## Tag `03DJ`

Chapter 18: Modules on Sites > Section 18.19: Localization of ringed sites

Lemma 18.19.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \mathop{\rm Ob}\nolimits(\mathcal{C})$. The functor $j_{U!} : \textit{Mod}(\mathcal{O}_U) \to \textit{Mod}(\mathcal{O})$ is exact.

Proof.Since $j_{U!}$ is a left adjoint to $j_U^*$ we see that it is right exact (see Categories, Lemma 4.24.5 and Homology, Section 12.7). Hence it suffices to show that if $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective map of $\mathcal{O}_U$-modules, then $j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2$ is injective. The map on sections of presheaves over an object $V$ (as in Lemma 18.19.2) is the map $$ \bigoplus\nolimits_{\varphi \in \mathop{\rm Mor}\nolimits_\mathcal{C}(V, U)} \mathcal{G}_1(V \xrightarrow{\varphi} U) \longrightarrow \bigoplus\nolimits_{\varphi \in \mathop{\rm Mor}\nolimits_\mathcal{C}(V, U)} \mathcal{G}_2(V \xrightarrow{\varphi} U) $$ which is injective by assumption. Since sheafification is exact by Lemma 18.11.2 we conclude $j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2$ is injective and we win. $\square$

The code snippet corresponding to this tag is a part of the file `sites-modules.tex` and is located in lines 2137–2144 (see updates for more information).

```
\begin{lemma}
\label{lemma-extension-by-zero-exact}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $U \in \Ob(\mathcal{C})$.
The functor
$j_{U!} : \textit{Mod}(\mathcal{O}_U) \to \textit{Mod}(\mathcal{O})$
is exact.
\end{lemma}
\begin{proof}
Since $j_{U!}$ is a left adjoint to $j_U^*$ we see that it is right exact
(see
Categories, Lemma \ref{categories-lemma-exact-adjoint}
and
Homology, Section \ref{homology-section-functors}).
Hence it suffices to show that if $\mathcal{G}_1 \to \mathcal{G}_2$
is an injective map of $\mathcal{O}_U$-modules, then
$j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2$ is injective.
The map on sections of presheaves over an object $V$
(as in Lemma \ref{lemma-extension-by-zero}) is the map
$$
\bigoplus\nolimits_{\varphi \in \Mor_\mathcal{C}(V, U)}
\mathcal{G}_1(V \xrightarrow{\varphi} U)
\longrightarrow
\bigoplus\nolimits_{\varphi \in \Mor_\mathcal{C}(V, U)}
\mathcal{G}_2(V \xrightarrow{\varphi} U)
$$
which is injective by assumption. Since sheafification is exact by
Lemma \ref{lemma-sheafification-exact}
we conclude $j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2$ is injective and
we win.
\end{proof}
```

## Comments (0)

## Add a comment on tag `03DJ`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 2 comments on Section 18.19: Modules on Sites.