Exercise 111.24.4. Let k be an algebraically closed field. Compute the image in \mathop{\mathrm{Spec}}(k[x, y]) of the following maps:
\mathop{\mathrm{Spec}}(k[x, yx^{-1}]) \to \mathop{\mathrm{Spec}}(k[x, y]), where k[x, y] \subset k[x, yx^{-1}] \subset k[x, y, x^{-1}]. (Hint: To avoid confusion, give the element yx^{-1} another name.)
\mathop{\mathrm{Spec}}(k[x, y, a, b]/(ax-by-1))\to \mathop{\mathrm{Spec}}(k[x, y]).
\mathop{\mathrm{Spec}}(k[t, 1/(t-1)]) \to \mathop{\mathrm{Spec}}(k[x, y]), induced by x \mapsto t^2, and y \mapsto t^3.
k = {\mathbf C} (complex numbers), \mathop{\mathrm{Spec}}(k[s, t]/(s^3 + t^3-1)) \to \mathop{\mathrm{Spec}}(k[x, y]), where x\mapsto s^2, y \mapsto t^2.
Comments (0)