## Tag `07MV`

Chapter 54: Crystalline Cohomology > Section 54.24: Some further results

Remark 54.24.10 (Rlim). Let $p$ be a prime number. Let $(A, I, \gamma)$ be a divided power ring with $A$ an algebra over $\mathbf{Z}_{(p)}$ with $p$ nilpotent in $A/I$. Set $S = \mathop{\rm Spec}(A)$ and $S_0 = \mathop{\rm Spec}(A/I)$. Let $X$ be a scheme over $S_0$ with $p$ locally nilpotent on $X$. Let $\mathcal{F}$ be any $\mathcal{O}_{X/S}$-module. For $e \gg 0$ we have $(p^e) \subset I$ is preserved by $\gamma$, see Divided Power Algebra, Lemma 23.4.5. Set $S_e = \mathop{\rm Spec}(A/p^eA)$ for $e \gg 0$. Then $\text{Cris}(X/S_e)$ is a full subcategory of $\text{Cris}(X/S)$ and we denote $\mathcal{F}_e$ the restriction of $\mathcal{F}$ to $\text{Cris}(X/S_e)$. Then $$ R\Gamma(\text{Cris}(X/S), \mathcal{F}) = R\mathop{\rm lim}\nolimits_e R\Gamma(\text{Cris}(X/S_e), \mathcal{F}_e) $$

Hints: Suffices to prove this for $\mathcal{F}$ injective. In this case the sheaves $\mathcal{F}_e$ are injective modules too, the transition maps $\Gamma(\mathcal{F}_{e + 1}) \to \Gamma(\mathcal{F}_e)$ are surjective, and we have $\Gamma(\mathcal{F}) = \mathop{\rm lim}\nolimits_e \Gamma(\mathcal{F}_e)$ because any object of $\text{Cris}(X/S)$ is locally an object of one of the categories $\text{Cris}(X/S_e)$ by definition of $\text{Cris}(X/S)$.

The code snippet corresponding to this tag is a part of the file `crystalline.tex` and is located in lines 4813–4842 (see updates for more information).

```
\begin{remark}[Rlim]
\label{remark-rlim}
Let $p$ be a prime number. Let $(A, I, \gamma)$ be a divided power
ring with $A$ an algebra over $\mathbf{Z}_{(p)}$ with $p$ nilpotent
in $A/I$. Set $S = \Spec(A)$ and $S_0 = \Spec(A/I)$.
Let $X$ be a scheme over $S_0$ with $p$ locally
nilpotent on $X$. Let $\mathcal{F}$ be any
$\mathcal{O}_{X/S}$-module. For $e \gg 0$ we have $(p^e) \subset I$
is preserved by $\gamma$, see
Divided Power Algebra, Lemma \ref{dpa-lemma-extend-to-completion}.
Set $S_e = \Spec(A/p^eA)$ for $e \gg 0$.
Then $\text{Cris}(X/S_e)$ is a full subcategory of $\text{Cris}(X/S)$
and we denote $\mathcal{F}_e$ the restriction of $\mathcal{F}$ to
$\text{Cris}(X/S_e)$. Then
$$
R\Gamma(\text{Cris}(X/S), \mathcal{F}) =
R\lim_e R\Gamma(\text{Cris}(X/S_e), \mathcal{F}_e)
$$
\medskip\noindent
Hints: Suffices to prove this for $\mathcal{F}$ injective.
In this case the sheaves $\mathcal{F}_e$ are injective
modules too, the transition maps
$\Gamma(\mathcal{F}_{e + 1}) \to \Gamma(\mathcal{F}_e)$ are
surjective, and we have
$\Gamma(\mathcal{F}) = \lim_e \Gamma(\mathcal{F}_e)$ because
any object of $\text{Cris}(X/S)$ is locally an object of one
of the categories $\text{Cris}(X/S_e)$ by definition of
$\text{Cris}(X/S)$.
\end{remark}
```

## Comments (0)

## Add a comment on tag `07MV`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 2 comments on Section 54.24: Crystalline Cohomology.