 that ψ2(α′) = 2iα′. Hence we conclude that
chH(α′) ∈ H2i(X)(i) by Lemma 12.5 as desired. □

Lemma 14.3.0FIH Let b : X ′ → X be the blowing up of a smooth projective scheme
over k in a smooth closed subscheme Z ⊂ X. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class
of CZ/X in K0(Z). Assume every irreducible component of Z has codimension r in
X. Then there exists a cycle θ ∈ CHr−1(X ′) such that b![Z] = [E] · θ in CHr(X ′)
and π∗j

!(θ) = [Z] in CHr(Z).

Proof. The scheme X is smooth and projective over k and hence we have K0(X) =
K0(Vect(X)). See Derived Categories of Schemes, Lemmas 36.2 and 38.5. Let α ∈
K0(Vect(X)) be an element whose restriction to Z is CZ/X . By Chow Homology,
Lemma 56.3 there exists an element α∨ which restricts to C∨

Z/X . By the blow up
formula (Chow Homology, Lemma 59.11) we have

b![Z] = b!i∗[Z] = j∗res(b!)([Z]) = j∗(cr−1(F∨) ∩ π∗[Z]) = j∗(cr−1(F∨) ∩ [E])
where F is the kernel of the surjection π∗CZ/X → CE/X′ . Observe that b∗α∨ −
[OX′(E)] is an element ofK0(Vect(X ′)) which restricts to [π∗C∨

Z/X ]−[C∨
E/X′ ] = [F∨]

on E. Since capping with Chern classes commutes with j∗ we conclude that the
above is equal to

cr−1(b∗α∨ − [OX′(E)]) ∩ [E]
in the chow group of X ′. Hence we see that setting

θ = cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]
we get the first relation θ · [E] = b![Z] for example by Chow Homology, Lemma
62.2. For the second relation observe that
j!θ = j!(cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]) = cr−1(F∨) ∩ j![X ′] = cr−1(F∨) ∩ [E]

in the chow groups of E. To prove that π∗ of this is equal to [Z] it suffices to prove
that the degree of the codimension r − 1 cycle (−1)r−1cr−1(F) ∩ [E] on the fibres
of π is 1. This is a computation we omit. □

Lemma 14.4.0FII Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) –
(A4) and (A7). Let X be a smooth projective scheme over k. Let Z ⊂ X be a smooth
closed subscheme such that every irreducible component of Z has codimension r in
X. Assume the class of CZ/X in K0(Z) is the restriction of an element of K0(X).
If a ∈ H∗(X) and a|Z = 0 in H∗(Z), then γ([Z]) ∪ a = 0.

Proof. Let b : X ′ → X be the blowing up. By (A7) it suffices to show that
b∗(γ([Z]) ∪ a) = b∗γ([Z]) ∪ b∗a = 0

By Lemma 14.3 we have
b∗γ([Z]) = γ(b∗[Z]) = γ([E] · θ) = γ([E]) ∪ γ(θ)
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Hence because b∗a restricts to zero on E and since γ([E]) = cH
1 (OX′(E)) we get

what we want from (A4). □

Lemma 14.5.0FIJ Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (A) of Section 9 holds with

∫
X

= λ as in axiom (A6).

Proof. Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. We will show that the graded F -vector space H∗(X)(d)[2d]
is a left dual to H∗(X). This will prove what we want by Homology, Lemma 17.5.
We are going to use axiom (A5) which in particular says that

H∗(X ×X)(d) =
⊕

Hi(X) ⊗Hj(X)(d) =
⊕

Hi(X)(d) ⊗Hj(X)

Define a map
η : F −→ H∗(X ×X)(d)

by multiplying by γ([∆]) ∈ H2d(X ×X)(d). On the other hand, define a map

ϵ : H∗(X ×X)(d) −→ H∗(X)(d) λ−→ F

by first using pullback ∆∗ by the diagonal morphism ∆ : X → X × X and then
using the F -linear map λ : H2d(X)(d) → F of axiom (A6) precomposed by the
projection H∗(X)(d) → H2d(X)(d). In order to show that H∗(X)(d) is a left dual
to H∗(X) we have to show that the composition of the maps

η ⊗ 1 : H∗(X) −→ H∗(X ×X ×X)(d)
and

1 ⊗ ϵ : H∗(X ×X ×X)(d) −→ H∗(X)
is the identity. If a ∈ H∗(X) then we see that the composition maps a to

