Proposition 15.89.19. Let $R$ be a Noetherian ring. Let $f \in R$ be an element. Let $R^\wedge $ be the $f$-adic completion of $R$. Then the functor $M \mapsto (M^\wedge , M_ f, \text{can})$ defines an equivalence
Proof. The ring map $R \to R^\wedge $ is flat by Algebra, Lemma 10.97.2. It is clear that $R/fR = R^\wedge /fR^\wedge $. By Algebra, Lemma 10.97.1 the completion of a finite $R$-module $M$ is equal to $M \otimes _ R R^\wedge $. Hence the displayed functor of the proposition is equal to the functor occurring in Theorem 15.89.18. In particular it is fully faithful. Let $(M_1, M_2, \psi )$ be an object of the right hand side. By Theorem 15.89.18 there exists an $R$-module $M$ such that $M_1 = M \otimes _ R R^\wedge $ and $M_2 = M_ f$. As $R \to R^\wedge \times R_ f$ is faithfully flat we conclude from Algebra, Lemma 10.23.2 that $M$ is finitely generated, i.e., $M \in \text{Mod}^{fg}_ R$. This proves the proposition. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: