The Stacks project

Lemma 13.33.4. Let $\mathcal{D}$ be a triangulated category. Let $(K_ n, f_ n)$ be a system of objects of $\mathcal{D}$. Let $n_1 < n_2 < n_3 < \ldots $ be a sequence of integers. Assume $\bigoplus K_ n$ and $\bigoplus K_{n_ i}$ exist. Then there exists an isomorphism $\text{hocolim} K_{n_ i} \to \text{hocolim} K_ n$ such that

\[ \xymatrix{ K_{n_ i} \ar[r] \ar[d]_{\text{id}} & \text{hocolim} K_{n_ i} \ar[d] \\ K_{n_ i} \ar[r] & \text{hocolim} K_ n } \]

commutes for all $i$.

Proof. Let $g_ i : K_{n_ i} \to K_{n_{i + 1}}$ be the composition $f_{n_{i + 1} - 1} \circ \ldots \circ f_{n_ i}$. We construct commutative diagrams

\[ \vcenter { \xymatrix{ \bigoplus \nolimits _ i K_{n_ i} \ar[r]_{1 - g_ i} \ar[d]_ b & \bigoplus \nolimits _ i K_{n_ i} \ar[d]^ a \\ \bigoplus \nolimits _ n K_ n \ar[r]^{1 - f_ n} & \bigoplus \nolimits _ n K_ n } } \quad \text{and}\quad \vcenter { \xymatrix{ \bigoplus \nolimits _ n K_ n \ar[r]_{1 - f_ n} \ar[d]_ d & \bigoplus \nolimits _ n K_ n \ar[d]^ c \\ \bigoplus \nolimits _ i K_{n_ i} \ar[r]^{1 - g_ i} & \bigoplus \nolimits _ i K_{n_ i} } } \]

as follows. Let $a_ i = a|_{K_{n_ i}}$ be the inclusion of $K_{n_ i}$ into the direct sum. In other words, $a$ is the natural inclusion. Let $b_ i = b|_{K_{n_ i}}$ be the map

\[ K_{n_ i} \xrightarrow {1,\ f_{n_ i},\ f_{n_ i + 1} \circ f_{n_ i}, \ \ldots ,\ f_{n_{i + 1} - 2} \circ \ldots \circ f_{n_ i}} K_{n_ i} \oplus K_{n_ i + 1} \oplus \ldots \oplus K_{n_{i + 1} - 1} \]

If $n_{i - 1} < j \leq n_ i$, then we let $c_ j = c|_{K_ j}$ be the map

\[ K_ j \xrightarrow {f_{n_ i - 1} \circ \ldots \circ f_ j} K_{n_ i} \]

We let $d_ j = d|_{K_ j}$ be zero if $j \not= n_ i$ for any $i$ and we let $d_{n_ i}$ be the natural inclusion of $K_{n_ i}$ into the direct sum. In other words, $d$ is the natural projection. By TR3 these diagrams define morphisms

\[ \varphi : \text{hocolim} K_{n_ i} \to \text{hocolim} K_ n \quad \text{and}\quad \psi : \text{hocolim} K_ n \to \text{hocolim} K_{n_ i} \]

Since $c \circ a$ and $d \circ b$ are the identity maps we see that $\varphi \circ \psi $ is an isomorphism by Lemma 13.4.3. The other way around we get the morphisms $a \circ c$ and $b \circ d$. Consider the morphism $h = (h_ j) : \bigoplus K_ n \to \bigoplus K_ n$ given by the rule: for $n_{i - 1} < j < n_ i$ we set

\[ h_ j : K_ j \xrightarrow {1,\ f_ j,\ f_{j + 1} \circ f_ j, \ \ldots ,\ f_{n_ i - 1} \circ \ldots \circ f_ j} K_ j \oplus \ldots \oplus K_{n_ i} \]

Then the reader verifies that $(1 - f) \circ h = \text{id} - a \circ c$ and $h \circ (1 - f) = \text{id} - b \circ d$. This means that $\text{id} - \psi \circ \varphi $ has square zero by Lemma 13.4.5 (small argument omitted). In other words, $\psi \circ \varphi $ differs from the identity by a nilpotent endomorphism, hence is an isomorphism. Thus $\varphi $ and $\psi $ are isomorphisms as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CRJ. Beware of the difference between the letter 'O' and the digit '0'.