(1 ⊗ λ)(∆∗
23(q∗

12γ([∆]) ∪ q∗
3a)) = (1 ⊗ λ)(γ([∆]) ∪ p∗

2a)
where qi : X × X × X → X and qij : X × X × X → X × X are the projections,
∆23 : X×X → X×X×X is the diagonal, and pi : X×X → X are the projections.
The equality holds because ∆∗

23(q∗
12γ([∆]) = ∆∗

23γ([∆ ×X]) = γ([∆]) and because
∆∗

23q
∗
3a = p∗

2a. Since γ([∆]) ∪ p∗
1a = γ([∆]) ∪ p∗

2a (see below) the above simplifies
to

(1 ⊗ λ)(γ([∆]) ∪ p∗
1a) = a

by our choice of λ as desired. The second condition (ϵ ⊗ 1) ◦ (1 ⊗ η) = id of
Categories, Definition 43.5 is proved in exactly the same manner.
Note that p∗

1a and pr∗
2a restrict to the same cohomology class on ∆ ⊂ X × X.

Moreover we have C∆/X×X = Ω1
∆ which is the restriction of p∗

1Ω1
X . Hence Lemma

14.4 implies γ([∆]) ∪ p∗
1a = γ([∆]) ∪ p∗

2a and the proof is complete. □

Remark 14.6 (Uniqueness of trace maps).0FIK Assume given data (D0), (D1), and
(D2’) satisfying axioms (A1) – (A7). Let X be a smooth projective scheme over k
which is nonempty and equidimensional of dimension d. Combining what was said
in the proofs of Lemma 14.5 and Homology, Lemma 17.5 we see that

γ([∆]) ∈
⊕

i
Hi(X) ⊗H2d−i(X)(d)

defines a perfect duality between Hi(X) and H2d−i(X)(d) for all i. In particular,
the linear map

∫
X

= λ : H2d(X)(d) → F of axiom (A6) is unique! We will call the
linear map

∫
X

the trace map of X from now on.
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Lemma 14.7.0FIL Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (B) of Section 9 holds.

Proof. Axiom (B)(a) is immediate from axiom (A5). Let X and Y be nonempty
smooth projective schemes over k equidimensional of dimensions d and e. To see
that axiom (B)(b) holds, observe that the diagonal ∆X×Y of X × Y is the inter-
section product of the pullbacks of the diagonals ∆X of X and ∆Y of Y by the
projections p : X × Y × X × Y → X × X and q : X × Y × X × Y → Y × Y .
Compatibility of γ with intersection products then gives that

γ([∆X×Y ]) ∈ H2d+2e(X × Y ×X × Y )(d+ e)

is the cup product of the pullbacks of γ([∆X ]) and γ([∆Y ]) by p and q. Write

γ([∆X×Y ]) =
∑

ηX×Y,i with ηX×Y,i ∈ Hi(X × Y ) ⊗H2d+2e−i(X × Y )(d+ e)

and simiarly γ([∆X ]) =
∑
ηX,i and γ([∆Y ]) =

∑
ηY,i. The observation above

implies we have
ηX×Y,0 =

∑
i∈Z

p∗ηX,i ∪ q∗ηY,−i

(If our cohomology theory vanishes in negative degrees, which will be true in almost
all cases, then only the term for i = 0 contributes and ηX×Y,0 lies in H0(X) ⊗
H0(Y ) ⊗ H2d(X)(d) ⊗ H2e(Y )(e) as expected, but we don’t need this.) Since
λX : H2d(X)(d) → F and λY : H2e(Y )(e) → F send ηX,0 and ηY,0 to 1 in H∗(X)
and H∗(Y ), we see that λX ⊗λY sends ηX×Y,0 to 1 in H∗(X)⊗H∗(Y ) = H∗(X×Y )
and the proof is complete. □

Lemma 14.8.0FIM Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (C)(d) of Section 9 holds.

Proof. We have γ([Spec(k)]) = 1 ∈ H∗(Spec(k)) by construction. Since

H0(Spec(k)) = F, H0(Spec(k) × Spec(k)) = H0(Spec(k)) ⊗F H0(Spec(k))

the map
∫

Spec(k) = λ of axiom (A6) must send 1 to 1 because we have seen that∫
Spec(k)×Spec(k) =

∫
Spec(k)

∫
Spec(k) in Lemma 14.7. □

Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7). Then we
obtain data (D0), (D1), (D2), and (D3) of Section 9 satisfying axioms (A), (B) and
(C)(a), (C)(c), and (C)(d) of Section 9, see Lemmas 14.5, 14.7, and 14.8. Moreover,
we have the pushforwards f∗ : H∗(X) → H∗(Y ) as constructed in Section 9. The
only axiom of Section 9 which isn’t clear yet is axiom (C)(b).

