The Stacks project

Lemma 6.21.3. Let $f : X \to Y$ be a continuous map. There exists a functor $f_ p : \textit{PSh}(Y) \to \textit{PSh}(X)$ which is left adjoint to $f_*$. For a presheaf $\mathcal{G}$ it is determined by the rule

\[ f_ p\mathcal{G}(U) = \mathop{\mathrm{colim}}\nolimits _{f(U) \subset V} \mathcal{G}(V) \]

where the colimit is over the collection of open neighbourhoods $V$ of $f(U)$ in $Y$. The colimits are over directed partially ordered sets. (The restriction mappings of $f_ p\mathcal{G}$ are explained in the proof.)

Proof. The colimit is over the partially ordered set consisting of open subsets $V \subset Y$ which contain $f(U)$ with ordering by reverse inclusion. This is a directed partially ordered set, since if $V, V'$ are in it then so is $V \cap V'$. Furthermore, if $U_1 \subset U_2$, then every open neighbourhood of $f(U_2)$ is an open neighbourhood of $f(U_1)$. Hence the system defining $f_ p\mathcal{G}(U_2)$ is a subsystem of the one defining $f_ p\mathcal{G}(U_1)$ and we obtain a restriction map (for example by applying the generalities in Categories, Lemma 4.14.8).

Note that the construction of the colimit is clearly functorial in $\mathcal{G}$, and similarly for the restriction mappings. Hence we have defined $f_ p$ as a functor.

A small useful remark is that there exists a canonical map $\mathcal{G}(U) \to f_ p\mathcal{G}(f^{-1}(U))$, because the system of open neighbourhoods of $f(f^{-1}(U))$ contains the element $U$. This is compatible with restriction mappings. In other words, there is a canonical map $i_\mathcal {G} : \mathcal{G} \to f_* f_ p \mathcal{G}$.

Let $\mathcal{F}$ be a presheaf of sets on $X$. Suppose that $\psi : f_ p\mathcal{G} \to \mathcal{F}$ is a map of presheaves of sets. The corresponding map $\mathcal{G} \to f_*\mathcal{F}$ is the map $f_*\psi \circ i_\mathcal {G} : \mathcal{G} \to f_* f_ p \mathcal{G} \to f_* \mathcal{F}$.

Another small useful remark is that there exists a canonical map $c_\mathcal {F} : f_ p f_* \mathcal{F} \to \mathcal{F}$. Namely, let $U \subset X$ open. For every open neighbourhood $V \supset f(U)$ in $Y$ there exists a map $f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))\to \mathcal{F}(U)$, namely the restriction map on $\mathcal{F}$. And this is compatible with the restriction mappings between values of $\mathcal{F}$ on $f^{-1}$ of varying opens containing $f(U)$. Thus we obtain a canonical map $f_ p f_* \mathcal{F}(U) \to \mathcal{F}(U)$. Another trivial verification shows that these maps are compatible with restriction maps and define a map $c_\mathcal {F}$ of presheaves of sets.

Suppose that $\varphi : \mathcal{G} \to f_*\mathcal{F}$ is a map of presheaves of sets. Consider $f_ p\varphi : f_ p \mathcal{G} \to f_ p f_* \mathcal{F}$. Postcomposing with $c_\mathcal {F}$ gives the desired map $c_\mathcal {F} \circ f_ p\varphi : f_ p\mathcal{G} \to \mathcal{F}$. We omit the verification that this construction is inverse to the construction in the other direction given above. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 6.21: Continuous maps and sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 008F. Beware of the difference between the letter 'O' and the digit '0'.