The Stacks project

33.35 Coherent sheaves on projective space

In this section we prove some results on the cohomology of coherent sheaves on $\mathbf{P}^ n$ over a field which can be found in [Mum]. These will be useful later when discussing Quot and Hilbert schemes.

33.35.1 Preliminaries

Let $k$ be a field, $n \geq 1$, $d \geq 1$, and let $s \in \Gamma (\mathbf{P}_ k^ n, \mathcal{O}(d))$ be a nonzero section. In this section we will write $\mathcal{O}(d)$ for the $d$th twist of the structure sheaf on projective space (Constructions, Definitions 27.10.1 and 27.13.2). Since $\mathbf{P}^ n_ k$ is a variety this section is regular, hence $s$ is a regular section of $\mathcal{O}(d)$ and defines an effective Cartier divisor $H = Z(s) \subset \mathbf{P}^ n_ k$, see Divisors, Section 31.13. Such a divisor $H$ is called a hypersurface and if $d = 1$ it is called a hyperplane.

Lemma 33.35.2. Let $k$ be a field. Let $n \geq 1$. Let $i : H \to \mathbf{P}^ n_ k$ be a hyperplane. Then there exists an isomorphism

\[ \varphi : \mathbf{P}^{n - 1}_ k \longrightarrow H \]

such that $i^*\mathcal{O}(1)$ pulls back to $\mathcal{O}(1)$.

Proof. We have $\mathbf{P}^ n_ k = \text{Proj}(k[T_0, \ldots , T_ n])$. The section $s$ corresponds to a homogeneous form in $T_0, \ldots , T_ n$ of degree $1$, see Cohomology of Schemes, Section 30.8. Say $s = \sum a_ i T_ i$. Constructions, Lemma 27.13.7 gives that $H = \text{Proj}(k[T_0, \ldots , T_ n]/I)$ for the graded ideal $I$ defined by setting $I_ d$ equal to the kernel of the map $\Gamma (\mathbf{P}^ n_ k, \mathcal{O}(d)) \to \Gamma (H, i^*\mathcal{O}(d))$. By our construction of $Z(s)$ in Divisors, Definition 31.14.8 we see that on $D_{+}(T_ j)$ the ideal of $H$ is generated by $\sum a_ i T_ i/T_ j$ in the polynomial ring $k[T_0/T_ j, \ldots , T_ n/T_ j]$. Thus it is clear that $I$ is the ideal generated by $\sum a_ i T_ i$. Note that

\[ k[T_0, \ldots , T_ n]/I = k[T_0, \ldots , T_ n]/(\sum a_ i T_ i) \cong k[S_0, \ldots , S_{n - 1}] \]

as graded rings. For example, if $a_ n \not= 0$, then mapping $S_ i$ equal to the class of $T_ i$ works. We obtain the desired isomorphism by functoriality of $\text{Proj}$. Equality of twists of structure sheaves follows for example from Constructions, Lemma 27.11.5. $\square$

Lemma 33.35.3. Let $k$ be an infinite field. Let $n \geq 1$. Let $\mathcal{F}$ be a coherent module on $\mathbf{P}^ n_ k$. Then there exist a nonzero section $s \in \Gamma (\mathbf{P}^ n_ k, \mathcal{O}(1))$ and a short exact sequence

\[ 0 \to \mathcal{F}(-1) \to \mathcal{F} \to i_*\mathcal{G} \to 0 \]

where $i : H \to \mathbf{P}^ n_ k$ is the hyperplane $H$ associated to $s$ and $\mathcal{G} = i^*\mathcal{F}$.