Lemma 14.9.0FIN Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Let p : P → X be as in axiom (A3) with X nonempty equidimensional.
Then γ commutes with pushforward along p.

Proof. It suffices to prove this on generators for CH∗(P ). Thus it suffices to prove
this for a cycle class of the form ξi · p∗α where 0 ≤ i ≤ r − 1 and α ∈ CH∗(X).
Note that p∗(ξi · p∗α) = 0 if i < r − 1 and p∗(ξr−1 · p∗α) = α. On the other hand,
we have γ(ξi · p∗α) = ci ∪ p∗γ(α) and by the projection formula (Lemma 9.1) we
have

p∗γ(ξi · p∗α) = p∗(ci) ∪ γ(α)
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Thus it suffices to show that p∗c
i = 0 for i < r − 1 and p∗c

r−1 = 1. Equivalently,
it suffices to prove that λP : H2d+2r−2(P )(d+ r − 1) → F defined by the rules

λP (ci ∪ p∗(a)) =
{

0 if i < r − 1∫
X

(a) if i = r − 1
satisfies the condition of axiom (A5). This follows from the computation of the
class of the diagonal of P in Lemma 6.2. □

Lemma 14.10.0FVR Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). If k′/k is a Galois extension, then we have

∫
Spec(k′) 1 = [k′ : k].

Proof. We observe that
Spec(k′) × Spec(k′) =

∐
σ∈Gal(k′/k)

(Spec(σ) × id)−1∆

as cycles on Spec(k′) × Spec(k′). Our construction of γ always sends [X] to 1 in
H0(X). Thus 1 ⊗ 1 = 1 =

∑
(Spec(σ) × id)∗γ([∆]). Denote λ : H0(Spec(k′)) → F

the map from axiom (A6), in other words (id ⊗ λ)(γ(∆)) = 1 in H0(Spec(k′)). We
obtain

λ(1)1 = (id ⊗ λ)(1 ⊗ 1)

= (id ⊗ λ)(
∑

(Spec(σ) × id)∗γ([∆]))

=
∑

(Spec(σ) × id)∗((id ⊗ λ)(γ([∆]))

=
∑

(Spec(σ) × id)∗(1)

= [k′ : k]

Since λ is another name for
∫

Spec(k′) (Remark 14.6) the proof is complete. □

Lemma 14.11.0FIP Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). In order to show that γ commutes with pushforward it suffices to show that
i∗(1) = γ([Z]) if i : Z → X is a closed immersion of nonempty smooth projective
equidimensional schemes over k.

Proof. We will use without further mention that we’ve constructed our cycle class
map γ in Lemma 14.2 compatible with intersection products and pullbacks and
that we’ve already shown axioms (A), (B), (C)(a), (C)(c), and (C)(d) of Section 9,
see Lemma 14.5, Remark 14.6, and Lemmas 14.7 and 14.8. In particular, we may
use (for example) Lemma 9.1 to see that pushforward on H∗ is compatible with
composition and satisfies the projection formula.
Let f : X → Y be a morphism of nonempty equidimensional smooth projective
schemes over k. We are trying to show f∗γ(α) = γ(f∗α) for any cycle class α
on X. We can write α as a Q-linear combination of products of Chern classes of
locally free OX -modules (Chow Homology, Lemma 58.1). Thus we may assume
α is a product of Chern classes of finite locally free OX -modules E1, . . . , Er. Pick
p : P → X as in the splitting principle (Chow Homology, Lemma 43.1). By Chow
Homology, Remark 43.2 we see that p is a composition of projective space bundles
and that α = p∗(ξ1 ∩ . . . ∩ ξd ∩ ·p∗α) where ξi are first Chern classes of invertible
modules. By Lemma 14.9 we know that p∗ commutes with cycle classes. Thus it
suffices to prove the property for the composition f ◦ p. Since p∗E1, . . . , p

∗Er have
filtrations whose successive quotients are invertible modules, this reduces us to the
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case where α is of the form ξ1 ∩ . . . ∩ ξt ∩ [X] for some first Chern classes ξi of
invertible modules Li.

Assume α = c1(L1) ∩ . . .∩ c1(Lt) ∩ [X] for some invertible modules Li on X. Let L
be an ample invertible OX -module. For n ≫ 0 the invertible OX -modules L⊗n and
L1 ⊗ L⊗n are both very ample on X over k, see Morphisms, Lemma 39.8. Since
c1(L1) = c1(L1 ⊗L⊗n)−c1(L⊗n) this reduces us to the case where L1 is very ample.
Repeating this with Li for i = 2, . . . , t we reduce to the case where Li is very ample
on X over k for all i = 1, . . . , t.

Assume k is infinite and α = c1(L1)∩. . .∩c1(Lt)∩[X] for some very ample invertible
modules Li on X over k. By Bertini in the form of Varieties, Lemma 47.3 we can
successively find regular sections si of Li such that the schemes Z(s1) ∩ . . .∩Z(si)
are smooth over k and of codimension i in X. By the construction of capping with
the first class of an invertible module (going back to Chow Homology, Definition
24.1), this reduces us to the case where α = [Z] for some nonempty smooth closed
subscheme Z ⊂ X which is equidimensional.

Assume α = [Z] where Z ⊂ X is a smooth closed subscheme. Choose a closed
embedding X → Pn. We can factor f as

X → Y × Pn → Y

Since we know the result for the second morphism by Lemma 14.9 it suffices to
prove the result when α = [Z] where i : Z → X is a closed immersion and f is a
closed immersion. Then j = f ◦ i is a closed embedding too. Using the hypothesis
for i and j we win.

We still have to prove the lemma in case k is finite. We urge the reader to skip
the rest of the proof. Everything we said above continues to work, except that we
do not know we can choose the sections si cutting out our Z over k as k is finite.
However, we do know that we can find si over the algebraic closure k of k (by the
same lemma). This means that we can find a finite extension k′/k such that our
sections si are defined over k′. Denote π : Xk′ → X the projection. The arguments
above shows that we get the desired conclusion (from the assumption in the lemma)
for the cycle π∗α and the morphism f ◦ π : Xk′ → Y . We have π∗π

∗α = [k′ : k]α,
see Chow Homology, Lemma 15.2. On the other hand, we have

π∗γ(π∗α) = π∗π
∗γ(α) = γ(α)π∗1

by the projection formula for our cohomology theory. Observe that π is a projection
(!) and hence we have π∗(1) =

∫
Spec(k′)(1)1 by Lemma 9.2. Thus to finish the proof

in the finite field case, it suffices to prove that
∫

Spec(k′)(1) = [k′ : k] which we do in
Lemma 14.10. □

In the lemmas below we use the Grassmannians defined and constructed in Con-
structions, Section 22.

Lemma 14.12.0FIQ Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Given integers 0 < l < n and a nonempty equidimensional smooth projec-
tive scheme X over k consider the projection morphism p : X×G(l, n) → X. Then
γ commutes with pushforward along p.
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Proof. If l = 1 or l = n − 1 then p is a projective bundle and the result follows
from Lemma 14.9. In general there exists a morphism

h : Y → X × G(l, n)
such that both h and p ◦ h are compositions of projective space bundles. Namely,
denote G(1, 2, . . . , l;n) the partial flag variety. Then the morphism

G(1, 2, . . . , l;n) → G(l, n)
is a compostion of projective space bundles and similarly the structure morphism
G(1, 2, . . . , l;n) → Spec(k) is of this form. Thus we may set Y = X×G(1, 2, . . . , l;n).
Since every cycle on X × G(l, n) is the pushforward of a cycle on Y , the result for
Y → X and the result for Y → X × G(l, n) imply the result for p. □

Lemma 14.13.0FIR Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). In order to show that γ commutes with pushforward it suffices to show that
i∗(1) = γ([Z]) if i : Z → X is a closed immersion of nonempty smooth projective
equidimensional schemes over k such that the class of CZ/X in K0(Z) is the pullback
of a class in K0(X).

