The Stacks project

Lemma 10.128.9. Let $R$, $S$, $S'$ be local rings and let $R \to S \to S'$ be local ring homomorphisms. Let $M$ be an $S'$-module. Let $\mathfrak m \subset R$ be the maximal ideal. Assume

  1. $R \to S'$ is essentially of finite presentation,

  2. $R \to S$ is essentially of finite type,

  3. $M$ is of finite presentation over $S'$,

  4. $M$ is not zero,

  5. $M/\mathfrak mM$ is a flat $S/\mathfrak mS$-module, and

  6. $M$ is a flat $R$-module.

Then $S$ is essentially of finite presentation and flat over $R$ and $M$ is a flat $S$-module.

Proof. As $S$ is essentially of finite presentation over $R$ we can write $S = C_{\overline{\mathfrak q}}$ for some finite type $R$-algebra $C$. Write $C = R[x_1, \ldots , x_ n]/I$. Denote $\mathfrak q \subset R[x_1, \ldots , x_ n]$ be the prime ideal corresponding to $\overline{\mathfrak q}$. Then we see that $S = B/J$ where $B = R[x_1, \ldots , x_ n]_{\mathfrak q}$ is essentially of finite presentation over $R$ and $J = IB$. We can find $f_1, \ldots , f_ k \in J$ such that the images $\overline{f}_ i \in B/\mathfrak mB$ generate the image $\overline{J}$ of $J$ in the Noetherian ring $B/\mathfrak mB$. Hence there exist finitely generated ideals $J' \subset J$ such that $B/J' \to B/J$ induces an isomorphism

\[ (B/J') \otimes _ R R/\mathfrak m \longrightarrow B/J \otimes _ R R/\mathfrak m = S/\mathfrak mS. \]

For any $J'$ as above we see that Lemma 10.128.8 applies to the ring maps

\[ R \longrightarrow B/J' \longrightarrow S' \]

and the module $M$. Hence we conclude that $B/J'$ is flat over $R$ for any choice $J'$ as above. Now, if $J' \subset J' \subset J$ are two finitely generated ideals as above, then we conclude that $B/J' \to B/J''$ is a surjective map between flat $R$-algebras which are essentially of finite presentation which is an isomorphism modulo $\mathfrak m$. Hence Lemma 10.128.4 implies that $B/J' = B/J''$, i.e., $J' = J''$. Clearly this means that $J$ is finitely generated, i.e., $S$ is essentially of finite presentation over $R$. Thus we may apply Lemma 10.128.8 to $R \to S \to S'$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05UV. Beware of the difference between the letter 'O' and the digit '0'.