Proof. The map $\mathcal{F}(-1) \to \mathcal{F}$ comes from Constructions, Equation (27.10.1.2) with $n = 1$, $m = -1$ and the section $s$ of $\mathcal{O}(1)$. Let's work out what this map looks like if we restrict it to $D_{+}(T_0)$. Write $D_{+}(T_0) = \mathop{\mathrm{Spec}}(k[x_1, \ldots , x_ n])$ with $x_ i = T_ i/T_0$. Identify $\mathcal{O}(1)|_{D_{+}(T_0)}$ with $\mathcal{O}$ using the section $T_0$. Hence if $s = \sum a_ iT_ i$ then $s|_{D_{+}(T_0)} = a_0 + \sum a_ ix_ i$ with the identification chosen above. Furthermore, suppose $\mathcal{F}|_{D_{+}(T_0)}$ corresponds to the finite $k[x_1, \ldots , x_ n]$-module $M$. Via the identification $\mathcal{F}(-1) = \mathcal{F} \otimes \mathcal{O}(-1)$ and our chosen trivialization of $\mathcal{O}(1)$ we see that $\mathcal{F}(-1)$ corresponds to $M$ as well. Thus restricting $\mathcal{F}(-1) \to \mathcal{F}$ to $D_{+}(T_0)$ gives the map

\[ M \xrightarrow {a_0 + \sum a_ ix_ i} M \]

To see that the arrow is injective, it suffices to pick $a_0 + \sum a_ ix_ i$ outside any of the associated primes of $M$, see Algebra, Lemma 10.63.9. By Algebra, Lemma 10.63.5 the set $\text{Ass}(M)$ of associated primes of $M$ is finite. Note that for $\mathfrak p \in \text{Ass}(M)$ the intersection $\mathfrak p \cap \{ a_0 + \sum a_ i x_ i\} $ is a proper $k$-subvector space. We conclude that there is a finite family of proper sub vector spaces $V_1, \ldots , V_ m \subset \Gamma (\mathbf{P}^ n_ k, \mathcal{O}(1))$ such that if we take $s$ outside of $\bigcup V_ i$, then multiplication by $s$ is injective over $D_{+}(T_0)$. Similarly for the restriction to $D_{+}(T_ j)$ for $j = 1, \ldots , n$. Since $k$ is infinite, a finite union of proper sub vector spaces is never equal to the whole space, hence we may choose $s$ such that the map is injective. The cokernel of $\mathcal{F}(-1) \to \mathcal{F}$ is annihilated by $\mathop{\mathrm{Im}}(s : \mathcal{O}(-1) \to \mathcal{O})$ which is the ideal sheaf of $H$ by Divisors, Definition 31.14.8. Hence we obtain $\mathcal{G}$ on $H$ using Cohomology of Schemes, Lemma 30.9.8. $\square$

Remark 33.35.4. Let $k$ be an infinite field. Let $n \geq 1$. Given a finite number of coherent modules $\mathcal{F}_ i$ on $\mathbf{P}^ n_ k$ we can choose a single $s \in \Gamma (\mathbf{P}^ n_ k, \mathcal{O}(1))$ such that the statement of Lemma 33.35.3 works for each of them. To prove this, just apply the lemma to $\bigoplus \mathcal{F}_ i$.

Remark 33.35.5. In the situation of Lemmas 33.35.2 and 33.35.3 we have $H \cong \mathbf{P}^{n - 1}_ k$ with Serre twists $\mathcal{O}_ H(d) = i^*\mathcal{O}_{\mathbf{P}^ n_ k}(d)$. For every $d \in \mathbf{Z}$ we have a short exact sequence

\[ 0 \to \mathcal{F}(d - 1) \to \mathcal{F}(d) \to i_*(\mathcal{G}(d)) \to 0 \]

Namely, tensoring by $\mathcal{O}_{\mathbf{P}^ n_ k}(d)$ is an exact functor and by the projection formula (Cohomology, Lemma 20.54.2) we have $i_*(\mathcal{G}(d)) = i_*\mathcal{G} \otimes \mathcal{O}_{\mathbf{P}^ n_ k}(d)$. We obtain corresponding long exact sequences

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{F}(d - 1)) \to H^ i(\mathbf{P}^ n_ k, \mathcal{F}(d)) \to H^ i(H, \mathcal{G}(d)) \to H^{i + 1}(\mathbf{P}^ n_ k, \mathcal{F}(d - 1)) \]

This follows from the above and the fact that we have $H^ i(\mathbf{P}^ n_ k, i_*\mathcal{G}(d)) = H^ i(H, \mathcal{G}(d))$ by Cohomology of Schemes, Lemma 30.2.4 (closed immersions are affine).

33.35.6 Regularity

Here is the definition.

Definition 33.35.7. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. We say $\mathcal{F}$ is $m$-regular if

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i)) = 0 \]

for $i = 1, \ldots , n$.