Proof. By Lemma 14.11 it suffices to show that i∗(1) = γ([Z]) if i : Z → X is a
closed immersion of nonempty smooth projective equidimensional schemes over k.
Say Z has codimension r in X. Let L be a sufficiently ample invertible module on
X. Choose n > 0 and a surjection

O⊕n
Z → CZ/X ⊗ L|Z

This gives a morphism g : Z → G(n − r, n) to the Grassmannian over k, see
Constructions, Section 22. Consider the composition

Z → X × G(n− r, n) → X

Pushforward along the second morphism is compatible with classes of cycles by
Lemma 14.12. The conormal sheaf C of the closed immersion Z → X × G(n− r, n)
sits in a short exact sequence

0 → CZ/X → C → g∗ΩG(n−r,n) → 0
See More on Morphisms, Lemma 11.13. Since CZ/X ⊗ L|Z is the pull back of a
finite locally free sheaf on G(n− r, n) we conclude that the class of C in K0(Z) is
the pullback of a class in K0(X × G(n − r, n)). Hence we have the property for
Z → X × G(n− r, n) and we conclude. □

Lemma 14.14.0FVS Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). If k′′/k′/k are finite separable field extensions, then H0(Spec(k′)) →
H0(Spec(k′′)) is injective.

Proof. We may replace k′′ by its normal closure over k which is Galois over k, see
Fields, Lemma 21.5. Then k′′ is Galois over k′ as well, see Fields, Lemma 21.4. We
deduce we have an isomorphism

k′ ⊗k k
′′ −→

∏
σ∈Gal(k′′/k′)

k′′, η ⊗ ζ 7−→ (ησ(ζ))σ

This produces an isomorphism
∐

σ Spec(k′′) → Spec(k′) × Spec(k′′) which on co-
homology produces the isomorphism

H∗(Spec(k′))⊗FH
∗(Spec(k′′)) →

∏
σ
H∗(Spec(k′′)), a′⊗a′′ 7−→ (π∗a′∪Spec(σ)∗a′′)σ
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where π : Spec(k′′) → Spec(k′) is the morphism corresponding to the inclusion of
k′ in k′′. We conclude the lemma is true by taking a′′ = 1. □

Lemma 14.15.0FIS Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A8). Let b : X ′ → X be a blowing up of a smooth projective scheme X over
k which is nonempty equidimensional of dimension d in a nonwhere dense smooth
center Z. Then b∗(1) = 1.

Proof. We may replace X by a connected component of X (some details omitted).
Thus we may assume X is connected and hence irreducible. Set k′ = Γ(X,OX) =
Γ(X ′,OX′); we omit the proof of the equality. Choose a closed point x′ ∈ X ′ which
isn’t contained in the exceptional divisor and whose residue field k′′ is separable
over k; this is possible by Varieties, Lemma 25.6. Denote x ∈ X the image (whose
residue field is equal to k′′ as well of course). Consider the diagram

x′ ×X ′ //

��

X ′ ×X ′

��
x×X // X ×X

The class of the diagonal ∆ = ∆X pulls back to the class of the “diagonal point”
δx : x → x×X and similarly for the class of the diagonal ∆′. On the other hand,
the diagonal point δx pulls back to the diagonal point δx′ by the left vertical arrow.
Write γ([∆]) =

∑
ηi with ηi ∈ Hi(X) ⊗ H2d−i(X)(d) and γ([∆′]) =

∑
η′

i with
η′

i ∈ Hi(X ′) ⊗ H2d−i(X ′)(d). The arguments above show that η0 and η′
0 map to

the same class in
H0(x′) ⊗F H2d(X ′)(d)

We have H0(Spec(k′)) = H0(X) = H0(X ′) by axiom (A8). By Lemma 14.14 this
common value maps injectively into H0(x′). We conclude that η0 maps to η′

0 by
the map

H0(X) ⊗F H2d(X)(d) −→ H0(X ′) ⊗F H2d(X ′)(d)
This means that

∫
X

is equal to
∫

X′ composed with the pullback map. This proves
the lemma. □

Lemma 14.16.0FIT Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A8). Then the cycle class map γ commutes with pushforward.

Proof. Let i : Z → X be as in Lemma 14.13. Consider the diagram

E
j
//

π

��

X ′

b

��
Z

i // X

Let θ ∈ CHr−1(X ′) be as in Lemma 14.3. Then π∗j
!θ = [Z] in CH∗(Z) implies

that π∗γ(j!θ) = 1 by Lemma 14.9 because π is a projective space bundle. Hence
we see that

i∗(1) = i∗(π∗(γ(j!θ))) = b∗j∗(j∗γ(θ)) = b∗(j∗(1) ∪ γ(θ))
We have j∗(1) = γ([E]) by (A9). Thus this is equal to
b∗(γ([E]) ∪ γ(θ)) = b∗(γ([E] · θ)) = b∗(γ(b∗[Z])) = b∗b

∗γ([Z]) = b∗(1) ∪ γ([Z])
Since b∗(1) = 1 by Lemma 14.15 the proof is complete. □

https://stacks.math.columbia.edu/tag/0FIS
https://stacks.math.columbia.edu/tag/0FIT
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Proposition 14.17.0FIU Assume given data (D0), (D1), and (D2’) satisfying axioms
(A1) – (A8). Then we have a Weil cohomology theory.

