# The Stacks Project

## Tag 08YQ

Lemma 10.13.5. Let $R \to S$ be a ring map. Given $S$-modules $M, N$ and an $R$-module $P$ we have $$\mathop{\rm Hom}\nolimits_R(M \otimes_S N, P) = \mathop{\rm Hom}\nolimits_S(M, \mathop{\rm Hom}\nolimits_R(N, P))$$

Proof. This can be proved directly, but it is also a consequence of Lemmas 10.13.4 and 10.11.8. Namely, we have \begin{align*} \mathop{\rm Hom}\nolimits_R(M \otimes_S N, P) & = \mathop{\rm Hom}\nolimits_S(M \otimes_S N, \mathop{\rm Hom}\nolimits_R(S, P)) \\ & = \mathop{\rm Hom}\nolimits_S(M, \mathop{\rm Hom}\nolimits_S(N, \mathop{\rm Hom}\nolimits_R(S, P))) \\ & = \mathop{\rm Hom}\nolimits_S(M, \mathop{\rm Hom}\nolimits_R(N, P)) \end{align*} as desired. $\square$

The code snippet corresponding to this tag is a part of the file algebra.tex and is located in lines 2412–2419 (see updates for more information).

\begin{lemma}
\label{lemma-hom-from-tensor-product-variant}
Let $R \to S$ be a ring map. Given $S$-modules $M, N$ and an $R$-module $P$
we have
$$\Hom_R(M \otimes_S N, P) = \Hom_S(M, \Hom_R(N, P))$$
\end{lemma}

\begin{proof}
This can be proved directly, but it is also a consequence of
Namely, we have
\begin{align*}
\Hom_R(M \otimes_S N, P)
& =
\Hom_S(M \otimes_S N, \Hom_R(S, P)) \\
& =
\Hom_S(M, \Hom_S(N, \Hom_R(S, P))) \\
& =
\Hom_S(M, \Hom_R(N, P))
\end{align*}
as desired.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 08YQ

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).