The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Bibliography entry F

author
Fulton, William
title
Intersection Theory
year
1998
publisher
Springer-Verlag
series
Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge
volume
2

@BOOK{F,
    AUTHOR = "Fulton, William",
    TITLE = "Intersection Theory",
    PUBLISHER = "Springer-Verlag",
    YEAR = "1998",
    VOLUME = "2",
    SERIES = "Ergebnisse der {M}athematik und ihrer {G}renzgebiete, 3. Folge",
    EDITION = "2"
}

      

This item is referenced in 15 tags:

  • in Section 41.1: Introduction
  • in Section 41.27: Intersecting with effective Cartier divisors
  • in Remark 41.27.5
  • in Section 41.31: Bivariant intersection theory, which cites Theorem 17.1 of F
  • in Definition 41.31.1, which cites Definition 17.1 of F
  • in Lemma 41.31.8, which cites Theorem 17.1 of F
  • in Subsection 41.44.12: Blowing up lemmas, which cites Section 2.4 of F
  • in Subsection 41.44.20: Commutativity
  • in Section 42.8: Rational Equivalence, which cites Chapter I of F
  • in Section 42.10: Proper pushforward and rational equivalence
  • in Section 42.11: Flat pullback and rational equivalence
  • in Section 42.24: Moving Lemma, which cites Example 11.4.1 of F
  • in Section 50.5: Riemann-Roch
  • in Section 74.26: Bivariant intersection theory, which cites Theorem 17.1 of F
  • in Definition 74.26.1, which cites Definition 17.1 of F