Proof. We have axioms (A), (B) and (C)(a), (C)(c), and (C)(d) of Section 9 by
Lemmas 14.5, 14.7, and 14.8. We have axiom (C)(b) by Lemma 14.16. Finally, the
additional condition of Definition 11.4 holds because it is the same as our axiom
(A8). □

The following lemma is sometimes useful to show that we get a Weil cohomology
theory over a nonclosed field by reducing to a closed one.

Lemma 14.18.0FVT Let k′/k be an extension of fields. Let F ′/F be an extension of
fields of characteristic 0. Assume given

(1) data (D0), (D1), (D2’) for k and F denoted F (1), H∗, cH
1 ,

(2) data (D0), (D1), (D2’) for k′ and F ′ denoted F ′(1), (H ′)∗, cH′

1 , and
(3) an isomorphism F (1) ⊗F F ′ → F ′(1), functorial isomorphisms H∗(X) ⊗F

F ′ → (H ′)∗(Xk′) on the category of smooth projective schemes X over k
such that the diagrams

Pic(X)
cH

1

//

��

H2(X)(1)

��
Pic(Xk′)

cH′
1 // (H ′)2(Xk′)(1)

commute.
In this case, if F ′(1), (H ′)∗, cH′

1 satisfy axioms (A1) – (A9), then the same is true
for F (1), H∗, cH

1 .

Proof. We go by the axioms one by one.

Axiom (A1). We have to show H∗(∅) = 0 and that (i∗, j∗) : H∗(X ⨿ Y ) →
H∗(X) × H∗(Y ) is an isomorphism where i and j are the coprojections. By the
functorial nature of the isomorphisms H∗(X)⊗F F

′ → (H ′)∗(Xk′) this follows from
linear algebra: if φ : V → W is an F -linear map of F -vector spaces, then φ is an
isomorphism if and only if φF ′ : V ⊗F F ′ → W ⊗F F ′ is an isomorphism.

Axiom (A2). This means that given a morphism f : X → Y of smooth projective
schemes over k and an invertible OY -module N we have f∗cH

1 (L) = cH
1 (f∗L). This

is immediately clear from the corresponding property for cH′

1 , the commutative
diagrams in the lemma, and the fact that the canonical map V → V ⊗F F ′ is
injective for any F -vector space V .

Axiom (A3). This follows from the principle stated in the proof of axiom (A1) and
compatibility of cH

1 and cH′

1 .

Axiom (A4). Let i : Y → X be the inclusion of an effective Cartier divisor over
k with both X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a =
0 we have to show a ∪ cH

1 (OX(Y )) = 0. Denote a′ ∈ (H ′)∗(Xk′) the image of
a. The assumption implies that (i′)∗a′ = 0 where i′ : Yk′ → Xk′ is the base
change of i. Hence we get a′ ∪ cH′

1 (OXk′ (Yk′)) = 0 by the axiom for (H ′)∗. Since
a′ ∪ cH′

1 (OXk′ (Yk′)) is the image of a ∪ cH
1 (OX(Y )) we conclude by the princple

stated in the proof of axiom (A2).

https://stacks.math.columbia.edu/tag/0FIU
https://stacks.math.columbia.edu/tag/0FVT
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Axiom (A5). This means that H∗(Spec(k)) = F and that for X and Y smooth
projective over k the map H∗(X)⊗F H

∗(Y ) → H∗(X×Y ), a⊗ b 7→ p∗(a)∪ q∗(b) is
an isomorphism where p and q are the projections. This follows from the principle
stated in the proof of axiom (A1).
We interrupt the flow of the arguments to show that for every smooth projective
scheme X over k the diagram

CH∗(X)
γ
//

g∗

��

⊕
H2i(X)(i)

