The Stacks project

Lemma 13.31.7. Let $\mathcal{A}$ be an abelian category. Assume every complex has a quasi-isomorphism towards a K-injective complex. Then any exact functor $F : K(\mathcal{A}) \to \mathcal{D}'$ of triangulated categories has a right derived functor

\[ RF : D(\mathcal{A}) \longrightarrow \mathcal{D}' \]

and $RF(I^\bullet ) = F(I^\bullet )$ for K-injective complexes $I^\bullet $.

Proof. To see this we apply Lemma 13.14.15 with $\mathcal{I}$ the collection of K-injective complexes. Since (1) holds by assumption, it suffices to prove that if $I^\bullet \to J^\bullet $ is a quasi-isomorphism of K-injective complexes, then $F(I^\bullet ) \to F(J^\bullet )$ is an isomorphism. This is clear because $I^\bullet \to J^\bullet $ is a homotopy equivalence, i.e., an isomorphism in $K(\mathcal{A})$, by Lemma 13.31.2. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 13.31: K-injective complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 070K. Beware of the difference between the letter 'O' and the digit '0'.