Note that $\mathcal{F} = \mathcal{O}(d)$ is $m$-regular if and only if $d \geq -m$. This follows from the computation of cohomology groups in Cohomology of Schemes, Equation (30.8.1.1). Namely, we see that $H^ n(\mathbf{P}^ n_ k, \mathcal{O}(d)) = 0$ if and only if $d \geq -n$.

Lemma 33.35.8. Let $k'/k$ be an extension of fields. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. Let $\mathcal{F}'$ be the pullback of $\mathcal{F}$ to $\mathbf{P}^ n_{k'}$. Then $\mathcal{F}$ is $m$-regular if and only if $\mathcal{F}'$ is $m$-regular.

Proof. This is true because

\[ H^ i(\mathbf{P}^ n_{k'}, \mathcal{F}') = H^ i(\mathbf{P}^ n_ k, \mathcal{F}) \otimes _ k k' \]

by flat base change, see Cohomology of Schemes, Lemma 30.5.2. $\square$

Lemma 33.35.9. In the situation of Lemma 33.35.3, if $\mathcal{F}$ is $m$-regular, then $\mathcal{G}$ is $m$-regular on $H \cong \mathbf{P}^{n - 1}_ k$.

Proof. Recall that $H^ i(\mathbf{P}^ n_ k, i_*\mathcal{G}) = H^ i(H, \mathcal{G})$ by Cohomology of Schemes, Lemma 30.2.4. Hence we see that for $i \geq 1$ we get

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i)) \to H^ i(H, \mathcal{G}(m - i)) \to H^{i + 1}(\mathbf{P}^ n_ k, \mathcal{F}(m - 1 - i)) \]

by Remark 33.35.5. The lemma follows. $\square$

Lemma 33.35.10. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}$ is $(m + 1)$-regular.

Proof. We prove this by induction on $n$. If $n = 0$ every sheaf is $m$-regular for all $m$ and there is nothing to prove. By Lemma 33.35.8 we may replace $k$ by an infinite overfield and assume $k$ is infinite. Thus we may apply Lemma 33.35.3. By Lemma 33.35.9 we know that $\mathcal{G}$ is $m$-regular. By induction on $n$ we see that $\mathcal{G}$ is $(m + 1)$-regular. Considering the long exact cohomology sequence associated to the sequence

\[ 0 \to \mathcal{F}(m - i) \to \mathcal{F}(m + 1 - i) \to i_*\mathcal{G}(m + 1 - i) \to 0 \]

as in Remark 33.35.5 the reader easily deduces for $i \geq 1$ the vanishing of $H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m + 1 - i))$ from the (known) vanishing of $H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i))$ and $H^ i(\mathbf{P}^ n_ k, \mathcal{G}(m + 1 - i))$. $\square$

Lemma 33.35.11. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then the multiplication map

\[ H^0(\mathbf{P}^ n_ k, \mathcal{F}(m)) \otimes _ k H^0(\mathbf{P}^ n_ k, \mathcal{O}(1)) \longrightarrow H^0(\mathbf{P}^ n_ k, \mathcal{F}(m + 1)) \]

is surjective.

Proof. Let $k'/k$ be an extension of fields. Let $\mathcal{F}'$ be as in Lemma 33.35.8. By Cohomology of Schemes, Lemma 30.5.2 the base change of the linear map of the lemma to $k'$ is the same linear map for the sheaf $\mathcal{F}'$. Since $k \to k'$ is faithfully flat it suffices to prove the lemma over $k'$, i.e., we may assume $k$ is infinite.