��
CH∗(Xk′) γ′

//⊕(H ′)2i(Xk′)(i)

commutes. Observe that we have γ as we know axioms (A1) – (A4) already; see
Lemma 14.2. Also, the left vertical arrow is the one discussed in Chow Homol-
ogy, Section 67 for the morphism of base schemes g : Spec(k′) → Spec(k). More
precisely, it is the map given in Chow Homology, Lemma 67.4. Pick α ∈ CH∗(X).
Write α = ch(β)∩[X] in CH∗(X)⊗Q for some β ∈ K0(Vect(X))⊗Q so that γ(α) =
chH(β); this is our construction of γ. Since the map of Chow Homology, Lemma
67.4 is compatible with capping with Chern classes by Chow Homology, Lemma 67.8
we see that g∗α = ch((Xk′ → X)∗β)∩ [Xk′ ]. Hence γ′(g∗α) = chH′((Xk′ → X)∗β).
Thus commutativity of the diagram will hold if for any locally free OX -module E of
rank r and 0 ≤ i ≤ r the element cH

i (E) of H2i(X)(i) maps to the element cH′

i (Ek′)
in (H ′)2i(Xk′)(i). Because we have the projective space bundle formula for both
X and X ′ we may replace X by a projective space bundle over X finitely many
times to show this. Thus we may assume E has a filtration whose graded pieces are
invertible OX -modules L1, . . . ,Lr. See Chow Homology, Lemma 43.1 and Remark
43.2. Then cH

i (E is the ith elementary symmetric polynomial in cH
1 (L1), . . . , cH

1 (Lr)
and we conclude by our assumption that we have agreement for first Chern classes.
Axiom (A6). Suppose given F -vector spaces V , W , an element v ∈ V , and a tensor
ξ ∈ V ⊗F W . Denote V ′ = V ⊗F F

′, W ′ = W ⊗F F
′ and v′, ξ′ the images of v, ξ in

V ′, V ′ ⊗F ′W ′. The linear algebra principle we will use in the proof of axiom (A6) is
the following: there exists an F -linear map λ : W → F such that (1⊗λ)ξ = v if and
only if there exists an F ′-linear map λ′ : W ⊗F F ′ → F ′ such that (1 ⊗ λ′)ξ′ = v′.
Let X be a nonempty equidimensional smooth projective scheme over k of dimen-
sion d. Denote γ = γ([∆]) in H2d(X×X)(d) (unadorned fibre products will be over
k). Observe/recall that this makes sense as we know axioms (A1) – (A4) already;
see Lemma 14.2. We may decompose

γ =
∑

γi, γi ∈ Hi(X) ⊗F H2d−i(X)(d)

in the Künneth decomposition. Similarly, denote γ′ = γ([∆′]) =
∑
γ′

i in (H ′)2d(Xk′×k′

Xk′)(d). By the linear algebra princple mentioned above, it suffices to show that
γ0 maps to γ′

0 in (H ′)0(X) ⊗F ′ (H ′)2d(X ′)(d). By the compatibility of Künneth
decompositions we see that it suffice to show that γ maps to γ′ in

(H ′)2d(Xk′ ×k′ Xk′)(d) = (H ′)2d((X ×X)k′)(d)
Since ∆k′ = ∆′ this follows from the discussion above.
Axiom (A7). This follows from the linear algebra fact: a linear map V → W of
F -vector spaces is injective if and only if V ⊗F F ′ → W ⊗F F ′ is injective.
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Axiom (A8). Follows from the linear algebra fact used in the proof of axiom (A1).
Axiom (A9). Let X be a nonempty smooth projective scheme over k equidimen-
sional of dimension d. Let i : Y → X be a nonempty effective Cartier divisor
smooth over k. Let λY and λX be as in axiom (A6) for X and Y . We have to show:
for a ∈ H2d−2(X)(d − 1) we have λY (i∗(a)) = λX(a ∪ cH

1 (OX(Y )). By Remark
14.6 we know that λX : H2d(X)(d) → F and λY : H2d−2(Y )(d − 1) are uniquely
determined by the requirement in axiom (A6). Having said this, it follows from our
proof of axiom (A6) for H∗ above that λX ⊗ idF ′ corresponds to λXk′ via the given
identification H2d(X)(d) ⊗F F

′ = H2d(Xk′)(d). Thus the fact that we know axiom
(A9) for F ′(1), (H ′)∗, cH′

1 implies the axiom for F (1), H∗, cH
1 by a diagram chase.

This completes the proof of the lemma. □
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