# The Stacks Project

## Tag 04IY

Lemma 18.19.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $f : V \to U$ be a morphism of $\mathcal{C}$. Then there exists a commutative diagram $$\xymatrix{ (\mathop{\textit{Sh}}\nolimits(\mathcal{C}/V), \mathcal{O}_V) \ar[rd]_{(j_V, j_V^\sharp)} \ar[rr]_{(j, j^\sharp)} & & (\mathop{\textit{Sh}}\nolimits(\mathcal{C}/U), \mathcal{O}_U) \ar[ld]^{(j_U, j_U^\sharp)} \\ & (\mathop{\textit{Sh}}\nolimits(\mathcal{C}), \mathcal{O}) & }$$ of ringed topoi. Here $(j, j^\sharp)$ is the localization morphism associated to the object $V/U$ of the ringed site $(\mathcal{C}/V, \mathcal{O}_V)$.

Proof. The only thing to check is that $j_V^\sharp = j^\sharp \circ j^{-1}(j_U^\sharp)$, since everything else follows directly from Sites, Lemma 7.24.7 and Sites, Equation (7.24.7.1). We omit the verification of the equality. $\square$

The code snippet corresponding to this tag is a part of the file sites-modules.tex and is located in lines 2170–2187 (see updates for more information).

\begin{lemma}
\label{lemma-relocalize}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $f : V \to U$ be a morphism of $\mathcal{C}$.
Then there exists a commutative diagram
$$\xymatrix{ (\Sh(\mathcal{C}/V), \mathcal{O}_V) \ar[rd]_{(j_V, j_V^\sharp)} \ar[rr]_{(j, j^\sharp)} & & (\Sh(\mathcal{C}/U), \mathcal{O}_U) \ar[ld]^{(j_U, j_U^\sharp)} \\ & (\Sh(\mathcal{C}), \mathcal{O}) & }$$
of ringed topoi. Here $(j, j^\sharp)$ is the localization morphism
associated to the object $V/U$ of the ringed site
$(\mathcal{C}/V, \mathcal{O}_V)$.
\end{lemma}

\begin{proof}
The only thing to check is that
$j_V^\sharp = j^\sharp \circ j^{-1}(j_U^\sharp)$,
since everything else follows directly from
Sites, Lemma \ref{sites-lemma-relocalize} and
Sites, Equation (\ref{sites-equation-relocalize}).
We omit the verification of the equality.
\end{proof}

There are no comments yet for this tag.

There are also 2 comments on Section 18.19: Modules on Sites.

## Add a comment on tag 04IY

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).