Assume $k$ is infinite. We prove the lemma by induction on $n$. The case $n = 0$ is trivial as $\mathcal{O}(1) \cong \mathcal{O}$ is generated by $T_0$. For $n > 0$ apply Lemma 33.35.3 and tensor the sequence by $\mathcal{O}(m + 1)$ to get

\[ 0 \to \mathcal{F}(m) \xrightarrow {s} \mathcal{F}(m + 1) \to i_*\mathcal{G}(m + 1) \to 0 \]

see Remark 33.35.5. Let $t \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m + 1))$. By induction the image $\overline{t} \in H^0(H, \mathcal{G}(m + 1))$ is the image of $\sum g_ i \otimes \overline{s}_ i$ with $\overline{s}_ i \in \Gamma (H, \mathcal{O}(1))$ and $g_ i \in H^0(H, \mathcal{G}(m))$. Since $\mathcal{F}$ is $m$-regular we have $H^1(\mathbf{P}^ n_ k, \mathcal{F}(m - 1)) = 0$, hence long exact cohomology sequence associated to the short exact sequence

\[ 0 \to \mathcal{F}(m - 1) \xrightarrow {s} \mathcal{F}(m) \to i_*\mathcal{G}(m) \to 0 \]

shows we can lift $g_ i$ to $f_ i \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m))$. We can also lift $\overline{s}_ i$ to $s_ i \in H^0(\mathbf{P}^ n_ k, \mathcal{O}(1))$ (see proof of Lemma 33.35.2 for example). After substracting the image of $\sum f_ i \otimes s_ i$ from $t$ we see that we may assume $\overline{t} = 0$. But this exactly means that $t$ is the image of $f \otimes s$ for some $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m))$ as desired. $\square$

Lemma 33.35.12. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}(m)$ is globally generated.

Proof. For all $d \gg 0$ the sheaf $\mathcal{F}(d)$ is globally generated. This follows for example from the first part of Cohomology of Schemes, Lemma 30.14.1. Pick $d \geq m$ such that $\mathcal{F}(d)$ is globally generated. Choose a basis $f_1, \ldots , f_ r \in H^0(\mathbf{P}^ n_ k, \mathcal{F})$. By Lemma 33.35.11 every element $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(d))$ can be written as $f = \sum P_ if_ i$ for some $P_ i \in k[T_0, \ldots , T_ n]$ homogeneous of degree $d - m$. Since the sections $f$ generate $\mathcal{F}(d)$ it follows that the sections $f_ i$ generate $\mathcal{F}(m)$. $\square$

33.35.13 Hilbert polynomials

The following lemma will be made obsolete by the more general Lemma 33.45.1.

Lemma 33.35.14. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. The function

\[ d \longmapsto \chi (\mathbf{P}^ n_ k, \mathcal{F}(d)) \]

is a polynomial.

Proof. We prove this by induction on $n$. If $n = 0$, then $\mathbf{P}^ n_ k = \mathop{\mathrm{Spec}}(k)$ and $\mathcal{F}(d) = \mathcal{F}$. Hence in this case the function is constant, i.e., a polynomial of degree $0$. Assume $n > 0$. By Lemma 33.33.4 we may assume $k$ is infinite. Apply Lemma 33.35.3. Applying Lemma 33.33.2 to the twisted sequences $0 \to \mathcal{F}(d - 1) \to \mathcal{F}(d) \to i_*\mathcal{G}(d) \to 0$ we obtain

\[ \chi (\mathbf{P}^ n_ k, \mathcal{F}(d)) - \chi (\mathbf{P}^ n_ k, \mathcal{F}(d - 1)) = \chi (H, \mathcal{G}(d)) \]

See Remark 33.35.5. Since $H \cong \mathbf{P}^{n - 1}_ k$ by induction the right hand side is a polynomial. The lemma is finished by noting that any function $f : \mathbf{Z} \to \mathbf{Z}$ with the property that the map $d \mapsto f(d) - f(d - 1)$ is a polynomial, is itself a polynomial. We omit the proof of this fact (hint: compare with Algebra, Lemma 10.58.5). $\square$

Definition 33.35.15. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. The function $d \mapsto \chi (\mathbf{P}^ n_ k, \mathcal{F}(d))$ is called the Hilbert polynomial of $\mathcal{F}$.

The Hilbert polynomial has coefficients in $\mathbf{Q}$ and not in general in $\mathbf{Z}$. For example the Hilbert polynomial of $\mathcal{O}_{\mathbf{P}^ n_ k}$ is

\[ d \longmapsto {d + n \choose n} = \frac{d^ n}{n!} + \ldots \]

This follows from the following lemma and the fact that

\[ H^0(\mathbf{P}^ n_ k, \mathcal{O}_{\mathbf{P}^ n_ k}(d)) = k[T_0, \ldots , T_ n]_ d \]

(degree $d$ part) whose dimension over $k$ is ${d + n \choose n}$.

