The Stacks project

Lemma 26.19.2. Let $f : X \to S$ be a morphism of schemes. The following are equivalent

  1. $f : X \to S$ is quasi-compact,

  2. the inverse image of every affine open is quasi-compact, and

  3. there exists some affine open covering $S = \bigcup _{i \in I} U_ i$ such that $f^{-1}(U_ i)$ is quasi-compact for all $i$.

Proof. Suppose we are given a covering $S = \bigcup _{i \in I} U_ i$ as in (3). First, let $U \subset S$ be any affine open. For any $u \in U$ we can find an index $i(u) \in I$ such that $u \in U_{i(u)}$. As standard opens form a basis for the topology on $U_{i(u)}$ we can find $W_ u \subset U \cap U_{i(u)}$ which is standard open in $U_{i(u)}$. By compactness we can find finitely many points $u_1, \ldots , u_ n \in U$ such that $U = \bigcup _{j = 1}^ n W_{u_ j}$. For each $j$ write $f^{-1}U_{i(u_ j)} = \bigcup _{k \in K_ j} V_{jk}$ as a finite union of affine opens. Since $W_{u_ j} \subset U_{i(u_ j)}$ is a standard open we see that $f^{-1}(W_{u_ j}) \cap V_{jk}$ is a standard open of $V_{jk}$, see Algebra, Lemma 10.17.4. Hence $f^{-1}(W_{u_ j}) \cap V_{jk}$ is affine, and so $f^{-1}(W_{u_ j})$ is a finite union of affines. This proves that the inverse image of any affine open is a finite union of affine opens.

Next, assume that the inverse image of every affine open is a finite union of affine opens. Let $K \subset S$ be any quasi-compact open. Since $S$ has a basis of the topology consisting of affine opens we see that $K$ is a finite union of affine opens. Hence the inverse image of $K$ is a finite union of affine opens. Hence $f$ is quasi-compact.

Finally, assume that $f$ is quasi-compact. In this case the argument of the previous paragraph shows that the inverse image of any affine is a finite union of affine opens. $\square$


Comments (1)

Comment #667 by Anfang Zhou on

Typo. It should be "a covering " in the first line of the proof.

There are also:

  • 8 comment(s) on Section 26.19: Quasi-compact morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01K4. Beware of the difference between the letter 'O' and the digit '0'.