The Stacks project

Lemma 101.48.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Assume $Y$ is decent and $f$ is representable (by schemes) or $f$ is representable by algebraic spaces and quasi-separated. Then $\mathcal{X}$ is decent.

Proof. Let $x \in |\mathcal{X}|$ with image $y \in |\mathcal{Y}|$. Choose a morphism $y : \mathop{\mathrm{Spec}}(k) \to \mathcal{Y}$ in the equivalence class defining $y$. Set $\mathcal{X}_ y = \mathop{\mathrm{Spec}}(k) \times _{y, \mathcal{Y}} \mathcal{X}$. Choose a point $x' \in |\mathcal{X}_ y|$ mapping to $x$, see Properties of Stacks, Lemma 100.4.3. Choose a morphism $x' : \mathop{\mathrm{Spec}}(k') \to \mathcal{X}_ y$ in the equivalence class of $x'$. Diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(k') \ar[r]_{x'} & \mathcal{X}_ y \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ & \mathop{\mathrm{Spec}}(k) \ar[r]^ y & \mathcal{Y} } \]

The morphism $y$ is quasi-compact if $\mathcal{Y}$ is decent. Hence $\mathcal{X}_ y \to \mathcal{X}$ is quasi-compact as a base change (Lemma 101.7.3). Thus to conclude it suffices to prove that $x'$ is quasi-compact (Lemma 101.7.4). If $f$ is representable, then $\mathcal{X}_ y$ is a scheme and $x'$ is quasi-compact. If $f$ is representable by algebraic spaces and quasi-separated, then $\mathcal{X}_ y$ is a quasi-separated algebraic space and hence decent (Decent Spaces, Lemma 68.17.2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GW3. Beware of the difference between the letter 'O' and the digit '0'.