Lemma 33.35.16. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$ with Hilbert polynomial $P \in \mathbf{Q}[t]$. Then

\[ P(d) = \dim _ k H^0(\mathbf{P}^ n_ k, \mathcal{F}(d)) \]

for all $d \gg 0$.

Proof. This follows from the vanishing of cohomology of high enough twists of $\mathcal{F}$. See Cohomology of Schemes, Lemma 30.14.1. $\square$

33.35.17 Boundedness of quotients

In this subsection we bound the regularity of quotients of a given coherent sheaf on $\mathbf{P}^ n$ in terms of the Hilbert polynomial.

Lemma 33.35.18. Let $k$ be a field. Let $n \geq 0$. Let $r \geq 1$. Let $P \in \mathbf{Q}[t]$. There exists an integer $m$ depending on $n$, $r$, and $P$ with the following property: if

\[ 0 \to \mathcal{K} \to \mathcal{O}^{\oplus r} \to \mathcal{F} \to 0 \]

is a short exact sequence of coherent sheaves on $\mathbf{P}^ n_ k$ and $\mathcal{F}$ has Hilbert polynomial $P$, then $\mathcal{K}$ is $m$-regular.

Proof. We prove this by induction on $n$. If $n = 0$, then $\mathbf{P}^ n_ k = \mathop{\mathrm{Spec}}(k)$ and any coherent module is $0$-regular and any surjective map is surjective on global sections. Assume $n > 0$. Consider an exact sequence as in the lemma. Let $P' \in \mathbf{Q}[t]$ be the polynomial $P'(t) = P(t) - P(t - 1)$. Let $m'$ be the integer which works for $n - 1$, $r$, and $P'$. By Lemmas 33.35.8 and 33.33.4 we may replace $k$ by a field extension, hence we may assume $k$ is infinite. Apply Lemma 33.35.3 to the coherent sheaf $\mathcal{F}$. The Hilbert polynomial of $\mathcal{F}' = i^*\mathcal{F}$ is $P'$ (see proof of Lemma 33.35.14). Since $i^*$ is right exact we see that $\mathcal{F}'$ is a quotient of $\mathcal{O}_ H^{\oplus r} = i^*\mathcal{O}^{\oplus r}$. Thus the induction hypothesis applies to $\mathcal{F}'$ on $H \cong \mathbf{P}^{n - 1}_ k$ (Lemma 33.35.2). Note that the map $\mathcal{K}(-1) \to \mathcal{K}$ is injective as $\mathcal{K} \subset \mathcal{O}^{\oplus r}$ and has cokernel $i_*\mathcal{H}$ where $\mathcal{H} = i^*\mathcal{K}$. By the snake lemma (Homology, Lemma 12.5.17) we obtain a commutative diagram with exact columns and rows

\[ \xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] \\ 0 \ar[r] & \mathcal{K}(-1) \ar[r] \ar[d] & \mathcal{O}^{\oplus r}(-1) \ar[r] \ar[d] & \mathcal{F}(-1) \ar[d] \ar[r] & 0 \\ 0 \ar[r] & \mathcal{K} \ar[r] \ar[d] & \mathcal{O}^{\oplus r} \ar[r] \ar[d] & \mathcal{F} \ar[d] \ar[r] & 0\\ 0 \ar[r] & i_*\mathcal{H} \ar[r] \ar[d] & i_*\mathcal{O}_ H^{\oplus r} \ar[r] \ar[d] & i_*\mathcal{F}' \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 } \]

Thus the induction hypothesis applies to the exact sequence $0 \to \mathcal{H} \to \mathcal{O}_ H^{\oplus r} \to \mathcal{F}' \to 0$ on $H \cong \mathbf{P}^{n - 1}_ k$ (Lemma 33.35.2) and $\mathcal{H}$ is $m'$-regular. Recall that this implies that $\mathcal{H}$ is $d$-regular for all $d \geq m'$ (Lemma 33.35.10).

Let $i \geq 2$ and $d \geq m'$. It follows from the long exact cohomology sequence associated to the left column of the diagram above and the vanishing of $H^{i - 1}(H, \mathcal{H}(d))$ that the map

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{K}(d - 1)) \longrightarrow H^ i(\mathbf{P}^ n_ k, \mathcal{K}(d)) \]

is injective. As these groups are zero for $d \gg 0$ (Cohomology of Schemes, Lemma 30.14.1) we conclude $H^ i(\mathbf{P}^ n_ k, \mathcal{K}(d))$ are zero for all $d \geq m'$ and $i \geq 2$.

We still have to control $H^1$. First we observe that all the maps

\[ H^1(\mathbf{P}^ n_ k, \mathcal{K}(m' - 1)) \to H^1(\mathbf{P}^ n_ k, \mathcal{K}(m')) \to H^1(\mathbf{P}^ n_ k, \mathcal{K}(m' + 1)) \to \ldots \]

are surjective by the vanishing of $H^1(H, \mathcal{H}(d))$ for $d \geq m'$. Suppose $d > m'$ is such that

\[ H^1(\mathbf{P}^ n_ k, \mathcal{K}(d - 1)) \longrightarrow H^1(\mathbf{P}^ n_ k, \mathcal{K}(d)) \]

is injective. Then $H^0(\mathbf{P}^ n_ k, \mathcal{K}(d)) \to H^0(H, \mathcal{H}(d))$ is surjective. Consider the commutative diagram

\[ \xymatrix{ H^0(\mathbf{P}^ n_ k, \mathcal{K}(d)) \otimes _ k H^0(\mathbf{P}^ n_ k, \mathcal{O}(1)) \ar[r] \ar[d] & H^0(\mathbf{P}^ n_ k, \mathcal{K}(d + 1)) \ar[d] \\ H^0(H, \mathcal{H}(d)) \otimes _ k H^0(H, \mathcal{O}_ H(1)) \ar[r] & H^0(H, \mathcal{H}(d + 1)) } \]

By Lemma 33.35.11 we see that the bottom horizontal arrow is surjective. Hence the right vertical arrow is surjective. We conclude that

\[ H^1(\mathbf{P}^ n_ k, \mathcal{K}(d)) \longrightarrow H^1(\mathbf{P}^ n_ k, \mathcal{K}(d + 1)) \]

is injective. By induction we see that

\[ H^1(\mathbf{P}^ n_ k, \mathcal{K}(d - 1)) \to H^1(\mathbf{P}^ n_ k, \mathcal{K}(d)) \to H^1(\mathbf{P}^ n_ k, \mathcal{K}(d + 1)) \to \ldots \]

are all injective and we conclude that $H^1(\mathbf{P}^ n_ k, \mathcal{K}(d - 1)) = 0$ because of the eventual vanishing of these groups. Thus the dimensions of the groups $H^1(\mathbf{P}^ n_ k, \mathcal{K}(d))$ for $d \geq m'$ are strictly decreasing until they become zero. It follows that the regularity of $\mathcal{K}$ is bounded by $m' + \dim _ k H^1(\mathbf{P}^ n_ k, \mathcal{K}(m'))$. On the other hand, by the vanishing of the higher cohomology groups we have

\[ \dim _ k H^1(\mathbf{P}^ n_ k, \mathcal{K}(m')) = - \chi (\mathbf{P}^ n_ k, \mathcal{K}(m')) + \dim _ k H^0(\mathbf{P}^ n_ k, \mathcal{K}(m')) \]

Note that the $H^0$ has dimension bounded by the dimension of $H^0(\mathbf{P}^ n_ k, \mathcal{O}^{\oplus r}(m'))$ which is at most $r{n + m' \choose n}$ if $m' > 0$ and zero if not. Finally, the term $\chi (\mathbf{P}^ n_ k, \mathcal{K}(m'))$ is equal to $r{n + m' \choose n} - P(m')$. This gives a bound of the desired type finishing the proof of the lemma. $\square$


Comments (4)

Comment #4063 by Yicheng Zhou on

Just a small typo: in the paragraph between Definition 08AD and Lemma 08AE, a is missing in the left side of

Comment #6884 by Sasha on

In the remark after Definition 33.34.7 the inequality should be .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 089X. Beware of the difference between the letter 'O' and the digit '0'.